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ABSTRACT

Spectral Estimation for Congestion Control

in ATM Networks

Jean-Frangois Huard

This work represents the first step in a new approach to congestion control n
Asynchronous Transfer Mode (ATM) networks. By monitoring the traflic stream
at any point in the network, spectral analysis is performed to estimate the traflic
characteristics. Traflic is segmented into a number of distinct classes which can he
identified by their power density spectrum. Limited buffering is allowed at the input
ports of the ATM multiplexer to resolve short-term conflicts. Using the correlation
properties and spectral characteristics of the variable bit rate sources the estimation
can be performed. The voice source model is a binary Markov process which is
widely used. The video source model is an autoregressive Markov maodel which
is gaining the most attention. Data sources are modeled as Bernoulli and Poisson
processes. On the basis of the simulations and real video sequences analysis, spectral

analysis seems to be an appropriate technique to identify the sources of traflic on

an ATM link.
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SOMMAIRE

Spectral Estimation for Congestion Control

im ATM Networks

Jean-Frangsis Huard

(‘e travail représente la premiere étape d'une approche nouvelle pour le controle
de la congestion dans les réseaux avee mode de transfert asynchrone. L'analyse spec-
trale est employée pour estimer le nombre de communications en cours pour divers
fypes de sources tel la voix, la vidéo et les données. L’étude de la composition
du trafic pent étre faite a n'importe quel endroit a I'intérieur du réseau grace a
Futilisation de analyse spectrale. En effet, en utilisant les caractéristiques statis-
tiques de chaque type de sonrce-—moyenne, fonction d’autocorrélation ot spectre
de densité de puissance, Pestimation du nombre de communications en cours pour
chaque classe de sonuree est rendue possible. Le modele de source utilisé pour la
voix est un processus de Markov binaire tres connu. Pour la vidéo, un processus
antorégressif tres populaire est emplové. Finalement, les sources de données sont
modélisées a Taide de processus de Poisson et de Bernoulli. En se basant sur des
simulations & lordinateur et en utilisant des séquences expérimentales de vidéo,
Fanalyse speetrale apparait étre une technique appropriée pour 'estimation de la

composition du trafic dans les réseaux avec mode de transfert asynchrone.
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Chapter 1

Introduction



“Imagination is more important than knowledge”

Albert Einstein

1.1 Overview

The Asynchronous Transfer Mode (ATM) seems to be the preferred transport mode
for the future Broadband Integrated Services Digital Networks (B-ISDN) as de-
seribed in Recommendation 1121 of CCITT [1, 2). These networks will have to
support a large variety of services such as voice, several kinds of video types: con-
versational, entertainment and instruction video, as well as low- and high-rate data
transfer.  An important feature of the B-ISDN is the ability to provide variable
transmission rates to achieve a constant quality of service. Since each source may
generate information at a variable bit rate (VBR), an improvement in bandwidth
efficiency can be achieved by the means of statistical multiplexing. Thus, the ATM
links will carry a statistical mixture of traffic. To prevent congestion, call admission
control and policing can be carried out at the input nodes. These congestion control
policies are preventive and cannot be applied at an interior point in the network, at
the output of a switch or multiplexer for example. At that point, all that is avail-
able to predict the onset of congestion is the traffic stream. Using this information,
Hayes[3] suggested an approach to congestion control using spectral analysis. This

three steps proposed approach can be applied anywhere in the network:
I. Estimation of the number of off-hook calls of each class (calls in progress).
2. Estimation of the state activity of the calls in progress.

3. Prediction of the time until onset of congestion based on the state activity

estimated in 2.

This thests concerns the first step.

N



A basic premise of the study is the limited role of buffering in the network.
Buffers are important to resolve short-term conflicts at the output of the ATM
multiplexer, however they cannot be large enough to store packets for any length
of time. The role of routing is also very important. The multiplexer (or switch)
must route all the packets of a source-destination pair to the same output port. The
limited buffers and the routing procedures allow one to assume that the correlation
properties of the VBR sources are carried at the output of the multiplexer. The
estimation of the number of off-hook calls is done by means of spectral analysis
using the correlation properties of the sources.

In the process of the development of congestion control schemes for high-
speed networks, many avenues have been investigated [4, 5, 6, 7]. Spectral analysis
of the mixed traffic appears to be a relatively new approach. It is understandable
that this approach has not yet been widely investigated since the new algorithms
for compression of digital video are not well understood [2]. This leads to a lack
of information on the basic statistical characteristics of the VBR sources that the
ATM networks will have to support. The new congestion control schemes must he
flexible enough to handle the future types of sources and be adaptive such that as
the research in teletraffic characterization and source modeling will progress, the

schemes can be modified to be more efficient.

1.2 Research Objectives

The primary goal of this research project is to estimate the number of off-hook calls
in progress on an ATM link. What does this mean exactly? It means that we want
to monitor the traffic stream anywhere in the network, and somehow estimate the
number of calls that are in progress on that link, and that, for cach type of source.

Globally, two specific questions have to be answered:

1. What characterizes each type of source? For ezample the characteristic fealures



can be oblained from the autocorrelation function and power spectral density

of the source process.

2. How can the desired characleristics be retrieved from the ATM traffic stream?

For examplc, power spectral estimation or filtering can be achieved.

The second part of the project is very broad. Although several strategies have
been studied, all possible approaches have not been explored. In this thesis, only
certain fundamental techniques to estimate the traffic composition are investigated

through simulation.

1.3 Contributions

The estimation of the number of off-hook sources on ATM links introduces new
challenges if all the aspects of the real systems are to be taken into account. This
rescarch tries to deepen the comprehension of the process arising from the multi-
plexing of many types of VBR sources. The following contributions are the results

Jf this work:

I. The characterization of voice and video sources packet processes by their au-

tocorrelation function and power spectral density.

2. Assessment of the suitability of the various techniques to estimate the charac-

teristics of the traffic.

3. A comparative study of these strategies by computer simulation on simulated

streams.

The results of simulation show that different classes of sources can be dis-
criminated: furthermore, with Monte-Carlo simulations, the number of sources of
vach class can be estimated. Unfortunately, when sampling a physical system, the

sampling duration is not enough long to get rid of the phase effect between the



sources, yielding nonergodic processes for the observation period and distording the

spectrum.

1.4 Thesis Outline

This thesis is divided into six chapters. The chapter 2 presents the basic coneepts of
ATM networks: statistical multiplexing, buffering, packet contention, time slotting
and cells. These notions enable us to define the packet process arising from the
multiplexing of several sources.

The third chapter describes the source models used in the study. The binary
Markov process for the voice source is presented first. The auloregressive model
for the average bit rate process of a video source follows. The data models are
briefly presented in the last section of the chapter. The theoretical autororrelation
functions and power spectral densities are derived for each model. From this, the
characteristic features of voice and video sources are obtained.

Chapter 4 describes the techniques which can be applied to estimate the
wanted characteristics. The classical estimators of power spectrum such as peri-
odogram and correlogram are presented first. The model-based approach immedi-
ately follows. Filtering strategies such as decimation, notch or comb filtering to
extract the power of characteristic harmonics conclude this chapter.

In chapter 5 the simulation results obtained from simulated and real traflie
streams are presented. Coinparisons between theoretical, simulated and experimen-
tal autocorrelation function and power spectral density are presented. This chapter
also provides a comparative study of the strategies elaborated to estimate the num-
ber of off-hook sources of type which are in progress.

Finally the conclusions are given in the sixth and last chapter. First the results
of this project are summarized, then recommendations for future research projects

are enumerated.
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ATM Networks



The asynchronous transfer mode is considered to be the preferred transport mode
for the B-ISDN because unlike traditional synchronous transfer mode system (e.g.
switched TDM) it is able to support a wide mix of services over a common network.
The ATM provides a nonhierarchical structure in which short fixed length packets
termed as cells, from different connections (source-destination pair) are multiplexed
independently of their bit rates and burstiness. To achiceve good performance, all
connections may be statistically multiplexed to take advantage of the variable in-

formation transfer rate of cach type of application.

2.1 Variable Bit Rate Sources

A variable bit rate source is a source whose bit rate depends on several factors sueh as
information content, coding algorithm and quality of service (QOS) requirements [8].
For example, consider a PUM voice source that would continnously switeh between
a silent state where no packets are generated and an active state where packets are
generated deterministically at a constant time intervals. Other examples would be
subband coded video, discrete-cosine transform and DIPCM coded video,
According to the coding algorithms sclected, the information stream will be
more or less bursty and correlated. It is these properties, the burstiness and cor-
relation that we will use to characterize the sources in chapter 3. All the types of
sources which are studied in this thesis can be modeled at different levels which
are encapsulated in each other: the call level, the burst level and the cell level. At
the call level, the source can be on-hook or off-hook. At the burst level, which s
encapsulated in the off-hook state of the call level, the source can either be inidle or
active state. When the source is in the active state, it packetizes the iformation and
sends it according to its procedure; this layer is called the cell level. The Figure 2.1
is a good illustration of this simple maodel. In the foregoing, it will bhe assumed that

at the call level. all sources are in the off-hook state (all calls are in progress).
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Figure 2.1: Simple ATM source model.
2.2 ATM Statistical Multiplexing and Buffering

Statistical multiplexing occurs when the capacity of a channel is less than the sum
of the peak bit rates of all the VBR sources which are in progress. The statistical
gain in bandwidth efficiency is the excess of the sum of the peak rates of all sources
compared to the channel capacity. It should be noted that the sum of the average
bit rates of all sources has to be less than the channel capacity for the system to
be stable. When achieving any statistical gain, a collision phenomenon arises and a
congestion control scheme must be applied. A collision occurs when several sources
want to nse the same resources, in this case a cell or time slot. To achieve a given
QOS. buffering must be applied to reduce cell loss. On the other hand, to reduce
delay of real-time tratlic such as voice and video, buffering should be minimized. For
example, if 10 video sources characterized by ar average bit rate of 5 Mbits/sec and
peak rate of 15 Mbits/sec. would share a channel with a capacity of 150 Mkits/sec,
buffers for 10 cells would be enough to ensure no cell loss and maximum delay of 9
cells. However, if 50 sources with peak rates of 1, 2 or 3 Mbits/sec would share the
same resources, it is not yet clear if an acceptable QOS would be obtained.

A Dbasic premise of this study is the limited role of buffering to resolve short-

term contention. The assumption of the limited buffering enables us to assume that

[0/}




the correlation properties of the VBR sources will be carried out on the ATM links,

These properties will be described in detail in chapter 3.

2.3 Time Slotting and Cells

The ATM channels are time slotted into fixed intervals termed as cells. The term
asynchronous is related to the sources which are asynchronous in the sense that
they have no common time reference other than the common channel cell. Fach cell
can accommodate one and only one packet of fixed size. As defined by CCIT'T, a
cell consists of 53 ortets, 5 of which are called overhead and are reserved for the
network aud 48 which are for the user information with respect to the ATM layer
and are termed as the payload. The header of cach cell contains, among others,
the virtual channel and virtual path identifiers. The payload contains all the user
data and ATM adaptation layer information [9]. The ATM adaptation layer is the
one that has to integrate all the connection-oriented services such as VBR services,
Figure 2.2 is an illustration of the cell format. For example, the PCM voice sonree
will be packetized 1o form a 53 octets packets, five of which will be the ATM cell
header. In the remaining 438 octets, four will be used for the ATM adaptation layer
header, leaving the voice information field to be of 44 octets, Consequently, cell
formation would take about 5.5 ms for a 64 kbits/sec PCM coding scheme.

In the future B-ISDN environment, the services at the user network inter
face are to be offered first at the basic rate of 155.52 Mbits/see, and Jater at
622.08 Mbits/sec and more. Let 7 denote the duration of an ATM cell. Considering

the basic ATM rate, the duration of a cell is

T =(0+ P) hits % I]' = O+ 71) see, (2.1)
JALS L
SCC

where P denotes the pavload size (in bits), O the overhead size and L the bit rate

of the ATM link.

9




octet

V(I
VPI
CLP
GFC

1 2 3 4 5 6 7 8 bit

GFC (4) VPI (4)
VPI (4) VCI 4)

YCI (8)
VCl (4) PT (2) Res cLp

HEC (8)

AAL (4X8)
User infomation
(44X8)
Virtual Channel Identifier PT Payload Type

Virtual Path Identifier
Cell Loss Priority
Generic Flow Control

HEC Header Error Control

Res

Reserved

AAL ATM Adaptation Layer
Figure 2.2: ATM cell format.
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Figure 2.3: Example of ATM traflic stream.
2.4 Multiplexing of VBR Sources

In the process of estimating the number of off-hook sources from the traflic stream,
all that is available is the presence or absence of a packet in a cell. From that, we

can form a binary random point process denoted by

. 0 if the cell is empty
T() = 1=1,2.3... (2.2)
1 if the cell is full

The random process T'(7) is formed by the multiplexing of several VBR sources,
When contention occurs, one of the colliding packet is sent to the output port while
the others are kept in a contention buffer to be sent during the suceeeding colls,
Although the role of buffering is limited, throughout this study it is assumed that
the contention buffers are large enough so that overflow can he neglected. Figure 2.3
is an illustration of the multiplexed traffic. Arrivals to the multiplexer are denoted
by up-arrows and output packets (or filled cells) by hachured hoxes. The sequeice
of zeros and ones represents the binary random process T'(7) for this example.

The operation of the multiplexer is non-line.ar and diflicult to express for a
signal processing approach. I no contention c.ccurs, the multiplexer can be viewed
as a simple adder. The m1ltiplexing of »everal sources causes contention that are
resolved by adding delays to the packets. As a first ent, the multiplexer will be
considered to act as an adding device, neglecting this non-linear phenomenon. This
delay phenomenon that is caused by the multiplexer buffer is often called jitter, For
the simplicity of the theoretical analysis, it will be assumed that the resulting traffic

process T'(i) is the sum of the traffic of the multiplexed sources.

11



Chapter 3

Source Models
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In this chapter, the models of sources are presented. First, the binary Markov process
for the voice source is presented. The Section 3.2 presents the VBR video source
model which is gaining the most attention [10, 11, 12,13, 14,15, 16]. The model used
is an autoregressive process for the average bit rate of a video source using a DPCM
codec. The models used for the data sources are presented in Section 3.3. Bernoulli
and Poisson processes are used for the data modeling. For each model presented in
this chapter, theoretical cell autocorrelation function and power spectral density are

derived.

3.1 Voice Modeling

The voice source modeling can be done at different levels: the call level, the burst
level and the cell level as shown in Figure 2.1. At the call level, the statistics
are well-known and continually used by the telephone companies to evaluate their
equipment needs and to plan the expansion of their networks. We will suppose
that the sources are off-hvok at the call level. At the burst level, work was done
in the sixties to develop Time Assigned Speech Interpolation ("TASI) system for
transatlantic communications. Now, this system uses digital speech interpolation
(DST). DSI means that the voice packets are generated only during active periods
or talkspurts and not during idle or silence periods. This model is widely used for
telephone speech modeling {15, 17, 18, 19] and is often referred as the ON-OIFF
source model. The ON-OFF model is the starting poimt. o develop the voice model
of this study.

