INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films the
text direcily from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of

computer printer.

The quality of this reproduction is dependent upon the quality of the copy
submitted. Broken or indistinct print, colored or poor quality illustrations and
photographs, print bieedthrough, substandard margins, and improper alignment

can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript and
there are missing pages, these will be noted. Also, if unauthorized copyright
material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning
the original, beginning at the upper left-hand comer and continuing from left to
right in equal sections with small overlaps. Each original is also photographed in
one exposure and is included in reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6” x 9” black and white photographic
prints are available for any photographs or illustrations appearing in this copy for
an additional charge. Contact UMI directly to order.

®

UMI

Bell & Howell iInformation and Leaming
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
800-521-0600

SINIULATING GAMES USING OBJECT-ORIENTED
METHODOLOGY

HONGLANG LI

A MAJOR REPORT
N

THE DEPARTMENT
OF

COMPUTER SCIENCE

PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF MASTER OF COMPUTER SCIENCE
CONCORDIA UNIVERSITY
MONTREAL. QUEBEC. CANADA

APRIL 1998
© HONGLANG LI, 1998

i+l

National Library
of Canada

Acquisitions and
Bibliographic Services

395 Wellington Street
Ottawa ON K1iA ON4

Bibliotheque nationale
du Canada

Acquisitions et)
services bibliographiques

395, rue Wellington
Ottawa ON K1A ON4

Canada Canada
Your file Votre réference
QOur file Notre rétérence
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de
reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thése sous
paper or electronic formats. la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.
The author retains ownership of the L’auteur conserve la propriété du

copyright in this thesis. Neither the droit d’auteur qui protége cette thése.
thesis nor substantial extracts from it Ni la thése ni des extraits substantiels

may be printed or otherwise de celle-c1 ne doivent étre imprimés
reproduced without the author’s ou autrement reproduits sans son
permission. autorisation.

Canada

0-612-39988-5

Abstract

Simulating Games Using Object-Oriented Methodology

HONGLANG LI

In this report. we present a Bridge simulator and we discuss object-oriented analy-
sis. design and programming. The design phase uses automated support to illustrate
how we apply the concepts of object-oriented methodology to develop software — a
Bridge simulator. The implementation of the Bridge simulator demonstrates the pro-
gramming process by using an object-oriented language(C++). Important features
of the Bridge simulator are the use of the object-oriented paradigm for design and
the use of the X Window/Motif toolkits to construct a user interface for simulating
the bidding and the playing of the game of Bridge. We conclude with the results of
the Bridge simulator. discuss a research on computer Bridge and suggest avenues for

further directions in which the project could be extended.

i1

Acknowledgments

I wish to express my sincere gratitude to my supervisor, Dr. Peter Grogono. for all
his enthusiastic support. careful supervision. and consistent guidance during the de-
velopment of this major report. I also wish to thank Dr. Clement Lam. who kindly

took the time to review the report.

Furthermore. I would like to appreciate my friends Kevin Theobald. Baoshuo Chen.

Louis Harvey for their ideas. suggestions and help during the period of the project.

Finally. I wish to thank my parents for all their encouragement and support.

v

Contents

List of Figures viii
List of Tables ix
1 Introduction 1
1.1 Aimof the Project, 1
1.2 Motivation e e e e e e e e e e e 1
1.3 Background 2
1.4 The Structureof the Report 2

2 The Game of Bridge 3
21 TheBasicRules. 3
2.1.1 Bidding 3

2.1.2 Play e 4

3 Object-Oriented Concepts and X Window /Motif 5
3.1 Object-Oriented Technology 5
3.2 Object-Oriented Methods)
3.2.1 CRC: Classes/Responsibilities/Collaborators 3

3.2.2 Responsibility-Driven Design 9

3.3 X Window Systemand Motif L. 10
3.3.1 The X Window/Motif Architecture 10

4 Design 12
4.1 Identify theClasses 12
4.2 Classes Design o 12
4.2.1 Class Card Specification 13

4.2.2 Collaboration Graph
4.3 Design Bridge User Interface
4.3.1 Basic Considerations
5 Implementation
5.1 ImplementationIssues
5.1.1 Implementation Languages
5.1.2 User Interface Components
5.1.3 Problems in C4++ with Motif
5.1.4 Programming Process
5.2 Swystem Structures. L
5.3 Featuresof Windows
54 Overviewof Code
6 Results
7 Conclusion
7.1 Bridge Simulator System L.
7.1.1 Experience on Object-Oriented Programming
7.1.2 The Advantagesof C++
7.2 Computer Bridge,
7.3 Further Work,
Bibliography
Appendix
A card.h
B deck.h
C player.h
D dealer.h
E bidboard.h
F command.h

vi

35

41
11
11

43

14

45

48

48

49

50

52

53

G message.h
H handboard.h

I bridge.h

vil

54

35

57

List of Figures

A simple collaboration graph 9
The architecture of the X Window system 11
Cardclasscard 13
Deck classcard 14
Playerclasscard 13
Dealer classcard 16
BidBoard classcardo 16
Message classcard oL 17
Commandclass card 18
HandBoard classcard 19
Bridge classcard 19
The Bridge collaboration graph 21
Bridge simulator user interface layout 22
Class structure diagram 27
Motif widget structure diagram 28
System callback structure L. 30
Example 1o 33
Example 2 L. 10

Vil

List of Tables

1 Abbreviation for bidding board

2 Abbreviation for hands’ board

Chapter 1
Introduction

In this chapter. we describe the project that we selected and why we chose this topic.
We also introduce the background of the project and describe the structure of this

report.

1.1 Aim of the Project

This project is about game simulation. Our particular example will be the game of
Bridge. The aim of this project is to present an object-oriented approach to simulating
Bridge using C++ and the Motif user interface toolkits. The original intention is to
design and implement a Bridge simulator as realistically as possible. Therefore a
user interface is constructed so that people can use it as a tool to learn and to play
the game of Bridge. Also. by using object-oriented methodology. we plan to generate
some classes which can be basic modular classes for general card games so that people

can use these classes for designing any card game.

1.2 Motivation

Games are very interesting topics which always attract people doing research or pro-

gramming in computer literature because:
e They provide a good model to establish data structures and algorithms;

e They combine knowledge of artificial intelligence and gaming strategies:

e They require a rich and complex computer user interface.

Designing a Bridge simulator is an interesting project because Bridge is a game that
requires considerable intelligence. Computer Bridge simulator is an important ele-
ment in the study of artificial intelligence and pattern recognition; an important model
in the establishment of data structures and algorithms; and an important application

in the development of a computer user interface with object-oriented methodology.

1.3 Background

Bridge. as one of the best card games. is enjoyved by millions of participants and
is commonly playved around the world. It is not surprising that Bridge is highly

appealing because it combines many fascinating features. Some of these are:

e Bridge is a game of skill. It is sufficiently demanding to provide a challenge to

people: it requires such abilities as memory. reasoning. judgement. and planning.

e Bridge is a team game. The behaviour patterns of your opponents is an in-
triguing aspect of Bridge. The interplay of skill and chance is one of the most

appealing features of Bridge.

e In Bridge. exact situations are virtually never duplicated. This factor increases

the complexity of Bridge.

1.4 The Structure of the Report

Chapter 1 is an introduction for this report. It describes briefly the motivation and
background of the project. Chapter 2 presents an introduction to the game of Bridge.
Chapter 3 describes the object-oriented technology and methods, combining a CRC
card method with a Responsibility-Driven Design method; it also describes the X
Window/Motif toolkits for building up a computer user interface. The design of
the Bridge simulator is presented in chapter 4. It takes advantage of the methods
described in the chapter 3. Chapter 5 gives the details of the implementation of
the Bridge simulator. Chapter 6 presents the result of the Bridge simulator with
examples. Chapter 7 concludes this project and summarises the object-oriented design

and programming. It also suggests further work for the project.

o

Chapter 2

The Game of Bridge

Here. we present a brief introduction to the game of Bridge. If readers are interested

in further details. they could refer to the books on the subject [9] and [10].

2.1 The Basic Rules

Bridge is a card game played with a deck containing 52 cards. comprised of 4 suits
(Spades. Hearts. Diamonds. and Clubs) each containing the 13 cards Ace. King.
Queen. Jack. 10. 2 (we will sometimes abbreviate the first four of these to A. k.
Q. and J). The game begins with a random shuffling the deck. and the cards are then
dealt to four playvers. traditionally named North. South. East and West. Each plaver
receives 13 cards. These players form two teams: North/South against East/\West.

The game contains the two stages of bidding (or auction) and play.

