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/. A NOTE ON NOTATION .
. ’

I .
In what follows we only assumg the reader has some knowiedge of
the notation of classical tensor calculus, We shall use the sign

convention found in Ohanian's Gravitation and Spacetime. ' A1l constants

- '

are.takempe to be 1 unless otherw{se stated.

x° shall always denote coZordinate time t.

Latin indices take values 0, 1, 2, 3.

Greek indices take values 1, 2, 3.
The Einstefn summation convention is used. '
, ; - ”
. The Kronecker Delta will be written as: |
i 1T if i =
6. ..={ Iy - - R
L I T : P
The Minkowski metric of flat four-dimen-space-time is
. >
énoted C . ¥
; 1 0 0 q
> 0 - 0 0
- | | x
J 0 0 -1 0.
- 0

The proped-time interval on flat-space-time is denoted.

>

2 i

= pd
d%a = nij dx dxv '
e (@02 - (aixN)? - (axd)? - ()’
The proper-time interval on curved spacg_time is denofhd
) R B
- ds g1j,dx {dx .

h

- with . 955 > 0 (fime-1ike sign convention).
. g
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. STATIC BLACK HOLE

L I "' Frederic Mayer

T/

We considér one o% the consequences of the General Theory of

* N * y ' 0] >
history of science and its relevance to current research is first

exanined. The motivation for the field equations is considered at
length. The main tests of General Relativity are considered in terms
of one of few exact solutions available; the Schwarzschild solution.
Examining the Schwarzschild solution in standard form we observe a
co-ordinate (reﬁovaﬁ]e).singulérity at re T 2m.  We then show. that

a source of gravitation lying inside radius r =r is enVe]dpe&

. &~

within an event horizon, at r = r_, making communication with the

S

rest of the universe impossible; such a source is called a black hole. .

The possibility of black holes existing is then explored.

{
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-Re]ativity, the static black ‘hole. The position of this theory in the
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INTRODUCTION

‘Our'object in this thesi§ is with A: Einsteiq's General Theory
of ReTativity and one of the consequences of thié theory, the stétic
.black hole. In order to present a coherent account of static black
holes we‘first cgns1der some of the reasons why the General Theory of
) Relativity (of which thé-theoryhof black holes is a part) is an
i&portant branch of scientific research today; this is followed by a
critical look at the trend of thought which led Einstein to his field
v,&equatiqns. This approach will give us insight into the'theoryﬁyithoutm
going into all the details necessary in a logical construction. 'we ‘ ' = ’
"sha]l also mention some of the other standard approaches to thé field S~
equations. we,theﬁ consider the Schwarzschi1d solution (one of thg
_few exact‘;olutions) and this solution 1eads‘us to re-examine some of
the standard tests of this theory, then wé finally embark on our main
topic the spherically-symmetric.black hole and.its signifieance.
1s relativity (the general theory), alpart of mathematics or
physics? There is no‘définitive answer %o this question and in readidé
the 1iteratdre one is startled by the strengths of the opinions advanced
without as it séems firm evidence. What is pérhaps significant is that
here a]qne (and in no other field of mathematical physics) does the '
question arjse. A typical opinion is that of A. Trautman: ‘"Oné of
the many unsolved problems connected with the general theory of

relativity‘is whether the theory belongs to ‘physics or rather to

.
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mathematics. One of my colleagues at this summer school said that those
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' “who woc\/p/the theory af re]attvity do so because of ts mathematica]
heauty rather than because they want to make Predictions which could
. be checked against experfment I think there is some truth in this
st;atem nt, and probably I am no exception to T o
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CHAPTER I

HISTORICAL SURVEY S

, 2
. - o .
1. HISTORICAL BACKGRDUND '

_ Why -does one take up the stydy of General Relativity?” Well, if

one is interested in applied mathematics (the construction of mathematical
kP . .

models as an aid to.undeéstanding and hopefthy to makiﬁg predictions),
General ﬂe]ativity or Geometrodynamics as some peob]e prefer to call-it,
is pgrhaps of all the méthenatiéal models ever creatéd by the human mind,
the most logically complete and sii}sfyingJ In the Tast twenty, years
General Relativity has become an’active and stﬁ]\ growing branch of
matheﬁatics This subject has attractgd to it many people spec1a1{:§d
in various gther field.such as Quantum Mechanics, Group Theory, and of
course Topo1og1sts One cannot foresee this field soon running out of
interesting problems.

: Act1v1ty in General Relativity till late 1950 S was conf1ned to a
sma11 group of phys1c1sts and mathematicians, who were very much out of
.the main streams of e1ther physics or mathematics. These peaple were
mostly interested in either cosmology, constructing modeis of the -
universe, or in fiﬁding field Taws for the electromagnetic field as
pure\y geometr1ca1 restrictions on the structure of space-time, Tike
those of the grav1tat1ona1 f1e1d a unified f1e1d theory. A.S. Eddington
thought that these two problems were intimately related.