At the burst level, the voice model for telephone speech has two states O and 1,
which are respectively called idle and active state. These states represent the silences
and talkspurts of the source and are assumed to be exponentially distributed with
parameters A and y. In the idle state, no information is generated, thus no packet

is sent to the network. During active periods, packets are generated at a constant

13
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Figure 3.1: Binary Markov Process for voice source model.

rate whose value depends on the coding scheme. Therefore, the model shown in
Figure 3.1 is used for the voice modeling and will be called the binary Markov
model,

Cousidering a time sequence of equally-spaced embedded points, the state of
the process can be observed and a Markov chain formed. Between two consecutive

cmbedded poiuts, there is a probability

p=1—exp(=AAt) ~ AAt (3.1)
of going from idle to artive state and from active to idle state of

g =1—exp(—pAt) ~ uAt. (3.2)

Obviously, Al is taken small enough to ensure that the probability of more than
one transition is vanishingly small between two embedded points. The cell interval

is considered to be a natural embedding point.

3.1.1 Autocorrelation and Power Spectral Density

In this section the autocorrelation function and power spectral density of the voice
source at the cell level are derived.

Let the random point proress of one source be denoted by

o 0 if the source is idle )
X(i) = fori =1,2,3... (3.3)

1 if the source is active

14



The process X(7) is assumed to be stationary for the observation interval. The

transition probability matrix of this two-state process is

l-p p
Q= . (3.1)
¢ l-g¢
where p and ¢ can be obtained from Equations (3.1) and (3.2). The transient

behavior of the process can be found casily,

n__L a0 i (I=p=g t P -p (3.5)
Pra \q p Pty ~q
The burst autocorrelation function r(k) is given by
r(k)y = E[X(@)-X(i+k).
= Pr{X({@i+k)=1]|X()=1} -Pr{X()=1}. (3.6)

The probabilities are easily determined with the transient behavior matrix Q®

,pe o P -

Pri{Xx = - g = —_— 3.
r{X({)=1} T e (3.7)
PryN(i+k)=1|X(@)=1}=q. (3.8)

Substituting Equations (3.7) and (3.8) in Equation (33.6), the burst antocorrelation

function becomes

2
r(k) = (-p—) -[1 + 30— p— M|, for k= 0,41,42. .. (3.9)
p+q P

Equation (3.9) gives the correlation between points set at equal intervals along the
time axis. A value of one indicates activity, i.e. input of data to the system. This
data is packaged into fixed length packets and transmitted over the line. In general,
the rate at which the data is generated is slower than the line rate; accordingly,
collecting data into packets involves delay, called the packetization delay.

We are interested in obtaining the autocorrelation and the spectrum for the
packetized data process. As a first cut at the problem, we make a simple approxi-
mation which shows the correct general trends. A more refined analysis will be the

goal of further work.



Let I denote the number of cells needed to obtain a full packet. If B is the
source bit rate, P the number of information or payload and O the total overhead

(cell header and AAL header) then we may write

P L-P
I = lB-TJ= [B-(O-}-P)J cells, (3.10)

where | denotes the largest integer not greater than . In general, a burst will

not make up an integer number of packets; consequently, there are partially filled
packets., We shall assume that these packets are transmitted at intervals of I cells.
We also assume that the idle periods are long compared to I so that approximating
them as being composed of units of I cells will lead to small error.

With these approximations we write the cell correlation function as

0 ifhs# n-l
R(k) = forn=0,41,42... (3.11)
(k)1 fk=n-I

The factor 1 in (3.11) is a normalization.

The power spectral density of a point process is by definition [20]

PUY = S R -exp(—j2r-k-T - f), (3.12)
k=w—o0
for |f] < F5. and where R(k) is the discrete-time autocorrelation function of the

process, sampled every 7 second. From Equations (3.9), (3.11) and (3.12) the power
spectral density of one binary Markov process follows

2
) = () dL. s sr-2
PUY = (p-l—(]) {/27 2 U —7p)+

n=-—oo

q 1-9°
s , 13
Ip- 144% =29 cos (‘3”17”} o

where 3 = (I —=p—¢). p= AT, ¢ = uT. P(f) is periodic and should be con-

777- As one can see, the spectrum depends only on the bit

sidered only for |f] <
rate /3 and the transition probabilities p and q. Another approach to compute the
antocorrelation function and power spectral density using z-transform techniques is

provided in Appendix A.
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3.1.2 Results for )\ Sources

For Al independent and uncorrelated sources, one can define the aggregate process

M
Xar(i) = ST X, (), (3.14)
=1

where X (7) is the cell process of a voice source, i.e. it takes the value 1 if a cell is

full and 0 if the cell is empty. The autocorrelation function of Xy (1) is
Ry(k) = E[Xp(7) - Xa(i + k)],
= M. R(k)+ MM = 1)-(E[X (). (3.158)

and the power spectral density

Pu(f) = MP(f)-l—M(M—1)(15[,\'}'(,')])2%. Z 5(/_%)

=~

Y i 2. a1 [Rle 4
p+q Ip 1492 =2ycos (2nlT [)

2
7 ] = n
i (G5) A Eov- )

N= -

2 | ol !
AI(M—I)-(;)—ETI) '{757'";0,6”"%:)}' (3.16)

These results are directly applicable to the voice source model. Let the tran-
sitions rates A = 1.3025 and g = 2.295 [18] and use the parameters of the basie
ATM level. The Table 3.1 summarizes all the parameters. For the set of values
of Table 3.1, the theoietical autocorrelation function and power spectral density
are plotted in Figures 3.2 to 3.5. Figure 3.2 is the autocorrelation function for a
single vaice source, and Figure 3.3 the power spectral density. The same is plot in
Figures 3.4 and 3.5 for 100 sources. ‘

We recall that the spectrum should only be considered for the frequency range
bounded by |f| < z77. Outside this range. a periodic repetition of this fundamintal
period, Tl’f’ appears, and is due to the packetization delay. In fact, the packetization

delay produces correlation only between packets separated by I cells, leading to an

17



B PCM bit rate 64 kbits/sec
O AAL and ATM cdl header 9 octets

I’ Voice Payload 44 octets

L Basic ATM link speed 155.52 Mbits/sec
T (Cell duration 2.72634 psec

A Transition ratc (0 — 1) 1.3025 sec™!

g Transition rate (1 — 0) 2.295 sec™!

p  Transition probability 3.55105-10¢

q  Transition probability 6.25694 - 1076

I Packet interarrival 2017 cells

Table 3.1: Set of parameters for a PCM voice source at the basic ATM level.
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Figure 3.2 Autocorrelation function of a single voice source.
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Figure 3.3: Power spectral density of single voice source.

Cell Autocorrelation Function of 100 Voice Sources
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Figure 3.4: Autocorrelation function of 100 voice sources.
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Figure 3.5: Power spectral density of 100 voice sources.

autocorrelation function with null values for all lags which are not integer multiple
of I, introducing repetition of the spectrum when sampling at the cell rate. The
position of the repeated spectrum, depends only on the factor I. which turns out to
be independent of the transition rates A and p, but is a function of the source bit
rate I3 and the transport layer specifications (cell size and link speed). Furthermore,
the magnitude and the shape of the power spectral density change according to A
and g, but the periodicity of the spectrum remains the same. In conclusion, this

periodicity of the spectrum will be used to identify the voice sources.



3.2 Video Modeling

There exists several models for VBR video with the autoregressive Markov process
gaining the most attention [10, 11, 12, 13, 14, 1§, 16]. Section 3.2.2 presents this
model. A Discrete-State, ('ontinuous-Time Markov process proposed in [11] is also
used for performance analysis of ATM networks {21]. This model is presented in

section 3.2.5.

3.2.1 Parametric Modeling

Many random sequences encountered in engineering can he approximated by a linear
difference equation of the form
P q
r(n) = Ea,.r(n -+ Z byw(n — j), (3.17)
=1 =0
where @, # 0, b, # 0 and w(n) is a white Gaussian noise sequence. This generil
linear model is termed as an autoregressive moving average process of order p and q
(ARMA(p.q)). The first part of Equatien (3.17) is the antoregressive hranch. The
second part is the moving-average branch which gives rise to the random nature
of the observed process r(n). For the issue of parametric modeling, the reader is

referred to the texts of Box and Jenkins [22] and Priestley 23],

3.2.2 Autoregressive Markov Model

An autoregressive (AR) Markov process is a first-order AR process, or AR(1). A

discrete AR(1) process z(n) is governed by an equation of the form
z(n)=axr(n - 1)+ w(n), (3.1%)

where a is the AR parameter which is constant, and w(n) is an independent, Gaussian

random variable.
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Let Ae(n) denote the average bit rate of the n*h video frame [11]
Me(n) = adpye(n — 1) + wpe(n), (3.19)

where wy(n) is a Gaussian random sequence (M (per,02.) ). The steady-state of
My (1) is Gaussian and achieved when n is sufficiently large. The frame-to-frame
average bit rate autocorrelation function is given by r(k) = E [Air(n)Aer(n + k)], and
the antocovariance function by e(k) = E [(Asr(n) = ) Der(n + k) = p)] = r(k) — 42,
where g1 = E[Ai, ()] is the mean bit rate, and 0% = E [(Apr(n) — p)?] = ¢(0). the

variance of the bit rate,

Hor

jo=E[\(n)] = T—a (3.20)
2

ot = V[he(n)] = 1ibra2’ (3.21)
0‘2

c(k) = l—“—za“", for k=0,41,42... (3.22)
--a

DT A T U 3.23

k) = +(1_a)2. (3.23)

The AR model was inferred using the autocovariance function of experimental
setup [I1]. The average bit rate Ay, (f) was computed for each frame, considering
the result as a continuous-time function since the frame period is small compared
to the time scale. Assuming continuity, A, (1) is considered as the instantaneous
bit rate from which the autocovariance function ¢(7) = E [Ape(t)Aer (¢t + 7)) — 4
is computed. The diserete autocovariance function ¢(k) is obtained by sampling
the autocovariance function ¢(r) at the frame interval, which means for 2 = 30
samples/see. Parameters a.py, and oy, are then obtained from the experimental
mean (= 0.52), variance (62 = 0.0532), and autocovariance function (¢(7) =
ate™3TY, Table 3.2 gives the AR parameters for a sampling rate equal to the frame
interval. Note that the parameters j, and oy, in Table 3.2 are expressed in bit per
pixel (bpp) and that | bpp represents 7.5 Mbits/sec.

The AR model does not take into account an important factor which is the

[ 8]
o

AR b & s o



T (sec™t) a Tbr Hor
n/30 0.8781  0.1108  0.063378

Table 3.2: AR parameters at the video frame interval [11].

variation of the bit rate within a frame, which is in fact the packet distribution.

Resulting from this situation, two limit cases must be studied:
1. All the packets are sent as a burst at the beginning of each video frame interval,

2. The packets are sent uniformly at the mean packet rate during all the video

frame duration.

The actual intraframe behavior is unknown but will be somewhere tu between these
two extreme cases [15]. The first model will be called as the Burst AR or BAR

model and the second as Uniform AR or UAR model.

3.2.3 Burst AR model

The burst AR model for video assumes that all the information which is generated
for a video frame is sent as a burst, at fixed intervals equal to the frame duration.
The starting point to develop this model is Equation (3.19) for the average bit rate

th video frame.

of the n

Multiplying both sides of Equation (3.19) by the video frame duration T, the
total number of bits for the n'® frame is obtained. Dividing this product by the
video cell payload P, the number of packets generated for the nt® frame A, (n) is
obtained.

Ap(n) = Z]‘?{ cAr(n) = ad(n— 1)+ wy(n). (3.24)

Assuming that all the A, (n) packets are sent as a burst, at the beginning of the frame
interval. at a constant packet rate of 1=} packets per cell, the BAR packet process is

formed. The symbol 171 is used because of its inverse, I, which is the packetization
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Figure 3.6: Illustration of the BAR process.

delay or packet interarrival for the voice source. Figure 3.6 is an illustration of this
Lype process,
If the time origin is fixed at the beginning of the burst zero, then the process
at the burst level can he expressed as
o0
X()y= Y f(n,), (3.25)
n=-=00

th frame. The function f(n,t) is

where f(n, 1) is the envelope of the burst of the n
given by

S y=u_y(t =nTy) —u_y(t = nTy = [A(n)] T), (3.26)

where w_g (1) is the unit step function, {r] denotes the smallest integer not less than
+and A, (n) s given by Equation (3.24).

The process X (1) will be called the envelope of the process. During a burst,
the packets are sent at a constant packet rate denoted by /7. 1f -1 is chosen equal
to unity, then the burst process is identical to the cell process—once sampled. If the
packet rate is chosen less than unity, then the bursts are expanded in duration by
the same factor that the packet rate is reduced. Consequently, the variation of the
packet rate is equivalent to a time scaling of the envelope of each burst. Therefore,
the analysis is carried out with the packet rate equal to unity and rescaling is done
at the end according to the video codec throughput.

Before starting the mathematical analysis of the BAR model, some details
must be mentioned. Usually in the literature, autoregressive processes are driven
by zero-mean Gaussian processes. In the present case, the driving random variable
wp(11) has a nonzero mean. Moreover, there is a nonnull probability that the number

of packets to be sent becomes negative: to circumvent this problem, a truncated

24
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Gaussian distribution is used such that the burst size \,(n) always remains in the
closed interval [S_, S;]. where S_ and S; denote respectively the minimum and
maximum burst size in cell.

The burst autocorrelation function is r(fy,7,) = E [X(¢;) X' (2)]- Solving the
problem this way is difficult due to the truncation of the Gaussian distribution, to
the correlation between the bursts and to the inherent periodicity of the process.
Another way to attack the problem is to take advantage of the Markov property of
the AR(1) process. First let us fix the time origin #, at the beginning the n™ burst
and condition on the number of video frames, k, between two bursts. Let r(iy, 45 |

to, k) denote the conditional autocorrelation fonction between the two bursts.

r(tits | 1o, k) = E[XN () X(12) | ta, k], (3.27)

where
ly € [to, lo+Ty] and (3.28)
o € [o+kTyt,+ (A+1)TY]. (3.29)

The conditional autocorrelation function expressed by Equation (3.27) is actu
ally the cross-correlation function of two random size bursts, k video frames apart.
Further, the process is cyclostationary since its properties are identical for any trans-
lation of £, by any integer multiple of video frame 7. If the time origin 1, is random,
this is actually the case, it can be shown that the process is stationary. Let () be
uniformly distributed in the closed interval {1,, t, + T4]; therefore, the conditional

cross-correlation function can be expressed as
(T | k)= E (X)Xt +kTr+7)| K], (3.30)

where { is uniformly distributed in the interval [t,, t, + 7], 7 = 1, = t;, and for
|| < T7.
Conditioning the Equation (3.30) on both the burst sizes at time £ and at time

t+k Ty + 7. the cross-correlation function is easy to evaluate. Let r(7 | 2, 7, k) denote
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Figure 3.7: Example of conditional cross-correlation function v(7 |1, 7,k)

the conditional cross-correlation function between two bursts, the first one of size
v al time { and the second one of size 3 at time t + &Ty 4+ 7; and, let R(Jk) denote
the transition probability of going from a burst of size ¢ to a burst of size j after

k video frames and P, denote the steady-state probability of a burst of size 7 cells.