2.1.1 Bidding

The bidding stage determines which team wins a contract to make a certain number
of tricks. During the bidding stage. the players take turns to make “bids™. A bid
is (n. s) when n is a number from 1 to 7 and s is a suit. Each bid must be higher
than the previous one according to the convention that (nl, s1) > (n2. s2) iff either
nl>n2, or nl = n2 and sl > s2 in the ranking NoTrump > Spade> Heart > Diamond
> Club. When no player wishes to bid further (i.e. all players pass). the highest bid
is regarded as an offer to play a contract, in effect a bet that the playver who has made

the final bid (n, s) can. together with his partner. take at least 64+n tricks with suits

as trumps. It is also possible, during the bidding. to pass a bid by any plaver. to
double a bid by the other side or to redouble the opponent’s double. But doubling

affects the score. not the number of tricks to be made.

After the Bidding stage, one member of the winning team becomes the declarer
and the other is the dummy. The other team are the defenders. The defender to the
left of the declarer leads the first card. and the dummy’s cards are then laid face-up

on the table from where they are played by the declarer. along with his own cards.

2.1.2 Play

Card play starts when the defender to the left of the declarer lays a card on the table.
which all the other plavers then cover in turn (in a clockwise direction) with a card
from their own hand. Each round of four cards is called a trick. and the winner of
one trick becomes the first person to play a card on the succeeding round. The basic

rules that govern card play are:

e The first plaver in a trick can freely choose which card to play from all those

present in his hand.

e Subsequent playvers must follow suit by playving a card of the same suit as the
one that started the trick if they hold such a card. If they do not (i.e. they are
roid in the suit). they can make a free choice from among the remaining cards

in their hand.

e The winner of the trick is the player who plays the highest card (ranked by A
>K>Q>J>10> ... >2)of the suit led. The only exception to this is when
there is a suit declared as the trump suit. If any trump cards are plaved. then
the player plaving the highest trump card is the winner. Playing a trump when

vou cannot follow suit is known as ruffing.

Chapter 3

Object-Oriented Concepts and X
Window /Motif

We have used object-oriented techniques and the X Window/Motif toolkits to design
and implement a Bridge simulator. Before proceeding with the design of the Bridge
simulator. it will be helpful to introduce the basic concepts of object-oriented tech-
nology and methods which we applied in our design. We also give a brief introduction

to the X Window system and Motif toolkits.

3.1 Object-Oriented Technology

Object-oriented technology is more than a way of programming: it is a way of thinking
abstractly about a problem using real world concepts. rather than computer concepts.
It provides a practical and productive way to develop high quality software for many
applications. The term object-oriented means that we organise software as a col-
lection of discrete objects that incorporate both data structure and behaviour. This
Is In contrast to conventional programming in which data structure and behaviour

are only loosely connected [11].

As the name object-oriented implies. objects are key to understanding object-
oriented technology. An object is characterised by a number of operations and a

state which remembers the effect of these operations [7]. A software object has two

characteristics: state and behaviour. It maintains its state in variables and imple-

ments its behaviour with methods.

Object-oriented analysis, design and programming methodologies work together
to produce a combination that better model their problem-domains than similar sys-
tems produced by structured techniques. The systems are easier to adapt to changing
requirements, easier to maintain. more robust and promote greater design and code

reuse.

Object-Oriented Analysis (OOA) is a method of analysis that examines re-
quirements from the perspective of the classes and objects found in the vocabulary
of the problem domain [1]. A class represents a template for several objects and
describes how these objects are structured internally. Objects of the same class have

the same definition both for their operations and for their information structure [7].

OOA aims at understanding the system to be developed and building a logical
model of the system. This model is based on natural objects found in the problem
domain. The objects hold data and have behaviour in terms of which the entire

system behaviour can be expressed. OOA contains the following activities [7]:
e Finding the objects.
e Organising the objects,

e Describing how the objects interact.

Defining the operations of the objects,

Defining the objects internally.

Object-Oriented Design (OOD) is a method of design encompassing the pro-
cess of object-oriented decomposition and a notation for depicting both logical and
physical as well as static and dynamic models of the system under design; specifically,
this notation includes class diagrams. object diagrams. module diagrams. and process

diagrams [1].

Object-oriented design turns from modelling the problem domain towards mod-
elling the implementation domain. Because object-oriented analysis and design use
the same notations, it is natural to have design and implementation running in par-
allel and iteratively. As Booch [1] points out: The boundaries between analysis and
design are fuzzy, although the focus of each is quite distinct. In analysis, we seek to
model the world by discovering the classes and objects that form the vocabulary of
the problem domain, and in design, we invent the abstractions and mechanisms that

provide the behaviour that this model requires.

Object-Oriented Programming (OOP) is a method of implementation in
which programs are organised as cooperative collections of objects. each of which
represents an instance of some class. and whose classes are all members of a hierarchy

of classes united via inheritance relationships [1].

The major strength of OOP is that it encourages the reuse of code and that it
Is usually easier to understand and maintain than other types of programming. The
key to programming in an object-oriented programming language are the classes. In
the class the programmer defines the variables and the operations associated with the
class and instances of the class. From these classes. instances are dynamically cre-
ated during execution of the program. An instance is an object created from a class.
The class describes the (behaviour and information) structure of the instance. while
the current state of the instance is determined by the operations performed on the
instance [7]. An object-oriented language must support the following: encapsulated

objects. the class and instance concepts. inheritance. and polymorphism.

How are O0A, OOD, and OOP related? Basically, the products of object-oriented
analysis serve as the models from which we may start an object-oriented design; the
products of an object-oriented design can then be used as blueprints for completely

implementing a system using object-oriented programming methods [1].

-1

3.2 Object-Oriented Methods

There are many object-oriented development methods that have been proposed for
designing applications. but few are widely accepted and applied. Some proposed
approaches emphasise comprehensive, theoretical techniques for developing object-
oriented systems. while others are based on rapid prototyping in an interpretive en-
vironment. Even though the methods are different, the goal of each of them is the
same. that is to allow the designer to start from a problem and develop a set of classes

that can be used to implement a solution.

Based on our application. we introduce two well-known object-oriented design

methods and use the methods to design and implement the Bridge simulator.

3.2.1 CRC: Classes/Responsibilities/Collaborators

Kent Beck and Ward Cunningham [3] have developed a method for designing object-
oriented systems. This method is known as CRC cards. which characterise objects by
class name. responsibilities. and collaborators. The method uses abstract principles
that apply to any object-oriented system. regardless of the implementation language.
CRC helps the designers identify objects and relationships between objects. while

building a common understanding of a system.

The method concentrates on identifving the key responsibilities of each class and
also identifying relationships between classes. Other classes that are involved in a
responsibility are known as collaborators. Classes may depend on collaborators to

provide information or to perform operations.

The method presents a CRC card which stands for a Class. its Responsibilities.
and its Collaborating classes. The class name is written across the top of the card.
Each card contains a list of the classes’ responsibilities and a list of other classes that
collaborate with the class. A responsibility is a short verb phrase that identifies a
particular problem solved by an object. The responsibility indicates what the object

does but not how the task is accomplished.

o

Figure 1: A simple collaboration graph

An important characteristic of the CRC approach is that the distinction between
objects and classes is blurred. At early stages of a design. it is not always necessary
to distinguish between instances of a class and the class itself. However. the responsi-
bilities of a CRC card should represent the behaviour of the objects which is defined

by the classes.

3.2.2 Responsibility-Driven Design

The book Designing Object-Oriented Software [13] describes a design approach that
expands the simple ideas found in CRC into a more comprehensive and detailed pro-
cess. CRC cards simply list all collaborators along the right side of the class card.
Wirfs-Brock et al. introduce the idea that collaborators should be closely associated
with a specific responsibility. Collaboration can be mutual relationships between two

classes or thev can be unidirectional.

Wirfs-Brock introduces another technique. along with a supporting notation.
which is very helpful for developing and describing designs. This notation is known
as a collaboration graph. A collaboration graph shows the various relationships be-
tween the collaborators identified on the class cards. Collaboration graphs can help
programmers visualise the overall architecture of an object-oriented system. Figure 1
shows a typical collaboration graph containing the classes A and B. The rectangular
boxes represent individual objects (or classes). The semicircle along the side of the
box on the right represents a certain responsibility handled by the class. A vector
connecting two classes represents a collaboration between those classes. The arrow

points to a relevant responsibility handled by the collaboration class.

3.3 X Window System and Motif

The X Window system (often known simply as X) is an industry standard window
svstemn that provides a portable base for applications with graphical user interfaces.
Motif is a high-level user interface toolkits that makes it easier to write applications

that use the X Window system [14].

3.3.1 The X Window/Motif Architecture

Motif applications use three distinct libraries: Xlib, Xt Intrinsics. and Motif wid-

gets.

Xlib provides the principal C language interface to the services supplied by the
X server. This library encapsulates the mechanisms for connecting to the X server.
sending requests to the server. and receiving events back from the server. The func-
tions in Xlib allow applications to create windows. move and resize windows. draw

text and graphics to windows. and so on [14].

