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ABSTRACT

A mathematical model of a diaphragm fluid
oscillator is presented. The formulation of the systeﬁ
equations is carried out using linear graph methods. The
solutions of the dynamic equations are obtained by digital
computer simulation using numerical technigues., Experi-
mental measurements are carried out on a prototype
oscillator and the ‘experimental results obtained are
described and compared with the predicted theoretical
results.

The theoretical results give the frequency of
oscillation, the pressure fluctuations in the +wo chambers
and the displacement of the diaphragm for all instaﬁts éf
time. Both the theoretical analysis and the experimgntal
results show that the main operating princsiple of this
oscillator is the inertial effect of the fluid in the vent
tube. A¢cordingly, the frequency of escillation is directly
- proportional to the cross-sectional area of the ven: tubsa
and inversely proportional to the length of the tube. The
effect of various parameters affecting the frequency cf

oscillation are considered and studied.
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NOMENCLATURE

A cross-sectional area (inz)
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D diameter of seat chamber (in)
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I fluid inertance in vent tube (lb—secz/in5
k spring stiffness (1lb/in)
L length of vent tube (in)
M lumped mass of diaphragm (slugs)
P pressure (psig)’
Ps supply pressure (psig)

volume flow rate of fluid (in3)

fluid resistance (lb-sec/in5)
v velocity of fluid (in/sec)
Yy displacemént of diaphragm from'seat (in)
Ymax maximum displacement of diaphragm (in)
y velocity of diaphragm (in/sec)
v specific weight of fluid (1b/in3)’
P density of fluid (slug/in3)
subscripts
1 seat chamber

2

vent chamber
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CHAPTER 1

INTRODUCTION

1.1 Background

The recent trend in hydraulic and pneumétic control
systems is the use of discontinuous on-off type controls
rather than the conventional linear continuous control. Such
on-off control systems usually consist cf a form of pulse
modulation or bang-bang optimal switching. One of the key
elements in a pulsed system is a clock that either generates
the pulses or determines when they are going to occur. The
clock function is usually performed'by an oscillator. A
pneumatic osciliator is ideally suited for a pneumatic pulse

. . (1} W s \ .
length modulated system‘l'. ¥luidic oscillators are also used

in analog fluidic systems as Ireguency modulators(z).
Fluidic oscillators have also found increasing
applications for sensing and analog to digital converter
purposes. Such fluidic oscillators are made of a monostable
or & bistable fluidic amplifier with some form of feedback(3).
Sensing can be performed with an oscillator in two
ways. First, an oscillator construction feature, such as the
feedback capacitance, can be changed hy the measured quantity.
An example of such an application is a liquid level sensor.
A change in the liquid level generates a frequency change in
14 -

the oscillator, proportional to the leve Second, if a

fluid variable such as temperature or density is to be measured,



the fluid can be passed through the oscillator and the fre-
quency change will give a measure of the variable(s’G).

These oscillators are made of some fluidic elements,
use air as the medium and operate at higher frequencies. Very
little work has been done on liquid operated, low frequency
oscillators. This thesis presents the dynamic behaviour of

a low frequency liquid operated oscillator with a minimum

of moving paxts.

1.2 Description of the Fluid Oscillator

A schematic cross-sectional view of the £luid
oscillator is shown in Fig. 1. The £fluid oscillator consists
of a supply nozzle which directs the flow into a receiver.
The recelver has a larger diameter than the supply nozzle and
is located concentric with the supply nozzle. Between the
receiver and the supply nozzle there is a small gap which
is termed the ejector chamber. This ejector chamber is
connected ic the output line. The unif with supply nozzle,
receiver and the output line acts as an ejector system. The
other end of the receiver connects to the seat chamber. Sur-
rounding the seat chamber is the vent chamber together with
a vent tube. A diaphragm made of polyurethane sits on the
seat>and closes the curtain area between the two chambers.

A spring with a force-adjusting screw is provided to keep the
diaphragm in position. A spring retainer is placed between

the diaphragm and the spring to make the motion of the diaph-
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ragme uniform.

1.3 Opeiating Principle

Fluid at a supply pressure PS is fed through the
supply nozzle An into the seat chamber where pressure is
P;. The initial spring force causes the diaphragm to sit
" on the seat and closes the curtain area., Hence there will

not be any flow into the vent chamber. As the pressura P

et

in the seat chamber builds up, the diaphragm starts te move
up and allows flow into the vent chamber where pressure 19
P2. This upward movement of the diaphragm will cause the
pressure P, to decrease and the pressure P2 to increasa.

1
The diaphragm movement is upwards as long as the fox

w

exerted due to the pressures P1 and P2, as well as ainsrtia
forces due to diaphragm mass, 'is more than the downward
force of the spring. When the spring force overcom:s £he
total upward forces, the diaphragm starts to move down,

increasing Pl and decreasing P2‘

Con5¢der the situation when the diaphragm has moved

down and closes the curtain area. At this instant the supply

~flow is continuously entering the supply nozzle and the ficow
passage to the vent chamber is cempletely blocked. Hence
there will be flow through the outlet passagz, accelsvating
the whole volume of the fluid in that passage. Thiz croates
the output to attain an instantaneous pressure which is high

than that of the supply pressure. However, at tie came tinms

er



the pressure P2.in the vent chamber causes the flow out
through the vent tube. But since there is no flow into the
vent chamber and the outflow through the vent tube is con-
. tinuous, a sub-ambient pressure results in the vent chamber.
The flow through the vent tube is maintained because of the'
momentum of the fluid due to the pressure P, just before the
diaphragm closes the seat. After a short interval of time,
the momentum of the fluid in the vent tube is reduced to
zero and the pressure in the vent chamber becomes atmospheric.
Now the pressure P, in the seat chamber is high enough to
push the diaphragm upwards against the spring force and
starts the next cycle.

The inertial effec£ of the fluid in the vent tube

-y b N TP Tn - - - e P - - ATy .
o3cillation, Paenoniciadil; LRENSS Cild

1]

is responsible for th
variation in the length and diameter of the vent tube will
change the inertial effect and thus cause a change in the

oscillation frequency.

1.4 Purpose and Scope of the Study

The purpose of this thesis is to mathematically
model the fluid oécillator and to study the dynamic behaviour
of this mechanism. In addition, the optimization of the
parameters of the oscillator, for particular purposes, can be
carried out. Experimental results are presented to compare
with the theoretical results obtained.

The dynamic equations are obtained by considering



a lumped parameter equivalent system. The solutions of the
dynamic equations are cbtained by digital computerisimulation
using numerical technigues. The solution gives the pressure
fluctuations in the seat and vent chambers, the diaphragm
displacement at different instants of time and the frequency
of oscillation. The various parameters which affect the
frequency and the pressure fluctuations are considered and -

studied..