Therefore,
r(r k) = STOEXN(M) XU+ AT +7) 4,5,k PR, (3.31)
1=85. 3=85_
Sy Sy .
= > w(r )i k) PSP (3.32)
1=N_ j=5_
where
Px(_;“ = Pl‘{f)\,,(n)-l =7 D‘r(" — k)] =1} (3.33)
Poo= lim Pr{[A(n)] =1}. (3.34)

An illustration of the conditional cross-correlation function r(7 | 7,7.k) is given
in Figure 3.7. The Appendix B contains the details for the computation of the
conditional cross-correlation function r(r | 7,7, k).

The transition probabilities I’,(Jk) and the steady-state probabilities P, are ob-
tained from the transition matrix P. The elements P, of P are obtained from the

distribution of the driving noise process in Equation (3.24).

Py, = PrA[A)] =7l [ (n=1)] =1}, (3.35)
= Pr{j—-ai-1<wi(n)<j—ail. (3.36)
= Q (=it _Q (matti), (3.37)
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where Q(a) [24, p. 49] is a complementary error function defined by

TS
Q(a):—ﬁ/ exp(S-) dr. (3.38)

Furthermore. since A, (n) is finite and limited by S_ and 84, cach clement 13 is
. o e e . S . . N o
normalized by dividing it by 3 X5 P, such that P is stochastic. The transition

probabilities P™ can be obtained from the k™ power of the matrix P.

1]
P =P.P.-P...P = [p}f’] , (3.39)
k

and the steady-state probabilities P, are obtained by sulving
TP =n=[R]. (3.40)

From the above equations, the cell autocorrelation function can now be derived.
First lets rescale and sample the conditional cross-correlation function »(r | k)

according to the packet interarrival rate /71,

R (k) = S r(ll;,u-).a(r-u:r), (3.41)
=00

= S (TI k)-8 =1 T), (3.42)
=0

where 6(7) is the dirac function or unit impulse function. Recall that » (|7} | #)
is time limited by |7] < Ty. The Equation (3.42) is simply the continnons-time
representation of the point process.

Finally, to obtain the cell antocorrelation function of the BAR model, we mmnst
uncondition on & by time shifting all the cross-correlation function to their position
(center at the lattice point) and add them together.

R(t)= i R(r | k)*é(7 = k'TYy), (3.43)

k=—~nc
where the asterisk (%) denotes the convolution operator.
Due to the form of the P,,’s (difference of complementary error functions which
are integrals). a closed form solution cannot be provided for the theoretical anto-

correlation function of the BAR model. Therefore. a numerical solution has heen
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a  AR(1) paramncier 0.8781

H,  w(n) mean 45.01 packets per frame
7, w(n) std. dcviation 78.693 packets per frame
Tr wvidco frame size 1/30 sec.

T approx. ATM cell size  1/12226 of Ty

I’ payload size 44 octets

Table 3.3: BAR and ATM link parameters.

computed. The Figures 3.8 to 3.11 show the plots for two values of the number of
cells between two consecutive packets, / = 1 and I = 12. The power spectral density
has also to be computed numerically using Discrete-Fourier Transform, leading to a
correlogram! estimator. Figures 3.12 to 3.15 show the power spectral density of the
two antocorrelation functions. The parameters used for the computation are given

in Table 3.3.

3.2.4 Uniforim AR model

Unlike the BAR model which is sending all the packets as a burst, the uniform AR
model for video sends uniformly all the information which is generated for a video
frame over a fixed interval equal to the frame duration. As for the BAR model, the

th video frame

starting point to develop this model is the average bit rate of the n
given by Equation (3.19). The method used to obtain the autocorrelation function
is similar to the one for BAR model. The only difference is in the computation of
the conditional cross-correlation function. Furthermore, no burst rescaling has to
be done sinee the packets are always sent over the entire frame duration which is
the maximum size that a burst can have.

Because of the nature of the packet process, the cross-correlation between

two different frames is very low. Although the correlation between different frames

exist, it will be assumed neglectable, hence set equal to zero. Therefore, only the

ISee Sectton 12 2 for theory on carrelogram spectral estimator.
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Figure 3.8: Autocorrelation function for [ = 1.
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Figure 3.9: Enlargement of Figure 3.8,
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Figure 3.10: Autocorrelation function for 7 = 12.
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Figure 3.11: Enlargement of Figure 3.10.
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Theoretical Power Spectral Density, I = 1
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Figure 3.12: Power spectral density of the BAR model for I = 1.
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Figure 3.13: Enlargement of Figure 3.12.
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Figure 3.14: Power spectral density of the BAR model for 1 = 12.
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Figure 3.15: Enlargement of Figure 3.14.
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autocorrelation within the interval [0, T] will be evaluated.

The burst autocorrelation function is simply the triangle defined by
rr)=1=:, for |7|< Ty (3.44)

The cell autocorrelation function is easily obtained by sampling and weighting.

Let R(7|i) denote the conditional cell autocorrelation function when there are
¢ packets to send.
. : nTy 17T
R(rli) = 32 r(r) - 6(r = —2) 55, (3.45)
/

n=-—1

:
where 7(7) is the triangular burst autocorrelation function, P, the steady-state prob-
ability of the number of packets to send and §(-) the dirac delta function.

Unconditioning on ¢, we obtain
R(r) = > Y r(r)-6(r——%) - =1, (3.46)

T———) 70D (3.47)

|
M
l\/]..
—
|
B
SN’
=
=2
g
p .,
35

=S n=—1t
where P; is the steady-state probability of 7 packets to send.
The Figure 3.16 is the autocorrelation function for the parameters given in

Table 3.3. Figure 3.17 is the associated power spectral density.

3.2.5 Minisources Model

The minisource model or discrete-state, continuous-time Markov model is used to
model N independent video sources multiplexed on a high-speed link- - in the current
case an ATM link. This model is inferred from the same experimental setup that the
AR(1) model of Section 3.2.2 for the frame-to-frame average bit rate. The aggregate
bit rate of the N video sources is quantized into a finite number of discrete levels (M)
which represent the states of the process. Transitions hetween levels are assumed
to occur with an exponential distribution and are state dependent. Without lost of

generality. the steps between levels are chosen to be equally-spaced with increments
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Figure 3.18: Discrete-State, Continuous-Time Markov (‘hain

of A bpp. Consequently, in state 7, the aggregate bit rate is i - A bpp and the
maximum aggregate bit rate is Al - A bpp. Figure 3.18 is a representation of this
Markov chain.

Like the voice model, the process is embedded at the cell interval. If the cell
duration is small enough, the Markov process can be decomposed in a sum of M
independent identical minisources. A minisource is a binary Markov process  like
voice. When it is in the active state, it generates information at a constant. bit rate
of A bpp. The transition rate from idle to active is a, and from active to idie /3.
For the modeling equivalence to hold, the cell interval 7 has to be small enongh
such that at most, one minisource may change of state between two embedded
points. If the cell duration is not small enough, more than one transition may
occur during a cell period, and the previous Markov chain cannot be decomposed
into Al independent minisources. To get the minisource parameters, the theoretical
mean and autocovariance function have been fitted with the experimental measures
of Section 3.2.2. Let x denote the ratio of the number of minisources (M) to the

number of multiplexed sources (N). For a given & = 8, ar, fand A follow [11].

3.9
3 = 348
/ I+ 5.04458/r° (3.48)
o = 39-71, (3.49)
A = 0.140.52/x bits/pixel. (3.50)

With a maximum bit rate of 1.42 bpp for a single source, it is casy Lo show that £ > 9
spans all the bit rate intervals. For reliable results, the authors in [11] suggested to

choose & > 10. and that & = 20 provides good results in performance analysis of
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" 10 20 100
p 1.3077 0.7856 0.1260

B 2.5923 3.1144 3.7127

A (bit/pixel) | 0152  0.126 0.1052
A (Mbps) 1.14  0.945 0.789

Table 3.4: Values of a,  and A for differents «.

packet multiplexers. Table 3.4 gives the minisource parameters for different values
of n.

Like the AR(1) model for the frame-to-frame average bit rate, the intraframe
bit rate behavior is unknown for the minisource model. Although this model has
the same autocorrelation function, it is not interesting for power spectral estimation
becanse its spectral characteristics depend on the ratio of the number of minisources
to the number of video sources . In fact, as concluded previously for the BMP
model, the shape and magnitude of the power spectral density depend on the bit
rate A and the transition rates o and # which themselves depend on the ratio
. Consequently, the spectrum is function of an arbitrary choice of the parameter
#. However, the minisource model may still be useful for an estimator that uses a
counting process (see Section 4.4.3). The minisource model is useful for performance

analysis of ATM networks that use traffic flow.
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3.3 Data Modeling

Data sources may be modeled several ways. In this study, the data sources are
’

modeled either as Bernoulli or Poisson processes. They may be viewed as background

noise to the more correlated sources. The next section presents the case of the

Bernoulli source and Section 3.3.2 the Poisson source. For both processes, the cell

autocorrelation function and the power spectral density are given.

3.3.1 Bernoulli Model

A Bernoulli source is a source that generates packets with a probability p for every

cell, and independently cell-to-cell. Let X (z) denote this process.

_ 0 with probability 1 —p .
X)) = fori=1,2,3... (3.51)
1 with probability p

The cell autocorrelation function is given by

R(ti,t) = E[X(t)X(t2)], (3.52)
= PrIX(L) =1, X(k) =1}, (3.5%)
= Pr{X(L)=1|X(h) =1} -Pr{X(r) =1},  (3.54)

where the probability Pr{X(#,) = 1} = p. The conditional probability is given by

| if 1,1 = ’2

P if t # lz.

The autocorrelation function can thus be rewritten as
R(7)=p* +p(} = p)é(r). (3.56)

The power spectral density is given by the Fourier transform of Equation (3.56)

using the Fourier transform pairs
(1) & 1 and K & K&8(f). (3.57)
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Henee

P(f)=p*6(f) + p(1 - p). (3.58)
For the discrete-time version of the process, the power spectral density equals P.(f)
plus all its displacements [20, p.290] leading to

2 X 1
P =% ¥ 8- +p(1-0) (3.59)

R==—-00

3.3.2 Poisson Model

A Poisson source is characterized by an exponential packet interarrival time. Let
X(1) denote an impulse process where the time between two consecutive impulses
is exponentially distributed with parameter A.
o0
X(ty= D s(t-t), (3.60)
n=-odo
where £, is a point. process with z, = {,—%;-, exponentially distributed with parameter

X. The mean of this process is A and the autocorrelation function is given by
R(r) = A 4+ A 8(7). (3.61)

The proof of Equation (3.61) is easy and is given in [20, pp.239-240]. The power
spectral density is obtained by using the Fourier transform pairs of Equation (3.57).
Hence,

P = N2 6(F) + A (3.62)

As for the Bernoulli source, the discrete-time version is obtained by adding P.(f)

and all its displacements,

S A -2)+ A (3.63)



3.4 Source Characteristics

This section is an attempt to summarize the major characteristics of cach type of
source described in the chapter.

For the voice source, an exponential autocorrelation function was obtained.
The discrete-time autocorrelation function has null values for all lags which are not
an integer multiple of the packets interarrival 1. Consequently, the spectrum is
periodically repeated with period 1/I7 hertz. The period is function ouly of the
cell size, the link speed, and the source constant bit rate in active state. Finally, the
shape and magnitude of the spectrum depend on the transition rates A and .

For the video source two main models were derived: the former in which all
the packets generated for a video frame are sent in a burst at regular interval, the
latter which sends all its packets at a uniform rate during an entire video frame
duration. The periodic autocorrelation function of the bursty model is weighted
by an exponential function of which parameter depends only on the antoregressive
parameter a. Maxima in the former autocorrelation function appear every integer
multiple of the video frame duration, i.e. every one thirtieth of a second, and may
be viewed like a packetization delay, leading to relatively high power for thirty hertz
harmonics. Further, the constant throughput of the sonrce during a burst leads, like
for the voice source model, to nulls in the autocorrelation function, consequently,
in the spectral domain, to a repetition of the spectrum. For the uniform maodel,
the correlation function is time limited leading and the power spectral density non-
repetitive. Further, the value of the autocorrelation function at lag zero is unity
and smaller than 0.2 elsewhere. This leads to a spectrum which looks very similar
to noise.

Concerning the data sources, both have white noise spectral density which is
characterized by a flat spectrum plus a DC component characterized by an impulse
at frequency zero. Due to their flat spectrum, these sources are considered as noise

for the purpose of the estimation of the traffic composition. However, if the number
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of voice and video sources can be estimated, their power density spectrum retrieved
from the total power spectrum, then the noise spectrum and the number of data
sourees can be estimated.

At an internal point in the network, the traffic stream will be a random com-
bination of all these types of sources. Since each kind of source is very different in
term of periodicity, the spectrum will have to be estimated using a common basis,
the cell, resulting in a spectrum where multiple periodicities will appear.

Giiven these characteristics, we can now extend our study to spectral estima-
tion. The next chapter is an introduction to digital signal processing focusing on

power spectral estimation.,
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Chapter 4

Digital Signal Processing and
Spectral Analysis

11



This chapter is an introduction to digital signal processing. First in the Section 4.1
spectral density definition and basics are provided. Immediately following in Sec-
tion 4.2 are the traditional methods such as periodogram and correlogram spectral
estimators. In the present study, to efficiently use traditional estimators, data deci-
mation mnst be applied; this is the topic of the Section 4.3. The modern approach
of speetral analysis is presented in the Section 4.4. Then some filtering strategies
which can be used are presented. Finally, the Section 4.6 is a discussion on the

methods deseribed in this chapter.

4.1 Spectral Density Definition

This seetion briefly summarizes the basic definitions associated with spectral anal-
ysis.  First the case of a deterministic signal is considered, then the results are

extended to the case of random signals.