Xt Intrinsics was also written in C. [t defines the abstract base classes on which
user interface components can be built. It also defines the external protocol used by
applications to interact with all components based on Xt. The user interface compo-
nents supported by Xt are called widgets. such as buttons. scrollbars. and menus. A
widget consists of a structure that contains data and support functions that operate
on those data. Each widget has an X window associated with it. in which the widget

displays itself [14].
Motif is a standard user interface toolkits that consists of several parts [14]:

e The Motif widget set is based on the Xt Intrinsics.

e The Motif Style Guide contains rules and recommendations for achieving visual

and behavioral consistency with other Motif applications.

e The Motif window manager., mwm. is an [nter Client Communications Con-
ventions Manual (ICCCM) compliant window manager whose appearance and

behaviour complement the Motif widget set.

10

Application

Motif Widget Set

Xt Intrinsics

Xlib C Language Interface

Network Connection

X Server

Figure 2: The architecture of the X Window system

e User Interface Language (UIL) offers an alternative to the C-language interface

for Motif-based applications.

Figure 2 shows how these libraries relate to one another. The X server is a process
that normally runs on a local machine and communicates with clients across a network
protocol. The Xlib layver handles the network traffic on the client side and presents
a low-level C language interface to the facilities of the X server. The Xt Intrinsics
library is built on top of Xlib and hides many of Xlib's lower-level details. Motif
is built primarily on the Xt layver but occasionally calls Xlib functions directly [14].

These three libraries provide a powerful and flexible toolkits to create a user interface.

11

Chapter 4
Design

Our design notation is based on the CRC and Responsibility-Driven approaches de-
scribed in the previous chapter. We first identify classes of the Bridge simulator
syvstem. describe CRC cards for each class. then draw the collaboration graph to

show the relationship among the classes of the system.

4.1 Identify the Classes

The key for designing a Bridge simulator using object-oriented methods is to identify
the objects and classes of objects in the system. As described in chapter 2. we find
the nouns such as card. deck. player. and dealer that would represent the objects
in the Bridge game. For the Bridge simulator, we design a user interface which is
represented by the objects such as message. command. bidding. hand. and bridge.
Therefore. two categories of classes are defined in the system. One category of class
1s associated with non-user interface which contains the classes: Card. Deck. Plaver.
and Dealer. The other is associated with the user interface and contains the classes:

Message. Command. BidBoard. HandBoard. and Bridge.

4.2 Classes Design

In this section, we will take advantage of the method which has been described in

section 3.2 to specify each class in the Bridge simulator.

Card

Responsibilities: Collaborating
classes:

Sets and gets a card value
Sets and gets a card suit
Sets and gets a card HCP

Sets and gets a marked card

Defines a character of a card value

S AW N~

Displays a card

Figure 3: Card class card

4.2.1 Class Card Specification

Class Card
A card is an essential element of Bridge and it contains attributes of value and suit.
The cards in each suit rank from highest to lowest: A. K. Q. J. 2. The first four

cards are the most powerful cards in Bridge. There are certain points called High
Card Points (HCP) associated with them. The HCP of A is 4. K is 3. Q is 2. and
J is 1. The Card class describes a single playing card. It is responsible for a set of

operations for a single card. The Card class card is shown in Figure 3.

Class Deck

Bridge is played with a standard collection of 52 cards called a deck. The deck is
divided into four suits which have specific ranks. Spades have the highest rank. then
Hearts, Diamonds. and Clubs; Clubs have the lowest rank. The two highest-ranking
suits. Spades and Hearts, are called the major suits; the two lowest-ranking suits. Di-
amonds and Clubs. are called the minor suits. The Deck class consists of an ordered
collection of cards. along with the responsibility of setting the HCP of the topmost

four cards.

13

Deck

Responsibilities: Collaborating
classes:
1. Initials a deck by setting Card

card value, suit, and HCP

2. Displays initialized deck Card

Figure 4: Deck class card

The object of a Deck class is responsible for initialising itself in order and display-
ing a deck if it is necessary. Carrying out initialisation involves setting the value. suit
and HCP of the 52 cards. which is maintained by the class Card. Therefore. the class

Card is a collaborator. The Deck class card is shown in Figure 4.

Class Player

Bridge is a game for four players. Two of them sitting opposite each other are part-
ners. It is traditional to refer to the playvers according to their position at the table as
North, East. South and West: so North and South are partners playing against East

and West. A player is an important object of the Bridge game. It has therefore been

defined to be a basic class of the system.

A hand represents a player and it holds 13 cards randomly chosen from a deck. A
player needs to rearrange the cards in the hand. which includes arranging card suit
of the hand, in the order Spade, Heart, Diamond, and Club; sorting the hand’s card
value in an descending order for each suit: calculating the hand’s HCP; defining the
characters of the hand’s card value. Thus, the class Player needs to collaborate with

the class Card to perform its responsibilities. Figure 5 shows the Player class card.

14

Player

Responsibilities: Collaborating
classes:

1. Arranges the suit of the hand Card

2. Sorts cards of each suit Card

3. Caculates HCP of the hand Card

4. Saves characters associated Card

with a hand’s cards
5. Displays hand's card

Figure 5: Player class card

Class Dealer

In Bridge. the cards are shuffled by the plaver to the dealer’s left and cut by the
plaver to the dealer’s right. The dealer deals out all the cards one at a time so that
each player has 13 cards. In our system. the dealer is responsible for shuffling and
dealing the cards to each plaver. It also saves the four hand’s cards (associated with
characters) into a buffer for later used to construct the user interface. Since the class
Dealer controls the initialisation of the Bridge game. it needs to collaborate with class

Player to complete its tasks. Figure 6 shows the Dealer class card.

Class BidBoard

A bid specifies a number of tricks and a trump suit or no trumps. The possible
number of tricks is from a minimum of 1 (i.e. 7 made altogether) to a maximum of
7 (i.e. 13 made altogether) and the possible trump suits rank as follows: No Trumps
(highest). Spades, Hearts. Diamonds, Clubs (lowest). It is also possible. during the
bidding. to pass a bid by any player, to double a bid by the other side or redouble
the opponent’s double. The BidBoard class is used to hold all combination cases in

a board. The BidBoard class card are presented in Figure 7.

Dealer

Responsibilities: Collaborating
classes:

1. Shuffles a deck

2. Deals cards to four players

3. Arranges hand'’s suit Player

4. Sorts hand’s cards Player

3. Saves characters associated Player

with hands’ cards
6. Displays four hands Player
Figure 6: Dealer class card
BidBoard
Responsibilities: Collaborating
classes:

1. Constructs a bidding board
containing 31 butions
setting from IC to 7NT,

plus Pass, Double, Redouble

Figure 7: BidBoard class card

16

Message

Responsibilities: Collaborating
classes:
1. Constructs message boards, including

contract message board

play tricks message board

four hands’ action message board
scoring message board

declarer & dummy message board
description message board

help message board

2. Displays messages to the user

Figure 8: Message class card

Class Message

Bridge is a team game. Partners in each side need to communicate with each other
through the bidding and play phases to exchange information. What a plaver bids
and what card a player leads have to be announced to the other three plavers. The
scoring is also recorded for each game and displayved in a scoring board. Therefore.
we need to create a Message class. The Message class provides the interface for the
communication. It simply accepts messages from any class and report these messages

to the user. The Message class card is shown in Figure 8.

Class Command

A command board is used to issue the commands by a user to the window system
(Bridge simulator). While the simulator accepts a command. it will interact with the
user to do a certain task. Therefore it is necessary to declare a Command class to

represent the command board.
The Command class contains bidding and play commands which are required for

the two stages of Bridge. A new game command is needed to issue a command to

create a new deck once the previous deck has run out. Since the Command class

17

Command

Responsibilities: Collaborating
classes:

1. Constructs a command board
including commands :

Bid, Play, NewG, Help, Quit

2. Displays a help message Message

Figure 9: Command class card

can accept a help command from a user and send help messages to the user. it needs
to collaborate with the Message class. The Command class is also responsible for
accepting a quit command from the user and exiting from the simulator. The Com-

mand class card is shown in Figure 9.

Class HandBoard

Each hand contains 13 random cards. These 13 cards are constructed in a board
which represents an object of the playver. Once a player holds 13 cards. the player is
available to play a card at each round after the bidding. We call this object Hand-
Board. and create a class card for it. HandBoard is a class which presents a main part

of the interface. and each card in the HandBoard class is a visible portion of the game.

The HandBoard object is completely under the control of the Bridge class (spec-
ified later). The HandBoard class has a set of responsibilities. It creates four hand
boards in collaboration with the classes Plaver and Dealer and handles the whole
card play process. It is also responsible for initiating various messages to the user in

collaborating with the class Message. Figure 10 shows the HandBoard class card.