. Many people have tried tolsolve the 5?ob1em of fifding a unified

fié1d theory. A. Einstein spent a good deal of time aﬁd effort between

1915 when he diécovered the field equations for this gravitational model

until his deéath in April 1955, working orf the genera]ization‘of his

v
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gravitational model to a unified field theonly‘.1 Usfortun;tely,
Efns\eip's Effor?s'were,néver cohplétely-rewarded. ' |
Nowadays interest in ﬁ.unified field theory °ﬁ\§?é gravitational
~and electromagnetic’ fields seems td have faded, with every 1ittle d
researéh dong on this topic.. C. Misner and J.A. Wheelerrhave expressed
the épiﬁion that the thegry of General Relafivity is an already unified .
field theory, this is based on the combine& field equation55qf Eihstein

‘and Maxwe11.2

Quite clearly a unified field theory should include the gravita- ’

tional field, the electromagnetic field -along with the strong, and weak
’ fields of Qua&tum Mechanics. Recently a highly sucéessfui heory thaf.
uriifies the electromagnetic field to phefiéld§ of Quantum Machanics was
in the news, when it was announced that S.L.gslashow, A. Salam and
S. Weinberg shared the 1979 Nobel Prize 1in physics, for their réspective'
Swork on ‘this theofy. ,Ygt one st{]],cannot call th1s'theory a ugified
field theory since the gravitational field is not included. S. Weéinberg
has expressed.thé opinion that one would uﬁderstand howlthg gravitationél
force fits in with the other_%Orges had one been around af the big bang,
.when the universe began to expand. .Thus the search for a unifjed field

' &
theory would seem to bring us to cosmological consideration. ’

1 See for exémp1e, Einstqin's Meaning of Relativity (2) 4ppendix II.
A ~

2 R. Adler, M. Bazin, M. Schiffer, Introduction to-General Relativity,
McGraw Hil1l, New York, 1965. .
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In the words of S. Chandrasekhar: . . -

"In a rea) sense astronomy is the natural home of general

relativity. It has to be so for the general theory of relativity
. ’ )
is a theary of gravity; and .in what context except in the context

3

of astronomy, can one hope to observe manifestations of phenomena

derived from' strong gravitational fields. In othen words, the

right physical queéstions one can ask of general relativity are

necessarily in the context of astronomical possibi]ities."]

This 1% true -¢ither whether one is considering some model of the‘
universe when working in cosmology or the structure of a neutron star,

in astrophysics.

-

It is interesting to note in passing that the first two applica-
tions (test;) of General Relativity, the calculation for the advance
iof perihelia of the planet Mercury, Pﬁd the deflection of starlight by -
the sun, are both astronomic;1 in nature. These two applications.
&consfitutg two fundamental tests of the theory (see page 26).

It‘was in 1917 that relativistic cosmology was born when
W.-de Sitter and A. f{nstein proposed their respective mo&e]s of the
universe. It was found that cosmology based on: General Relativitty led

\

to a startling cdnsequence, the universe is expanding. This predjctign
seemed to be too fant;Stic to be real, Einstein could not accept this
"consequence of his Eheory; every astronomer Einstein had talked to had
told him that the universe was static. It was thus tha£ Einstein Qas

led to alter his field equationé by the addition of a quantity that would

Ll
.

1

S. Chandrasekhar: Nature, Vol. 252, Nov. 1, 1974, p. 15-17.
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the day, he received in the mail, a copy, from Al

R D s

. : ’ . - X . ’
become known\hs the cos&o1ogica1 term.* ' This Einstein betieved would
remedy the defect of expansion of the universe;althdugh'he felt the
elegaﬁce of the field equations suffered.; ”

At fﬁe time (1915-1917) Willem de Sittgr was director of the.

Leiden Observatory in the Netherlands. Heiwas an astronomer noted, Bx his
colleagues, for both his handsome white beard as well as' his absent
minéed manner, but more than this' he was what would be called nowadays an
applied mathematician, given to cgnstructing maqrematica1omode1s: From
Einstein, o? the
General Theory of Relativity, he began to speculate as to the consequences
of this theory in cosmolog}.‘ He’cbnstructeg a model of the universe.'
(which would appear in print in November 1917) by assumiﬁg it was empty.
At first glance th1s model seems to bear absolute1y no relationship to
nature, after all the universe is not empty d :

We must ask the question: is it 1egit1mate to consider such a
mathematical model as an approximation to reality? Thé answer 1s‘§hat
a pathematital model is a construct, an application of a general physjca}
Taw to a very specific cifcumstance. The laws are takeﬁ as our Tnitial
a;sumptions,‘to which we may add soéﬁﬁadditfonal constraints, such as
in cosmology, the absence of any matter. Then Qe can éonstruct a°.
mathanafica] model based on these assumptiohs, and then compare tﬁe
behaviour of the model with what wé conceive to be the behaviour of
rgality; thereby the model is te§ted. But what can g Todfl'of an empty "
universe tell us abéut the real universé whigh we knoy is not empty,

is the model totally nonsensical? -

B}

x
-*

* Agij where X is called ‘the cosmological constant. )
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The answer here 1s that the real universe is enpty' At’1east it
dis approyﬁnately empty in Fhe Targe scale. The average matter density
of the universe is be}ieved to be about 10730 gram?ﬁber cubic centimeter,
‘ or equivalently.on the average one hydrdgen aton per cubfg meter. -

