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ABSTRACT

Algorithms arc developed and tested to interpret EEG signals. The basis of the study is the

interest doctors and biomedical engineers have in spectral feature extraction of these signals.

The work here deals with spectral modeling of brain or EEG signals. Methods based on a combi-
nation of lincar prediction and homomorphic filtering are applied to simulated and real EEG signals.
Another active arca of research in EEG signal analysis is noise cancellation. An attempt has been
made to minimise muscle noise in EEG signals using adaptive filtering. Some encouraging results are
obtained with real data studies. Sequential adaptive spectral estimation of EEG signals is also studied

using different adaptive algorithms.,

In recent years, muitidimensional spectral estimation has become an area of considerable
intcrest. Progress has been made in the developement of parametric methods for multidimer.sional
spectral estimation in general and bispectrum estimation in particular. Here an algorithm for bispec-
trum cstimation based on parametric models is studied and is used for detecting quadratic phase cou-

pling in EEG signals.
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CHAPTER1

INTRODUCTION

1.1 A Brief Description of the Research

The subject matter of the thesis falls in the general arca of spectral analysis which finds applica-
tions in a widc varicty of ficlds, especially in the area of brain research. Brain signals, or EEGs as they
are called have become an indispensable tool in clinical neurophysiology, pharmacology and other
related arcas. The EEG is mainly contained of frequency related activities i.c. alpha, beta, theta and
delta, which are wide scnse stationary, the nonstationary spike and waves, and transients. Further, the

stationary EEG scgments arc preceeded and suceeded by nonstationary tiansients.

The main objective of EEG signal and spectral analysis is to extract valid information from the
EEG rccord and present it in a convenient form to the neurologist, in order to enable proper diagnosis.
For this purpose, many analysis techniques have been used and with the advent of the Fast Fourier
Transform and minicomputers, spectral analysis techniques have become important. In the last
dccade, parametric representation of the EEG signals has become popular from the point of view of
data reduction, as the data to be handled is quite large. In addition to this, parametric representation
also provides cffeciive computer classification of EEG signals by pattem recognition techniques.
Further, parametric techniques unlike the nonparametric ones can be easily extended to nonstationary
signals and are indircctly uscful for the detection of transicnts. These advantages have led to the
developement of improved parametric techniques which are applicable to signals in gencral and EEG
in particular. Also, techniques existing in the allied arcas are being evaluated for EEG signal analysis.
From these considerations, in the present study spectral analysis of EEG signals based on parametric

modecls hus been chosen as the main objective. The following topics are covered:
1. Spectral modeling of EEG signals

Two methods of spectral modeling, homomorphic prediction and pole zero modeling by pole

zero decomposition, both based on a combination of linear prediction and homomorphic filtering are
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considered. These methods are applied to simulated and rcal EEG signals. The results of the two
methods are compared with Burg’s maximum entropy all pole modeling method. The results indicate
that the pole-zero modeling by linear prediction technique without prior homomorphic filtering results
in erroneous spectral estimates, whereas the methods that are considered here provide accurate spec-

tral estimates of the logmagnitude spectrum of the EEG signal.
2. Noise cancellation based on adaptive filtering

An active area of rescarch in EEG signal analysis is noise cancellation. This is because the pres-
ence of noise affects the performance of both the time domain and the frequency domain analysis of
EEG signals. The different types of noisc present are occular noisc, ECG pulsation and muscle noisc -
which is due to the contraction of scalp and neck muscles. Of the various kinds of noisc present, mus-
cle noise is found to be quite frequent and its magnitude is also oftcn many times that of the EEG sig-
nal itself. Different methods for minimizing the noisc in EEG signal records have been reported in
literature. In the present study, muscle noise has been minimized by using an approach that involves
lowpass filtcring to remove noise that lics outside the EEG signal frequency band and LMS adaptive
filtering to remove the muscle noise inside the EEG signal frequency band. The performance of such
a filtering technique is studied both for simulated and real EEG signals. Also the cffect of muscle
noise on the parametric model based representation of the EEG signal is studicd and the improvement

achieved by the filtering technique is dealt with.
3. Adaptive Spectral Estimation of EEG signals

The Least Mcan Fourth (LMF) adaptive algorithm proposcd by Widrow provides lower conver-
gence error than the Least Mean Square (LMS) adaptive algorithm for the same speed of conver-
gence. This adaptive algorithm has been considered for sequential adaptive spectral cstimation of
EEG signals. In this attempt, the LMF adaptation has been extended to the lattice structure since this
particular structure has advantages like higher speed of convergence and better stability propertics as

compared to the tapped delay line structure.
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4. Detection of Quadratic Phase Coupling in EEG signals

Recently, there has been considerable interest and progress made in the developement of
parametric methods for bispectrum estimation. In the present work, an algorithm for bispectrum esti-
mation based on parametric models is studied and is used for detecting quadratic phase coupling in

rcal EEG signals. The detection of this phase coupling is important in analysis of slecp records.

1.2 Organization of the Thesis

A certain amount of work has been done in the field of Spectral analysis of EEG signals.
Chapter 2 presents an cxtensive review of the literature in this arca. The developement of a software

simuiation technique for EEG signals is discussed in Chapter 3.

Chapter 4 deals with spectral estimation of EEG signals. Two methods of parametric spectral
modcling are discussed. On the other hand, Chapter 5 deals with adaptive muscle noise cancellation
from the EEG signal. In this chapter, a hybrid approach for muscle noise cancellation is discussed and
simulations are carried out on both simulated and real EEG signals. Chapter 6 involves a study of

adaptive spectral estimation of EEG signals.

A parametric method for bispectrum estimation is studied in Chapter 7. This chapter involves a
revicw of bispectrum estimation techniques that have been discussed in literature. It also involves the

implementation of a parametric method for bispectrum estimation and quadratic phase coupling.

Chapter 8 deals with Conclusions and possibilities for future research.



CHAPTER 2

REVIEW OF EXISTING RESEARCH

2.1 Introduction

The main objective of EEG signal processing is to extract valid information from the EEG signal
records and present them in a convenient form to the ncurologist so that proper diagnosis is possible.
Spectral analysis and modeling plays a crucial role in EEG signal processing. This is because EEG
basically consists of frequency related components and its characterization is also done in terms of its

spectral parameters.

Berger’s extensive study of EEG records from scalp clectrodes has revealed that the frequency
content of EEG is of crucial importance in its assesment. The rythmic activity corresponding to fre-
quency centred around 10 Hz. and ranging from 8 to 14 Hz. is called alpha (a ) activity and is found
to be prominent in the middle and posterior part of the brain in the normal wakeful state. This activity
gets attenuated by increase in the degree of vigilance or decrease in the degree of wakefulness. There
is a high frequency rythmic activity confined to 14 to 30 Hz. called the beta () activity having a
different type of spatial distribution and not influcnced by wakefulness, similar to the alpha activity.
The low frequency activities in the range 1 to 3 Hz. and 4 to 8 Hz. arc called delta (6 ) and theta (9)
activities respectively. These activities appear depending on the location on the scalp and state of the
subject. The other factors that determine the naturc of the EEG signal arc the age and state of the
patient, hereditary factors, influences on the brain (e.g. injurics, functional disturbences, discascs,

stimuli, chemical influence and drugs) and artefacts.

In addition to the above frequency related activitics mentioned, EEG also contains specific tran-
sients or paroxysmals which occur spontancously. These are considered to be superimposed on the
frequency related activities. The transients are called spikes, sharp waves and spike-and-wave activity
depending on their characterstics. These appear mainly in patients with some kind of cpileptic attacks.

These transients have unique features for each type of epilepsy.
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It is possible to detect the functional disturbance in the brain and judge it’s severity, localization
and spread based on the frequency content of the EEG by simultaneously recording EEG from the

different parts of the brain.

In visual analysis, after considering the extrinsic parameters e.g. the age and patients state of
alertness and well being, the following EEG signal parameters and their inter-relationships are con-

sidered for the interpretation of the EEG record :
Frequency or wavelength
Amplitude
Waveform
Locus
Interhemispheric coherence
Character of wave occurence
Regulation
Reactivity

Any computer analysis must also consider all these factors and their relationship or establish
thosc which are essential in achieving of equal or of better significance. Towards this goal, signal pro-

cessing techniques which are powerful and efficient play an important role.

2.2 EEG Signal Characterstics

EEG is often analysed as a time series in the same way as speech and seismic signals. It can not
be expressed by any mathematical relationship - it is nondeterministic and needs statistical treatment.
EEG, being a random signal, is trcated as a stochastic process like signals in other feilds such as
speech and geophysics. For analysis of stochastic process to be easy and valid, requirements of sta-
tionarity and gaussianity arc very important. Stationarity calls for the joint probability density func-
tion of all orders to be independent of time origin. Since the Gaussian process is completely specified

by the first and second order statistics - namely the mean and autocorrelation function, if these two are
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independent of time origin, the Gaussian process is stationary in the strict scnse. But for processes
other than Gaussian, in general if the mean and autocorrelation are independent of time origin, the
process is called wide sense stationary or weakly stationary. As Gaussian process requirces only first
and second order statistics, it simplifies the theoretical analysis. For non-Gaussian processcs, higher

order statistics like bicovariance are required.

Also in practice, it is not possible to dcal with ensembles and so another property called ergodi-
city, which implies that a single sample function characterizes the ensembile, is required. This
demands that all the ensemble averages be equal to their respective time averages.  Ergodicity
assumes stationarity. Hence for simple and valid analysis, gaussianity and stationarity are the assump-
tions made. Attempts have been made to study whether these requirements are met in casc of the EEG
signal.

It has been reported that when the eyes arc kept open or closed, EEG is stationary for 25 seconds
in wide sense, taking into account the mcan, variance and power spectrum. Studies by McEwen and
Anderson [2.1] show that the EEG records are stationary in the wide sense for 32 scconds with more
than fifty percent probability and their gaussianity and stationarity together fall to less than ten per-
cent. However records less than 4 seconds are both Gaussian and stationary with a probability of
more than fifty percent. The occipital EEG activity shows bettcr Gaussianity and stationarity than the
frontal one. Similar results found by Cohen and Sances [2.2] have indicated that records of less than
12 seconds are stationary taking into account the mean value and the frequency structure. Bascd on
the mean value alone, records of a length of 24 seconds arc stationary with less than ten percent error.,
Also the assesment of the ergodicity of EEG has been made by the scatter of the smoothed power

spectral estimates [2.3].

Researchers view is that neither ergodicity nor Gaussianity is important with a single realisation,
but it is stationarity that is of crucial impontance for analysis. It has been felt that a non-Gaussian but

stationary model is adequate [2.4].

The fourth moment is rarely significant in the case of non-paroxysmal activity and the third

moment has indicated pattemns of sccond harmonics and has potential use in paroxysmal activity. The
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nonstationarities like coupling between frequency bands in EEG has been explored [2.5]. Usually the
underlying process that generates the EEG is assumed to be linear and any occurence of nonlinearity
results in jumps and hysterisis.

It is clear from the above description of the EEG that spectral content of the background activity
and characterstics of the transients adequately represent the EEG records and hence processing is con-
cerned with the extraction of features of these two aspects. Specifically with respect to background
activity, spectral estimation forms the major processing problem. The spectral estimation of the back-
ground activity forms the subject of the present study. It however does not include the clinical aspects

of the EEG, classification of EEG records and detection of EEG transients.

The review of the EEG processing techniques that follows brings out the importance of different

mcthods and substantiates the relevance of the problem chosen for the work.

2.3 EEG Signal Processing - a review

2.3.1 Introduction

Analysis proccdures generally fall into two categories, i.e. time domain and frequency domain.
In general, frequency domain approach is suitable for analysis of background activity and time
domain for nonstationary transicnts or paroxysmals. However, time and frequency domain techniques
are applicd for both cascs without much restricuons. In the review that follows various techniques that

have been used for EEG analysis are discussed.

2.3.2 Time Domain Analysis

Time domain analysis include amplitude analysis, period analysis, amplitude period analysis
and corrclation analysis. Amplitude information is obtained by the measurement of the average peak
to pcak amplitude and also by envelope (boundarics of peak and trough) measurement. The average of
the squared amplitude deviations (from the mean) provides the variance of the signal and its square

root, the standard deviation. This measurement yields the amplitude distribution which provides a
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better representation of the signal, which in tum cannot be obtaincd by the EEGer visually, since the
latter considers only the amplitude greater than the average value of the signal. The amplitude distri-
bution is found 10 be Gaussian [2.6 - 2.8], although asymmetrical distributions some time occur [2.1].
The envelope distribution function follows Rayleigh distribution [2.9]. Amplitudc mcasurcment docs
not take into account the shape of the waveform and frequency unless it is applied to a particular fre-
quency. For this purpose, wave indices which specify the percentage of duration occupicd by different
activities have been used {2.10].

In period analysis of EEG, by counting the intervals at which the zero line is crossed in classcs
corresponding to different frequency bands, information about the frequency content is obtained. As
superimposed higher frequency components with lower amplitudes are cither not at all or inade-
quately detected, the first and second derivatives are also analyscd. But as the signal to noisc ratio
reduces with differentiation and also as the signal to noisc ratio is poor in the beia activity region,
there will be practical difficulties and inaccuracics in measurements. Inspite of these problems, the

period analysis has found wide applications particularly in psychopharmacology [2.11 - 2.12}.

In order to get information about amplitude and frequency, frequency to voltage ratio technique
[2.13] and amplitude period analysis have been used. Wave length amplitude profile analysis of clini-
cal EEG by Carrie and Frost [2.14] has indicated high corrlclation with human EEGer in relation to
some aspects of EEG evaluation and has also brought out some aspects of EEG which are not obvious
to the EEGer. In general, the amplitude period analysis provides data reduction and much information
about the primary EEG tracing. It has been found that, if the scquence of waves is retained it is possi-
ble to describc many features of the background and paroxysmal or transicnt EEG aclivity in the

absence of noise [2.15).

Hjorth [2.16 - 2.18], has represented the EEG signal in time domain by three parameters, i.c.,
activity, mobility and complexity. Activity dcals with variance of the amplitude fluctuations, mobility
with the measure of mean frequency and complexity with the ratio of the mobility of the first deriva-
tive of the signal to the mobility of the signal itself. The relation between Hjorth’s parameters and the

signal spectra has been given by Saltzberg and Burch [2.19]. This has found many applications in
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modcling and discrimination of different EEG recordings in normal children. Hjorth's time domain
descriptors do not provide valid information when the signal contains more than one spectral peak,
and also there are problems regarding computational and signal to noise ratio requirements [2.20].
Despite these limitations, it is an important approach to the problem of quantifying the EEG by a

small number of parameters.

Correlation analysis is effective in demonstrating the periodic components within a signal or
shared between two signals. Prior to the existence of the Fast Fourier Transform (FFT), the spectrum
and cross spectrum were computed by transforming the auto and cross correlation functions [2.21].
Digital mecthods of computing the correlation functions by FFT are preferred and have been used in
the study of dclta activity in cerebral hypoxia. Correlation technique has been used in the removal of
cyc movement artefact from EEG and also in intethemispheric synchrony in EEG of full term new
bom babics. Reverse correlation technique which preserves all the interphase relationships and
changes in the temporal pattems in the output has been applied in the study of slow posterior EEG
rythm in adults. Though corrclation analysis is used in many applications mentioned, it has been
found that in many cases positive correlation may not be significant and may be due to a slow com-
poncent, the finer details of the two signals may be still different [2.9]. Further, direct interpretation of
corrclation function is difficult. Hence with the avaliability of other methods, correlation technique
has been considered as a special purpose method of EEG analysis in which direction and phase rela-

tions of periodic activitics are of primary interest.

2.3.3 Frequency domain analysis

Frequency domain representation provides better insight into the generation of EEG signals, is
more descriptive of pattem fluctuations, and enables valid comparisons. This is due to the fact that
cach spectral amplitude represents a time pattern fluctuation throughout the signal epoch, where as in
timc domain cach amplitude is confincd only to that instant in time. Further, the spectrum provides
information about frequency components of small amplitudes, even in the presence of large amplitude

components. Because of these advantages and also the disadvatages of time domain techniques men-
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tioned above, frequency domain analysis has gained popularity over time domain representation.

Initially, analog techniques using band pass filters were used to estimate the spectrum of the sig-
nal. Their poor resolution, instability and sensitivity resulted in their failure in practical applications.
Walter [2.22] introduced digital spectral analysis to EEG as a most promising quantification and
analysis technique and this was possible only with large computer facility and computer time. Only
with the advent of the FFT and the avaliability of low cost fast mini computers, the frequency domain
or spectral analysis has become very popular in both experimental and clinical EEG duc to reduction
in computation time provided by the FFT algorithm. The use of FFT algorithms other than radix 2 pro-
vides further reduction in computation [2.23 - 2.24]. In this attempt, FFT with pruning facility which
avoids multiplications for the padded zeros is of significance [2.25). Spectral analysis in principle pro-
vides same information as the correlation analysis since they form a Fourier transform pair. However,
spectral analysis has been found to have important statistical advantages over correlation analysis and
also found to correspond to more conventional description of background EEG activity in terms of
relative frequency content. Also, spectral analysis has been found to be a powerful analytical tool
with well behaved statistical properties, as long as certain assumptions about the data arc not grossly
violated. If the data is stationary, spectral estimates do not depend upon the assumption of normality
of amplitude distribution. In the non-Gaussian casc howcver, they reflect only part of the information.

With this in view, the EEG signal has been classificd into different categorics as shown below [2.26] :
1. Spontancous non-paroxysmal activity
2. Spontancous paroxysmal activity

3. Evoked activity

For real time applications, FFT poscs problems due to its enormous computational requirements
as it requires (V¥ log,N ) complex multiplications and complex additions, where N is the length of the
FFT. As an aliemative to the Fourier transform, Walsh transform is uscd as it requires only real addi-
tions and no multiplications. However, Walsh transform bascd power spectrum was considered to be

inferior in discriminating power for classification purposcs. Recently, Larsen and Lai [2.27], have
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cxamined both these transforms for their statistical properties and resolution. Application of both
these transforms for classification of sleep EEG data using minimum distance cluster algorithm pro-
vides cnough justification to take advantage of the computational superiority of the Walsh transform.
According to Smith [2.28], the simplicity and speed of the Walsh transform can be used for EEG spec-

tral monitoring without sacrificing performance.
The major problems associated with these transform methods of spectral estimation are :

(i) lcakage cffect due to high side lobe levels of the window function ( spectrum ) applied to the
time signal and the resolution problem resulting in reducing the leakage effect [2.29). Windows with

better characterstics for spectral estimation have recently been reported [2.30 - 2.31).

(ii) also, the periodogram which is the squared magnitude of the Fourier transform of the signal
is not a consistent estimate of the spectrum, as the stability does not improve with the increase in the
number of samples [2.29]. A stable estimate is obtained by smoothing over the adjacent frequency
bands by convolving the signal spectrum with a suitable window spectrum that is known as quadratic
tapering, or by averaging the peridograms of the succesive segments of the signal [2.32]. Recently it
has been found that lincar tapering ( windowing in time domain ) is of great importance for the spec-
trum with large dynamic and only quadratic tapering would not be of use [2.33]. Further, when seg-
mental averaging is done, equivalent quadratic window in spectral domain can be used to get
cquivalent leakage suppresion at substantially reduced computational cost [2.34]. For a given length
of data, high stability ( low variance ) and high resolution are the conflicting rcquirements and a trade

off is nccessary. In addition, the stationarity of the EEG data also limits both stability and resolution.