18

HandBoard

Responsibilities:

1. Initiates data for a new games
2. Constructs four hands board
3. Activates & Deactivates cards
4. Accepts user’s actions

5. Handles the card play

6. Displays each round

7. Determines the results

8. Reposts the scoring

9. Destroys old four hands

Collaborating
classes:

Dealer
Dealer
Message
Card, Player, Dealer

Message

Message

Dealer

Figure 10: HandBoard class card

Bridge

Responsibilities:

1. Initials data

2. Activates & Deactivates BidBoard
3. Accepts user’s actions

4. Handles the bidding

5. Displays a contract

6. Sends final contract

7. Controls play tricks

8. Resets a new game

9. Cleans up and exits game

Collaborating
classes:

BidBoard

Message

Command, HandBoard
Message

HandBoard

Command, HandBoard
Command, HandBoard

Command,

Figure 11: Bridge class card

19

Class Bridge

The Bridge class is a manager that controls the actions of the game as well as being
an active participant in the game. It is responsible for bidding and sends a final
contract to the HandBoard class. It also keeps track of the play, and the processing
of a new game. It collaborates with the classes BidBoard. HandBoard. Command.

and Message. The Bridge class card is shown in Figure 11.

4.2.2 Collaboration Graph

As classes begin to be identified and class cards are being developed. it is often useful
to visualise how various objects and classes in a system are related. A collaboration
graph shows the connections between various classes based on numbered responsibil-
ities supported by various class cards. Figure 12 shows a collaboration graph for the

Bridge system based on the notation described in section 3.2.2.

The svstem contains nine classes which are represented by the boxes. The number
in the semicircle is marked with the particular responsibility of the class. The arrow
between two classes points to a collaborator which shares a responsibility with the
other class to complete a task. A user issues a set of commands to the simulator and

controls the system to play the game intuitively.

4.3 Design Bridge User Interface

The design process described in this chapter has considered only the internal structure
of the Bridge program. However. the user interface design is also an important part
of developing an interactive program. From the beginning. we assumed that the

Bridge simulator would have a mouse-driven interface and that the user would issue

commands.

4.3.1 Basic Considerations

Window Layout
The consideration of our user interface design is based on the situation of a real

Bridge game. Four players sit around a table, West and East face each other and so

20

Card Deck Player
Y IY3Y3E 8 LY IVIVA
S A A N] | I
1 l
Message HandBoard G- Dealer
f\/‘? J T I ﬁﬂ\
l
Command Bridge BidBoard
YT AV TYRY N 1N
A J 4 4 4 L *
J
User

Figure 12: The Bridge collaboration graph

Bidding North Contract
Board Hand Board
Board
West Trick East
Hand Display Hand
Board Board Board
Description
Scoring South Board
Board Hand
Board Command Board

Figure 13: Bridge simulator user interface lavout

do North and South. Similarly. we design a Bridge simulator to model four players.
West player is on the left middle side of the window. East player is on the right mid-
dle side. North player is on the top middle side. and South player is on the bottom
middle side. We call the four areas a hand board. There is a bidding board placed
on the left top side of the interface which contains all the bidding possibilities. The
result of the bidding is called a contract and is shown on the right top side of the
interface. The center part of the interface displays the 13 tricks of the play. The left
side of the bottom gives the scoring of each game and the right side of the bottom is a
command board and a set of description for the game. The command board contains
commands which allow a user to start the bidding and play; to generate a new game:

to get help (not a complete reference manual); and to exit from the program. Figure

o
[§V)

13 shows a window layout of the Bridge simulator.

Handling Input

To play Bridge on a computer, the input issues must be handled in the computerised
version. The most straight forward interface would allow a user to simply click on
a square to make an action. In this case, selecting a square would be similar to the
action of pressing a button. Motif allows user to abort a command by moving the
cursor outside an armed button before releasing the mouse button. We represent 52
cards in the four hands™ boards. 31 bidding possibilities in the bidding board. and 5
commands in the command board as Motif buttons and implemented as Motif push
button widgets. A user only needs to push the leftmost button of the mouse to issue

a command or to active a card or a bidding board possibility-.

Providing User Feedback

It is important for any interactive program to provide effective feedback to a user
about the program’s current state. and the effect of the user action. If a programmer
ignores the possibility of incorrect input. the application may become confused and
crash. An approach. in our design. is to disable input in buttons that have alreadyv
been marked. If input is disallowed. the game should provide some indication that
the buttons cannot be chosen. This prevents a player from erasing or writing over

the top of an already marked button.

In the system. we plan to design 9 message boxes used to store information related
to the different stages of the game and used to report the messages related to a user’s
action. Here are the description for each of them. Three message boxes are used to
store a final contract, a process of play, and a final score of the game individually. On
the top of the each player’s board. there exists an area used to announce a message to
the user or to issue a warning message related to a wrong action. Two other message
boxes will indicated a declarer and a dummy players at the bottoms of two plaver's

boards after the bidding.

Chapter 5
Implementation

This chapter presents an implementation of a Bridge simulator based on the design
developed in the previous chapter. The task consists of implementing C++ classes
that meet the requirements discussed in chapter 4 and determining how these classes
fit together to create a working program. Before discussing the implementation of
each class in Bridge simulator. we should look at some issues related to the overall

structure of the simulator and strategies for programming.

5.1 Implementation Issues

The programming language used for the implementation is C++ with the Motif
toolkits for X window management. and the system is implemented under UNIX

environment.

5.1.1 Implementation Languages

There are two principal issues that must be resolved if we are to use Motif effectively
with C++. The first is the question of how to call functions in the C libraries, such
as Motif. from programs written in C++. C++ is an object-oriented version of C.
It is compatible with C. so that existing C code can be incorporated into C++ pro-
grams. An important feature of the C++- language is that it is simple to call existing
C functions from C4+. When programming in C++. all the familiar libraries, like

Xlib and Motif, are still available.

The second issue is the combination of C++ classes with Motif widgets. particu-
larly when using the object-oriented features of C++. Programming in C++ often
works with object-oriented libraries by creating new subclasses of various classes in
the library, specialising them to suit the needs of their applications. Programmers
who have used this approach may wonder how they can create a C++ class that is
a subclass of a Motif widget. The obvious answer is that they cannot. However.
Young [14] found a strategy that is to use C++ to create higher level user interface
components that combine one or more widgets into a logical grouping. The goal
of this approach is not to wrap individual widgets in separate classes. Instead. the
intent is to implement the key elements of an application and its interface as C++
classes. using Motif widgets as primitives. We can call Xt and Motif functions to

create primitive Motif widgets.

This approach addresses object-oriented programming with C++ and assumes
that the classes in a program represent the architectural elements of the application.
Classes that have a user interface component use Motif widgets as primitive elements
from which to construct that interface. Not everything in a C++ program has to
be a class. and it is possible. and sometimes useful. to take a functional approach in

portions of a program even when using C++.

5.1.2 User Interface Components

We use the techniques described above for creating user interface components by
encapsulating a collection of widgets within an object. The mechanics of creating
widgets. specifving widget locations and other resources. assigning callbacks. and so

on can all be captured in C++ classes.

We refer to such classes as user interface components. A component not only en-
capsulates a collection of widgets but defines the behaviour of the overall component
as well. Widget sets like Motif provide simple, low level building blocks, like buttons.
labels, and text fields. Components are C++ classes that use these simple building
blocks to create higher level objects like command panels, menus. and so on. In our

program. we define such kinds of components as Command class. BidBoard class. and

SO on.

(M)
Ut

5.1.3 Problems in C++4+ with Motif

The question is how one can use member functions of classes as callback functions.
A callback function is a function that is called by a widget when it knows you are
interested in some events that happened in the outside world. Callback pose a minor
problem for C++ classes. C++ member functions have a hidden argument. which is
used to pass the this pointer to the member function. This hidden argument, which
is typically passed as the first parameter. makes ordinary member functions unusable
as callbacks for Xt-based widgets. If a member function were to be called from C
(as a callback). the this pointer would not be supplied. and the remaining arguments
would be incorrect. If we want to use member functions to define the behaviour of a
C++/Motif user interface component. we have to arrange another way for a member

function to be called as a result of a widget callback.

There are several approaches to solving this problem. Our solution is to use static
member functions. A static member function is similar to a friend function in that it
is a regular function that does not expect a this pointer when it is called. However.
a static member function is a member of a class. It has the same access privileges as
any other member function. It can also be encapsulated so it is not visible outside the
class. Obviously. some additional code is needed to make this do something useful.

Code has to be added to initialise the toolkits. etc.

5.1.4 Programming Process

In C++. all functions must be declared before they are referenced in any way. In the
Bridge simulator program. each class is built in three steps. We first declare a class
that we are going to use in the program. The declaration phase involves a careful
description of the classes” member data and the functions that will accomplish what
it is supposed to do. The next step is to define the class, describing in detail how
the member functions work and how they are used to communicate between the ob-
jects that will comprise our program. Finally, we write the program that will use the

classes we have declared and defined.