The. de Sitter universe wa; a mathematica\ model of an expand1ng
universe, at least so far as its geometry was concerned Since in 1917
the universe was considered toﬂbe}§tat1c de Sitter remarked that his

odel could also be cons1dered static, since there was noth1ng in it that
% could expand. This was not str1ct1y so, since the absence of matter can

be interpgeted as matter, on the average, in the real universe. Thus we.

should not rank the de Sitter universe as -a-static universe which the .

\ ‘

Einstein universe is.

By 1922 the astronomer V.M, Slipher hgd unpub]ished data which
Ehowed thA\notion of an éxpanding universe in a more favourable light.!
Also at about this time the Russian“mathematitian Alexander Eriedmann.

. at Petrograd, and 1ater (1927’ the 1gian Abbé Georges Lemaitre,
independenny constructed more,ézjgfztic models of the universe, and
showed that w1tn the %osmo]oglca1 ‘term inc]uded in the f1e1d equations
one might have models of the\universe that expand, contract, or even
osci]late , ’ v

Lemaitre (1927) anticipated that the universe would be fpund to be

? expanding and that the’ prediction could ‘be confirmed bx looking for a ‘

‘red shift in the spectra of galaxies. Edwin Hubble (1929) d'isc‘overedw

that light from distant‘galaxies was indeed shifted toQards\the red,

I Y. 4 . -

'ﬂ Published in The Mathematical Theory of Re]ativity A.S. Edd1ngton
{1923), p. 162, Chelsea Publishing Company, 'N.Y., 1975. 5
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the farther the §a13xy, the greater the red shift. ‘This was, reluctantly,
inte;preted to mean that the galaxies are receding from us in all direc-
tions, with velocity proporiion to their distance. '
0 In the words of Eddington we summarize: . : .

"the choice between Einstein's and de Sitter's models is no
longer urgent because we'a;e not now restricted to these two
"extremes; we have available a whole chain of intermediate .
sodytions be;ween motionless matter and matter]ess mdtion, from
which we can pick out the solution with right proportion of matter

and motion to correspond with what we observe. These solutions

were not sought ear11er,‘becadse their appropriateness was not

realized; it was the preconceived idea that a static solution was

a necessity in‘order that everytﬁing'might_be referred to unchanging
background of space. We have seen that thié‘requiremént should
strictly have barred out de Sitter's solutfon, but by a fp;tunate
piece of gate crashing it gained a&mission'Tt was’ the precursor of

the other non-static solutions to which attention is now mainly

1 !
directed.” \ '
In the origihal model of the universe prgposed in 1927 by o,

©

Abbé G.Lema?%re, the universe had been static for an infinite period

'of time before it has begun to expand. For this modeNto work, the

field equabions of General §e1ativity has to include the cosmological

) terml Friedmann had ‘shown (1922) that the universe in'a relativistic

setting, even with the cosmological term, coq1d still expand. This

« The Expanding Universe: A.S. £ddington (1932), reprint, Ann Arbor
Paperbacks (1958), :
\ s ‘ 1l *
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ot 5 ] 1927 Lemaitré model was always the one-favoﬁred by Eddingtdn
\,2 a, The resu]ts obtained by Hubble suggested that the cosmologica]
léonstant was ‘unnecessary. Einstein in a joint paper with de Sitter
Y . ’ finally discarded tﬁe cosmological constant in 1931, 4Einstein who had

introduced the cosmological constant in 1917, was glad to be rid of it.
& -

‘{:ﬁlf Hubble's expansion had been discovered at the time of the.

creation of the general theory of relativity, the cosmological member

.would never have bgpn introduced. It seems now so much lgss Jjustified
to introduce such a member into the field equations since its introduction

. Toses its sole orig1nai justification, that of leading to a natural

~

o so]q&igr of the cosmological probigm."]

r

cweﬂpr not all of Einstein's colleagues Qére willing to drop the

'
Y

cosmo1o§ica1 constant, least of all Eddington who needed the constant:
' y in hfs;faVoured casmology.

"And if even the theory of relativity falls into disrepute the

»

. cosmological constant w111 be the 1ast stronghold to collapse.
To dgpﬁ the cosmological constant would knock the bettom out of

space."2 )

Loy

"To set A=0 implies a reversion 59 the imperfectly

¥

relativistic theory a step which is no-'more to be thought of than

a return to the Newtonian theory."3.

1

°

The Expanding Universe, A.S. Eddington, p. 104.