CHAPTER 2

MATHEMATICAL ANALYSIS OF THE FLUID OSCILLATOR

2.1 General Remarks

In most fluid systems, the mathematical analysis
is not done in a rigorous way because of the inherent
difficulty in describing the system using differential
equations. Usually, the analysis will be based on the
experimental results obtained for the particular system.
Either the experimental data or the characteristic curves
drawn using the experimental data will be used in studying
the performance of that system,

In most cases, even if the differential equation
is known, it may be non~linear with Lime-varying palaielels
which introduce more difficulties in obtaining the solutions
using classical methods. Using either numerical techniques
with a digital computer or simulating on an analog computer

will be the more realistic way of getting the solution.

2,2 Linear Graph Technique

A linear graph is a set of interconnected lines.
A linear graph will be used first as an aid in visualizing
thz structure of the system and second as a basis feor a
general technique for formulating the system equations. The
important advantage of the graph-theoretical models lies in

that they lend themselves to a systematic procedure forxr the



piece-wise solution of the problem.
The schematic representation of the linear graph
for the fluid oscillator is shown in Fig. 2. The linear
- graph theory utilizes the sets of continuity equations and
the terminal eguations (component characteristics) as an
integral part of the formulétion procedure(7). In other
words, a set of non-linear and linear algebraic equations
describing the system is generated through the following
three sets of equations:
(i) Node - continuity equations,
(ii) Loop - compatibility equations,

(iii) Terminal or elemental equations.

2.3 Assampillions

(1) The fluid is considered to be incoﬁpressible.

(2) One dimensional, lumped parameter analysis is
considered.

{3) The displacement of the diaphragm is in a
straight line perpendicular to the supply
nozzle.

(4) Velocity heads are considered to be negligible in
comparison to the pressure head, except in the
vent tube,

2.4 Description of the Linear Graph

In order to draw the linear graph, the fluid oscil-



FIG. 2. LINEAR GRAPH OF FLUID OSCILLATOR.



- 10 -

lator can be considered &as three separate systems:

1. The fluid system consisting of the supply nozzle,
ejector system, seat chamber, vent chamber and vent tube,

2. The mechanical system consisting of the spring
and a mass (lumped mass of the diaphragm and the spring
retainer),

3. The linkage between the above two systems.

In the fluid system, pressure acts as an across-—
variable and the flow as a through-variable. The supply
pressuré P, acts as the source. This is represented in the
system graph between the vertex S and the fluid ground Gf.
The flow through the supply nozzle is represented by the
path S1, The vertex 1 indicates the lumped pressuze Pl in
the seat chamber. The path 12 represents the variable resis-
tance over the curtain area between the seat chamber and the
diaphragm. The path 2Gf is the flow through the vent tube
which represents the inertance of the fluid in that tube.

In the case of the mechanical system, velocity
acts as an across-variable and the force as a through-
variable., In the linear graph, mass and spring are connected
in parallel between the vertices 3 and the mechanical ground
Gm' The vertex 3 represents the velocity of the diaphragm.
The connecktions between the two above systems are represented
by the set of paths 26, 3G and 1Gg, 3Gm as shown in Fig. 2.
The linkagé is represented by a pure gyrating transducer which

transforms an across-variable into a through-variable and



changes a through-variable into an across-variable between
two types of systems. The dashed reverse loop in the linear
- graph represents the gyration, There are two gyrating trans-
. ducers associated with the system, each one connecting the
mechanical system to one of the two chambexrs. The arrows
associated with the system graph represent positive direction
of through-variable flow and positive direction of across-

variable drop.

2.5 Formulation of the System Egquations

To formulate the system equations, the following
set of equations may be used.

(1) Node - continuity equations,
{ii} Path - compatibility eguations,
(iii) Elemental equations.

For a linear or non-linear system, this set of
equations is sufficient to determine the system performance.
For non-linear systems, it may not be possible to eliminate
all but one variable since it may involve transcendental
relations between some or all variables and hence the whole
set may have to be treated simultaneously.

Now consider the fluid system and apply continuity
conditions at each vertex. The continuity condition at the
vertex is often called the vertex law and is essentially

applying the principle of conservation of matter or force.



- 12 -
At vertex S,
Qg = Qpg (2.1)

where QS and QRl are the volume rates of flow (in3/sec)
from the supply and through the supply nozzle.

At vertex 1,

Q] + Qpy * Q pg = Qpq = O (2.2)

where Q and QRs are the volume flow rate through the

1* %ro
seat chamber, outlet and curtain area, respectively.

At vertex 2,
Qp + Q) = Qpg = 0 (2.3)

where QI and Q2 are the volume flow rate through the vent
tube and vent chamber.
The elemental equations connecting the through-

variables and the across-variables may be written as:

Ps - Py = Rn(PS,Pl)QRl (2.4)
Pl = Ro(Pl)QRO (2.5)
Pl - P, = RS(Pl,Pz)QRS (2.6)
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P, = I —— (2.7)

where Rn(Ps,Pl), RO(Pl) and Rs(Pl’Pz) are the non-~linear
fluid resistances and the derivation of which are
shown in Appendix I |

Py is the supply pressure (psig}

P1 and P2 are the pressures in seat and vent

chambers (psig)

T is the fluid inertance of the vent tube given by

pL/AV

where p is the density of the fluid, L is the length

of the vent tube, A, is éhe cross-sectional area of

the vent tube.

The gyrator action is generated by the two sets of
loops in the linear graph shown in Fig. 2. The gyrator
relationship can be obtained by writing the relationship .
between the across-variable and the through-variable for each

loop concerned. They can be written as:

Y = 57 9 (2.8)
1

Fi = APy (2.9)

¥ =50 (2.10)
2

F, = B,P, ' (2.11)



where
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v is the velocity of the diaphragm (in/sec)

- a ol - o 4
Fl and F2 are the forces due to Py and P2 acting
on the diaphragm (1b)
Al and A2 are cross-—sectional areas of the seat and
vent chambers (inz).

The equations concerned with the mechanical system

are the dynamic force balance of the diaphragm and the

individual elemental equations. They can be formulated as:

where

2.6

Fl + F2 - Fm - Fk = 0 (2.}2)
.= d§
ar
v = L Ok /9 1A\
k dt Aty

Fo and Fk are the inertial and spring forces (1b)
m is the lumped mass of the mechanical system
(slugs)

k is the spring stiffness (lb/in).

Simulation Procedure

The set of 14 equations shown in Section (2.5) are

sufficient to describe the system completely within the major

assumptions. Equations (2.4), (2.5) and (2.6) are non-linear

whereas all other equations are linear. Solutions of this

set are

ossible only through a digital computer or through
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analog computer simulation. In this thesis, simulation is
carried out by digital computer using a Runge-Kutta integ-
ration method. The procedure is explained in the succeeding
© paragraphs.