: friend
Card BidBoard Player t---------------- ;
friend E friend 5 :
friend ,I friend friend '
Command---------- Bridge [---------- HandBoardf---------- Dealer
E friend E E friend E
E friend ' friend : ’
R SRREEEEEEEEE Message |---------------- : Deck

Figure 14: Class structure diagram

5.2 System Structures

Classes structure

The class structure shows the relationships between the classes. The only technique
which is used in the Bridge simulator program is the instances of the classes rather
than its inheritance because it is not necessary for the application. However. some
classes have to cooperate with the member data and private functions of other classes
to complete their tasks. so we need to define these classes as friend classes of the
collaborated classes. Figure 14 illustrates the class structure of the simulator system.
Each box represents a class. A class with a dash line represents a friend class of the

other one.

Motif Widget Structure

A Bridge simulator is a user interface which consists of a set of basic widgets (such
as buttons. labels, etc.) managed by a set of container widgets (such as form, frame.
etc.). From the Motif widgets diagram, we can understand how the user interface is

constructed and how an object encapsulates a set of widgets. We have pointed out

[SV]
~1

ApplicationShell

l

e e e e it e e iU S Uy g gy gy i S Y

BidBoard Object

xmForm |——jxmRowColumn]— xmPushButton |

Command Object ermForm —{ xmPushButton]

| xmFrame |—

xmLabel

HandBoard Object ”_i xmForm }———(meushButton]

xmFrame

xmlLabel

Message Object xmForm }—-{ xmL abel]

Message Object

‘—{7ml'-‘orm }——LxmLabel —]

Bridge Object

Figure 15: Motif widget structure diagram

the techniques for creating user interface components by encapsulating a collection of

widgets within an object. In figure 15. we see some objects encapsulating the same

collection of widgets.

System Callback Structure

Bridge class is the key class of the system. It consists of other objects of the classes

to build up a user interface, and it controls the command boards to play the game

by blocking and activating the command buttons. Figure 15 shows the details of

the game playing process by using callback functions so that we can realize how the

(V]
(03]

Bridge simulator works.

System callback structure is described as the following.

Initially, except Bid, Help, and Quit buttons on the command board. other

buttons on the window are all blocked.

Once clicking Bid command button, the buttons on the Bidding board are

activated. After bidding. these buttons are blocked.

Once clicking Play command button. all buttons on the four hands’ board will

be activated in the turn.

Once clicking VewG (new game) command button, the Play command button

is blocked and the Bid command button is activated.

5.3 Features of Windows

Bridge simulator consists of 2 main window and a dialog pop-up window. The dialog

pop-up window contains short messages for guiding using the system. Once a user

clicks the Help button. a small window will be popped up on the main window at the

bottom right corner. The main window has the following features.

On the top of each hand. there is a message area to display the hand’s bidding
and card play. It also reports the warning or error messages to indicate a wrong

action by the user.

During the bidding process. after a round, bidding of each hand will be shown
on the contract board. The final contract of a deck is displayed on the board

until a new game starts.

When the bidding is finished. the declarer and the dummy hands will be indi-

cated at two player’s boards.

During the card play, after a round, the trick is displayed on the trick display
board until 13 tricks are taken out. The bottom of the board also indicates
whether the contract is made or whether there are undertricks or overtricks and

how many.

Bridge::Bridge

QuitCallback

Add callback function to Quit button

Activate Quit button

Activate Help button

Activate Bid button

HelpCallback

Add callback function to Help button

Y ‘

BiddingCallback

BiddingHands

Add callback function to Bid button

Activate BidBoard buttons

Deactivate Bid button

Y

BidButtonPushedCallback

ControlBiddingHands

Add callback function to BidBoard buttons

Activate Play button

Deactivate BidBoard buttons

\

PlayCallback

PlayTricks

Add callback function to Play button

Activate NewG button

Deactivate Play button

.

NewGameCallback

NewGameControl

Add callback funciton to NewG button

Activate Bid button

Figure 16: System callback structure

Deactivate NewG button

After the card play, the scoring is reported in detail (such as. who is declarer?
What is the contract? Contract is made or not, and what is the score? ect.)
on the scoring board. All decks’ scores (at most eight decks) are listed on the

board until the window is closed.

A hand’s buttons will be activated once the hand turns to lead a card. All
buttons in the hand will be blocked after a card has been taken out. The
button label will be marked by a character “—" when a card is taken out by a

hand.

Window can be resized by placing the mouse pointer on the small square on the
right top of the window, pressing the left button of the mouse. and dragging

the mouse to the desired size then releasing the mouse button.

5.4 Overview of Code

Each class in the Bridge simulator has a set of functions (public and private) to carry

out certain tasks. We summarise the main member functions along with a brief de-

scription in associated classes.

class Card

SetVal/GetVal: Sets/Returns a numeric value (2-14) of a card.
SetSuit/GetSuit: Sets/Returns a suit (S/H/D/C) of a card.
SetHCP/GetHCP: Sets/Returns a High Card Points (HCP) of a card.
SetMark/GetMark: Sets/Returns a mark (1/0) of a card.

CardToChar: Defines a character of a card value.

class Deck

Deck: Initialises a new deck of 52 cards including assign a numeric value (2-14).

a suit (S/H/D/C). and a HCP value (0-4).

class Player

31

o Player: Initialises private data of the class object.
e HandValue: Determines the High Card Points (HCP) of a player’s cards.

o HandSuits: Rearranges the suit of a hand as the rank Spade, Heart. Diamond.

and Club.
o SortHandSuits: Sorts numeric value of each suit in an descending order.

o HandCardToChar: Saves character string associated with a hand’s cards value

into a butter.

class Dealer

¢ Dealer: Generates an object of the Dealer class. It contains the following mem-

ber functions.
o Shuffle: Shuffles the deck by switching each card with a randomly selected card.

e DealHand: Deals a deck to the four hands: Calls the member functions of the

class Plaver.

o PublicHandChar: Saves character string associated with four hand’s cards value

into a buffer. it is convenient for constructing button widgets.
e DisplayHand: Displays four hand’s cards on the screen.
class BidBoard

e BidBoard: Generates a bidding board containing 31 buttons to represent all

cases of bidding.
class Command

e Command: Generates a command board which contains commands Bid. Play.

NewG, Help. and Help.

o CreateHelpDialogWindow: Generates a pop-up window when a user click Help

button. The window contains information for using the simulator.

class Message

o Message: Generates message areas, including four hand’s message areas. a con-
tract display board, a trick display board. a scoring display board. a dummy and
a declarer hand message area, a help message display board. and a description

message board.

e Post)Message: Converts the character string to a compound string for Motif and

displays the compound string on the label.
class HandBoard

e HandBoard: Generates 13 buttons (represent 13 cards) for each hand’s board

and set values on the buttons.
e ~HandBoard: Destroys the objects of collaborating classes.
e [nitialData: Initializes private data

e DestroyFourHands: Destroys previous four hand’s button widgets when a new

game starts.
o GetFinalContract: Finds a final declarer. a doubler. a redoubler. and a contract.

o ActirateHands/Deactivate Hands: Adds/Removes callback functions to the but-

tons of hands. make buttons activated/deactivated.
e ControlHands: Controls game play process by calling several functions.
o CheckCardsInHand: Checks a “legal™ card leaded in a player’s hand.

o CheckCardsinSameSuit: Checks a card leaded in the same suit as the first

leader’s of the round unless no more left in the hand.

e NertLeadHand: Finds next round leading player by examining current round

cards.
e OutputDisplay: Displays each round in the trick display board.
o 1VinTricks: Records tricks won by the declarer.
e PrintScoring: Calculates score and display it in the scoring board.
class Bridge

33

Bridge: Generates a Bridge object, including a bidding board, four hands board.
a command board, a contract board, and a description board: Activates the Quit

and the Bid command buttons.
~Bridge: Destroys objects which collaborate with Bridge object.
InitialData: Initialises the private data of the Bridge object.

BiddingHands: Finds the first bider and posts it; Calls function ActivateBid-
Board to make first bider’s hand buttons activated: Deactivates the Bid com-

mand button.

ActivateBidBoard/DeActivate BidBoard: Adds/Removes callback functions to

the 31 buttons in the bidding board. make buttons activated or deactivated.

ControlBidHands: Controls the process of bidding by calling several functions:
If no contract for bidding. activates the Bid command button. otherwise acti-
vates the Play command button: Finds a first leading player by calling function

FindContract.
FindContract: Determines a final contract.

DealBidding: Checks input (31 bidding board buttons) whether is an “legal” or

“illegal™ bid. then saves a bidding if it is ~legal”.
BidOutputDisplay: Displays bidding of each round in the contract board.

PlayTricks: Sends a final contract to the object of the HandBoard class: De-
activates the Play command button and activates the NewG command button:
Posts the first leading player and activates the leading player’s hand board

buttons.

NewGameControl: Calls the function DestroyFourHands of the HandBoard class
to destroy previous four hands and generates new four hands:; Activates Bid com-
mand button and deactivates the NewG command button; Clears four hand's

messages and resets the size of contract board and trick display board.

QuitWindow: Closes window and exits from the program.

34

Chapter 6

Results

In this chapter. we describe the results that the Bridge simulator is capable of produc-

ing. We summarise the performance of the simulator first. then present and describe

examples of bidding and play-.

