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ABSTRACT
SOME ASPECTS OF SURVIVAL ANALYSIS
$ .

Robert Dan Mensah

Survivability (length bf life ktudies) theory is desir-
ed to make probability statements about survival or remission
times of acutely ill patients or animals undergoing biological
experimentation. This thesis is an expository survey of the
survival analysis literature, developments and advances made
in sélvinéxsome of the complex problems in this field in a‘ -
systematic manner. It presents metho@ologies app£0priata in
analyzing survi%a} data ei;her from laboratory studies Sn
animals Qr survival studféé of acutely ill humans. 1We Qr&w
quite extensively on reliability theory, showing:how’some of

. . . -
the estimation developed for problems in reliability can be

. N .
applied to corresponding problems with biomedical application.

The exposition emphasizes thé‘newer, research aspects o£
survivability theory.. A number of new classes of life distri-
butions arising naturally in survival models are treated systema-
tically. Parametric and nonparametric approaches in the
presence of censored and uncensored survival times are consider-

ed.

Suppose that in a life-testing situation the failure of
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an individual can be classified into one of (k > 1) mutually
exclusive classes, usually causes of failure. It is assumed

that associated with each cause of failure there is a character-

’istic life distribution belonging to a specific class of dis-

tributions. The estimation of parameters in such compound

models have been investigated.

Concomitant information on a patient's condition often
accompanies survival time information. This has led to recent

‘introduction of dealing with survival data using regressibn

models., We examine some‘of these models.
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CHAPTER T

' " | < : ,
SURVIVAL DISTRIBUTIONS AND THEIR APPLICATIONS .

i7 .

1.1 INTRODUCTION

¥

«ggfvivability theory is concerned with,thedneasurement
of length of life. This length of life could be that of a R
mechanism, a human being, or an animal. A vefy important
pfobldn in suyrvival analysis is the compérison of survival times
of patients or'experimental animals receiving two or more .
different treatments. Similar problems also occur in reliabil- |
ity theory when it is necessary to compare life dist;ibutions ' |
befor? ;nd after mechanical changes. However, reliability ' .
theory differs with survivabllity theory in an important aspect\\‘\«
"In rellabillty theory the common problem is the optimization

+

f the system reliability by varylng the number and arrange—
gggtg of different components 5§ the syqtém. However, in

i . Yo
survivability theory this aspect is absent because the system

- \ L
under consideration, ‘in tHis case is living and functioning

»

thus méiing the‘rearréngements of organs an 1@practical alterna-
. ’ ‘ ~— . -
tive. o ¥

- Survival analysis has been developed .in several differ-
ent disciplines és.wellz epidemiology, demography, and édtuariaL
. science. Because of this diversity of origin survival data can




data have as a principal terminal Point, the tfme an event

ably, . - : ‘ o

Y

take so many different forms, ranging from results of small-
scale laboratory tests to massive records from long-term clini-

cal/trjals. Thus each case may require different criterion of

evaluation and may require different procedures of analysis.

The survival time of a patient,say with cancer is a 'w
major criterion for evaluating the'é;eatment the patient re-
ceived. 1In carc1nogeQe31s experiments, the time to develop-
ment of tumour is an important end 501n£ in the analysis of '
anlmal experiments in which potentially carcinogeﬁ&c agents are
administered. In tgi“evaluatlon of individuals or combinations
of agents in transplanted animal systems, the survival time of
the an?mal is a major (and sometimes the oniy) end point in the
analysis of the studg. Hence it is Worthwhile to consideF—\\
methodology for analyzing survival times. Thus nsurvival time"
is meant in the broad sense, so that for eiample, the times‘may \:\

be: length of response, time to recurrence of the disease, time

frd& start of treatment to first response time, or some other

functiqh'of response. Sdince the modeling and analyéis of such

occurs, we refer to such events as failures; thus in the li;era-

ture we shall use failure time or survival time interchange-

\ .
There has been a remarkable increase of acﬁivity in the
statistical analysis of survival data over the last two decadé%,

largely stimulated by problems arising in the ‘dnalysis of
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clinical tridls which has resulted in a considerable l:l.tera-
ture on® the topic. Most of the litérature has er&deavoured to
set out general’ pri.nc:.ples to be used in each particular Case,

although they do not, rule out the possibil:.ty Lf the reseatcher

r

developlnq his own methodology. \

»

In Section 1.2, we shall consider notations-and defini-

tim%sed in describing survival time data as well as its
th

ma

-

emaltical fSrmulation and Section 1.3 gives a general out-

line of the thesis.

S~ ‘ e - P

1.2 NOTATIONS AND MATHEMATICAL

FORMULATION —— ‘ y

Survival data consists of measurements of times to the

death of individuals. If we let be a non-negative random -

variaﬁe denoting the survival tine of an ind:wldual from a
-~

homogeneous population, we- cah characterise the probability

distributio T by thfee equivalent functions which are

useful in survival analysis.

1.2.1 The Death Density Function
LY

'
/

The deathf!%éity function, f(t).‘ is the probability that
an'indiv_' ual djes during the time interval t < T < t+ At, for ~
At-»o.'This is a probability density function,wheré the random
vaf:iabl.e is time,T. The death density function is sometimes

called the unconditional failure rate, which is mathematically

express_ed as:

\
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ik called the Survivorship function.

¥ «":y
b 4 ; 2 ‘w 4
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R .

. — / ) ) ,

‘ - '
. Prit < T < t + At} -
s COE(E) = lim, —, (x.2.1)

: . £¢~o . At ‘

|

. - , ‘
The function, f(t) possesses the followihg propertiaes:.

A7) £ >0, vl

w“ {, =< »
160 . N
(ii) J- f(t)dt = 1.
L. v i
“ ." i t ' ' , '# - N
 Since gurvivil time is only measured for positive values of t,
’ L
Y I L )
, " f£(t) = 0 for t <0 .
L v @ » -
s Ve £(t)yat = 1
“ .7 - : b
1.2.2 Survivorship Punction' - T
» 5 ) _' ‘ , @ ,
The survivorship fun@tion, S(t) is the probabiliﬁy that
r \
.an’ #ndividual survives for at legst time t(t > 0). ~
, . \
That is, c =
S(£) =P(T 3 ), O0<t<a-  (lL.2x2),

L}

2 N A

The cumulative distribution funcTion F(t) is def%ped

N i - c, * & . s
Mt -, _ . .
. . : " . ~~’§i ) \

-
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. and since t > 0

. | ~

P A #
t

' . ‘ h\ N F(t) = J~ £(T)dT,

-

Fee) = S Emar. >

fhus . :
——KZ «  g(t) =;1 -F(t) = [ £(1)AT. ‘
- ‘ t &

Assuming F(t)' is differentiable in t, where t >0, then-%he

death density function is given by

£(t) = }im+ [Prob. lndiviital dies in (t,t+ﬂt)]
" At»0

= F'(t)

“«

14

. L dt
*
. -~

' It is evident from the definition of S(t) that S(0) = 1 and
| the & .

L4 - ‘ 4
»”

12

‘lim S(t) = 0 * f2d ‘ %
troo

” . , ) :
S(ﬁ3 is also a monotone, non-increasing, left-gontinuous func

tion;a

w - A8LE) | ogiqyy . . ©(1.2.3)




e . ' .
,1.2.3 Hazard Function, A(t)

The probability that ah individual dies in the time
B % L .
interval (t,t+At) no matter how small. At is, given he has

survived ‘up to the time t is giiven by X (t)At.

0

That is, the hazard function specifies the~instant;n—
leous rate of failure at T = t conditional upon survival up to
~"t:_‘ime,t:.“auf]:t is ghso referred to as the failure rate, the
_instantaneous death rate, or the force 6f mortality. Mathe-

madicdlly, it is defined as:

/ .
: fA(e) = lim PrlE T <B4 AE|T 2t} (12,49
” . At->0
We also define |t) to be a conditional death density

function for an individual who dies at time T > i, givéh'thhﬁ

he has survived up to time t, for a fixed walue of t. Since

A(T |t) is a geath density function,

S leydr = 1. : (1.2.5)

Again, since.NA(T]t) is a death denéity function, it is related

to the unconditional death density function as folléWs:’

- 3
-~ .
&

AMTle) = a(B)E(T) + . if T > t

= 0 ifT< t

e
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7
whefe -
a{t) is a constant of proportionality depending
only on t,.
“'From Equation (1.2.5), it follows tha't\'
1 -
a(t) = STET .
by observing that
§T¢T r ey ar = 2 £l . 1 (1.2.6)
St , .

If we observe also thaé' A(t), the conditional failure rate at
time t, is the same as A(T|t), it then follows that
- “ \

A(t) = §“t'- \ 1.2.7)

.

T ce o BPEEE < T.<.t.d AE|T > £} £(£) :
. Alt) & lim 4 et o
. [ aevo* i S

We could therefore draw up a,relaqionship émong s(t), £(t) and

Alt).

" Rewrite Equation (1.2.7) as:

ne) = SEL .o d log S(t) : (1.2.8)

)

Integrating aiivifiﬂg S£P) = 1 we ‘obtain .o
, - - S . )

[
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o

- which is called the cumulative hazard function (c.h.f.).

S (L) = exp(~.oft A (u)du) . (1:2.9)

Thus, the death density function is expressed as:

¥

£(e) = Alt) exp(- /* xku)du). S 20

We have therefore three connectrpg relationshlps among

A(t) f(t), and S(t), whlch*are

w £ = -8 (8, - 4.
an o Xw = 5 ‘ .2
(111 ' sy = expl- /% Awqul.

&

- v . E R .
y - ¢ -
N . ~ ®+
.

{1&180 sometimes use the nq’taition:’ .

TAe) = JEA@au = - 1og s(e)

‘ ﬁven though any of the three functions A(t), £(t) or
S (t) uniquely defines a Specific surV1va1 dlstrlbﬁtion, each
provides the researcher a"different view of the data. ’For
example, the shape\of A(t) giyas an in?ication of rhe type

of risk to which-the population under study is exposed as a

function of time. If A{t) is increasing, we know that there

is an aging process that increases the rate of death in the
- - . .

s
-

"

¢
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"
population. The death density function, f£(t), may be used to

assess the peak period of death in the population. If the

-

researcher requires the time when, say 60% of his sample

survives, he would-use 8(t), the estimated survival probabil-

-

ity. ’

ExXample:

<

Suppose A(t) = A ’inéependent of t, 'then it implies
from (iii) of Equation (1.2.11), that \

*

s(t) = exp(7Xt) . N , o (1.2,12),

Thds/ if the hazard rate is constant as a functiopkdf
timé, the survival distribution is the negative exponential dis-'
tribution. .

So far, we have only considered the case when the random

variable T is continuous.However, T can be a discrete randem  , »
variable which takes values Yy € ¥y <Yy < ceiee ',?he deaih

1 . o . s
density function .associated with each Y; is given as v

’
oo
.

2 - Elyy) =PR(T = yi)' . for i=1,2,3,...

’

Define the indicator function U(.) as

Uit—a) =

D
.

r g t>a. -

- >

{0* if t<a ’ s

p 8
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Then the survivorship function is given as

S(t) = I }f(yi) '

ily,>t

= L £(y,) Uly;~t) .

" fThe conditional qrobabiiity of failure at Yy ts also defined

Id
-

as ;“.

Ay = Pr{T=yi|T > yi}

¥ f-(Yi) ' - “
: = m for i &= 1"’2'3!0le KR

‘Analogous to Equation (1.2.11) (iii), the’sﬁrvivorship function -

[

could be written as
S(£) = I (1-A,),
N ;;,. yi<t

~_ | And also from [(1.2.11),(111)] the death density function will

’ bg\expressed as.

- . i-1 b ) 4
. V! ) ' f( ) = A H (l-k ’t (102-13) ’
¢t \“v}- i‘ Jnl j . ) . .

In a more generaI case, if the distribution of T has both :Q;_j:\J
disc¥ete and continuous parts then the death density function is

empressed‘ﬁs a sum of the. dlscrete and continuous components.,

‘ - - L - N

) . FE T

In a special case, 'if Ak denotes the hazar funéticn'
-, 1) o~

PN

°




~cases. The hazard function could be written as

Y

11

»

for the continuous part and the discrete points occur at
Y} < ¥, € ¥3 < ..., then the overall survivorship function can

be written as

S(t) = exp[- oft Ak(u)duJ'!H w“ {1-1))
Yy .

v

.y

- We can therefore combine the discrete, continu6u§ and mixed

\ - ’}
‘

A(E)at = A (E)dt + IX;8(t-y;)dt

Q ' ' N
where . -

.

6 (t-y,) is the Dirac delta function defined as

& (yydy =

¢

{1 ify=20 .
}

9therwiseﬂ

Note' that if T is disérete, then-

Al = DA 8tkmyy) \

‘where : : - ) .

§(t-y;) is as defined above and A, = Pr{T=t|T>t}

We define the chmulative hazard function as .
] .
v t t .
ACt) = J- A(u)du = [ Ak(u)du + I A,
0 ¢ . e
1|yi<t'




. trial and eéengineering applicatiofis.my attehtion has been

whgré,thejnirac delta components give the disciete contribu-

tions to the iﬁtégrall By uéing'the product law of probabil-
* , : . -

ity, Kalpfléisch‘and'?rentice\(1980) have derived the survivor-.

ship function in the disérete, continuous, or mixed cases as

i

s(e) = p° [I-aA()]"

7%
. ' t.
where they define the product integral 0P as -
- ,

\ r ( - [
P [1-aA(w)] = lim T L - [ha) = Aty D)
. , e Co

with 0 = u, < up € g < up tand u, -'u _, > g as r + o,

»

- § »
We could. also write S(t) as

s(€) = % [1 - A(wau]l ¥
o -

where the Dirac delta fuﬁ%tion takes care of the dggcrete

contributions. : ’

1.3 OUTLINE OF THE THESIS - : d

The main purpose of %his.thesis is to explore some

statistical models and methods'uégd in analyzing survival or

» A . .
failure time data. Though such data evolve also from indus-

;-

directed to problems coming from thw medical scienceés. Thus .
- . )

the survival time studies considered are planned studies (e.g..

1
-

.
a #

N
Jw‘
“
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clinical trials or laboratory experiments) in which a primary
'kpurpose‘is to charactefize and compare the survival é;perience
following the administration of\two or more treatments.
Analysis of a consecutive series of cases with a particular
disease is also coﬂsidered in which ﬁassible aimé of the study
are to charactérize the survi&al time and to delineate patient
characteristics related to 1ong‘survival. We may also g%Ve
analogous example érom eﬂgineering and industr;al appfidation
whenever it helps to explain a poinéll | F
In clinical, and other experimental trialg, measurements
of gprther characters beyoﬁd just time (or age) and mortalitx,
are often obtained. Some, if not all, of Ehese may be expected
to have some association with failure rates. The variables

corresponding to such characters are often referred to as

concomitant or explanatory variables, or briefly covariates.

For example, the elevated blood sugar of diabetig patients,
the high level of chblesterq} in cardiovascular‘diseases and
‘'many more cases like this have motivated the use of regression
models in the analysis of survival data. We shall discuss
one sqgh model as introduced by Cox (1972) in detail as'well

} , aN
as analysis of multivariate failure time data and competi?g/i:/:;>

risks. ' , 7/ <3

. 1
¥

Chapter II is concerned primarily, with parametric and
non-parametric estimation of survival data. When there is no

prior experience for a particular survival study, the first




&

objective is to characterize the-data obtained. Secondly,
the{e’is usually interest’in choosing a survival time model
-chat represents the main features o£ the data with fétimztes

of parameters of the m9del. Examples of¢modéls conside;ed

are Weibull, eprnential, gamma, normal, Gompertz and lognorﬁal.
We shaly’invesqiéate‘the exponential, lognormal and the Weibull
in detail. We a;so'estimate the pérameters of these distribu-
tions in the presence and absence of censoring. In additien

to thesewparamatric survival models‘;e introduce non-parametric

procedures. Those considered are the.Kaplan and Meier (1958%

estimates for censored data, life “table methods for analyzihé

e st b

survival data and the graphical procedufé;m?or estimating the

! -
—

cumulative hazard rate, developed by Nelson (1972).

s;&n Cﬁa‘pter III, we discuss multivariate failure time

models with more embhasis on the bivariate failuréfﬁpdel. 3

Death is not a repetitive event and it is usually ¥

attributed to a single cause, however, various risks competing ' j

for the life of an individual must be considered in any

’

survival data.: In Chapter IV, we look at the case of competing . "

risks.

Al

In Chapter V, we .introduce the use of regression models

in analyziﬁg survival data.. We shall consider the Cox (1972).

model in detail. -

' ,




2.1 INTRODUCTION

. individual relapses.

*'in more detail. -Our main tool for estimatlng the parameters

CHAPTER II ° =~ -

SOME SURVIVAL MODELS . ‘ S "\

-~

In this Chapter we consider some statistical distribu-

tionsk€ha% are used to'describeféurvival‘;imes. Although by

L d

survival we usualiy signifg;

are useful for describing gther datA. For example, we could L

ok i b e e

time to death, these'distributiops

be describing the iength of stay in a mental hospital, where-
in "birth" is entry into the hospltal and “death"* is dis~

charge, We may also con31der the length of remlssion in

! N
acute leukemia; here ~ "birth" is the time at whlch the patient

goes into remission, and "death" is the time at which the

The distributions discussed here.are the exponentie,
gammav Welbull, normal lognormal and the Gompertz, of which

the exponential Weibull and the lognormal w1ll be con31dered

of the distributions is the’method of maximum’ llkelithd for
. P ‘ i
the following reasons:

X
(i) Conceptually it is a simpie‘pffdédure; although the
computationalﬁproblems may not quayé be simple.
) ‘ .- g
(ii)‘The asymptotic prOpérkies of maximum 1ikeliﬁbod" 4

\
-4

¢ 9
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estimators (under fairly general conditioﬁs)make

their use desirable, and -\ TN

‘

4

(1iii) Maximum likelihood estimation affords a rather -

general method of estimation of parameters of bur-

~ H

vival distributibns; eVen when oWservations are
censored, for e ple, one can in most instances

~ obtain the maximum M ikelihood estimators of the

~

parameters of the survival distributiOnk

For some models explicit'solution of the Maxigum
Likelihood estimators (MLE's) ma& be possible and it will bé
lpresented where feasible. However, for other models solutions
cannot be obtained explicitly. For this reason twé computa-

tional methods of finding MLE and their comparison are
’ ' -

‘ N
obtained in Section 2.2.

Section 2.3 considers different paramétrio models and .
the ;hximum likelihood e$tiﬁation of parameters and th;§¥
properties. Ofte;‘it is not known prior to data collection
what survival distribution is appropriate. To investiQiFe
thig, model fitting is an important aspect in survival analy-
sis. ‘*his is considered in Section 2.4.. ’

—
" In Section 2.5 , we present pon-parahetr;c methods of

. , ) It
estimation of the survival curve. -Essentially, our task is:

[

to present methods appropriate for: Y

N
N -~

bop
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(i) Small sample data, with each individual time of

‘death recorded effectively exactly;

N
.

(il) Large sampl data, w1th times of death usually

have been proposed for estimat:.ng the survivorship function
from incomplete data =~ that-is, data arising £ rom experlments

in which censoring of the data occurs due to ‘withdrawals

from the study. s ‘ N -, __ L
2.2 COMPUTATIONAL ASPECTS OF MLE g« , ‘.
’ N ' . ’ -

We briefly review the method of maximum likelihood (ML):
Suppose 1,t2, PR E& are n independent survival times
whose death den51ty fungtlon is a function Gf'tVQ’parameters =
91,62, eser 83, n > ko We define the likelihood fknction (LF),
L(el,ez, ey ek) given the sample t},tz, cees t, as D £
—~ -7
g‘. L 91,--..,61:) = nf(tilel,ezﬂ,...,ek) (2.2.1)
- 2 i=] -
| where . \ ”m : -
f(¢i;elﬂ';"4k’ is the death dehsiﬁy‘funbtipn. r~

- .‘
- -

The maximum likelihood esQ:imators 61, 62, Ry 6 of

J'el,-ez. «++18y, respectively,, based on the sample trtoree ety

are such that if el,ez,".f..,qk’ is any other set of esthna.‘c.crs,
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-the MLE's

[

/o .L(el,..kék) > L0yse0006)

-, B »“

-

Under regularity conditions outlined in Cramér (1946)

-

Barene 5 of 6,,...,9, are obtained as the
llv‘ Ik \ ll Ik A

solution to the k X k system of equations.

+

\‘ *
s
< ! 'a
_ 3log L(el,...,ek) ~ .
. . 'ae - 0 - iﬂl'zpooo'k (2.2.2)
. i ei = e' ) ]

The estimators (61, .. .,Bk) are asymptot:.cally normally distri-

buted w:Lth mean (61,. .o ,ek) and Variance-covarlance matr.xx

A

%
V. [see Rao (1952)], where ) -
] N\ . a
A : -
3210 321 L | 5
\ ‘/—-{(ﬁ) . - . - E( ) ’
) A 1 - / 1k
v. = . _ . "¢ (2.2.3)
) . .
~
321 yL . 9 logL
B LY U R B i
- % C k
y} ) ~
. - — -
that is, 8, 9,
Ll - - -~ N * H V;\ (2.2.4)
. . > ]
-~ l - ~ .
) Lek- i ek ) ;
‘a
. . g ~ . -
," -& . - ® .4 ) ! 1
" W } ’
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In cases where it is not possible to obtain explicit
MLE's for the parameters of the survival distributions we use
numerical techniques. There are two cases of the numepical

techniques:

(i) No constraints on values the parameters assume, and
. ,

(ii) Parameters are subject to co:ritraint.

~

.
4

For example, in Case 2, in maximizing the logarithm of like-
lihood functi;ns, the constraint, if there is one, is ‘typically
as follows: The value of a parameter must lie interior to a
pax;;cular reéion (e.g., 0 < p < 1) and must not lie on the bound-
ary EF that region. Numerical ﬁrocedures that do not allow for
cons‘traints can be used as long as successive maximum likeli-

hood estimator lies in the interior of the region.

Wg‘describe here‘mhximizing techniques that do not
consider constraints. {fhese techniques can be put into two
classes -~ direct and indirect. In the direthclass, a starting
value is determined at what is thought to be a good approximat-
ion to the desired value. One theA proceeds in a stepwise
fashion upward toward thé maximum. An example of this‘class is
the method of steepest ascent or gradient method of Cauchy.

In the indirect method class, one obtains first the deriva-
tives of the loga£i£hm of the likelihood function with respect&
_to each parémeter. The resultiné equations are set equal to

zero, and attempt is made to f£ind the values of the parameters

\ ‘ -

» \ .

S
Y
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(in'termé of the observations) that simultaneously satisfy
these equations. Two examples of this class are' the Newton-
Raphson procedure and the method of scoring which we investi-
gate below. Rao (1965) and Kale (1961,1962) hav: also dis-
cussed this indirect procedure.h Although more sophisticated
and modern methods [see nnedy and Gentle (1980)] are avai;-

"able fqr solving non-linear equations of the type which con-
Qronts us, the Newton-Raphson procedure and the method of

scorlng, are very practical to implement and conceptually are

not difficult.

2.2.1 The Newton—Raphéon Method . (\

The Newton-Raphson method is a widely used and often~-
@§tudied method for minimization. We illustrate this tech-

ﬁique by sqQlving first for a single 6 nd then presenting

the case for ei,i=l,2,...,k. Let ' °

_ . A

—y , " g(e) = 2ogR(9) (2.2.5)
where )
J n? ¥

L(e) = I f(t :0). '
i=1
Q

The problem is then to find the value of 6, s;y 6,. such that

»

g(e) = o . | (2.2.6)
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Thus 6 is the requisite MLE of 8.1 1f o cannot be ob-

tained exﬁlicitly from solving Equation (2.2.6), we may attempt
a solution by means of tpé Newton-Raphson procedure for which
the function' g(a) is approximQted by the first two terms in

a Taylor series expansion;(we ignore the contribution of the
higher ordﬁniterms, since their deviatiégg)frcm the soluytion

value © qre‘igised to higher powers, hence diminish rapidly.)

Let 6 be an initial estimate of 6, then 8,,, the VEE itera-

tion or approximation of 8,is givén by:
#

- - . g6 )
9. = g - v=1

0% Byl " 3 (2.2.7)

v=1

where , T

l‘. ad(e) . .
' (0y_1) = g | . (2.2.8)

AS'GV_l

—

Equation (2.2.7) follows from the rearrangement of the first

two terms in the Taylor series. Thus, Newton-Raphson method

congists of solving, at each iteration, the eguation

9(6,) + (6-8,)g' (B,) = 0

-

j/f\

r * e
l . ~\\ ~
If there, is more than one value 6 such that ¢g(8) = 0,
judicious choice of an initial value is very important. In most
cases, the initial value obtained is in the neighbourhood of the
MLE. When in doubt, try several different initial values.

f
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by 6

. approximation el, and so.on. Normally, we stop ?ﬁe iteration

which cantot be solved directly. We therefore extend the

»
Lol

. For the next iterate ev+l, the solution takes the

o~

form of Equation (2.2.7) by replacing e, by 6v+¥ and ev_l

f

vo

Note that fhis amo‘!¢§ to selécting ev+l' as the point where-

the tangent line to g(8) at ev intersects the 8 axis.