Y

New Pathways in Science, A.S. Eddlngton, p. 215 (1934), reprint
Ann Arbor Paperpacks (1959)

The Meaning of Relativity: A. Einstein; Princeton U. Press (1956), p.124.
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In order to drop the ;psmo1ogica1 constant Lemaitre (1933) had
to change his account of genesié. In dropping_the cosmological constant,
the universe could not have had a static phase in 1t§»past, as there was
in the original Lemaitre universe of 1927. Lema?ﬁré proposed that the
universe wa§ born f%om a primeval atom and thag the universé bégan
violently, in a "fireworks . " , ' ) o

For all the respegt-and ;ffectigﬁ Eddington had for Lemaitre, he
fourid this idea of an abrupt beginningfto thefuniverse to be extremely
distasteful. Eddington could not or,wou1d not change ;rom his precon-
ceived idea what nature should be like.

*

George GamoQ coin&? the term "big bang" theory‘in (1948)% Gamow
who had studied unaer Friedmann, in the early twenties, proposed in &
joint paper “‘with Ralph.Alpher (1948) a éosmologica1 model, similar to
the Lemaitre model (1933) in whicﬁ the universe began a highly compréssed
sfate. Unlike the LemaTtre model, where the priméva1 atom was made of
densely packed matter, Gamow's model was composed mostly of pure energy
with only frace element of matter. He called the stuff of his primeval

atom Ylem, after the Greek term for chaos which gave birth to the wor1q.
, ‘ Later work-on Gamow's "big bang" theory suggested that if the ﬂ
univé}se had once been very hot, and‘Eoo1ing ever since, it ought to
have some energy left over from the original flash. This residual
energy would take the form of Tow-level background radiation coming in
from all directions-at about equal strength. .

1948 was also the year Herman Bondi and Thomas Gold proposed their

steady-state cosmology. This casmological model was an attempt at

describing a universe that had existed forever and will exist forever.

1
\
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1
This model used the de Sitter model as a basis*, to account for the red
o | shwft to wh1ch'was added an 1nterest1ng notxon suggested by Gold, the
spontaneous creation of. matter 1n space; thus the universe could expand
and yet never—th1n out, The steady-state cosmology had the ep1ste-
mologic .advantage in that it did not suppose a beginning or an end of _

It had the.

t

v - the universe as do the Fr1edmann Lema1tre models
; \ .
d1sadvantage of v1olat1ng the law of conservation of-energy** with its
unexpected spontaneous creation of matter. Atoms popp1ng out of empty,

space did nqt seem as 1mposs1b1e to gome cosmolog1sts,as d1d the “big

v
hd -

bang" theory

- The or1g1na1 steady-state theory of Bondi, Gold (1948) made no
attempt to relate the global gral1tat1ona1 field with the matter in the
universe, which is a. defect if oHE’E§suMes Mach's principle to be true.
An improved version of the steady-state theo}y dué to gred Hoyle (t949)“
was able to remedy this situation somewhat by intrdducing an additional’
field 1nto'the theor} which was respansible for the cneation of matter.

The discovery of Quasars in 1960, cosmic black-body radiation ;n
1965, and Pulsars in 1965; have largely been‘reSpon:ible for the number
of researcn articles in the field of relativistic cosmology tripling in ~
the tast two decades (1960-1980).

\THe discovery in 1965 of residual radiation made-.by Arno Penzias

aWd Robert Wilson is considered te be the residua1‘b1ackqbody radiation,

g

#
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The metric is the same for both the
state theory, the interpretation is

* The de §itter metric plus the field

yield an empty de Sitter universe,
empty universe as was shown by Fred

-
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de Sitter universe and the steady-
different,

equations of General Relativity

but when T ‘],1 *#0 we have a ron-
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. the "Primeval Fjreball" which was left over from the "big bang". Because
of this discovery the “big'bang" model is now called the "standard model",
Hoyle (1965)1 Sbandoned -the steady-state model in favour of the
evolutionary Friedmann-Lemaitre mode1'becausé of this new observational
data. i ' ». ¢
'~ Another faséinating discovery was made 1nf1968 by A.'Hewish'the‘
Pulsar. 1In 1968 T. Gold made the conjecture tﬁat Pulsars are rotatiné
neutron stars; this was subsequently confirmed. Originally the concept <
of a neutron star had been invented by Baade and Zwiky in 1933-34, ‘the
neutron had only been discovered in 1932 by Chadwick. At this time Baade
‘énﬁ wiky hazq?aéntified a new class of astronomiggl.osjects which they
| ;;iiga.“§hp;;hovas“{ They made the hypothesi§3 fﬁa¥ supernova might be
created by éhe collapse of a normal star to fo}m’a n;utrqn'star. In
. 1939 Oppenheimer- and Volkoff performed the first éetailed calculations
for the structure of neutron stars. This laid the foundations of the
General Relativistic theory of stellar structures. It ;as also in 1939
( that Oppenheimer and Snyder calculated the collapse of a homogenous
sphere of pressure-free fluid, using General Relativity and discovered .
"that the sphere cuts {tself off from comnunicatjon‘with the rest of the
universe. This type of collapsed star ié now called a black hole.
From the last two pdragraﬁhs we see why the study of singularities
in space-tfme is of such importance. With the discovery of neutron
stars the search for black hole has been intensified. Before considering

black holes we shall Took as the trend of thought which led Einstein to

’ .
the gravitational model we shall use,

A3

ol

U F. Hoyle, Nature, 208, 111, (1965). ~ - “
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CHAPTER II SN
THE FIELD EQUATIONS