Simulator Performance

The result of this project was a user interface which simulates the whole process of

Bridge card play. The user interface is an interactive application which can be used

to teach people to play Bridge or it can be used as a simulator for people to study

and analyse the game of Bridge so that they can get more experience for bidding and

play.

The performance of Bridge simulator include the following aspects:

The action of the simulator might bring people to a better intuitive understand-

ing of the game of Bridge through the main simulator window.

The simulator is a mouse-driven interactive user interface, which people find

easy to use.

The simulator can generate different decks. For each deck the cards are ran-

domly distributed to each hand.

The simulator manages the processes of bidding and play of the Bridge and

handles various messages at different stages.

Only one of Bid. Play. and NewG (new game) buttons can be activated at a
time. Buttons on the Bidding board can only be activated at bidding stage and

buttons on the four hands’ board can only be activated at play stage.

35

Table 1: Abbreviation for bidding board

Abbreviation Bidding
1C/2C ... 7C One Club/Two Clubs ... Seven Clubs
1D/2D ... 7D | One Diamond/Two Diamonds ... Seven Diamonds
1H/2H ... TH One Heart/Two Hearts ... Seven Hearts
1S/2S ... 7S One Spade/Two Spades ... Seven Spades

PS Pass

DB Double

RD Redouble

Table 2: Abbreviation for hands® board

Abbreviation Cards
2C/3C ... TC/JC/QC/KC/AC 28/3& ... 108/ J&/QM/K&/Ad
2D/3D ... TD/JD/QD/KD/AD | 2473 ... 100/ JO/QO/RO/AS
2H/3H .. TH/JH/QH/KH/AH | 20/30 109/ JO/QU/KQ/AQ
2S/3S ... TS/JS/QS/KS/AS 20/34 ... 106/ J&/QA/KA/AM

Examples of bidding and play of the simulator

Before we present how the Bridge simulator works by two typical examples. we will
show the notions which we used on the window by the two tables: Table 1 and Table
2.

Example 1

The first example will present a bidding process of the Bridge game. Figure 17 shows
a situation with four hands’ cards of a deck displaved on the hands™ area and a final

bidding contract displayed on the contract area.

The goals of bidding are: How much (to what level) to bid and where to bid
(which suit. no trump or a trump suit) to choose. In the example, the procedures for

bidding are:

e Dealer (North) calls first: Bidding proceeds clockwise.

36

e To bid, a player must make a higher bid than the preceding one (A bid is
higher if it contracts for more tricks, or for the same number of tricks in a
higher ranking suit.). In figure 17, such as North called two Diamonds after
West called two Clubs and after East called two No Trump. West called three
Spades.

e The bidding ends after three consecutive passes, such as South, West, and North
all bid Pass after East bids four Spades (Exception: if evervone bids Pass in the

first round, then the game ends.).

In the example. the last bid ({S) of the bidding becomes the final contract. East
and West have make a commitment to take ten (446) tricks with Spade as trump
suit. At this point. one player of the side bidding the final contract takes over and
enjoys the responsibility of playing the cards and tries to win tricks: that plaver is
called the declarer. Declarer’s partner. who has nothing further to do. is called the
dummy. The declarer is the one for the side winning the final contract who first
named the suit (trump suit or no trump) of the final bid. In this example. East is
the declarer. because East had the first bid on one spade for East-West. West is the

dummy. North and South players are called defenders.

Example 2
The second example will present the process of play in the Bridge game. In figure 18.
the trick display area (the center of the window) shows thirteen tricks were plaved by

the hands. The final score was also displaved on the scoring board.

The goals of play are: Declarer tries to fulfill the contract made in the bidding
and the defenders try to prevent declarer from fulfilling the contract. In the example.

the procedures for play are:

o Declarer (East) is the member of the partnership bidding the final contract.

Dummy (West) is declarer’s partner.

e South, the opening leader (player who leads to the first trick). is the opponent

to declarer’s left.

e Opening leader plays any card. Dummy exposes its entire hand. Play proceeds

clockwise: the player who wins a trick leads to the next.

37

~Tricks

—North_Hand

[s]=]

[=[]
[a][][=][=][][=]
[]

Contract Implementing Message

. ’—Scormg

Scoring Message

¢
;

BIEBE

[1[e]z](]
EBE e

f

—Contract ————=s——————
Hest North East South
PS PS PS

1c 1D -3 PS
4S PS PS PS

Final contract: 4S
Final declarer: East
First leader: South

ssssss End of Bidding ssssas

—East_Hand

[=][=][=1[s](=]
(][] =]

STEPS:

1. Click Bid button to start bidding.

2. Click Play button to play the game,
3. Click NewG button to start a new game,
4. Back to step 1.

Click Help button for guiding.

Click Quit button to exit from the game.

Cormand

e] (] =] (] (o]

Figure 17: Example 1

Play at Bridge consists of tricks. Each player in turn, proceeding clockwise around
them. removes one card from his or her hand and places it on the top of the hand’s
message area. When all four players have played, the four cards displaved in the trick
area constitute a trick. Since each playver has thirteen cards, and since a trick consists

of one card contributed by each player, there are a total of thirteen tricks in each deal.

39

bridge

—Bidding r—North_Hand —————— —Contract
@@ BB West Horth East South
] (& @ @) & & @ Si8jals| r 3 5 B
HEEEEEED gHeEad e 2T
inal contract: 4S
(]] frito
@@@ 3tll‘llEnd°FB;dd1ngmm
fPass | [pouble | [FeBoubie]

—Tricks
Tricks: (Leader) Hest North East South
—Hest _Hand ——————— 01 Sogth 6D KD ap [):] —East_Hand
slafE] % e & B = = 08800
04 North 2D aD JD 5D
EEE 05 Morth 4 T & A& a3a
06 South TH ™ RH 6H
Sl G b= B 2 8 L Els
st
alslElale 2 M X 2 I £ aleie
un East KH ™ H 8H
12 Mest C i3] 4H JH
13 Mest H 9H oS 9D
West and East win: 10
W& E make: 10
sxxssx End of Play sssxxss

: rScoring —South_Hand ——— STEPS:
BE'EI 1. Click Bid button to start bidding.
BBE] 2. Click Play button to play the gane.
: BBB 3. Click NeuG button to start a nev game.
. | BoardiDeclarerContract IDE/RDBIResul t IScore 4. Back to step 1.
1-NO East 4S N/N Make 120 BBBB Click Help button for guiding.
Click Quit button to exit from the game,
Comnand
,(Bid bagl[kuﬁ'[bhlp‘[&ucl

Figure 18: Exampile 2

40

Chapter 7
Conclusion

In this chapter, we conclude the Bridge simulator system and summarise the ad-
vantages of using object-oriented methodology and language (C++) for design and
implementation of Bridge simulator application. We also discuss a research on com-
puter Bridge and suggest avenues for the further directions in which the project could

be extended.

7.1 Bridge Simulator System

In this report. we present a Bridge simulator with object-oriented design and pro-
gramming. As design is the most important phase in object-oriented software de-
velopment. Bridge simulator aims at providing automated support to illustrate how
we apply the concepts of object-oriented to solve a real problem. Important features
of the Bridge simulator are using the object-oriented paradigm to design and using
X Window/Motif toolkits to construct an interface for simulating the bidding and

playing of Bridge.

7.1.1 Experience on Object-Oriented Programming

Object-oriented programming offers a new and powerful model for writing computer
software. Object-oriented approach speeds the development of new programs, im-
proves the maintenance, reusability, and modifiability of software. We will summarise
how object-oriented method works in the Bridge simulator software design and pro-

gramming.

41

e Object-oriented approach provides a powerful methodology by using the same
language to deal with analysis, design, and programming within the entire
Bridge simulator software development process. It reduces the complexity of

the system architecture design and implementation.

e Object-oriented design supports abstraction at the object-level. Abstraction
allows us to ignore the details of a problem and concentrate on the whole system.
In the Bridge simulator. we found out the objects of Bridge domain and defined

those objects by the classes such as Card. Deck. Player, and Dealer etc.

e Each class in the Bridge simulator stands by itself within a module. The func-
tions and attributes within the class are held together cohesively by the object
which they are modelling. Therefore. some classes, such as Card. Deck. Player.
and Dealer. can be used by any card game without change or a little change for

their purposes.

o Object-oriented methods make data maintenance easier to manage because data
is hidden behind the class interface in the object-oriented design. Changes in

the data effect only one class at a time and can carefully be managed and tested.

7.1.2 The Advantages of C++

C++ is an object-oriented language. \We have used it to implement our Bridge sim-

ulator. Below main features of C++ are given [2].

e C++ implements data abstraction in a clean way using a concept called classes.
Data abstraction is a way of combining data with the functions used to manip-
ulate the data so that implementation details are hidden from the programmer.

Data abstraction makes programs much easier to maintain and upgrade.

e C++ makes parts of programs easily reusable and extensible. This is where the
word object comes from. Programs are broken down into reusable objects. These
objects can then be grouped together in different ways to form new programs.