Y .
The following Figure 2.1 is a graphical representation
\ . ‘ _
of the Newton-Raphson method which converges. Observe that

since g'(eo) # 0, the tangent line is’ not parallel to the

axis. Where this line crosses the 6 axis, we find our next

- ¢

~ -
.

procedure when log L(0) stops increasing appreciably. The
value of log L(6) should be calculated ég each step, which
permits us to monitor the stopping procedure.

Suppose f(tfel,...,ek) is a death density funEtion
{

containing k parameters 61,62;...,9k, k > 2. Furthermore,

-~

‘ suppose thevmaximum Likelihood estimators 61,62,...,8k of

S RLPYRERTIN (respectivel¥y) are found by differentiating the
logarithm of the likelihood functionf’with respect to
91,02,...,6k, setting these derivativés equal to zero and

solving the resultiné equations in terms of 91'62,...,6k.

This often leads to a sysjem of k equations in k, unknowns

Newton~Raphson method to k dimensions.

e e
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Let L(e‘,ez,...,ek) be the likelihood function and let

P
. l ! g ‘ 3
¢ ) N i - ~ -~ E

us suppose that the MLE's 01,02,...,ek are found by salving.

o

simultanecusly the vector equation. \ ' ‘f - .

- i

~ o~ Toa ‘ < 1Y
g' (840 0eeeBy) = 00 (2.2.9)

X
-

j—n ‘teri[ls Of 61 ,82’ . ;’ek, w'hEre

-~ -~ N -~ -~ ‘ ~ XA /V"
g'(efv-:~vek) = (91(6;'---'9k)p- mJgk(elr---tek)) (

L. - . \ ~ * ﬁx
aqd .
- - 910GL (8, ..v\8y ) |
gi(ellGZIQOQ'Ok) = ae -~ ’i'ng 2'.00’k
i i
' x L (2.2.10) - _
Suppose 10,920,...,6k is the set of initial estimates of | -

91'92""'9k’ respectively. Then the vEE iteration

elv’GZv""’ekv to the solution 91,62,.7.,6k is

»

- - ’ . s
8" = 8!, ~ g~(“ v, j||(v -1 (2.2.11)
where N i .
- \/ -

@

8y = (elv'ezvp---:ekv)' 0.1 = (91 v-1r92, v- 1""'°k.v-1)




l

f
gV o (g v év:l),---,gév 1),
v-1) _ o (3 5 . .
94 =93 (81,92%, 1700000k yonlr 1%Li20.000K

, { '
(Note: The prime notation indicates the transpose of a

matrix) and ||V1j||(v_1)_ie the k x kX 'matrix whose iiER

he d

element is

(v 1) o agi(‘el:..-uek)

Vij . - aej p

(61' . 'lek) = (el,\)-—l' e 'ek,\)"l)
» .

3

. . . . 1,321,240,k (2,2.12)

——

or the second derivative of the log likelihood.

-~

The cho;ee of the initial esﬁima;es \610,920,...,6k° is
very important,becauseiit is possible that the Newton-Raphson

procedure will converg to'a value that is not the maximum of
L(el,ez,...,ek). Often several sets of iA%tial values are

looked at, and each time the convergent values ©1pr0ayreeerfpy

are‘obtained these values are'substituted into L(el,...,ek)

-

The overall maximum likelihood estlmates 61,62,...,6k are

: taken as that set of convergent values which. maxlmlzes

k) Gross and Clark (1975) noted that although this
ﬁ
method does not always guarantee a maximum, it is a safeguard

L(Sl,...,e

in that more than one, set of initial values is conszdered,b

which me that any peculiarltles in convergence can be uncover-
ang ' ! - ;

8
\ - ’

ed L] ‘; \ R /J‘
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2.2.2 The Scoring Method

Zhe method of scoring [Rao(1952)] is similar to the
Newton-Raphson procedure for obtaining maximum likelihood
estimates of parameters of distributions when the requisite
system of equations for solutions is non-linear. The only
difference between‘theéé procedures is that the matrix of
second derivatives used in the Newton-Raphson ﬁechnique is
replaced by the matrix of the expected valugs of second

e

derivatives in the method of scoring.

Suppose that L(el,ez,...,ek) is the likelihood function

whose maximum likelihood estimators 61'62""'ek are found by
solving Equation (2. .9) Suppose 910,620,...,ek0 are the
set. of initial estimatés'of el,ez,...,ek, respectively. Then

-~

the v iteration 1v,ezv,...,ekv to the solution

el'ez’.-',ek is: ‘ / ‘;‘
’ * ~ .
-q = A| - '(\)"1) "1
6y = 84, —g'" HE(Vij) | (2.2.13)
where . ) ) .
-~ ’ 1
6',6' -1 and g'(v-l) are defined in Equation (2.2.11) and
IIE(Vij)II is the matrix whose ij2} element is E(Vi4),
3 -~ : \ . 2
evaluated at 6 _, where vij_ is 3 1oqg L/aeiaej.

That is ;he expected value of each element in the matrix is with

fespect to the sample values tl'tz"'°'tn' - Foxr egamplé, in ‘the

f{
1
}
|
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¥ : .
continuous case:

4

2 .
L %189 L, D
E(vij) . g(aei a s ) N (2.2.14‘)

J

n »

. \ n ) .
" However, L = I f(tg;g'). Hence log L =, [ 1log f(tv;g').

v =l . e

P

\ IE Al

f | : \
It then follows, since tl,tz,...,tnfare identicilly distribut--

v=al

ed, that - o ' ‘ S

2

2 3°log £(t;8")

aai‘aej ). v‘\i’j‘llzlono’k

-}
.

That is ' ,).
\{ ", . “
\ + o = 3%log £(t;8")

log L) = nE(

Bt
. i 3

£(t;6)dat  © (2.2.15)
- - ° ;Y
8 .
A similar ardument with the sumMvgeplacing the integral

in Eqﬁation (2.2.15) holds in the discrete case. For some
distributions, &etérmining Equq;iqp&(Z.z.lS) is quite simple
and the'method of scoring is useful. ’For others the integra-
tion is difficult (ifhvolving series expansions, numerical )
integration, etc., ), and in those cases the NéWtoni-Raphson
technique is usually employed. As with the Newton-Raphson
metho?, a judicious choice of the starting value’ 510,...,5k0 L

is quite important. A discussion of the Newton-Raphson method

and the method of &coring is given by Kale (1961, 1962).
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2.3 PARAMETRIC MODELS FOR SURVIVAL TIME STUDIES

- »
o’

"Here, we consider some theoretical models for survival

time distribution. Two general situations may be distinguish-

’

i

(i) There is detailed knowledge of'the way in which
-
failures take place so: that a model is known.

B

(ii) Some survival time data are available and one
pbjective of the anafysis is to cﬁoése a survival
time model.

In the former situation when data are available, the model is
fitted and the ‘goodness‘of fit". is tested. In the latter
case, the model is chosen after analysis of the data, and Ehe
validity of the model is tested by fitting the model to

several sets of other data.

- r

F

There are’5éyeral reasons why fitting a 'survival time
model might be desiﬁggle, Firstly, if a good modél.éan Se
found, the survivaf%expgrience of groups of individuals can
be characterized economically 4in terms of a féw parameteré
wﬁﬂch, }n turn, may offer some insight into the mechanism of

failure. Secondly, when survival studies are being'perforﬁed

M

in sequence, such as clinical tnials jduring successive periods

R R R

of time by a cooperative group, informatiom about early fail-

ufes in the second and later studies would be easier to inter-

v, . 4
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pret if a survival mod;}\had been fitted to the’'data frbm tEg
first stu@y. Morgogenerally, data from a currené study could
be compared with that predicted based on the results of a
past study. Thirdly, in studies in which two or more.survival
time distributioné are compared, it is generally true thatwa
more powerful test of the differénce between distributions can
be made "if a model for the .survival distributions is assumed
known. Finally, inAsomevsituaEions, it may be possible to

relate the parameters of a survival distribution to prognostic

characteristics of thé«fndividuais in a study. The latter

‘possibility was considered by Fiegl and Zelen (1965) and Breslow

(1974) when the survival time distribution.is exponential.
More often, the mathematléal distributlon may help to elucidate

the nature of the phenamenon under investigation.

L4

b

2.3.1 The Exponential Distribution
& ! '

The one parameteriexponential distribution could be
used as a'surinal model if we get the hazard fugption to be
a constant, that is A(t) = A g‘ggrover the range of the random
variable T, representing the f;il e time with beiﬁg a

point in its.range. The probability density function and the

. o0
survivorship funczfonaareagsséedﬁ§velyg

D’ ‘ \\ ‘; y
: £(t) = hexp(-\t) ' 2.3.1.19
N .
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and ' * 1

_S(t) = exp(-At) ' (27{}\

The constant hazard rate gives an indication of an instanian-.
eous failure rate which dogs not depend on t sé that the
conditional probabilitx of failure in a time interval of any
given length is the same irrespéctive of how lghg the individ-
ual has been oﬁ trial. However, it is reasonable to assume

an exponential death density function, if the cause of death
occur’s according to a Poisson process with a consiant failure

rate (see Feller Vol.lI). 1If,for instance, an individual. is

subjected to random events, such as blood clot or thrombosis

_that causes the body to "fail" if and, only if that event

occurs, wekwould-expect the efponential death density to
govern the length of life of the individual. We can always
check the appropriateness of. the use of the exponential model

through the techniques given in Section 2.4.
: o

. .~
{
~

To estimate the éhrvival parameter A we could use the
ML. method described in Section 2.2. The likelihood function,

is:
L 3 B, n )
L(A) =" I Aexp(—lti) K
i=1 ° *

Maximizing the logagithm of L(\) we have

e n .
Log L(A) = n logh - A L t, ' ’
i=1 * :

\_M“\—. -
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T . Dif ferentiating with respect to -1 and equating to zero, we
] : .
™ have: n "
e. ’ T z ti ""l “ ‘
: N NS 2 S
. , ; . n

s
*

' which is the ML estimator of A - the constant hazard rate.
If yu = A-l is the mean time to death, then since the,ma'xi—
mum likelihood estimates are invariant under one-to-one.

: transformations,

e is. the maximum likelihood estimator of yu.

.

g

We can easily show that the minimum variance unbiased

estimator (MVUE) for is, say, ji. First, we construct .

i in such a way that it is an unbiased linear estimator of

| p. That is, . e .

; ‘n - - .
H ' ¥ i= La, t ;

; | qmy + 1

: n :

: where L a, = 1, Then Ajreeer 3y must be chosen so that

¥ (:’ i:l n v
H Var (ji) achieves a minimum subject to the constraint I a i - 1.
2 . . | | i=2 = -

! ‘We easily find that a, = .%- for all i; thus: .

, i=E

-

That fs, the maximum likelihood and minimum variance unbiased ™

estimator of ¢ vcoincide when the parent density function ils
“~ , )
the exponential. In estimation theory terminology, t is the

" best linear unbiased est'imator (BLUE) of wu. However, t.

~ y
. -~

L 4
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is not the BLUE for Ay since BLUEs are not generélly pre-

servea under inversing. l

o

-4 is also the sufficient statistic for u siﬂée

s

s
v

Liw) = (55 exp (Y B
~ W .

- +
- ! v t

= g(tlp)h(tllo to,tn)

+

where v

1 &
Ve o

m

h(tl,...tn)

Therefore, t is the maximum likelihood, MVUE, as well as
. v - ’ _ '
the.sufficient statistic for u when tl,...,,tn igs a random

sample of size n from a population with hazard rate a

"
constant, Lo ' .
1

¢« ' . \

Supposé patients with some serious illness (e.q.,

£

carcinoma of fthe lung) are on study teo §etermihe their average’
survizfl time, Ho;ever, the study lasts only for a 13mited
' period. Hencé, it is likely that not all patients are dead
at the end of ﬁhé'gﬁudy; There are two cases to be cqnsider-'

ed here:

!

=

(1) The patients enter the study independently at differ-’
ent points in time. Suppose we have n patients on
, study. Let T, be the maximum time for which the
h( . - . r ‘
2 th patiefdt can be observed, i=1,2,...,n. Thus, if
. ‘ ﬁhewatudy ends at timélzi, then '1'i = T - zi (since we
kY ‘ ’ -O
- A

\, 3




T (2)

‘exposed to excessive amounts of radiation at the same

4 //\,\‘

assume a censtant hazard function A, we can proceed

to estimate ‘A under the assumption that T, =T~ Z,).

_The survival tfme of the iR patient t, is known o

———

only if ti < Ti‘ Thus, given a sample of n patiénts,

the information available is the set of maximum times
Ty oTorevesT and those times to death tj, such that

]
the stully, but d, the total number of deaths observed,

t, < Tj‘ Thé sample size n is fixed in advdnce of
3

is a random variable, because the study is assumed to

end at the fixed time T. ) ¢ -
- * '
The n patients who enter the &tudy are assumed to
enter at the same time. For example, suppose we wish to
-~

study the length of survival of individuals who are

time (e.g.{ persons who survived the atomic bomb
attack at Hirashima.) In such a‘study, the survival
times arrive in a natural ordering, meaning that the
individual with the sﬁorte!t survival time is recorded
first, the one with the né%t shortest survival time

is recorded seéond, énd so on, If the survival times
are recorded for the first d*i n individuals who die,

» -

then - .

t(l) -<-t(2) Sresey f-t(d)

~

~ - ’ \
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. We discuss first progressively censored data and ndly,

singly censoged data.

~ ~

Let us assume that each patient has the same death

[

dghsity funct;on ;

I

£(t) = Aexp(-\t) A > 0,8 >0

-
" e

Following Bartholomew's (1957) development for the

progressively censored case, the probability, the LEE. in-

dividual dies while he is on study is

kS

T.-
= 1y e3 - = - - =
Dl - S(Ti) of Aexp(~=At)dt = 1 - exp( ATi) Qi

- ' <

Let u = %; To estimate u(hence A) we use the Maximum
Likelihood (ML} method. N s ’
The contribution due to the iEE individual, is "
~
<l _.=1
. Ut expl-u Tt;) 0_<_ti.§Ti ,
f(t ) = ‘ N /) (2.3.103)
i -1 ,,
exp(-u "T;) ty > Ty “
TN

Equation (2.3.1.3) follows bécause an individual either dies a£
t, < Tifwith density u-lexp(-u'lti) or he survives beyond time
T;. Should the latter situation occur, we éa; only measure
the probability of ﬁis Survivéi,'w§ich is exp(fu-lTi) or S(Ty).

~

)
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4

The likelihcod functioﬁ is given by

§

: n _ - 8
L{u) = X Lu lexp(—u 1ti)]

Mexp(-u et (203100
. i=1

Similarly, for any survival distribution S(T) and correspond-

ing death density function f(t), we can write .

}
¢

n 8
L{w = 1 [£(t;)]

(/ | i=1

i 1-§,
[S(Ti)] i

>

e
| 1 if the i patient dies in the interval bfﬁii?ie
Gi = 4
0 if he qoes not die in the interval 0<t,<T,
. B " :
) Taking logarithms, we f£ind that
: T 1 a1 o
} logL =~ I [68,(logu+u —t.) + (1-8.%u —7.]
. i i i i .
% i=1 .
A
. @
i ® setting 2&%%1& -~ =0, we have
. u=y
\

1’1 A_l ‘A-z A_z . . ~

L 06, (= “+u “t,) + (1=68,)p ‘7,1 =0 (2.3.1.5)

. i i i i
1 : i=1 . o
s ,

The value u that satisfies Equation (2.3.1.5), thusN
_ maximizes quion (2.3.1.4), is

+

- .10 , \
p=d iEl(Giti +(1-6)T15) (2.3.125)

¢/7
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X

where .
n )
d= L 61 is assumed to be greater than zero.
i.’l J

~

-~

The u given by Equation (2.3.1.6) is thus the sum of the times
to death of patients who die while on study plus the sum of the
‘patient study times for those patients surviving the duration

of the study, divided g;,the number of patients who; die on study.

’
Since maximum likelihood egtimators are invariant under one-to-

one transformations . -

-~ n ! -1.
A =df I (8, + (1—ai)Ti)]

i=1
is the MLE for A. - ' o
: . ] BN
. *“%%
If 4 = 0, we define ‘ ‘ o
- n
u= I T,
j=1 T
2 ) I

However,, there will be few, if any, practical situations for
which 4 = 0, Bartholomew (1957) obtained an approximation for

the variance of yu which is given as

. ‘. ‘2

V{y) = -—E—:-
I Q.
i=1 +

" where
Y

Q= 1 - exp(~ATy) Cie 12,0000
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Example:

We consider the examble in Barth;lomew (1957) , assuming
that thé data represent 10 survival times (in days) of patients
with advanced lung cancer and that the study is terminated at
a particular point in time.

L [

TABLE 2.1 SURVIVAL TIMES OF PATIENTS WITH ADVANCED
LUNG CANCER "

Patient ‘
Number \

Survival
Time ty) 2 51 33 27 141 24 4
(Days}

Number
of Days
Until . 4

End of 81 72 70 60 41 31 31 30 29 ?1
Period ’

Ty

I g

From Table 2.1, we see that 62 = 64 = 610 = (0, and all

JOtﬁer values of §; equal unity. Furthermore .

3

10 N 10
d=7, I b,t, =155and £ (l-§,)T, = 153
: jmp L1 je1 1



v T

- Thus
L= L]'_S_S_;.].'éﬂ.z 44 days . v
and
].. .
\\ = 0,023 death per day -
“The approximate variance of 1y is ,
| T v
- o2 4 2 -
v * = e - 31408
L Q.
j=1 * b

-

Again, if we assume that each patient has the same exponential
death density function and all patients have the same point of
entry into the study and also the study is terminated after
the survival time of the a2 patient (ot of n > d patients

in all) has been recorded; n ié fixed, and 4 is assumkd to be'

th

fixed., Thus ’ the survival time of the d= patient, is

Fa

assumed to be a random variable. This case is considered by

Halperin (1952) and Epstein and Sobel (1953).
r

The likelihood function ,L(8') for the general k
parameter case, where,

§' = (el,...,e is

)
~ , k . .
p M to & ﬁww“

' ni d ne d
L) = T .Hlf(t(i)'e )[S(t(d).e )]
i= :

»

y
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\\where

S(t(d);g') = tf £(t): 9 )at .
. (d) ¢

For the exponentlal case, when A="u -1 is the parameter of

interest, ﬁalperln (}952) shows

»
x -

: \ -1
L) = e A exp {- Al z t( )+ amatle o 1
] . lg

~ E

~2 Phe maximum likelihood estimator obtained by the standard
procedure is
—‘l d =d
A= o y (say) . (2.3.1.7) -
+ (n-d+
(n-d l)t(d)

=y 4
T 0

-

Halperin also obtains the mean and variance of A, which are

respeftively,
BN ' g
EQ) = = (2.3.1.8)
and ’
Var A = IT- ;2.3.1.9)

The above equations follow because for fixed d, the
variable 2ly has a x2~distribution with 2d degrees of

) freedom. ‘ g
LN . . ' '

i e 4 e =
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- !

Epstein and Sobel consider yu, the mean time to death
as the parameter of interest vis-2-vis the éxponential survival

distribution. They obtain u, the maximum likelihood estimator

-

of y, which is x'l where A is given by Equation (2.3.1.7).

N T

They then show that u is the minimum variance -unbiased esti-

mator of Y, using the fact that 2y/u has a‘xz—distribution

. o
with 24 degrees of freedom. It then follows that )

*

- - 2 -
Var (u) =

Qalt.’

[3

*

-T\finally, Epstein and Sobel obtain the expected value
th |

and/variance of the'time to the d—== death:
d -1
. E(t ) = u I [n-j+1]
and
, 2 d -2 .
Var(t ) = ul T [n-j+1]
(d) \ =1 .
J -~

Y

There are distributions for which a survival parameter's
maximum likelihood cannot be obtained by the method described '
in Section 2.2. Suppose the death density of t involves only

a location parameter 6; that is, if

-

£(t) = exp[-(t-68)] £t >0 (2.3.1.10)

~

Equation (2.2.2) cannot be used to obtain 6. In this case, if

Y _ /\J

L4
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g 1)

(1) (2}
death density is given by Equation (2,3.1.1), the maximum like-

t <t < ,e0 < t(n) are n o;ﬁerq? survival times whose

lihood estimator 8 = t(l)' This says that if the survival
[ 4
times of n individuals are guaranteed to survive at least a

period of length 6, then the ®ML estimator of © is the mini-

mum of the recorded survival times, that is
\

= mi .

3] %n tl
y A

¥

When the parameters of a death density function are shape para-
meters, the ML estimates of these parameters and their large
sample variance-covariance matrix are obtained through methods
discussed in Section 2.2.

»

2.3.2 The Weibull Model

L3

In this model the hazard function depends on time and

is given by v ,
A(t) = Ap(t-g)Pt (2.3.2.1)

where ¥y

A,prE are non-negative.

The WeiEull hazard function has been often’ found to
— ‘ .
yield an excellent fit to survival dafa. We usually assume that
‘ ' o . -

£, the location parameter, is known or /is zero. When £ is known,
. ~

,,/” »
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5 . we can make a transformation t' =t - £. Since £ must be
less than min\ti, if one has small values of ti’ taking’

i 0
£ = 0 would be a sensible choige.

. &

If we drop the prime notation, the Weibull hazard
4
function, A(t) could be written as
\ CA(t) ="aptPL (2.3.2,2)

3

Plotting this hazard funct%gn against timt t (See Figure 2.2)
we observe that this hazard is monotone decreasing for p < 1,
increasing for p > 1 and reduces to the constant exponential
hazard if p = 1. ng densit§ function and the survivorship

function corresponding to this hazard function are, respective- -

ly:

, £(t) = AptP lexp(-atP)  £50,p>0,150  (2.3.2.3)
; and % ‘
S(t) = exp(-AtP) (2.3.2.4)
Since it is often difficult to distinguish between the
Weibull and gamma density function, both being generalizations
of the exponential density function, in practice it i; usually ,
?J' helgful if the researcher could pinpoint the method in which
\ his data are obtained. Because of it$ versatility in fitting
time-to-failure distributions of a rather extensive variety

.

of complex mechahisms, the Weibull distribution has,in recent

S

-~
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years, assumed a E?Sit%cn of importance in the field of re-
r
liability and life-testing. Various problems associated with

this distribution have been considered: by Dubey (1963),
2

Menon (1963), Esary and Proschan (1963), Kao (1959), Lehman

\
. (1963) and Proschan (1963). . A major deterrent to wider

usage of the Weibull distribution has been the difficulty in

estimating its parameters. Unfortunately, the caléulations

involved are not always simple. ~
~ 99nsider the case of a complete sample and define the ~
Weibull density function as
S
, p-1 P g
o E(x) = (p/08)x* “exp(-x~/8), x>0,p>0,6>0 (2.3.2.5)

This particular form in which Equation (2.3.2.5) is written was

‘chosen for the purpose‘bf simplifying derivations of the

_ maximum likelihood éstimating equations.

Consider a random sample consisting.of n observations

when Equétion (2.3.2.5) is the applicable densjey function. The

’
likelihood function of this sample is *

/ n
. -1 o
L(xl,...,xn;p,e) = igl(p/e)xg exp(-xf/e) < (2.3.2.6)

-

The maximum likelihood equations are given.b§

+ ‘
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n

oinL _ 1 2 _ 1 p

—55— = 5 +i=1 in X Y 151 x7 4n xi = 0

nL , _n, 1§ .p., ‘é§3.2.7)
' o 6-58 1 1

I

-

ABY elimihating 8 between these two equations and simplifying
®

we have . . »
Fn' -~ <
X xf in x, -
1 S § B R §a3.2.8
. 5 = I tn x, -&.'3.‘.)
o) 1 A
) xi .
~ 1

' from which MLE of p can be obtained with the aid of standard
iterative procedures discussed in Section 2.2.. In most cases,
a simple trial-and-e;ror apprqﬁgh will suffice. Once two values
P and.pz have been found withiJra suffientlf narrow interval
such that Py < 5 < Py linear interpolation will yield the re-

quired solution. With p thus determined, & is estimated from -

—~

the second equation of Equation (ZE?'2'7)‘35

- .

@)

]
| ol o e
s+ »

- (2.3.2.9)
Anti-neoplastic‘drugs are of iﬁbortance to the caAcer
chemotherapist as treatment protocols increasingly call for the -
admiqiktraticn bf multiple-drﬁg combinations% Analysis of )
survival eﬁggfif::fs involving animal models can\provide:véluable
"'+ information on ¢t '\pqtqncy of the arug. Consider N animal
modeis/piacéd under obsgrvatibn'in a laboratory and as each

N o
. . . !
¢
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failure pc%t:rs » the time is ne\ted. Finally, at some predeter-

mined fixed time x o! OF af&_er.some predetezﬁined fix/ed number
of sample gnimal models fail, the test .is terminated. In both

of these cases the dataﬁcolle,ctéq consist of observatio;ms

plus the information that (N-n) animal madels ' .-

-\
survived beyond the time of termination fx in tﬁ;e former

xl'xz’ L N 'xn ’

case, and ”x 'in the latter.) We use the standard termmblogy A
. N\ N
as employad by Cohen (1959), when X is fixed and thus n is’

a random varlable, censoring is said to be of Type I; when n

is fixed and the time of termmination - X,

v

is a random variable,

censoring is said to be'bf"rype II.

” \ .