%he geometric dee] of gravitation we are about to consider is
usually called "The General Theory of Reiativ%ty“ the name gi&en it
by its creator A. Einstein; but even this name has become controversial.
‘Both V. Frock and.J.D. Synge havé been very critica} of Einstein for
deécribing‘his gravitational moéel as- General Relativity. The confgsion‘
stéms from Einstein's mistak%ng the principie bf general covarianée'with
the principIe‘of General Relativity. The principle of geng#a] covariance
giétes that équatﬁons sh0u1d7%emgin unchanged under any transformqtion -

fo-r

df. co-ordinates. To Einstein this seensd (at least naively) to be a
ge%era]ization of Lorentz invariance . "The principle of general
covariance is not a re1ativityop5incf3]e, it is a dynamical principle

- that }mposes restrictions op the poss;ble intergctions 6f geo?etry and
matter: We sﬁa]] cohéider this principie Iatér.

Several Hames have been proposed as rep1acementskfor The.Generai

. Theory of Relativity. Chronogeometry by A.D. Fokker, Chronbmetry by
J.L. éynge, and Ggometrodynémics by J.A. Wheeler, are'possi51y the Best
" known,, ’ beometrodynamics is the name most of then used in p1acé

" of the Genera) Theory of Relativity. The term Geometrodynamics was
originallylintroduced by J.A. Wheeler to describe a theory, that
attempts to interpret‘mattér as an excited state of geometry. ,Acco}dingt

to this-view:

—

[ d

- - . A v 3 Taadeds i 2o Jb el deus B
. " - . Ry e S Dn. A S T gyt T A St S Gy R R e K NG T e
e pum a R asniinsod A




e
- "There is nathing in the wor1d except empty curved space. - . !
Matter, charge, electromagnetism, and other fields,are manifesta-
.tions of the bending of space. Physics is geomefry.“]
Here we shall refer to A, Einstein'slgeometric model for gravitatioq
by the name originally given by its creator the Theory of General
Relativity, or equivalently b§1the General Theory of Relativity, since

doing so now can cause no confusion, and heuristically at least, there

“ .

> is much to be said for the name: (in particular it is almost a tfuism
" that the Taws of physics should be independent of frames ) |
‘ Ein;teip in ﬁis search for the ultimate world Taw found a geometrika]
description for gravity. It is important to understand the General
. Belativity was formulated from very general éonsiderationsz; not-in the
search for a correction to Newton's Theory of Universal Gravitation.
v In the congtruction of a gravitation model one must assume that
Special ‘Relativity will have some-sort of role locally. This is to.be
expected since Specia{ ﬁe]ativity lies at the foundation of macroscopic
physics and is basic to much of micrqscopié phygjcs.
Granted that Special Relativity must have some sort of role iﬁ our
mode] Qe must also insist that our model shall reduce to Newton's model
\in the weak field ;pproximation. The reason for this is the success of
Newton's Theory of Universal Gravitafion. With the
Newtgnian model, celestial méchanics can predict the position of the

¢ -
major planets which agree with observation to.within a few seconds of

!
]

! Geometrodynamics: J.A. Wheeler, Academic Press, New York, 1962.

Based on the phylosophy of E. Mach.
s : ’ ‘ .
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arc for time intervals of many years. Again the accuracy of the theory is
responsible for Le Verrier's discovery of the planet Neptune in 1946.

e ‘

One must note that it was the same Le Verrier who found flaws in Newton's
most successful model; in 1845 he had calculated that the observed
precessién of the perihelion of the planet Mercury was 35 seconds of arc
per century faster than expected in the Newtonian model.

The discrepancy was confirmed by Newcomb in 1882, who gave the

value 43 seconds of arc per century. Some astronomers thought that this

1

excess was due to a sda]llplanet, Vulcan, between Mercury and the sun,

but Vulcan was never found. Other suggestidns were made, none satisfactory.

Néwcomb concluded in 1895 "to prefer provisionally the hypothesis that

e . . 1
the sun's gravitation is not exactly as the inverse square."

i

Although the Newtonian model is not perfect, it 'is a very good

approximation in the limiting case of hotion at a low velocity in"a

wéak grayitational field. Any othgr mathematical model of gravitafion'
must agree with Newtonian model in this limiting case. ‘
Einstein'in his first attempts to construct a gravitational ﬁodel
1907-11 formulated his equivalence principles. The first or weak
equivalence principle states that inertial mass is eqaivalent to
gravitational mass. .This principle is known to hold experimentally with

very great accuracy. (In 1890 Eotvos. using a torsion balance showed that

im, -m_| . ~ )
aa ——1ﬁ—~97 <5x 10 8 here m, and m denote respectively the -
, i '
inertial and gravitational mass. This experiment was repeated again by .