Inspite of these problems, spectral analysis by FFT has been widely used. It has been found that
the amplitude spectrum obtained by FFT accords more closely than the power spectrum with the
visual anaiysis, when records are technically good. Bickford’s [2.35] compressed spectral array based
on FFT provides information of 30 to 40 minutes of EEG record in a single page which can be easily
interpreted. Such an analysis that is economical and feasible on a microcomputer, provides informa-
tion related to frequency, space and time is very helpful to the neurologist. The spectral density func-

tion computed by the Fourier transform does not provide information about whether a particular
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frequency component is due to short burst of activity or it is duc to onec which occurs throughout the

analysis epoch. Compressed spectral array which uses Berg’s transform overcomes this [2.36].

Cohcerence studies have becn carried out by computing cross spectrum using the FFT algorithm,
Coherence function provides information about functional coupling between different parts of the
brain. These include seizure discharge, EEG corrclates of hemespheric function and study of

behavioural feature attributable to disorganization of cercbral function.

Real time system at Langley Porter Clinic, PDP 12 computer based systcm at the Montreal Neu-
rological Institute, Hybrid computer based system at the Mcdical School of Hannover and the PDP 15
computer based system at Shelgren Hospital in Gottenberg, Sweden arc some examples which are
having FFT based analysers and where FFT based multichanncl EEG spectral analysis arc being used

both for experimental and and clinical applications.

2.3.4 Parametric Models for EEG Analysis

Even though spectral analysis by windowed periodograms provides spectral details of the EEG
signal, it does not provide any substantial data reduction and the data is only in a different form. The
large mass of spectral data has to be interpreted and evaluated. Hence for further processing, the spec-

tral data has to be condensed and the several methods used for this purpose are listed as under:
Synoptic presentation :

Contour plot, Sequential spectral display ( spectogram ), Compressed spectral display, three

dimensional plot (VOS)
Parameter cxtraction :
Simple parametrs - peak frequencics, peak intensitics, half power bandwidth, peak arca;

Spectral bascline slope, Phase slope, Spectral quoticnts, Resonance factor, Topographic parame-

ter display

Statistical treatment - mean and standard deviation of peak frequencics, peak intensities etc.
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Especially for classification of the EEG data by computer pattern recognition techniques, com-
pact parametric representation is very much desired. Though parameters like bandwidth, centre fre-
quency and fractional power content can be computed from the power density spectrum, it has been
found that such cstimates are not efficient and further their statistical uncertainities are not known
[2.37]. This calls for direct representation of the EEG signal by parametric modeling. Zetterberg was
the first to introduce the parametric representation of the EEG signal [2.38]. Generally, ir parametric
representation the signal is considered as the output of a system characterised by the numerator and
dcnominator polynomials, with white noise as the input. If the numerator polynomial is a constant, the
modecl is called an all pole model or Autoregressive (AR) model. Otherwise, the model is known as a
polc-zcro or Autoregressive Moving Average (ARMA) model. The parametric techniques model the
data and cxtract its structure, and modeling can be applicd cither in time or in frequency domain. The
AR model, because of its simplicity has been widely used in other fields like speech and seismology;

EEG is no exception to this.

In AR modeling, the present data sample is estimated as a weighted linear combination of M
previous data samples and the weighting cocfficients are obtaincd by minimising tlic mean square
crror between the actual sample value and its estimate. This minimisation results in a system of linear
cquations, called the Yule-Walker nomnal equations which involve covariance or autocorrelation
functions of the signal. Different methods of solving this system of equations are in practice, e.g.
Cholesky's decomposition and the Levinson Robinson and Durbin algorithm, which is more economi-
cal in terms of computer time [2.39]. The studies of Rappelsberger and Petsche [2.40] indicate that
the AR modcl provides better spectral estimates of the true spectrum than by FFT method and the
length of data required is smaller than that required by the FFT method. To get the performance of a
15" order AR model with 4 scconds length of EEG data, FFT method requires 180 seconds of data.
The studics of Blinowska et.al. [2.41] also show that the AR modcl provides better resolution with
much smaller statistical fluctuations than the FFT method. As the sample length of the data required is
small, the AR model is very uscful in detecting rapid short lasting ( stationary over short duiations )

changes in EEG like epileptic siczures [2.42). The AR coefficients obtained by this method have been
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succesfully used in the classification of EEG records by computer pattem recognition technique in
sleep staging and in the classification of physiological states of paticnts in need of intensive care

[2.43).

AR spectral analysis has beein used by Crowell et. al. [2.44], as an objective and quantifying
technique in combination with the logistic discrimination algorithm for testing hypothesis about infant
EEG developement. With other clinical indicators, the AR coefficients serve as bench marks of
maturation with age and help in monitoring and early identification of infants who arc at risk of men-

tal retardation and other developemental disabilities.

Use of AR coeflicients as input parameters in the discriminant analysis instcad of arbitrary
chosen frequency bands has orought a significant improvement in distinguishing the cflects of medica-
tion. The percentage of correct classification for diazepam for F4-C4 and P4-02 lcads with AR

coefficients are 84.5 and 75 and with FFT they are 72 and 68 respectively [2.41]).

The difficulty in applying this method is that the autocorrclation matrix may not be positive
definite due to the round off errors generated by the solution [2.39]. The studics of Jansen ct. al. {2.45)
indicate that 5% of modcls were unstable out of 8800 cascs with the order of the model being 5. The
optimal order of the model indicated by Akaike's Final Prediction Error Critcrion (FPE) was less than
S, while the order required was 10 to get a realistic spectral fit to the FFT spectrum. With the optimal
order of the model, the instability was 7%. For Yule-Walker's method, according to them, the order of

the model given by FPE is toc low.

Burg [2.46] introduced the concept of maximum entropy in order to achiceve high spectral reso-
lution even with a small number of data samples. In this approach no assumption is made about the
data outside of the obscrvation window. In the FFT method the data is assumed to be periodic where
as in the Lincar Prediction autocorrelation method it is assumed to be zcro outside the obscrvation
interval. According to this, any spectrum which is consistent with the observed data and at the sainc
time maximiscs the entropy function provides high resolution. It has been shown that the spectrum
derived by the Maximum Entropy Mcthod (MEM) is also AR modcl spectrum {2.47). Burg (2.46] also

proposed an algorithm to compute the prediction filter cocfficients (AR) direculy from the data valucs,
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without cxplicitly computing the autocorrelation values. The reflection coefficient of the Mth order
filter is found by minimising the average of the forward and backward prediction errors. The other
cocflicients arc obtained by the Levinson recursion. The performance of the Burg algorithm has been
found to be considerably superior to the Yule-Walker method both in terms of resolution and stability.
The studies of Branwell [2.48) with speech data show that the MEM provides distortion free spectral
cstimate even with data lengths as small as 60 points, where as in case of the YWM it is not so. The
studics of Jansen ct. al. [2.49) with EEG data indicate that there was no unstable case out of 8800 with
MEM (AR) method, using an optimal order, whereas Y WM had 7% and required higher order models.
The MEM scores over YWM even in classification of EEG records. Though MEM requires three
times computer time than the FFT method it is preferred where accurate frequency estimation is
required.

Another method of spectral estimation, the Maximum Likelihood Method, a minimum variance
unbiased estimator of the spectrum, has also been applied for EEG signals by Childers et. al. [2.50]

and is found to yicld poorer resolution than YWM.

In view of the importance of the AR modelling in spectral analysis, attempts have been made to
improve its performance. The performance of the AR model for signals in the presence of noise is
often criticized because the model required is an ARMA model. However, since an ARMA model is
represented by an AR model of infinite order, in practice a higher order AR model will provide better
spectral estimation especially when the spectrum is a peaky onc [2.52 - 2.55]. In general, the
representation of an ARMA process by an AR process requires higher order and longer data lengths to
get better fit in the valley regions of the spectrum. Otherwise the AR model will introduce a bias in the
valley region. The spectral fit obtained by a finitc order AR model to a stationary ARMA data will

increase with the fourth power of the number of data points considered [2.56].

Though mcthods bascd on AR model of spectral estimation offer higher resolution, better spec-
tral estimates for short data length, and do not distort the spectrum duc to leakage effect of the window
function as in the periodigram method, they have the problem of line splitting or introduction of spuri-

ous pcaks in certain cases [2.57 - 2.58]. The minimization of the average of the forward and backward
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prediction errors with respect to each coefficient of the prediction filter instead of only with respect to
the reflection coefficient without the constraint of the Levinson recursion, overcomes this probiem
[2.59 - 2.60). This algorithm is found to provide better spectral estimates with lower bias and variance
and higher resolution than the Burg algorithm [2.61]. For this mecthod, Marple [2.62] has proposcd an

algorithm that is computationally as efficicnt as Burg's algorithm.

Signals in general, as mentioned previously, have to be represented by an ARMA model for an
accurate representation than by AR modcls. AR models can characterize the peaks better than the val-
leys. From this point of view, AR models are sufficient for frequency estimation. But to get accurate
information about the bandwidth and percentage of power for the spectral peak in addition to peak
frequency, as required in EEG analysis, ARMA modcl is necessary. ARMA model in general
represents the signal with better accuracy by a smaller number of parameters than the AR model. The
estimation of ARMA model parameters for a given signal is more complicated than that of AR as it
involves solution of nonlinear equations. Hence, only limited attempts have been made in the use of

ARMA models for EEG signal analysis.

Zetterberg [2.38) estimates the ARMA parameters by maximising the likclihood function
expressed in terms of the autocorrelation function and this involves more number of itcrations in the
optimization algorithm. This method has been used in EEG data modeling. Their study with normial
subject shows that an ARMA (5,5) modc! adequately represents such EEG data {2.63]. The analysis is
based on the assumption that the EEG spectral density function is conceived of three types of com-

ponents corresponding to :
(a) white noisc characterised by its power
(b) first order lowpass signal ( 8 ) characterized by its bandwidth and power
(c) bandpass signal ( o or B or 8 ) characierized by its centre frequency, bandwidth and power

The spectral proporties of the EEG signal are better described by the spectral components deter-
mined by their centre frequency, bandwidth and power; than by assuming arbitrary frequency ranges
for o , B, & and © activities [2.37]. In most cascs considered, onc lowpass componient correspond-

ing to alpha and beta have been found. The physiological interpretation for these paramelters are given
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and the parameters obtained for the group of subjects considered are expressed in terms of mean
values and standard deviations. Further, Zetterberg [2.64] has applied this method to heart patients
with external pacemakers and the results indicate that, although the frequency parameters do not
change within 10 to 20 seconds, the power parameters change greatly and this was particularly true

for alpha activity and even for such cases the method was found to be satifactory.

ARMA modeling by Dickman [2.65] involves the identification and estimation of the model
parameters, fitting the model to the EEG data, and evaluating the goodness of fit. Identification is
based on the autocorrelation function ( determines an approximate estimate of the order of the AR )
and the partial correlation coefficients ( used for determining the MA order ). Fitting the model
involves in the first step, estimation of the AR parameters and then the MA parameters ( by an itera-
tive algorithm ) and in the second step, the estimated parameters are fitted to the EEG data by ML pro-
cedure. The study, aimed at analysing the changes in EEG due to change in blood gas levels, indicates
that high levels of carbon dioxide reduces the dominant activity severely and this requires an ARMA
(10,7) (i.c. 10 AR cocflicients and 7 MA coefficients ). Reduction in sampling rate to some extent
may rcduce the order. The ARMA model is found to be sufficient and provides objective description
of the FFT spectrum of EEG with high degree of data reduction inspite of the higher computational

cffort and is helpful in scientific investigations.

ARMA model parameters have been used in the classification of sleep stages by Gersch et. al.
[2.56]. The paramcters are estimated by a two stage least square approach having the computational
economy and statistical cfficiecncy of the MLM, using the Akaike's criteria for order determination.
The statistical properties of the estimates of the natural frequency and damping achieved by the
ARMA models are found to be far superior to the estimates of those achieved by conventional spec-
tral analysis. It is felt that though a 6th order AR model is highly sufficient for classification of sleep
stages, a higher order AR or ARMA model with additional dominant spectral frequency feature is

informative.

Bohlin [2.67] has compared the gencralized least square (GL) AR parametric modeling of EEG
data with that of ARMA model based on MLM which involves optimization techniques. The GL AR
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is an AR model which uses a prefilter that suppreses the frequency components in the unexpected fre-
quency region. The results of the GL AR model for EEG data arc comparablc to that of the more gen-
eral ARMA model at the cost of only increasing the number of parameters, i.c., 10 to 17 for GL
models compared to 10 to 14 (5,5 to 7,7) for ML ARMA. The computational cffort for ML ARMA is
two to ten times higher than that for GL AR and problems like selection of minimum from a set of
local minima, round off errors and occurence of intermediate unstable models which result in higher
computing time are severe for M. ARMA than for GL AR model. Even from the spectral analysis

point of view, the GL AR is found to be superior to ML ARMA.

Recently parametric modeling algorithms have been evaluated for on line spectral analysis of
EEG by Smith and Lager [2.68]. The algorithms chosen are simple in the sensc, they are not itcrative
and work with fixed model order and data length, The two algorithms are i) the ARMA model bascd
on the extended Yule-Walker equation [2.69] and ii) the AR modcl by autocorrclation LP [2.39]. The
ARMA (M,N) produces unbiased estimates, while the AR (M) provides smaller standard deviation
and is simpler in form (M=10, N=M-1). Inspitc of the bias with AR modcl, the AR mcthod has been

recommended for on linc EEG monitoring.

The study by Isaksson et. al. [2.37) shows that an ARMA (5,4) results in 12 spectral parameters,
of which 10 parameters correspond to bandwidth, centre frequency and power of differcnt activitics,
the other two are total absolute power and the model fit parameter. The spectral asymmcetry power
parameter and the model order fit paramcter can bc omitted if only the spectral parameters arc of
interest for further statistical processing, and this results in 9 parameters. The corresponding AR
model order needed for this is more than 15. The spectral parameters of EEG have been found to be
affected severely by the sampling frequency. It has been found that a sampling frequency less than
100 Hz. will especially affect the estimation of the beta activity parameters and also results in a high
standard deviation of spectral parameters of the EEG. Hence sampling frequency of 100 Hz.has been
recommended for accurate EEG analysis. With the introduction of the LRD algorithm, Isaksson ct. al.
are in favour of a fixed AR model for reasons like simplicity of the algorithm, modest amount of com-

putations, automatic test facility for model validity and the order of the modcl.
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2.3.5 Nonstationary EEG Analysis

The validity of thc parametric and nonparametric methods is based on the assumption that EEG
is stationary. It has alrcady been pointed out in the previous section that EEG is stationary only over
short durations. The deviations from stationarity are of different types. The unexpected nonstationari-
tics cover transients and gradual changes. The expected one are due to stimulations like hyperventila-
tion, flickering of light and mental arithmetic. The transient types are mainly paroxysmal phenomena
like spikes and spike-and-waves encountered in interictal epileptic patients. The gradual nonstationar-
itics are transitions in arousal level, variations in depth of anasthesia or conscious level of changes in
background activity that occur prior to epileptic crisis. Even short duration EEGs will contain spon-
tancous nonslationarities and this is especially true in case of pathological cases and the nonstationar-
ity property itsclf may have physiological significance. The severe mecasurement problems like eye
movements result in disturbances which appear in EEG as large transicnts of low frequency. Analysis
of nonstationary EEG has been made by several appraoches. The first approach divides the EEG data
into approximatcly stationary segments and thesc stationary scgments are analysed by methods
described for stationary EEG. This has led to developement of efficient segmentation algorithms. The

scgmentation algorithms must provide
i) the estimation of the boundary with minimum delay
ii) precise estimation of the boundary (i.c. its bias and variance must be small )
iii) minimum number of false alarms ( false boundary indications )

The last factor is of importance from the point of view of EEG data reduction. Initially single
AR model methods were used for this purpose where the sequence of innovations was tested for its
deviation from white noisc nature [2.70]. This mcthod has limitations in detecting wide range of
abrupt jumps. The methods that overcame this limitation in principle use two windows (models), the
fixed window for the refrence data and the moving window for the test data. The features correspond-

ing 10 both are compared and a large deviation indicates the occurence of the segmentation boundary.

The gradual nonstationarities of the EEG have been analysed by direct methods (without seg-

mentation). A statistical method which describes the statistical characterstics of nonstationary EEG
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has been done by Kawabata (2.71]. The method involves estimation of nonstationary power spectrum
defined as the ensemble average of the instantaneous power spectrum of a group of signals to which
the given signal belongs. The instantancous power spectrum is the derivative of the energy spectrum.
This has been applied to evolution and decay of the alpha activity during closing and opening of eycs
in human subjects. The validity of such a time varying spectrum is based on the assumption that the
characterstics do not change from trial to trial on repetition. Vos [2.72] has pointed out that such a
spectrum is not realistic for processing spontaneous EEG data and is limited to only stimulus responsc
type of EEG. The method of spectral estimation based on scgmentation and averaging the periodo-
grams has been preferred to the time varying spectrum mentioned. This has been illustrated for the

case of sleep state cycling data of infants of two hours duration.

Bohlin [2.73 - 2.74] introduced Kalman filtering for EEG analysis. Kalman filter algorithms suit-
able for processes with time varying AR and ARMA paramcters are given by Isaksson ct. al. [2.37].
Here control over the variability of the process is achicved by different methods. In one method, the
parameter vector is assumed to be govemed by a first order Markov process and in the other the loss
function used in estimating the paramcter vector is changed by giving additional weight to more
recent observations [2.75]. The application of Kalman filter to different types of EEG signals has been

illustrated by Issakson [2.76].

2.3.6 Transients in EEG and their Detection

The transicnt activities play an important rolc in EEG assesment, particularly in the casc of
epileptic patients. Though in some cases the spikes and sharp waves arce clearly distinct because of
their shape, there are many instances in which they arec merged with the background activity. In addi-
tion to this the classification of different types of transient spikes is also of importance in the asscs-

ment ofa particular type of epilepsy. For this purposc many techniques have been developed.

Carrie [2.77] has proposed a method which detects the transient abnormalitics in an EEG by
comparing measurcments from consecutive waves in the signal with a moving average of similar

measurement from the preceding waves. The second derivative has becn found to provide most
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cfficient discrimination for the sharp transicnts. Further the system developed is specifically suitable
for the detection and quantification of the spike and wave paroxysmal discharges. Walter [2.78] has
also developed a simple and inexpensive method of quantifying the transients and the method uses
rectified second derivative of the EEG signal. Ktonas and Smitii [2.79] have also used six parameters

which characterise a well defined triangular spike.

2.3.7 Artefacts in EEG and their Elimination

The presence of external disturbance or noise affects the performance of different types of ana-
lyses considered, i.e. the time domain and frequency domain which includes parametric and non-
parametric methods based on stationarity assumption and the algorithms for time varying signals. In
EEG specifically, noise may be technical due to measurement, or physiological due to the subject

himseclf and is known as artefact.