> In both Type .I and ffype II censoring, the likel;hopd

( 2 .
function may be written as . )

.5 ,_ . v *
. y N

" L= e 1 (p/e 1 exp(-xP/e) 1l - F(xp) 1N % (2,3.2.10)
“ TN- T'". im1 i S

where £ Type I censoring, the time\of termination x. = Xgr

N T
and in Type II ,' censoring Xy = xn. The distrn.bution function
o l ' \
F(x) from Equation (2.3.2.5) is given by S e . .-
‘ Y ":.'& 'f" x : L
Fix) = f ptp Te-tFarae/ng L
" a "M ! " * i‘:“».‘
. > p :
= ] - exp(—x /8). » . (2.3.2,11)
. H ) hb' . . . . ‘
'Wé obtain the estimating equitions as - o o /

Ey , -
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-~

e - ~
n 3
8%nL _ n clew oy =0 )
5 p+§£nxi ez*xilnxi ?,,
& ‘ . f (2.3.2.12)
gL ‘
» e \ t '\J
\ - \
whefte
. * o
Q- L* \ signifies that the summation extends over the entire
' o ‘. ‘sample with the (N-n)*survivors assigned the value
Xmi that is, X, "or e ) _ v
In particular, Cohen (1965) noted that \‘
. P n p P )
* = -
) ?‘1’. in X; §‘_xi lil}xi+ (N 1'1)xT 511 xT » |
Q B m. n : ’ L ' (203.2.13)'
L* x? =z xP + (N--n)xp |
i 1 i T ‘
! 4

In the above form, estimating Equati%ns (2.3.2.12) are fully
‘ analogous to Equations (2.3.2.7) for complete samples, and on

‘eliminating 6 between the two Equations of (2.8.2.12), Cohen

showed thatx

* P
¥ X nx

I U U (2.3.2.14)
Z*xp p . nl i ....

We solve fér p employing the same techniques suggested for use in
r solving Equation (2.3.2.8) in the case’of a complete sample., With
p thus determined, it then follows from the second equation of

(2.3.2.12) -that . | : . /
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! ' -~ ! x?-
e = z* — (2.3'2015)

-

In many-life-testing situations, the initial censoring
}esults in withdrawal of only a portion of the survivors, thh
some remaining on test and therefore continuing under observa-
tio; until ultimate failure or until a subsequent stage -of
censoring is performed. For sufficiently lsarge samples, censor-
i ing may be progressive through several stages. Suppose that
censoring occurs progressively in k s'&ges at times T, where

'I.‘i > Ti-l’ il,2,...,k, and that at the 1-1ﬁ sta.gé og censoring

4

- r, sanple specimens selected randomly from the survivérs at

time Ty are removed (censored) from further observation. .If ’
we let N designate the total sample size as in the case of
singly censored observation, and n the number of anima.l‘model"s.
which fail an‘ erefore provide completely determined 1ifé spans,

it follows that

- \ . k '
N=n+ 2 r, . (2.3.2.16)
i .
1 .
- 7 . )(
Y In Type I progressive censoring where the T { are fixed, the

-

<&

likelihood function may be writter?(’ as

k
L =¢ I[ f(xi) nmi1 - F(T )] i (2.3.2.17)
i=1 i=] '

vhere

‘c is a constan

\




c7

Is f(x) "is the density function, and
F(x) is the distribution function.

Y
LN

- with £(x) given by Equation (2.3.2.5) and F(x) by Equation
(2.3.2.11), the logarithm of the likelihood function becomes

_ . (/ ] »

= - - (X P _
inL =nn p - nind + (pl)I in X *(Fli X3

. . 1
k
e 1 P \
@Lr Tftanc (N . (2.3.2.18)
o L]
» from which estimating equétions are obtained as
\ 3%—“——E=§+gznxi-—z**xpznxino
. P P &0
; =~ \ 52.3.2.19)
; in L n 1. *k P =
-—-—-—-—-ap = 8 + ‘—87 T xi 0
el
Lo

L ¢ where

T\ - La* signifiies summa tion over the entire sample with

i " the ‘ri observations censored at time Ti assigned
?f’ the wvalue x, =17,.

: / i

i - °

More specifically, Cohen noted thét
p P kD . N
I** x7 fnx =L x Enx ﬁZrT lnT " e
" ' i i l i 1 \ N -
n k . . . (203. 2'20)
- Z**x§=2x?+zr 7P T
\ 1+ 1 i’i .
{
)
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with Equations (2.3.2.7) for Eompleté samples and .

with Equations (2.3.2.12) for singly censored samples. Equa-
tions (4.3.2.7) and (2.3.2.12) may be considered as speci#
cases of Equations (2.3.2.19). Accordingly on peliminating @

between the two Equations of (2.3.2.19) we have

k% p
Y} I ~ X &n x, 1 1 n :
i Y L] = 21 2n x.- (2.3.2. 21)
P h 1 i 5

|
|
|

r
!

p :
0 = [*¥* — ' (2.302.22)

As nqted by Cohen (1963) intermediate steps in the derivation of
esti tirig equations f<;r Type II progressively censored samples
differ from corresponding steps in the case of Type 1 censorir;g.
Th;'-, nd result, however, is the same in both cases, and the ésti-
mating equations given here are applicable for both sample types.
We should note that the times Ti‘ are the times at which with-

drawals are actually made.

The asymptotic variance-covariance matrix of
obtained byrpsing the formulae given in Section 2.2.! In tht-(\ "
. f

pres%nt situation, it seems appropriate to approximate the

/
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expected values by their ML estimates.

the appropriate variance-covariance matrix

3%
dpdb

-1

p,9

p,6~ "

R 1

v (p)

L §

_cov(p,e) v(8)

Accordingly, we have as

:

CSV(P' 8)

The elements of the information matrix on the left-hand side

of the above equation are obtained by differentiating Equation

4

(2. 3.2.1 9) for progressively

(2.3.2,7] for complete Sfles, Eguation (2.3.2&153~ for simjly.

censored samples, and Equation

censored samples as follows:
R 2
e \

For complete samples:

n o
AL e B LraRn xy)
op 0 p el
2 . n
—algL‘- ""—I'l‘.*'—%zxg
ae P,e 5 "é 1 A

o s At e .

For singly censored samples: ,

(2.3.2.23)“

>

.
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. » .
2 " -
3°AnL n lox P 2
-._5_7.,.88*2-!-‘2'. xiCLnxl)
p P p 8
. <
inL 3%ann| 1 D
o .- - — 2 e e LW
Pr Pr 8
¢
2 2
3" inL n 2 o, P
- '—""i'-" PP ""'3 + """—"3 2 xi
98 p,0 8 g
¥

For progressively censored samples:

-~ 2 2 ‘ 9
_ 37inL, =0 4 1oes P (g 2 .
[Tt (e .
P %} P 8
_ Bzﬂ.nL = - sznL = ._];_2. Lk x; in x ] (2.3.2.25)
'55——6 - o~ W‘AIA N i : L) . .
g p,e P P,e 8 *
, .,
p2nL |~ . = = Do o e P
51 p,0 -~ ~3 1
a8 ' 8 9

Although the foregoing results are valid in a strict sense
o‘nly for large samples', they may be relied upon to provide

reasonable approximations to estimate variances and covariances
),
for moderate size samples. In sifall samples, it must be recogniz-

-

ed that errors due to bias sometimes greatly exceed the errors
induced by la.:':ééstimates of variances. This is an area ﬁ’hich
requires further investigation with respect to“’the Weibull dis- .

£ 3 4

tribution. Some linear combination of order statistics providing
, \

-~
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unbiased estimates may be preferred over the estimates consider-—

%
ed here. At least the maximum likelihood esf:imates are con-

sistent and hence we are assured that the bias diminishes as '

the sample size becomes large. .
' ‘ .. *

Cohen (1965) has given as an illustrative example of
{
the application of these results for n = -20 from a data given

<

\
by Menon (1963). The sample comes from a population in which

2

p=20.5 and "6 = Ye £ 1.649. For comparison, the maximum

'1ike1ihood estimates are listed below with cprresponding esti-

mates based “on Menon's results, along with the population values
and moment estimates. The moment estimates of 0§ was calcu-

lated using I S

up = %Pl (kg 4 1]

where f ™
' * . L] 1]
up is the kgé“non central moment which readily

follows from Equation (2.3.2.5).

[

<

TABLE 2.2 COMPARISON' OF DIFFERENT ESTIMATES USING
MENON'S DATA

. POPULATION | MOMENT MENON'S ML
VALUES |ESTIMATES |ESTIMATES |ESTIMATES

9 1.649 1.230 1.400 1.363
p 0.500 0.430 0.570 &.506




P el

The Variange-Covariance matrix jis °

0.007 0.014
0.014 0.123

»

Other estimators of 6 and p have been studied by Menon

(1963) , Miller and Freund (1965), and Gumbel (1958).

Bain and Antle‘(1967) performed Monte Carlo 4simula-
tions totompare the biases and; the Ya;riance amo'ng four of
the five istima'tors that are potential substitutes for
the maximur® likelihood estimators of the Weibull parameters.
These estimators which are compared in samples of sizes S,

10, 20, 25, and 30 are the Bain-Antle choice 1 estimators,

the Menon estimators, the Miller and Freund estimators, and

}:he Gumbel estimators. The conclusion of the simulation

was that all these estimators are quite good and the differ-

ences among them are small. Menon's estimators improved as

the sample size increased, however, they *canr}ot be used in
b}

oy

the preseﬁzz\e of censoring.
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2.3.3 The I.:Ognormal Model ~
N
The hazard function for this model is gi_\'ren by :
2 .
‘) 1 { [log(r,t)] } 1 2.3.3.1)
2 ———— gXp {=- - .3.3.
2\ log(ta,)
y HH)\OSt . (o] ‘ 1 - °[ 1 ]
o
where - . ) /
Jd Y x2
. ¢(y) = — [ exp(-~2—-)dx . (2.3.3.2)
: Y20 - .

The probability density function is

¢
) [log (A, t)1°
f£(t) = exp {- 1N } (2.3.3.3)
Y(2IIX )t o

o)

and f:he'cumulative distribution function is

¥

h 2
t . [log(a,t)]
F(t) = 1 J exp {- —7 1 y & (2.3.3.4)
o o y
o
[log(A;¥)] ,
By writing X = one can identify
Y :
F(t) as Q
[109 t + log )‘1
¢
/x;- L

This shows that the random variable log T is normally distributed

with mean - log A, and variance, .
A}
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Boag (1949) gives an extensive application of thg log-
normal survival distribution to ¥atients with cancer. He
compares fitting patient survival to both the lognormal and

exponential%;urvival distributions. As a practical example

of the use of the lognormal survival diégg;bution, length of

_times to recovery from injuries or surgery often follows a

lognormal distribution. It can be shown that the hazard
funcEion increasqf initially to a maximum value and then de-
creases to zero as t approaches infinity; that is, there is
an early period of posipive aging followed by neqative aging..
A common choice of survival distribution among research workers
in the life sciencegﬁis the lognormal.\ Since many probability
density functions of survival time are skewed to the right, it
is natural to take logarithms to oStain a more symmetrical
distribution. Gehan (1969) shgwed that a lognormal distribution
is difficult to distinguish from an exponential distribution.
Hence it is suggested that if a distribution is to be/ﬁhosen
empirically‘and the hazard function is nearly constaq%;;éhe‘

exponential distribution is a reasonable choice because of its

simplicity.

Feinleib (1960) has also proposed a method of analyzing
lognormally distributed survival data with incomplete follow-
up. Lea (1945), Osgood (1952, 1958) have observed that the
distg}butions‘of duration of survival in several diseases can
be rather closely approximated bx a lognormal curve. They

have poiqted out that although the frequency distributions of




survival times in these diseaseé are markédly skewed to tﬁe
right, the logarithms of -the survival times are approximately
normally distributed. Thus, if one were to plot the cumula-
tive distribution of the survival times of patients with tgése
diseases on lognormal graph using Fhe methods discu§sed in °
Section 2.4, d straight line should be obtained. An inspect-
ion of the‘graphs presented by these authors often showed,
however, that the observed distribution was ;arkedly convex with
respect to the°predicted straight line. A similar disparity
was oObserved in Feinleib et al (1960) b% a study of sﬁrvival
patients\éuffering from chronic leukéﬁia. (See Figu;e 2.3).
Gaddum (1945) has shown that such deviatians can be
corrected by subtracting\gp appropriate.cqnstant from the‘sur-‘
vival times. The transformation results in a three-parameter
or translated logno%mal distribution. -That is, the variabie t

defined by
1 X-0
t = 'é" lOg (T) (2.3.3.5)

is a standard normal variate with mean zero and variance one, !/

where |
x is the duration of survival measured from the date
of diagnoses, onset of symptoms, or’ some other “
- point in the course of the disease,

a is the appropriate constant, and

'logs b and ¢ are the mean and standard deviation of ‘the

variable log (x-a), respectively.

"
b

1
o
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FIG. 2.3 DURATION OF SURVIVAL FROid DATE OF DIAGNOSIS OF 234
PATIENTS WITH CHRONIC LYMPHOCYTIC LEUKEMIA DURATION
OF SURVIVAL IS PLOTTED ALONG THE LOGARITHMIC SCALE
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To-date, no ;nethod has been progosed for fitting a
translated lognormal distribution to incomplete da:ta,although
maximum likelihood solutions for complete data have been pro-
‘vided by Cohen (1951). Feinleib (1960), gave modifications
% . of Cohe\n's equations as applied to life data. Howevjer, it
+ has not yet been ascertained whether the values ol::tzulned,f by p
- this modified maximum likelihgod procedure are in complete
agreement with the exact maximum likelihf:od solytion for the

« case of i?omplete data. He noted that if the survi\(al data

are gomplg¢te, the procedure proposed is strictly equivalent

G b e s NI AR o

'to the maximum likelihood solution for grouped data.
\ :

-
S

Under the conditions that log(x-a) is normally distri~

+ , ~
;' _ buted, the density function of x would be given by

g g

o .1 y 1 2 ,x-0 . ‘
: » — exp[- —5 log“ ()] if x> a
: M) o(x-a) /2T 2c? R _ -
£(x) = ¢ \ . (2.3.3.6)
o if x 2 o
where ' 5 \‘-

c>0,-m=2<a<» b>0

~

t

AL Ao <k oo o

If the duration of each patient were known, the parameters, of
this distribytion could be obtained from'the ML estimators

.described by Cohen (1951). He found out that the maximum like-
lihood estimates of log b and c? afe \ ‘ < ‘ -

\ ——
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'yhileithe MLE .6f o 'is’the solution, a, of the equation

T =] ? iml X470

.
' R . -7 °
.
.
. \ P .
Y .
- b

Jj -~ n -~ ' . b -
lM/J p logb = I log(x;~ad. - (2.3.3f1)
- , jmp oL S
a , - ‘ E
ang y, ‘ By | .
-~ 2‘ l n 2 ~ ‘ l n -~ 2 )
c¥ == I log”(x;-a) - [H ifllogiri-a)] (2.3.3.8)

.

-

[
.

CA(a) = [ Z P -a 1[n I. fgb(x ~a) - n E log (x -a) +
: i-l i ’ is1 i=1 X
\ o
g b log(x,-a)

( ) lqg(x ~a))?3 - n? 1 =0 (2.5.3.9)

N
I3 ( ;
o
.
i .
0 8 !

Wher e‘ ‘? ’ '{:,-;? s ’ \
| 'n is the number, of patiente observed and xi' is the
en -

" duration ‘of .survival of the iff patient. Equation (2.3.3.9)

X

log b and c?.

may be solved for by iterative procedure éiscussed in‘
Seetion 2.2 and the ‘solution subsequently substituted in 7
Equations (2.3.3.7) and (2 3.3.8) to obtain the estimates

-, 7

L]

v
¥

» : . Co . '
Aﬂjustments for these estimates were made byyreinlefb
e
(1960) E\r incamplete follow—up survivql times.‘ In human

survival studies, the duration of survival iSngenerariyfﬁot

known for each individual. Some patients may still be alive
at the termination o? the study, while@pthers may withdraw :
from the’ study prior so their deaths and be lost to follow—up. ¥




value of a- is not known at the outset of the
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A3
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<&

For such patients the lue of ‘xi would be uefnown.

t —

One method of making allowances for these patients is

v

the actuarial or life table methéd The life table method

‘is based on the calculation of condltlonal probabilities of

v

dylng durrng short lntervals of the period under considera-~

tion. - A commonly used expression for calculating the proba-

. bllities of dy;ng during any interval, is known as the

"i-rule : and is given by the'follow1ng equationq&

£

a4 * I (2.3.3.10)

L

h

Y, * theﬁbeginning of the it .interval;

Di -‘the numbpr of‘indiv1dua;s known to have died
) during- the i® jnterval;
. o

L= number‘of'individuals alive and under observa-

tion at the beginning of the il ' interval;
"._{)"

W, = numbergpf'igdiv;duals withdrawing dufing the -

o _,iE-l-‘- interval;
Y - ' ﬂ
2The usual .life table notation has beep slightly modified
to allow for summation over the index for intervals rather than
directly over time. 1If the n of intervals in the life table
is p, the initial point of the time scale, y;, is set equal to
the(unknown)parameter oYy 18 chosen to be posltive and larger
than a, and thé upper end-point of the last interval y l,is set
equal to plus infinity, while.the r aenlng p~2 goints are
placed at any convenient distance between'y; and'y Yo41- Since the
calculations,
yy may be taken to be the origin from which. sUrvival is measured
and set equat to zero.

s

s

~
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q; = the conditional probability of dying during
the 1 interval, given survival toy . .
i
I’ Having calculateé}the values of . d3 for each interval,
these Fré’?ﬁgg\ipplied"to°a hypothetical number of individuals,
- J
21,’¢1ive at the beginning of the first interval, e.g.,1,000,

~

td/;ield T the number \of individuals of the original 1,000
who are alive at the beginning of the 1 &b interval, and di;
tﬁe number of‘deaths that occur during the iEE interval,

for i ranging from 1 to p. Th¢~values of the £; and the

d; may be obtained from th& following relations:
- o
' i

\ h) .
a4 = q; i, (2.3.3.11)

\

‘,The adjusted survival curve of a group of patients may'
next be obtained by plotting the proportion who have died as a
functién of time: This is done by plottiﬂg the cumulative sﬁm.
of di/ﬁ.i in the life table against the end point of the last

- interval in each sum. _N,/\\JL_“/ .

' An iq}uitive approach toward estimating the parameters of
the lognormal would be to treat the numbers dying in such inter- Y

, val as calculated‘*? the life table, the di,.as if they had

arisen from an ordinary random sample. This was the method

adopted by Feinleib et al (1960) in thé study on chronic leukemia.
\ . ' 4
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Before substituting the values obtained from the life table
. 4
into the usual maximum likelihood equations, certain adjust-

ments were made for the grouping.

%
When usiqg grouped data, the assumﬁtion is usually made §
that all the values within.any small interval can be cdnsiderw
ed Sonéenfrated at the mean Qf‘the portion of t@e distribut;on
over that(interval. That is, in terms of the transformed

variable, t, it is desired to find the point ¥ for each inter-

val, such that ‘ t ’ .
t t,
i+l . 2 i+l 2,
ey et /2 gc = .5 L ¢t/ 4 (2.3.3.13)
i /20 i V2
bV
where .
Y ¥i~o ‘

For all intervals but the/gzzzixgnd the last, the usual agsump-

tion may be made that the desired point is the mid-point of the
transformed interval, i.e., .
’ ' 4 ) N v

'tI - }(ti+ti+l) i-2,3,.t.,p-l (2.3.3.15)

The point in each interval on the original time-scale

which is mapped into the t; is given by the inverse relation-

ship.

gt w Ly (y;-a) 2.3.3.16
{ "z log{=p) . (2.3.3.16)
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Substituting Equation (2.3.3.16) into Equation (2.3.3.15), the
following simplification is pptained: '
) | L .
log(y$-o) = 4[log(y;-a) + log(y;,g=ell, 1 2,3,...,p-1
' (2.3.3.17)

. %

<

For the first and last intervals equations (2.3.3.15) and .
(2.3.3.17) do not hoid since Yl = 0, Yp+l = o, t1= - o and
£p+l = », Estimates of the means of these intervals can be

made from the data in the life table by making the assumptions

'S
that .
d, t 1 -t?; ’ :
— > f —— ” ;dt (2.3.3018)
1 - /201 :
and Y
7..\.'
d ® 2
o L= L mt/2 gy (2.3.3.19)
y 1 tp/'z'ﬁ .

‘Equation (2.3.3.13) can now be solved explicitly to yield

[

2
) -t2/2
e = (- 2] (2.3.3.20)
1 v/ﬁ ) . v
P
A -t2/2 \ 2 :
' 1 e By .
N ex = = [=—] , (2.3.3.21)
« P ) Y21
where
[ ' &
\
R o
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t2 and tP are determined from Equations (2.3.3.18)

and (2.3.3.19), reéspectively,

S .
determined by Equation (2.3.3.17) are independent of b and\f,

,~ We observe that the .values of y; (i=2,3,...,p-1) as

¢
and depend only on a. The values of. v} and YE' obf\ained :}’

by substituting the values of tl- and t; found from equations

(2.3.3.20) and (2.3.3.21) into equation (2.3.3.16) depend on all
three parameters.

\ : .
A method of determining y} and y;"which is irdependent

. of the parameter b is provided by the relations T

log(yj-a) = log(y,-a) = c{t,=t§]* (2.3.3.22)
, and }
< log(ys—q) = }og(yp~a) + c(t;—tp) (2.3.3.23)
)
where
* @ .
tz,tp,¥1 and ‘t; are determined by equations(2€3.3.18)
through (2.3.3.21),respectively.

[

The above relations provide convenient estimates for tHe

Py

y¥ to 'be used in the following modifications of Cohen's maxim
liiglihood equations which are to be used in the estimation of

, , i X
thggﬁérameters of the lognprmal distribution from the grouped

data of the life table: ‘ \

PN




log b = —%— 2 d. ioq(yi- a) .
1 i=1
- p - P
| ¢t = 4 Iaq log’yt-a) - [ Ig Log (y#-a) 12
™~ ) b1 4=1 % 1 i=11
AZ) [T di][z % 4. log(yt-a) = & P 1 2 (y*-a)
a) = . log (y*-a) "- . log“(y*-a) +
f=1¥7707 L1 i i=p 1 i &

P p d; log(y¥-a)
(Ia; log(y*-a))z] T e R
i=1 * i=1 i

.
: \
Feinleib (1960) has also given a short-cut procedure for find-

ing the initial estimates of the parameters o, b, and c.

IS -

g

[

2.3.3.1 vValidity and Interpretation of the m
Log-Normal Distribution

The first problem to be considered is the validity of
A% C

assuming that survival data follow a translated lognormal dis-
tribution. This problem can be resolved only in ferés of
empirigal observations. {igure 2.4 shows that the subtraction
of an appropriate constant may improve the apﬁkpximation (com-
pare Figures 2.? and 2.4). Hence,.empirically it seems valid -
to assume that the translated lognormal distribution is

appropriate. ”~ ' .

o . e
The second consideration is whether the use of a para-

meter, the constant to be subtracted, appreciably improves the

goodness-pf~-fit. A coméarison of Figures ‘2.3 and 2.4 in our
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~

cajz shows that the improvement is appreciable. Thus, it seems
N justifiable in certain cases, to use the more general three-
\$ h

parameter distribution in preference to the two-parameta{ dis~

tribution. (i.e., where o is assumed a priori to be zero.)

4 The third problem is the interpretation to be given to

\ the three parameters and the logariﬁhmic transformation. Any
venture at a biological interpretation of a mathematical pheno-
menon is hazardous. In general, however, a translated log-
normal_dis%ribution might be interpreted as meaning that a
multitude of factors affect the variable under consideration,
that. the effect of each factor depends upon the accumulati&e
effect of the factors which have preceded it, and that the
factors apparentl& began to act at the point a in the original
time-scale. The point a, however, 'is not necessérily the
time of onset of the disease, nor need it be any other clini-
caldy recognizable point in the natural history of the disease.
It is strictly-speaking nothing more than a mathematical esti-

- A .
mation of a parameter which enables us to fit a theoretical
N \ distributionbéo an empirical one. If one desires to interpret
it biologically, it might be described as the apparent or:igin‘°
in time at which the cumulative factors which lead to death

began to act. One should note that these interpretations may

have no real basis in observable facts.

—re atADm anm
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2,3.4 Qther Models

\

]

2.3.4.1 The normal model  ° };

v
Use of the normal distribution as a model for the sur-

vival data is limited., One difficulty is that if the random
variable 't is assumed to follow a normal density function

with mean u and variance 02, then

2
(t-u)
exp [- ]
av21 20

£(t) = —n<y<w, =—w<tw, >0,

(2.3.4.1)
,_/' v
Theoretically both the observed time to death and the mean time

. P
to death could take on negative values; however, if u > 0 and

% > 3, it is virtually impossible for t to be negati&e. None-

theless, the normal distributions do find applications in re-

@\ /

liability theory when it is assumed that failure or death is due
to accumulated wear, Thus, if k failures in total are re-
quired f;r a death, then for K large (as a consequence of the
central limit theorem), the death dengityrwould approach
normality. Or, if th; amount of some substance needed by the"
body is normally distributed and failure occurs because it is
totally cbnsumed, we would expect’a normal death density.“"‘

!