EGtvos in 1905-with the result that a < (5 X 10'9. In a somewhat

A

] ) o ’ N
‘Gravitation and Cosmology: Steven Weinberg, John Wiley & Sons Inc., 1972.
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similar experiment Dicke in 1964 gave a <3 x 107, In71971 ' o

Braginski gave o < 9 x 10713, . .
Einstein stated the stroﬁg equivalence principle in the lgli'
? paper titled "On the Influence of Gravitation on thé Propagation of
) Lighti" \ This princip]e ‘has caused ﬁdch confusion aﬁd man} argumeﬁts
among the devotees of this field. V. Fock and J.L. Synge are the
stF¥igest opponents of the s;rong equivaiencé principle, (please
forgive an unintentional pun). We quote from J.L.<Synge "I have never
been able to understand his principles.... Does jt-qeanbthat the effects
of a gravitational field are indistinguisﬁabie from the effects of an
' observer's acceleration? 1If 50, it is false. In Einstein's theory,
either there is a gravitational field or theq? is none; according to
the R1emann tensor does pr does not van1sh . The princip]e of

equivalence performed the essent1a1 office of m1dw1fe at the b1rth of

3

general re1at1v1ty \ °1 suggest that thé&{1dw1fe\3e now buried with ,
1 .

’ appropriate honours and the facts of ab% lute spaéb\f1me be faced."
In order to understand the opinions of Fock and Synge, concerning
the strong equivalence principle, we consider the statement of the
L principle as given by H. Weyl " A closed box, such as'a 1ift, whose
‘suspen510n wire has snapped and which descends -without friction in the
grav1tat1ona1 field of the earth, is a str1k1ng example of such a system

of reference. A]l bodies that are falling freely will appear to be at .

| rest to an observer in the box and physical events will happen in the

box in just tlie same way as if the box were at rest, and there were no

. Relat1v1ty The General Theory, J.L. Synge, North Holland, Amsterdam,
1971.
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. .
gravitational fieldin spite of the fact that the gravitational force.
.

‘is aéting." We have underl%ned the offending part of the quotation o i
from Weyl. To show that th1s statement ean 1ead to a m1sunderstand1ng,
‘ we consider our‘]1ft L0 high above the earth say in space -and an
', jdent?;al Tift in intergalactic space not subject to any noticeable
,gravitationa]-effects‘<§a11 it L]) ‘ .
An observer in L would find himse1f in a zero- g env1ronment he .
would feel no gravitat10na1 force, similarly to an observer Ll' This . | ‘(

might lead the o%server in d _to con€1ude that ‘the gravitational ~

eff;ct§ of the earth are completely éliminated by free fall. Seo our
observers mighi-ask, is there any local experiment that can distinguish
L0 from L]? The aﬁswef is yes. If we place a drop'of the same

. *1iqu$d,1n£he=cgntre of?each Tift, the drop in L, will be perfectly
s?ﬁerical, but the drop in L, will have two bulges one pointing
toygrds the g@arth the other to the opposite side. Thus we may deteét a
gravitational field by the tidal effects 1t produces. The buﬁges result
from the inhomogenity of the earth's gravitational f{eld, one side of
the drop is pulled too much, the other is an pulled enough. ‘

. As stated by Weyl, the strong prinqip]é\g; equivalence is wrong ¢

asiwe showed in the last paragraph. When the strong principle of
equivalence holds, it is point wise.2

Steven Weinberg's approach tp general Relativity is anti-geometric

. . @
' _and can be summarized as follows:

], Space-TimefMatter, H. Weyl, Dover, 1952.

Here we have a uniform gravitationa1 field, which of course does not . ’
exists in nature. ‘o .

*
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’

"I believe that the geomé%rica] approaﬁh has dFiven arwedge
be?ween general relativity and the theory of eiementary particles.
As long as it could be hpped, as Einstein did hope, that mattero
would eventually bé understoad in geometéicalvterms it ﬁgde sense
to give‘Rienannian geometry a primary role in describing the
theory of gravitation: But now the passagé of time has taught us
not to expecthtﬁat the sggpng,'weak, and.e1eCtromagnetic interac-
tions®can be understood ji.geometrical terms, and % great |
emphas%s on geometry can only obscure the deep connection between

-gravitation and the rest of physics.

“In place of Riemannian geometry, I have based the discussion

N

of general,rélatimii}ion a principle derived from'experiment:
the Principle of the Equivalence of Gravitation’ and Inertia."
“This approach naturally leads us to'ask why gravitation

7

should obey the Principle of Equivalence. In my opinion the

’ answeg is not to be found in the realm of classical physics, and
1 certainly not in Riemannian geometry, but in the constraints
o imposed by the quantum theory of gravitation. It seems to be

impossible to construct any Lorentz-invariant quintum theory of

“particles of mass zero and spin tdb,;?nTESS’the corresponding

clagsical field theory obeys the Principle of Equiva]ence."]