The measurement noise may be due to mains interference, improper contact between electrode
and scalp surface, clips, plug and socket etc. The contact resistance may change due to perspiration
which results in an undesired low frequency component which can be removed to a certain extent by
decreasing the highpass filter time constant ( 0.3 to 0.03 secs. ). Usually, proper precaution prior to
EEG rccording will help in removing the measurement artefacts. However, to take care of the sudden
changes in the contact potential at the scalp-electrode interface, known as "pop artefact”, Barlow
[2.80] has proposcd an analog technique. Tiie pop artefact introduces a large magnitude low fre-
quency component which obscures the low frequency components of the EEG in the compressed

spectral array and the technique removes the unwanted low frequency component successfully.

The disturbances due to the subject are extracerebral and are usually due to the eye movement (
occular anicfact ), ECG pulsation, ECG pickup and due to contraction of scalp and neck muscles. The
extraccrebral artefacts cannot be removed easily and their presence severely affects both the visual
and computer EEG analysis. Hence every effort is made to either completely remove or to minimise
these artiefacts and this forms part of the analysis. The artefact removal was considered as a monu-

mental problem in the last decade [2.81]. Attempts have been made to remove the artefacts as a whole
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and also individually. Kionas et. al. [2.82] have considered a gencral method of removing artefacts
when the data to be processed is large ( SO hrs.). This is based on the chisquare goodness fit test to
Gaussian distribution. This test being very sensitive to nonstationaritics in the EEG amplitude distri-
bution, produces a large value for the chisquare coefficient when an artefact is present in the EEG
epoch considered. Hence, any crossing of the preset threshold by the chisquare cocflicient indicates
the presence of an artefact. Barlow [2.83] has also proposed a general purpose multichanncl electronic

switch for artefact elimination.

The occular artefact is due to the vertical and horizontal cyc movements and blinks. Removal of

the eye movement artefact by spectral method has been done by Whitton ct. al. [2.84].

The method involves calculation of the ratio of EEG to clectroocculograph (EOG) which ade-
quately controls the low frequency component in the EEG duc to artefact and allows the removal of
dominant peaks in the scalp EEG spectrum. This is based on the assumption that the low frequency
components in EEG are mainly due to eye movement. In the method bascd on corrclation by Jervis
et.al. [2.85], the correction factor is calculated by the correlation between the EOG and the measured
EEG. A fraction of the EOG thus computed is subtracted from the EEG considered. Further, a com-
parison of this method is made with an analog method where a constant fraction of the EOG is sub-
tracted and the results arc in favour of the correlation method both in terms of performance and casc.
Blinovaska et. al. {2.86] have uscd a fast and simplc moving intcgration method. The other methods
are by Barlow and Remond [2.87], off linc method of Gratton ct. al. [2.88], and thc biophysical

approach of Elbert [2.89].

The ECG pulsation artefact appears as a saw tooth waveform and is prominent with pad clec-
trodes than with stick on electrodes. This is duc to mechanical movement or change in pressure at the

electrode and can be reduced by moving the electrode properly.

The ECG pickup is significant with unipolar montages than with bipolar. The ECG pickup can
be reduced, to some extent, by transverse rather than by antero posterior bipolar linkages depending
on the orientation of the EEG ficld. This artcfact is found in recordings which usc car and temporal

leads [2.90]. Recently, a computer based real time subtraction method of minimising ECG pickup for
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noncephelic reference has been proposed [2.91 - 2.92]. The ECG pickup affects the delta and theta

regions of the EEG spectrum.

The removal of the muscle artefact which is comparitively difficult has been attempted by non-
linear filtering [2.93], by Kalman filtering [2.94], by time domain filtering [2.95] and by lowpass filter-
ing [2.96]). The muscle artefact affects the beta component of the EEG more significantly than the

alpha and delta components.

To summarise, the review has covered different aspects of the EEG signal which are of
significance in the evaluation of the EEG record. Various techniques for the processing of stationary
EEG, nonstationary EEG , detection of transients and minimising different types of artefacts are con-

sidered.
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CHAPTER 3

SOFTWARE SIMULATION OF THE EEG

3.1 Intoduction

Simulation tests form an important step in the evaluation of the performance of any signal pro-
cessing technique. Sinusoidal and white noise data are commonly used for this purposc. However in
practice, a simulated signal that is close to the actual signal for which the technique has to be applicd
is preferred. Since the parameters of the simulated signal are known, it helps in ascentzining the accu-
racy of the performance of the technique under study and also enables valid comparisons of the results
of different methods. This is particularly true for EEG signals as there is a necessity to convince the
neurologist about the utility and validity of the analysis techniques. In vicw of this, various methods
of simulating EEG like the one based on autoregressive series {3.1] and analog techniques [3.2 - 3.5]
have been reported. The autoregressive serics method, simulates the EEG by filtering the while noise
using an autoregressive filter having the desired characteristics. The analog techniques use electronic
circuits, where independent white noisc signals generated by zencr diodes are filicred by active
lowpass and bandpass filters having prescribed centre frequencies and bandwidths. Further, the
filtered outputs are scaled and added to get the required analog EEG signal. For evaluating the digital
signal processing techniques, the anaiog EEG signal must be converted to digital form and stored in
the magnetic tape. Hence, it is desirable to generate the EEG data directly in digital form by a simple
software technique using digital filters. This chapter deals with the implementation of such a tech-
nique which in principle is based on the technique of Zctterberg which assumes that the EEG spec-

trum is composed of spectral components.

In the sections that follow, the first one deals with the model on which the simulation is bascd,
the second one with the implementation and the third one deals with the illustration of the simulation

by examples and results.
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3.2 The Basic Model

As previously mentioned, the EEG is regarded as a statistical occurence with two components :
a stationary component and the transients ( wave train, spikes and sharp waves ) that occur sporadi-

cally. The present simulation is concemed with the stochastic component, the background activity.

The spectral properties of a stationary stochastic process can be represented by a model consist-
ing of a filter driven by a white noise generator. The reason for using this model is that EEG signals
arc formed by an organic system which adds and filters the primary impulses. The technical reason is
that filtering is a very flexible way of shaping the spectrum, and filter functions are well known and
casy to describe in parametric form. It is important to note that the model does not imitate the compli-
cated ncurological process that generates the EEG, but represents rather a description of the EEG sig-

nal {3.6].

It has been assymed that the spectral density function (PSDF) of the EEG signal can be

described by a rational function of the form [3.2]

2

B()
2
2 2 54 ¢
where A (f°) and B (f*) arc polynomials in £~ of order M and N respectively.

@3.n

The function in Eqn.(3.1) allows resonances to appear in the PSDF and it is possible to control
the resonance frequency, bandwidth of resonance and the power content related to a certain peak. On
partial fraction expansion of Eqn.(3.1), the PSDF can be expressed as a sum of several spectral com-
poncnts, cach corresponding to one term in the partial fraction expansion. These terms are of two
types, depending on where the poles or resonances are located. For type-I term, the poles are located
on the negative real axis and for type-1I, poles appear in the complex conjugate pairs with negative

real part, in the S-planc (6 + j @) . That is the PSDF of the two functions are given by :

Type-1:
o
Sh.(f) = "-2——_ (3.2)

and
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Type-11 :

sz + E 2
Sl )=—F 5,5 * W) (33
(f; +o; "'fz)

The first function has a resonance at f = 0 Hz. and the second has a peak closc to + f; when o,

is much less than f; . The parameter 6; measures the bandwidth of the resonance peak for type-I and

half the bandwidth for type-II. A weighted sum of these two will give the function in Eqn.(3.1). The
correlation functions corresponding to Eqn.(3.2) and Eqn.(3.3) are given by [3.2] :

r; (¥ = G; exp[-2no; I11] 349

r;: (@ = [G; cos2nf; It1) - H, sin(2rf, I11] exp[-2n0, IT1] (3.5)

The parameter G; expresses the power contribution from cach spectral component, whereas H;

gives a measure of asymmetry for the PSDF relative to the resonance frequency f; . The spectral

parameters are ©; and f; agree in two sets of expressions, whercas relations between G; and H; and

D and E parameters are somewhat involved.

In effect, the spectral propertics of the EEG registration are described by certain frequency and
power parameters. Further, the EEG § activity is described by type-I function and o, f and 0 aclivi-
ties are described by type-II functions. In gencral, for a complete description of PSDF, onc more type
of function should be added which takes into account an activity that is duc to constant spcctral den-
sity within the frequency band of observation. The corresponding power is denoted by € . This activity
corresponds to white noise and results in a component of type-0. In surmmary, the model describing

the EEG must have the following parameters [3.6] :
For Type-0 : Power parameter €.
For Type-I : Frequency parameter ©, and power parameter G,

For Type-II : Frequency parameters o; and f; , power parameters G; and H; .

3.3 Implementation

Based on the model described above, knowing the frequency and power parameters of different
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activities involved, simulation can be carried out by the procedure described in this section.

As mentioned, the 8 activity can be described by Type-I function and transfer function which

can rcalise this is :

in analog domain,

1
Te(s)s—— (3.63)
§ + 2R0;
in discretc domain,
1
Tg(z) = — (3.6b)
1 -a s 4

where,

ag = exp[-2ncgT]
o, is the -3dB cut off frequency in Hz. and (1/T) is the sampling frequency.

The o, B and 0 activities are described by Type-II function and the transfer function realising

this are
5 +27%G,,
T.- (s)= 3 ) (3.73)
(s +216,)" + (@2nf;)
and
T;(z) = (3.7b)

1 -1

in analog and digital domain respectively, and where

C; -0,

bli = cxp[—21t0,- Ts] [cos(anl.Ts + Sin(21[f‘- TS)]

;
a,; = 2exp[—2ro;Tg] cos(2nf; T)
a,, = expl-4ro; Tl
G, ,O; and f; arc different for o, B and 0 activitics. ©,; is the -3 dB zero frequency. Simulation of
the EEG is carried out by filtering independent random number sequences by transfer functions

corresponding to different activities and adding the filtered outputs with appropriate gain factors to get

the required power distribution among individual activities. This is schematically shown in Fig.3.1.
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Independent random number sequences having Gaussian distribution are generated by changing
the seed value. For each activity, a random number sequence is filtered by the cormesponding transfer

funcion. This filtering is done by time domain convolution.

If x 5(n) is the random number sequence used for the 8 activity, the output y4(n) is given by :

ys)=xg(n)+agysn-1) (3.82)
For o, B and 8 activitics, the output y,(n ) is given by :

L
The sum of the squares of the filtered data for cach activity i.c., ¥}, y,-2 (k) is also found.
k=1

The required power distribution is done in the following way:

Let
L
>y k) =X (3.92)
k=1
L
S ygk)=Y (3.9)
k=1
and
L
) yaz(k) =Z (3.9¢)
k=1

(assuming thatonly o, B and § activitics arc present).

thus if the percentage of power distribution of cach activity in the processisp: q:r,then

G,>.X.100

p==—"T—" (3.103)
X +Y +2
G,l.Y.100

g=——" ; (3.10b)
X +Y +2Z

and
2

G, .2.100

r=———— (3100)
X +Y +2Z

where,
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G, =(ZIY).(gIr) .G,
G =@X).(pir). Gy’

X =G2.x
Y =G, .Y
Z=G.z2

Assuming G,” (say = 10),G,* and G,* can be found and further G, , G, and G, which are
the required gain factors to obtain the desired power distribution can also be found. The filtered
sequences for o, B and § activities are multiplied by G, , G, and G, respectively and then summed (
corresponding samples ) to get the required EEG data. This method has the advantage that it allows
independent control over frequency and power parameters. But it has the limitation that all possible

values of H; cannot be realised with a second order transfer function. However in practice, it has

been found that this is not a serious limitation.

Assuming G, (say = 10),G,” and G, can be found and further G, , G, and G, which are
the required gain factors to obtain the desired power distribution can also be found. The filtered
sequences for a., B and § activities are multiplied by G, , G, and G, respectively and then summed (
corresponding samples ) to get the required EEG data. This method has the advantage that it allows
independent control over frequency and power parameters. But it has the limitation that all possible

values of H; cannot be realised with a second order transfer function. However in practice, it has

been found that this is not a serious limitation.
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3.} Examples and Results

To illustrate the simulation and its performance, the parameters estimated by Zetterberg [3.2] are
considered as shown in Table 3.1. The parameters H; are considered to be small compared to G; for o
and P activitics. The tolerance given indicate the deviations that one finds if data is analysed repeat-
cdly for non-overlapping cpochs. Using these values of o; and f; for different activities, the
coeflicients of the filters arc found using Eqns.(3.6b) and (3.7b). The parameters of the realised EEG
filters arc given in Table 3.2. The filtered outputs, for & activity is obtained by Eqn.(3.8a) and for o

and P activities by Eqn.(3.8b). The sampling frequency used is 100 Hz.

To determine the accuracy of the frequency parameters of the simulated data, the PSDF of each
activity (a, P and dseperately ) and that of the EEG ( 0., f and & together ) are computed using Welch
method. In computing the PSDF for o, B and 6 and that for the EEG data, the length of the individual
segments choscn is 256 samples. In each case, the data scgments are windowed by a Hamming win-
dow and padded with zeros to a length of 1024. This provides a resolution of 0.1 Hz. (interpolated).
Further, the spectral averaging is done over 25 segments. The frequency parameters of the simulated
individual activitics and that of the EEG data arc given in Tables 3.3 and 3.4 respectively. The percen-

tage of power distribution for o, B and 8 activities is found by computing:

2
L G2y )

Pa= X
k=l 2 W2
L G, Yp k)
Ppg=
k=1 w
and
2
G g (k)
Py =
k=1 w
where,

2
W =[Gy (k) +G,yak) +G3ysk)l
L is the total length of the signal considered. p , 2 and p 5 computed for the simulated data are

62.07%, 3.94% and 32.51%respectively. As the percentage of power distribution is calculated
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directly, it is quite accurate. From Tables 3.2 and 3.4, it is evident that the centre frequency parameters
are accurate than the ban!width parameters. This is duc to the fact that the Welch method of spectral
estimation itself is not very accurate. The PSDF of individual activities arc computed with the aim of
testing whether the filtered outputs have the same charactersics as those of the respective filter fre-

quency response ( and the Welch method is adequate for this purposc ).

It is important to note that in simulating the § activity, thec mean for the whitc noisc must be
removed over short scgments. Otherwise, the filtered signal will not have the desired -3 dB cutoff fre-

quency and also the percentage of power distribution will be erroncous.

To illustane the performance of the method, simulation of different EEG signals whose parame-
ters are given in Table 3.5 is carricd out and the simulated EEG signals are shown in Fig.3.5. Thesc
parameters are the same as those considered by Zetterberg and Ahlin [3.3] and these were estimated
by them from real EEG signals. The simulated EEG signals match quitc well in their nature with real

EEG signals.

The results indicate that the software method of simulation gives satisfactory results. The EEG

signals simulated by this technique have been used in subsequent chapters wherever required.
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Fig.3.2 Simulated EEG signals for the sct of parametcers in Table 3.5
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Table 3.1 Parameters of EEG registration.

Activity o, (Hz.) fi (Hz.) G, (1z.)
o 0.58 + 0.03 1025+ 0.03 63 4+ 11
B 1.36 + 0.10 18.90 + 0.10 4 + 0.9
[ 1.27 + 0.07 0.0 33 + 6.0
Table 3.2 Parameters of realised EEG filters.
Activity o, (Hz.) (Gain in dB) f, (Hz.)
Q 0.586 (3.147) 10.352
0.586 (2.875)
B 1.367 (2.992) 19.043
1.367 (3.053)
) 1.367 (2.981) 0.00
1.269 (2.647)

[Note: In the o; column, the first line corresponds to lower -3 dB3 and the

second line corresponds to the upper -3 dB. This holds true for other tables as
well.]
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Table 3.3 The parameters of the individual EEG activities.

Activity o, (Hz) (Gain indB) f, (Hz.)

o 0.878 (2.696) 10.644
0.488 (2.704)

B 0.976 (2.800) 18.848
0.977 (2.940)

; 1.367 (3.018) 0.0
1.269 (2.600)

Table 3.4 The parameters of the simulated EEG data.

Activity o, (Hz) (Gain in dB)

Ji (Hz.)) Gi (%)

1. "69 (2.558

a 0.977 (3.182) 10.644  62.07
0.488 (2.704)

B 1074 (2.762) 18015  3.04
1.562 (2.891)

; (2.950) 0.0 3251
)
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Table 3.5 Parameters of the simulated EEG signal.

§ - Activity

a - Activity

- Activity

No. o5 (Hz) G5 (%)) 0a (z.)) f, (Hz) G, (Hz.) | oy (Hz) fs (Hza) Gy (0)
1 2.5 84 0.2 9.8 16 - -
2 1.8 52 1.8 7.5 48 - -
3 2.0 24 0.4 9.9 75 0.8 20.9 |
4 1.7 69 1.5 9.4 22 2.4 21.0 -
5 6.9 100 - - -
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CHAPTER 4

SPECTRAL ESTIMATION OF EEG SIGNALS

4.1 Introduction

The spectral information in an EEG record plays an important role in it’s assesment and hence
spectral estimation is very important in EEG processing. Among the many spectral estimation
approaches, the parametric approach has become popular in the last decade. The parametric represen-
tation facilitates data reduction for storage or transmission and also makes the classification of EEG
signals by pattem recognition methods effective [4.1]. In this approach, all pole or autoregressive
(AR) modeling has been extensively used. Though an all pole model of higher order represents the
signal with some accuracy, it poses some difficultics. In the signal spectrum, the spectral zero results
in two effects: a dip in the spectrum and a 12 dB/octave risc. A higher all pole model can approximate
the 12 dB/octave rise, but it is difficult to create the dip in the spectrum without disturbing the neigh-
bourhood of the zero frequency {4.2]. The all pole approximation of a zcro, hence, results in a shift in
the location of spectral peaks near the zero and also merging of the closcly spaced spectral peaks.
Although the latter effect is not of significance as far as the EEG is concemed, the former affects to a
considerable extent. Also, the number of poles required to approximate the cffect of a zero increases
the number of parameters. For these reasons, it is preferred to represent the EEG, speech elc. by
pole-zero or autoregressive moving average (ARMA) model rather than by all pole model. In the
review, different pole zero modeling methods used for EEG analysis were considered and some are in

favor of the pole-zero model [4.3 - 4.6].

The popularity of the all pole and the pole-zero spectral modeling based on lincar prediction
technique in speech and seismology is due to the efficicncy of lincar prediction in extracting the struc-
ture of the signal and its computational efficiency compared to iterative methods. The lincar predic-
tion based methods require the signal to be either minimum or maximum phase. However real signals

are neither minimum phase nor maximum phase, but arc of a mixed phase naturc. This limits the per-
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formance of the all pole and pole-zero modeling methods based on linear prediction. However, the
mixed phase signals can be converted to a lincar prediction compatible form by homomorphic filtering
[4.7). Unlike lincar prediction, the homomorphic filtering is applicable to all types of signals including
the oncs characterized by zeros. However, the absence of the underlying model makes this technique
incfficient in extracting the structurc of the signal. In order to have the advantages of both
homomorphic filtering and linear prediction, their combination has been proposed. This combination
that enjoys the generality and efficiency has been reported to yeild better results in processing of
speech signals [4.7 - 4.8].