The system equations consist of three differential
equations connecting the independent variable time (t) and

the dependent variables QI’ y and F Obviously, three

k.
initial conditions, QI(O), v (0) and Fk(O) are needed to
solve these differential equations. Hence the' first step in
the simulation procedure is to get the proper initial condi-
tions. Once these initial conditions are known, the following
procedure may be adopted to obtain the solutions of the whole

J
set.

Using equations (2.8) and (2.10), the values of

Ql~and Q2 can be calculated as,
Q = Ayy gg.ls)
Q, = Ay (2.16)
: Substituting'for Q, and Qr in equation (2.3) gives
Qrs = 9 * Q, (2.17)

Substituting equation (2.17) into equation (2.2) gives
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Qm>’Qm.="P1+Cﬁ% (2.18)

Using the values of the functions Rn(PS,Pl), RO(Pl) and
Rs(Pl'Pz) from Appendix I and rearranging equations (2.4),

(2.5) and (2.6) gives

_ 1/2 _ 1 a
dn'p
/2 _ 1
Pl = ;—27723175 QRO (2.20)
d7op
F1” P = D ig)l/z 0 (2.21)
cqmDy 5 RS .
where Cyq is the discharge coefficient

D 1is the diameter of the seat (in)

p is the density of the fluid (slugs/inB)

y is the displacement of the diaphragm from
the seat '(in).

Rewriting equations (2.19), (2.20) and (2.21) gives,

P -P, = R IQ l 0 (2.22)
s 1 2 R1 ‘R1
2(chn)
P. = P IQ | 0 (2.23)
1 7 |¥ro| *rRO
2(cqh,)
- = e P
Py =% 5 QRsl Qps (2.24)

Z(CdﬂDY)

Consider equations (2.18), (2.22) and (2.23).
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These are three algebxraic equations with three unknown

. -‘ : 1.
variables Pl' QRl and QRO' The variables can e found by
solving the simultaneous equations. The procedure is out-

lined as follows:

— p
Letc = o
1 2
2(chn)
P
C =
2 2
2(cho)
o}
c —
3 .2
2[cd Dy]

Substituting equation (2.23) in €2.22) and re-

arranging gives,

P, = 11051051 + ©21%0!%0 (2.25)
From equation (2.18)
Qry = Qo * 101 * Ops]
Let @ = Ql + QRS
Therefcre Qpy = Qpo * 0 (2.26)

Substituting the value of Qp, from equation (2.26)

in equation (2.25) gives,
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Pg = 1)@ * Qo)) (9 F Opo) + CZIQROI Opo  (2.27)

The volume flow rate through the outlet QRO is
always a positive guantity and hence the equation (2.27)

can be written as,

2

_ . 2
P, =c¢y sign(Q + QRO)(Q + QRO) + ¢, Qpg (2.28)
Rearranging equation (2;28) gives,
2¢,Q g,0% - p
Q2 + — 1 o) 4 N 0 (2.29)
RO (c, + c,) RO (c, + c,)
2 7 G 2 1
where Cy = ¢ sign(Q + QRO)' -

¢y can liave only two values, That is

—

Cl = Cl

or Cl = —Cl

Hence the equation (2.29) will_have four solutions
for Qpo+ Since the physical system is deterministic, there
can exist ¢nly one admissible value for QRO‘ In order to
find the proper value of QRO’ a certain constraint on QRO nust
be satisfied. This constraint can be established by analyz-
ing the maximum and minimum of QRO' The volume rate of flow
through the outlet, QRO’ is maximum when the pressure Pl in
the seat chamber is maximum, and vice versa. The pressure

Pl always lies between the range zero and the supply pressure
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Ps' Hence the outflow QRO ranges between zero and a
maximum value for QRO' Mathematically, this constraint on

Q can be expressed as

RO

O < Qo £ Qro)max (2.30)
B - 1/2
where ' Qo) max = __lggééﬁ
A
\cz

Thus the wvalue for QRO can be determined from the
solution of equation (2.29) and the constraint (2.30).
Substituting'the value of QRO in eguation (2.23),

tiie pressure Pl can be calculated as,

- 2
Pl = Cy QRO (2.31)

Using the value of Py and substituting in egquation

(2.24) gives,

2 = 17 c3]0pg!0gs (2.32)

Substituting equations (2.31) and (2.32) in equa-

tions (2.9) and (2.11) gives,
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CF. = AP (2.34)

From the above two equations and using egquation

(2.12), the value of Fm can be calculated as;
F =F +F, - F (2.35)
m

Now the integrand of the three differential equa-
tions are known and hence the solution can be calculated
using the Runge-Kutta method as explained in Appendix II.

The whole cycle is repeated as the values of the pressures

Pl, P2 and the diaphragm displacement y at different instants
can be calculated. The constants used in the fluid oscillator
simulation are given in Appendix III.

The solution of one of the system differential
equations gives the value of the volume flow rate through the
vent tube when the diaphragm does not close the curtain area.
The fluid motion in the vent tube is entirely different when
the diaphragm closes the curtain area and the equations con-

cerning this fluid motion are discussed in Appendix IV,
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CHAPTER 3

EXPERIMENTAL WORK

3.1 * Introduction

In order to verify the theory developed for the
fluid oscillator, experimental work has been carried out
using a prqtoiype oscillator*, A pictorial view of the
oscillator with its components is shown in Fig. 3. The
construction of the oscillator is very similar to that of
the schematic.shOWn in Fig. 1. Provision is made in the
oscillator for fixing various vent tubes of different
lengths and diameters. The experimental work carried out
fulfi;led two distinct purposés. In the first case, it gives
qualitative information on-the frequency of oscillation and
the output pressure for different lengths and diameters of
the vent tube. Secondly, it allows experiment to show
the effect of initial spring force and supply pressure on the
frequency of oscillation.

The expériments are carried out using only one
prototype oscillator with different vent tubes. These expéri—
ments are done only for blocked output condition. The
pressure fluctuations and the oscillation frequencies are
measured by an oscilloscope through a pressure transducer,

The recordings are carried out using an oscilloscope camera.

Designed by Dr. C.K. Kwok of the Fluid Controls Group at
Sir George Williams University.
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3.2 " Experimental Apparatus

The general set—-up of the experimental appératus
is shown in Fig. 4, This cohsists of the f£luid oscillatox
with all its components connected to the supply line and the
measurement unit. Thevmeasurement unit comsists of a
pressure transducer, an oscilloscope and an oscilloscope
camera. The supply to the fluid oscillator is from the
water main through a regulator.