Existing objects can also be extended.

o C++ makes existing programs easily modifiable without actually changing the

code. This is a unique and very powerful concept. The two new concepts.

42

inheritance and polymorphism, have been applied. The existing object stays
the same. and any changes are layered on top of it. The programmer’s ability
to maintain and adjust code without introducing bugs is drastically improved

using these concepts.

o C++ has a feature called operator overloading. This feature lets a programmer
specify new ways of using standard operators in his/her own programs. The

overloading concept extends to all functions created in C++.

e C++ also cleans up the implementation of several portions of the C language.
most importantly /O and memory allocation. The new implementations have
been created with operator overloading. so that it is easy to add new types and

provide I/O operations and memory allocation for them.

7.2 Computer Bridge

Computer Bridge has attracted a considerable amount of attention from computer
games researchers. However. researchers have not succeeded to produce a system
whose performance is capable of competing with people because Bridge itself is hard

and is quite different from the other games such as chess.

Gamback and colleagues [6] summarise the basic problems that make Bridge a
hard game to play. First. it is necessary at almost every stage to reason about the
other players” knowledge and beliefs. Second. most knowledge is probabilistic in na-
ture. The points above apply equally to bidding and play: however. for bidding it
is at least possible to achieve a certain level of performance with conventional pro-
gramming methods. For card play, there is the added problem of having to be able to
construct complex plans and counter plans. Human analysis of card play situations
almost invariably begins by constructing plans for the play in each suit individually.
and then uses these as building blocks to construct a plan for the play of the entire
hand. This type of analysis is considerably more difficult to model than the tree

searching algorithms used by, for example, most chess programs.

Some people have claimed that computer Bridge is hard. For example, Brent Man-

ley, Bridge expert and reviewer of Bridge programs for the magazine of the American

43

Contract Bridge League, has said about Bridge [8]: It is generally accepted that writ-
tng a computer Bridge program that plays Bridge well is nearly impossible.

Tom Throop. one of the leading producers of commercial Bridge software. has
also said about the prospects of computer Bridge [12]: The task of writing a Bridge-
playing program that demonstrates a high level of intelligence is actually more difficult

than writing a similarly intelligent chess program.

In general. it is difficult to simply apply existing game playing techniques to the
game of Bridge because of the incomplete nature of the information available to the
players. Unlike in chess. where the positions of all the pieces are known. in Bridge
vou can only guess which cards your opponents hold [5]. Frank has looked at the
literature on the game of Bridge. examining both academic research and commercial
products and concluded that although expert level performance has been achieved in
the sub-problem of Bridge bidding. the overall standard of computer Bridge play in

general is very low. This contrast sharply to the success of computers in other games

[5).

7.3 Further Work

In this report. we present the design and implementation of a Bridge simulator with
object-oriented methodology and Motif toolkits. The limitation for the Bridge simu-
lator is only one person can use it at a time because four plaver's cards are contained
by one window. Therefore we suggest the further work could be considered in the

following directions:

e Simulating a duplicate Bridge by running two simulators with svnchronism.
The game is basically the same but the element of chance is reduced by having
the same deals replayed by different set of players (Eight players are required.).

There are some significant differences in the scoring.

e Constructing a network module with four computers connected together. Each
player controls a machine and communicates with others by sending and receiv-
ing messages through the network. Therefore four people can play the game at

a time by using the different computers.

14

¢ Computer Bridge. It requires to write a computer bidding or computer play
program that competes with people. The game is played by a player and a

computer which represents other three players.

Bibliography

(1] Grady Booch. Object-Oriented Analysis and Design with applications. The Ben-

jamin/Cummings Publishing Company. Inc. 1994

[2] Marshall Brain and Kelly Campbell. Understanding C++: An Accelerated In-
troduction. http://www.iftech.com/oltc/cpp/cpp0.stm. 1997

[3] Kent Beck and Ward Cunningham. A Laboratory For Teaching Object-Oriented
Thinking. OOPSLA "89 Proceedings

[4] Rick Decker and Stuart Hirshfield. The Object Concept An introduction to Com-
puter Programming Using C++.

[5] Ian Frank. Computer Bridge Survey. Japan 1997

[6] Bjorn Gamback. Manny Rayner and Rarney Pell. Pragmatic Reasoning in Bridge

University of Cambridge. Computer Laboratory. April 1993.

[7] Ivar Jacobson. Object-Oriented Software Engineering: A Use Case Driven Ap-
proach. Addison-Wesley. 1992

[8] B. Manley. Bridge software: Moving forwards or backwards? The Bulletin. Amer-
ican Contract Bridge League, October 1994.

[9] Terence Reese and David Bird. Bridge. the Modern Game. Faber and Faber Ltd.
1983.

[10] Terence Reese and T. Dormer. The Play of the Cards. Robert Hale Limited.
1991.

46

[11] James Rumbaugh. Michael Blana, William Premerlani, Frederick Eddy. and
William Lorensen. Object-Oriented Modeling and Design. Prentice Hall. Inc.,
1991

[12] T.Throop. Computer Bridge. Hayvden, 1983.

[13] Rebecca Wirfs-Brock, Brian Wilkerson, and Lauren Wiener. Designing Object-
Oriented Software. Prentice Hall, Inc. 1990

[14] Douglas A. Young. Object Oriented Programming with C++ and OSFT™ /Motif.
2nd Edition. Prentice Hall PTR. 1995.

47

Appendix A

card.h

//card.h: The declaration of class Card
#ifndef CARD_H
#define CARD_H

enum Suit

{Cl D’ H’ S};

class Card A

public:
void
void
void
void
int
Suit
int
int
void
char

private:

Suit
int
int
int
};
#endif

SetVal(int);
SetSuit(Suit);
SetHCP(int);
SetMark(int);
GetVal();
GetSuit();
GetHCP();
GetMark();
Display();
CardToChar(};

cardSuit;
cardValue;
cardHCP;
cardMark;

//Set the card’s value (2-14)
//Set the card’s suit (S/H/D/C)
//Set HCP to a card

//Set a marked card

//Retrieve the card’s value
//Retrieve the card’s suit
//Retrieve the card’s HCP
//Retrieve the marked card
//Display a card

//Get a character of a card

//Card suit

//A value(2-14, represents 2...J,Q,K,A)
//High Card Points

//T:in the hand; F:remove from the hand

Appendix B
deck.h

//deck.h: The declaration of class Deck
#ifndef DECK_H

#define DECK_H

#include "card.h"”

class Deck {
friend class Dealer;

public:
Deck(); //Constructor, initialises 52 cards
void ShowCard(); //Displays a card
private:
int topCard; //Points to a top card of deck
Card cards[52]; //A deck has 52 cards.
};
#endif

49

Appendix C

player.h

//player.h: The declaration of class Player
#ifndef PLAYER_H
#define PLAYER_H
#include "deck.h"

class Player A
friend class Dealer;
friend class HandBoard;

public:
Player(); //Constructor
private:
int HandValue(); //Determine HCP of a hand
void HandSuits(); //Rearrange suits of cards
void SortHandSuits(); //Sort a hand'’s cards
void HandCardToChar(); //Get a string of a card
void DisplayHandChar(); //Display a hand’s char
const int NumCards=13; //13 cards in each hand
const int suit=4; //4 suits at most in each hand
int NumC, NumD, NumH, NumS; //Num. of cards in each suit
int numC, numD, numH, numS; //Num. of marked cards in each suit
Card hand[NumCards]; //Cards of one hand
Card handSuit([suit] [NumCards]; //Sorted cards of one hand
char handChar[suit][NumCards]; //Character string of cards’ value
};
#endif

Appendix D

dealer.h

//dealer.h: The declaration of class Dealer
#ifndef DEALER_H
#define DEALER_H
#include "player.h"

class Dealer {
friend class HandBoard;

public:

Dealer();

private:
void
void
void
void
void

Player
Player
Player
Player
Deck
char
int
int

}

#endif

Shuffle();
DealHand();
PublicHandChar();
ShowHandNS(Player) ;
DisplayHand();

peast;

pwest;

psouth;

pnorth;

deck;
charbuf [4] [4] [13] [3];
hdstnum([4] [4] ;
maxnum;

//Constructor

//Shuffle the deck

//Deal cards to four players

//Copy all cards (chars.) into a buffer
//Display N & S hands on the screen
//Display four hands on the screen

//East player(hand)

//West player(hand)

//South player(hand)

//North player(hand)

//0ne deck

//Four hands’ string of cards

//Num. cards in each suit of four hands
//Num. cards in the longest suit

Appendix E
bidboard.h

//bidboard.h: The declaration of class BidBoard
#ifndef BIDBOARD_H
#define BIDBOARD_H