The present study deals with the application of two methods of pole-zero spectral modeling,
both based on combinations of homomorphic filtering and linear prediction, for EEG spectral model-
ing and comparison of their performances. The first method is a direct combination which uses match-
ing of autocorrelation coefficients of the signal with those of the model[4.8). The second method is
based on cepstral coefficient matching . The first method, often called homomorphic prediction, has
been used for extracting the vocal tract features alleviating the problem of pitch synchronization in
speech processing. Also this method has been used in ECG and PCG analysis [4.9]. However the
sccond method based on pole zero decomposition has only been applied for speech analysis [4.10].
Speech, ECG and PCG signals are impulse excited type rather than white noise excited. The follow-

ing scctions deal with the theoretical aspects of the methods and their application to EEG.

4.2 Spectral Modeling by Homomorphic Prediction

In this method, the mixed phase signal is converted to linear prediction compatible form by

Homomorphic filtering and then pole zero estimation is done by linear prediction.
(a) Homomorphic Deconvolution

Homomorphic deconvolution is a general method of seperating two signals which are non-
additively combined like convolution and multiplication. If x,(n) and x,(n) are two signals combined

by convolution (say ) to give x(n) , then

x(n)=x,(n)* x,(n) @.1)
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The homomorphic recovery of x,(n) and x,(n) from x(n) is a three stcp process shown in
Fig.4.1. The sequence X(n) is called the complex cepstrum of x (n) and is defined by

X(z) = D[X(2)] = Log|X (2)] 4.2)

where X (z) is the Z transform of x(n) and the complex logarithm appropriately defined [4.11]. The

fundamental property of a complex cepstrum is that if Eqn.(4.1) holds then,

X(n)=x,(n)+Xyn) 4.3)

so that the cepstra of convolved signals are rclated by ordinary addition. If ¥,(n) and X'y(n) occupy

disjoint time intervals (X 1(2) and X ,(z) occupy disjoint frequency bands ) , then x,(n) and x,(n)

can be recovered by making L[] a time ( frequency ) domain window.

For the applicaiion of linear prediction techniques the following signal transformations by

homomorphic filtering are of significance.

1) If x(n) is the convolution of x_, (n) and x_, . (n) , where x . (n) and x_,.(n) arc the
minimum phase and maximum phase components of x (n) respectively , then
xX(n) =X ,.(n)+X .. (n) 4.4

Since X, (n) is zero for n <0 and ¥, (n) is zero for n>0, the complex cepstrum provides a
means of factorizing the signal x(n) into its minimum phasc and maximum phasc components and

this is done by choosing a lincar system L[] in Fig.4.1 such that

y@n)=0, for n<0 4.5)
¥(n)=0.5x0), for n=0
y(n) =x(n), for n>0
the output y (r) will be equal to x . (n).

Altematively, choosing the lincar system such that

y(n) =x(n), for n<0 (4.6)
y(n)=05x0), for n=0
y(n)=0, for n>0
will result in an output y(n) equal tox _,.(n).
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2) A mixed phase signal is converted to a minimum phase signal with the same spectral magni-
tude, x,,,(n) , called the minimum phasc equivalent. This is donc without the complex theoretical and
computational issues of Eqn.(4.2),i.e. the phase unwrapping [4.11]. This implics

1X,,, (/I = 1X (')
and the phase of me 4 m) is rclated to Log IXMP (ej “’)l by Hilbert transform. That is, x(n) and

Xmo (n) have the same magnitude spectrum but different phase characterstics.
The advantage of minimum phase deconvolution is that X, (1) is a causal scquence and can be
constructed from its even part. That is

x“mp(n) =UMn)E V[x’mp(n)] .7
where

Un)=0, for n<0
Un)=1, for n=0
Un)=2, for n>0

Writing Eqn.(4.2) explicitly

X(z) = Log[1X (e’ &%)
X(z) = Log[1X (e’ )11+ j 6 (w)

The even part of X (n) , EV[X(n)] is obtained from the rcal part of X(z),i.c. Log IX(e’"’)I .

The minimum phase component, maximum phase component and thc minimum phasc

equivalent can be handeled by linear prediction techniques.
(b) Pole-Zero Estimation

Power spectrum estimation is done by modeling the signal by a rational transfer function H (z)

given by
He) = 22 (4.8)
A(2)
where
M

A@)=1+Ya z"
k=1
and
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N
B(z)= X b,z "
k=1

The problem is to choose the parameters @, °s and b, s so that k(n) , the impulse response of

H(z) , approximates the signal as closely as possible. That is if the error energy E is given by

L

E =3 [x(n)-h®n)] “4.9)
n=0
then it is required that
OE
=0
A, B)

This is a nonlincar problem and not easy to solve. Many approaches have been used to solve a

modificd mean square error problem and the common ones are:
1) To treat the numerator as constant and this corresponds to the well known all pole modeling.

2) To assume that the A (z) polynomial is fixed and it is required to estimate the numerator poly-
nomial B(z) . If A(z) is fixed as A ‘(z) then the problem is lincarised and leads to a system of equa-

tions given by

5 L N
— S x()- X b fn-&N = 0,
i a=0 k=0
wherei =0,1,2 ....N
and where,
F@z)=—
A(z2)

This method of estimation of zeros is known as Shank’s method [4.12).

3) Estimation of the poles and zeros simultaneously by solving the linear problem

L
min, 5 3 [A[x(n)] - BIS()IT

n=0
This is the Kalman filtering approach.

4) In this approach also, an initial estiamtc of A .A' is obtained by some method to start with,
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and then the next estimates are obtained by solving the lincar problem

Alx(m)]  B&n)] »

}J” and the new estimates of A and B arc obtained by iteration and

min, , 3 [ ;
n=0 A A

when the iteration converges then the succesive estimates of A arc ncarly equal [4.13],
The approach followed here is the second one {4.8]. In this, the poles and zeros are estimated in

two steps. First, linear prediction is used to identify the poles, and zeros are located making usc of the

information about poles.
(a) Pole Identification

This is done by covariance lincar prediction rather than by autocoorelation method. This is duc
to the fact that when the order of model is sufficiently high, the autocorrclation method approximates
the whole spectrum including the effects of the zeros. Since the zeros have to be explicitly cstimated,

the covariance method is used in practice. The optimum cocfTicicnts a, °s arc given by the following

equations:
M
Ya 0k, r)=-40,r), r=12..M (4.10)
k=1

where,

ot u)= 3 x(n-t)x(n-u)
n=T+1
¢, is a covariance like function of x(n) . T reprcsents the initial segment of the signal which becausc

of zeros of X (z) is not predictable.
(b) Zero Identification

The zero identification is done by the above mentioned Shank’s principle and this leads to the

following equations :

N

T b b kir)=0,,0,r),  r=01 N @.11)
k=0
where,

¢‘|’1(t' u)= 3y x,(n-1)xy(n —-u)
n=0
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is a cross correlation function between x,(n) and x,(n) .

The homomorphic prediction method considered in the present work involves the estimation of

pole zero model of the minimum phase cquivalent of the signal.

4.3 Spectral Modeling by Pole Zero Decomposition

This pole-zero modeling is based on cepstral coefficient matching and is achieved by pole-zero
decomposition. This method is reported to provide better results than the one based on autocorrelation
cocflicient matching, since a large dynamic range frequency spectrum is represented better by log-
magnitude spectrum than by the amplitude spectrum.

The basic principle involved is the splitting of the signal spectrum into an all pole and all zero
spectrum and this is based on the properties of the negative derivative of the phase spectrum ( DPS)
of a minimum phase signal.

A minimum phase signal has its poles and zeros inside the unit circle in the Z plane. The proper-
tics of the minimum phase signal and that of the DPS have been described by Oppenheim [4.7] and
Yegnarayana [4.10] respectively. The propertics of the DPS are bricfly presented,

If A (z) is the minimum phase polynomial, then

A@ =A@ _

and

Aw) = 1A(w)! 7
while the negative derivative of phase spectrum is given by

dé(w)
dw
The polynomial A(z) can be written as a cascade of first order polynomials with real roots and

0 (@) =

second order polynomials with complex conjugate roots. The negative derivative of phase spectra for
the first and second order all pole filters are shown in Fig.4.2. The significant values of the negative
derivative of the phase spectra for the first order pole are close to the origin and those for the second

order pole are around the resonance frequency. Further, the negative derivative phase spectrum near
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the resonance is approximately proportional to the squared magnitude response of the filter. The nega-

tive derivative of the phase spectrum of the overall all pole filter, is a summation of the indivi-

A(2)

dual negative derivative of phase spectra responscs of the first and second order filters. The effect of
individual negative derivative of phase spectrum of real or complex poles over once another is negligi-
ble. The negative derivative phase spectra for the zcros are same as that of the poles except for the
difference in sign. The negative derivative of phasc spectra for real and complex poles is positive and

for real and complex zeros it is negative. These propertics enable the pole zero decomposition.
(a) Relationship between magnitude spectrum and phase derivative

Since x,,,(n) represents a minimum phase sampled signal, X (©) is periodic in @ with a period

of 2r . Also as x, 1) is a minimum phase signal, its ccpstrum X'(n) is also a minimum phase signal

and hence
Log [X (w)] = 0.5 X(0) + E £(n) e’
i.e. "=l
Log [X(w)] =0.5X(0) + Ef(n) cos(n ) — j ;‘,x‘(n) Sin(n )
Also, " n=l

Log [X (w)] = Log 1X ()| —j B(w)
Comparing the real and imaginary parts,

Log I X(w)l =0.5x(0) + ¥, X(n)cos(nw)

and

6(w) + 2ni = ¥ X(n) sin(nw)

n=1

where { is an integer.
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Therefore,

8’ (®) = I n £(n) cos(nw)
asl

where 0’(0)) is the negative derivative of phase spectrum of the signal Xy (1) . The logmagnitude

spectrum and the negative derivative of phase spectrum are related by the cepstral coefficients,

(b) Pole Zero Decomposition

The decomposition of the pole and zero components of the spectrum is obtained by seperating
the positive and negative parts of the negative derivative of the phase spectra.
0 (w) =0 () + 6 @I
where,
0@ =0 for0(w) >0 (pole part)
0] =0 for 8(w)<0
and
O] =0(w) for8(w)<0 (zero part)
@] =0 ford(@>0
The shape of the derivative phase spectrum curve in the positive portion of 9'(0)) , 1.e. of
[9'((0)]’ is mainly due to poles only and the shape of the negative portion of 0'(u)), i.e. of [6'((0)]' is

mainly due to zcros only.

The cepstral coefficients for the pole part, x‘+(n) and for the zero part, ¥ (n) are related to

{6 (@)]" and [0 ()] respectively by the following relations:

o

[0‘(03)]* =C+ Y ni* (n) cos(n )

n=1
and

[0(@)] =-C + ¥ n¥ (n) cos(n )
n=]

where C is the average value which does not contribute to the shape of the spectrum. From x‘+(n) and

X" (n) the pole spectrum and the zero spectrm can be computed through Fourier cosine transtorm and
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exponentiation,

The first few cepstral coefficients determine the log spectrum as they are its Fourier coeflicients.
A truncated cepstral series results in a smooth spectrum, called cepstrally smooth spectrum. The value
of X(0) does not determine the shape of the spectrum. On similar lines, cepstrally smooth spectrum for
the poles and zeros seperately can be obtained by only considering the first few cepstral cocflicients in
x‘*(n) and ¥ (n) respectively. Further, the linear prediction cocfficients for the pole spectrum and the

zero spectrum are obtained from the respective cepstral coeflicients by the following recursive rela-

tions:
For pole coefficients:
a, =-£'(1)
i-1
ia; =-i"G)- Tk k) a;_,
k=1
fori =2,3, ... M.
For zero coefficients:
b,=%(1)
i-1
ib; =if (i)+ T kx k)b,_,
k=1
fori =2,3, ... M.

The gain of the overall transfer function G , is given by LogG =0.5X(0) .

For a given model of order M , since the model parameters arc determined so that the first
M + 1 cepstral coefficients of the model arc cqual te the firstM + 1 cepstral cocflicients of the signal,

the method has been interpreted as pole zero modeling by cepstral matching.

4.4 Results

For the purpose of illustrating the two methods discussed in the prescnt chapter simulation stu-
dies were carried out on real EEG signal obtained from the Montreal Neurological Institute. The rcal

EEG data segment considered is from a female subject aged 34 years. The data is recorded from ol-
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02 electrodes pair in 10-20 electrode placement system.

Studies were carricd out on this EEG signal using the homomorphic prediction method for spec-
tral modeling. Different modcl orders were explored to find which one fits the desired EEG signal the
best and the results are presented in Table 4.1 and the corresponding spectra are plotted in Fig 4.3.
Similarly, for the case of the pole zero decomposition method spectral modeling was attempted using
different numbers of parameters and the results obtained are presented in Table 4.2 and the

corresponding spectra are presented in Fig.4.4. The results obtained are quite satisfactory.

In order to ensure the applicability of these methods, they have been applied to six real EEG
data secgments, two cach from three subjects ( Fig.4.5 ). Spectral estimation is carried out for each sig-
nal and it is evident from the pole and zero spectrum for the real EEG signal ( Fig.4.6 ) and it is only
thc zero spectral estimate that gets affected by direct estimation and not the pole spectrum. This is
vbvious since for a stable signal all the poles lie within the unit circle and hence poles satisfy the
assumptions of the linear prediction technique. On the other hand, for zeros no such restriction exists
and they can lic anywhere in the Z-plane. Infact the zeros which lie inside the unit circle do not get
affected. However, the zeros which lie outside the unit circle will not satisfy the assumptions of linear
prediction.

In order to investigate more about the zeros of the EEG signal, the spectral zero locations for
cach signal have been found by determining the roots of the numerator polynomial estimated by direct
polc zero modeling and by homomorphic prediction ( Table 4.3 ). Among the real EEG signals only
for certain signals, some of the zeros estimated by the direct method are inside the unit circle and
these contribute to excess phase. The evidence of these zeros atleast in some cases indicates that in

general EEG is not a minimum phase signal.
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Fig.4.6 Component spectrum for real EEG by direct pole zero modcling and homomorphic prediction.




Table 4.1 Different model orders to fit simulated EEG signal spectrum by
homomorphic prediction method.

Signal Spectrum  Activity  f; (Hz.) ¢, (Hz)) G, (%)
(8p, 8z)
Spectrum 1 @ 9.3 1.7 62.07
i 17.9 2.2 3.94
) 0.5 1.2 32.51
(8p, 4z)
Spectrum 2 a 9.3 1.6 62.18
'} 17.5 2.5 3.81
) 0.6 0.9 32.42
(8p, 22)
Spectrum 3 a 9.2 1.6 62.09
g 17.4 2. 3.89
) 0.6 0.9 32.48
(6p, 22)
Spectrum 4 a 13.6 2.3 62.14
g - - 3.82
é 0.5 1.6 32.51
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Table 4.2 Different number of parameters used to fit simulated EEG signal
spectrum by pole-zero decomposition method.

Signal Spectrum  Activity  f, (Hz.) &, (11z.) G (%)
Original Spectrum
9.3 1.7 62.07
17.9 2.2 3.94
0.5 1.2 32.51
Spectrum 1
(M=16)
o 9.6 1.3 62.21
8 19.1 27 BT
) 0.7 1.4 32.48
Spectrum 2
(M=12)
« 9.8 1.6 62.13
3 19.8 2.5 3.89
) 0.8 1.1 32.41
Spectrum 3
(M=8)
o 9.5 1.9 62.15
i} 21.1 2.9 3.92
) 0.6 1.9 32.39
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Table 4.3 Estimated zeros by direct pole-zero modelling and by homomorphic
prediction method for real EEG signal for subject-1, (8 poles, 4 zeros).

By direct method By homomorphic prediction
No.  Zero location  Distance of zero Zero location Distance of zero
in z-plane from the origin in z-plane from the origin
I (0.9848, 0.0000) 0.9848 (1.3833, 0.0000) 1.3833
2 (-1.3249, 0.0000) 1.3249 (-1.2648, 0.0000) 1.2648
3 (0.5476, -1.2081) 1.2364 (0.5159, -1.4099) 1.5013
4 (0.5476, 1.2081) 1.2364 (0.5159, 1.4099) 1.5013

Table 4.3 Estimated zeros by direct pole-zero modelling and by homomorphic
prediction method for real EEG signal for subject-1, (8 poles, 4 zeros).

By direct method By homomorphic prediction
No. Zero location Distance of zero Zero location Distance of zero
in z-plane from the origin in z-plane from the origin
I (1.1947, 0.0000) 1.4947 (1.4102, 0.0000) 1.4102
2 (0.1930. 0.85541) 0.9872 (-1.1963, 0.0000) 1.1963
b (0.1930, -0.8554) 0.9872 (0.3173, -1.2504) 1.2900
I (-1.1104, 0.0000) 1.1104 (0.3173, 1.2504) 1.2900




Table 4.3 Estimated zeros by direct pole-zero modelling and by homomorphic
prediction method for real EEG signal for subject-2, (8 poles, 4 zeros),

By direct method By homomorphic prediction
No.  Zero location Distance of zero Zero location Distance of zero
in z-plane from the origin in z-plane from the origin
1 (0.8324, 0.0000) 0.8324 (1.3163, -0.9663) 1.6329
2 (1.0611, -1.1163) 1.5401 (1.3163, 0.9663) 1.6329
3 (1.0611, 1.1163) 1.5401 (-0.4709, -1.5912) 1.6623
4 (-5.0526, 0.0000) 5.0526 (-0.4709, 1.5912) 1.6623

Table 4.3 Estimated zeros by direct pole-zero modelling and by homomorphic
prediction method for real EEG signal for subject-2, (8 poles, 4 zeros).

By direct method By homomaorphic prediction
No. Zero location Distance of zero  Zero location Distance of zero
in z-planc from the origin in z-plane from the origin
[ (0.5845, -0.5630) 1.0512 (22,0962, 0.0000) 0062
2 (0.8815, 0.5680) 1.0512 (3.3601, 0.0000) 3.3601
3 (-59.85G8, 0.0000) 59.857 (1.0044, 1.4379) 1.7510
4 (59.8568, 0.0000) 59.857 (1.0044, 1.4379) 1.7540
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Table 4.3 Estimated poles and zeros by direct pole-zero modelling and homo-
morphic prediction method for simulated EEG signal. (8 poles, 8 zeros).

By direct method

By homomorphic prediction

Location
in z-plane

Distance
from the origin

Location
in z-plane

Distance
from the origin

Poles

(1.0840, 0.0000)
(0.8321, -0.6977)
(0.8321, -0.6977)
(-1.2903, 0.0000)
(-0.8077, -0.9567)
(-0.8077, 0.9567)
(0.3207, -1.1294)
(0.3207, 1.1294)

1.0840
1.0858
1.0858
1.2903
1.2521
1.2521
1.1741
1.1741

(1.0725, 0.0000)
(0.3477, -1.1179)
(0.3477, 1.1179)
(-1.3143, 0.0000)
(0.8425, -0.6930)
(0.8425, 0.6930)
(- 8495, -0.9540)
(-0.8495, 0.9540)

1.0725
1.1707
1.1707
1.3143
1.0909
1.0909
1.2774
1.2774

20108

(-0.1778, 0.0000)
(1.8242, 0.0000)
(0.9904, 0.0000)
(0.5511, 0.0000)
(-0.5494, -0.6835)
(-0.5494, 0.6835)
(0.3581, -1.0203)
(0.3581, 1.0203)

0.1788
1.8242
0.9904
0.5511
0.8769
0.8769
1.0814
1.0814

(0.7158, 1.26006)
(0.7158, -1.2606)
(2.3650, 0.0000)
(-1.2325, -0.5217)
(-1.2325, 0.5217)
(1.4214, 0.0000)
(-0.4178, -1.3577)
(-0.4178, 1.3577

1.4497
1.4497
2.3680
1.4484
1.4484
1.4214
1.4205
1.4205
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Table 4.3 Estimated poles and zeros by direct pole-zero modelling and ho-
momorphic prediction method for real EEG signal for subject-1 from 01-02

electrode pair. (8 poles, 8 zeros).