Because of the small size of the device, all
measurements are taken at the entrance and exit of the
oscillator. Since the measurements are made with a preséure
transducer, the guestion of frequency response of the trans-
ducer arises. The situation wherein a liquid is being used
in a transducer is entirely different from that of a yas-
filled apparatus. A 1iquid is characterized by a high den-
sity and stiffness, while a gas at ordinary pressure has a
density and stiffness several orders lower in magnitude than
a ligquid. This causes a transducer, comprising a mass, sus-
pended by & spring, to change its natural frequency as soon
as it is charged with a liquid(®). This.indicates that the
length of tubing, connecting the oscillator and the trans-
ducer has an effect in changing the natural frequency of the
transducer and thereby affecting the result of the oscillator
output. Hence it is desirable to have the measuring equip-
ment as close to the system as possible to eliminate the

undesirable effects caused by interconnecting tubing.
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3.3 " Procedure

The first step in the experimental work is to
calibrate the pressure transducer. A suitable sensitivity
' of the transducer is selected and a known supply pressure
level is applied. The transducer indicater is adjusted
to the reqﬁired reading. . Now the supply pressure is cut
off and the indicator is checked for zero reading. If it
does not read zero, it is adjusted to do so. The process
is repeated until the desired calibration of the transducer
is arrived at. 1In the experimental apparatus, the trans-
ducer is calibrated to give 3 volts output for 40 psig of
supply pressure.

Before applying supply pressure to the oscillator,
the initiai spring.force is adjusted and kept at a constant
value. A vent tube of known diameter and Iength is fitted
into the vent.chamber.‘ All the meaéuring equipment is
connected as explained above. Now a constant supply pressure
is applied to the fluid oscillator. The oscillation of the
fluid jgt begins and the frequency of oscillation and the
output ﬁressure are measured on the oscilloécope. These
outputs are also recorded using an oscillescope camera. The
experiment is repeated using different lengths and diameters
of vent tube. The vent tubes used are made of brass and |
have lengths between 6 and 12 inches and diameters between
4/32 and 7/32 inch.

To study the effect of supply pressure and initial



spring foxce on the oscillation frequency, experiments
are carrieZ out with different Supply pressure and spring
force. Supply pressures of 40 pPsig, 30 psig and 20 psig

are used in the experiment.
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CHAPTER 4

DISCUSSION OF RESULTS

4.1 - Theoretical Analysis

The theoretical analysis developed for the fluid
oscillatoxr gives the dynamic equations of the system., These
dynamic equations are developed using linear graph methods.
This technique gives the system equations more easily and
provides a systematic procedure for a piece-wise solution
of the problem.

The ﬁesults of the theoretical analysis give the
position of the diaphragm and the pressures in the seat and
vent chambers at different instants of time. A change in
the vent tubeAgeometry changes these pressucve fluctuations
and the diaphragm displacement. Figs. 5, 6 and 7 show the
pressure fluctuations and the diaphragm displacement
obtained from the theoretical analysis. The results of the
analysis also show that the oscillation freguency is inverscly
proportional to the inertance of the vent tube. That is, the
oscillation freQuency is directly proportional to the cross-
secticnal area of the vent tube and inversely proportional to
the length of the tube. Fig. 8 shows the effect of vent tube
length and diameter on the oscillation frequency for a con-~
stant supply pressure.

The oscillation frequency depends on a number of

variables such as the mass of the diaphragm, the diameter of
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the seat and vent chambér, the supply pressure, the spring
stiffness, the initial spring force, and the diameter of
the output orificé. Thé theoretical analysis provides a
way to predict the change in frequenéy for a certain
variation in these parameters. The effect of these para--

meters is discussed below.

4,1.1 Bffect of mass of diaphragm

" A change in the mass of the diaphragm introduces
a change in the oscillation frequency. It is found that,
keeping all thé parameters of the oscillator at a constant
value, an increase in the mass of the diaphragm decreases
the oscillation frequency while a decrease in the mass
increases the frequency. ‘This is because the Irequency of
a spring~mass system is inversely proportional to the sgquare
root of the mass. Table 1 shows the values of the oscillation
frequencies for a 25% increase and decrease in the lumped

mass of the diaphragm.

4.1.2 Effect of seat and vent chambex diameters

A change in the seat chamber diameter or vent
chamber diameter also changes the oscillation frequency. The
results of the analysis show that the oscillation frequency
increases as the diameter of the seat or vent chamber is
decreased. Figs. 9 and 10 show the effect of ‘oscillation

frequency on the seat chamber and vent chamber diameters.
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This effect can be explained by drawing the diaphragm dis-
placement for tﬁe entife cycle of operation. Figs. 1l and
12 show the position of the diaphragm for different cross-

- sectional areas of seat and vent chambers. It is found that
the diaphragm travels a greater distance when the diameters
of the chambers are increased and hence takes moré time for-
the entire cycle of operation, causing‘a decrease in fre-

quency.

4.1.3 Effect of spring stiffness

Variation in spring stiffness affects the oscillation
frequency. The results of the analysis show that an increase
in spring stiffness increases the osciilation frequency. This
phenomenon can be explained by observing the diaphoagm Ais-
placement for springs of different stiffness. Fig. 13 shows
the diaphragm displacement for springs of stiffness 30 lbf/in
and 25 1bf/in. The figures indicate that the diaphragm has
displaced more from the seat for a spring having less stiff-
ness and hence the time required for the cycle is more in
the case of a less stiff spring. Fig. 14 shows the effect of

spring stiffness on the oscillation fregquency.

4,1.4 Effect of initial spring force

The effect of initial spring force on the oscillation
frequency is shown in Fig. 15. The oscillation frequency is

found to decrease as the initial spring force decreases. The
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initial spring force is equal to the product of the spring
stiffness and the iniﬁial displacementvof the spring.- Hence,
a decrease in the initial spring force may be viewed as
keeping the initial spring displacement as a constant and
decreasing the spring stiffness. Since a aecrease in the
spring stiffness decreases the oscillation frequency, the
effect of decreasing initialvspring force is to decrease the

oscillation frequency.

4.1.5 Effect of output orifice diameter

The theoretical analysis shows that an increase
in the output orifice diameter increases the oscillation
frequency. Table 2 shows the effect of oscillation freguency
on the vent tube geometry for different output orifice dia-
meters. This effect can be explained as follows. When the
diameter of the output orifice is decreased; the pressure ré—
covered in the seat chamber is more and causes the diaphragm
to move a greater distance from the seat. Thus it intro-
duces an increase in the time required for the operating cycle,
Hence the oscillation frequency decreases for a decrease in

the output orifice diameter.

4.1.6 Effect of supply pressure

The effect of supply pressures on the oscillation
frequency is shown in Table 3. It is found that the oscil-

lation frequency increases as the supply pressure increases.
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7 This phenomenon.can be éxplaihed as follows. When the
supply pressure increases, the diaphragm is displaced a
greater distance from the seat due to higher pressure in
the seat chamber. But because of this higher pressure
_.recovery, the velocity of the diaphragm movement increases
rapidly, reducing the time required for the diaphragm dis-
placement. Hence the total time for the operating cfcle

decreases and thus increases the frequency of oscillation.