4.1.1 Deterministic Signals

Let r(n) denote the value of the signal at the time n - At. The sequence x(n) is
actually the sampled version of the continuous-time function z(t). In general, z(n)
would he considered as complex values. In the present case, only real sequences will
be considered,

The discrete-time Fourier transform X(f) of a sequence x(n) is defined as

X(f)=At Z -exp (=727 - f - n-At), (4.1)

=~

The energy spectral density S(f) is

SN = 1XUP. (4.2)

A suflicient condition for Equations (4.1) and (4.2) to exist is that the sequence is

of finite energy or
o~

=3 e <. (4.3)

n=—x
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Notice that the discrete-time Fourier transform is an approximation of the usual
continuous-time Fourier transform and not the usual discrete Fourier transform,
The differences are in the weighting factor At and in the range of summation. In
the literature. the sampling interval At is often normalized and set equal to one.
In Equation (4.1), the factor At ensures the conservation of the integrated area,
vielding the correct energy value, as At leads to zero.

If the data available is of finite length, say N points from 0 to N =1, the
familiar discrete Fourier transform can be developed. Let X(m) denote the value of

the Fourier transform at the frequency f,, = mA[ for m ranging from 0 to N — 1,

and where Af = . Hence,
N-}
X(fm) = ALY x(n)-exp(—j2r-n- Al mAf), (-1.4)
n-O
= At Z cexp (=g2mmn/N). (1.5)
n=0

The inverse discrete Fourier transform is given by

N-1
r(n)=Af Z X(fo) exp(+2rmn/N). (1.6)

m=0
Both Equations (4.5) and (4.6) yield to a cyclic representation of the function with
period N, even though the original sequence was not periodic. Similarly to the case

of infinite data length, a discrete energy spectral density can be defined as

S(fm) = [X (L)l (4.7)

It is interesting to notice that when both discrete and continuous energy spec-
tral density are evaluated at the same frequency, say [, = §43, they do not yield
the same value. In fact, when we take only a finite length data interval, we are
multiplying the original infinite data sequence with a rectangular window. The
nultiplication of the data with this window yields in the speetral domnain to a con-

volution between the true Fourier transform of the data with a sine function. 'Thus,

the discrete version of X(f) vields to a distorted energy spectral density S(f).
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4.1.2 Random signals

When analyzing stochastic processes, a different point of view must be taken. Rather
than being energy signals, random signals are usually power signal (infinite energy).
The starting point is the Wiener-Khinchin theorem that relates the autucorrelation
function of a stationary process to the power spectral density. Throughout, it will
he assumed that the random processes are stationary such that the autocorrelation
function depends only on the time separation 7 between the two sampled random
variahles.

Let R (7) denote the continuous-time autocorrelation function of the real-

valued random process r(1).
Re(7)=Elz(t) - z(t +7)]. (4.8)
The power spectral density is obtained by taking the Fourier transform

P(f) = / ™ Roo(r) - exp(—j2n fr)dr. (4.9)

-_—00

A practical problem is that one does not usually measure the statistical en-
semble properties of a process which leads to the statistic properties but only with
a single time function.  Consequently ergodicity must be assumed. The ergodic-
ity of a process means that the ensemble properties are equal to the time average
properties of any single sample function. The ergodicity assumption enables one to
substitute the time autocorrelation function to the statistical autocorrelation func-
tion and similarly with the means. It can be proven that if the averaging is made
over an infinite time interval, the statistical and time properties equal. Therefore,

the autocorrelation function can be computed as

] T

R, ()= 71‘1_1.1;3-)—]— r r(t)x(l + 7)dt. (4.10)

and the power spectral density as

}. ()

. 1T )
P = Yll_{ll\ El— /_T x(t)exp (—j2= ft)dt

2T
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The two pairs of equations ((1.8), (4.9)) and ((1.10). (4.11)) are the basis of the
traditional approaches in spectral estimation. However, in both cases, the expecta-
tion operator which is an ensemble average, is replaced by a time average. The first
pair yields to the correlogram method while the second vields to the periodogram

power spectral estimator.

4.2 Traditional Estimators

The traditional spectral estimation techniques are based on Fourier analysis, Two
q )

major approaches exist:

1. An indirect approach that needs first to estimate the autocorrelation function
coefficients from the data before applying the Fourier transform to obtain the

power spectral density estimator.

2. A direct approach that directly applies the Fourier transform to the data
sequence and then squares the magnitude of the output to obtain the power

spectral density estimator.

The first approach is called the correlogram or Blackman-Tukey spectral esti-
mator since it was popularized by them in 1958. The second approach is older than
the correlogram and called the periodogram becanse it was originally proposed to
find hidden periodicities. The periodogram was misunderstood and computationally
very demanding such that it was left aside until 1965 with the introduction by Coo-
ley and Tukey of the fast Fourier transform (FFT) algorithm to efficiently evaluate
the discrete Fourier transform of Equation (4.5). The periodogram is eurrently the
most popular spectral estimator.

The next section is about the estimation of the autocorrelation function, its
coefficients will be needed for the correlogram estimator which is presented in See-

tion 4.2.2. The periodogram estimator is presented in the Section 4.2.3.
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For further details on classical spectral estimation, the reader is referred to
the excellent text of Jenkins and Watts [25). For good summaries, refer to Kay [26].

Marple [27] or Shanmugan and Breipohl [28].

4.2.1 Anutccorrelation Function Estimation

The autocorrelation function for an ergodic random signal was defined by Equa-
tion (4.10). Assuming a finite number N of data samples, an estimate for the au-
tocorrelation function is casily obtained by discretizing Equation (4.10). Let R(k)

denote such estimator.

R i N=]k]-1
lz’(l;)::m-l—“ Y. z(n)-x(n+ [k]). (4.12)
n=0

According to the symmetric property of the autocorrelation function of real pro-
cesses, the negative coefficients are obtaiaed from the positive ones R(—k) = R(k).

This estimator has the following properties:
1. It is unbiased since E[ff(k)] = R(k).

2. 1f the process is Gaussian and real, then for N > k& the variance is approxi-
mately equal to

N
(N —[A])?

It is interesting to note that the variance increases for the high-order coefficients.

i (R*(m) + R(n 4 k) + R(n = k). (4.13)

N

Vo)) =

This is caused by the fewer number of lag products averaged [26]. One way to reduce
this problem is to weight the coeflicients by the use of a lag window. The lag window
will beintroduced in Section 1.2.2 with the correlogram spectral estimator.
An alternative for the autocorrelation function estimate suggested by Black-
man and Tukey [29] is
| Nl

1%/(A-)=~\-_ ST () x(n+ k). (4.14)

n=0
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Unlike the previous autocorrelation estimator defined by Equation (4.12), this os-
timate is biased and differs to previous one by a weighting factor. The weighting,
factor can be viewed as a triangular lag window (also known as the Bartlett window)

weighting the unbiased autocorrelation function coeflicients.

X N =k .
R'(k) = ——,\—,l—'-h’(k), (1.15)
N
= w(k)- R(k), (4.16)
where
1 — lél for |k < N,
w(k) = ‘ (4.17)
0 for |k] > N.

Like the previous estimator, the bias and variance can be evaluated. The bias is
E [fr(k)] = w(k)R(k), (1.18)

and as for the unbiased estimator, if N is much greater than b, the varnance is

approximately equal to

VIR = (wk)?v GLGIE (4.19)
o~ ’—17 i ([f2(71) + R(n + k) + R(n - I.)) . (4.20)

For typical applications, the biased estimator tends to have less mean square
error than the unbiased one. Further, the unbiased estimator can yield invalid
autocorrelation function coefficients in certain cases, i.e. the antocorrelation matrix
is not positive definite, and a solution cannot be obtained. Unlike the unbiased
estimator, the biased estimator always yiclds a valid antocorrelation function. For

all the reasons enumerated, the biased estimator is often the preferred one [30].
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4.2.2 The Correlogram Spectral Estimator

The Wiener-Khinchin theorem leads naturally to the correlogram, also called the
Blackman-Tukey spectral estimator. The correlogram is the discrete Fourier trans-

form of the windowed autocorrelation function coefficient estimates. Hence,
Por(f) = F {w(k) - R(k)}, (4.21)

where w(k) is a lag window, R(k) the k™ autocorrelation function coefficient esti-
mate and F{-} the Fourier transform operator.

Taking into account the limited number of autocorrelation function coefficients,
Eqnation (4.21) can be rewritten as

M
Pyr(fy = At S R(k) - w(k) - exp (—j27 fRAL), (4.22)
k=-M

for |f] < &+ and where R(k) is the unbiased estimator of Equation (4.12).

Typically, the number of autocorrelation function values computed is much
less than the number of data samples N. Blackman and Tukey [29, p.11] suggested
a maximum number of coefficients A, one tenth of the number of data available,
M~ lﬂu Practically, from N data points, 2M + 1 autocorrelation function values
are estimated. Then the autocorrelation function coefficients are windowed with an
appropriate normalized lag window. From that, the discrete Fourier transform is
taken (using FFT algorithm for efficiency) with zero padding.

As mentioned earlier, the correlogram is a power spectral density estimator;

to obtain an estimate of the peak power at a given frequency, the value Pgr(m)

obtained from the FFT must be rescaled by a factor Af .

Lag windows

Very often, for practical reasons. we are using only a part of the true autocorrelation
function which is estimated with a finite data set. This can be viewed as multiplying

the true autocorrelation function with a rectangular window, or convolving the true

L
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power spectral density with a sinc function. This leads us to estimate an average-
over-frequency of the true power spectrum, and not the true spectral density itself.
This phenomenon is termed as leakage and is mainly due to the sidelobes of the sine
function. To obtain a good spectral estimator of the power at a given frequency,
one must use a window that concentrates the energy near the estimated frequency.

Lag windows are subject to certain conditions:

1. w(0) =1 to conserve the power.

[ A1

. w(k) =0for k > M because ff(k) is not defined for lags larger than Af.

(%)

. It 1s an even function.

The problem with choosing the shape of the lag window is that we would like to
concentrate all the energy in the mainlobe (of the Fourier transform of the window)
while keeping the sidelobes as small as possible. However, by reducing the magnitude
of the sidelobes, we are increasing the width of the mainlobe, thus reducing the
frequency 1esolution. A lot of work has been done on spectral window; but so far
the windowing issue is a matter of cut and try. Goaod corvpromises are Hanning,
(squared cosine) and Hamiming (raised cosine) windows.

Discussion about windowing can be found in several texts, for example [26,
27, 29, 31). Harris [31] is an exhaustive compilation of such windows. Briefly, a
good window selection can reduce the sidelobe leakage, but always at the price of a

decrease in resolution.

4.2.3 The Periodogram Spectral Estimator

The periodogram estimator relies on the definition of the power spectral density of

ergodic process. The discrete form of Equation (4.11) is

2
1 A

= e ) exp(~j JIe 4.23
P(f) ,\}H-EL,F 20 + )ALl Ai";_‘".r(n) exp (=727 fuAtl) ( )

49



for |f| € 55. Neglecting the expectation operator and limiting the summation to

the available data, the periodogram estimator is defined as

. 1 N-=1 ) 2
Pper(f) = VA At Y z(n)- exp(—]‘Zfrant)! , (4.24)
g n=0

again for |f| < ==, Using FFT to evaluate Equation (4.24) permits efficient com-

putation for the NV equidistant frequencies f,, = mAf with Af = —,;,1—

N and for m

ranging {rom 0 to N — 1. Recall that the discrete Fourier transform is cyclic and
that our processes are real; hence, for the frequencies with m ranging from % to N,
we will have redundancy.

Using the discrete Fourier transform coefficients defined by Equation (4.5), we
can write

Frenlfn) = 5 XU )P (4.25)

Again, to get the peak power at the frequency f,, = mAf we must multiply
IA’,.,;,,.(_[,,,) by the factor Af . Consequently, based on a rectangular integration,
the total power of the process is
N-1
P =Y Prer(fn)-Af. (4.26)
n=0
Recall that use of FFT with zero padding is computationally efficient and has

rendered the periodogram the most popular power spectral estimator.

Smoothed Periodogram

The lack of the expectation operator in Equation (4.24) for the periodogram yields
to an inconsistent estimator, which is defined as an estimator for which the variance
does not approach zero as the number of samples increase. To circumvent this insta-
bility problem. smoothing can be performed. Several methods have been proposed
in the literature; the one used in this study is the Bartlett periodogram. Bartlett’s

approach is to average N periodograms produced by dividing the N data samples



into i disjointed data subsets of L = & samples. Thus

Iy
2 IR H{m) 9=
Prers(f) = e Z Pper(f). (4.27)
m=0

where P,(;E)R( f) is the periodogram produced from the mt" data subset.

5 (m) 1 (m+1)L-1 2
per(Sf) = a7 | ST r(n)-exp(=j2nfnAd)] . (4.28)
n=m L

The main advantage of the smoothed periodogram is the reduction of the
variance of the original periodogram by a factor proportional to the number of
averaged periodograms. For further improvement of the this spectral estimator,
overlapping of the data segments with data windowing can be done. This improved
smoothed periodogram is often called the Welch periodogram. The overlapping of
data segment has the advantage to increase the number of data segments, thus

reducing the bias and the variance; again, at the price of resolution.

4.2.4 Summary on the Traditional Methods

Classical metl.ods for power spectral estimation are characterized by the use of the
FFT algorithim. Consequently, they are computationally very efficient. They have
among others the advantage of proportionally estimating the power of sinusoids and
estimating any kind of process. In contrast to modern spectral estimators which nse
a priori information, classical spectral estimators are model-free, which means that
they do not use a priori information, and they properly estimate sinusoids.

On the other hand, the main disadvantage is due to the inherent windowing
caused by finite data sequence causing the leakage and introducing distortion in the

spectrum. Further, the resolution is limited by the length of the data sequence,



4.3 Data Decimation

Data decimation or downsampling is the process of reducing the sampling rate of
a sequence by defining a new sequence [32]. In this project, downsampling may
be wseful to estimate the low-frequency part of the power spectrum. In fact, if we
are using the cell interval as the sampling interval, we may oversample the process.
For example, as it was shown in Section 3.1, the fundamental period of the power
spectral density of the PCM voice source, at the cell level, is bandlimited at about
91 Hz. Sampling at the cell interval means to sample at a rate of about 366000
samples per second or 366 kHz. Obviously, considering Nyquist’s sampling theorem,
this is an oversampling of about 2000 times.

The advantage of the data decimation procedure is to conserve in low-frequency
the same information as the broadband spectrum. Due to the inherent form of the
buffering which smears the output process in time, a lot of information would be
lost if the original sampling of the data stream was done at the final sampling rate
instead of using the foregoing data decimation procedure.

In the following, for practical purposes, downsampling will be done by an
integer factor.  In theory decimation can be done by any factor; however for a
noninteger factor, lincar interpolation must previously be achieved.

Downsampling mu .t be done carefully to avoid aliasing. Aliasing occurs when
the minimum sampling rate (or Nyquist rate) is not respected. For a bandlimited
process X(f) where X(f) = 0for [f] > f., then the sampling rate must be at least
twice the cutoff frequency f. to avoid aliasing. However, sampling can be done at a
slower rate if we are willing to reduce the bandwidth of the process before sampling
it. Thus, to avoid any aliasing when downsampling, prefiltering is performed by a
low-pass filter with cutoff frequency at least half of the new sampling rate.