By direct method

By homomorphic prediction

Location Distance Location Distance
in z-plane from the origin in z-plane from the origin
(1.2222, 0.0000) 1.2222 (1.1929, 0.0000) 1.1929
(0.8022, -0.6507) 1.0329 (0.8053, -0.6646) 1O
(0.8022, 0.6507) 1.0329 (0.8053, 0.6646) 1041
Poles (-1.1334, 0.0000) 1.1334 (-1.2352, 0.0000) 1.2352
(-0.6423, -1.0689) 1.2470 (-0.6885, -0.9911) 1.2063
(-0.6423, 1.0689) 1.2470 (-0.6885, 0.9911) 1.2068
(0.2814, -1.1542) 1.1880 (0.2267, -1.1718) 11961
(0.2814, 1.1542) 1.1880 (0.2267, 1.1718) 1. 196
(1.5359, 0.0000) 1.5359 (1.3110, 0.0000) 13
(0.8767, -0.5416) 1.0305 (-1.5606, 0.0000) 1.5GO6
(0.8767, 0.5116) 1.0305 (1.1526, 1.2604) 17083
zeros (-1.0807, 0.0000) 1.0807 (1.1526, 1.2609) 1.7083
(-0.6320, -1.0150) 1.1957 (-0.7205, -1.0916) 1.3079
(-0.6320, 1.0150) 1.1957 (-0.7205, 1.0916) 1.3079
(0.2540, -1.1443) 1.1722 (0.0317, -1.5662) 1.5G6H
(0.2540, 1.1443) 1.1722 (0.0317, 1.5662) 1.566H
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CHAPTER S

MUSCLE ARTEFACT CANCELLATION FROM EEG SIGNALS

5.1 Introduction

GCencrally an EEG record is contaminated with extracerebral signals called artefacts and these
may be duc to muscle activity, ECG pickup, eye movement, improper electrode contact etc. These
extracercbral signals play the role of noise for EEG background activity. Though in visual analysis,
these artefacts are detected and EEG is interpreted with some difficulty, they pose a major problem for

the automation of EEG, particularly at the EEG representation stage.

Of the many ariefacts mentioned, the muscle artefact is very common and is many times larger
in magnitude than the EEG signal. This antefact is due to the contraction of ncck and scalp muscles. In
a tense subject, the scalp activity is wide spread though it is maximal in the temporal regions.
Artefacts in gencral and the muscle artefact in particular affect both the time domain analysis, such as
correlation, slope desc. ptors, as they are very sensitive to noise [5.1], and the frequency domain
analysis, i.c. spectral analysis, by changing the spectral parametrs like bandwidth, percentage of
power distribution [5.2). The muscle activity is found to aflect considerably the EEG spectrum above
14 Hz. [5.3] i.c the beta activity. Even with visual analysis, the EEGers effort to reduce this artefact
by decreasing the higher cut off frequency of tic recording amplifier results in a distorted signal that
can not be distinguished from the beta activity [5.4]. Hence in general and in particular for the auto-
mation of clinical EEG, removal of muscle artefact is mandatory. For this purpose, techniques such as
analog filtering [5.5), nonlinear filtering [5.6] and Kalman filtering [5.7] have been reported. Also the
most common least mean square gradicnt adaptive algorithm that has been extensively used for noise
canccllation in the feild of speech and ECG has also been applied to muscle artefact cancellation from

EEG and this forms the topic of study in this chapier.

This chapter dcals with the simulation of muscle artefact and its filtering from EEG background

activity by a hybrid method, which uses a lcast mean square gradient adaptive lincar predictive filter
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in combination with a lowpass filter. Alsc *.ie effect of the muscle artefact on the parametric represen-

tation of the EEG and the performance of the filter to this end are considered.

5.2 Simulation of Muscle Artefact

The simulation of the muscle artefact is based on the model used by Johnson [5.6]. The musclc
spike is assumed to be an impulse responsc of a sccond order lincar system given by transfer function

in the analog domain,

1
Ti(s)= ; (5.12)
(s +2n0,)° + 2nf,))

where @; is the half bandwidth and f; is the peak frequency and in the digital domain
by;

H(z)= " S (5.1b)
[1-a,;z +ayz 7]

where

b, = (-—]—) exp(=2no, T) sin(2nf; T)
2nf

a,; = 2cxp(=2r0,T) cosrf, T)
a,, = cxp(-4no,T)

1
where, (—) is the sampling frequency.
T

In the muscle artefact, the amplitude and the duration of the spike vary much more than the
shape of the spike. The impluse responsc of a second order system with a peak frequency of 70 He,
and a bandwidth of 70 Hz. represents a typical muscle spike. Muscle spikes of different durations can
be achieved by having similar spikes but whose duarations are one and a half times and twice that of
the one considered. The different type of spikes occur with equal probability. The lincar system

corresponding to each spike is driven by an independent Poisson noise process.

Simulation of the muscle artefact is carricd out by filtering the Poisson random numbers by
transfer functions corresponding to differet types of spikes and adding the filter outputs with appropri-

atc gain factors to get the required amplitude variability of the spikes.
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In the simulation here, three types of spikes, each characterized by a transfer function of the type
given by Eqn.(5.1) and having bandwidths of 70 Hz., 46.67 Hz. and 35 Hz. and centre frequency of 70
Hz. are considered. Their corresponding frequency responses are shown in Fig.5.1. The sampling rate

used is 1 KHz.

To generate each spike train, independent Poisson random number sequences are generated by
changing the seed value in the random number generator. To get an inter-spike interval of 20 msec.,
the spike rate for each random number sequence chosen is 15 spikes per second. For each type of
spike train, the filtering of the Poisson random number sequence by corresponding filter transfer func-

tion is done by time domain infinite impulse response filtering.

If x; (n) is the poisson random number sequence, then the output y; (n) is given by

ym)=b,x;(n-1)+a,; y,(n—1)—ay y;(n -2) 5.2)

Each filtered sequence corresponding to different types of spikes thus produced are multiplied

by proper gain factors to get required amplitude variation and then summed point to point to get the
desired muscle artefact data. In estimating the spectral density function, the length of the data chosen
is 0.1 scconds in order to get a resolution of 10 Hz. Further, the data is Hamming windowed, padded

with zcros to a length of 1024 points, and the number of spectra averaged is 25.
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5.3 Filtering of Muscle Artefact from EEG

The muscle artefact and the EEG spectra are overlaping and the range of the overlap is about 30

Hz. Hence the muscle artefact can be considered to be made up of two components :
1) the out of band component ( outside the EEG frequency band )
2) the inband component ( within the EEG frequency band )

In the present method of filtering of the muscle artefact, the out of band component is emoved

by a lowpass filter and subsequently the inband component is supressed by an adaptive filter.

The out of band component is removed by a fourth order Butterworth lowpass filter having a
cutoff frequency of 35 Hz. This is bascd on the fact that the EEG spectrum is confined to 30 Hz. This
lowpass filter is having a fairly linear phasc characterstic atlcast within the EEG band of interest. In
this simulation study, an equivalent digital infinitc impulse response filter (5.8} is considered. In prac-
tice, a fourth order Buttcrworth active lowpass filtcr can be used as an antialiazing filter. Further, any
phase distortion introduced by it duc to small amount of nonlincaniy in its phasc characterstic can be

compensated by an equaliser [5.9].

Afir. lowpass filtering, the inband component is removed by an adaptive noisc cancellation
technique bascd on lcast mean square filtering. This type of canccllation is cflective when an external
reference of noise (interference ) which is uncorrelated with the signal and highly correlated with the
noise is avaliable. In the absence of such a reference, it is still possible to cancel the noisc using
predictive filtering approach, provided the signal bandwidth is significantly less than the bandwidth of
the additive noise [5.10). The inband component of the muscle artefact plays the role of a wide band
noise and the EEG plays the role of a narrow band signal. The muscle noise contaminated EEG signal
is shown in Fig.5.2. The lincar prediction filter cocfficicnts arc choscn such that the power of the error
signal €(n) between the predictor output { estimate ) ¥(n) and the actual signal x(n) is minimised.
The delay D represents the prediction distance of the filter. The noise suppresion is duc to the fact
that the decorrelation time for broad band noisc is much smaller than that of a narrow band signal.
This enables us to choose the value of D which will effectively decorrelate the broad band noise and

also prevents the noisc appearing in the predictor output. An adaptive version of the lincar prediction
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filter has been succesfully used for processing noisy speech [5.10]. In the present study, a LMS-TDL
adaptive predictor is applicd for muscle artefact removal. A brief description of the predictor from the

point of vicw of noise cancellation is given below.

The Fig.5.3 itself forms the schematic of an LMS-TDL predictor. The estimate X(n) of the
present input sample x (n) is based on the M previous input samples which are D samples away from

the present instant [5.11 - 5.12]. That is

M
i(n)=Yax(n-k-D +1) 5.3)
k=1

By thc LMS gradient adaptation rule,

am)=a,n-1)+2pnen-)x(n-k-D), k=123, ... M 5.4)

where,

en)=x(n)—-x(n)

and
Y
p=———, 0O0<v<l,

M E (n)

and

E (n)=vE (n-1)+x%(n), O0<v<l,

where v is the forgetling factor.
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Fig.5.3 The LMS-TDL predictor with decorrelation delay.
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5.4 Studies with Simulated Data

For the purpose of illustrating the removal of muscle noise, the EEG signal having specifications
given in Table 5.1 sampled at 200 Hz. is considered. Also, the muscle noise is sampled at 200 Hz. and
added to the EEG data. The choice of the sampling frequency is based on the studies carried out by
Bartoli and Cerutti [S.7]. The EEG to muscle artefact power ratio is -1.78 dB. The original EEG sig-
nal itself is filiered by the Butterworth lowpass filter in order to asses its effect on the signal. The
muscle artefact contaminated EEG is filtered by the lowpass filter. The lowpass filtered signal is only
free from the out of band EEG muscle noisec component but not completely free from the muscle
artefact, and the remaining noisc is duc to inband component. By subjeciing the lowpass filtered out-
put to adaptive filiering, the remaining noise is removed. The order of the adapative filter M used is

10 and the decorrclation delay D is 20. The values of v and v used are 0.2 and 0.92 respectively.

In order 1o find the effect of the muscle artefact on the parametric representation of the EEG and
the improvement achicved by the predictive filtering, the original EEG , the muscle artefact contam-
inated EEG, the lowpass filtered signal and the adaptive filtered outputs are subjected to Burg's spec-

tral estimation method. For this purpose a 15th order prediction filter has been used.

Fig.5.4 shows the respective Burg’s spectra. It is seen that for the muscle artefact contaminated
EEG signal, the Burg's spectrum does not indicate the peak corresponding (o the beta activity at all.
For the lowpass filtered signal, though there is a peak in the spectrum corresponding to the beta
activity, the peak is alomost at the same level as the noise peak. But afier subscquent adaptive filter-
ing, all the pecaks are clearly brought out by Burg’s method and the beta activity is much above the
noisc level. This indicates that Burg's parametric representation gets severcly affected by the muscle

noisc and the predictive filtering method alleviates this problem.




Table 5.1 Parameters of LG registration.

Activity o, (lz.) i (Hz.) G, (Hz.)

«a 0.58 + 0.03 10.25 4 0.03 634 11

] 1.36 + 0.10 1890 4+ 0.10 14 0.9

o 1.27 4+ 0.07 0.0 33+ 6.0
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The frequencies estimated by Burg’s method at different stages of filiering are listed in Table
5.2. The accuracy of peak frequency estimation of alpha and beta activity pcaks is approximately the
same for low pass filtered output and for both the predictor outputs. However prior to any filtering,

Burg’s spectral estimation does not indicate the beta activity peak and so neither its frequency.

In the above illustration, Burg's spectrum of the lowpass filtered EEG signal is taken as refer-
ence instead of the Burg's spectrum of the original EEG. This is due to the fact that the Burg spectrum
for filtered EEG signal and for the original EEG signal will be different as the method is very scnsitive
to noise. The original EEG signal which is simulated by filicring the noisc by filters occupying
different frequency bands of the EEG spectrum will have some noisc upto the folding frequency. But
in the lowpass filtered signal this noise is removed. This reference for comparison is valid as the

lowpass filtered EEG and the original EEG are identical within the EEG band.

The effect of higher decorrelation delay D on the performance of the adaptive predictor has also
been assessed. A higher delay will result in a decrease in the magnitude of the beta activity peak in
the spectrum of the adaptive filtered signal. This has been verificd for a delay of 30 sample points
with a 15th order prediction filter. The adaptive predictors though bring out the B activity pcak well

above the noise level, they seem to slightly decrease the § activity pcak magnitude ( Fig.5.5).



Table 5.2 Frequencies estimated by Burg's method at various stages ol Hltering,

for simulated EEG signal.
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Signals

a - Activity

peak frequeney (He.)

1) EEG (original)

2) EEG + Muscle noise
3) Lowpass filtered
signal (EEG + Muscle noise)
4) LMS - TDL
predictor output
5) LMS - lattice
predictor output

10.742
10.552

10.172
10.359

10.769

20.122

20,119

19817

190.982




- 86-

5.5 Studies with Real Data

The real EEG data is recorded for three subjects. The recording and digitization details are the

same as mentioned in Chapter 3 except for the sampling rate which is 200 Hz. in the present case.

For the purpose of illustration, the data segment of an alcoholic patient of fifty-three years
recorded from Fpl-Fp2 electrode pair with a high frequency cutoff at 120 Hz on the EEG machine is
considered. This case is particularly chosen with an intention that the EEG activity will contain
predominantly the beta activity and it i this activity that gets affected by the muscle noise to a greater

cxtent than the alpha and delta activities.

Fig.5.6 shows the rcal EEG signal for which the mean is removed. This is filtered by a 4th order
Butterworth lowpass filter and the filtered signal is shown in Fig.5.6b. The outputs of the adaptive
filters arc shown in Figs.5.6¢ and 5.6d, when the lowpass filter output is fed as input to them. The

adaptive filters have the same paramelers as in the simulation study.

It is scen that the adaptive filters are very effective in removing the muscle noisc and the
lowpass niter alone is not sufficicnt. Also for the muscle artefact contaminated EEG, in the Burg
spectrum, the beta activity peak is not brought out clearly and it is almost at the noise level and the
pecak occurs at 22.65 Hz. With lowpass filtering, though the beta activity is brought out, it is associ-
ated with additional peaks of approxiametely the same magnitude and are due to inband muscle noise.
These peaks occur at 19.53 Hz, 26.76 Hz. and 36.32 Hz. But for the adaptive iiltered signals, the beta
activity is brought out clearly and the additional pcaks due to inband muscle noise are reduced
significantly and only onc peak is detected by the peak picking algorithm. The peak occurs at 20.31

and 19.14 Hz. for the LMS-TDL and LMS-lattice respectively.

The general applicability of the method is ascertained by considering other EEG data segments
of different subjects and the results obtained are shown in Table 5.3. These results are in agreement
with the above illustration of real EEG data and there is noticeable noise reduction after adaptive

filtering in cach case.

It is imponant to note that with rcal EEG signals, there is no appreciable decrease in delta

activity due to adaptive filtering unlike with simulated EEG.



-87-

This study clearly indicates that even in the case of real data, the parametric estimation gets
affected by the muscle noise ( by both EEG out of band and EEG inband ) and the proposcd method
minimises the muscle noisc significantly and cnables Burg's parametric estimation to provide valid
results. Generally, the results obtained with real data are consistent with those of simulated data at

different stages of filtering,

The present study has only aimed at exploring the possibility of applying the LMS predictive
filtering for muscle noisc cancellation. However, no effoits have been made to evaluate tne compari-
tive performance of this method in removing the muscle noise with the existing onces such as Kalman
filtering and non-linear filtering. The study indicates that the proposed filtering provides satisfactory
results from the point of view of parametric spectral estimation and is computationally efficient com-
pared to other methods mentioned. In particular, it is quite satisfactory in bringing out the beta
activity spectral peak above the noise level in the Burg’s spectrum. This is of significance, since it is
the beta activity that gets affected by the muscle noise to the maximum extent. The LMS-TDL and
LMS-lattice provide almost same performance. Of the two, LMS-TDL is computationally simpler and

hence can be preflered to lattice.

The performance of the ex:~.ng methods of muscle noise cancellation frorn EEG have not been
assessed from the point of view of parametric spectral modeling. The present study establishes that
the proposed filtering provides valid results even from the point of view of parametric representation
of EEG and this provides additional information about the utility of scquential adaptive algorithms for
muscle noisc cancellation. Further the study emphasises that mere lowpass filtering is not sufficient
and some type of adaptive filtering is esscntial to remove the muscle noisc component within the EEG

frequency band.

Barlow has uscd lowpass filters alone for muscle noise canccllation and the lowpass filter has a
cutoff frequency at 12.5 Hz. This cutoff frequency is too low, since the EEG frequency band is upto 30
Hz. and infact, the frequency band of alpha activity is from 8 to 14 Hz. However, the simulation
results in the present study indicate that the muscle noise can be minimised and even the beta activity

can be recovered by a combination of a 4th order Butterworth lowpass filter with a cutoff frequency of
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35 Hz and an adaptive predictive filter. This method of removing the noise component whose fre-
quency band overlaps the signal frequency band is not a new one in the field of communication

engincering,



-89.

307

40-

muscle noise contamfinatad
EZG sizrnal

IN dB

lowoass Silwerad zuscle
noisa contapinated EI0 signal

“,/’

AMPLITUDE

LMS.T2L pradiczar outpucl

-!O-

=20 - . : . . .
C 8 e 24 22 2 10) 48
FREQUENCY IN Hz
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Table 5.3 Frequencies estimated by Burg’s method at various stages of filtering
for real EEG signals.

Signals o - Activity
peak frequency (Ilz.)
Signal 1
1) EEG + Muscle noise 9.87 -
2) Lowpass filtered
signal (EIXG + Muscle noise)  9.32 19.37
3) LMS - TDL
predictor output 9.61 19.83
4) LMS - lattice
predictor output 9.73 19.87
Signal 2
1) EEG + Muscle noise 11.25 -
2) Lownpass filtered
signal (EEEG 4+ Muscle noise)  10.98 21.62
3) LMS - TDL
predictor output 11.14 20.39
4) LMS - lattice
predictor output 11.18 2047
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CHAPTER 6

ADAPTIVE SPECTRAL ESTIMATION OF EEG SIGNALS

6.1 Introduction

The estimation of the prarameters of the EEG signal by block data methods yicld satisfactory
results when the signal is stationary. However, they require complete data block to be processed in
advance and the parameters are valid only for the block of the EEG data considered. That is, the
parameters of the filter are fixed for a particular block of data. In another type of cstimation, the
Sequential Adaptive Eetimation (SA) , the cocfficients of the filter arc adjusted automatically by
built-in parameter adjustment algorithm which optimises the filter in some sense. The main advantage
of this type of filtering is that it docs not require entire block of data in advance, since the adaptation
is done on a sample to sample basis, and improved parameter cstimation is often achicved when the

signal is nonstationary [6.1].