The survivorship function then is

S(e] = "fm”exp [- Lzzgli] dx (2.3.4.2)
/21 t 20 '
&
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i e
The hazard rate, A(t) is . *
2 4
| axp { (t=u) 7y |
ACt) = g%%% = - 4 2a » (2.3.4.3) .
[ exp { - x=1) }dx
t 20

2.3.4.2 The Gompertz model
. ?

The Gompertz model is widely used in actuarial work. The
hazard function is given by exp()\oﬂ\lt) r which reduces to a .
constant when >‘l = 0; hence the exponential ‘distribution is a

rspecial case. If A, > O0( < 0), there is positive (negative)

1
aging st’élrtir.mg from exp(ko) . The survivorship‘ function is
o
£~ exp (A,)
y S(t) = exp{ - —X-l——-—[exp,(k‘lt) - 1]}

[V

and the probability density function is easily written. The

mean of the distribution is given by

. exp(Ao)
E(T) = exP(lo)G[—-Ti-——] ’
: '.
where
x [+ -] .-l —Y .
G(X) ez e ){ Y e * dy

and is tabulated in Broadbent (1958).

“

b Tman -
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(

2.3.4.3 The Gamma model

. . Another two pariﬁeter genperalizations of the exponenfial

model is the gamma distribution with density function

k. k-1 . '
T SRM) | yrere k > 0, A > 0 (2.3.4.4)
(k) “

fE(e) =

,'r

Suppose tl'tz""'tn are independent survival times for n in-
dividuals, each of whom has a constant hazard rate 1.
Let, no oo

y= Lt
jm1 -

That is, y is the ﬁotal survival time for all n individuals.
0\7 v

We can detemmine the death density function, hence the hazard

rate and survival distribution of y, since thg average time to

death t, is y/n. .

Using mathematical induction if‘f = 2, the joint death

- density function for t, and t, is:

2 .
f(tl'FZ) = Av/pxp (= A(tl+t2)] tlio,tzzp (2.3.4.?)

r
t

Letting y = t1 + t2' we see that

2 .
£(t),y) = 27 exp( - )y) 2;F§Y'Y3p (2.3.4.6)

7

Integrating out tl, we have
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y .
By = S 2% exp( - Ay)at, = A%y exp( = Ay),y 2 0 (2.3.4.7)

. N
Assume now for n = k, that
Wyt exp( - Ay
f(yk) = (k=177 ¢ Y20 (?.3.4u8)

That is, f(yk) is a ssumed (under the induction hypothesis)

k
death dengity function for v = [ t;. Equations (2.3.4.7)
c i=1

and (2.3.4.8) are special cases for the gamma density function

[

whose general form is

. 8
ATeY™d exp( - At)
f(t) = £ 20 (2.3.4.9)
: r'(y)
.where ;
A >0, and Yy > 0 are the scale and shape parameters, .
. . Y
respectively.
" X
Now .
+1 k-1 ' ‘
AR axpl- vyt )] ‘
‘Letting t = Yi + tk+f’ we observe that 3 .
o O S L~ CYY ,
£ty qrt) = TR=I7T 108t 4 8, €20 (2.3.4.11)

)

Integrating out ¢t we finally have
. k+1' /‘ '

t %
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Lol

- T
. E(t) = Te ,t>0 (2.3.4.12)

o \

Thus we have shown that if t = tl + t2 + e, t+ tn' where each |

#

time t., has an expopential death density function A exp(~- xti)
jand the times tl,tz,.,.,tn are mutually independg¢nt, the death

\ -
density function of t 1is given by

D f(t) =

Kl -

, £ 20 (2.3.4.13)

\ which is also a special case of the gamma density function defin-

.ed by Equation (2.3.4. 9)

For the special case when Yy = n, an integer, it.is
easy to show by successive iA%egration by ‘parts that §S(t) s the
. N
gamma survival distribution, is-given by “
, i
\\ o
- : s = I —l$l exp( - M), €20 (2.3.4.14)

V=0

!
Therefore? in this special case the hazarq rate is given by

/

. n.n-1 L, .
ey = EEL L AL o) (2.3.4.15)
I () Ve
v.

-

which_is an increasing hazard rate. .

14

- _An application of this hazard rate,‘Equation (2.3.4415)°
to a real-life situation can be seen as follows - Supépae a

researcher 1s studying a group of patients suﬁferinéxfrcm a
A N N s .




r ¢ 7 o

‘ v . . L. a; ’ ﬂ)‘
« v o_ . ' »
,5- Jkidney disease in which the failure rate of each kidney is
7 cg . f)

constant a.nd equals A ‘For a patient to die from the [

-

disease, both kidneys must fail.}\The hazard rate of these
. patients with this digease is found by substituting nw-\2 ‘in

Equation (2. 3 4.15). Thus K ‘J.
: K .o,
-’ 2 * . ..
. . A t I‘ EN
N A(t) = ¢ oo r
t . ;
LY ’ ( . - ) "V " 2

which is easily seen to be an increasigg function of time for

N
(G .

! N A.> 0. + ) ' ' f \’; :

, r\\ < T ' ""k‘vl ) ." .

>

Harter ,and hoore (1965), wux et al (1962), have both ’

&> coyidered methods of estimating the parameters of the gamma
% I

|
“'i . . density function f complete and censored samples. “Actually
) for t contin

the gamma MMzard function is o

. . ‘ * y,\ .
> s : A(E) = g1t exp( = At)

t
. > ! .
”J«a_"m'{ R fm x'"1 of< -, xx)df ' B

iv
o
)

A

2 3.4.4 Theﬁgeneralized Pareto distribution - .

\ ol . . N s . . \
i ' - ] » . ) Y \ « . ' \-v
} , . .

T/ Kn?therAdistr;butiohiwhichhas recently been'considerL
E 7
a5

‘e - ed for progressively’ censoq d survival dala is theegeneralized ‘

[
;g L ! #hsParetoudistribution -Thfs three~par£meter model discussed by
|

bavis and Feldstein (1979} is general enough 80 as to include ;

increasfngT‘aecreasing, and constant fai?pse rate distribu—

=

: . )
S , tions. They indicated that the constant hazard rate, giving ' .

' . . . R ' B
M " ' . . A, '/ 5 \ -
3 . ‘ . oy .
. v 0 N S



g . .
assumption when modelling chronic disease populations. Also, |
~

when the origin correspondé Yo an event which may dramaticalli}
e

influence surviwval, such as surgery, the objectién to constant

A / . v4
~—- / ‘;;,,w. .
rise to the exponential distribution may not be a realistic \ %

hazard rate may be especially strong. -
. . [ .
| - In situations where constant hazard is not a reasonable
e ’

" assumption, monotdne hazard usually is. The Weibull and most
other parxametric families'used to:model swrvival data have
v \Q . N
* monotone hazard rates. Another family of monotone hazard rates

considered by Davis and Feldstein is given by
<4 .
\

. ’ )\(t)\=e+-(ﬁ-ﬂ- - 0 oo (2.3.4.16)

~ . . /

. 1 ; , . L
with a survivorship function _ \{ L. \
FEEN - " l (
‘ (S(t) = (L+e/er"Y e7OF (2.3.4.17)
2 ' ' i |
7 which 'theyl fo/u&i\to be the suryivorship function for the Pareto
Type IXI, {P3(e,y,f¢) distribution. The restriction on the
£ A L. . ) , i . .
parameters are M - .
C L - , ' ¥ : ‘/‘"' ¢
o (030, $>0, v> =84) - © (2.4.4.18)
A oy t

3

[} , o -

It is obvious fro:jgaations (2.3.4.16)* and (2.31.4.1hB) that the

valﬁe of Yy determines whether the hazard rate is' increasimg,
y§0, constantyy=0 or dqcreasing,y>0. In all cases the hazard

rate bggins at 0 + y/¢ " and tends monotonically to 6. Examin-

. 'Lng Equation (2 3.4. 18) we s€e that there are only two log:.cal -

A
‘% \ ) ’ 3
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boundary families, (i) 6 = 0 &and (ii) y = - 6¢. When 6 = O,

‘the P3 distribution reduces to the Lomax or Pareto Type II,

Pzw'Y)J distribution which has its hazard rate and survivor-

'y

ship function respectively as

A(t) = v/ (t+9) ) (2.3.4.19)

and
’ B t -V ’ .
S(e) = (1 +¢ ‘ (2.3.4.20)

. K,
The case of y = — 8¢ yields hazard rate and survivorship®.
functipn respectively as

02 ‘
i A(t) = W - N §2.304-21)

- and ! ] S ' N

’ . ¢

(2.3.4%22)

o

S(t) = (1 + %)“ e 9t

The P, family has, the f’ollowing closure prpperty Whlch \

is s:hnllar to that of we‘:rbull random variabl;/:wfﬁ:h a common
* . Co

shape parameter. . 'ﬁ‘ L f

Theorem : o . ' . . '
If an item n fail from any of 'k t"independent causes,

ith

™"

cause being' P (9.,7.,¢), and if
‘
failure, results frqg the first occurrence of any orie .of the ,

the hazard rate for the

’

causes then t:une to failure is distr;.buted as P. (zei,zy ,¢)
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® f
s The theorem follows because under independence the hazard
\ rate associated W%Me to fa:.lure ig the sum of the
Q\azard rates of the % possible causes. Davis and Feldstein -
(\1\979) have a/lt with the derivation, characterizaﬂon and
appiicatiozi maximum llkelihoqd‘methods to the Ps 4fami\ly

in tg case of progressively censored data when ¢ is assumed
b

A\
known.
) N /

2.3.4.5 Piecewise surwvival model ~

There are other more complex types of dist:ibut]‘.ons .
. o, ) e
that can be tonsidered. For example, we could have a J-—/s_haped
- )

latively constant failure rate. This corres—

hazard rate’ isegonstant except for jump changes. That is,

il ° ~, . ( \
v r ‘ d
Ay O<t<t, ,
A t., <t<t ' '
oMy =4 22 T2 ' (2.3.4.23)
; : 4
. 7 . v .
N ] Mkl k22Ea o
’ ) L lk , . 't>tk*1 o
y :
“ o
where ‘ N
~ , 4’ . L - ’ﬂ’, p
. = \,
& \ / @ 7
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y
tyity, ..oty i) are known points of chan§e of the

parameter. =

" There is an application of Equation - (2.3.4.23) to life tablés,
namely, the hazard rate (of people is assumed to be constant in
each time interval defined in&Ehe table. Howé‘\’fer,, the overall
death rate is not constant in 1ife tables in general. Expres{e'-

ions for S{(t) and f£(t), are obtained as follows from A(t).y:

f -
»
i Y4

. ‘ L
' exp(=A,t) ' 7 ' 0st<ty
- » \ %
. S(t) = exp[-Altl- 2(t2\)] . o byst<t, .
Q . o= ’ - - - L d - i
b expl=A tymh, (Eymtg ) -ee = (E-t )] tj.itk_l
< - . , *
- | » - (293.4.24)

F A -t 2 ' 0<t<t
Sow ety

£(8) = | Ajexp[X t;-2, (t~t,)] | £yct<t,
\ L]
N ' |
- bl - - - _ _‘ - . i
B Agexpl=h by =A (ty=t ) =e o ooh (Bt ) J02E,
A T (2.3.4.25)

';rhis death density is referred to as.the piefcewise expgpential

death density function. ' . ‘ . . 3
' A

\ Plotted data sometimes indicate that it is not possible

to fit a single distribution function of a simple known mathe-

-
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matical form over the whole range of data. For example,

i
cancer data often indicate rather high mortality rates in the

first few years of diagnosis, but the patients who survive this
critical period seem to experience subsequent mortality similar
to that in the general populai:ion of the same age. Let
0<x1~<x2 < vew <'xk<ou be k fixed points at which ghanges of
survival function might redsonably be expected. These points
are often suggested ‘by graphical displays, even if no addition-
al information on the disease process is available. We denote
the survival function in the successive intervals by S o (t),
S1(6), ..., Sy(t). Generally, S,(tl_asd S (t), (ifj)can even
beloni to dif ferent families; in practice, they are usually

. v .
different members of- the same family. ‘For convenience, let

b

s, (t) o
- - i .
po(tlxi) = W' for Xif_t<xi+l,l o,l,o.-'k’

r ' \
X\inote the conditional probability t—x Px of sur}r?iving until time .
‘ i%i .

(aiée)t, given alive at time x (We denote xo=Q, and

il

S‘o-(O)ﬂl and x )

=00 .
k+17°) | N
! : e
. . W
, . ) , 1
In particular, we have '

"
N
[

;
/ gy

/B (%, ]0) = S_(x;) and p,| Ix,) 2 51 ) for i=1,2,.. %=1
, 9,x1| ) ol%x1) amd  p.ix, 4 0% W or i=1,2,..%

¢ . . N J

The unconditional probability of surviving until time t, where
X4 t<ti +1 is
g ) ¢
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o

po(xIIO) 'pl(lexl)»‘"pi—l(xilxi—l)pi(tlxi) = |
’ = 5 (x,) E—éfi; el )
’ o1 1 l ‘Sz(x Si(xi)

T (2.3.4.26)
2

¢

>rherefm:e, the piecewise survival function §S(t) over k

successive periods is

( ° "
8 (t) for 0<t<x

S A ‘ -2
59,("1) W fof: xlit'tﬁz’
. 5,%x,) S, (t) »
- 1%2’ "2 @
S(Ct) ( 8§,(x,) "F ) 5, TK,) for x,<t<x, (2.3.4.27)‘
’ S;(x;) 8 (xg) S (t)

S (Xl) S (x]_j S (Xj dee W ?Or kit

L
v \‘

The corresponding death‘\density function i‘s ’ ¥
fo(t) ' for 0__<_t<t1
f (t) ‘

S (ch) —-—(-—T a ' for xl_gt<x2

s (x,) £ (t) ' ;
f(t) =« 84 (x,), » for x <t<x
1 §i(x17'sz(x2) : 2=;"3

: ©ON '
* S;(x,) 8, (x ) £, (t)

S (Xl) —lr‘]'."—'r—y' ere -?—k')- for xk_<_t

.

. e
\// ' ’
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When the parametric form of Si(t) is specified, simple
graphical methods discussed in Section 2.4 can be used to

(3 , 3
estimate parameters of each piece.

-

?

2.4 METHODS OF FITTING PARAMETRIC
DISTRIBUTIONS

We have so far assumed that we know the parametric form

in which the survival data follow; but suppose we don't know as

i

<
often occurs in practice._ There are two broad groups of tethods
lllll u

for fitting distributions - graphical and analytical.

/

Among the analytical methods are the minimum Chi-square

method and the least squares method which are regarded as mathe-

matically sound in"its application. However, their élegancé
¢ -

depends on the pésumptions on which they are based. Many computer

programs are available for fairly general use of these methods.

Most graphical_methods rel& on plottiqg some functions
of the hazard rate function, or‘cumulative hazard fuﬂétion
against some functions-of t. Tﬁe functions are usualiy so
chosen ﬁhat if the parametric form of the survival function is
rgasonably appropria e, an approximately straight-line plot will
be obtained. The plotting ca?rbe féciiztated by the use.of

hazard papers or probability papers. The relationship between
, ) e

the cumulative probability function F(t) ‘and the cumulative

hazard A(t) for p distribution can be written as “
F(t) 7/1 - exp(=f1{%)) (2.4.1)
I (/‘
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et A A . o pgrr

normal, axtreme value, and Weibull.

g L

This basic relationship can be seen on all hazard papers.
Hazard plotting papers have been developed for five commonly
used theoretical distributjons: the exponential, normal, 1dg-
Nelson (1972) has discuss-
ed the parametric form of these distributions, and their hazard
plotting paper. Especially useful in survival analysis are
cumulative hazard papers on which [t,A(t)] can be entered

directly to give a straight line plot. We discuss this method

for the case of the exponential distribuéion.
As pointed out earlier the hazard rate f,requently\presents
. ] AP

13

the best means of identificatidn. In the case of the exponential

distribution, this is a constant. However, the effect of individ-
val data values sometimes Fakes the plotted hazard rate so irregu-
lar that it is difficult to identify lt One technique for over-
coming this problem is to look at the cumulation of the hazard
rat®€ as @i{ren by Neﬂ.éoﬁ {1972), Thiis is directly analogous to

the use of normal probability paper (see Dixon and Massey (1967) )

so scaled that the cumulative normal cusye F(x)-~4is a straight

P &

line if the data are normally dist,ributed‘. In the case of the

exponential dis’?:ribution, .the cunulative hazard rate is simply .
-~ ' . « 1 ~ \]
. . L . .
Alt) = [ddx =2t >0
o

‘(2.4.2) "\Q\

N -
» &

L . 4
a linear function passing through zero. Thus the ?ponential
- :

haz,gxy paper is merel¥ reéular graph paper with values of t

on the vei:tica?axis"and A(t) on the )h‘o)rizontal axis. We
7 C

/ ' ? B

- B . *
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. \ Ul) Order the n observations from smallest to 1argest;

failure) are plotted on the horizontal axis. The general pro-

/ where k is its reverse rank. The hazard value is

83
I
have to resolve the problem as to hoy to choose the plotting

position for A(t). Since A(t) 1is the theoretical cumulative

hazard function, it must be estimated in applications. Suppose

i : c ¢
the times to fallurg are ordered Ey Sty s 2 iy It
cah be shown that
1 l 1
Thus the surrogate plotting position‘for A(t .)) , which is \

unknown, is taken to be E(A'(t(i))) which is known. We should
note that when the data are censored, the plotting posn:l.on,
E[A(t(i))] may not be exact. Nelson points out, however,
that the procedure is still satisfactory. The values t(i)
are plotted on the vertical axis and the values E[A(t(i) )]

3

(which is the sum of thQ\Eeverse ranks at the- ig—l- order

¢
cedure for displaying the déa are as follows:
/o - 4

=

regardless of whether they are ti or Ti (time to death
. or censéred time, respectively) marking the Ti times

with check marks. k

(2) Calculate the hazard value for each time as 100/k,

the observed conditional probabiiity of survival, .

Cunulate the hazardsvalues downward. The \cumulat.ivs‘.

- A
7
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o
can be larger than 100%.

(3) Mark the vertical scale from 0 to the longest length
of survival and the horizontal scale from 0 to the ,
largest value of the cumulative hazard values.

- :
(4) Plot each survival time vertically against its corres-

ponding cumulative hazard value.
) “, ¥
/
(5) By eye, fit a straight line through 0 and the points- .

in the centre of the distributiom.

]
If the points tend not to cluster around this stralght

line (partlcularly the central 80%), it is not reasonable to

- i

assume an exponentlal dlstrlbutlon. When the assumption of :

exponentlallty is not satisfied, it is pOSSlble &t times to i
P P
transform the data, permLttlng an exponentlal dlstrlbutlon to
€. '
be fitted to the transformed data. Whenua transformation is

not possxble another distribution should be considered. If

the points flt the straiqht llne, y can H® estinated by

reading t from the vertical axis corresponding to 100%.

Occasionally individual times to death are not avail-
able to the researcher for analysis. Instead,_ only\ the
number of deaths in each of a set of mutually exclusive time
intervals can be obtained. The spt of time intervals taken

: . ~

together covers the entire non-negative time axis. \ As an (/

example, %oﬂsider a group of ‘118 arthritic\gatients, eﬁch”of
‘ Fy




N

&

whom receives an analgesic to relieve his discomfort. Table

*

2.3 shows the number of patients receiving reiief (in minutes)
for 16 mutually exclusive time intervals. These data are a
fictiﬁious adaptation of data appeering in Table 3 of Scheuer
(1968) . We can fit an exponential death density function to

this grouped data.

1

Suppose survival data on- individuals occur as in

(
Table 2.3. More generally, we supppse the non—negat%xe time

4

axis to be, divided into the mutua{ly exclusive and exhaustive

t I.:7.
in ervgls 3 TJ~1

Tk= mo ' l
The data a;e the number of deaths observed in each inter-
P,
val: fJ deaths eccuring in interval Ij,jﬂl 12,000 ,k, fj = M,
el
We wisk to test the hypothesis that/%hese data have an exponen-
tlaijaeath density functlon '

z

*

L

£(t:r) = Aexp(rikT : t>0, A>0
. ,
o - - <N
to~estimate A.

When the hypothesis oﬁ exponentiality is true, the expected

-

number of deaths in Ij is npj(k), where pjfl) is obtained

7/

by . = :
"rj - w
R p.(A) = [ Aexp( At)dt = exp( AT ) - exp(- AT ) (2. 4 3)
I e, ,
i-1 - - ¢
- p ‘?-

St <Ty, 3=1f2,...k with T = 0 and

.
'3
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TABLE 2.3 ES;IEF TIMES OF ARTHRITIC PATIENTS
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T e )

( INTERVAL (MINUTES) FREQUENCY
4 v
0<t<20 . 19
20<t<40 19
40<t<60 . 21 ¥
60<t<80 10
_80<t%100 X 13 4
100<t<120 . 6
146_5_t<160 B 7
i60<t<180 5
180<£<200 , . N
2005;<220 R 2 -
1 220<t<240 3
240<t<260 ! !
. 260<t<280 2 v %
280<t<300 ) 1
300<t<320 ° 1
320<t<340 2
£>340 1 - %T
*  roTAL 118
.
o 4 .
_&/ —
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Clearly 19 pjm =1, Thus to test Equation (2.4.3) for
=0 ’

goodness of fit to the data we employ the xz stat;ilticx

: .
2. K gfympy ()

X' = I
j=l ‘nPj CA)

(2.4.4)

which is asyﬁptotical_ly distributed as a in variable yith
k=1 degrees of freedod when the hypothesis of exponentiality
»is true. If ) were known, the tit described by Eqmt@on '

(2.4.4) would be appropriate. Under. normal circumstances, A

/is ynknown gnd must be estimated from the data. Following

. Scheﬁer‘ s development, we let x2 be defined as in Equation

g \
(2.4.4)" and we try to find that value of A, A", (say) which

. m.nimizes x with respect to the data. This procedure we a

know as the x 2 pinimm procedure, pnd A" is the minimum
5 .

 x° estimator of X. \ Formerly, then o o
| _ 2 7
%3 L l; [Z(fj\n:;‘j(k)) . (fj n?j(kk) ] Bpjm | ,
. j=1 Pj( b »npj!(x) i a
vhere T AL
pj*m is given by Equation (2,4.3)2 anda -
#" p'()‘) . - ) - | l,
__J_,.“ = Tj exp(-ATj) - Tj_lexp(-l'rj_l) i=1,2, 0.0,k
: ¢
- . . <
singe - w exp( AT ) = T exp(-l’.l‘k) 1= 0.
. @

.
0 ) - .
. - »
* : ! -0 ¢
" - ' . ’ L‘-‘N
% ' - )
W A'
. ) .
u

A
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Thus A', the minimum chi-square estimator of' ‘A, is ..

the solution to \
\ ‘\ A .

s | —_— . o« .
. \ 2 .
k  (f.-np.(A*)) " (f.-np,(A')) . 9p,(A") | -
t [ b ] + s b ] & . ..
. A j=1 Py AT TP O B ) ! .
: =0 .. (2.4.5)
.‘ . * ' " . “.

which minimizes Equation (2.4.4). If we substitute. A" for
A . in Equation (2.4.4), it can be shown tpat xz will have

-~

an asymptotic X distribution with k-2' degrees Qf freedom,

3

when the null hypothesis qf exponen?iality is true.

-

. :
To £ind A' from Eghation (2.4.5), we employ the Newton-~
‘Raphson's method. Scheuer describes a comput;r ‘progrgm" for the

solution of Equation (2.4.5), in terms of A'. The appropriate

starting value ~ AL is lx ¢
|
k-1 -1
L f£,(T. ,+T,
‘ X - 14=1 j( j-1 J_) Ve -
¥ ) . ' (

.. This value i8 chosen because it is.the analbg to the maximum
likelihood estimator A for the grouped data situation. The
: © (T *TS) o \ o
values —-3—2-1——1— represent the midpoints of all the i%&er:valsﬂ

*“

be~

except the last interval, for which we use the iower T, ,

cause the upper limit of the last interval is infinite.
. \‘ . R )
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2.5 NON-PARAMETRIC ESTIMATION OF
SURVIVAL CURVE . , 3

S r

In this section, we assyme that the theoretical form of

the probability density function of survival time is own;
but a sample of survival times is available and an estimate of
the survivorship function is needed. Esseﬁtially; our task is
to present methodé appropriate for (i) small sample date, with

each individual time of death recorded exactly, (ii) large

sample data, with times of death*dsually grouped into fixed inter-

vals. “In this large sample data, we discuss problems associat-
ed with estimaéion of the survivorship function from a sample
that represents the mortality experience of a cohort. The

term "cohort" is used here in a rather special way.m We

define it‘as a sufficiently homogeneous group of individuals

for which a certain initial event has already occurred. Further-
more, this group is ﬁnder observation until the last number of
the group fails = so we have complete records of each liﬁe subse-
quent to the initial Qﬁent. We refer to such data as complete
survival data. ‘Thus we shall consider data which may be from a
small or large and may or m;} not contaih censored obse;vations.

A product-limit estimate of the survivor function derived by "

Kaplan and Meier (1958) is given when the sample size is small.

estimate is alsofﬁéggp for large samples.

whetﬁer censored data are fofent; and the life table procedure
. -4 .