4,2 Experimental Results and Correlation with the

Theory

The experimental work carried out gives the variation
in the output pressure and the oscillation frequency for vent
tubes of different lengths and diameters. The recordings made
for different vent tube geometry, supply pressure and spring
force are shown in Figs. 16(a) to 16(g). Figs. 1l6(a), 16(b)
and 16 (c) show the effect of supply pressure on the oscillation
frequency and the output pressure for a constant spring force
and a given'geometry of vent tube. These figures correspond
to supply pressures of 40, 30 and 20 psig for a vent tube of
length 8 inches and diameter 5/32 inch and with an initial
spring force of 3 lbf. Figs. 16(d) and 16 (e) show the effect
of vent tube geometry on the frequency of oscillation and the
output pressure. The experimental results show that the
oscillation frequency increases as the vent tube diameter

increases or as the vent tube length decreases and thus con-



firms that the oscillation frequencf is inversely propor-
tional to the inertance of the vent tube. Figs. 16 (f) and
16 (g) show the effect of initial spring force on the
oscillation frequency and the output préssure. The figures
indicate the output pressure fluctuations for a constant
supply pressure of 40 psig and for a vent tube of given
geometry with the initial spring force of 3 lbf and 6 lbf.
This experimental result sho@s that the frequency of oscil-
iation increases with the increasé‘in the initial spring
force and thus agrees with the theoretical analysis as

shown in Fig. 15. Fig. 17 shows the effect of vent tube
geometry on the oscillation frequency for constant supply
pressure and initial spring force. The experimental results
are in close agreement with the theoretical results obtained
for the blocked output under the same operating conditions

and are shown in Fig,., 18.
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TABLE 1

EFFECT OF MASS OF DIAPHRAGM ON THE

OSCILLATION FREQUENCY

Mass of Diaphragm
-6

Diameter of Vent Tube
(in)

(10”° silug) 7732 5732 5732 3735
1l1l.7666 23.84 19.94 15.98. 11.92
©.4132 23.90 20.00 16.00 11.93
7.0599 23.96  20.00 16.00 11.95

PS = 40 psig
L = 12 inches
F = 3 1b
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TABLE 2

.EFFECT OF OUTPUT ORIFICE DIAMETER

ON THE OSCILLATION FREQUENCY

Output Orifice

Diameter of Vent Tube

Diameter (in)
{in) 7732 6732 5732 4732
0.075 23.48 19.65 15.70 11.50
0.100 23.68 19.74 15.81 11.70
0.159 23.90 20.00 16.00 11.93

e
i

= 40 psig

12 inches

F = 3 1b




TABLE 3

EFFECT OF SUPPLY PRESSURE ON THE

OSCILLATION FREQUENCY

Supply Pressure

Diametex of Vent Tube
(in)

(psig) 7737 6/32 5737 4737
40 23.90  20.00 16.00 11.93
42 24.00 20.04 16.00 11.94
45 24,12 20,09 16.03 11.96

12 inches

i

3 1b
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CHAPTER 5

. CONCLUSIONS AND SUGGESTIONS FOR FUTURE STUDIES

5,1 Conclusions

A mathematical modei\of a diaphragm—-type fluid
‘oscillator is presented. The solution of the formulated
equations is carried out on a Digital Computer using a
Runge—Kutta integration method. The results of the analysis
give the pressure fluctuations in the seat and vent chambers
and the diaphragm displacement for all instants of time. The
theoretical results are in good agreement with the experi-
mental results in predicting the oscillaticn frequencies for
vent tubes of different diameters and lengths.

Based on the tneoretical analysis, it can be
concluded that the parameters which affect the oscillation
frequency are the mass of the diaphragm, the diameter of the
vent and seat chambers, the spring stiffness, the supply
pressure, the initial spring force, the vemt tube length and
diameter, and the diameter of the output orifice. It is also
concluded that the fluid oscillator operateé only due to the
inertial effect of the fluid in the vent tube and hence in
the absence of the vent tube, the fluid oscillator will not
function.

The theory developed could be used as a basis for
designing a fluid oscillator to give a specified frequency.

The theory can alsc be extended for designing some possible
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applications such as a dental irrigator, meedle bath shower

adaptor, and simple fuel injection system.

5.2 Suggestions for Future Studies

The following suggestions may be outlined to improve
the design of the fluid oscillator:

1. The analysis may be done by considering a distri-
buted parameter equivalent of the system;

2. The snap action of the diaphragm may be considered
to give closer quelling of the dynamics of diaphragm move-
-ment.

3. Experiments may be done on a larger size transparent
model to see the various effects inside the oscillator.

4., Provisions may be made in the oscillator for
adjusting the sprihg force and to measure accurately'the

various pressures to get good experimental results.
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APPENDIX I

PURE FLUID RESISTANCE

A fluid resistance is an element that causes a
pressure drop in a line for a given flow rate. In fluid
mechanics it is generally referred to as a restriction. It
is always possible to distinguish restrictions by deter-
mining the type of flow. Following these conditions, a
laminar resistance, a turbulent resistance or a mixed
resistance can be defined(g). If a fluid resistance net-
work has to be established, then it is necessary to know
" the different equations which have been established as a
function of the flow conditions. That is, the pressure

Grcp across the resistor has to be defined as a single

F

valued function of the flow rate.

The fluid oscillator consists of three resistors,
namely the supply nozzle, the output orifice and the curtain
area. The supply nozzle and the output orifice are turbu-
lent resistances, whereas the flow through the curtain area
acts asva mixed resistance. The mixed resistance is defined
by large variations of the flow regime as functions of
design parameters. The determination of the turbulent resis-
tances can be done using Bernoulli's equation.

Consider the flow through an orifice of cross-
sectional area A as shown in Fig. A.l. Let P, and P, be the

b
pressures at sections (a) and (b). Let Aa and Ab be the
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cross—-sectional areas at these sections.
Applying the Bernoulli's equation at sections (a)

and (b) gives,

| Va2 'Pb Vb2
H_+ v + —2? = Hb + Y + 79'—— . (A.1)
where H_  and ‘H_ are the position heads at sections (a)

and (b)
Va and Vb are the velocities at sections (a) and
(b)
v is the specific weight of the fluid
g isbthe acceleration due to gravity which is equal
to 32<ft/sec2.
Since the position heads at both the sections are
the same, the eguation (A.i) becomes, |
v ? v, 2

a b
5—-'*‘—2-5—-:'6—'4‘—2—9_—- (A.Z)

i)

Applying the continuity equation for sections (a)

and (b) gives,
AV_ =AWV (A.3)

Substituting equation (A.3) in equation (A.2) gives,

2. 2 2
a . v B Py Y
v F =5 T g
ZgAa

av)

(A.4)
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Assuming there are no losses at the inlet and

outlet and simplifying eguation (A.4) gives,

1 2 1/2
\VJ 2 (p. - P) (A.5)
1 - B .
A 2
a

where p is the density of the fluid.
The volume flow rate through the orifice at the

vena contracta is given by

Q= CAV (A.6)

where Cy is the velocity coefficient.