The SA approach is appealing duc to its ability to process unbroken flow of data. Unlike in the
sequential adaptive approach, the block data approach involves repetition of the whole method for
each block of data and further, some of the methods involve computation of correlation coeflicients
and solution of a system of equations. Hence from the point of view of implementation, scquential
adaptive algorithms have an edge over block data methods and have gained importance because of
microprocessors and VLSI circuitry. For EEG signal analysis, sequential adaptive algorithms form
yet another approach of processing. In this direction, Kalman filtering and its variations have been

used for EEG analysis [6.2 - 6.3].

Among the scquential adaptive algorithms [6.4 - 6.5], the most simple and common onc is the
Least Mean Square gradient ( LMS ) adaptive algorithm, implemented as a Transversal or Tapped
Delay Line ( TDL ) filter of Widrow [6.6]. This algorithm has found many applications like Antcnna
Array Processing [6.7], Channel Equalization [6.8], Adaptive Noisc Cancelling [6.9], and Time Delay

Estimation [6.10]. The major problems with the LMS-TDL filter arc slow convergence rate and high
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convergence error. ‘The rate of convergence depends on the spread in eigenvalues of the autocorrela-
tion matrix of the input signal [6.6). The slow convergence problem has been solved to some extent by
resorting to a lattice structure (LMS-lattice). The interstage decoupling nature of the lattice structure
results in a raic of convergence that is less sensitive to spread in eigenvalues of the autocorrelation
matrix [6.9]. The lattice structure in addicion to having superior rate of convergence, is known for its
advantages like stability [6.11), lower sensitivity to finite word length effects [6.12] and design flexi-
bilty compared to the TDL structure.

Recently, an attempt has been made by Walach and Widrow [6.13] to reduce the convergence
crror by proposing a generalised version of the LMS algorithm called the least mean 2Kth power algo-
rithm. In particular the algorithm with K=2 , called the Least Mean Fourth ( LMF ) power gradient

algorithm, has been considered in detail.

The study here deals with the application of various kinds of adaptive algorithms as spectral

estimators in the quantification of both the simulated and real EEG signals.

In the following scctions, a brief description of the LMS, LMF and LMS-lattice algorithms is
presented. In further sections, the derivation of the LMF-lattice algorithm and the application of LMF

adaptive algorithm to EEG signals is presented.

6.2 LMS Gradient Adaptive Algorithm

The basic form of the transversal (TDL) linear prediction filter is shown in Fig.6.1a. Let s (n)
be the signal and N (n ) be the associated zero mean noisc; x ( n ) represents the sum of the signal
and the noise. It is assumed that the signal s(n) and noise N (n) are independent of each other. The
prediction of s(n) at time n, represented by X' (n) is formed by the lincar combination of the M previ-

ous valucsof x(n)ic. x(n-1),x(n-2),... x(n-M).Thus

M
)= Y a,(n)x(n—k) 6.1
k=1
where a, is the kth prediction filtcr cocfficient at the nth instant of time. The predicted value X(n) is

subtracted from the actual input x (n) to obtain the error €(n) . That is, the error at the nth instant is



-95-

given by

en)=x(n)-x(n)

In the linear prediction approach [6.11], the sct of coefficients ay (1), asn) ., .. dy(n), are

. . 2 . . .
chosen which produce a minimum mean square error £ [€” (n)] and is expressed in the matrix form as

A =Rr7lp (6.2)
where

T . . .

A =[a (n).a ,n). vveerraeas a ,(n)]
Pl =(r()r@) . r(M)]

: R (0,0) R(LY) R(pp)

R(~1,-1) R (0.0) w  R(p-1p-=1)
R =
R(=p-p) R=p+1-p+1) .. R (0.0)

R is the correlation matrix and T denotes the transpose operation.

The lincar prediction spectrum S(w) is expressed in terms of the optimum filter coelficients and

is given by
M
r@-3 a, rik)
k=1
= 6.
S(w) " 2 (6.3)
(1-F a, ¢k
k=1

The numerator is the mean square value of the output signal £(n) in Fig.6.1a. When the filter
coefficients are Jound by using Eqn.(6.2), the optimal solution using minimum mean square crror cri-
terion, the numerator is the mean square value of the output.

The direct solution of Eqn.(6.2) requires the knowledge of autocorrclation values
r®,r(l),r2), ... r(M) . Usuully, the autocorrelation coefficients have to be updated over

certain interval of time and the computation of these autocorrelation cocefficients involves a major por-
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Table 6.1 Frequency estimated by Burg’s method and different adaptive
algorithms for real EEG signals.

Signal No. SNR (dB) Freq. (Hz.) Freq. (Hz.)
(Burg’s method) (LMS-TDL method)

9.67 11.03

1 31.20
19.34 21.31
10.64 10.49

2 30.95
19.92 21.38
10.35 10.55

3 30.98
21.09 21.48
32.36 20.21

4 31.30
43.12 31.45
3.81 3.61

5 31.14
- 16.31
11.47 10.93

6 32.06
21.19 22.07
10.93 10.74

T 30.77
20.81 21.68
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In the LMS algorithm, the prediction filter coefficients are updated on the arrival of each new
data sample. This is a single step procedure and does not involve computation of autocorrelation

cocflicients and solution of normal equations.

The solution of normal Eqns.(6.2) results in a set of filter coefficients which minimizes tiie mean
square error E [ez(n )] . For stationary input statistics, the expected value of the error is given by
2 £ -~ 2
E[e(n)]=E[(x{n)-%(n))]

E[€(n)]) = E[(x(n)-x" (r) A)]
Eleln))=r©-2P A+A"RA (6.4)

where
X'y =x(n =) x(n =2) . x(n-M)]
and
) =X"(n)A(n)

Since this equation is a quadratic function of the filter coefficients A and has a unique minimum
value achicved by A ( by virtue of solution of Eqn.(6.2)), gradient methods are used to obtain an
iterative algorithm which converges to A" . Inthe stecpest descent method, the coeffiecients are
iterated in the negative direction of the gradient of ther error surface [6.6], [6.9]. The gradient is given
by

VEIE(n) =~2 [P -R A]
And the adaptation rule for coeflicient vector A (n) is given by
An +1)=A(n)+2u[P-R A(n)) (6.5)
where p is the scalar proportionality constant that regulates the iteration siep size. Repetitive applica-
tion of Eqn.(6.5) using an initial value A (0) results in a coefficient error vector V(n) given by
Vin)=A(n)—-A"
V(n)=[1-21R]" V(0) (6.6)

The coeflicicnt vector A(n) obtained by succesive iterations converges to optimum value A‘

provided the term in the square bracket converges to zero, and for a positive definite R , the conver-

gence is guaranteed if,
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1
O<pu<gc—— 6.7)
Amax

where, A_ . is the maximum cigenvalue of R .
The gradient algorithm of Widrow [6.6] is obtained by replacing the average values by their
corresponding instantaneous values in Eqn.(6.5) and the LMS adaptive algorithm is given by

A +1)=AM)+2n[x(n)-X(n)]1 X(n) (6.8)
An+1D)=AM)+2unem)X(n)

63 The LMS-Lattice Adaptive Algorithm

The basic lattice structure is shown in Fig.6.1(b). Here also, x (n) stands for the sum of the sig-
nals s (n) and noise N(n) . f (n) and b (n) arc the forward and backward crrors at stage m . The lattice
relations are

foln) =byln) = x(n)
fm)=fp_0)+K, (0D, _,(n-1)
b,(n)=»b, _n)+K,(n)f,_,(n)
IK,(n)l <1, 1<m<M 6.9)
where M is the order of the filicr and K, (n) is the reflection coeflicient.

For the lattice algorithm, the gradient is evaluated by differentialing the average of the forward

and backward square errors with respect to the reflection coeflicient X, (n) [6.14 - 6.15].

If

s U om@) + 65,0

2

E

then

ok, (n)

=fm_(m)b, )+ b, _(n—1)f (n)

Hence the rule for adpating the reflection coefficients K, (n) is

LMS

K,(n+1)=K,(n)-p, (n +1) (6.10a)

3K, (n)
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p.m(n+l)=-——B— , 0<B<1 (6.10b)
ME,_,(n)
E (n)=vYE,(n - D) +[f> () +b°,(n -], 0<y<1 (6.10c)

where v is called the forgetting factor. The smaller the value of 7y, faster will be the adaptation. In
Eqn.(6.10b), ., (n) is the step size adaptation E,_ (n) is the power of the signal plus noise at stage m

and at time n.

6.4 The LMF-Lattice Adaptive Algorithm

For the LMF-lattice algorithm, the gradient is derived by LMF algorithm. That is the gradient is
obtained by differentiating the average of the forward and backward fourth power errors with respect

to the reflection coeflicient K, (n) . If

4 4
Jr_ 60 ®)+ G, 0)

2

then

ol 3 2 2 2

=21K* (1) (A2 -2BY) + 6 B> K, (n) + B A 3K, (n) + )]

K, (n)

where
A=f _(n-1)+b> _(n=1)

and

B=f,_(n)b,_(n-1)

Hence the rule for adapting the reflecting coefficients K, (n) is

LMS
K,(n+1)=K, (n)-p,(n +1) (6.11a)
oK, (n)
where
R,(n+1)= B , 0<p<1 (6.11b)

6 ME, _,(n)Ey(n +1)
E (n)=YE,(n-1)+[f* (n)+b° (n -1)]
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and

Ey(n)=YEy(n-1) + N(n) , 0<y< 1 (6.11¢)

In the expression for i, (n + 1) in Eqn.(6.11b), E_(n) is same as in the casc of LMS gradient
lattice. But the term E_(n + 1) docs not exist for LMS-lattice. Ey (n) is the noisc power and is
independent of m , the order of the stage of the lattice. This is due to tha fact that the lattice filter

models only the correlated data.

6.5 Simulation Results

The simulated EEG signal whose paramecters ar¢ shown in Table 6.1 is considcred here, The
EEG signal is filtcred by a 4th order Butterworth lowpass filter (infinite impulse response ) having a
cutoff frequency of 35 Hz. to remove the noisc above the EEG frequency band. ( The signal simulated
with a sampling frequency of 200 Hz. is filicred by a 4th order Butterworth filter and this filtered sig-
nal is down sampled to 100 Hz. This is due to thc fact that the 4th order Butterworth filter for data
sampled at 200 Hz. provides better attenuation in the stopband than for the data sampled at 100 Hz. )
Poisson noise is added to this EEG signal and simulations arc carricd out at SNRs of 33.60 dB and

21.40dB.

The spectra estimated by the different adaptive methods in comparison to Burg’s Block data
method are shown in Fig. 6.2 and the frequency estimated in the case of different SNRs are tabulated
in Table 6.2. The accuracy of the peak frequency estimation by all algorithms is approximately the
same. However, the peak picking algorithm could not estimate the frequency of the B activity peak
properly at SNR of 33.60 dB whereas it does estimate it at SNR of 21.40 dB. This may bc duc to the

critical formation of the P activity peak and variance of the LMF-TDL spectral estimator.

A real EEG signal is considered. In this case, the signal and its associated noisc arc together
considered as signal since it is not possible to identify the signal and noisc seperatcly. The SNR is
quite high, as the signal is subjected to a first order lowpass filter to remove the high frequncy noisc

while recording. To this signal a Poisson noise is added to get a SNR of 31.20dB.
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The accuracy of the peak frequency estimation by all adaptive algorithms is almost the same as
that for simulated EEG ( Table 6.3, signal-1 ). The LMF-lattice provides a slightly better accuracy

than the LMS adaptation considering Burg's frequency estimation as the reference.

In order to ascertain the general applicability of different adaptive algorithms , they have been
applied to six rcal EEG signals obtained from the Montreal Neurological Institute. These signals are
numbered from 2 to 7 for the purpose of nomenclature. The spectra estimated by the adaptive algo-
rithms for these signals are identified in terms of the estimated peak frequencies in each case which
are listed in Table-6.3. As expected, the results obtained for these signals are almost similar to those
for signal-1. That is, the spectral fit to the BBD spectrum obtained by LMF adaptation is superior to
that obtained by LMS adaptation and the LMF-TDL in this respect scores over the LMF-lattice.
Further, the accuracy of the peak frequency estimation is approximately the same for all the adaptive
algorithms.

Generally, the real EEG signals will be subjected to additional lowpass filtering prior to analog
to digital conversion and this will further enhance the signal to noise ratio. But the signals considered

here have not been subjected to such a filtering.

In all the examples ( simulated EEG and real EEG ) , the spectra corresponding to the 200th

sample arc considcred and convergence is reached much prior to this instant,
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Table 6.1 Parameters of EIEG registration.

Activity o, (Hz.) fi (Hz.) G, (lz.)
a 0.58 + 0.03 10.25 + 0.03 63 + 11
A 1.36 4+ 0.10 1890 +0.10 4409
6 1.27 + 0.07 0.0 33 + 6.0

Table 6.2 Frequency estimated by Burg’s method and different adaptive algo-
rithins for simulated EEG signal.

SNR (dB)  Freq. (1z.) Freq. (Hz.) Freq. (lz.)
(Burg’s method) (LMS-TDL method)

10.25 10.44 10.25

33.60
18.90 2042 21.57
10.25 10.46 10.27

21.10
18.9 20.21 21.48
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Table 6.3 Frequency estimated by Burg's method and different adaptive
algorithms for real EEG signals.

Signal No. SNR (dB) Freq. (Hz.) Freq. (Hz.)
(Burg’s method) (LMS-TDIL method)

9.67 11.03

1 31.20
19.34 21.31
10.64 10.49

2 30.95
19.92 21.38
10.35 10.55

3 30.98
21.09 21.48
32.36 20.21

4 31.30
13.12 3145
3.81 3.61

) 31.14
- 16.31
11.47 10.93

6 32.00
21.19 22.07
10.93 10.74

7 30.77

20.81 21.68
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6.6 Conclusions

Simulation results indicate that the LMF-TDL performs better than the LMF-lattice for EEG sig-
nals. In this work, a LMF-lattice algorithm has been implemented. The results indicate that the LMF
adaptation performs betier than the LMS adaptation in all cases. Further, for EEG signals, the LMF-
TDL provides a better spectral fit to Burg’s block data spectrum than the LMF-lattice. The d:2rease
in spectral crror measure, obtained by LMF-TDL for simulated and real EEG, is 3.29 and 3.0 dB
respectively.

In all cases, the performance of adaptive algorithms as expected arc found to be inferior to
Burg's Block data method, since the sequential gradient adaptive algorithms cannnot approach the
block data performance due to gradient noise. However, because of the advantages of sequential

adaptive algorithms mentioned, they are well suited for processing nonstationary signals.
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CHAPTER 7

BISPECTRUM ESTIMATION

7.1 Introduction

The power spectrum of a random process does not provide a complete descripticn unless it is

Gaussian or is generated in a linear fashion. The reasons arc:

(1) The power spectrum is the Fourier Transform of the autocovariance scquence. For a zcro
mean Gaussian process, the autocovariance sequence contains all the required information. For non-

Gaussian processes however, one can obtain some more information from higher order moments.

(2) In many cases of practical interest, due to nonlincar effects there are interactions among vari-
ous harmonic components of a process giving rise to new components at other frequencics. These
interactions involve the phase relationship among the harmonic components. Since the power spec-

trum does not reveal such phase relations, it does not provide information atout nonlincaritics.

Higher order spectra defined in terms of the higher order moments cr in terms of higher order
cumulants of a process serve as useful tools in investigating non-Gaussianness and nonlincaritics. In
particular, the bispectrum which is defined as the Fourier tru. sform of the third moment scquence pro-

vides information about
1) Deviations from normality (Gaussian assumptions) :

The bispectrum of a zero mean Gaussian process is identically zero. Thus a non-zero bispectrum

indicates that the process being dealt with is non-Gaussian.
2) Second order (quadratic) nonlincarity :

The output of a quadratic systcm contains power contributions at frequencics that arc sums and
differences of pairs of input frequencics. This phenomenon which is referred to as quadratic phasc

coupling can be detected by means of the bispectrum.

3) The phase of the signal in noise :
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Unlike the power spectrum, the bispectrum retains some phase information which can be
recorded from it.

Bispectral analysis has been applicd in various ficlds to obtain the kind of information men-
tioned above. Hassclmann [7.1] has presented an application of bispectral analysis to an oceano-
graphic problem. A number of interesting phenomena such as surf beats, wave breaking and energy
transfer between components can be explained only by nonlinearity of wave motion. An important
part of the analysis of fluctuations in nonlinear media is to discriminate between nonlinearly coupled
waves and spontancously excited waves and to measure the extent of nonlinear coupling. Kim and
Powers [7.2] show successful application of bicoherence (a normalized bispectrum) measurement to
plasma density fluctuation data to achicve such discrimination. Godfrey [7.3] uses bispectrum meas-
urcments on cconomic time scries. Other applications of bispectral analysis include those of Hinich
and Clay [7.4] 1o geophysical data, Huber et.al. [7.5] to EEG data and Lii et. al. to fluid mechanics
[7.6]. Bispectrum estimation has also been applied for scismic deconvolution by Lii and Rosenblatt
[7.7], and Matsuoka and Ulrych [7.8). In all these cascs, the bispectrum was estimated by using DFTS

of data records.

Paramctric methods based on the autoregressive model for bispectrum estimation have also been

developed. Specifically, the parametric methods for power spectrum estimation are useful because:

(a) In terms of resolution, parametric methods perform better than conventional methods. The

latter are bound by resolution limits imposed by certain properties of the Fourier transform.

(b) The process under consideration may indeed be parametric. Ignoring this aspect amounts to

discarding uscful information and the consequence will be estimates of poor spectral fidelity.

Spectrum  estimation mcthods based on autoregressive (AR) and autoregressive moving
averagc(ARMA) models of time series have been found to be suitable for use in such situations. Thus
it is rcasonable to expect that in such cascs, parametric bispectrum estimation methods based on such

models would provide better resolution and bispectral fidelity than conventional methods.




-111-

7.2 Bispectrum Estimation - a review

7.2.1 Introduction

The bispectrum is a special type of spectrum belonging to the general class of higher order
cumulant spectra. Section 2 provides an account of cumulants and higher order spectra. In section 3,
the bispectrum of a third order, stationary random process is defined and its properties are listed. The
principal bispectrum estimation methods that are to be found in literature are described in scction 4.

Section 5 presents the most important uses of the bispectrum in signal processing.

7.2.2 Cumulants and Higher order spectra

Given a set of random variables Y, Y, ......... , ¥y , their joint cumulant is defined as

joint moments of the random variables. For example [7.1],

ky=m
Kygy = Mgy = m my —myamy —mosm, + 2m moms,

and so on.

The cumulant has the following important properties [7.1],[7.2],

(i) Forn23,k, , =0ifthe random variablcs are Gaussian

(ii) If the random variables can be divided into two statistically independent scts then again
k, =0

For a stationary random process x (k) , the nth order cumulant function is defined as

clxk)xk+T))yx b +7,_ ) = €, (T) e, Toy) (7.3)
The nth order cumulant spectrum is defined as the nth order Fouricr Transform of the cumulant



-112-

function i.c.