Here the point 9£~g;gw is quite the gppositg to that expréssed
by Wheeler in Geometrodynamics where everything is geometry; for

Weinberg there is no geometry. By assuming a "uniform " gravitational

®

3 Gravitation and Cosmology, 5. Weinberg, John Wiley & Sons, 1972.
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field, the strong equivalence'princip[e'tan be very useful in under-
standing why space is curved. It motivates the metric ds2 = gijdxidxj‘
¢

. « .
where the g.j are not constants 1ike the n; of Special Relativity.

When one is. learning a subJect heuristic rincip]es T1ike the strong °
equivalence principle shou1d not be under st1mated One can- a1way§

clear up-one's cluttered thinking once there is some th1nk1ng

In a 19112 paper, Einstein was able, by using the strong equiva1enc§“

principle, to calculate the red shift, and found half the actual value
for ihe deflection of Tight. L;I. Schiff in'1?602 showed that the total
value for the deflection of light -may be calculatedausing only Sgecia1‘
Re1ativity‘and the strong equivalence principle.- It should be mentioned
however that some scientists do not agree with Schiff's "hehristics"
and insist that the def]ectio; of light is a s%gnificant test for the
field equations of General Re1ativ{ty.

In 1912¢Einstein went from a m;in1y physical approach,Awhere the
thought experiment was basic to the conclusion drawn, to a mainly ..
mathematical approach, where tensor calculus would reign. This chaqée

was possible due to-his friendship and colaboration with the mathematician

Marczel firossman at the Zurich Polytechnicum. So with a ;trong‘physical

“intuition for what gravity is; based on his famous thought experiments,

Einstein set about constructing his geometrical model. Here were the

ingredients at his disposal:

4

The Principle of Relativity: A té]]gction of Original Papers, Dover,
1952. )

@&

On Experimental Tests of the General Theory of Relativity, L.J. Schiff
(1960), Ann. J. Phys., 28, 340-343. . \
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(M) The Newtonian model must be included in the weak field

£

-
approximation of any other model;
o A

(2) Special Relativity; ' .

!

(3)5; The-weak and strong equivalence principle.
(

~ .
M To these jngredients he would add the principle af. general covariance, .

ISR s e e

PRI

In his first papers on General Relativity, Einstein'he15 the view
‘that the principle of general covariance has a physical meaning.
Krestchmann in 1917 published a paper fn which he showéd thét_any'physical
law could be formulated in a geaerally covaridhtﬁwayl Einstein came to
accept this point of viewz as do most of the General Relativists of today. T

f
However not everyone shares this view, C. Lanczos states "Certain .

[

AR S 37z S

' Entagonists of Einstein tried to point out that the pﬁincip]e of general
covariance is in fact an empty principle since any equai%:n whatever can |

be transformed to érb1trary goordinates and thus be;madé generally "

covariant. i . . » ; R

- Even the Newtonian theory of gravjtatibn can be put ‘into generaliy
covariant form, by transformation to arbitrary curvilinear coordinates.
The misunderstanding here involved affected even Einstein himself. He

. F 8
saw' the value of abso]u{e calculus in providing us with the simplest

’ é\ possible genera11y covaﬁfant field equations. In acpyal fact, the

PR

_ transformation of the Newtonian equations to, let us say, rotating
Lo

coordinates is not covéfiant, because the equations then contatn
2 quantities such as the angular velocity of rotation which cannot be , ;
interpreted indigenously, i.e. withput reférence to another priviledged
. !

- reference system namely the system of Cartesian coordinates "General :

Covariance" means that every reference system can exist on its own

0

‘ / \, . :
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merits, and there is no need to go outside that system for help."1

| .
J.L. Anderson in his carefuﬂ treatment2 of space-time theories

. glso argues:

L3

“That this principle is not devoid of physical content as

i ‘ e ~ some authors have b+aiqgg but properly 1nterpfeted, can serve
, - ‘ _.as the sole basis for the theory."2 ) )
| Ohanian 1in his vefy readable textbook3 follows (after a fash{on)
‘ Anderson's treatment. .~ | °?
' ‘ ) _ For Einstein the ingredients required for set(jég up the Theory of
t - General Relativity were: ;  ‘ ~ | L . | )
‘ (1) The Newtonian model whereby to check his own model in the
. | weak field approxfmation; , | ‘ e
- ’ (2)\ Special Relativity; o ) ﬂ
(3) Théiﬁyﬁivalence Princ}ples; . ) ‘
’ ’ (as we thl eady mentjoned), to which was added ) ‘1
) (8) General Covariance. o }f/ o \ .
b ' ’ . -From (2) using Minkowski's geometric approach we. have the space-
| o time invariant d52 2 néjﬁxjdx? = étz - dx2 L dvzm- dzzi From (3) we
,\y;, .o see that (hepristica11& at 1east)jth§F 966 * noo 1n,fact 950 is-gé% .
% - .'conStant, where the space-time anériant %s now dszm5 gijdxidxj. Thjs
; L .. Ts what led Einstein to consider the gij as physicai quantities ; ' ‘

8§ ‘(dynamica1 duantities than -can be chosen to account for the presence af

[

@ ! Einstein's path from Special to General Relativity; C. Lanczos

General Relativity, papers in honour of J.L. Synge, Clarendon |
Press, Oxford, 1972. _ . .