- . ¢_~
reduces to the product-limit estimate when the intervals are

»
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made arbitrary small and include only one distinct time to

failure. The usual life téble estimate ha{ been given by many
| b

others, including Berkson and Gage (1950) and'Geha?T (1969) .
" J ' ™

2.5.1 Estimation of ~Surv1.v'orsh1.p Function in
Small Samples - The Product-Limit Approach

In the Kaplan and Meier (1958) éppfoach,,ordered obser-
vations are used instead of grouped data. This method has, the “
- advantage of yielding results that afe not dependent on the .
choice of the time intervals.’ It has been used with small -
'(_.}amples, where it is difficult to‘ decide on an appropriate
garaxﬂétric distri_butior}. This technique can be usgd when the

4
data are progressively censored.

Kaplan and Meier (1958) introduce ti'xe product-limit
E(t) or ;(t) of P(t) (the probability an individual survives
beyond time t) in a life table. To define the product-limit
estimate, P(t), let t (i=1,2,...,n) be a t:.me to death or

censoring. Relabel the n times in order of increasing magni-
~ .

tude and denote them by: N

t(l)f_t" < ... <t

(2) - — "(n)

-

If t(i) is a time to censoring, then write it as t'(i); if a

time to death, aomit the prime. Then, as described by Kaplan

° ' ~
and Meier, an estimate of the survivorship function S(t) is

defined bx




91

& = n-1) (n=2 (n=-r) :
S(t) = Témr.m,-..n =} {(2.5.1.1)

or

s = (n=r)
Ste) = 1 m-gely

where r runs through the positive integers for which t(r) < tﬁ&

and t(r) is a time to death. By convention, deaths are immediate-

ly before t, and losses or censoring are immediately after t.
S(t) equals one until the first death occurs and decreases in
steps at the times to death. 1If no individuals are censored, it

reduces to the ofdinary binomial estimate

=1 -1 . (2.5.1.2)

! s .

with the rule that the function is calculated at dach distinct

S(t

time to death, and when two or more observations are tied at the

same time\the largest (i), value is used.

Example 1: ' Maintenance of remissions of acute leukemia.
1 . . [}

Freireigh, Gehan_ et &l (1963) conducted a ‘clinical trial
to compare 6-mercaptopurine (6-MP) to a placebo in'the mainten-
ance of remiésions in patients with acute leukemia. A total of
92 patients were entered in the stpdy and received prednisone
therapy; 55 patients aghieved complete and 7 achieved gartial
remission of thei¥ disease. On reaching remission, eagh
patient was allocated randomly to receive C-MP or placébo as

%

v . . i ]

L3
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maintenance treatment. .The patients were paired at each insti-

“~

tution by status of complete remission; the trial was actually

Fd

conducted gequentialiy,'bug the data are given as from a fixed .

L}

sample size trial. One year after the start of study, the

following lengths of remission were recorded .(in weeks).

i , .

(1) Placebo (21) .1,1,2,2,3,4,4,5,5,8,8,8,8,11,11,12,12,
15,17,22,23

(2) 6-MP (21) 6,6,6,7,ld,13,16,22,23,6+,9+,10+,ll+, -

17+,19+,20+,25+,32+,32+,34+,35+

A plus value indicates a censored observation; there were “12
such observations with 6~MP and none with placebo. The main

interest in the study was to characterize the length of remiss-

ion times between 6-MP and placebo.

-

The estimates of survivorship function for the placebo

.patients were calculated using Equation (2.5.1.1) as follows: .
‘ %

t T s
1,1 | .0.905 ' . R
2,2 0.810
3 - 0.762 L
4,4 ’ 0.667 ., ‘
5,5 . 0.571
8,8,8,8 . ’ . 0.381
11,11 , ‘ 0.286
12,12 - ' 0.190
/
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3

_ty) (e, j=i-1) by

, .93
t s(t)
" 15 ' 0.143
17 “0.095
22 . 0.048 -
23 0.000
The data are’plotted in Figure 2.5 and the estimated median
remission time (50th percentile) is 8 weeks. Since there are
no censored observations, the estimates of the survivorship
function are binomial estimates.* For example:
§(8)'- (number surviving longer than 8 weeks) _ _8 ¢
21l
For the patients receiving 6-MP, the labels for the
’ |
ordered survival ;imgs and times to censoring are shown in
Table 2.4. As an example of the calculations, consider
$(10) = 34.3%.15-15-1¢ = 0.753 ’
The estimate is obtained by successive multiplication of terms
so that |
$(10) = 5(7).7%
In general, the estimate S(t(i))~can be calcula om ﬁ

§(t(j)) when t(j) . is the time to death immediately \before

13
3

a e (n-i)
S(t(i)) S(t(j))'TE:IrIT . (2.5.%.3)
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TABLE 2.4 LABELS FOR ORDERED SURVIVAL TIMES AND .
@ TIMES TO CENSORING - \
‘/\ -
LABELS — TIMES - ;(t)
tfw 6 -
LGN b
tap 6 © 0.857 N
tay - e o B
1::(5) o . 7 | 0:809 ‘
6 - 9+ B
€l 10 T 0.753
8 10+ '. “
t'(gs/\ o S | ’
€ag) - 13 . 0,690
£ 1) | 16 - e ’
gy ™ o -
t'(;fs) - 17
g S 20 ‘ s
fas) ouz . 0.538 “
tie) S 23 o "0.44‘a .
) L Es ”
tas 32
ti19) ‘ | . 32+
ti20) o N 7 £
. . ' S ‘ i % ¥
.t(21‘) o _ 35+ | e -
) f}‘ ; P v *g K
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The values of the survivorship function for the G;MP. patients_\ )

:élre plotte‘d:in' Fig.2.5. The median length of remission is 23
"weeks‘. The times b‘e'yox'u'i 23 weeks are all censored' so that g(t)

‘~ s ‘un‘defined b_eyond that time. Ui)per and ioﬁr limits can be

. calculéﬁ:ed for g(t) by mé.king different assumpt.iox}s about
-the censored oﬁbserv'ait‘ions beyond 23 weeks. The lower li;;\it

: for g(t) )- is obtained by assuming that all individuals re=- ’

. ‘lapsed at the %time of censor::ing, the upper limft bf assuming
that all individuals remain in remission at l;ast up to 35
weeks.. 'After 35 weeks there is no information about the sur-

vivorship function.

. An appfoximate estimate of the variance of P(t) is

™ ' var[P(t)] & [B(t)1%(z

1 l )
p \n-r)(n-r 1)

where

r runs through positive integers for which t(r)it,and

t(r) corrésponds to’ a death.

In the example ‘ |
.Gar[;(lo)q =(°’755’2‘Yiﬁ%T!IT*TIET%IGf* 11 :
'(Iz;)—]i'rgy) = 0.009284
~~



97

2.5.2 Estimation of Survivorship Function in
Large Samples ~ The Life Table Method

’

The life table is one of the basic tools in ;hé descrip~-.
tion of the mortality experience of a pgpulation; it has been
used extensively by biostatisticians and actuaries to portray
the pattern of surVivél‘in populations. By survival we
usually signify time to death; for egémple, we cou}a be des-
cribing the lengﬁh of stay in'a mental hospital, wherein
"birth"is entry into the hogpital and "death" is the time

at which he relapses. =

rhere'are three types of life tablle in common use - the
populatién life tablé, the clinical life table and the cohort
iife t;blé. We sﬁall,digcus; only th ¢linical life table
because it is useful in deciding what hazard rate to assume.
'C}iﬂical iifq tables refiect the thinking of population life
tgﬁles but use.data-from clin%cal studies of patients instead
of qensuswvifal statistics data. To understand the procedure, -
let us examine a small set of data from a given clihic. 1In
a study of a disease condition such as lun; cancer, it is
seldom possible to admit all the patients to the study sampié
at the same time because of the'paucity of patients. We have.
. tO accept thé patients as they enter for treatment. We then
follow each patient to death. However, it is not uncommon to

find a portion of the patients lost to follow-up because the -

researcher can neither find the patient nor.determine ‘that he




Y

- follow~up. - Patient 3 was

" the study ended. . v

has died.

Figure 2.6 illustrates some'typicél.ca§e$l For example,
patient 1 entered Shortly after the start of the'study and
soon died. Patient 2 ent?ggd later and died after a long
period. Patient 4 entered iater but died during the study,

whereas patient 5 entered later and was withdrawn alive because
- )

-
In working with these data, we assume that neither the
tréatment nor the characteristics of the patiehts change

during the period of study; hence the starting point for each

‘'patient (see the illustration‘in Figure 2.7 for the same

patients ghown in Figure 2.6) can be moved to the beginning

of the study. .

T

-
Thus, in clinical trials when the length of time until

death of some other event,”such as the absence of clinical

‘symptoms (remission), can be long, and when the disease is

¥4
so rare that we enter patients™one at a time over a, long

period, we obtain progressively censored famples.
. L 4

The éimples£ technique for analyzing these data is the
T-year survival rate discussed in Berkson and Gage§71950).
Only patients who entered-tﬁg study early ki,e., so that they
have a known exposﬁfe to the risk of dying in T years) are

used. Of this reduced number of patienté, the T-year survival

——

lost to follow-up during-the study /

RN ol e s
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/'points determine the length of time a paf{ient spends 1n t%e -

B ———

. the investigator to reach conclygions with a smaller sample size

stndy - the startLpg'poxnt and the time of death.. The time of

’ ® ( 101

rate is the*ﬁroportioﬁ‘surviving T years. For example, suppose
we wish to compute the 5-year survival rate for the patients in

Figure 2. 6. We would ;ehWe

e

Patient 2 L _ e,
, Patient 1 + Patient 2 =3 = S0%
" . - A ’ -

5-year survival rate =

\Patient 1 and patieﬁt.z can be used because they\entered the studyw

early enough to be exposed to the risk of dying for more than

5 years ébd they were not lost before 5 years. Patients 3, 4 )
L ) . -,
and 5 could Yot be used in calgulating the rate, since they were

not exposed to risk of dying for 5 years. (Patient 3/was lost

-

before 5 yearé arid patients 4 and 5 entered too late.) Thus, all

the information available cannot be used, and larger sample sizes

Q

*aré needed to ceypare a new treatment to previous results or for .
- 4

thaKSLmultaneoﬁs comparison of two treatments. ' ‘ 1

{- ' [

<

' Gehan (1967) showed that in conducting-a clinical triel

to compare the effects of tyo treatments, appreciably fewer

patients would be needed if an e§gonential dlstrlbution ‘Weze used
~ . o

instead of the Tryear ‘survival rate. Since obtaining a large . 3

semple is difficult in many medical studies, techniques that allow

T

(i.e., parametric techniques) have already been discussed. Yo

LV I

For the patient who is neither lost nor w1thdrawn, two

. . \
- ~ M a4 ¢
o

~

2T ' ®
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r P

death is obvious, butothe choice of a proper starting\ ppint can
be quiée difficult. Often comparisons between studies are
complicated by different choices of starting points. In a popu-
latibn life table the starting point is birth at year 0,
Analogously, to compute a clinical life table, we.peed—Eb define

the starting point sfrom which we calculate survival. For

example, cQgsider using onset of the disease as a starting point. -

For some giséases where the onset is‘cle§r-cut and receﬁﬁg\such
as skiing'accident resulting 'in a broken leg, this may be’
adequate. But, for conditions in which the omnset is inéidiods,
it is difficult to establish an equivalent point of onset for

patients. ©Other possibilities are first visit to a physician,

i
diagnosis, admisgsion to hospital, start of treatment '(e.g., drugs

" or surgery), completion of treatment (e.g.,surgery), and dis-

charge £rom hospital-

In addition to deciding on a starting point, the research-
er also needs to determine the freqqgncy and manner of follow-up.
>Each.patient could be followed at regular intervals - say one
year from his date of entry to the study. Another meth;d fg to
‘attempt to trace all the subjects at a particula; time, such as

January of each year, regardless of when during ghe year the

patient entered. the study. In the latter case information often

is discprded on the sﬁbject during the last periog,’Elveback

(1958)~hiscusses the two methods of follow-up and concludes that

.the loss due to the discarded information is slight. In either

s
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./‘ -
case, we know at the end of each period whether a subject has

lived through the period, hae died, or has been lost to follow-
&

dkgp either by the study closing or because of fajlure to trace

i

the subject. One of the advantages of life table analysis is
that data on subjects lost to follow-up can be used up to the

period in which they are lost.

To draw up a cliﬂical life table, it is assumed that
;He nﬁmber.of)observations is fairly large (i.e., 50 or more) so
thaf it is sensible to group the survival times into intervals.
The individuals whose survival experience is studied could be
obtained from: a cohort study (i.e., a group of individuals
studied §r0£ some zero point, for example the time of start of L
treat@eﬁt to death); a series af cohorts analyzed at a particu~
lar détgh(for‘exipple} the ‘cohorts could be' cases of a disease
diagnosed in 1965, 1966, ..., and tge time oﬁ 3nalysis coulé
be 1974); or a clinical trial in whiéh each patient is pbéérved

from the tile treatment is started to the end of the ,study.
»
In each case, the individual's survival time is measured from

his own zero point.

To calculate the estimates of survival function, the
i

survival times and times to censoring are grouped into intervals

in a life-table format, as given in Table 2.5. Definitions

and notations are as follows: o

f/ ]

L e
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1) Interval {[t; j,t;),i=l,...,8+1,t ., = + =}z’

Th.s column gives the g;Oupings into which the surviv-
al times and times to loss or withdrawal are distribqted. The
notation [ti_l,ti) represents the half-opefl time interval
ty_jst<t;,i=1,...,stl. The last interval extends theoretically

v to infinity. These intervals are assumed to be fixed; thus
the number of individuals dying in each interval is a random
variable which follows +he multinomial distribution.

2) Midpoint (t_ ):
STy
’

¢

t is the midpoint of the interval  [t, .,t.),i=l,...,8.
. ) m, i=-1"71

The midpoint is included for convenience in-plotting the hazard

function and probability density function. Both functions are
9 - o' - plotted aF»\th-g' . .
i ) 0 . ’ " e tn *T . -..> (' . ‘.(

/ ,‘ ‘ ¢ 5

3) Width (h;): . _ N o S

. . "
N th

h; = t; - t;, ;s is the width of the i— interval. The

width of each interval is needed for the calculation- of At),
h K . ! -~ X - A
the hazard function and the death density function  £(t). Since

the width of the last interval is infinite, no estimate of

-

either the hazard or death density function can be obtained for

this interval. - ) ' - ’ -




-
[OPR - o L -

. , : 105

‘Q) Number lost to follow-up (zi):

This is the total number of individuals who are lost to
observation for some reason and whose suryivai status thus
became unknown in the iEE interval. (i.e., total number of

iEE inter-

individuals who are lost to follow-up during the
val [ti_l,til). Individuals may be lost to 'qQbservation if
they move or fail to return for treétment, etc. Every attempt

should be made to trace these patients. .

5) Number withdrawn alive (wi): . C

v/

wi is the total number of individuals who are with-

drawn from the study alive during the iEE interval [ti-l’ti)'

These indi uals have not been lost, but since they started

-

.late in.the study, we have incomplete information on them.
4 « ¥y .'

. 0 ?
¢ ~

6) Number dying (di): ’ .

bl 1

di is the pumber of individuals who die in the i—
interval. The time to death for each individual is measured

from his own zero point. T

7) Number enterind the .5.1:--}1 interval (ni):

@
\

‘ni igs the total number of individuals who enter the !
interval [ti_l,ti),i=l,2,...,s+l. Thus the total sample size.

for the giudy is ni, the number of individuals who’entér the
b4 : v

’

4

-
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] \,
)
= 1 .
study at to. Clearly n, ni-l zl 1795 di.l That is, the |
number of individuals who remain on study at the beginning of

the iEB interval equals the number of individuals who were on
study at the beginning of the (i-l)EE interval minus the
number who were lost, wmthdrawn alive, or who died during the

(1.-—1)—B lnterval. ‘

8) Number exposed to risk (ni):

A

This number is defined as ni—§(2i+mi). It is the number

of individuals exposed to risk during the iEE -interval. If

there are no losses due to follow-up or withdrawal of patients,

then clearly n; = n, in the :I.-t'il-l 'interval. It is assumed

1. -

that times to loss or withdrawal are unlformly distrlbuted

Thus on the average individuals who are lost to follow-up or

who withdraw from the study are lost for half the total Lnter— '

val. ’ -

9) Conditional proportion dying (ql: .

-~

q.

J . . |
i = di/ni,i=l,...,s is the conditional proportion

dying in the iEE interval, Clearly, dg41 = 1.

10) Conditional proportion surviving (pi):

v

-~

P; = (l—qi) is the conditional proportion surviving

_ the i-EE interval, i=1,...,8! -

‘N

e
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11) Cumulative proportioﬂ surviving [Pi or S(ti)]r

. 1 ~
This is an, estimate of the survivorship function at time

ti; it is often referred to as the cumulative survival rate.
§ . -~ ”~
. The estimate is Pi =Pj.1 Pi-l” where (i=l,...,s8) and

’ Po = 1.00. This is the usual life table estimate. The result

is based on the fact that syrviving to the start of the iEE

-~

.

interval means surviv{ng to the start of the (i-l)EE interval

e Tweme ¥ T g

1l

and giéen sgrvival to the start of -the (i-l)EE 'interval,‘

£ e

surviving the (i—l)EE interval. Frggdently ‘Ei is compar-
+ ed with the cumulative proportion surviving in a populafion
i life table starting at the aﬁerage age of the patients i; the
il\//ﬁ‘\\ study to determine roughlx how sefiously the disease affects

i ¥ life expectancy.

' ' Table 2.5 summarizes the fdrego%ng information in clini-

Cos cal life tables.
AU T ' o N\
T \ From the definition of flt), the death density function,

.

the natural estimate is ‘ ‘ I

. - P, - P, P, q _
h f(tm ) = i h.' L+l = J:H i' i.=l,2’oo.’s (205‘2-1)
. i . i . c
Thus ,f(tm ) ié the estimated probability of dying in the isg )

b L « R N . 3
interval pér unit width; that s the definition of f£(t). The
hazard rate Akum ) 1is not directly obtained és (e, )/Pi

: - i “ . i
since P; is the probability of survival at t; not ¢t ,. We
. . - » i '

r

- N L8
¥
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. 3
. the mid-point of the iff interval. Clearly

' Other estimates of hazard function are given by Kimball (1960) and

109 .

A 4.
4

thus must fihd P(tm ), the probability of survival at tm ;
) . : i

€

. P... +P, P, (1+p. _
P(t. ) = 1*12 i _ ?lél EL) (2 5. 2 2
e O ' - : B LU
‘Thﬁs, ' ‘
: 'd
: 1 i Zq
At ) = = i (2.5.2.3)
_ m, ' T TRy y-d;721 g, (1+Pi’ .
Il N ‘ - . /
4 T ¢ 8

»

ThiS‘iS the so-called actuarial estimate of hazard %ﬁhction and Qé

'is described by Klmball (1960). In words, it is the nqmber of

deaths per unit time 1n the interval divided by the average number

of survivors at the mldp01nt of the interval. The average

number of individuals alive at th is approximated by (n -d, /2)
my

Watson and Leadbetter (1964).

Thé variances of the ggfimates of the survival functions

’
. in the LEE- interval are:

‘l& '/ ~ i"l\ & s
var[s(t)] & P2 1 —3- (2.5.2.4)
. ) ) j=1 nj“p3

- (®.q)% i-1 g P
Varff(t, )] & —yt— (5 —b 4+ —i (2.5.2.5).

i hiy ¢ j=1 ny,Py By Ay
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( . '
- 7 ~ ,
. Ew:mi):l Meg Iy .-
var[a(t )] & - (1 - [—=—=17) (2.5.2.6)
1 ni qi 5

——de
P

All the formulas are .large-sample approximations. Equation
(2.5.2¥A) was first given by Greenwood (1926 ), and Equations
(2.5.2.5) and (2.5.2.6) were derived by Gehan (1969). These

may be used to obtain approximate confidence limits for the

~

Vd

various survival functions. «

To exhibit computations for the clinical life table we
/Lse the clinical daﬁa gathered on %13 male and female patients

e

with malignant melanoma who were treated at the M.D. Anderson

4

Tumour Clinic between 1944 and 1960. These data, given by
MacDoff™a (1963), comprise Table 2.7. We note that the com%ht—
Zed failure rate for these patients is décreasin%;ﬁ\?hat is,

if an individual survives 3 years with the dise;se it appears -
he‘has an excellent chance. to survive 5 years or longer. These
913 patients include 256 males and 213 females who had meta-
stases when they were first seen, plus an additional 444 patients

in whom metastases had not occurred or could not be establish- ,

ed.
R




.{ ' \ »' ' 112

| CHAPTER IIT

SURVIVAL MODELS FOR MbLTICOMPONENT SYSTEM

. . ©

3.1 INTRODUCTION T g *

Q/ #

>
il -

We have so far presented methods for data analysis
when theré‘is a single, possibly- censored failure time on

each study subjept. Certain times there may be more than

‘o

one failure time on eachgsﬁudy suﬁject. Such multivariate
failure times correspond to repeated occurrences of events

of entirely different natures. Consider, for instance, the ’r

-

two-organ system such as the,kidneys or the lungs. Assume

i

that if one organ fails, the survividg.organ is subject to .
a different failure rate (usually higher); however, both’

A ~ L] . J
failure rates are assumed constant over time. Such a surviv-

al distribution could be used to estimate the survival of

individuals with lung or kidgsy disease. Persons who H%Ve

ud -

a kidney removed due to some illness commonly exhibit a

higher failure“rate for the remaining kidney. On the other

hand, if theirikidney is removed because of an accident, the'f

remaining kidney often does not show an igcfease in its ﬁail;
g : ure rate. The derived survival distribution will accoqq; for

. {
both situations. In all these we assume that there are no

.

survivors at the point the estimates are made. ' That is, we

assume uncensored observations. In ggneral, stupy subjects
1 ] o - .
may experience a variable number of failures each with its own

- e

¢ 3
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type or cause,

There are several basic multivariate parameter families
S~
. Y .
of distributions such as the multivariate gamma, Weibull,
¢
normal and exponential distributions and shock models that

give rise to them which have been much investigated in reli=-

»
-

ability theory. Marshall a Olkin'(l96ig have discussed a -

multivariate .exponential di tribution, (i.e., multivariate

distributions with exponenti marginals) as applied to life-

4

testing. Friday (1967) has also considered améqneral class

~of multivariate life distributions with some possible probalis-

tic bases for them. . &
v i . .'
Although there exists an infinite number of bivakiate
distributions with giveh marginals, very few shed any light
™ ~ .
on their applicability. Freund (1961) derived a bivariate
distribution starting with -exponential marginais. However,
the resulting distribution does not have exponential marginals.
Marshall and Olkin (1967) have also considered aﬁothe{\zivariate

k\ ] . ‘ '. , . , ) .
exponential distribution which has many interesting properties,

_ but unfortunatei}, it has a singular component. Moreover,

unlike in the univariate distribution, the conditional failure
rate in this case is not constant everywhere. Since the ex-

ponential distribution is absolutely continuous and has con-
i \ ™ ) ' . ' N
stant fa lﬁfﬁﬂiate everywhere in the univariate c¢ase, a natural

bivarifdte exponentlal distribution is also expected to be ab-

solute%y continuous with constant blvariate failure rh&e.
[y

)
>
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» Basu '(1971) .showed that no such bivariate (and therefore mnlt}-

t

variate) distriﬁuﬁién exists, except in the special case when

- the maigina;s are’ independently distributed.
»

&

o In the next section we discuss some aspects of bivariate -

a 3

exponential model and develop a survival distribution for two
organ systems such as the lungs or the kidneys\and in Section

~

3.3, we consider the estimation procedures.

3.2 BIVARIATE FAILURE MODEL ‘ A

“~ R
. s.;)i S L .
Consider a system WﬁFh two components. Let X and Y
1 be the lives of the twp componehts with failure ‘laws dqverned
. w ‘e
by the respective marginal density functions ) o .
. - . -
[ R s . I
= £(x) = M. expz,lx), £(y) = X, exp(-A,y) @ s
P
% ) . (3.2,1)
4 ’ & *

A11}\2 > 0, 0 <x, y <=

&

Let, F(x,x;; be an absolutely coﬁfinuous distribution function

y with ansity function f£(x,y) . governing the life of the
. ~ Nt . .
“ system as’a wholed This implies )
y .
o L (\Y) o~ o . - .
\ CP(X=Y¥) =0 ~ . (3.2.2)

ro
The physical interpretation of‘Equaﬁion (3.2.2) ‘is that tle
‘s model represents the life of the system under normal (preQéntive)»

maintenance policy so that the possibility of a catastrophe
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jsulting in simultanedus failure of both the coinponents are

removed and replaced by /identical units and, so far as the
» . A * P

t. ystem is concerned, f_a:;lure. can occur only in the intervals’
abetween successiv‘e inépectio'ns when the system is in operation.
T(hus after each replacement we may start with (for our pu.rpose)
essentially a new gystem’ " It should also be noted tha;:, in

a'ny inﬁerval, to “star.t,*with we may halre X > Y or X < Y depend-~
ing on which component was previously replaéed. The preceding
; conditic?ns are quite realistic afid have important possible
. applications in a situation where we are concerned_abo-ut hav-
ing a failure while the éystem i; carrying out sor\ne'important
mission, as for example, flight of a twin-engine plane, the
space flight in proigress,' etc. For deriving the actual model
we introduce\the concept of blvarlatq failure rate as given in

.

the following. ‘ E

Definition:. ' o
<

- Given an: absolutely continuous bivariate distribution
function F(x,y) with densxty funﬁlan £(x,y), the bivariate

failure rate at (x,y) is given by

e
k. ’ ) ’ " 4 -
v _ £(x;y) -
RSB o9 £57)
o (x, .
) TFFEY) -§(x,¢) = F=,37 (3.2.3)
[N
o - )
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ocbserve that in the case of independence we have (a5 it should
be)

-

e L(x)E(y) _ _£(x) fg%)
Mx,y) P({X>x) Yy ~F(x) ° 1l<F(y
A = A(x)A(Y) (3.2.4)
. 4
where ‘ ' - b

'

‘ A(x) and A(y) are the corresponding univariate failure

4

rates - ‘ ' .