An ideal system for downsampling by a factor D would be:

I. An ideal low-pass filter with unity gain and cutoff frequency half of the new
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sampling rate followed by
2. A sampling device that picks a filtered sample cvery D original samples,

This system is called a decimator. In practice an ideal low-pass filter cannot be
implemented, but a high-order digital filter can easily be realized. To achieve a
good decimation, one should have at least 50 dB loss at the new sampling rate.
Furthermore, to avoid any phase distortion, reverse (or backward) filtering can be

done.

4.4 Modern Approach

Modern approaches are often termed as model-based approaches in contrast with
the model-free approaches described in Section 4.2. They are model-based due to
their use of a priori information.

The modern approach uses a parametric description of the process. For exam-
ple, only a few parameters obtained from the autocorrelation function coeflicients
with explicit relationships would describe completely the process. Parametric mod-
eling in signal analysis is issued from the analysis of time series in economies [22].
Intuitively, it should be possible to obtain a better estimate of a process by the use

of a priori information. The steps of the model-basced approach are 26, 28]:
1. Select a parametric model.
2. Estimate the parameters of the model using the available data.

3. Substitute the estimated paraineters in the relationships to obtain the estimate

of the autocorrelation function and power spectral density.

The model must be chosen with care. Any inaccuracy in the model will lead
to a systematic error in the spectral estimator. Henee, the performance of the esti-

mator is intimately related to the identification techniques used to select the model.
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Thironghout, it will be assumed that the models to estimate are autoregressive. The
Section 1.4.1 provides the theoretical relationships between the autocorrelation co-
eflicients and the AR parameters and gives the maximum likelihood estimates of the
parameters of an AR(1) process. For further details on modern spectral analysis,
the reader is referred to the excellent texts of Kay [26] and Marple [27]. For an
excellent summary, the reader can consult a tutorial paper that has appeared in the

1EEE proceeding. co-authored by Kay and Marple [30].

4.4.1 Parametric Modeling

The lincar difference equation of a discrete-time ARMA process defined by Equa-
tion (3.17) and recalled hereafter is the starting point of this section.

Let a(n) denote a diserete-time ARMA(p.q)
P q
rin) = Za,.r(n —-i)+ ijw(n - J). (4.29)
1=1 =0

where a, # 0. b, # 0 and w(n) is a zero mean white Gaussian noise sequence. The

svstent transfer function between the driving noise w(n) and the observed output

(1) s
B(:)
H(z) = ——. (4.30)
( A(z)
where A(2) and 13(2) are the z-transforms of the AR and MA branch. respectively.
9
B(:) = Z b,z (MA part), (4.31)
=0
;l
Az) = 1= Zn,:"’ (AR part). (4.32)
1=1
The power spectral density Papaya(f) is given by
B(2)]

Pigva(f) = oAt A0) (4.33)

r=exp(y2=fA-,
for [/l < 7. where At i the sampling interval and o2 the variance of the white
noise driving process. Again the scaling factor At is there to ensure the correct

value of the process when the power spectral density is integrated.
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The autocorrelation function can be obtained by taking the inverse Fourier
transform of the power spectral density. The explicit relationships of the AR pa
rameters to the autocorrelation function scts place to a set of linear equations called
the Yule-Walker equations. The matrix form of this set of equations, including an

equation for the variance. is

[ al0) rer=1) o =m0 ] [e?]
N r.2(0 con re(—(p—1 —a 0
It U1 TN IS I DR
L rer(p) Tre(p - 1 ... 7'.rr(0) 1L~ %] L 0 ]
N - =’ v_—/ ‘-V—-_/
Rxx A ’

From the positive detinite property of the matrix Rxx, whicli is also Toeplitz, the
system may be efficiently solved using Levinson's algorithm [26]. The MA param-
eters, by, by.....b, can be obtained by using an extended Levinson algorithm. The
reader is referred to [26. p.114] for more details about the relationships between the
ARMA parameters and the autocorrelation function coefficients.

From the Yule-Walker equation, it follows that for an AR(1) process  which

is an ARMA(L,0). that

ie(k) = ap v (k-1), (4.35)
ol

wr(0) = —2 4.36

re=(0) 1 —a? (4.36)

Equations (4.35) and (4.36) lead to the relation between the AR parameters and

the autocorrelation coeflicients

res(k) = 7. g, (4.37)

2
I —aj

Recall that r. (k) = r.2(—k) for a real process. The power spectral density Pag)(f)

of the process is related to AR parameters by

Ato?
Papis = 4 \ f <
ar) (f) 1 — 24, cos (27 fA1) + a? or |/l

|
_ 4.3%
9T (4.3%)
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Maximum Likelihood approach to the AR(1) Parameters Estimation

The probability density function of w(n) is Gaussian. Thus the AR(1) parameters

ay and a2 can casily be estimated by the maximum likelihood approach [28] vielding

in
N or(i)-z(i —1 rrrl 1
iy = 2= ,E?) :(? ) Fee(1) (4.39)
=2 T (]) 7'1-1(0)
An unbiased estimator for the variance is
R .
5= 7 2 () = dwr(n — . (4.40)
4 - ]=2

Using the estimates given by both Equations (4.39) and (4.40) in Equation (4.38) one
obtains an estimator for the power spectral density. Similarly the autocorrelation
cocflicients can be estimated using Equation (4.37). It is important to note that
the power spectral density and the autocorrelation function estimates will be biased
although the AR estinates are unbiased. Finally, the quality of the estimators will

be improved by reducing the variance of the AR parameters.

4.4.2 Sum of A/ AR(1) Processes

The superposition of M AR(1) processes can be viewed as a system where M parallel
branches excited by a common white noise process would be added; each branch
having its own deterministic transfer function. To simulate the random number of
sotrces of cach type. cach branch would be weighted by a unknown coeicient, ¢,,
that would be equal to the number of sources of its type.

The global transfer function is given by

M
H(z) =Y e Hi(2), (4.41)
1=1
whete 1,(2) is the transfer function of the it type given by
b,
H(:) = ———. (4.42)
| —a,z7!
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The parameters a, and by are assumed to be known. The unknowns hiere are
the weighting factors ¢s. The Equation (1.41) can be transformed to obtain a
rational transfer function which is actually an ARMA(NM, M — 1) process. Given
the ARMA parameters, the weighting coeflicients can be computed casily.

Now, if we assume M types of AR(1) sources with unknown AR parameters,
the same solution for the ¢,’s can be used. The estimation of these parameters s
computationally intensive and is dificult to carry ont in real-time. In Appendix

an example for M = 2 is carried out.

4.4.3 The Issue of a Counting Process

Throughout this study it was assumed that all the off-hook sources were indepen-
dent and uncorrelated such that the autocorrelation functions and power speetral
densities simply add in magnitude. In fact. as mentioned carlier in Section 2.4 on
statistical multiplexing. when two packets arrive simultancounsly (within the same
cell interval) to the multiplexer one is sent while the other colliding packet is kept
in a buffer to be sent during the next cell. This delay phenomenon is called jitter
and reduces the reliability of the estimators.

Instead of looking to the cell process, if one divides the time axis into a sef
of disjoint time int~rvals (or windows), and then counts the number of packets in
each interval. a counting process is formed. If the window size is not too large and
if the original process is autoregressive, it can be assimed that the counting process
is also autoregressive. To be reliable, the counting procedure must he applied to a
traffic stream composed of many sources.

The counting process has the advantage of reducing the mumber of data sam
ples and enables us to use the modern spectral estimators. As an example with the
voice source of Section 3.1, if the window size is chosen 1o be 1 millisecond, and the
voice source sends a packet every 11 milliseconds, the voice can now he modeled as

an AR(11) process with the ten first AR coefficients null and the eleventh nonnnll.
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‘T his simply means that there is correlation hetween packets in windows separated
by 11 milliseconds. A similar approach can be used for video sources. However.
for the video sources, this model may lead to a seasonal autoregressive, integrated,
moving-average process where a season would be 30 cycles. This model would be
cquivalent to splitting every video frame into subframes and finding the statistical
properties between the subframes. The issue of finding these statistical properties
is an infensive research area, and will not be examined here. However, in [11]. it
was stated that the aggregate rate of several video sources would lead to an AR(1)
process. Thus windowing at an interval less than the video frame duration meauns to
sample the antocorrelation function at a faster rate than it was done in Section 3.2.2
and in {11].

The selection of a good window size is a matter of trial and error and practical

implementation.

4.4.4 Summary on the Modern Methods

Maodern methods for speetral estimation are characterized by the use of a priori
information. In the modern approach, or model-based approach, one tries to fit the
data to a preselected model. The AR(1) process is characterized by an exponential
autocorrelation function. The superposition of Af AR(1) by an ARMA(M, A - 1)
and is computationally very demanding to solve. The issue of a counting process
shows that although the AR sonrces are not necessarily autoregressive at the cell
level, the aggregate rate of many of them lead to an AR(1) process which can be
estimated. Finally, the main disadvantage of these approaches is the computation

load involved in finding the solution.
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4.5 Filtering Approaches to Spectral Estimation

If one only needs a particular frequency component and not the entire spectrum,
digital filters can be implemented to extract the needed information. For example,
if a certain process has harmonices every 100 Hz. a comb filter can be implemented
to retrieve all the harmonics at multiples of 100 Hz.

The filtering approaches described in the next sections have a common char
acteristic: the design is done by the placement of poles and zeros in the z-plane.
Although several types of such filters can be designed, only noteh filters and comb

filters are described.

4.5.1 Notch Filter

A notch filter is a filter that contains a deep noteh in its frequencey response, Tdeally
notch filter would have a perfect null in its fiequeney response at frequency f
Notch filters are useful when specifie frequency component must he eliminated.

To create a null, it suflices to introdnee a pair of conjugate zeros on the unit

circle at an angle of 27 f,. This resnlts in a transfer function for the filter

H(z) = (1 —exp(—j2af)z"") (1 —exp(+)2nf.)z7"), (1.43)

= 1 =2cos(2nf,):" " + 274 (4.44)

An improvement of this filter can be achieved by reducing the width of the notehes,
We may introduce poles at the same frequency with a weighting cocfficient 7. The
transfer function for this resulting filter is

1 —2cos(2nf,)z71 4 272

H(z) = 1 —2rcos(2mf,)z-V + 2zt

(4.45)

When the coefficient r is large (near to one), the width of the notehes is redneed at
the price of an increase in the transient effects. In practice, good results are achieved
for r 2~ 0.95. The major problem with this filtering approach is that it is another

trial and error method.



4.5.2 Comb Filter

A comb filter may be viewed as a combination of notch filters where nulls occur
periodically. Comb filters are useful in rejection of harmonics.

The system transfer function of a filter which has spectral nulls periodically is

; I | — 2~LIM+1)
=5 T (4.46)

and the frequeney response is
1 /) I sin (27rfL(M+l)/2)' (4.47)

T M T sin (7 fL)
Such filter has spectral nulls at normalized frequency f = Z_(_A;Tl) except for k =

O0.L20. ... ML, and has peaks at frequency [ = (A—,‘Jr-]—) for k=0,1,..., M.

4.5.3 Summary on Filtering

The two filters deseribed above are in fact rejecting filters. To extract the wanted
component, we need to subtract the output of the filter from the input. These filters
are cheap and very casy to implement in real-time. Such filters could be designed
for cach type of sources, and according to the power at the output, the number
of off-hook sources estimated. To facilitate the realization, to reduce tle transient
behavior, and to improve the stability of such filters, data decimation could be

previonsly achieved.
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4.6 The Issue of Spectral Estimation

In this chapter, several approaches for spectral estimation have been studied. Three
different types of approaches can be outlined. Oue using the FFT algorithm with
data decimation, one using a parametric description of the process with a counting
process, and finally, one using digital filters to extract particular characterizing
frequencies.

The first approach uses data decimation to reduce the sampling rate without
damaging the spectrum in low-frequency. The periodogram and the correlogram are
in this group. When using only a small part of the correlation coefficients which may
be available, the correlogram leads to a spectral estimator with less resolution than
the periodogram. Further, since the correlogram is a computationally demanding
estimator, there is even less interest in it. However, the correlogram will still be
very important to validate the simulator because that the theoretical power spee-
tral densities of Section 3.2.2 where computed like the correlogram estimator. The
second technique is the periodogram. When using the FFT algorithin to evaluate
its DFT, it becomes a computationally very eflicient method. To circumivent the
instability problem caused by the lack of the expectation operator of the estimator,
the Bartlett’s approach (the averaging of several shorter periodogram) may be used.
As mentioned earlier, the periodogram is at the moment the preferred approach for
real-time spectral analysis.

The model-based approaches were also examined. They usually yield better
results than the first ones, but at the price of inteusive computation whicl make
them unattractive in real-time signal processing. However, some of these methods
may be used when the process to estimate is well understood and defined. For
example, an AR(p) process at the cell level, and not an modulating AR(1) at the
burst level like for the case of video. If one is ready to pay the price of waiting for
its estimation results. a counting process can be formed and the parameters of a

seasonal ARIMA estimated.
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Finally. the third approach is simply to use digital filters to pick some par-
ticular frequencies characterizing the sources. In practice, this approach may vield
good results, but it has the disadvantage of being a trial and error method for the
filter design. For system implementation, this may be the fastest and most reliable
method because of its simplicity.

Some of these approaches were tried by simulation. The next chapter, shows

their aceuracy in estimating the traffic composition.
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Chapter 5

Simulation Results
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Throughout the project of estimating the number of off-hook sources in an ATHM
network, a simulator was written to verify if simulated spectra match theoretical
spectra, to observe if discrimination was possible between various type of sources,
and, if so, to determine what should be the sampling parameters to produce an
accurate estimation of the traffic composition.

The first point is verified in Section 5.1 with the estimation of autocorrela-
tion mnction and the correlogram applied to a simulated data stream. Although
the cortelogram is not the most interesting power spectral estimator, it is useful to
compare the power spectrum obtained from the simulated traffic stream with the
theoretical results caleulated in Chapter 3. Section 5.1 also shows that discrimi-
nation is possible hetween various type of sources, but that the estimation of the
number of sources of cach type is not as straightforward as expected.

C'oncerning the estimation of the traffic composition, particular emphasis was
given to the casiest approaches to realize in practice. Such methods are the pe-
riodogram and the noteh filtering approach, both preceded by a data decimation
procedure. Section 5.2 shows the periodogram results. The results obtained with
the filtering approach are given in Section 5.3.

The results obtained with the parametric approach, using a counting process.
are shown in Section 5.4, Finally, Section 5.5 is a discussion on the different ap-
proaches tried. This chapter concerns only the simulation results. The simulation

setup is given in Appendix D.