#define EDGEDS3 30
#define ROWS 5
#define COLS . 7

class BidBoard {
friend class Bridge;

public:
BidBoard(Widget); //Constructor
private:
Widget frame; //Frame Widget for bidding board
Widget 1label; //Label Widget
Widget bidform; //Form Widget
Widget top; //Row Column Widget
Widget bottom; //Row Column Widget
Widget subtop(35]; //Push Button Widget
Widget subbottom[3]; //Push Button Widget
};
#endif

ot
(8]

Appendix F

command.h

//command.h: The declaration of class Command
#ifndef COMMAND_H
#define COMMAND_H
#include "message.h"

#define EDGEDS 10
#define DISTANCE 5
#define HELP 9

class Command <{

};

friend class Bridge;

public:
Command (Widget); //Constructor
void CreateHelpDialogWindow(); //Create a dialog window

private:

//Callbacks registered with widget in the Help button
static void HelpDialogCallback (Widget, XtPointer, XtPointer);

Widget frameCmd;
Widget labelCmd;
Widget command;
Widget Bid;

Widget Play;

Widget NewGame;
Widget Help;

Widget Quit;

Widget Dialog;
Message *helpmessage;

#endif

//Frame Widget for command board
//Label Widget for the title
//Form Widget "command'" container
//Push Button Widget for bidding
//Push Button Widget for play
//Push Button Widget for a new game
//Push Button Widget for help
//Push Button Widget for exit
//Create message dialog

//Create an object of class Message

Appendix G

message.h

//message .h: The declaration of class Message

#ifndef MESSAGE_H
#define MESSAGE_H
#define EDGEDS
#define TOPDS
class Message {

friend class Bridge;

friend class HandBoard;

friend class Command;
public:

10
300

Message (const char*, Widget, int);

void HandsBoard (Widget);
void ContractBoard (Widget);
void ScoreBoard (Widget);
void TrickBoard (Widget);
void DescripBoard (Widget);
void BoardMessage
void PostMessage (char*, int);
private:
Widget message[11]; //Label
Widget subform2[4]; //Form
Widget frameCon; //Frame
Widget labelCon; //Label
Widget formCon; //Form
Widget frameTri; //Frame
Widget labelTri; //Label
Widget formTri; //Form
Widget frameScr; //Frame
Widget labelScr; //Label
Widget formScr; //Form
Widget formDes; //Form
#endif

Widget
Widget
Widget
Widget
Widget
Widget
Widget
Widget
Widget
Widget
Widget
Widget

//Constructor

//Build Four hands’ board
//Build contract board
//Build scoring board
//Build trick display board
//Build description board

(const char*, Widget, int); //Display board message

//Display message

for message display

for hands’ board

for contract board

for the title of the board
“contract" container

for trick display board
for the title of the board
"tricks" container

for scoring board

for the title of the board
"scores' container

for description board };

Appendix H

handboard.h

//handboard.h: The declaration of class Handboard

#ifndef HANDBOARD_H
#define HANDBOARD_H
#include "dealer.h"

#include 'message.h"
#define OUTPUT 5

#define DUMMY 7
#define DECLARER 8
#define SCORE 10
#define EDGEDS2 20
#define TOPDS 300

class HandBoard {
friend class Bridge;

public :
HandBoard (Widget);
“HandBoard ();
void 1InitialData O;
void CreateFourHands ();
void CreateCardBoard ();
void ActivateHands (int);
void DeactivateHands ();

//Trick Display board ID
//Dummy hand ID
//Declarer ID

//Scoring board ID
//Define constants

//Constructor

//Destructor

//Initialise data values
//Set up four hands’ areas
//Generate four hands’ cards
//Allow input to cards
//Shut off input

void GetFinalContract(char*, int, int, int); //Receive a final contract
void ControlHands (Widget, int, char*); //Control cards play

int CheckCardsInHand(char*);

//Verify cards in the hand

int CheckCardsInSameSuit(char,char*,int); //Verify cards’ suit

int NextLeadHand (int);

private :

//Get next leading player

//Callbacks registered with widgets in the grid
static void ButtonPushed (Widget, XtPointer, XtPointer);

void OutputDisplay O;

Ut
(]}

//Display tricks

void HandsLeadDisplay (charx); //Display leading card

void PostNextLeader (int); //Post next leading player
void SetButtonNewValue (Widget, int); //Mark a button with "-"
void WinTricks (int); //Get scores
void PrintScoring (int); //Display scores
void DestroyFourHands (); //Destroy four hands’ cards
Widget topform; //Form Widget for the window
Widget framel4]; //Frame Widget for four hands board
Widget subform([4]; //Form Widget for four hands board
Widget labell[4]; //Label Widget for four hands’ title
Widget grid[41[13]; //Push Button Widgets for 52 cards
Dealer #*theDealer; //Create an object of class Dealer
//Create objects of class Message
Message *outmessage; //Display tricks
Message *handsmessage[4]; //Display four hands’ message
Message *dummymesg; //Display "dummy" hand
Message *declarermesg; //Display "declarer" hand
Message *scrmessage; //Display scoring
Card dealcards[4]; //Save cards of each trick
int gridSize; //Size of each square
int countPlayer; //Count number of players
int times; //Count number of tricks
int inputSuit; //C:0, D:1, H:2, S:3
int revSuit; //C:3, D:2, H:1, S:0
int comeLeader; //Next player
int trumpSuit; //0:C,1:D,2:H,3:S,and 4; No Trump
int gameTimes; //Count number of games
char leaderSuit; //Leading suit for first round
char FinContract[4]; //A final contract
int FinDealer; //A final declarer
int LastDber; //A final doubler
int LastReDber; //A final redoubler
char round[4] [4] ; //Save each trick
char mes [500] ; //Save 13 tricks
char buf [13] [60] ; //Save tricks for display
int lastleader[13]; //Save the winner of each trick
}
#endif

Appendix I

bridge.h

//bridge.h: The declaration of class Bridge

#ifndef
#define
#include
#include
#include
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

class Br

public:
Bridge

BRIDGE_H
BRIDGE_H
"handboard.h"
"command.h"
"bidboard.h"
CONTRACT
QUTPUT
DESCRIPTION
DUMMY
DECLARER
DISTANCE
ROWS

coLs

EDGEDS

TOPDS

N OO0 N OO D

-
o

300

idge {

(Widget);

“Bridge ();

void
void
void
void
void
int

int

void
void
void

CreateDescriptionBoard();

ActivateBidBoard ();
DeActivateBidBoard ();
BiddingHands Qs
ControlBidHands (int, charx);
DealBidding (char*);
FindContract (charx);
PlayTricks Qs
NewGameControl Q;
QuitWindow Q;

[$]]
=1

//Contract board ID
//Trick Display board ID
//Description board ID
//Dummy hand ID
//Declarer ID

//Define constants

//Constructor
//Destructor

//Create a description board
//Allow input to buttons
//Shut off input

//Start bidding process
//Control bidding stage
//Verify each bidding
//Save a final contract
//Start card play
//Start a new dealer
//Exit from window

private:
void
int
void
void
int
void

InitialData QO;
BiddingIsLegal
HandsBidDisplay (char *btstr);
PostNextBider (int);
BidOutputDisplay();
FindDoubler Q;

//Initialise data values

(char *lastbid, char *btstr); //Verify bidding

//Display a player’s bidding
//Post next bider

//Display a final contract
//Find a doubler/redoubler

//Callbacks registered with widgets in the grid

static void BiddingCallback (Widget, XtPointer,
static void PlayCallback
static void NewGameCallback (Widget, XtPointer,
static void QuitCallback
static void BidButtonPushed (Widget, XtPointer,

Widget Topform;

BidBoard *theBidBoard; //An object of class BidBoard
HandBoard #*theHands; //An object of class HandBoard
Command *theCommands; //An object of class Command
Message *conmessage; //An object of class Message for comd. board
Message *desmessage; //An object of class Message for des. board
int comeBider; //Next bider
int countBider; //Count number of bider
int bidtimes; //Count number of rounds for bidding
char bidround(4][10]; //Save four hands of bidding
char bidmes[400]; //Save bidding message
char bidbuf[50]; //Save each round bidding
char BidBuf[4][10][4]; //Save 4 hands, 10 round,bidding info.
char errmes[50]; //Save error messages
char lastbid[4]; //Save last bidding info.
int lastBider; //Save last bider
int doubler; //A doubler
int doubleFlag; //Set double flag
int redoubleFlag; //Set redouble flag
int firstBider; //First bider
int passtimes; //Count passtimes
int trumpSuit; //Bidding suit
int finalBider; //The last bider
int firstPlayer; //First leading player
int flagup; //Check no contract
int lastdber; //0: not doubled; 1: doubled
int lastredber; //0: not redoubled; 1: redoubled
char contract[4][15]; //Save bidding info.
char fincontract([4]; //Save a final contract
};
#endif

(Widget, X

(Widget, XtPointer,

XtPointer
XtPointer
XtPointer
XtPointer
XtPointer

?
»
»

tPointer,

Nt N N/ N

?

//Form Widget for the window

(@]
(v