Since we know that the failure rate of the univariate
‘exponential distribution is a constant, fo:‘a natural bivariate

exponential distribution A(x,y) is expected to be constant
for?all x and* y. Basu (1971) showed that except in the case
of inaepeﬂﬁigze ﬁhgre does not exist any absélutely continuous
bivariate exponential distéiggtion with constant failure rate
(and marginal exponential distributions.) )

I
Let F(x,y) be the required distribution function with

density function £(x,y). Denoting the bivariate survival

function P(X>x,Y>y) by S(x,y) we/want to £ind £(x,y) such
that '

>

T - R NS (3.2.5)

3
»
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L v F(x,®) =5(x,0) = exp(=};x) (3.2.6)
L-F(on) =800,y) = exp(-ay) . . (3.2.7)

F(e,®) =5(0,0) = 1 ' .- (3.2,8)

L

That is, we have to solve t‘e.second-orc}er partial differential
equation

Lo Sy (K] = A8 (x,¥) = 0 (3.3.9)

with the boundagy conditions (3.2.6), (3.2.7) and (3.2.8). To
show that'Equations (3.2.6) and‘B.‘z.'/‘) are necessary conditiomns, -

\
congider the survival function

@ . -
S(x,y) = I exp(-A;jx~w¥IP; (3.2.10)
J;:l L

where

Ajug = A, i=1,2,... "and I p; = L.

Here g’@x’,y) is a mixture of several survival functions corr’es-—

ponding h;c'o independent bivariate e:éponential distributions with
different scale pa\uameter.S- In the absence of Eqﬁati‘bns (3.2.6)
and (3.2.7)g S(x,y) in Equation ,,(3.2.10)). will be a solution for <
thehproblem of a linear second-order partial differential equation,

¢called the Goursat problem [see Garabedian (1964», p. 117].

4



118

Instead of solwving for S5(x,y) 1let us first firiﬁ out
the'Lapiace-Stieltjes transform ¢(a,t§ corresponding to
5 (x,¥) .

© o

$(s,t) = [ [ “exp(—s'x-ty)vS(x,y)dxdy (3.2.11)
- 0 O

Integrating by parts with respect to x first and using

Equation (3.2.7), we have

o0

b Ols,t) = %:{-&-%x?- + S ew(-sxty)s, (x,y)dydx} (3.2.12)

|}

L ° 4
ating by parts with respect to y next and using Equations

¢

(3.2.9) and (3.2.5) we get

»”
1

N .

1 1 -
$(s,t) = grEery T seaay f e d(et (-2.13)
Hence, ' a :
‘ . st - Al)\'z‘ ' , /\
8(8/6) = TEFTTEFTNEESTT 2.4

Clearly, the Laplace-Stieltjes transform of £(X,¥) = AS(x,y)
is ’
Mst=AiA,) ‘
(E+A o) (s+A =\ (st-A)" (3.2.15)
2 ThE :

Y(s,t) = rd(s,t) =

P

From Equation (3.2.14) it is clear that ¢(s,t) blows up unless
A= A,A,, which yields - ' ' N\

1'2 -
r
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&

. R ,
Ve t) = TERT (e (3.2.16)

3
“

the Laplace—S{:i_e’ltjes transform of the distribution with x

and y following independent exponential distributions. Thus,

we ha\}e shown that we cannot have an absoluteiy continuous bivariate
exponential distrifion with constant failure rate unless - x and:

‘y’ are independently distributed.

Let us now develop aobi\(\ariate failure model for a two-
organ systen. Consi@er a two-organ system such that the faiture
rate of each organ is constant and equals’ }‘o if both oxgans are
functioning. ngever, as soon as one organ fails, the failure
rate of the remaim’.ng‘ fur{ctioning organ 1is c0nst?‘ht and equai.s
Al > )‘o' In such a two-organ systen there are two sgtates in
which the individual may be and still is al}ive}: So the state
whez} both organs are functioning and Sl the state when one
organ has failed and the individual is left with only one function-

ing orgén . (

Let p_(t) = Pr {System is in S at time t}

8
py(t) = Pr {system is in §, at time t}
: (.
' We assume that at time t = 0, i.e., the time of onset of first
symptonms, P,(0) =1, and pl(O) = 0.

. .
At present, we shell assume that 1A; # 22\, and without ’

loss of generality with respect to this assumption we take ~

[N




M

pL(O) = 0, "and the fact that \, and A, are constant with

respect to time, it is easily shown that

> 2\ . Using the initial conditions p,(0) =1, and

P _(t) = exp(=2X t), £t>0 (3.2.17)
N o o " -
, 23, ‘ - )
pl(t) = Al_z)\o [ex9(°2)~ot) - exp(")\lt) ]I t .: 0 (3.. 2.18)

-~ o,

s{t) , the probability the individual survivessto time t, . is

simply Po (t) + pl(t). Thus for t > 0

-t

, 2)
S(t) = exp (-2A_t) + 3‘?‘7%— [exp (=21 t) -exp (~A;t) 1(3.2.19)
(o] .

F(t) , the probability the individual diesgprior to t, is 1 - S(t)

and sorthe requisite failure density £(t) .is dr(t) /dt.

ln
He’nce, Q ) }‘l > 2)\0, ' o

A A
£(t) = Tl—?_-i%- [exp(-2A,t) = exp(-A;8)] €20 (3.2.20)
5 , )

r

The hazard rate, h(t), corrgponding to Equation (3,2.20) is

. 230 .
7 h(t) = (3.2.21)
| ((A;=20) [1 - expl-A e+ 8) 17 + 22}

)




. ~ a2l

From this it follows that h(t) is an increasing function of

A}

t ‘for )\1 ol ZAO‘.Q In fact, h(0) = 0 and h(x») = ZAO or A1,~

accordingly as )‘l < ZAO or )‘1 > 2)\0.

v
¥is

, The moment geénerating 'funétion (mgf) corresponding

. to £(t), M(8), is given by | L o .
M(8) = [2A A3/ (=220 IE(68-A1) TH = (8-20 )] (3.2.22)
where - - ~ )
8 > Ay > 2\,

L 4

From Equation (3.2.22), it is easy to show that u;.: the 8

moment about the origin of £(t), is

+
N U‘i 1_(2lo)r+1
Ul o= rl(22_1,) L - (3.2.23)
r o”} (A.=21_)
T . 1 o
Thus u and '02, the mean and:variance of t, are
L1 -2 .
M Al + (ZAO) - (3.2.24)
‘,,—r/
2 _,=2 -2 '
Lo )tl + (210) - (3.2.25) ;

&
@™
Eq?ations (3.2.24) and (3.2.25) are used (method of moments) to
> N )

‘obtain initial estimates in solving iferatively for the maximum

N v
likelihood estimates. ¥

e e o
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"' The case for whi®h A, = 2\, reduces in essence to
the convolution of two exponential densities with the same
pafhmetér. The resulting density is thus a gamma density

with shape parameter equal to 2.

' Ao -

Another special case occurs when the loss of one organ

' ~ Lo .
hag no effect -on the other organ. That is, Ao

= xl = Afsay).

For this situation, & -4 3

e d

-

s(t) = e (2-e™%), t>0, 250

£(t) = 22e (e, £ >0, A > 0

[ 7 ’ |

. . . |
h(t) = 2a(l-e Y/ (2-e”%), £ > 0, 2 > 0
M(0) = 2A%[ (8-1) (6-21)]172,

L = ri(2n) TRy,

&
3 2

In order to apply the model to a clinical situation such as
';stimating the mean survival time for luné cancer patients or
patients with severe kidney disease, it is necessary to know
not only survivéI'times for the patients, but<one must be able
to estimate the time the first of the two organ(lung or kiYiney)

-
failures has occurred.
\—'). ] -
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Recently Tosch and Holmes (1980) have proposed a new )
bivariate failure model in which the residual life time of one
compcm(ént is dependent on the working status of the other com-
ponent. This is applicable when the failure of one component
puts more (possibly less) strain <;n the remaining component.

For example, consider a machine with two components, each Jper= -

LN

forming the same Job and contributing to the functioning of
the machine. When one component fails, the other must bea# the '
- entire burden and thus suffers a shortened life-time. Another

1t

example is the function of the two kidneyts‘ in the human body.
4 .

They derived properties of the life~times including their joint
Laplace-Stieltjes transform and also considered the bivariate

exponential life=-t we and the estimation of its parameters, *

3.3 ESTIMATION OF PARAMETERS OF THE
TWO~ORGAN SYSTEM .
Suppose we have complete samples of failure times ;’
’ ) hd
tietos..asty s ON independent and identical organ systems whose

failure density is given by Equation (3.2.20). With o = 2h )

and g.= A, th® likelihood function L{o, 8) i

. t
~

L= I [-(.5__).“3 ] (e~%ti-e~Bty), " (3.1
i=]

which leads to the likelihood equations

/
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-
v 2 N . t exp(-;ti.)
M. 4 L -0 (3.3.2) é
atd-a) ! [exp(-at,) - exp(-Bt )]
N N t exp(-gt ) ‘
B+ X : 1 =0  (3.3.3y :
a(f~a) lfl’[exp(-at;_) "...exp('Bti)] 5 N
: ' 4

L)

These are solved iteratively using the methods éiven in Sedtion
2.2 to obtain o and B. ‘ '

The large-sample varian¢e covariance matrix for o and

B is re;;u‘ired for the method of scoring,“ so,we now proceed to

obtain it. However, we first need to evaluate a non-sgtandard
Y integral. .

Lemma 1: s -

: , ¢ .

Suppose B > a > 0 are givew, Then
v -

A 2 = 25(3,8/(B=a)) >~
* / ““""—"“*"—‘Bt at dt - = 3 = 3
o (e" =~ ") n=0 [(n(f=-a) + B] (-a)
.

-“‘ -
where  {(3,8/(8-a)) is the generalized Riemann zeta-function
[ see Whittaker and Watson (1927) ,p.45].

Proof:

. . I3
Since B8 > o ,we can write ' ’ ‘
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. ~
. o~ Bt

KeBt-e“t$°1

L4
va

Now, by applying L'h8pital's rule

A 2
3 A t
lim = (
t+0 ebt gt

e” “~e o o
Since for t > O,
e~ (B-a)t 3

we can expand [1 - e~ (B-a)tq=l 4 power series and the

result follows.
.-

Gross and Clark (1971), for computational purposes.

derived the following bounds for the series in the above

LY
lemma.
v

-3 i | o -3
2{(B~a) "[£(3)- I —=xl}<2I [n(6a). .+ 8] .
) n=l n Jp:o‘ :
Co3 . ,- ) R m-1 -
;o C < 2~ () - 107N

Geo
Lt

s . n=l1

.,

-3 ' .

where m = [3(84d)'13 is the largest integer less than or équa;

-

- '}/b-s(e—a)'l and §(3) = 1.20257. , oa
- ,

-

Thus. we have - - '

4
N
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2 _=(at+tB)t. .
» 22 1og.L _ SNp(g-20) _ N % © i _
3a° a® (B-a) =1 (e"%ti-e FEp)2 ~
~ .
t (cx+8)t
-N (a-zg)
RPLITIvY RN (e “ti e YA
| ’ = (a+8) ’
- s ) t
‘92 log L N N. t e
= g+t z B2 .
2adp (B=a)“« iml (e™° i)
.
Using Lemma 1 with 9«’ o we find tpe variance-covariance
mat;lx Y for "o and B is .
[ NB(B-20) , Nopg —E - Nego
o (B~a) L, (B=a). '
Y. = (3.3.4)
N . No (a=28)" ”
L — - Na B¢ ~f—————-+ Na B¢ s

(8-a) 8% (B-a) ? - S

whgre
¢ = (B-a)~4

(3,8/(8=a)).

¢

We now consider the problem of solving for thé' ML estimators
' & and. B using Equatlons !3 3. 2) and (3 3. 3). The correspond-

ing iteratlve equations are

13
e

. :
. QIL - Yl ~1 g
@ < - J
s ;
P . [y R ”
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. 2V is given by Equation (3.3.4) for the method of scoring, and

\ . : '
s the raw second derivativeg would be used in place of the elements

- - A
£t et s e o—— ok ~ ' PR

where o -

i _ . .
Y -"'-Y Ai ai . - (3.3.6)

ara”, =8

»

of Y for the Newton-Raphson method. Also

' . AY = -~ = - P (3.3-7)
. E o , ABi Bi+l Bi ,
and- , v
4 ‘Slog L/3a , ,
g ] » (3'3'8)
B 8log L/38 aﬂai,ani

2 -~
a4

The subscgipt i 1in Eguations (3.3.5) - (3.3.8) refers to the .

: o -
18 iteration of the procedure. To obtain the starting,values

”~

a® and 8°, we use the method of moments employing Equations

(3.2.24) and (3.2.25). Thus

. \ ” -
o® = 2[E £ /(282 N e (3.3.9)
and “
- 8% 2[E & /(282 - EH)171 (3.3.10)
. n v . P ‘\
< where ' ‘
- — | 2 _ ¥ = 2
T = t,/N  and  SZ = I (t,+5)%/N:1)
=i > . i=l

A

oy
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2) we substitute each pair  'a~, and T g° '

_ § o
If T > /(255 -T
y from Equations(3.3.9) and (3.3.10) into the liKelihood function

N 1

L and choose as our starting vdalues ‘that pair which gives the
larger:' likelihood value. If. t < Zsi - ’Ez, we use ‘éo = 2/F.

: The successive pairs (;:, E; tos oy (;n’ ‘én) are then obtained
iteratively by either the Newton-Ra'phsqn technigque or the method
of scoring. An appropriate elliptical confidence region for \

@ and B and hence i, and A; can be obtained following

the procedure in Mood and Graybill ([1963],pp. 264-7).

A .

& . Gross and Clark (1971) have given a numgrical compari-
son of the Newton-Raphson and Scoring Methods, th:;:ouqh’ Monte *
Carlo using survival data from a group of patients with i;xtra‘ci,:—
able, bilateral renal calculi. These patients will lose, on
the average, effect\i;.ve function of one kidney in 15 years after
the onset 'o.f._\slmptoms"and _have a mean time to death due to loss
of the remaining kidney three years later. Using ds .populationg
parameters >‘o = 4o = —%—5 = 00,0667 failures per yea; and
o Xl = g = %_, 0.333 deaths per year. A Monte Carlo study of
the“two iterative proceduges. are performed. They obtaine“d
three different est:iimates of A, and \;: the method of

moments estimates (ii) +the method of scoring estimates (iii)

the Newto'n-Raphson .estimates.

o

Th’e Monte Carlo study then proceeds as followé:
L ) R

\ -

¢




TR e e s 4 e ‘ .

. . - . , . - -
<

R -

129

TR,

. . * ‘ » ‘
# . ( - _
p(i)'Random numbers weére drawn between 0 anq l.. This

e ’ was done for sample sizes of 200.

. .
ese random numbers were converted to data.having

survival distribution as given by Equation (3.2.19)
” .
- . by computing the two survival times separately fof

-

the two kidneys, - - : )

yal S , t, = 18g[1 - F_(t)]/ - a K ,(3.1.11)
T vd
k] =t lo”g[\l - F )]/ .- B (3.3.12) ¥
' ~ R ' \ a '

where a pair. of random numbers was inserted in F_(t) .

-
Ty

and Fl(tia

&~

L

(iiif‘Initial values‘~Ag = iao and Al *\Bo were obtain- -

ed using Equations (3.3.11), (3.3.12), and‘the method
~ o . -
T ‘. of moments‘(3.3.9),and (3.3.10)., ' By

b . ‘ o {iv) ‘These initial values were used in both the Newton- ) 3

v

Raphson angsthe -scoring 1teration techniques to obtain

the ML estimates ‘o and Al. In addition, estl- C

: “\ - mates of the variances, cgvarlances, and correlatlons , , .
g *
; N . of A and Al were obtaiﬁed for both the Newton-

Raphson and the . scorin7 methods. o
Lo B

i

.
-
B
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“ -
¢ (w This process was repeated 100 times. Averages and
Y actual variances over the 100 samples were obtained
for the estimated X; and Al. '

o= ‘
The results are given on the following page in
Table 3.1. The upper two sections of the table give-the -
"avérage results of (iv) for:the 100 éamples: fqg lower

section give§ the actual variances of the computed estimateés.

The conclusivns of this study may be given as fo;lows:’
n :

1) Actually, the two methods are qhitg similar; however,

-
;. the rate of convergence is slower in the scoring

method as compared to the Newton-Raphson.
N

2) The method of moments: estimates are not tooaﬁnreason-

able except for the bias in the estimates of Xl.

3) The large variances obtained using the variance- ?
covariance matrix or the inverse of the mégfix of

second derivatives in comparisemn to the variances

S

of the actual 100 sample statistics are %étable.
However, the authots in checking the sampie statis~
tics, found that the variances obtained from the
inverse wete roughly five times as large in samples
with large Kd .and il as inAéamples with small

values. ' .,

- .
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MONTE CARLO ESTIMATION RESULTS OF THE
PATIENTS WITH INTRACTABLE BILATERAL

CALCULI: lo = 0.0667 and A

1= 0.3333

131

AVERAGE SAMPLE STATISTICS

¢ Method of . Newton-
Moments Scorlnq‘ Raphson
Ao 0.{06807 0.06874 0.06874 .
Ap 0.36506 0.34838 0.034842
var Ko _— 0.000253 * 0.000344
Var ‘A — 0.013372 0.014989
Cov(Ayihy) —- ~0.001246 '-0.001516
COtr(Ao'Al)\ - -o.v \ ‘ -0082
RESULTS FROM.. 100 SAMPLE STATISTICS
var A d,000079 0.000080 0.000080
var A 0.012317 0.009533 0,009533
Covirgshy) -0.000752 ~0.000719 -0.000719
P ~ < ' ¥ ’
Corr (AysAy) -0.76 -0.82 -0,82

P ]
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4)

5)

4 , f
Histograms\of‘ A, and Al appeared normally dis-
tributed; however, the”sample stétistics are not

independéntly~distributed in this Monte Carlo study.

In one sample, the Newton-Raphson method resulted

.in a matrix which was not positive definite. That

sample was removed from the comparisons. No

similar problem existed with the scoring method.

132
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. CHAPTER IV |, X

ANALYSIS OF FAILURE TIMES IN THE PRESENCE ‘.
OF COMPETING RISKS

~ —y

4.1 INTRODUCTION

-

AY

The failure of :n individual may be due to one of several

distinct types or caus In clinical trials the death of a

J

patient may be due to a cause other than the disease far which
he is under study. For example, a pa;ient who is under study
for prostate cancer may be involved in.a fatal accident or he
may succumb to a heart attack. These other risks, as{well as

the risk of death due to the dise§se under study are called

‘gbmpeting risks; since it’'is assumed that the death of the

patient comes from only a single underlying cause, these risks

thus compete for the patient's life.

Distinct problgfs in the analysis of failure times with
competing'causes of failurejinclude the estimation of treat-
ment or exposure effects on specific failure types, the study g
of inter-relations among failure types, and the estimation of’
failure rates' for some causes givén the removal of certain\?ther
failure types. The usual formulation of these problems is in
termé of conceptual or latent failure times for each failure
type. Kalbfleisch and Prentice (1980) critiéizéﬁ this
approach-on tgé'baSis of unwarranted assugptions, lack of

r

physical inte etation and ‘identifiability problems. They

.
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proposed an alternative approach utilizing cause-specific

hazard functions for observable guantitiés, including time

[%

dependent covariates.

The term "competing risk problem”™ has come to encompass
the study of any failure process in which there is more than
one distincﬁ cause or type of failure. Frequent reference
is made to possible influences of competing failure types in
studies reporfed in the clinical, epidemiologic, demographic,
and industrial literature. Available data on each study

subjec® typically include T > 0, the time of failure, which may

be right censored and J ¢ {1,2,...,k}, the type of failure,

~

[ g .
which will”be unknown if T. is censored. A regression vector

2 = (Zl,...,zp) may also be available to récord characteris-

-~
-

tics of the study subject as well as treatment allocations or
exposure levels. Some components of 2Z may be time-dependent,
that is, Z = 2(t), as occurs when successive measurements are

taken on study subjects as they are followed over time.

Three distinct problems arise in the analysis of fa}l- »
ure times with competing risks. These are (1) infefence on
the effects of treatment, eibosure or other rggression var~
iabﬂés on specific types of failure; (2) the study of inter-
relations among failure types under specified study conditioné
and (3) the estimatioﬁ of failure rates for some causeshgiven

the removal of some or all other causes.

v

ran
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Problem (1) arose, for example, in the University Growp
Diabetes Project [see Kalbfleisch and Prentice (1980),p.1l64].
The fact that one treatment, Tolbutamide, appeared to give.
rise to greater cardiovascular mortality was tﬁelprimary point
of interest and controver§y.in the study. Problems (2) and (3)
both inngve inference on the relationship between faflure s
types. Problem (2) is concerned with such relationships uhder
actual study conditions, while %o‘dadress problem (3) it is
necessary to extrapolate to an altered situation in which some

failure types are no longer operati®e.

Kalbfleisch and Prentice (1980) emphasize that problem
(3) is the classical problem of competing risk analysis. They
contend that to put forward solutions to prbblems of this type
one must éssume that data under one set of study conditions in
which K failu;e types are opgrative are somehow relevant to
different sets of study conditions in which only certhin of the
failure'ﬁodes can occur. The failure iate function for a
sﬁecific type ma} be affected in a variety of wa&s by "removal"
of their failure types. "Removal", itself, maylinvolve differ-
ent mechanisms, with corresponding different structures 'for the
remaining failure types. For this reason, the ahthors consider
problem (3) to be nonstatistical. It is therefore unrealistic
to think that general statistical methods can be developed to

P TR

estimate fallure Fates under the removal of other causes.

However, a good knowledge of the physical or biologica;\pechan-

isms giving rise to the removal of certain failure types is

B
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necessary before reasonable methods can be proposed in any

given setting.
3 L J

. In Section 4.2, we consider the genergi model of compet-

ing risks when all lifetimes and. associated causes of failure

are known, as well as problems assdciated with it. We also -

discuss the aqgitiégj noninteractive model which is useful in

analyzing the survival dgta of patients &ho have undergone

surgery to rehedy a serious problem. In both models, we | i
assume independent causes of failure. We briefly discuss the
cause-specific hazard functions proposed by Prentice et al

»
(1978) in Section 4.3.

4.2 MODELS FOR THE ESTIMATION OF COMPETITING
RTISKS

~

4.2.1 General Model When All Lifetimes and
Associated Causes of Falilure Are Known .

-

Underlying most of thelapplicatioﬁs of the concept of
.competing risk is the postulate’of a population of objects, a
random sample of which is- obsérved over some specified period
of time. 'yost models pfoposed for human or animal populations
,postulate the existencé of a number of independently gpexat—
ing causes or risks of death. Each individual is exposed to
the risk of death from any of the causes. fhe assumption that
risks are mutually indepeqdént while perhaps less tenable than

j. any others which are made, is an essential component of all -

generally useful procedures so far developed.

..
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a

The assumption implies“that the risk of death from one
causg is independent of and unaffected by changes in the risk
of death from other causes. The patent falsity of this assump-
tion when incorporated in models for populations of'living
organisms is recognized by many authors, but in theoretical or
mathematical developments the manifestations of th; premise
are often obscured and their importance-is understresseqﬁ
Cgiang (1961 (b)) has said, "The characteristic of a mortality .
study is that the basic event, the death of an individual,‘ié
not repetitive." An equally important, "and not unrelated,

[ 3

characteristic is that measurements of times of death of individ-

tﬁ}s in a’ study are naturally ordered.

. The most comprehensive mathematical treatment of mortal-
ity analysis is Sontained in a series of three papers by Chiang
(1960(a), (b); 196l(a)), which provide basic models for many of
the estimation problems encountered in studies of human popu-
lations. Within this broad éategory, another class of_problems
has been generated by the need of biomedical scientists for
methods which facilitate the explanation of morbidity and
mortality phenomena in terms of the actions of several disease
processes operating simultaneously. The variety and complexity
of problems in this area have given rise to a collection of
literature including those of Chiang (1961(b)), Cognfield (1957),
Kimball (1958), Berison and Elvebach (1960) Moeschberger and

David (1971) and Prentice et al. (1978). Although somewhat

different in scope and purpose, this class of reports deals with

” » _ /\,

p—"
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. l 4
the fundamental problem of estimating the probability of death

from a éiven cause or group of causes utilyging data obtained
from individuals who are simulténeqpsly exposed to other causes
'of death. In many cases, these other causes or risks are
peripheral to the central focus of the study, but they may also.
include diseases of interest?to the investigator. The Berkson
and Elvebach (1960) report illustrates both situations. In‘
assessing the effect of smoking o; the probability of death
from lung cancer, adjustments were made for all other diseases -
including coronary disease. A similar calculation was made

for all other diseases with adjustments for lung cancei and
other diseases, because it was felt éhat iﬁ is aléo important to
isolate the effect of smoking on coronary disease. The major
purpose in studies of Fhis kind is to describe the pattern of a
disease, in relation to some environmental factor such as smok-
ing, as it would be.if that pattern were not dependent on other
competiﬁg diseases. This problem has been discussed fully by

" Kimball (1969). In this section, we consider a general model

when all lifetime'and-associatéd causes of failure are known.