C@,....0.)= % - ¥ c,....0I,)epl=jol+..+a,l)] (7.4)

l,:—dh l. =-00

where C (@, .......,) is the nth order cumulant spectrum. The above is called the (n-1" order
polyspectrum [7.1].

Higher order spectra are defined in termr of cumulants rather than moments because higher
order ergodicity requirements are more easily met by the former. Also since moments of order greater
than two do not provide any additional information for Gaussiuan processes, it is better 10 have a
funciion ¢hat shows this fact explicitly. The cumulant function does so since third and higher order

cumulants arc zero for a normal process.

7.2.3 Bispectrum : Definition and Properties

A zcro mean stationary process x (1) has the spectral representation [7.3]
R
jak

x(n) = — J ™ dz(h) (7.5)

2r _,

where E[z(M)) =0
The process z (A) is one of orthogonal increments i.e.
Eldz(\) dz 01 =0, for A=A, #0 (7.6)
In the casc of a Gaussian process this property amounts to independence of these increments.
For a skewed distribution when a Fourier-Stieltjes representation of its third moment sequence exists

it can further be shown that

Eldz(A)dz(A)dz (A1 =0 for A+ A=A, 20 (1.7)
Defining
dG (A, Ay) = Eldz (M) dz(A) d z(Ay + 1)) (7.8)
We have using Eqn.(7.5) and Eqn.(7.8),
n
1
R(m ,n)= [ | epl=jomd +n0)1dGQ, 10 1.9)

(27[)2 -n-n



-113-
where R (m , n) is the third moment sequence.

The function G (A, , A,) is the complex valued bispectral distribution. The bispectral density when it

exists is defined as

9 G (@, o,
B(w,,0)=—— (7.10)
o, dw,

Alternatively, the bispectral density can be defined a. the Fourier Transform of the third moment

sequence. If R(m , n) denotes the third moment sequence then

B(@,,w))= Y 3 R(m,n)expl-j(om + w,n)] a.1yn

m==—oopf = —00

Absolute summability of the third moment sequence R(m ,n) is a sufficicnt condition for the
existence of the bispectrum. Since the third order moment and cumulant arc identical the bispectrum

is a third order cumulant spectrum or a second order polyspectrum.

The bispectrum of a real process is in gencral complex and satisfics the following symmetrics:
B®,,0) = B(®,,0,)= B (~00,,~0,) = B(~0,~0, , 0,) = B(®, ,~0,~®;)  (1.12)
Also from the definition in Eqn.(7.11) it is scen that B (@, , ®,) is periodic in @, and », with a
period 2r. Thus knowing the bispectrum on the triangle bounded by the lincs 0, =0, 0, = @, and

o, + W, = 7, we can determing it’s valuc over the entire (w; — ,) planc

7.2.4 Bispectrum estimation procedures

The problem met with in practice is onc of estimating the bispectrum of a process when a finitc
rcalization is given. Rosenblatt and Van Ness [7.4] discuss the situation where a continuous time
record x, , 0St<N is avaliable. They consider estimation of the weighted and unweighted bispectral
density based on third moment estimates. An estimate (1, , T,) of the third moment function of the
process can be made as

r(’r,,‘tz)=-1—j‘x,x,”lx,”zdt (1.13)

D
where  none of Itl, I, 1 and IT, = 1,1 is grecater than N  and
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D =[~-min{0,1, 7, ], N-max[0,7) T,]].

Defining
NN

- 1
gy (0.0,) = - I ,[ exp [—j(0,1,+0,1,)] F(1,,1,) d1,d T, (7.149)
@Qn)" N
the weighted bispectrum is estimated as

En(0),0;) = J I Wy (—0,.1-0,) §N(“1'F‘2) dwdi, (7.15)

~—00 =00

where 0K, , 1) is a sequence of weight functions chosen such that the bispectrum estimate in
Eqn.(7.15) is consistent. The paper addresses key issucs such as existence of consistent estimates of
the third moment function and the bispectrum. However the proposed mecthod is not applied to any
cxperimental or synthetic data. In other papers, Brillinger and Rosenblatt [7.5], [7.6] deal with the
computation of higher order spectra in the case of discrete processes. In most cases of bispectrum
mcasurcments rcported in literature the estimation is done by methods similar to the periodogram
approach of power spectrum estimation. These methods are described in what follows. The review of
the methods presented here is drawn {rom the paper by Huber et al. [7.3]. There are three approaches

to the estimation problem. These are:
(i) Averaging in the frequency domain
(ii) Averaging over successive records
(iii) Complex demodulation and averaging in the time domain

A detailed description of these approaches follws:

Wy
Assume that the bispectrum is to be estimated for frequencies between 0 and — with a spacing
2
@
of A, between them. It is assumed that all frequencies above — are removed by prefiltering. Suppose
2

that there are K records cach of length N where N is a power of 2 and a multiple of M = 2L + 1, an
odd integer. The total number of data points is N,,, = KN. The bispectrum has to be estimated only

over the triangular region mentioned ecarlier.,
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The first three steps below are common to all approaches. The records arc numbered

1) Subtract the average and remove a linear trend if necessary.

=1,2,.... » K. Foreach of them the following operations are performed:

2) Window the record and add zeros if necessary to make N a power of 2. Number the opera-

tions fromOto N-lasxy x; ... Xy_, .

3) Perform a fast Fouricr transform yielding

N-1
] i
Y,=—3%x e 0<g<Nn

1=0

4) Estimate the bispectral density b(®, , ©,) at

®, @,
(0, 0)=(@qy—Hq,)
122 IN 2 N

for the three approaches as follows:
(i) Averaging in the frequency domain
Average triple products of Yq over

(a) a quadratic window:

L L
A 2 L]
bj(ml'm2)A0 = Z Z Yq|+k, yq,o-k2 Y q,+q,+k +k,

k,=-L k=L
or
(b) a hexagonal window
2 .
I;j(wl'mz)A: = mzyq,+k, Yoo ¥ qeqekn,

lk, | SL, lkyl SL, bk +kyt <L
Form the final estimate by averaging over the X picces:

K
- 1 .
B, 0)=— % (0,0,
K;:l

(ii) Averaging over records

j=l..K

(7.16)

(7.17a)

(7.17b)

(7.18)
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Take L = 0 in Eqn.(7.17) with a corresponding increase of X so that N, remains the same.

Form the final estimate as in Eqn.(7.18).

(iii) Complex demodulation

(a) Put
Y,(@)=Y,,, for k| <L (7.19a)
Y, (@)=0 otherwise
ACIED AN for lk1<2L (7.19b)
Y, (g)=0 otherwise

In other words, a narrow bandpass filter is applied and the frequencies are shifted to zero.

(b) Transform back into the time domain i.e. obtain

2njsk

Z(q)=X Y, (q)exp( ) (7.20a)

k

Z (@)=Y, (q)exp(
k

n
2njsk

) (7.20b)
n

(c) Average triple products of the complex demodulates so obtained in the time domain

-1
. 1" .
b; ©.0)A = =37, (1) Z, @) Z, (3, +42) (7.21a)
n:=0
or
. 2 4 M2 ll:l .
bi(0,0)8 = ———— — ¥Z, @D Z, @) Z, (q, + 99 (7.21b)
IM+1 n =0

Finally, average over records as in Eqn.(7.18). The above procedures bear a great resemblance to con-
ventional methods of power spectrum estimation and so are referred to as conventional bispectrum

cstimators. It can be shown that conventional estimators are unbiased and consistent [7.3].

7.2.5 Use of Bispectrum in Signal Processing

As mentioned in the previous scction, the third order cumulant (which happens to be the third
order moment too) is identically zero for a zero mean Gaussian process. Consequently it’s bispectrum

is also zcro for all frequency pairs. A nonzero bispectrum thus indicates a deviation of the process
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from normality.

Another important use of the bispectrum is in the detection of quadratic phase coupling. There
arise situations where becuase of the interaction between two harmonic components of a process,
there is contribution to the power at a frequency which is equal to the sum of or the difference
between the interacting frequencies. Such a phenomenon could occur due to second order nonlincari-
ties and is referred to as quadratic phase coupling. A common cxample is amplitude modulation where
because of interaction between the modulating and carrier frequencics, there is contribution to power
at their sum and difference frequencies. Any three frequencies are said to be at harmonically relatcd
positions if one of them is the sum of the other two. A special case is when we have two components
with one being at twice the frequency of the other. Thus quadratic phasc coupling can arisc only
among harmonically related frequency components of a process. In certain applications, it is ncccs-
sary to find out if harmonically rclated peaks in the power spectrumn are in fact phase coupled. The
power spectrum suppresses all phase phase relations among the frequency components and so can not

provide the answer.
Let us consider an cxample to illustrate this use of the bispectrum.

Consider the process.....

3
X,(n)=Y, cos(A, n +9¢,) (7.22)
i=1

where A; =4, +A;. ¢, ¢, are independent and uniformly distributed on { 0,2r} and ¢, = ¢, + ¢,.
Thus the power at A, is solcly duc to quadratic phasc coupling between A, and A, . The power spec-
trum has inipulses at A, , A, and A, The third moment sequence of X (n) is

R, (k,1)=0.25[cos(Ak + A1) + cos(Ak — A, L) + cos(hk + A,0)

+CoS(A4k —A,0) + cos(A k — Ayl) + cos(Ak — A4l)] (7.23)
Thus the bispectrum magnitude evaluated over the triangle mentioned in section 3 has an impulse at

(A, M) . This impulse indicates coupling between the components at the frequencies A, and A, .

Now consider the process

3
X,(n)= Y cos(yn +9;) (7.24)

1=1
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which is the same as X (r) in all respects but one, namely that the phases ¢, , ¢, and ¢, in this case
are all independent and uniformly distributed on (0, 2%) . Since ¢4 is statistically independent of ¢,
and ¢, , the contribution to the power at A, is from an independent harmonic component. This then is a
case where there is no quadratic phase coupling. The power spectrum of X,(n) is the same as that of
X ,(n) and has impulses at the harmonically related frequencies A, , A, and A, . The third moment
sequence of this process, R, (k, {) is zero everywhere and hence the bispectrum is identically zero. A
vanishing bispectrum is an indicator of nonexistence of phase coupling. This shows that since the
power spectrum is identical in both the coupled and uncoupled cases, it does not help in the detection
of quadratic phase coupling. On the other hand the bispectrum is well suited for this purpose. For a
process where some of the components are quadratically coupled but others are not, only the coupled

components contribute to it’s third moment sequence.

Onc of the earliest examples of the application of the bispectrum for detection of quadratic
phasec coupling was to an Ocecanographic problem. Hasselmann et al [7.7] investigated the
phenomenon of peaking of shallow water wave crests. Bispectral measurements of fluctuating water
depth showed that phase coupling of a dominant spectral component with itself and with other com-
ponents caused the peaking. The measured bispectral values concurred with theoretical predictions.
The approach involved narrow band pass filtering. Godfrey [7.8] shows application of bispectral
analysis to two time serics; onc being the transaction prices on the New York stock exchange for a
company for a particular month and the other a serics of monthly observations of one of the monetary
variables of the U.S. Federal Reserve System. The purpose of the analysis or: the first series was to see
if a log-lincar model was better suited to the observations than a simple linear model and in the
sccond series it was to test the adequacy of a lincar model. Here complex demodulates were used for
obtaining estimates of the bispectrum. Brillinger and Rosenblatt [7.6] show applications of the bispec-
trum and trispectrum ( the fourth order cumulant spectrum ) to sunspot numbers. Kim and Powers
[7.9] have applicd bispectrum estimation to the study of plasma fluctuation associated with the evolu-
tion of drift-wave turbulence. The purpose of the study was to detect presence of nonlincar wave-

wave interaction. The bispectrum measurements were made by segmenting the experimental data into
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records and then forming average triple products of the Fast Fourier Transforms cf the (windowed)
records. The measurements were made in both frequency and wave number domains. The results
showed that in the multimode regime of the experiment there were significant wave-wave intcractions
while in the turbulent phase, wave-wave interaction was negligible. An application to fluid mechanics
is given by Lii et al [7.10]. Bispectral analysis was carried out on the velocity derivative of turbulent
atmosphere data collected by hot wirc anemometer measurements. The method adopted for bispec-
trum estimation involved averaging in the frequency domain. The measurcments suggested that con-
tributions of wave- number triplets to spectral transfer and the ratc of vorticity production were non-
local in wavenumber space and comparable over a wide range of wavenumbers. Huber ct al [7.3]
obtained spectral measurements of EEG signals and found interaction between the alpha rhythm and
it’s higher harmonics. Some other papers that deal with phase coupling applications and computation
of bispectra are those of Haubrich [7.11], Hinich and Clay [7.12], McComas and Briscoe [7.13}, Zadro

and Caputo [7.14], and Korein et al [7.15].

The fact that the third moment sequence retains phase information unlike the autocorrelation
also makes the bispectrum useful in distinguishing between minimum phase and non-minimum phasc

sequences. Consider for example the processes

Y(n)=W(n)—(a+b) W(in-1)+abW(n-2) (71.25)
and
Y (n)=aW(n)-(1+ab)W(n-1)+bW(n-2) (7.26)
where 0<a <1, O0<b<l, and W (n) s are i.id with E[{W (n)]=0, E[Wz(n)]=l and
E[(W (n)=1
Then
Y, (2) 0 a
H, @)= =(l-az )(1-bz ") (7.27)
W (z)
¥, () -1 -1
H,(z)= =@@-z )(-bz) (7.28)
W (2)

H (z ) is minimum phase since all it’s zeros arc inside the unit circle while H,(z ) has a zcro al l/a

which is outside the unit circle. Y,(n ) and Y,( n ) have the same power spectra but their bispectra arc
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different. When we are given samples of either of these processes, it is impossible with spectral meas-
urements to distinguish between the minimum phase sequence from the non-minimum phase
scquence. Bispectral measurements provide a way of making correct identification. This has important

implications for seismic deconvolution.

A seismic reflection signal is commonly modelled as [7.16]

M
Y=Y w, 1 _. (7.29)
m=0
where w = (wy, w, ... w),, ) is the seismic wavelet due to a surface disturbance and r, s are the

reflection cocflicients of the various layers of the earth. Usually only measurements of Y, are avali-
able and it is required to find r,. Thus we have a deconvolution problem. The 7, are assumed to form
a white sequence. Since even the w,, 5 arc unknown, a common restriction imposed on the wavelet is
that it be minimum phase. But actual results indicate it is not necessarily so. By making bispectral
macsurcments on Y, , the true phase of the seismic wavelet can be estimated (upto a linear phase fac-
tor) from the bispectral phase. Algorithms for this purpose have been developed by Brillinger [7.17],
Li and Roscnblatt [7.18], and Matsuoka and Ulrych [7.16]. Some of the theory behind this type of
application was developed by Rosenblatt [7.19]. Huzii [7.20] dicusses similar application of higher
order moments in discriminating between poles of an AR filter that are inside the unit circle and those
that arc outside of it.

Lohmann and Wimitzer [7.21] in an intcresting paper describe applications of third moments
and the bispectrum to the study of laser pulse shapes, sound quality, mobility of bacteria etc.. How-
cver analog methods were used in all these cases. Sato and Sasaki [7.22] discuss application of the

bispectrum to holography.

7.3 Bispectrum Estimation based on Parametric Model

7.3.1 Introduction
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For processes that are of parametric nature, using bispectrum estimation methods based on
parametric models may provide estimates of higher fidelity. Another reason concems the use of
bispectrum estimation for detecting quadratic phase coupling among sinusoidal signals. In certain
situations it may be necessary to resolve two closely spaced peaks in the bispectrum magnitude or
detect presence or absence of phase coupling at frequency pairs that are very close to onc another It
is well known in power spectrum cstimation that parametric techniques based on AR and ARMA
models [7.23] possess higher resolution capabilitics. This property has been used in the bispectrum

domain as well by Raghuveer and Nikias [7.24].

7.3.2 AR Model for Bispectrum Estimation

From the definition of the bispectrum in the previous section, it follows that a parametric bispec-
trum estimation method should involve a model for the third moment sequence of a process. In this
model proposed by Raghuveer and Nikias [7.24], only real discrete processes have been considered.
The third moment sequence R (m, n) of a process has the following symmetrics

R(m,n)=R(n,m)=R(-m,n—-m)=R(m—-n,-n) (7.30)
Thus the knowledge of R ( m, n) over the infinite wedge bounded by the lines n =0 and m = n for
m ,n20 suffices for a complete description of it (Fig.7.1). Also as mentioned in the previous section,
for a real discrete process, it is enough to evaluate the bispectrum over the region w,20 , 0,20, and

0, + 0, <t (Fig.7.2).

Consider the p-th order AR process X (n) given by

P
X(n)+ 3 aX(n-i)=W(n) (7.31)

where W(n) s are i.i.d. with E[W (n)] =0, E[Wa(n)] =B #0 and X(m) is independent of W{n) for

m < n. Nnte that W{n) is non - Gaussian.

Since W (n) is third order stationary, it follows that X (n) is also third order stationary assuming
it is a stable AR model. For the above modec! we have

p
R(=k,-1)+ 3 a R(i—k,i-1)=Bdk,1); k, 120 (7.32)
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which is the same as X |(n) in all respects but one, namely that the phases ¢, , ¢, and ¢, in this case
are all independent and uniformly distributed on (0, 2r) . Since ¢, is statistically independent of ¢,
and ¢, , the contribution to the power at A4 is from an independent harmonic component. This then is a
case where there is no quadratic phase coupling. The power spectrum of X,(n) is the same as that of
X,(n) and has impulses at the harmonically related frequencies A, , A, and A, . The third moment
sequence of this process, R, (k, 1) is zero everywhere and hence the bispectrum is identically zero. A
vanishing bispecirum is an indicator of nonexistence of phase coupling. This shows that since the
power spectrum is identical in both the coupled and uncoupled cases, it does not help in the detection
of quadratic phase coupling. On the other hand the bispectrum is well suited for this purpose. For a
process where some of the components are quadratically coupled but others are not, only the coupled

componcnts contributc to it's third moment sequence.