5.1 Autocorrelation Function and Correlogram

The autocorrelation function of the sources studied in Chapter 3 has been estimated
using, the unbiased estimator defined hy Equation (4.12). Five million data samples
were used to estimate cach autocorrelation value. A correlogram was then computed

using M = 262111 (2') autocorrelation values.
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Figure 5.1: Estimated ACF of a single BAR video source.

BAR Model

The estimated autocorrelation function obtained for a single BAR video source is
presented in Figure 5.1. Comparing with the theoretical autocorrelation function
plot in Figure 3.10, one can see that the shape is very similar. However, there is a
constant 10%. error at the lattice point (1/30 second multiple). This error is pre-
sumed to be caused by the disparity between the theoretical and simulated noise
processes. To obtain the burst size transition matrix of the BAR model] a trun-
cated Gaussian distribution with higher me 1 and variance was used. Although
this inaccuracy. when normalizing (R(0) = 1), both theoretical and simulated au-
tocorrelation functions match very well. Furthermore, the exponential envelope can
be fitted and the AR coefficient (a = 0.88) obtained.

The correlogram was computed using the previous antocorrelation estimates,
Comparing with the theoretical results for the power spectral density, both spectinm
shapes are very similar. However. as in the case of the autocorrelation function,

comparisons of the numerical values of the magnitude show systematic enor,
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UAR Model

‘The same computations were carried out for the UAR model. The autocorrelation
function obtained is plotted in Figure 5.2. A correlation value of 0.0323 at lag
zeto  that represents the load imposed by the source to the network, is computed.
Again the shape of the both, simulated and theoretical autocorrelation functions
are very similar, but an error of about 10 % is present. Furthermore, for lag values
greater than the video frame period there is still correlation (not zero as assumed),
but small compared to the one obtained within a frame period. Although set equal
to zero in Chapter 3, the correlation values obtained for lag higher than the video
frame duration were expected to be equal to the square of the load imposed to the
network, or, in other words, to equal square the mean value of the process.

As for the BAR model, the spectrum has a strong DC component from which
the load can be evaliated. However, unlike the BAR model, a highly variable power
spectral density appears elsewhere. Finally, a source similar to the UAR model is
very diflicult to observe in the frequency domain, especially if it is mixed with other

types of sources.

Voice Sources

For the voice sources, several simulated traffic streams were used. The results of
the multiplexing of 100 sources are shown. The estimated autocorrelation function
is given in Figure 5.4, As expected, there is high, exponential, correlation between
packets spaced by 2017 cells. Although the autocorrelation is exponential, it does
not match the one caleulated in Section 3.1. The expected exponential coefficient
was (1 = p—¢)! >~ 0.9801. The one fitted to the simulated traffic is 0.9853 and is

shown in Figure 5.5. A rough fitting of the estimated autocorrelation function is
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Figure 5.1: Estimated ACEF of 100 multiplexed voice sources.

given by

. p = 0.0003 ifks# n-l .
Rk = forn=0.£1.42... (5.1)
gt 4 IR 0.983M T i k=]

Finally, Figure 5.6 shows the power speetral density obtainea with the cor-
refogram.  Multiples of 18184432 Hz were expected to have the same magnitude
and equal 3.0820W/Hz or 5518 dB. Averaging the value of the ten first peaks
and comparing to the expected value, a relative error of 18.6% is obtained on the

estimation of the number of voice sources.
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Fignre 5.7: Estimated ACEF of 100 voice sources and 1 BAR video source.

Mixed Traffic

A data stream composed of 100 voice sources and a single video source was simulated
for this example. The autocorrelation function was computed using 1 million data
samples. Tt vields the expected results, i.e. both autocorrelation functions. of the
voice and the video, are added.  As it can be seen in Figure 5.7, it is easy to
disctiminate between the two autocorrelation functions. The voice part has peaks
cevery 2017 cells and the BAR video every 12226 cells.

The correlogram was computed using 65536 autocorrelation values padded
with the same number of zeros. Figure 5.8 shows that both spectrum add. The
magnitude of the voice peaks is about -55 dB, which is the value obtained when
simulating only the voice traffic. The magnitude of the 30 Hz harmonics correspond

to the one of the simulated BAR video source.
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Discussion

The estimation of the antocorrelation function and the use of the correlogram to
estimate the power spectral density has shown that the multiplexer is similar to an
adder. High traffic load have not heen extensively studied with this method due to
the computation involved and the limited resources.

The positive conclusion which can be drawn from the results of simulation is
that different classes of sources can be discriminated on the basis of their spectra,
This may be of value in a policing situation where certain classes of sonrees have
prohibited access to the network. However, as we shall see in later sections, speetra
of independent sources do not add in a straightforward fashion.

Finally. the correlogram is not a method which is of practical interest. To get
good resolution and details, a huge number of data samples are needed, resulting,
in heavy computational needs. However it is an interesting method when fitting a

model to a process with unknown autocorrelation function.
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5.2 Periodogram with Data Decimation

In this section, power spectra obtained with the periodogram preceded by a data
decimation procedure are shown. The traffic streams of the previous section are used
for a single class of traflic. In the following, only the results obtained for the power
spectral densities estimation are shown. First the results for a single class of traffic
are given. The BAR video and the voice source are used for this purpose. At the
end of the seetion, mixed traffic streams of voice and video are simulated in order
to test the estimation technigques. To obtain an accurate estimate of the spectrum
in “low-frequeney™ involving a resonnable amount of computation, downsampling
by a factor of 30 is carried out. Thus tue original sampling rate of 366780 Hz is
rednced to 12226 Hz. A urity gain, 8" order Butterworth digital filter with cutoff
fiequency (-3dB) of 0.8 ¥ 12226/2 = 4890.4 Hz is used. In the sequel. if not otherwise
spectfied, there is no data windowing done and periodograms of 1024 data samples,
ate stmoothed. The acquisition of 1024 samples represents about 1/12 second and
needs less than 3 milliseconds to be processed. This is roughly the time parameters

of a practical svstem for monitoring telephone traflic.

BAR Video Sources

First, periodograms using 1021, 2018...., 16334 data samples are given. In all
cases, zero padding is done to get a 16381 point FFT. Further, in order to compare
the estimates, the same number of data samples was used for each of them: thus
32, 16, .. 2 periodograms are averaged according to the number of data samples
used for a single periodogram. Figures 5.9 to 5.13 show these estimates. The
regular pattern whicl. is characteristic of the BAR video model is obvious in all
plots  However the magnitudes varies according to the number of data samples used
for cach periodogram. This variation is caused by the intrinsic smoothing performed

when computing the periodogram estimator. However, the power contained in a bin
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BAR Periodogram, K = 32, N = 1024, 2P = 15N
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Fignure 5.13: Periodogram of a single BAR video, K = 32, M = 1021,

should he equivalent. Furthermore, the periodograms are biased because that the
sampling rate does not have a common factor with the factors of 30 iz

The second set of plots (Figures 5.11 to 5.17) show spectenm of a single souree
obtained by smoothing K periodograms of 1021 samples, padded with 15 < 1021
zeros, It is interesting 1o observe the inerease of the 90 Hz component as the number
of smoothed periodograms goes from 2 to 16.

Finally, Figure 5.18 is the periodogram of 10 BAR video sources. "Table 5.1
provides some numerical values of the 30 Hz harmonies for 1, 10 and 20 sonvees, It
can be concluded from this table that the way to estimate the nummber of sources is
not straightforward. The index N in the case of 10 and 20 sources, shows the ratio
between the power of the aggregate sources (10 or 20) to the single sonrce, for the
given frequency. A scan through the values of N let us conelude that the spectrum

do not add linearly.
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Periodogram, K = 8, N = 1024, ZP = 16N
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Fignre 5.16: Periodogram of a single BAR video, K = 8. M = 1021,
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Figure 5.17: Periodogram of a single BAR video, K = 16, M = 1024.
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Periodogram, M = 10, N = 1024, K = 32, ZP = 15N
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Figure 5.18: Periodogram of a 10 BAR video sources. K = 32, M = 1024,

f Periodo 1 Periodo - 10 Periodo - 20
1. k| \W/Hz dB u#W/Hz dB N | pW/Hz dB N

R U 179.8 3745 T17.9 -31.44 41 1817.6 -27.41 10.1
60 161 2003 -146.19 8379 -40.77 3.5 2426 -36.15 10.1
a0 211 6.906 - 5H1.61 73.61 -41.33 10.7 95.70 -40.19 139
120 322 5407 -52.63 58.37 -42.34 10.7 143.2 -38.44 26.2
150 102 2,851 -h5.8 61.82 -41.88 227 125.0 -39.03 43.8
IS0 182 2.070  -56.81 3.500 -54.56 1.7 15,37 -48.13 7.43

200 563 1.453 - H8.38 7.069 -51.51 4.9 23.98 -46.20 16.5
2000 613 1.231  -59.10 1202 -49.20 9.8 2477 -46.06 20.1
270 T 0.816 -60.88 3.507 -54.58 4.3 23.20 -46.35 284
00 801 0.687 -61.32 3.606 -54.43 5.2 31.77 -44.98 46.2

Table 5.1: Comparisons between periodograms for 1, 10 and 20 BAR video sources.
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Figure 5.19: Periodogram of 100 voice sources, K = 2, M = 16381.

Voice Sources

This section is similar to the previous one; it gives the results for 100 multiplexed
voice sources. There were 32, 8 and 2 periodograms of 1024, 4096 and 16384 data
samples averaged to produce Figures 5.19 to 5.21. Table 5.2 provides some numerical

values of the periodogram for the multiples of 181.84 Hz.

Mixed Traffic

Now, two mixed traffic streams are used. The former is composed of | video and
100 voice sources, the latter of 5 video and 200 voice sources. For the first case,
a Bartlett's spectral estimator averaging 32 periodograms of 1024 data samples is
plot in Figure 5.22. As it can be seen, both voice and video spectrum add such
a way that it is evident that one can detect the presence of cach class of sources.
However, as it was seen previously, the estimation of the mumber of source of bhoth
type cannot be provided easily. Table 5.3 gives some numerical values for the first

traffic stream and Table 5.4 for the one formed of 5 video and 200 voice sources,
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Figure 5.20: Periodogram of 100 voice sources, K = 8, M = 4096.
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Figure 5.21: Periodogram of 100 voice sources, K = 32, M = 1024.
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! Periodogram
Hz k| pW/Hz  dB

181.70 487 1.452 -58.38

363.78 975 1.394  -58.56
545.48 1462 1.339 -58.73 8§
727.19 1949 1.594 -57.98 105.2
909.26 2437 2.441 -56.12 161.0
1091.0 2924 1.890 -57.24 125.7
1272.7 3411 2.479 -56.06 163.5
1454.4 3898 1.826 ~57.39 120.5
average 1.802 118.9

Z

L W O
jo !\'J ;ﬂ
w O
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Table 5.2: Periodogram of 100 voice sources,

Periodogram, BAR + 100 Voice, K = 32, N = 1024, ZP = 16N
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Figure 5.22: Periodogram of 1 video and 100 voice sources, K = 32, M = 1024
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Video Voice
I PSD f PSh

Hz & | xW/Hz dB Hz | pW/Hz dB

30 380 179.6 -37.46 || 181.70 487 3.092  -55.10

60 161 24.00 -46.20 || 363.78 975 1.3908  A8.54

90 241 6.927 -51.60 || 545.48 1462 1.432 5841
120 322 5.513 -52.59 || 727.19 1949 1.596  -57.97
150 402 2.805 -55.38 || 909.26 2437 2.509  56.01
180 482 3.005 -55.22 || 1091.0 2924 1.836  -5H7.36
210 563 1472  -58.32 || 1272.7 3414 2476 -56.06
240 643 1.224  --59.17 ) 1454.4 3808 1.926  57.16
270 724 0.828 -60.82
300 804 0.699 -61.56

Table 5.3: Periodogram of 1 video and 100 voice sources,

Video Voice
f PsD f PSh

Hz &k | uW/Hz dB Hz kot pW/Hz  dB

30 R0 2576. -25.89 | 181.70 487 11.58  49.36

60 161 44.79 4349 | 363.78 975 4.066 5391

90 241 36.96 -44.32 || H45.48 1462 4594  H3.3K
120 322 4146 -43.82 || 727.19 1949 3.157 5501
150 402 2282 -46.42 | 909.26 2437 2.644 5078
180 482 10.02  -49.99 || 1091.0 2924 8190  H0.87
210 563 4.845 -53.15 |} 1272.7 3411 3963 54.02
240 643 4299 -53.67 || 1454.4 3898 4.098  Hi3R
270 724 2.543  -0h5.95
300 804 1.531  -58.15

Table 3.4: Periodogram of 5 video and 200 voice sources.



Discussion

Due to its simplicity, the periodogram is very attractive to implement in hardware.
A 1024 point FFT can be performed in less than 3 milliseconds on almost any DSP
chip and 30 time faster—less than 100 usec, with dedicated FFT chips.

As in the case of the correlogram, the periodogram can detect the presence of
different, classes of sources; however, the results of simulation show that quantitative
estimates of the number of sources of each type that are off-hook are not evident
from spectral measurements. The spectra of independent sources do not add in
a straightforward manner. The phase correlation of different sources over short
intervals give rise to nonergodicity with the result that spectra do not add in a
sitmple fashion. By taking measurements at long intervals, the average number of
sources of cach class operating can be estimated. Although unreported, this was

verified with Monte-Carlo simulations.
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5.3 Filtering Approaches

For the filtering approach. a notch filter preceded by a downsampler is used. The
downsampling is carried out exactly as in the periodogram approach, In the {ol-
lowing example, a traffic stream composed of a single BAR video source and 100
voice sources is used. The constraint coeflicient 7 is set equal to 0.999. This is not
ideal, but works satisfactorily. The effect of a coeflicient near one is to increase the
transient duration. In fact, we are not dealing with a notch filter but rather with
a selective filter where the output is equal to the input minus the output of the
notch filter. Figure 5.23 shows the output of such a filter when selecting the 30 Hez
component, and Figure 5.24 is tLe spectrum of this signal. In the following figures,
the same is done for two characteristic tones of the voice model, the H15.53 and
1818.44 Hz components. It was expected for both to have the same envelope and
then, just by mnonitoring these frequencies we would have obtained an estimate for
the number of voice sources. To our great disappointment, it is not what has been
obiained as it can be seen from Figures 5.25 and 5.27. It is onr feeling that this
difference is caused by the phase hetween the processes,

A comb filter may give good results for the voice sources by selecting all the
components of 181.84 Hz. Then the output, could be fed to a power detector and,
the total power divided by the number of tones used to produce an estimate of the
number of voice source. However, to use a comb filter for Lthe voice, the sampling
must be performed at a multiple of 181.84 Hz. Such sampling rate was very difficult

to realize by simulation; for that reason, this method has not been tried.
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Figure 5.23: Output of the selective filter, 30 Hz component.
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Figure 5.24: Power spectrum around the 30 Hz component.
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Fignre 5.27: OQutput of the selective filter, envelope of the 1818 Hz component.
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Figure 5.29: Autocorrelation function of 1 BAR video source with bin of 80 cells.
5.4 Counting Process and Modern Approach

This section presents some results obtained for the modern approach with the count.-
ing process. Concerning the counting process, a window of any size can be used.
As a first cut, bins of 80 (218.1usec) cells were used. Later, a bin size of 367 cells
(1.0006 msec) was tried.