Consider an individual who is exposed to several potent-

ial causes of failure auring his or her life-time. Let there

*

be a finite number of independent causes of failure, labelled

¥

1,2,...,J. We associate with cause k a non-negative random -

Yg;iable X(k) with a continuous c.d4.f., F(k)(x), k=1,...,T3.

Then, the observed failure time is given by the random variable

-

~
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»
r = min(x(1?,...,x09)) © (4.2.1.1)
\\ ) | . | r
ILet N be a random index for which T = X(N). Then, we

de€ine

»
I3

. .
G(k)gx) = Pr {Failure is due to cause k and occurs on
or before x} :

= Pr{é < x, N=k}.

(k)x with respect to x is denoted by g(k)x.

\

Thg derivative of G

Furthermore, let »

F(x) = Pr {failure occurs on Of)ﬁpfore time ‘x} .

and the corresponding p.d.f. i8 £(x). The survivorship func-
. e ‘ :
tion of the random variable T is defined as

-

- T k) ’
S(x) = Pr{T > x}= 11 5 (x) ‘ (4.2.1.2)
k=1 - :

k4

where \

S“(k)A(x) =1~ F(k)(x)
\

o

s ,
On using the relation
d - ' d
f(X).ﬂ —a—iF(X) = "‘ES(X) _ + ’-
wg‘get . ’ S -

f£) =2 £ @ 1 5By =z e m  a2.1.3)
k ~ k . S

irk

’ ' ’ :

-
; ) 4

* L)

Note that G(k)(x) is no a proper distribution function.

4

-

—n s

£t tamirn
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0 ”
y Finally, we can write, f(x) = L g(k)(x) by uéfng tﬁe
F ‘ . k -
relation ST o ' .
o , - . .
7 LK) (k) |
1 s (x) =1 -LG (x) ) “ (4.2.1.4)
k=l " /
The hazard rate is(qiven by’ -

\}-m. - ’ | (k) , o
an ¢® xi = - L log sM(x) =« I (4205
/ ‘ . S(k)(x)

4 .
{, Hence, we have
f(k)(X) = ¢(k)(x) s K (x) | 3'. é
That is
3 \ - - ¢ —\
(k) X (k) . ;
(k) - (x) il (x LN
£ (x) 9_373-5_ exp{ OI m dx} d
_or s e T
‘x (k) A
: g __{x) dx}\\’/(;.\Z—.l.G) :

(k)
F'Wx) =1 - exp{~ [
. o 1-~-1L G(k!(x)

. X e

Thus the set of functdions {G(k)éx)} is reglated to the set

{F(k)(ﬁ)} by functional equations

. . X ~ =t '
™M@ = 5 £M iy 1 s (x) ax  (4.2.1.7)
° j¥k & i
. . i /
The solution of this set of equations is
. X . (k) )
FE (%) = 1 - exp{~ 7 g " (x)dx !

o 1 -1 6%y
*

\

RO Y SRS o S e



cally and functfbnally, ag well as §tatistically, independent.
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3

® ~
which is a bona-fide c.d.f. provided the above-mentioned inte-

gral divérges. This requirement appeasa}to have been overlook-
ed by Cox (1959)Y. Berman (1963) é;ves an elegant derivation
of the above-mentioned result. If we impose some well=-known
paramet?ic forms of the underlyigg distributions Ff%)(x) we

L]
could develop maximum likelihood estimates for the parameters

. Ve
of the distributions(eggié%}ng the methods described in
. . \
Section 2.2. ﬁ//'
' ™~

]

At this point, we should point out that there is a basic
question raised on the assumption of "latent" or '"potential"
- ‘ & )
failure times. Cox (1959) and Moeschberger and David (1971),

(k) -
to be the time of failure from

among others, aefine X
caude k EB%E‘:E:I% be observed if‘the possibility of failure
from causes other than k were removed. They further assume
that the observed T = minxx(l),:..,x(a)). While Lhis point

of ,view ascribhes a physieal meaning to the latent failure times,

it involves the very strong assumption that the time of failure

from cause k under one set of study conditions in which all

. , > ,
J causes are operjtive is precisely the same as under an

altered set of conditions in which all causes except the -kEE ;

§
have been removed. Such an assumption may be reasonable in

:
o
!
4
1
:
:

’ 3
very special situations, such as in clinical trials in which
failure types occur in organs of an individual that are physi-
l *
More generally, hokevér, the elimipatioh of certain failure

types may well alter the risks of other éypes of failures., -

a
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-

4

However, any assumption about the relationship between the
. | :
observgd T and the times to failure f%r specific causes,

given the removal of other causes will req&ire detailed know~
ledge of the system under study and of the mechanism for cauge ?P

’
N

removal. .
1

Another problem is the entire idea of ' limiting our
. [

attention to death only. In the study of morbidity and mortality

7

-pattern in a population we must recognize the fact that the

death of an individual is usually preceded by an illness (ign-
ditionydisorder). It is not realistic to speak of a person's
chance of dying from tuberclosis when he ianét.even affected
with the disease. Also, competition of risks of death depends

on ‘the health condition of an individual: a person affected
with a disease (say, caré;evtﬁsalar—renal(CVR).diseases) prob-
ably has a probability of dying of a second disease different
from a person who is not affected with CVR. Therefore, a
mortality study is incoﬁplete unless illness is taken into  ~

consideration, . Illness and death are distinct and different

types of events. 1Illness are potentially concurrent, repetitive,

and reversible, whereas death is an irreversible or absorbing

' state. The study of illness adds a new dimension and-a new

complexity to the general problem of mortality, but it makes

7 s

" the underlying assumption gegarding~mortality intensity functions

EY
- '

mo:g,realistic and more reasonable.

<
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4.2.2 The addltlve non-interactive fmodel Y

A

A

The survival time fbr patlents who have had s rgery

w

for invasive cancer of the bladder 1s their length of surv1vak '

from surgery.

This is a serlo\E\dlsease, and most patients

will die fxom the cancer; however, some patieq;a may die of

other causes (e.g., heart failure or aécidents).

There are

alternate ways to analyze such survival data. First, we can

look at the patient survival times separately for eath cause’

of death.

‘Second, we can ignore the fact that several risks

_are competdng for each patient's life. 1In this case, we analyze

all survival times together.

B4

&

"

The term risk"

from a given cause prior to deatgf

/ .

refers to the probability of dying.

w7 \
After death, the risk is the

. ¥ . A
cause' that was respon'sible for death. Suppose there are k

.t

independent competing risks such that the hazard fate of the

'If . S(t)
#f time t, the k risks are assumed to be independéhﬁr The

survival probability at time
‘ 4

-

-

'ind#&}dual due to the

l 4

" it then follows that

-

S(t) '=

e
k

I s, () =
im=l

«th

-

4

k

I exp (-
i=l

, - M
'S‘Qﬂ = exp(- of Ay (w)du) @

]

i= risk at time t is Ai(t),i=l,2,?..,k.

is tHe overall survival probability of an individual

-

.th

t for the 1—— risk is

—

.(4.2.2.1)

-
1

)]

L't | R Ak {

f Ag (u)du) = exp(- T/ { (quu)g

i=1 o

fzr;.Z.Z)r’

TNy

7
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\ S

™ If we define A(t) as the overall hazard rate, that is, A(t)

2

. is defined by the integral equation
N t oy ‘é

' S() = egp(—. J A (u)du) (4.2.2.3)
e} h -

\
-

then, fromf Equations (4.2.2.2) and (4.2.2.3) anc}l.certain element-

ary ru\les of calculus we obfain

v L8 *

k
A () ¢4.2.2.4)
i=1 ‘ ~ :

<«

A (t)

it

The competing risk model defined by-Equation (4.2.2.4)
is «called the additive, non-interactive model of cumulative

risk and is discussed inAetail by Berkgon and Elvebach (1960},
and‘Chiang (1968). -

-

Since Equation (4.2.2.2) described the su‘rvival probabil=-
ity for the additive, non—interaci%ive competing risk model, we
can by elementary considerations, derive both f£(t) and F(t),
the death density and cumulative death di.stribution functions,
respectively. Hence moments of f£(t) and the ‘maximum likeli-~

hood estimators of the ‘parameters can be obtained.

It may be important to isolate the probabilities an
individual dies from the 1'.-tﬂ risk,/i=l,2, +eork. We thus
conléider the following. The probability an individual dies in

the interval t < x < t + At of risk i is the proba-.

 bility he survives of all risks up to time t and dies of risk i imw

the interval. Mathematically, this probability is S(t)li(t) At.

If we add up these probabilities over the entire time axis and let

¥ &

i
J
4
3
1
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At » 0, we have Qi’ the probability of death due to thq{iEE-. A.
¢ 7

cause, given by

L]

J S(t))xi(t)dt -

0
i}

. o
o B 3 t
S exp(- I f A.(u)du)xi(t)dt, i=1,2,...,k
0 j=1 o ]
L A

11
AN
]

(4.2.2.5)
| The probability an'}ndividual dies-in the interval
s t < x < t.A4 At,'g}ven risk i, is the joint probability hed
__ lives to time t and dies in t < x < t + At of risk i,
divided by the probability he dies of risk i. Mathematically,

this probability is ' ‘e

S(t) A, (£) At
2 (4.2.2.6)

I S(t)li(t)dt ) ‘ .

\/ 0

Again, letting At + 0, the death density function of those

f£(t|risk i)At =

persons dying, given risk i, is

~

- . B(E)A (E) . ,
f(t|risk i) = , 1=1,2,...,k (4.2.2.7)

[

\ .. / s(t)h, (t)dt .
0 ' #i S '

Let us consider now a situation for which.the hazard rates
for the k risks aré proportional. That is, li(é) =Jcik(t),
where cy ? 0 is iﬁdependent‘of t,i=1,2,...,k. It can be shown

'Ehat Qi' thé probability of death due to risk i, is

i,

‘\ \
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&
g c
Q = - (4.2.2.8)
£ ¢ '
j=1
LN
- To show. this, let t
kot ( X £
y= I S )\j(u)du = T C I TA(u)du
j=1% j=1 (o}
- . k o A
K dy = I G;(t)dt. |
=1 -
Thus
o k t L
N Q = Jexp[(- Z ¢) S A(u)du]ci\ Alt)dat
o j=1 Io
L2 \ ‘ )
~ \\c ' c . - ”
o -t e Yay = - (4,2.2,9)
‘ < L o ° L <y
- j=i 7 j=1
" -The death density function given the 182 “rigk is then
£(tjrisk i) = c S(t) A(t) (4,2.2,10)
/ \ N .
where - . “k
c= [C, .
i=1 * : - ;

L]

Hence, the death density function qivén thé,,igl. risk, dqés

not depend on the risk, ‘ o "

r
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\

We shall now consider the px?oblem of estimating

c., is1,2,...,k, vhen all hazard rates are constant with

1

respect to time.
for all
conversely).

is no loss of generality in assuming

<
MR = &g
If tij is the survival time of the j-@-

dies from the iE-l’l risk,

hood of the sample is

| x M J
L{Cyrse.,0) = 1 n st )c
1’ ™k =1 J=1 1j
. X “i Jk n
= exp[~ (4.2.2.11)
i=lj z, 4t 130 1
»
Thus
x i c x
loglL =- % I . t.. + I n, log c «(4.2.2.12)
i=14=1 1 13 gep . ~
It follows that Gy the ML estimator of. Gy for the 121—
risk is o
~ .ong
! ci 3 —-——-——"“"n i=l,2'. - a,k
s )
L t
j=1 >

i=1,2, ...k

individual who

j=l'2'.1|'ni; i=l '2’!..'](’ the likeli-

The assumption of constant hazard rate?
k risks implies that they are proportional (but not

. 4
vhen the hazard rates are all constant, there

~ i
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For large samples, the vector S = (cl""’ck) has an approxi-—"

>

mate normal distribution with mean c = (;:1, ...,ck) and variance

covariance matrix YV, where

i

/"‘l
— -
011 ® 00 ¢ ¢ o s le
vl . : : )
- : . v . ;
: N
L %1 " kx| j
]
and j
azlo L ..
Oij = -~ F c. ¢ 1,321,,2l--¢'k "

Differentiating Equation (4.2.2.12) with respect to i
and then 3;'we find,

_ 3210% L _ x%
aci ci
and . ‘
| 32109 L .
. "s-é——gg— = 0’ iﬂj;i' ’l,Z,...,k ' \
» ) i j .

The 2 PYRERIE W have a joint multinomial probability distri-
bution, \where

-

k c,

E(ni) = NQ:"IN = ' z nj" Qi = ‘_'k—-ul;-—_ 3 iglpZ'OO-)k
‘ i=1 % ¢
=1
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»
Thus e
n.
i
g,. = C "—
. ii cy
and <
. cij = 0 i#j;i,3=1,...,k,
where ' e
k
C= 1Ic,;
i=1 *

» f
- ~

Thus we have shown for large samples CyreeesCy are

approximately independéntly normally distributed variables v
| .

»

%ith means CqrCoree «rCy and variances cl/Cnl, .o ,ck/an,
respectively.

4.3 CAUSE-SPECIFIC HAZARD FUNCTIONS AND ‘ -
THE LIKELIHOOD FUNCTION

<

A sta@isti’cal mod%éi; for competiting rigks data dinvolves
a specification of the distribution for the observable quantities
(T,J,2). As an example >(Hoel, 1972), T may be the age of death
in a -mouse radiation study, J may describe the cause of death
as thymic lymphoma, reticulum cell sarcoma, or other, and the
regréssiou varigble xﬁay indicate whether or not each particul'a.r ’
mouse was kept in germ-free isolation. Usually,it wil]: be

Q‘
sufficient to spec\ify a model f8r (T,J) given Z. We discuss such

models in terms of cause-specific hazard functions.

S

Suppose failure time T is continuous. The overall fail-"
: »
ure rate or hazard function for an individual with regression
. ? .

vector 2 is guiven by

PR Y

1

!
]
s
%
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Pr{t < T <t + At|T > t; Z(t)}
A(t,2) = lim = (4.3.1)
- At+0 At

where Z(t) denotes the value-of the regression vector at
time t [Cox(1972)]. Cause-specific hazard‘functions [Chieng,

1968,p.244, and Prentice and Breslow(1978)] are defined by
{

~
: Pr{t < T <t + At,J=3|T > t;2Z(t)} ‘
Ay(£:2) = lim ———— (4.3.2)

~

R At~+0 At ~°

\
for j=1,...,m. The function Aj(t;Z) simply gives_the instantan- *
eous failure rate from cause Jj at time t, given the regress-
ion vector Z(t), in the presence of the other failure types.

Assuming distinct failure typéér the overall hazard fupction

can be expressed in terms of cause-specific hazard function as

N
m o .
A(t;Z) =3I AL (t:2) (4.3.3) .
2 1 -

The qverall<survivor function can be written as .

t hd . .
F(t;z*) = exp{ - / Aluzg)dul (4.3.4)
o _ .

and. the probability function for time to failure and cause of

failure is

-

Pr{t < T < t + At,J=j|2}

£.(t;2*%) = lim
3 At+0 At

\
/
= ),j (t;.z‘)F(t;?’,*)ljgl""(Im '(4.3.5)
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where ;

s

z* = 2*(t) denotes {Z(u)yu < t}.

We should note that Equations(4.3.3) to (4.3?5) indicate that
the 1likelihood ,function can be written in terms of the cause-

specific hazard functions.

Suppose now that n study subjects give rise to data

.
o AR R R

. ; , ., * , .
(ti,Ji,éi,gi),:ﬁl,...,n,awhere t; is the failure time, j;

e ke s

is the"cause of failure,. Gi is a censoring ir;dicator, and
g;_ = g{(ti) is a vector-valued regression function for the 139-
' study subj:e;’ct. The censoring indicator takes value one if

failure occurs and value zero otherwise. The cause of failure

- ji may be speéified arbitrarily if Gi = 0.. As usual, .an

R independent censoring mechanism will be assumed. This means

that at é‘ny fixed {t,Z(t)} individuals are not selectively

)

censored on the basis of a relatively good or relatively poor

BT S i T

(

prognosis. This condition is met by the usual censoring schemes

; suct% as fixed time censoring (Type I),: irdependent random cen-
. e . ¢
soring,?rder statistic censoring (Type II), as well as by .

more general censoring schemes in which censorship at {t3Z(t)}
depends arbitrarily on the previous number of failures and

censorings.

The likeﬁhood function under an independent censoring

L
mechanism is, up to proportionality i
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: n 'Si n ‘Si m
: . .32, F(t.;2* = . .12,
- illl{txji(tl 2,01 F(r;;20)} (151“31“:1 Z;)] jI=Ilexp{
: ti
- f Aj[u;g(u)]du}) (4.3.6)
o

We note that the likelihood function is completely specified by
the cause-specific hazard functions >‘j (t,g.) e3=1,...,m. We

J

further note that upon rearrangement the likelihood factors in-
to:a component for each j. In fact, the ‘likelihood factor ’
for )‘j (t;Z) is precisely the same as would be obtained by
regarding all failures from causes other than j as censored
at their time of failure. This provides a formal justification,
at least for the estimation of )‘j (t;g), for the common proce-
dure of regarding failures from other causes as censored when,
studying factors that effect a certain failure type'. Also, the
likelihood factorization aloné with standard survival data
techniqu'es make ‘it clear that the )\j(t;g) functions are identi-
fiable; that is, the c$use—specific hazard functions have the
/

potential to be directly estimated from data of the form

(t,3,8,2%) .

The above likelihood development implicitly assumes
'th;at the covariate. functions Z*(t) are deterministic or dre
generated by a stochastic mechanism external to the sample. In
such cirqmnstances, a survivor function for t given Z*(t),
for example, has clear meaning. More generally, however, it is

necessary to_ consider the likelihood bhased on the joint distri-..

-

\
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@ -
bution {T,J} and 2Z*(T) which involves ad@itional factors of
type P{Z(t) |T > tiZ(u),u < t}. It is still appropriate to

us’e Equation (4.3.6) for inference on the Aj (t,2) functions, /‘
though Equalt.i.orsx3 (4.3.6) is properly referred to as partial 0
rather than an ordinary likelihood [Cox (1975)]. Kalbfleisch

and Prentice (1980) have discussed this matter in much detail.
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CHAPTER V

REGRESSION MODELS

5.1 INTRODUCTION , '

-4
1

In clinicaif\ and other experimental trials, measurements
of further .characters beyond just time and mortality are often
obtained. Some, if not all, of these may be'expected to have
some association with failure rates. We recall from Chapter I:

L4

that the wvariables corresponding to such characters are called

concomitant variables.

Consider a clinical trial of patients with an acute
illness such as angina pbgtoris. Patignts .with this disease
are frequently monitored to obtain readings on blood pressure,
cardiogram, weight, a?:;e and other variai;les. Thus at a given
point during thé study we would have the following informa-
tion for each patient: (1) his survival time, withdrawal or
‘censored time (if he is still on trial); (2) his blood pressure
reading; (3) his cardiogram results; (4) his current weight,
and (5) his age. Within the clinical trial there may be two ’
or more treatment groups - Tt; test the null hypothesig that
all treatment are equal in terms of survival times, it would
be‘necessary to determine how the concomitant measurements (2)
through (5) affect the survival time and to adjust these.
according to the null hypothesis. Because concomitant informa-

tion 6n a patient's condition often accompanies survival time,
-

»

¢

o
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. regression models have been introduced in recent years in
'“amalyzing survival data. Thus in this Chapter, survival
models which incorporate a regressidn variable are considered

with a view to estimating the regression parameters. ’ !
5

In Section 5.2, we shall consider a generalization of
these models that take account of concomitant informatiOn on
the individuals sampled. That is, we shall give a general para-

metric model of hazard function with observed covariates.

- ’

We shall discuss in §ectioyf5.3, the general additive
q;azard rate as applied to the caig when one concomitant variable

is present.

A problem frequently encounte%ed in survival studies in
medical trials a9d elsewhere is that of incorporating explana-
tory variables into the model in oréer to make fair treatment
comparisons or to describe survival behaviour; Recently cok
(1952) proposed a model for incdrporating a vector of covariates
g' = (i&,q..,zp) in which the survival time t has probabil-~
ity density function ' . ‘ e

.

t ’ r 4
A (t)eééexb{—.f‘x (u) du e%%} (t>0)
- o o ©

~where

g = (81""“89) is a vector of unknown parameters.
) ¥
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The hazard at z =0, ",o(t) is left arbitrary, so that this

model is largely non—parametric. We shall considé; this model

in Section 5.4, in detail. ° "

5.2 THE GENERAL MODEL C '
\Let Kg‘ -,,(zl,...,zp) denote a 1 x p. vector of covariates.
v/

Let wus denote the hazard rats by )\(t;g). However, this hazagd

‘ rate may also depend on some'parameters, g' = (Bl,...-, Bs) so

that, in effect we have
£~
: / A(e18) = A(t1Z:B) ' (5.2.1)

We 'shall write ' A(t;Z) where no ambiguity arises. Observe that
~ t . \

we must have  A(t;2) > 0. T -

The cumulative hazard function (c.h.f,) is
~g t .
Atzz) = [ A(u;z)du e (5.2.2)
- ° -~ l §\ . . Al

-~

The surviw‘r,a'.l function, S(t;2)| and the death density’
function are respectively given by

-

- [

il S(ts2) = expl~ A(t:1Z)] (5.2,°3)
and -
o S . . | \ ,
f@:%g) = AMtrZ)S(t; %) (5.2.4) o
. L . |
N -
o | -
. . ol
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Let Z%i:J lg,...,z )} denote JLe vector of observed concomit; .
a

ant varidbles for individual k. [For éxémple, the vector'zk can
. R . -~

_ represen% a set® of measurements taken at entry of individual k“

or a set of average measurements over the course of study. How-
A

ever, once they have been observed, they represent a fixed set
of valyes. Let us first agsume that the “2's .do not depend on

‘time éﬁL Thus for each individual k we define his own hagzdrd

]

rate by X(t Zk) and survivaaﬁ!chtlon by S(t;z

\ Z) -

We can find the likerihood function under this model if

we consider a sgm?lé of n individuals taking part in a clinical

trial at some tiﬁe or other in the study.

o A
ﬁ;t t, be the timé at whics:gn;individual k entered |
the study, ‘and, tk thé time: at which he was. last observed., Let
D be the set of d individual dying: thus we have (n-d) in-
dividuals who were alive when lqst observed; d&enote this set by

D. The”llkellhood function for

£(t, :%;) S(t,:12,)
‘Le I [-—55—25— x T_ L 2 ]
R , - keD S(Tkygk)_ L€D. S(rz,z ) '/.
~. | . . e '
= 0.0a(tsz,0]|x- 0 [ I % 2. 5)
. kep . ~ i=] S(fﬁygi)

We can rewrite Equation (5.}{5) in a different form, If .we let

b
£ ke bbbt Y B eam
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. . ‘ if k died at t, ¢ : —
& =4 - (5.2.6)
0. if k was alive at tk
’ . . ' * Y
Then Equation (5.2.5) becomes
§, S(t. :12,) “
. L= T [Act L)1 —E=k ¢5.2.7) -
3 . \\k”l - S(kagk)
| and . L '
T .
"log L = I [6 logk(tk;zk) + log S(tk;zk) '
. k'l ~ ~ , W
. o - F .
~% log S(rk' Zk)] ) ) , | .

]

N Note that when we have no new entries, for example, when

n indJ.viduals S.re followed up from t-o, then T, =0 and so-
S(tkzg) = 1 V K. f
.~

, Such situations are’ very common in clinical trials and

“when t-:Iﬁy do. occur, the likelihéod, Equation (5.2.7) takes the
.

form ‘ _ . o \ <
n 61"5 . ¢ ) ’
L= ﬁlzitk(tkzg&)h, us(tkfgk) | (5.2.8) E
When we know the parametr:r.c form of the hazard function A(t;z) '
thei.r maximum likelihood est:l.ma.tors can be obta:.ned by max:uniz-

ing Equation (5.2.8). ' , S
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Example:

\

A common method of incorporating concomitant variables
intp the model, is to ejypress the parameters of the model as a
simple function of thegg variablés. An example of this is
giveﬁ by Bailey et al (1977) where they thave used a hézard rate

model of the form <:”” ’ ' .

) -

A(t) = aexp(-Yt) + § (5.2.9)

where
t >0 is the time e‘gpsed since graft,and . h
i - ’

@ >0,y >0 and 6 > 0 are the parameters to .
h |
analyze data on survival of 748 kidney transplant

’

case. '

o £ ' ) ¢

\._
The authors introduced two concomitant variables:

1 1f male

2 if female

"\ zZ,= agf~£}E\§kg£§) of the recipients.

. The parametérs ¢, Y, and 6 in Equatidn (5.2.9) were xeplaced

by -

\ ;
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\(:, ‘= exp (o.o+alzl+azzz) }

\
Y = expy +y;2,47,7,) (5.2.10)

AN

Estimates for the nine parameters were obtained using the maxi-

mum likelihood procedures.