Onc of the carlicst examples of the application of the bispectrum for detcction of quadratic
phasc coupling was to an Oceanographic problem. Hasselmann et al [7.7] investigated the
piicnomenon of peaking of shallow water wave crests. Bispectral measurements of fluctuating water
depth showed that phasc coupling of a dominant spectral component with itself and with other com-
ponents caused the peaking. The measured bispectral values concurred with theoretical predictions.
The approach involved narrow band pass filiering. Godfrey {7.8] shows application of bispectral
analysis to two time scrics; one being the transaction prices on the New York stock exchange for a
company for a particular month and the other a scrics of monthly observations of one of the monetary
variables of the U.S. Federal Reserve System. The purpose of the analysis on the first serics was to sec
il a log-lincar model was better suited to the observations than a simple lincar model and in the
sccond series it was to test the adequacy of a lincar model. Here complex demodulates were used for
obtaining estimates of the bispectrum. Brillinger and Rosenblatt {7.6] show applications of the bispec-
trum and trispectrum ( the fourth order cumulant spectrum ) to sunspot numbers. Kim and Powers
[7.9] have applied bispectrum estimation to the study of plasma fluctuation associated with the evolu-
tion of drift-wave wrbulence. The purpose of the study was to detect presence of nonlinear wave-

wive interaction. The bispectrum measurements were made by segmenting the experimental data into
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where R (m, n) is the third moment sequence of the AR process and 8(k, /) is the 2-d unit impulsc.
From Eqn.(32), which has been refered to as the third order recursion [7.24], it follows that 2p + 1

third moment values on the m = n line satisfy the matrix equation

Ra=b (7.33)
where
~ R(0,0) R(1,1) Rpp)
R(-1-1) R(0,0) w  R@-1p-=1)
R =
Reprp) REp+1—p+1) .. R(0,0)
T
a=[la; ..... a,l
b=BO0 o

The matrix R is Toeplitz but in general is not symmetric. An essential condition for the
representation in Eqn.(7.33) to exist for a causal X (n) is that the polynomial

p .
A@)=1+Y a2 (7.34)
i=]

has all its roots inside the unit circle or egivalently to the condition that the AR filter transfer function

1

A(2)
is stable. It is well known that a sufficient condition for the stability of H(z) is that R in addition to

H(z) = (7.35)
being Toeplitz is also symmetric and positive definite [7.25). However, this is not a necessary condi-
tion. Thus, for all those processcs whose third moments satisfy the sufficient condition above, stable

AR representations of order p can be derived based on knowledge of the 2p + 1 moments

R(=p,-p), ... R(,p).
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Another representation is possible by letting & and / of Eqn.(7.32) run on portions of the triangle

inFig.7.1. The p + 1 equations corresponding to this representation are

P
R(—k,=-1)+ X a,.R(i—k.i—l)=B5(k,l) (7.36)

i=1

where
k=0,.... oL,
and
=0, ... Wk fork <L,

and

where L, and L, are chosen such that L, < L, and

L=, +2)

p=1+L,+
2 2

The matrix corresponding to the equations in Eqn.(7.36) does not posses the Toeplitz structure
of R in Eqn.(7.33).
The bispectrum of the AR process X (n) in Eqn.(7.31) is given by [7.24],
B(w, 0)=BH@)H@)H (0, +0;) lojl, o, st (7.37)
where B(wl. ®,) is the bispectrum of X(n) and H(w) is H(z) of Eqn.(7.35) evaluated at

z = exp(+j ). Itis casily verified that B(w, ®,) satisfics the properties described by Eqn.(7.31).

Given 2p + 1 sampiles of the true third moment sequence of a process, one at the origin and the
rest at p points on cither side of it on the m = n line in Fig.7.1, Eqn.(7.33) can be used to fit a p-th
order AR model. Fast algorithms that make use of the Toeplitz structure exist for solving this equa-
tion [7.26]. Morc than 2p + 1 samples are required to fit such a model using Eqn.(7.36). If the sam-
ples arc from the third moments of a truc p-th order process satisfying all the model assumptions then,
the parameters g ....... 1@, in both cases are the same. Otherwisc the two solutions may be different.
Eqns.(7.33),(7.36) and (7.37) form the basis for the parametric bispectrum estimation method pro-

posed in [7.24].
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Suppose R(-p,-p),R(1-p, 1-p),.....R(0, 0),.....R(p. p) denote 2p + 1 samples of the third
moment sequence of a process. Let G(mm ,n) be the third moment sequence of the output of a p-th
order AR process driven by a Non Gaussian White Noisc (NGWN) whose third moment is . 1If we
insist that 2p + 1 values of the third moment sequence namely G(-p,—p) through G (p, p) match
exactly the third moment sequence of the given process at corresponding lags i.c.

Ck,k)=Rk k), k=-p,1-p...0..,p-1,p (7.38)
then the third order recursion in Eqn.(7.33) follows as a nccessary condition. It is in this sense that AR

model is fitted to the third moment sequence.

7.3.3 Third order recursion method for bispectrum estimation

Suppose now that we are given only a finite length of data and it is required to cstimate the
bispectrum of the underlying discrete random process. For this purpose, a parametric method that
involves fitting of an AR model driven by a NGWN has been proposed [7.24]. The method is based on
Eqn.(7.33) and (7.37) where estimated third moments arc substituted in place of true moments which

are not known. Let [X |, X, ..., Xy _ x 5] be the given data sct. Then:
(i) Form the biased third moment estimates as follows:
(a) Segment the data into K records of M samples cach.

(b) For cach record obtain r(i) (m, n), the biased estimate of the third moment at lags (m, n), as

min(M , M-m _M-n)
r(‘)(m'n)____ Z Xl(‘)x(‘)

I+m

x" iz 1 K (7.39)
! =max(l, 1-m, 1-n)
(c) Average r(i) (m, n) over all records to obtain the overall estimate R (m, n) as
) K
Rm,ny=—%r" (m,n) (7.40)
K .
i=1

(ii) Substitute the estimated moments in place of the true moments in Eqn.(7.33) to obtain

Ra=b (74))
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where
=10 . aP]T
and [o;]);_,  , arctheestimatcs of the AR parameters.
b=(BO o o

and where B is the estimate of the third moment of the driving noise.
Fast algorithms can be used to solve the equations for aand .
(iii) Form the bispectrum estimate by substituting o for a in Eqn.(7.37), i.e.,

B(®, ) =PBH(@)H@) H (0, + 1) (7.42)

or more convenicntly the nomalized estimate

B((o,' ,) .
— = H(®,) H(w,) H (0, +®,) (7.43)

where

H(w) = , lolsn
v

[1+ 3 a; exp(—jwn)]

n=]

B (o, ®,) needs to be cvaluated only at frequency pairs in the triangular region of Fig.7.2. The

flow chart in Fig.7.3 summarizes the proposed parametric bispectrum estimation procedure.
Several comments about the above procedure are in order.

(1) An assumption made in using this procedure is that the process whose samples are given is
third order ergodic. It has been shown in the paper [7.24] that if the process is in fact of type in
£qn.(7.31), then the parametric method provides consistent estimtes of the AR parameters
l[a,) i=1,..p.

(2 ) The matrix K is in general ncither symmetric nor positive definite. Since no orthogonal
vector spaces arc involved, Eqn.(7.31) are not normal equations. In their place "third order recursion

cquations” is the term used.
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Compute Index
of Bicoherence

Fig.7.3 Flowchart of parametric bispectrum estimation method ( Raghuveer and Nikias, 1934 )
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(3 ) Even when the given samples are from a stable AR process satisfying all the assumptions of
the model in Eqn.(7.31), the parameter estimates from the proposed parmetric method do not neces-
sarily provide a stable model. Only asymptotically is stability guaranteced. Since in this method they
are interested in using the AR parameter estimates for bispectrum estimation and not for filtering or
prediction, stability is not a required property. In fact it is desirable in case of a process with a vanish-
ing bispectrum, to have the poles of the fitted AR medel go to infinity asymptotically so that the

bispectrum estimate formed from Eqn.(7.43) tends to zero.

(4) It is not always necessary in step (i) of the estimation procedure to segment the data into
records i.c. we can set K = 1 and M = N. However a single record cannot te used for detecting qua-
dratic phase coupling between pairs of sinusouds. An example has been discussed in literature [7.24]

how having indcpendent records ensures consistent estimates of third moments in such situations.

(5) Instead of using Eqn(7.33), one can use Eqn(7.36) to form the AR parameter estimates. The
corresponding matrix would not have a Toeplitz structure and is not appcaling from analytical and
computational viewpoints. It has been reported in [7.24] that the Toeplitz type exhibits lesser bias and

provides smoother bispectral estimates.

( 6 ) This is only an AR bispectrum cstimation method. Since no entropy considerations are

involved, it is not a maximum entropy bispectrum estimation method [8.27].

( 7) In this mcthod use of biascd third moment estimates is proposed. No reason is given why

unbiased third moment estimates can not be used.

( 8 ) The conventional methods use FIR filters whose taps are the given samples of the process.
The parametric method uses an IIR filter. Both make use of the same "data” i.e. the third moment
scquence or its estimate of the process. In the case of conventional methods this is done by averaging
triple products of the frequency responses of various FIR filters while in the case of the proposed
paramctric mcthod, estimates of the third moments via average lagged triplc products in the time

domain are uscd to determine the filter parameters.

(9) AR paramcters obtained by second order methods (e.g. the Yule-Walker method) model the

power spectrum of the process and not its bispectrum and therefore can not be used for bispectrum
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estimation.

(10) In this method they do not deal with AR model order selection for bispectrum estimation.
Generally, the appropriate model order will be different from that for AR power spectrum cstimation.
Some of the well known AR model order selection criteria such as the AIC, FPE and Parzen's CAT
[7.28] depend on autocorrelations and hence can not be used. However the AR part of the criteria of

Chow [7.29] and Chan and Woods [7.30) may be adapted to the third order case.

(11 ) In a general context the problem under consideratior can be seen as onc of bispectral
matching. Suppose a process has spectrum P (w) and bispectrum B (®,, ,). Then finding a lincar filter
with treansfer function H () to match the power spectrum amounts to solving

P(®) = |H(@)!? (7.44)
whereas finding a linear filter with tramsfer function T(w) to match the bispectrum is cquivalent to

solving
B(0;, 0,) = T(0,) T(w,) T(-0, - ®y) (7.45)
The solution to Eqn.(7.45) when it exists is gencrally different from that of Eqn.(7.44).

The concept of linear models for bispectral matching follows from the discussion in scction 111

of [7.24].

7.4 Detection of Quadratic Phase Coupling

7.4.1 Introduction

Consider the process

6
X(n)= 3 cos(A; n +¢;) (7.46)
i=l

where A, > A, > 0,A,>A> 0,0 =A; + Ay, Ag =4, + Ag,and ¢, ¢y, ....... + 0 arc all indcpendent,
uniformly distributed random variables over (0, 2r) and ¢4 = ¢, + ¢. In Eqn.(7.46) while (4, A,, A,)
and (A4, Ag, A) are at harmonically related positions, only the component at A, is a result of phasc

coupling between those at A, and A¢ while the one at A, is an independent harmonic component. The
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power spectrum of the process consists of impulses at A, ; i =1, 2,3, ....., 6. Looking at the spectrum
onc can not say if the harmonically relaied components are in fact involved in quadratic phase cou-
pling relationships. The third moment scquence R(k , {) of X (n) can be easily obtained as
R (k,1)=0.25[cos(Ask +A,0) + cos(Agk — A ) + cos(hk + Al)
+ COS(Agk ~ Agl) + cos(A gk —Agl) + cos(Agk —Agl)] (7.47)
It is important to obscrve that in Eqn.(7.47), only the phase coupled components appear. Conse-
quently, the bispectrum evaluated in the triangular region of Fig.7.2 shows an impulse only at (&,, As)
indicating that only this pair is phase coupled. In the total absence of phase coupling, the third
moment scquence and hence the bispectrum are both zero. Thus the fact that only phase coupled com-
poncnts contribute to the third moment sequence of a process is what makes the bispectrum a useful
tool for detecting quadratic phase coupling and discriminating phase coupled components from those
that arc not. All that is required of the bispectrum estimation technique is that it udequately recovers
this information in the third moment sequence and as long as a linear model does $o, it can be used for
detecting phase coupling. The AR bispectrum estimation method described in [7.24] models accu-

rately the third moment sequence of a process of the type given in Eqn.(7.46).

7.4.2 Quadratic Phase Detection in EEG Signals

In this study quadratic phase coupling was studied by computing the bispectra of EEG's
recorded from the hippocampus of the rat. The data was obtained from the Montreal Neurological

Institute.

The bispectrum which is the Fourier transform of the third order cumulant ( TOC ) sequence is
capable of detecting phasc coupling and the degree of phase coupling can be quantified using the
bicoherence index, i.c. a nomalized bispectrum.

In this study, EEG’s were collected from two different regions of the rat brain namely, the hippo-
campus and the frontal cortex. These EEG's were sampled at 128 Hz. and digitized into 8 second

epochs, and each cpoch was manually scored by cxperts as one of four different sleep stages i.e. rapid
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eye movement sleep ( REM ) sleep, quiet waking ( QW ), slow wave ( SW1) sleep 1 and slow wave (
SW2) sleep 2. During the study, EEG's were collected from five adult rats, and 32 epochs of each

sleep stage were scored for analysis for each animal.

The TOC sequence was first estimated via the equation

Rm.,n)=Y [Xk) Xk + m)X(k + n)]
ke
where K is the region of support of the data, and the bispectrum is approximated by a summation over

a finite region:
a R —j(wm +wpn)
B(w,,w,)= Y, R(m,n)W(n,n)e
(m ,n)kS
where S is the region of support of the estimated R(@m ,n) . In the above cquation W(m ,n)

represents a two dimensional tapering function which is emploved to reduce the variance of the
bispectrum estimate. Also, to save computation time, thc symmetric characterstic of the TOC
sequence was taken into account when computing the bispectrum [7.17], [7.24). To quantify the
degree of quadratic phase coupling, the bicohcrence index [7.24), [7.27) is computed. This index is a

function of the Bispectrum B (w, , ®,) and the power spectrum P (w) and is defined as

B(w,,n,)

bic(w) =
P()) P(0y) P(®, .00,)

If quadratic phase coupling was observed in the bispectrum, the bicoherence index was com-

puted to indicate the significance level.

Our results showed that the bispectra of hippocampal EEG’s during REM sleep cxhibit a
significant phase coupling between frequencics in the 6-8 Hz. range as scen in Fig.7.5. Bispectra of
EEG’s obtained from the frontal cortex during QW, on the other hand, exhibit only a weak phase cou-
pling between frequencies in the 2-3 Hz. range ( Figure 7.7 ). Howver no consistent phase coupling
was observed during SWS. These results show a strong consistent phase coupling only exists for the
hippocampal EEG during REM slcep where the presence of a sharp peak in the bispectrum occurs
between frequencies 6-8 Hz. associated with the theta rythm gencrated in the hippocampal formation.

The significance levels are summarized in Table 7.1.
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7.5 Conclusions

In this chapter various bispectrum methods disussed in literature have been presented. These
mcthods hold promise in terms of detecting quadratic phase coupling information and a study is done
1o detect phase coupling in the cortical and hippocampal EEG of the rat during varoius sleep stages.
For EEG’s recorded from the hippocampus, significant phase coupling was obtained during REM

sleep between the frequency components assocaited with the theta rythm.
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Fig.7.4 Detection of quadrau’c phase coupling in EEG signals using bispectrum. (a) Bispectrum of corti-
EAS
cal EEG during quiet waking , (b) Contour of bispectrum indicates peak at (3 Hz.,3 He)




oz

Fiequency (112.)

Frequency (Hz)
(d)
Fig.74 Derection of quadratic phase coupling in EEG signals using bispectrum.
(c) Bispectrum of hippocampal EEG during REM sleep, (d) Contour of bispec-

trum indicates peak at (7 Hz., 7 Hz.) i.e. in the theta range.
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Table 7.1 Degree of phase coupling of the Hippocampal EEG during REM

sleep.
Rat R321 { R351 | R352 | R354 | R502
peak freq. (Hz.) | (7,7) | (6.6) | (7.7) | (7.7) | (6.3)
1.07 {081 | 0.38 | 1.07 | L.29

deg. coupling
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CHAPTER 8

CONCLUSIONS

The spectral feature extraction of EEG signals by parametric approach is presented in this thesis.
The parametric approach considered mainly involves spectral feature extraction of EEG signals by
pole-zero modeling methods based on a combination of homomorphic filtering and lincar prediction,
sequential adaptive spectral modeling of EEG and spectral feature extraction of EEG when it is asso-

ciated with muscle noise.

The studies on pole-zero spectral modceling of EEG by homomorphic prediction and pole-zero
decomposition methods indicate that the advantages of lincar prediction technique can be exploited
by modeling the mmimum phase cquivalent of the EEG signal obtained by homomorphic filtering.
However, when the EEG signal is directly used for spectral modeling, erroncous spectral estimates are

obtained by the lincar prediction based methods and this is due to incorrect estimation of zeros.

For the same number of parameters, the EEG spectral cstimates obtained by these methods are
found to be much superior to those obtained by all polc modeling method of Burg, with respect to the
width of the spectral peaks and valley regions. The pole-zero decomposition method has been found
to provide a better spectral fit to the logmagnitude spectrum than that obtained by homomorphic pred-
iction, particularly with respect to bandwidth of the spectral peaks. It has been found that for the
methods used, 12 parameters ( 8 poles - 4 zeros for homomorphic prediction and 12 cepstral
coefficients for the pole-zero decomposition method ) are sufficient to get a satisfactory spectral fit o

the logmagnitude spectrum of the EEG.

The estiamtes of zero location by direct pole-zero modeling, for some EEG signals which has
been found to lic outside the unit circle indicate that the EEG in gencral cannot be assumed to be a
minimum phasc signal.

The spectral modeling of EEG considered in the present study is general and application of

these methods to specfic studies like infant maturity developement, cffects of medication and to
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represent different sleep stages are interesting possiblities. Since cepstral coefficient representation of
EEG signals has found to be quite satisfactory and also as cepstral coceficients are known for their
good distance measurce properties, their performance in EEG classification in different cases may be
considered.

The contribution to the sequential adaptive approach involves extension of LMF adaptive algo-
rithm to lattice structure. For the EEG signal, the LMF-TDL is found to be superior in providing
better spectral fit to Burg’s block data spectrum. The LMS-TDL and LMS-lattice both are found to be
inferior to LMF-TDL and LMF-lattice respectively, with respect to providing resolvability and good
spectral fit to Burg's block data spectrum for the same speed of convergence. However, from the
point of view of accuracy of peak frequency estimation, both LMS and LMF adaptations show similar

performance.

These algorithms can be extended to handle nonstaionary EEG signals which are encountered
during transitions of eyes open to eyes closed, change in background activity that occurs prior to an

cpileptic crisis, changes in slecp records eic.

Also, the spectral feature extraction of EEG signals in presence of muscle noise, which is quite
common with EEG recordings and which severcly affects the EEG signal analysis is considered. The
study illustrates the performance of the LMS-TDL and LMS-lattice sequential adaptive predictors in
combination with a 4th order Butterworth lowpass filter, for muscle noise cancellation. The perfor-
mance of these methods is assessed by computing Burg’s spectra for the filtered EEG signals and the
results indicate that for a valid paramectric spectral representation of EEG associated with muscle
noisc, mere lowpass filtering is not sufficient and adaptive filtering is essential to minimize the EEG
inband muscle noisc. The results obtained from the method used in the study are found to be quite

satisfactory from the EEG spectral estimation point of view.
The adaptive algorithm used in the present study for eliminating muscle noise could be used for
cancelling other noiscs like the EOG and the ECG which also effect the EEG spectral estimation.

A parametric bispectrum cstimation scheme proposed by Raghuveer and Nikias [ 7.24] was stu-

dicd. When we are given samples of the true third moment sequence of a process, the method fits an
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AR model in the sense of perfect matching between the output third moment sequence and third
moment samples at given lags. For a finite time sample of the process, the method fits an AR model to
biased third moment estimates obtained by forming averaged, lagged triple products in the time
domain. Quadratic phase coupling was studied for different types of slecp pattems and bipectrum
estimation was used to identify it. The results obtained are encouraging and qualify bispectrum csti-

mation as a means to study sleep stages which are of great clinical importance.