2}

Substituting equation (A.3) in eguation (4.b6) gives,

<

C.A . ' ‘
Q = v ]; [% (e, - 1>b)~ll/2 (A.7)
[ Ay ]1/2 1
A2 .
a
3 2 1/2
= CdAO[E (Pa Pb] (A.8)
CVCC
where C, =
d { , A 2]1/2
1 -C o
c 2
a

By definition, the fluid resistance Rf can be

written as,
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I - S - (A.9)

Substituting equation (A.8) in equation (A.9)

gives,
(p. - P )l/2 1b -sec
Re = —= 2b1/2 - 5 (2.10)
CdA (= in
o'p

'Hence equation (A.10) gives the general formula for
a turbulent resistance. Fig. (A.2) shows the consitutive
relationships of a turbulent resistance as compared to a
linear resistance. Using the formula (A.1%), various fesis»
tances can be defined as follows,

The resistance of the supply nozzle = R _(P_,P.)

_ 1/2

= 4 11\
—31/7 (A.11}
CdAn (b—)

The resistance of the output orifice = Ro(Pl)

p 1/2
- "%§T77 (A.12)

CdAo('p_

The resistance of the curtain area can be derived
assuming a square law fesistance. The derivation is identical
to that of a turbulent resistance.

‘"he resistance of the curtain area = RS(Pl,Pz)

(Pl_Pz)l/z
= (A.13)

2\ 1/2
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where D is the diameter of the seat chamber
y is the displacement of the diaphragm measured

from the seat.
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APPENDIX II

RUNGE-KUTTA METHOD

The system equations consist of three differential
equations which have to be solved to get the whole set of
solutions. These differential equations caﬁ be solved using
a Runge-Kutta‘integration method. The general procedure
involved is outlined as follows,

Let dy/dx = F(x,y) | (A.14)

Then using the Runge-Kutta méthod(lO), the dis-~

crete solution of equation (A.1l4) is given as,

y(n + 1) = y(n) + %(kl + 2k, + 2kg + k4)
where ky = h.F(x,y)

k, = h.F[x + 1'2-1, v + ]f-zl]

k3 = h.F[x + %—, y + ]—c—zg-]

ky = h.F(x + h, y + k)

h is the step size equal to [x(n + 1) - x(n)].
Considering the system equations, an outline of
the procedure involved in the Runge-Kutta integration method

for one of the equations is as follows.
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Rewriting egquation (2.13) gives,

i

dy

m
= 1
at (A.15)

By the Runge-Kutta method, the soluticn of equa; :

tion (A.15) is given by

_ 1 .
yn + 1) = y(n) + -é-(kl + 2k2 + 2k, + k4)

3
Fm
where k, = Dt.—
1 m
k
= m, 1
k2 = Dt. ( m + 2)
r kz
. = m, £
k4 Dt.(m+ 2)
Fm
k4=Dt.(—;n-+.k3)

Dt = step size.
The digital computer program for the whole simulation

is provided as follows.
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FORTRAN (3,2)/MASTER

PROGRAM FLOUSC

SIMULATION OF FLUID OSCILLATOR USING NU“ERICAL TECHNIQUE

EXTERNAL DEBRIV

30

DIMENSION X(3)!DV1(5)'XOV1(5)

COMMON XK!YOOYMAX9C39A19A29PS’RCR00RCP1'CR0 X1
COMMON xMyPNIsP1,P2,YsCR]

READ 30, (DVI(I)9I=1,5)

FORMAT (5F1046) T

READ 40, (XO¥1 {J) 3 J=195)

[« 2Ne!

40

FORMAT (SFS 3)

PS=THE SUPPLY PRESSURE -(A CONSTANT).
PS=40.

RHO= THE DENSITY OF. THE FLUID (WATER)-
RHO =1493/(12%%4,)

XM= THE_MASS_QE_IHE—QIAEHRAGM—AND—IHE—SERLNG—REIA&NEQ

D

XM=0,0000094132

PAI=3.141597132.. e e e e e e

COH=THE COEFFICIENT OF DISCHAREGE
CD=0,62 -

ANe THE CROSSECTIOANAL AREA OF THE ‘NOZZLE '

AN=DOAT L4430 1 TH#0, 176

AO=THE CRNSSECTIONAL AREA OF THE DUTLET

. AO=PAI/6.#0,159%,159 .. . e s < e e
Al =THE CROSSECTIONAL AREA OF THE SEAT CHAMBER
Al=PAT/4.#0,35#0,35

2— THE. cposserrouAL AREA oF THE VENT CHAMBER

QAI/IH*(O.R"* 87 :-n- R\

XK— THE SPRING STIFFNESS

XK=30, . o
Nl= THE DIAMETER OF THE SEAT CHAMBER

01 =0,35.

YMAX= MaXIMUM DISPALACEMENT OF THE DIAPHRAG
YMAX=0, 1G

YO= INITIAL SPRING DISPLACEMENT

- YO= 0 ) R RN et s messeares ot s o o R e e n e

CRLZRHO/ (2.4 #AN#AN)

CRO= RHO/(Z.*(CD*AO)*#Z ’ TSP PRSI IIRE S

RCR1=SQRT (CR1)
Drnn-anTtPDn|

DO 10 J=leb4. . . e e e m e

B T 1 s 401 2 N N ) A R —

C3= RHO/(?-*(CD*PAI*DI)**?.)

XOV=THE LENGTH OF THE VENT TUBE

DO 10 K=1,3 , i
DV= THE DIAMETER OF THE VENT TUBE-

. -AOV=THE CROSSECTIONAL AREA. OF.. THE. OVERFLOY. TUBE--.