Figures 5.29 to 5.32 show the autocorrelation function obtained for the BAR
video model, with 1 and 10 sources, using bins of 80 and 367 cells. The autocor
relation function obtained is very similar to the one of Figure 5.1, An exponential
envelope with the AR coeflicient (a = v.88) is easily fitted for the plot of a single
source. For 10 sources, the fitting still possible, but is more difficult due to the
mean which is increasing with the square of the number of sources while the antoco-
variance increases linearly. Figure 5.33 is the autocorrelation obtained for a mixed
traffic of 1 video and 100 voice sources. It is very similar to Fignre 5.30 except that

the notches do not go as deep.
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This connting method has the advantage of reducing the processing to obtain
an estimate of the antocorrelation function, but has the disadvantage to smooth the
traflic stream such that the voice correlation disappear; it is hidd=n by the video
correlation. Although the counting process reduces the capability of estimating the
voice traffic, it can be used to estimate the video traffic. Using only the lattice
points (1/30 second multiples) Prony’s method—which tries to fit a weighted sum
of exponential, could be used to discriminate between several types of video.

Finally, the bin size chosen influences the choice of the parametric model.
For example, if there is a single class of voice source that sends a packet every 5.5
milliseeonds, and we are using a bin size of 0.5 milliseconds, the sources can be
modeled as an AR(11). This has been studied experimentally and seems to work.
However, when multiplexing voice and video, the video acts as noise for the voice,
and the parameter estimation is diflicult to perform. if not impossible. The problem
is that the video load is much higher than the voice load. thus rendering the voice

load neglectable.

5.5 Discussion

In the course of this work, a simulator was written to compare the theoretical re-
sults. computed numerically, with the estimated ones, obtained by simulation. The
simulator was also written to evaluate how well the methods described in Chapter 4
did with respeet to accuracy in estimating the traffic composition.

In this chapter, only the results that may be used as a basis for the design of
a system that would estimate the traffic composition were presented. There was no,
strictly speaking. performance analysis on the estimators themselves, but more a
general overview of the methods that may be implemented. with a basic evaluation
of their performance by means of their accuracy in estimating the traffic composition

using only the magnitude of some characteristic tones.




300 f 'vn.mev.fftacf'__
so EVEREVEV RV U VR VYUV

0 100 200 300 400 500 600 700 800 400 1000
time (1 unit = 367 cells)

Figure 5.30: Autocorrelation function of 1 BAR video sourze with hin of 367 cells.

700 T T T
‘vi110.b80.fftacf’ —
650 ¥ -~
3 600
b
550 P ~
0 500 1000 1560 2000

time (1 unit = 80 cells)

Figure 5.31: Autocorrelation function of 10 BAR video sources with bin of 80 cells.

90



15600 T T T | R T
14560 | 'v110.b367.fftacf’ —
14000 P -
12500 -
13000 -
& 5 _
Y 12500
12000 r— I
|
11500 b -~ i
11000 P -
10500 p= -
10000 ] ] 1 | 1 [ L | |
0 100 200 300 400 500 600 700 800 900 1000
time (1 unit = 367 cells)

Fignre 5320 Autocorrelation function of 10 BAR video sources with bin of 367 cells.

350 T Y T 1
‘vil+vol00.b367.fftacf’ —
300 P~ -
250 F -~
20
N o
&
o TRV VUV
100 | -
50 - -
]
Q i ] 1 ]
0 200 400 600 800 1000

time (1 unit 367 cells)

Figure 5.33: Autocorrelation function of 1 video and 100 voice sources with bin of
367 cells,

9]




The section on the autocorrelation function estimation and the correlogram
verified the accuracy of the simulator with respect to the numerically computed the
oretical power spectral density and autocorrelation function. It was shown that the
simulator produces traflic stream similar to the expected ones but not perfectly since
there was a constant 10% error in the magnitude of the autocorrelation function.

The section on the periodogram approach showed that real-time traflic esti
mation may be performed using 1021 point FF'T processors. White different classes
of sources may be discriminated. more work is required in order that accurate esti
mates of the number of sources of each type can be obtained. The same conelusions
hold for the filtering approaches.

The modern techniques were not as successful as desired. First it is diflicult
to get estimates in real-time, and the models are not as simple as AR(p). Due to
the nature of the process, modern spectral estimation has no meaning, at the cell
level. To overcome this fact, windowing was performed. The windowing procedure
works as in the leaky bucket: it counts the packets for a specified time interval,
and then tries to fit a pre-sclected model. The counting processes observed were
not first-order autoregressive as expected from [11]. A study on a good window size
may be carried out fo get simple AR(p) models.

The results reported in this chapter are not all that we have obtained. A
lot more traffic simulations. spectrum and autocorrelation funetion computations
have been made and support the general conclusion. Spectral estimation may be
performed to estimate the nature of a random traffie stream, but further work has to
be done in order to characterize the different type of sources that an ATM network
is expected to handle.

The next chapter cov-ludes this thesis.



Chapter 6

Conclusion
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This thesis concerns first step of a new approach to congestion control for ATM
networks which uses spectral analysis. One of the main advantages of this new
approach, is that it can be applied anywhere in the network. All that it needs is the
ATM cell stream. from which a binary process is formed according to the state of
the cell, full or empty. The thesis investigates different techniques to estimate the
traffic composition by means of spectral analysis.

After the introduction. Chapter 2 presented some ATM network features such
as the variable bit rate source that it is expected to handle, the ATM cell format
and the statistical multiplexing.

In Chapter 3 several models for packetized voice, video and data were devel-
oped. The voice model is a Markovian binary process which takes its origin in the
characterization of telephone speech. For video, two extremes cases have been stud-
ied. The first model (BAR) sends all its information, as a burst, at the beginning
of every video frame. The second model (UAR) sends all the information of a video
frame. uniformly, over an entire video frame interval. Data models were Poisson and
Bernoulli processes. It is clear that the voice, video and data models presented are
only five of the many kinds of sources that the ATM network may have to support.,
An area of further study may be to adapt the previous models—and, or imagine
new ones, to characterize new types of sources that will have to be supported,

The fourth chapter was on the techniques that can be applied to estimate
the traffic composition. Classical estimators—the periodogram and correlogram,
were briefly described. Some modern techniques were also presented. At the end, a
filtering strategy involving notch filters was described.

Chapter 5 presented the results on the methods that were tried by computer
simulation. Emphasis was made on the easiest Lo implement in hardware. Such
methods are the periodogram and the noteh filter, both preceded by a downsam-
pler. In terms of estimating the traffic load of a network, these approaches are rela-

tively new. There was limited success in observing the spectra of different classes of
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sonrces; however, further work both theoretical and practical is required in order to
obtain accurate estimates of the number of sources of each class that are off-hook.

As expected, cach class of traffic have a different signature spectrum char-
acterized by basic harmonic frequencies and envelope. However, due to the short
observation periods and the phase correlation between the processes, it was shown
that the mimber of sources of each type cannot be quantified easily from spectral
measurements,

Finally, a new approach to congestion control involving spectral analysis have
been presented. The ultimate goal was not to evaluate this or that estimation
approach with a Monte-Carlo simulation, but to get a good idea of which method
could be used as a the basis to & system that would estimate the traffic composition
in ATM networks. The performance analysis of the presented methods and the

design of the decision rules may be a topic of further research.
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Appendix A

Z-Transform Approach for the
Computation of the
Autocorrelation Function and the
Power Spectral Density of a

Binary Markov Process
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There exist several ways to compute the burst and cell autocorrelation functions
r(k), (k) and the power spectral density P(f) of a binary Markov process. One of
these is the transient, hehavior matrix approach as used in the Section 3.1.1, ancther

is the z-transform technique (or generating function) that follows.

A.1 z-transform Technique

Let recall the random point process defined in the Section 3.1.1 for the voice source

at the burst level.

0 if the source is idle )
X(i) = fori =1,2,3... (A.1)

1 if the source 1s active

The autocorrelation function r(k) is given by

r(k) = E[X({)-X(i+k)],
= XI:EI:j-l-Pr{X(i)=J',X(7'+k)=l},
= 11:?{‘.:\(3(5) =1L, X(i+k)=1},
= Pr{X(i+hk)=1|X()=1} Pr{X() =1},
_ o, (A.2)

where pb, is the conditional probability that X(i) is in active state given that it
was in active state k steps previously and p; is the steady-state probability to be in

active state. Let define the probability generating function
ST
() =302k (A3)
k=0

The equation for P(z) may be written in term of F(z) the probability generating
function of first passage time from active: te to itself [33]

P(z) = Fz)

= TTre (A.4)
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e

Let define the first time passage transition probability f1, as

. 1‘, =Pr{ N+ k) =1 for the first time after N(2) = 1} (A.D)
such that
0 for k=0
Mi=4{1-¢ for k = 1 (A.6)

pg(l = p)*=2 fork=2.3.1,...

The first time passage probability generating function becomes

Fiz) = Y :2borh. (A7)
0

z(]—(])+:2(l—;)—(l) )

1 —=(1—p) ) (A.8)

Substituting Equation (A.8) into Equation (A.4) we obtain

(1=q) =21 =p-¢q)
I=z(2=-p—qg)+22(1 —p—9q)
P 1 q 1

— . + . . A9
p+q 1=z ptg V==z(l=-p—-yq) (A-9)

P(z) =

Taking the inverse z-transform
. ) q
7’?1 = <—]—— S+ 1 (1 = p—q)“ Cfor kb =0,1,2,... (A.10)
p+yq L
Substituting Equation (A.10) in Equation (A.2), and taking the limit for ph,, we
obtain the steady-state probability p,.
‘ k P
n = lim py, = ——. Al
M k«.m’ 11 ptq ( )
Using thie symmetry property of antocorrelation function of real process, the hurs,

aulocorrelation function becomes

2
r(k) = (—-’-’-—-) : [1 0o p— M|, for b= 0,41, 42, (A.12)
pt+yq P

With the transient behavior matrix approach used in Section 3.1.1, one finds the

same results.




A.2 Power Spectral Density
The power spectral density of a point process is by definition {20]

Plw) = fj R(m) - exp (—jw - m - T), (A.13)

m=—oc
where T is an arbitrary constant that depends on the sampling frequency. In our
case. T is the cell duration 7. Furthermore, instead of using the pulsation w, we
write the Fourier transform P(w) in term of the frequency, f. Hence

Pif) = i R(m)-exp(—j2r-m-T - f). (A.14)

TH= -0
Substituting the autocorrelation coefficient and taking into account the cell interar-

rival I the power spectral density can be developed as follows:

P(f)

fi

Z R(m) -exp(=j2m-m-T - f),
= z r(’;]) cexp(—=jg2r-nl-T - f),

N=—=nG

2 o
= }(-—'—) > [1+§(1—p—q)'""]-exp(—jzvr-n-f:r'n,
)

Ptq n=-oo

2 o
P I n
p-f—q) 2T Z Y ]T)+

n=~-o0

2 x
{77’ (]—p—q)‘"“-exp(—j?w-n'l']"f)},

I
2 2
q I —
{IP I +42 =29 cos(27r]’Tf)}’ (A.15)

where q = (1 = p =)
Now we can examine the superposition of several independent and uncorrelated

sources. Let define the aggregate process of M sources as Xjy.
M
.\A\,(z)zz.\",(z). (A.16)
=1
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where X, (i) 's are uncorrelated. i.i.d. voice source cell processes. The cell autocor-

relation function is given by

Ru(k) = E[\'\, - Xar(G 4 0],
M

Z\(l Z\[!-{-A

M
= ZE[\ (i) Xi(i + &) (A17)
1=11=1
Hj=1 E[X,(i) Xi(i+ k)] = R(k). (A.18)
i1 E[NG)-X(i+ 8] = (E[X,0)°. (A.19)
Therefore.
Rag(k) = M - R(k) + M(M = 1) (E[X,()])*. (A.20)

Taking the Fourier transform of Equation (A.20) we obtain the power spectral den-

sity of the supeiposition of A voice sources.

r[\ AT~ ap -2y )

N=—no

Py(fy = M-P(fy+M(M-1)-
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Appendix B

Conditional Cross-Correlation

Function Analysis
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This appendix contains an analysis of the conditional cross-correlation function r(r |
1. J. k) of the Section 3.2.3. Let recall that r(7 | +,.4) denote the conditional
cross-correlation function between bursts of length 7 at time 2 and length j at time

t +kTy + 7. The Figure B.1 gives an illustration of the problem.

e T — W g
_J_A_Fm.u.l.u.n_a..u"_u.a_a__ v _.n.n_u_:_r_mu.nm.uq.i_t_.’

1, l to+1; to + K1y I
KTy +1

{ (+hkTy 47

Figure B.1: Hlustratiou of the problem.

Let ¢ denote a uniform random variable in the elose interval |4, 1, + Ty). Sinee
the process can only take the value zero or one, the conditional cross-correlation

function can be written as
r(r|igk) = E[X() - X(t+kTy+7)] IR for |7 << Ty, (B.D)
= Pr{X() = LX({+FkTr+71)=1] 0, )k}, (B.2)
= Pr{X({+kTi+7)=1]|XU)=1,0,),k}
xPr{X{t) = 1]i)k}. (1.3)

Assuming that t is uniformly distributed in the imterval I, = {10, + Ty], then

PriX(t)=1]dajk} = Pr{tel,]i}. (13.4)
iT

= —, 3.5

T, (1.9)

The conditional probability Pr{X({ + kT4 7)=1] X()= 1.k} must

be studied in three parts: 7 equal to. less than and greater than .
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B.1 Evaluation of r(7 | 7,7,k and i = j)

First let define the interval Iff’ = [l,+k T}, 1,4 (k+1)T}], and rewrite the conditional
pl'()])ﬂl)i“iy as

prli=j) = Pr{X(+kT,47)=1]|X(0)=1,ij,ki=j}), (BS)

= Pr{t+ kT +7el® |tel,ijki=j} (B.7)

The only random variable in Equation (B.7) is . The variable 7 is deterministic

and is bounded such that |7} € Ty. Equation (B.7) can be rewritten as

pr|i=j) = Pr{t+rel,|t€l,ijki=j}, (B.8)
= Pr{-t<i<r|0<t<iT}, (B.9)
= I—TTI%_I—, for |7 <17, (B.10)

Therefore, the conditional cross-correlation function is obtained and

rr|ojbhandi=j) = ])(le':j)'ﬁ. (B.11)
Ty
_ Ir|\ T
= (l i7) T, (B.12)
- Tl for [r] <iT. (B.13)
Ty

This is a triangle centered at zero, as in Figure B.2, with height '—% and width 2:7.

r(r]i,g.i=j)

' T
fo 21T

X

Figure B.2: Conditional cross-correlation function »(7 | i,j. k, 7 = j).
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B.2 Evaluation of r(7 | 4,5,k and ¢ < j)

Rewriting Equation (B.8) with i less than j instead of equal to j, one obtains for 7
greater than zero

prli<jr>0) = Pr{t+rel, |tel,,i,jki<j,m>0}, (B.14)

= Pr{it<jT-7|0<t<iT <}, (B.15)

{1 for0<r<(j—i)T

(B.16)
Lot for (j~)T <7< jT.