There are diffeyent expressions of the general model but

we shall not go J'.ntz_) detail here. We give one form of it helow:

Suppose instead 'of one group we have k groups Alevels

of a factor, treatments) in the experiment. Then, in the general

case, the hazard rate function for each group might be of

-

different form. ’ ]
s

For the jE-Ill- group, Me fine \

A

r ‘ .
th ., . . = th
Let (Jk} denote the k=2 individual in the j—= group,

(t:2)7= A (e32i8y) 3=L,2,..,k  (5.2.11)

tjk be the time at which (jk) is last observed, a.r‘td‘

J/ ?.jk = (zljk"“'zpjk) be the 1 x p vector of covariates.

Define g :




~, . .- o o e— e T oty oy

N 1 if (jk) died at tjk

§,, = (5.2.12)

0 1if (ik) was alive at tjk

Let nj be the number of individuals followed-up from t = 0

161

4n

the jEE subgroup“with n, + nz.f ooy T ng = n., The likeli-

hdod funétion is §¥
L 1 J;j[x (ti 12 )]ijs (t.viZ..)
je1 k=1 3 3k!E3K s L 1
where '
tjk '
\Sj(tjkggjk) = exp[- [ Aj(tigj%)dt1

o

Kay (1977) discusses this model.
7

5.3 HAZARD RATE FUNCTION (ADDITIVE MODEL)
T - )
For the last feW years two types of hazard rate have
§
attracted considerable attention. They are the Additive and

the Multiplicative models. Probably their attractivéness'may

(5.2.13)

be due to their mathematical simplicity. One type of additive -

model is given by Fiegl and Zelen (1965). An examé&e og,the

‘ “
multiplicative model is the exponential-type hazard functions

.

discussed by Cox\$l972) which'we consider in the next section.
o

3
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* o
' \ Generally, the additive model is defined as .
) : .

. , p L
; / AMerZ) = A6 + TRy ()9, () (5.3.1)
i - . i=1
;

' where . ' \\
' \

A(t]) is the underlying hazard rate. :>’

we note that hi(t)‘s dre functions of t only (in special cases
they can be polynomials in t), while the functions gi(zi) = .

gl(zllél)'l 1,...,p) \do not depend on t. . ' f\\}

By appropriate definition of zis (for example,

TV
>

zi'= log Xs where’ X4 is the original measurement), we can

represent Equation (5.3.1) as a linear function of Zis, that is

o -~
~

T R A TR T

}

s ~A(t3Z) = A(t) + z hl(t)z - (5.3.2)
i=]l ~ !

g~

¢

When the hazard rate does not vary with time then

ST

J 1 ut;g? =8, + (5.3.3)

t
VAR

131 # i” i

- 7 ’

where ' B ’

Z; = 1 is a dummy variable. ) {~

~Qne should note that the values of the Rg's must be such that

[4 s ~
t%;féondition B8'Z2 > 0 s satisfied. |

e e bt = ot s bt 3 et Mo 4 e % e ey a A
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1 For any given set of 1!s, the linear function on the
- right-hand side of Equation (5.3.3) givgs a constant value;
thus as discussed earlier, the surviyal distribution is the
exponential. Because of this, survival models with hazard rate

defined by Equation (5.3.3) are referred to as linear-exponential.

-

For the kﬁg -individual we have - &
~ P * '
| ) X(tjgk) = iio Bi zik o~ (5.3:4)
! | ~

\
} The likelihood function for a random sample of size n is-

.‘ »
{ L 3 {¢ § 8 X@ )6k xpl-( § 8, Z,. )t 1} (5.3.5)
= ., ! exp - 3 3 » -
k=1 i=0 + ik j=g L ik
®
where ,
v 1 - if k died at tk
§ = &
k .
0 if k was alive at tk .

n P P ,
logL= £ [§ log(ZL B, Z..) - (L B, Z, )t ] (5.3.6)
m1 kX goo P1 B T UL, Pa B B (54360
Thig leads to (p+l) maximum likelihood equations

. .
+ .
, '
e *
vt ~
e
.

-t
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. -
= ' 8, 2 ' ’
9 n ) n - -
_lg%_L = x _.{Di_k - I 2y t =0,%=0,1,...,p (5.3.7)
2 k=1 5 Bizik k=1 .
i=0 e )

Byar et al (1974) have used this model in analyzing mortality
of patients; With cancer of the prostate.
5.3,1 A Case When the ﬁean Sdfvival Time is .

A Linear Function of a Concomitant
- Variable Z

In clinical trials, survival time is typically measured .
as.the time from diagnosis‘to death or the time from the in%tia—
tion of a specific treatmenf to death. In some studies of
chronic diseéses, the survgigz;time is the only quantitative
response variable available for analysis. Often in addition '
to the survival time, theére are objective measures available
which indicate the seéerit} of the disease at the time the ‘
ipatient first came under observation.

For ex;mple, f%‘leukiyia the white blood count at
diagnosis is a useful concomitant variable for the analysis of ~
' survival. Leukemia is a cancer charactg;izgd by an .over-prolifera-
tion of white blood éells;\ﬁhe higher the white blood count, the
more severe the disease. When predicting a leukemia patient's
survival time it is realistic to make the prediction dependent

’

on white blood count and any other variables which are indica-

tors of the progression of the disease. !
' y f !

-
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-

Z) Fiegl and Zelen (1965) ?pveloped a method where surviv-
al/time for each patient is assumed to have a gfngle exponent-

ial distribution in which the parameter depends on one concomit-
[

ant variable noting that the extension to more concomitant

variates ié relatively straightforward. -
Let tl'tz"“'tn be a sample of n independent .

th

survival times where the survival time for the i patient

has the probability density function

i"l,z,.-.,n (5.3.101)

rd

Initially, we assume that all patients are followed uﬁ%il death.

Furthermore, let RyrXgpeoo Xy be observed values of a concomit-

, ant variable such that the expected value of the survival time

- 3 .
for the th patient is

- . L}

3 E(tl) = T— = a + bxi . (5.3.1.2)

Thus thébmean survival time of patients is assumed to be
linearly related to the concomitanﬁ variable. For example, if
the variates x feﬁreéent cholesterol leyels of patients with
acute coronary diseasé, we might expect small values of the
concomitant variate to correspond to relatively large values
of the mean survival time, Note that x; could refer to a

-1

transformed value (e.g., X; = 24

i .) The problem is to esti-

mate the parameters a and b.
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Let the likelihood function of the n survival times

) be written as x ) o

n n ) 7
n - -1 n -1 ,
, = ( He(a+bxi) (exp- & ti(a+bxi) ) (5.3.1.3)
i=1l i=1 ,
having the log likelihood function

n ~ n ;l

log L = - £ log(at+bx,) - I t,(a+bx,) (5.3.1.4)
i=1 S T B +

—

The maximum likelihood estimators may 'be found from Equation

(5.3.1.4) by solving the equations -

al L n ~ o~ "l n - "~ _2
- . ——%%_7 =0 = - iElca»fbxi) + 151 ti(a+bxi) (5.3.1.5)

L

n -~ -~ B n -~ -~
Elg%_k = 0 =2 - I xi(a+bxi) 1 + I xiti(a+bxi)—2 (5.3.1.6)

i=1 b=l

&

[

using iterative methods.

This can be done by expanding the.two equations §3.3.1.5)
. and (5.3.1.6) in a Taylor series to first-order tirms and solv-

ing suqcessi&e sets of pairs of simultaneous eguations.

L, ol - GAaE % ihw She et
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\

If (a ,b n,denote the eﬂtimates at the ktdb iteration, .
the values for the (k+1)—— iteratio re found by solving for
Gak,ébk in the two simultaneous equations below in the two

unknowns Gak,ébk

A6; +B6bk=D

(5.3.1.7)
Bkdak + thSbk = Ek .
where
Say = ay,y = api 6by = Db, - by
VQ
2
* n o~ -~ > —2 n ~ o~ 3
Ak = I (ak+bkxi) - Z'E Y (ak+bk§i)
i=] i=1
i -
ok Guabx )P - 2 B ex, y~3
B, = I x,(a,+b x,. - 2 2 t x a x
c. = 3 x2(a4b.x,)"2 - 2z:tx(a %)
k j=1 X kKT ym1 ¥ by x i
¥ D, = z (a +B x)"L - n t, (a,+b x,) "2
n <
E, = I x (a b x ) - Z x,t (a +b x ) (5.3.1.8)
k =1 4 iﬂl 1 7iVk ki .

-~

First of all, it is necessary to obtain initial estimates a,
and b These estimates (a ,b ) can be obtained from a

straight line eye fit to a scatter plot of the n observatlon
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points (xi,ti) because t., the single observation from the

i
iEE 'patient has the expected value -

—e

LI
-

1

That is, we can take a, and bJ\ by plotting t; and x; )

o
and estiﬁatiﬁg them visually or computing the regression
equation

+ boxi’ i=l,...,n (5.3.1.9)

E(ti) =a,

-~

where the least squares estimates a, and b° obtained
from Equation (5.3.1.9), become the initial estimates in the

iterative .
e v procegure O -

Fiegl and Zelen noted that the maximuq/likelihood esti- d

/‘«“.
mates may easily be obtained by calculating the log likelihood . i
function, equation (5.3.1.4) in the neighbourhood of an initial £

estimate for (a,b).

One should note that the solution °(a,b) must be in the

set a + bxi > 0 for all xi.
-

!

The asymptotic variance~covariance matrix for (a,b) is

obtained from:

i 2 ‘ . 2 N 1-1 JD ~ - a7
gtog Ly g Jem e ) var a  cov(a,b)
- Ja
- =
E‘ﬁzlgg L E(azl L) cov(;;g) " var S .
L Jadb

aps - . -
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Carrying out the necessary algebraic manipulqtiona
) \
var a = A Z xi(a+nxi) (9.3.1.10)
L2 i=1
var b = a7k 3 (athx ) "2 (5.3.1.11)
. i=1 .
-~ (ﬁ la 2
cov(a,b) = = A by xi(a+bxi)
~ i=l
whHere : ) A
A [z (atbx,) 210 I (avbx,) ™21 - [ 3 x, ( b' =29
= x a+hbx at+ - L xX. (a+bx. .
-1 i j=1 i Timp 1 it
and the parameters are evaluated at (a,b) = };,B). r ‘
5.4 THE BAZARD RATE FUNCTION (MULTIPLICATIVE MODEL) .
« The generi} multiplicative model is defined as ‘
A(t:2) = A(t)g(z) - (5.4.1) ;
y ’ R . :
 where A(t) is an afbitrary unspecified base-line hazard %
function for continuous T, and g+{Z) = g(Z;8). Cox (1972) ’ ]
NV - =T : ' ;
introduced models in which 'gjgxg) = exp(g'g), so that we have
: , p .
1(75) = A(t)exp(p'Z) = X(t)exp(itl Bj%;) (5:4:2)
or - | e
-
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log A(t;2) = log A(t) + I B33y ' (5.4.3)
~ i=1
o .

In this model, the covariétes act multiplicatively on the hazard.

¢

An advantage of model (5:4.2) -is that no restriction need -to be
imposed on the value ?f the expression g'g, since exp(g'g) >0
always. If A(t) = A,‘ Equation (5.4.2) feﬁﬁcea to the exponen-

tial regression model Aexp(B‘'Z).
‘ ~ o~

-

s The conéitional density function of T given 2 corres-

ponding to Equation (5.4.2) is=s

-

. * t *
£(t;2) = A(t)el'Z exple™®'Z s A(wauwl - .

o . v

Lad

The conditional survivor function for T given ‘2 _is 4

o

» ‘ exp(B'z)

—_ S(t;3) = [so(tl\‘ "t
where N
; ‘® t ’
o So(t) = expC- of Ad%)du] K

e w ’ -

Let us consider the general multiplicigivé model (5.&.;).@

- : , ' 9
-

- MESZ) = A(E)GUB IR (5.4.4)
where | r
gggj;gf ﬁai;a known fpfm, while ’ ' -\“' “ .
° A(t) . is unspecified. . . \\.
| A ‘
> i N

PRV PR
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\ the ML-estimators of B's _ when th

- specified

¢
o Je

' We assume that the Z's 'are independent of t; then for two

& individuals 3 ‘and ' £, the hazard \rates are in 'éonstant ;
. ‘ |
ratio, g(zj,B)/g(Z i8) whatever the time-t. A model of thie’

kind is ca‘lled a'proportional hazetd,m\odel. We can obtain Nl

parametric form. of §(Z;B)
. J ~ o~
%

b

> To apply the ML-estimation, ft"m{‘?g/d be convenient if

A(t) could 'be expressed in terms of some (not too numerous).

parameters and one way of goinp‘\abou{ this is skilppose ‘it

] /

’t&.\be ﬁ:ons-tant over a number of j(ntervala of timeT™ Divide the

-

».
" range of var,ietion of t in w “fkaed (consecutive) intervals

I = (typety s *k*1,2,...,w. Supppse Lo L

.‘ / o I |
' /OACE) = A, £ tly <t <ty ’ (5.4.5)
and so‘;:he hazard rate is ¥ .

I - ¢

- " ' X(t;2) = Ak Q(E'fé)(f/or;tk-l < t <t . (5.4.6)

’ .

ipdivg.éuals‘ who were in the

3

study ‘at af:y t-ﬁne in I"\A Iet Isz denote the part’of "Ik fo

Let Sy * bg the set of all

-which individua& a was iga the tﬁdy, and hkl is the length

4
of Ik The length of i is t‘{-t k=1 = Py- If ‘L 4ds in

g
the- study for the whole of Ik' then hky, = h,. If information

on exact time of withdrawal is /not available, we might?use the °

approximation hk 8. 5 a(t -tk l/ if ent/{\ and/withdrawal, or
death, bogh occur in Ik' on might take hkz %(tk tk l)

-

¢ s . R r

4 ~
" . . . . . R 1 A . / . . - -
. !I.I'..S' " . }
‘3' L ' LI 2 r \’ o
. 3 A h ” - ‘. -

S L.
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' X8 the .\parameter's\ g'/akﬂ:mé, the  ML-estimator of Ak is -

° P . t
- ‘g : ) . . . .
. . » o

A .

b' « ’,
( . ~ 0

For the perind exposed to risk in l’.k./ the cﬁﬁu.lati.ve .“
hazard funct:.on for the :.ndivz'.dual % is [using model (5. 4 6)]

%4
A2 = Ay Ix{. gz afak = oy by 90z 18) . (5.4.7)

\ -

-7 ‘ . ¢
e v _{1 if & dies in I

(5.4.8) '
0 otherwise v

y ‘ (‘r . S
The contribution td the likelihood for observations over the

intgrval Ik is ‘ - T o
&
o \

-

OBl = T Dy sG] k"exyt—xk fieg (23781 3(5.4.9) K
eSk /

’ ' , ’ . ’ o N -
'T‘her'overall lﬂ(elihood fun’ctloﬁ is \{ -

- ¥

-~

|
PSRN, NU.

'n
.4 W
g . , “
@ . ’ . L(Xll ¢se 'Xw'g) 1 k(}\kl B)

Il ”~

(5.4.10)

\

g » ) - ' . ' e ' .
. . . - « N ¥
- “ 'z ’ A 3
’ ‘ Coa T el k" ‘
k(el = (5.4.11)

9’(Z 18) R .
/\/les hk!' o . . .

“The nﬁneratdr, L sz, is the total number of deaths in I

k'

-

Ty s ’
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>

If no deaths are observed in /Ik’ then ~)\k = 0, whatever be 8. 1

.
* We observe also that if there are no concomitant variables,

-~

: . = _ number of deaths
[:_.e., g(zz.Bl = 1], we obtain the formulas )\k_-f exposed to risk

If we substitute Equation (5.4.1ll) into Equation (5.4.9) ' we °

obtain the maximized value of the Iikelihood factor Lk()\k,g)

given 8 ‘ ')
[ N '}
r 68 L &,
- 1 pes, K g . :
v L (B) = e - - : i g(Z_ :8) 5.4.12)
e Ilf, e gesx AR ¢ é
R.eSk k
where

Sl: is the set of indivi\éua'.ls dying in. Ik.

*

-~ "
The maximum likelihood estimators of B;B8, maximize ~

, LA b
- t l E‘ ~
i L(s) = HLk(B) . -
. ‘ k P
" . . \

employing the aid of computens’

»

r » ~ /
The estimates B are usually obtained by nuylél a@l\ysis,

- 5.4,1 Cox's ."Cofidifional Likelihcod"

«
‘ .
< ‘ * . ‘
ro .
1y P > ¢ <
- . N .
. A s .
’ .
.

In an J.mporta.nt paper, Cox (197;) proposed analyz:.ng the
model where the hazard rate . - 4 e 0
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* ‘ 1

s dF (t;2)°

v A(t;z)dt =
' I {1-F (t;2) }

for survivayfh independent variables I = (zl, ..'.,Zp) is

given by

h ) . \
" 4

)

-

s : . ‘
A(t;z) = A (tlexp(B'zZ) . ' (5.4.1.1)

[} T . ¥
This is equivalent to assuming a Lehmann—alternativ\e family of

distributiohs
o ' ex (B'Z') /
1~ F(t;2) = [1~F(t) 197PL02 _(5.4.1.2)
N e o
where -
« A t
J F(t) =1 - exp{— I A (u)du} (5.4.1.3)

v , Q

X .
The function A c‘('r.) is an unspecified function of time, and the’
multiplicative factor exp(g'%), where g = (Bl,...,ep) an un=-

é ) ~ ,
known vector of parameters, gives the risk of failure at co-
S \
variate Z relative to that at 2 = 0. Kalbfleisch and . r
I3 \ ~ F .
McIntosh (1977) and others have nbted thgt the model (5.4.1.1) .
v Py \ a

permits .2 to vary with time.

Let us first deal with continuous time and asgume that
. M ~ ! )

failures’ occur at distinct times, tay < e < tm)" Assuming

4) - - L - . <
the model (5.4.1.l1), Cox advocated a conditional likelihood..

) R e ti ‘ :
approach. to estimating: §. Namely, let 'Rj denote the risk set’

~

T { Nl L
‘at time t. - 0, that is the set of individuals who have not

el
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-

failed or been censored by that time. Further, let Zk denote
R
the value of 2Z for the K—Lh ¢indiviaua1. and 2 (3) the value

for the individual failing at time t(j)' then Cox (1972) gave

[

4
exp (B HzZ)
il (5.4.1.4)
j z eXP(S'Zk) *"

: keRr. T : ) S

] :

as a likelihood for inference about 8. , 6‘--1‘/

& .

y

In other words, -?ox's argument is that, condition on a

. ™

death occurring at time tj :\%d thin,set of people known to be
7 4 o .

alive at tj (gplled the risk set, R(tj) then the probability

that the death happened to the j-t—h— person is just

. )

. At ) exp(B'2 4)) (5.4.1.5)
p; = i B T
i A (€ B0) r o exp{fTa
keR (t 3k ke ) gk

Cj:)> R(tj)

! ’
Mul}:iplying the . pés for\gach observed death gives a likelihood
depefxding only on B asigiven by Equa\tizm (5.4.1.4), which we
‘denote by ﬂL(g)\[i.e. , L(,g) is defined to be the product of the
terms (5.4.1.5) over all the uncensored points.] Various dis-.
cussants (Lindley 1972; Kalbfleisch and Prentice 19'{?; Breslow
1972) noted that Equation (5.4.1.4) is not the claimed S;ﬁditi';x-
al likelihood and Cox (1975) admitted misleadingly calling it a
conditional likelihood aad l_ater justified its uge as a *partial"

likelihood. Kalbfleisch and Prentice (1973) showed that .

Equation (5.4.1.4) is a marginal likelihood of ranks under the

| ’ B

!
{
i
{
g
i
4
i
.
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JU
very restrictive assumptions,' ‘Jhat there is no censoring,
} ' ‘
and that Z does not depend on time. Thus
Log L(B) =8 I z(.) - I log( Z: exp(B'zk)) (5.4.1.6)
! ~ uc ~'J uc R(tj) ~

’

Where the summation is over all the uncensored point-:s in the

sample. The derivative of Equation (5.4.1.6) is

Ve
2,., — 1L Z, exp(f'z,)
5y o oI EE®) ("‘3) Rieg)™c T K a1y
U = = 4.1,
~ 5.,5 uc pX exp(B' Zk) '
. R (t. -
. =

and th%value of B for which this equals zero is usually
) . 1] [
found through iteration on a computer.

¢

]

7

We. should note that the “hazard rate- function Ao(t)
does not enter the likelihood in Equation (5.4.1.6). Cox argued

1&5; since Xé(t) is unspecified in the model, i}:? could be . p

zero between uncensored tj and therefore the sample contains

no information about g except at the uncensored points. Once )
3 - ‘

-~
L]

-

B hds been’‘obtained Cox used a product-limit épproach to derive -
~ ~ -
[}

an estimate of the distribution F. ' o
- i

\

ey
In the discussion of Cox's paper and a subsequent papey -

I s - .
'(1(974), ‘Breslow proposed a slightly different likelihood func- \}

tion based on the ass?ﬁtion that the hazard rate function

A o(t) is constant befween uncensored observations. The maxi-

mum likeliho_od estiméte of""é ¥*s the same but the(Breslow
. /’ ~ ) \
N . ' .
/ . \ ' ' 4

5
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A ’
estimate for  F is simpler than Cox's estimate.

<

To accommodate discrete failure time t e (tl'tz"")
Cox generalized Equation (5.4.1.1) to a logistic regression
model in which the conditional failure probability at £ = tl

“wgatisfies

J
AlEy,2) ' A (ES)
e R s v il (5.4.1.8)

The multlpllcative factor exp(g'z) now has aﬁ'odﬁé ratio,
rather than a re&ative risk interpretation. The model (5.4.1.8)
will approach Equat;on (5.4.1.1) as each Ao(ti) fé?wi=l,2,...
bé%qmes small. Note that the odds ratio can be allowed to

vary with time by permitting components of Z +to depend on t.

We note also that, upon setting o,

i = Ao(ti), Eguation (5.4.1.8)

can be rewritten as C .

N ‘ : ¥

exp (0, +8"2) u

A(ti,z) = (5.4.1.9)
(L + exp(ai+§'§)) .

The models $5.4.1.1),(5.4.1.8) or (5.4.1.9) apply directly to
prospective failure-time studies’and in either case, yield a

partial likelihood (Cox (1972,1975)) for B that' is the

b

product, ovér each distinct failure time, -of terms

w

r .. . ,
L exp(a'zi)/ z H exp(s'zw ) S . (5.4.1¥%10)
i=1 ~ - Yy i=1 i
| A
B N
7: ‘ ,,”'; \

\’.
C
~N
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" where
ii,...,zn denote the covariate vectors for the n
i ihdividua;s at risk at that failure time,
Zy1Zgyreealy correspond to the%failures, and
¥ denotes thd set of all subsets (wl,wz...,wf)

of size r from {1,...,n}.
<
¢

J ‘
Farewell and Prentice (1980) noted that the denominator

"

in Equation (5.4.1.10) is computationally impracgticable for

mations to Equation (5.4.1.10} may be considered. The

v

suggestion of Peto (1972), gives
r : n
n exp(B'zi)/[(r){n Z exp(B'Z; )] ] - (5.4.1.11)
i=1 o~ i=l

. «
as an‘gpproximébionrto Equation (5.4.1.,10). " Efron (l@??)
suggested that a more accuraté approkimation may be
& - r-1 n

H exp(B8'Z, )/ n{: exp(ﬁ'zy) -1 E exp(ﬁ'z )}1(5.4.1. 12)
i=1 i=1 i

i=1

v

oot

. e
Either approximation is.likely to be adequate if r/n

.is small for mos} failures; in parficular, Equations (5.4.flllf

and (5.4.1.12) are equal to ﬁquation (5.4.1.10) if either r =
S o~
or B = 0. Approxiffation (5.4.1.11) is used im & number of
-

V,‘

B! # 0' if both r and n-r are at all large. Two approxi-- .

1

. . ‘ e
"maximized"” likelihood of Breslow (1974) ,~which gengraliz%ﬁ a

4
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u D :
computer programs that aim\ to fit Equation (5.4.1.1) to failure
time aata; Farewell and P?entice (1980) have examined the
_accuracy\’é‘f the approximations (5.4.1.11) and (5.4.1.12) for
situations in which T/n values may be Iarge, for example,

r/n = ¥, at most failure times. The authors found out that

Equatioris(5.4.1.10) and (5.4.1.11) turn out to be generally

-

. very inadequate with large values of r/n. '

Breslow (1972) points out that ifhg)\o(t) = )\i ‘for

t,, <t < t,.., i=1l,.,..,k for distinct- uncessored ordered
(i-1) — (1) "
failure times ta) ¢ t(2) < el < t(k)’ t(O) = 0 one obtains

the Kaplan and Meier (1958) product limit estimate for probabil-

\.'— .
ity of survival at the point t(i) when BA = 0', i.e.,

where
[

-~ ) * - \
B‘\S (€ 3)) is the estimated probability of survival

PR

2 at the point t(i)' and

s N .
, , nj is the numbex ofLininiduals live in the
- trJ.a} at tj .

4
14

Breslow shows how the estimates in S('t( i)‘) can be extended
Y to thg/case when B' g 0' and ' is the estimator.

s « BN =

i Kbt 2

e
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