60

DV=DV] (K)

AOV= PAI/4 #DVHDV

PRINT 609~ XOV 9 DV coommorim oeer <o o o oo oo o o o

FORMAT (//020XQ4HX0V—9F5 393HDV=9F10 6)
X1 =RHO#XOVLADV

X (2)2040 - — - S
X (3) =xK#Y0

X(1)=0. O

SIR GEORGE WILLIAMS UNIVERSITY
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FORTRAN (3.2)/MASTER

T=0,0
DT=0.00001

PRIMNT 2

2 FORMAT (//915X94HTIME'20X,2HP1,20X’2HP2920X lHYo?OXv‘bHYDOT)

DO - 10 J= =1 ,80 . e e e s oo et + 2 v e s e e i e e e 2 n e
CALL RK (X,Fo3’DT lnnaDERIV)
coveme e PRINT S TaP1oP29Y9X (1) — - U——
5 FORMAT (/35(10XsF10,.5))
10—CONTINUE
SToP
[N _y | 5 Jo— — S -

e FORTRAN _DIAGNOSTIC.RESULTS.FOR. ... FLOUSC

NO ERRORS

~ FLOUSC P 00556 C 00042 D 00000

SIR GEORGE WILLIAMS UNIVERSITY
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FORTRAN (3,2)/MASTER
SURROUTINE RK(XsTsNeDTINSTEP9DERIV)

X=NFPENNENT VARIABLE
T=INDERENNENT VARIARLE

N=NUMBER OF EQUATIONS
. DT=STEP SIZE.
DERIV= SUBROTINE T0 CALCULATE DERIVATIVE
_DIMENSION X(3) ,
DIMENSION XK1(3).xK?(3).XK3(3>oxx4(3)
no 10 T-'l .NSTFP

ocoonon

CALL DERIV (XKl: XoT)
... DO 20 J=1,3 e e e s e
20 XKl(J)—XKl(J)*DT : .
D0 30 . J=193 e o e s e
30 XKZ(J)—X(J)*O S*XKI(J)’ :

T=FY+0- R.t'.ﬁT

CALL DERIV (XKZ’XKZoT)
.. .DO 40 J=1e3 . e e e+ e e
: 40 XK2(J)=xK2(J)#DT ’
. ... DD.50 J=18¢3 - e e s o2 e

50 XK3(J)=x(J)+0. Q*XK?(J)
CALL-DERTVY (XK3 2 XK3sT)

DO 60 J=1+3
- 60 XK3(J)=gK3(J)*DTNWUNWWWWWWHqJ~wvamwwﬂwﬁMMw”wwwmmwmmw ,,,,,
DO 70 J=193
e 7O XKS () EX L) #XKB LYY comioms s e i
' T=T+0,5+0T

CALL NEBTV (XK s XKseT)
ARk 1 Sl VoS aar 2 4 v Ay

DO RO J=1s3
Do 10 J =143
10 X(Jy=X(J)+0e 1666667*(XK1(J)#ZoO*(XKZ(J)+XK3(J))+XKA(J))

RETURN
END

" FORTRAN DIAGNOSTIE RESULTS FOR. . .. RK ..o .

Nb.ééhaag,wmwn.WMUNNWWW.WH"NMM

RK P 00362 C 00000 ©OD 00000

.
! - e
iy
i1
a1
L § R . — e e e 2 o S e e o e

. |
L
L)

',*
o

SIR GEORGE WILLIAMS UNIVERSITY
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FORTRAN (3,2)/MASTER

SUBROUTINE DERIV(DXsXsT)
DIMENSION DX {3}eX(3)

COMMON K, YO, VIAY-PQ Al Ao DS, +RCRO, RrD1-ar yt

. YDOT=X{1) - O O

L FK=X(3)- — - et e e e e e

COMMON XH quyplspZQYoCRl

QI=X(2)

Y= (FK/XK)=YO )

 IF-(YeGTe0s0sAND(YDOT EQeNa0) GO TO-35-

~FORMAT . (5H - ki),

LE(0 00 ot EvYoeAND L YDOT 6T, 0,0} GO TO 35

et e Wy

1F (Y GF«0e n AND, YDOT.LT 0 n) GO To 30

PRIMT 26

Y=0,0
¥BOF=0+0

- X(1)=0e0-

QI=0.0

X(2)=040
X(3)=xKaYQ-

P1=CRO%*pPS/ (CR1+CRO)

50

~PRINT. 60s..Ty 919929YqX(1‘

P2=0+0

ey

DYDO1-(P1*A1-X(3))/XM

N+ 1) CT) N e——

NPFK=0,0

FORMAT (/s5(10XsF10,5))

G0-_T0-35

35

SRR T ) B

RURRURIINEIRUN, ¥ I

Y=YMAX

IF (Y=-YMAX) 30+20920

YDOT=0eN
CRS=C3/(Y%Y)

Ql=A1%YNOT

--Q=QRS+Q1

XCR1=RCR1#RCR1

ﬂQ—ADanﬂT

e

QRS=0Q2+Q1

QROM=SQRT (PS /CRO)

CR1=+XCR1
xB=2 &Pn1bnll0ﬂn¢ﬁo1|

~DET=SQRT (XB#XB=%+#XC)

XC-(CRI*Q*Q-PS)/(CRO#CRI)

QRO1=(=xB+DET) /2,
QRO2= (=xB=DET) /2,

—— . 1 3
95

- -CONT INUE

IF (QROM=QRO1) 91592,92

DR

falk}
—TNVOT

GO TO 95

IF (QROM=QRO2) 95594494
-QRO=QRO?

CONTINUE
P1=CRO#4BS(OR0)QRY

QR1=Q1+0R0O+QRS
P2=Ple CRS#+ARS(QRS) #QRS

IF (P2) 33433944

SIR GEORGE WILLIAMS UNIVERSITY
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FORTOAN {3,2) /MASTER

33 PE=Ga0
46 COMTINUE
Fl=alsidy

FR=Aa22P?

Pz lefFpeaFKT
DYDOT=FM/XHM , o .
1F (Ve ENcYMAX¢ANDDYDOT (BTe0a 0} DYDOTD40

DFK=YX¥yDOT :

e e e “Q‘: "DB!V, I,

X{rywynat
36 DX(1)=DvDOT
DX{PY=D"I
DX{3i=0rK
RETIIRN

S — EHD

FORTRAN DIAGNOSTIC RESULTS FOR DERIV

pEQly P 0054) C 0np42 D 00000
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APPENDIX IIX

FLUID OSCILLATOR CONSTANTS

9.6 x 10°2 in?

0.3982 in? .
3.0°x 1073 in2

1.98 x 1072 in?

0.62

0.35 in

7/32 in, 6/32 in, 5/32 in and 4/32 in.
30 1lb/in _

12 in, 10 in, 8 in and 6 in

6

9.4132 x 10~ ° slug

40 psig, 30 psig and 20 psig

0.35 in

5

9.3 x 107> slug/in>
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APPENDIX IV
FLUID MOTION IN THE VENT CHAMBER AND VENT TUBE WHEN

THE DIAPHRAGM CLOSES THE CURTAIN AREA

When the diaphragm closes the curtain area, the
fluid motion in the vent chamber and vent tube.is entirely
different from that when the éurtain area .is open. When
the curtain area isvclosed, both the vent chamber and vent
tube aét as variable capacitors with considerable rate of
change of flow. The equations concerning the motion of the-
fluid in the vent portion are derived as follows.