For t less than zero,

p(r|i<jr<0) = Pr{t+rel, |tel,ijki<y7<0} (BIT)

= Pr{-7<t<jT-7|0<i<iT,r<0}, (B.I8)

= Pr{—-7<t|0<ti<iT,7 <0}, (BB.19)
= | -Pr{t<~7|0<t<iT, 7 <0}, (B.20)
-7
= —_—— —1 2
1 — for 1T <1< (B.21)

Theicefore, the conditional cross-correlation function is obtained and

r(r|i,j,kand 1 < j) = 7)(7‘]1(])-7,7,—, (B.22)
/
L:IT"ﬂ for i T <7 <0
'
= '—T% for0<r<(j—1)7 (3.23)
LI,-;— for (j-1)T <1<357T.

B.3 Evaluation of r(7 | ¢,j,k and 7 > j)

The same computation can be done for ¢ greater than j. The following results are

obtained
L;ILJ for T <7<(j—7T
r(r]i,jkand 1> 3) = % for(j —1)T <7<0 (B.24)
= for0<7 257,
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Al the preceding results can be generalized as follow: the conditional cross-
correlation function is always a trapezoid of base width (i +) 7, top width |i—j| 7T
and height min(7,j5) - 771— The lower left corner is at 7 = ~4 7 and the lower right
corner at 7 = 3 T. The trapezoid is centered at (j —1)/2. Figure B.3 is an illustration

of the correlation function for any i and j. Figure B4 is for the case when 1 is less

than j.

| i = §
/ \ min(i,j)-%
+ ARaas T
e i+ 7T

Figure B.3: Conditional cross-correlation function »(7 | 7,7, k).

SN

S

=l i+ i { J

Figure B.4: Conditional cross-correlation function r(7 |1, 7, k.71 < 7).
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Appendix C

Example of the Estimation of M

Superposed AR(1) Processes
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This appendix concerns an example of the estimation of the superposition of M

AR(1) processes. For this purpose, an example with M set equal to 2 will be used.
The results can easily he extended to higher value of M.

A block diagram to represent the process at a system level would be as follows:

ﬂ

W(1)) me————— Cl1 y(n)

—  H2(z)

c2

Figure C.1: Block diagram of for Af =2

where w(n) is a zero-mean, white Gaussian noise sequence, ¢; and c¢; denote the
number of sources of cach type, and H,(z) and H,(z) are the AR(1) transfer func-

tions. The output of the system is given by
y(n) = ¢ la(n = 1) + hwn)) + e [aaya(n —1) + byw(n)). (C.1)

To find what type of process is generated by this system, the transfer function is

evaluated. Let H(z) denote the system transfer function.

H(z) = (a1 Hi(z) + e Hy(2)], (C.2)
where
Hi(z) = — (C3)
" 1l —aqa,z"1 )
Therefore,
C1 bl Co bz




b+ by~ (1 byay + ey byay) 21

l—(ar+ay) ="+ (ayax)z? ()

This is a rational transfer function. If the input to the system is a white noise
process—this is actually the case. then the output process is an autoregressive
moving-average process {20, p.293]. The process defined by Equation (('.1) is an
ARMA(2,7), and its transfer function can be rewritten as

I+ gzt

H:=0- . .5
(2)=0 l4+0y27" 4 a2 (€.5)
where
g = G b] + Ca ()2, ((‘())
8 = _ G biay + ¢ ’Zal’ (€.7)
o
ap = —(a + az), (C.8)
ay = ayay. (C.9)

Let assume now that we have the ARMA parameters estimates ay, Gy, 4 and a.
If the AR parameters a; and a, are unknown, then they can be estimated from

Equations (C.8) and ((".9). The estimates of the «,’s arc denoted by &, and

—é) £ /42 - 44,
; : L (C.10)

a; = ) ’
&

@ = = (C.11)
[¢5)]

The AR parameters are real such that we must have 6} > 4a,. Further, it is assumed
that the parameters are known such that the above relations can be used to adapt
the estimation.

Assuming that we have the ARMA parameters (ay, a,, by, #,), that we have the

estimates 3; and &, we easily obtain the relations for & and ¢,.

) 5 (B + az)
= .12
('2 I)2 ((l2 - al)? ( ] )
4 = i‘_bz_"ﬁ, (C.13)
by
& (B +ay) .
= —_— (C.14
bl (al - az) )
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Simulation Setup
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This appendix presents the ATM link simulation setup and the DSP analvtical tools.
First the Section D.1 explains how the sources are simulated. In Section D.2, it is
explained how the statistical multiplexing is carried out. The Section D.3 is about
the experimental data obtained for video. Finally, the analytical toows that were
used are presented in the last section. All the programs are in C language, and a

total of about 8500 lines or 300 Kbytes were written.

D.1 Sources Simulation

The next two sections give the pseudo-code for the simulation of the voice and video
sources. These algorithms were programmed in C language. The total size of the
traffic stream simulator is around 3500 lines, and the numerical calculator (for the

BAR and UAR video model) is about 2000 lines.

D.1.1 Voice sources

To simulate the voice sources, the binary Markov process of the Section 3.1 is used.
Throughout, it is assumed that when the process is in the active state, it generates
information at a uniform bit rate of B bits/scc.

The simulation of every sources is done as follow:

1. Set the initial state randomly (Pr{Active} = ;ﬁ;,]’r{ Idle} = =),
e if active is selected, the fill randomly part of the current packet.

2. Generate a uniform random nmmber § between 0 and 1.

3. Compare é with the threshold according to the current state p (idle) or ¢

(active),
o if § is smaller than the threshold, the change of state,

4. If in active state. fill part of the current packet,
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o if the packet is full, send it and start filling a new one.
5. Return to step 2 or stop if the simulation is finished.

In spite of the simplicity of this algorithm, some details must be mentioned. In
step 1, the random filling of the initial packet ensures that the sources are not
synchronized. In step 4, if the current packet is not full when a transition from
active to idle occurs, it is not sent immediately; it waits until a certain time-out
ends. For example, a PCM voice source at 64 kbps generates 0.17507 bits every
cell. Hence, it takes about 2017 cells to fill a packet. To simplify the simulation, a
packet is sent every 2017 cells and when a transition from active to idle occurs, the

time-out is set equal to the remaining time to fill the current packet.

D.1.2 Video sources

In the Section 3.2, three models for video sources were presented. This section
explains how cach of them is simulated. Due to their similarity, the pseudo-code for
the BAR model and UAR model is given simultaneously. Then the simulation of

the minisource model 1s discussed.

Autoregressive Models

The BAR and UAR model relies on the same equation for the average bit rate of
a frame. The only difference between these two models is how the information is
sent to the network. For the BAR model, all the packets are sent as a burst, at a
constant packet rate. For the UAR model, the packets are sent uniformly during
the entire video frame duration.

The following pseudo-code has been implemented to simulate every source of

hoth models.

I. Select randomly the initial bit rate (A(0) ~N (i, 0?) ).




o

Set randomly the time elapsed in the current video frame, and fill randomly

part of the current packet.

3. Send the packets according to the model (BAR or UAR) chosen for the re-

maining time of the current video frame.

4. Compute a Gaussian random number w(n) ~A (ytpr. 04r) -

o

Compute the new bit rate: A(n) = aA(n — 1) + w(n).
6. Return to step 3 or stop if the simulation is finished.

As in the case of voice sources, some details must be mentioned. The first two steps
guarantee that the video sources are not synchronized. lu step 3, the packets are
sent according to the model chosen; bursty or uniform. For the bursty procedure, all
the packets are sent at i predetermined constant packet rate for the entire duration
of the video frame. For the uniform procedure, the packets are sent a constant
packet rate obtained by dividing the number of packets to send by the number of
cells in the video frame. For example, if 200 packets have to be sent in an interval of
10000 cells, in the uniform procedure one packet will be sent every 10000/200 = 50
cells. In the bursty procedure, assuming that the packet rate is one packet every H
cells, the packets will be sent one every 5 cells on a period of 5 x 200 = 1000 cells,

letting the remaining 10000 — 1000 = 9000 cells emptics.

Minisource Model

The minisources model can be simulated with three variations. First, lets reintro-
duce the original model. In [11] it is stated that “the aggreqate rate out of M voice
sources (read as minisources) corresponds eractly to our quantizing aggregale bif
ratc of N video sources into M levels”. The actual way the model is proposed is the

following: A/ minisources generate bits in a common buffer where packetization is
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Figure D.1: Minisource model.

provided. It is the aggregate rate of the M minisources that is equal to aggregate
rate of the N video sources, Figure D.1 illustrates the model.
The aggregate rate of the minisources can be simulated as defined or with

shight variations. The following threes models have been implemented:

I. Al the M minisources generate bits in a common buffer. The packetized

output rate is the aggregate bit rate of the NV video sources.

[ S

Each of the N video sources has its own packetizing buffer. Every source is

modeled by an integer number & = % of minisources that fill its source buffer.

3. All the M minisources are independent, having their own packetizing buffer.

Each minisource sends its own packets on the output line.

For all the models enumerated above, the minisources are simulated like ui:e
voice source with parameters p = a7, ¢ = 7. The parameters a, 3 and the bit
rate A are given by Equations (3.48) to (3.50) according to the ratio x chosen. The
three models give very similar results for a large number of multiplexed sources, and

depend on the choice of the ratio &.
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Figure D.2: Multiplexed traffic stream and output file

D.2 Statistical Multiplexing

The software written simulates a high-speed multiplexer with a large number of
input lines. a single output line and buffers to resolve short-term contentions. To
estimate the traffic composition, the only information available is the state of each
cell: full or empty. Cell priority or not, random selection of colliding packet or not,
the information obtained from the traflic strecam remains the same, the presence or
absence of a packet in a cell. At the beginning of every cell, the multiplexer seans
all the input lines, stores the packets a contention buffer and sends one packet (if
any in the buffer) to the output line. To observe the size of the contention buffer,
instead of writing 0 and 1 in the output file, the actual number of packets in the
buffer (before sending anyone to the output line) is written. Figure 1.2(a) illustrates
the multiplexing of arriving packets. Arrivals to the multiplexer are denoted by up-
arrows and output packets by hachured boxes. The Figure D.2(b) shows what is
actually written in an output file. The output file was generated this way to enable
the estimation of the size of the contention buffer needed to achieve a certain packet

loss probability for a given load.
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D.3 Experimental Video Data

The experimental data for video was obtained from the University of Toronto [8].
The video source was either a video camera or a VCR. The NTSC analog signal
was digitized at a rate of 30 frames per second with a resolution of 486 x 720 pixels
with 8 bits per pixel. The original video sequence has a duration of 46 seconds with
changes of scenc.

To code the original sequence, four algorithms were used: interframe DPCM
with run length coding, subband coding run length coding, multidimensional sub-
band coding run length coding and discrete-cosine transform. ror the four algo-
rithms, the number of bits to send to the network was computed.

To generate the packet traffic stream, both the UAR and BAR models can be
used. The only modification in the pseudo-code of Section D.1.2 is that the bit rate

has no more to be computed, but is obtained from the real data.

D.4 Signal Processing Programs

The signal processing programs are written in C language. The Fourier transform
prograir comes from the book Numerical Recipes in C [34], but has been modified
to correct the error for the sign of the exponent in the definition of the FFourier

transform in [34, p.398]. The total size of these tools is about 3000 lines.

D.4.1 Data Decimation

For the data decimation procedure, the digital filter coefficients were computed with

MATLAB, using the functions butfer and cheby!. Eighth order Butterworth, and

type I Chebychev low-pass filters were used. The cutoff frequency was selected
366780

equal to 0.8 x =5=, were D denotes the decimating factor. For stability reasons, D

was kept smaller or equal to 30. When using Chebychev filter, the ripple was kept
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smaller than 0.01 dB. Finally, the Butterworth filter was preferred to the Chebychev

for its maximally flat response characteristic.

D.4.2 Periodogram

The periodograms were computed using N data points and ZP x N zeros padding.
To get the good value of the power, normalizing was done as follows.
First, the FFT of the zero padded data sequence was computed.

(ZP+1):N
X(fu)= 3 (i) exp(=j2nim/((ZP + 1) N)). (O.1)
1=1

where f,, = ﬁmll"T'_\—A_t The periodogram estimates for the bin around frequency

Jm was obtained by
; At
P(fm) = 'N’

When using a lag window, instead of dividing by N, division by

X (h.2)

A

2 _
=y w? s done.

Further, the windowing is applied to the data before zero padding,.

D.4.3 Autocorrelation Function Estimates

For the autocorrelation function estimation, the unbiased estimator was used with
a very long sequence. Further, since the correlogram and autocorrelation function
estimates were used only to validate the numerically computed, theoretical autocor-
relation function and power spectral density, the same number, N, of lag produets
were averaged, i.e. N data samples were utilized to get R(0), N + 1 for I(1),...,
and N + k for R(k).

The autocorrelation function has also been computed using the convolution
property which is equivalent in the frequency domain to a multiplication. Autocar-

relation function is then efficiently computed using the FFT algorithm.
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D.4.4 Correlogram

‘To compute the correlogram, the FFT routine was also used taking into account
its circular property. Given the M points, noncausal, discrete-time autocorrelation
function, R(m), generates the causal autocorrelation sequence, R*(m), of N = 2"

data points [35, p.180]. Then obtain the N-points radix-2 FFT,

~

R(m) form=0,1,...,M
Rtom)=4{ o form=M+1,.... N=M—1 (D.3)

a

Rm-N) form=N-M,...,N-1.

The FFT results is multiply by At (the time period between two samples) to
scale for good power spectral density level, as discussed in Section 4.2.2 and [27,

pp.42-43].

D.4.5 AR(1) Parameters Estimation

The AR(1) parameters estimation is carried out using the maximum likelihood es-
timator exactly as described in Section 4.4.1. The estimation is done on the output

of the counting process procedure, not directly to the traffic data stream.

D.4.6 Filtering Approaches

The filtering approaches are done simply by filtering the traffic stream with the
appropriate filter.  Then, either the power spectral density is estimated, or the

power of the filtered signal is extimated.
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