A schematic.croés—sectional view of the vent
chamber and vent tube is shown in Fig. (A.3). Let x and y
be the displacement of the fluid in the vent chamber and
vent tube at time (t) seconds, measured as shown in the
figure. Then dx/dt and dy/dt will be the mean velocity and
d%x/at? and a?y/at? will be the acceleration of the fluid
in the vent chamber and vent tube.

| ' Now consider the control volume as indicated in
Fig. (A.3) and apply the principle of conservation of momen-
tum to. this control volume.:

It gives,A'

o7

Py = & a

" [pA2 (H - x)g—j:‘- + pA L Q{-] (A.16)

for 0 <x<H
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Qle:
p

=2 [pA 1@ -
and \‘ PoA, [p v (& Y)dt] (A.17)

for 0<y<L

where H is.the length of vent chamber
L is the length of vent tube
Av is the cross=-sectional area of the vent tube
Pz.is the vapour pressure of the fluid.
By simplification and rewriting, equations (A.16)

and (A.l17) give

2 2
— - e 4°x ax, 2 d%y
Pydy = pA,(H x_):i? PA, (FE)° + PAL s (.18)
for 0 < x<H
and P,A_ = pA_(L - )d—zz - PA (Sa‘-z-)2 (A.19)
27v Ply Y dtz v dt *
" for 0 <y <L
By continuity equétion
X - A ¥ (A.20)

Ay @E = B G&

Rewriting equation (A.20) gives,

: A
dy o _2 dx
a& = K, & (&.21)
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Substituting equation (A.21) in equation (A.18)

gives,

2
= o dx ax, 2
Paky = #Ry(H = )77y - 0, ()
2
a”x '
+ pA —_— (A.22)
PRy dtz] | 4

for 0 < x< H
Equation (A.22) describes the fluid motion in the vent
chamber and vent tube until the fluid.is completely drained
from the vent chamber. Thergafter, the fluid motion in the
vent tube is described-by equation (A.12). These two
equations are non-linear and the solution is possible only
through a digital computer, using a numerical technique.
Since these differential equations are second order, the
solution requires two initial conditions. For equation (2.22),
the first initial condition is the displacement of the fluid,
x, at time t equai zero and the second initial condition is
the velocity, dx/dt,at t = 0. The initial displacement is
zero and the initial velocity can be calculated from the
momentum of the fluid when the diaphragm closes the curtain .
area. Similarly, the initial condition for equation (A.19)
is the displacement of the fluid, y, at t = 0 and the Velocity,
dy/dt,at £t = 0. The initial displacement is zero and the

initial velocity, dy/dt, can be calculated from the following
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equation
dy P2 g%
dat t=0 A dt
, v
where %%-is the‘velocity of the fluid in the vent

chamber just before the chamber is emptied.

The two equations can be solved using the Runge-
Kutta method and the results give the position of the inter-
face between the fluid and its safurated vapour.. The
solution indicates that the fluid in the vent chamber
ddes not drain completely and-that it recedes into the
chamber after a very short time. The solutions of these
equations also show that the time required for this fluid
motion is small compared to the operation of the entire -
cycle. The digital computer program for these equations

is provided as follows.
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FORTRAN (3,2)/MASTER

PROGRAM VEMTUB

DIMENSION X1(120),Y1(122),7Z1(108),22(1020)
P3=SATURATED VAPQUR PRESSURE QOF WATER
P3=-14,5

CRHO =1,93/7€12,4%%44)
. DV=DIAMETER OF THE .VENT. TUBE

RHO=CGENSITY OF WATER

PAI=22,/7,

Ov=5,/32,
AQV=CROSS-SECTIONAL ARFA QF VENT TUBE

~ A3=VENT CHaMBER DIAMETER

. XOV=LENGTH OF VENT TUBE

AQV=PAIxDVaDV/4,

A3=PAL1/d *{,87%,87=,5%,5)

X0V=12,
DI=p,irany

H=@,35 .

Y1) =2 P 7 B

HsHEIGHT OF VENT CHAMBER

X1(1)=¢,0

21(1)=12,3
N=1

11y
30

C WLEDT* (P3/RHO+ZLI(N)#*2)/ (H=X1 (N)+XOV)

PRINT 111
FORMAT (/7220X,4HTIME,25%, 12HDISPLACEMENT ,23X,8HVELOCITY)
T1=DT#21(N)

To=DT*(Z1(H)+W1/2,)
W2EDT+ (F3/RAN+(Z1(N)+W1/2,)%*2)/(H=X1(N)=T1/2,4X0V)

W3s= DT*(P3/RHO+(21(N)*N2/2 Jx*2)/(H=X1(N)=T2/2,+4X0V)

T3=DTw (21 (M) +12/24)

T4=DT*(Z1 (1) +W3)

HAZDT* (P3/RHO+(ZL(N)+W3) wa2) / (H=XL(N)=T3+XAV)
XL (N+1)=X1EM)+(T142,#T242,%4T73474)/6,
ZLI(N+1)SZ2IEN)+ (W i+2,#W242,%W3+W4) /6,

X{11=X{(N+1)

CEINRZANSLY - — -

69

_TIME=ANaDY

ANaN

PRINT6G, TINE,X{1,Z

1@

120

.60 TO 3a

hpzll ’
FORMAT(//,20%X,F19,8,20X,E15,5,20X,E15,5)
IF (xit=H) 183,120,120

CONTINUE

N=N+{§

Z2(1)=2A3/A0VH 211
Nz{

B § §%)

AL
160

PRINT 110
FORMAT (/7441 48X, 17HVENT _TUBE_PCRTION)

PRINT 11114

FORMAT (//,20X,4HTIME ,25X,12HDISPLACEHEN[!23X BHVELOCITY)

Fi=DT*Z2(N)

G1=DT*(P3/RHO+Z2(N) **2) /(XOV=Y1(N))
F2=DT#(Z2(N3+G1/2,) '

- G2s DT*(P3/RHO+(Z2(N)+G1/2 1*%2)/(XOVmYi(N)=F1/2,)

SIR GEORGE WILLIAMS UNIVERSITY @
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FORTRAN (3,2)/MASTER

F3=DT=(Z2(N)+62/2,)

G3= PT*(PB/RHO+(Z?(N)+G2/2 J*x2) /(X0V=Y1(N)=F2/2.)
FAa=DT*(22(N)+G3)

G4=DTw(P3/RHO+(Z2(N)+63)*%2) /(X0OV=Y1(N)=F3)

YU(N#1)sYL (N)+(F1+2,+F2+2 «F3+F4)/6,
Z2(N+1)=22(N)+ (G142, 4G2+2,%63+64) /6,

Y11=y (N+1) o
Z222Z2(N+Y) .
ANz N o
TIME=ANDT
PRINT 200, TIME,Y11,Z22 »
208C FORMAT(//,23X, Fl@ 8 208X,E15,5,208X,E15,5)
IF (Y11-XQV) 218,308,329 T
216 N=Nsy e e .
GO TO 166 T B
3¢gp STOP .
END
FORTRAN DIAGNOSTIC RESULTS FOR VENTUB T
NO_ERRORS
VENTUB =~ P p2453 C ~©@29006¢ O @200
08 s e e
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