- Anderson J.L., Principles of Relativity Physics, Academ1c Press, » .
New York, 1967.~_ . _ o —

: Ohanian, H. C , Gravitation and Spacetime, W. H Norton & COmpany, Inc R
i . ‘ New York 1976. f
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a gravitational field)-depending on'the distribution o8 matter and o

énergy in spate. What Einstein had to do next was to obtain field

equations for the gij'

[ r——

It was known at this time that the Riemann-Christoffel. curvature

¥

tensor denoted by Rijkt -was the simplest generally covariant tensor
formed from the gij and their first two derivatives. Now when we

have R = 0 we must have gij = Uij and our space is flat. 1In

1Jk£
'the prisence of a gravitational field we have Rijki # 0 also since
we ﬁave=on1y, at most, ten independent gij and in 4 dimensions we
have twenty equations for the R1Jk2 thus the R, ik are overdetérminéd;
If we contract the Riemann- Christoffe1 curvature tensor we may obtain

thek Ricc1 tensor thus

N e L n A

Co o Ry T 9 Ry
o @, ——h

To E1nste1n the Ricci tensor appeared to be the simplest characterization K

S

=
~

of the metric d52 gijdx de tﬁat gives us more than just flat space- ‘
time. So in empty space the field equat1ons where

‘R, =0 - . . é
1] - . '

P they first appe&red in.1913 in a paper of Einstein and Grossman. They

- rar tagpewd 1
o

‘were at first rejected by Einstein who could not reduce them to the

" New fonian model at this time but they were to be resurrected 2 years

Aﬁvf later,

In the presénce of matter, Einstein at first assumed that the -

§
i
i
!

. field equatfons had the form : ' 6.

° V/ . . ,
R1j” -K jrij ‘ . . (].)

- \heré T is the energy momentum tensor, (norma11x first encountered

iJ
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3

in Special Relativity) and K ,is some constant. From ‘conservation of
energy consideration, we must have zero-divergence of the energy-
momentum tensor. Thus 'the field equations had to be amended to

v . ,

" since }he‘diverggncé of the left hanp side of (1) is now zero.

Thus it was in 1915 ten years after his first publication on
.Spec%a1‘Re1afivity, that Einstein introduced the General Theory of
Relativity. Thig tﬁeory containéﬁ ip a ‘consistent way the empiric;11y
supported structural ingredients of bo;ﬁ Newtonian .mechanics including
gravity theory (in.fhé weak field approximation)} and Special Relativity

(in‘the absence of gravity) A1 the forces found in Special Relativity

.
I8
¢

(electromagnetic, elastic, etc.) have their counterparts in Geﬁera]

Relativity, only gravity of all the classical forces has no counterpart

. in General Relativity. To paraphrase E.T. whittaker,|insteéd of being

one of the p]axérs, gravity became par% of the stage. This has been a
very brief summary of a rather tortured road, that led Einstein to the

field éﬁﬁdtionsgoverningﬁhis gravitational model. The important thing

was obtaining the field equations, whatever road is taken, via .say for
]

¥

example, a variational principle.

In 1917 Einstein amended the field equations to

1 -
Rij =2 943R * A9 = K Tyy

where X is called the cosmological comstant. This was done again
heuristically from cosmdldgica] considerations, that we have already

discussed. Einstéﬂn would later describe the introduction of the
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cosmologfcal constant into the fie}d-eeuations as "the biggest blunder
of my 1ife o] Here we take A =0, )

Of the many other approaches to the f1e1d equations of General
Re]at1v1ty, 'one’of 3ﬁe most 1¢p9rtan;, is usually called the
1ihearized theory of graVity, or spin 2 approach. fhis is ihe approach
taken by Gupa, Feinman Th1r1ng Weinberg and 0han1an 2 Here grévitqtion
is taken as a f1e1d theory analogous to e]ectrodynam1cs, whereas
electrodynamics is described by a vector field, gravitation, even in the
New?onian model, is degcribed by a tensor field. Here one easily obtains
a;"linear approeimafion" fhen,the nonlinear field equetioﬁs of Einstein
emerge as.a "natural” genera1ization of the eeuations of the Tinear

~approximation. Here one gains a clear understand1ng of why we have the
v 'fie1d'equations of £1nste1n. In th1s approach we deal’ w1th mahy
' inferesting preb]ems‘such as 11gh§ def1ec?1on, retardat1on, grathationélj)_ N
red-shift, without the mathematics ef pseudo-Reimannian space-time.
Another 1nterest1ng view, f1rst popularized by A. L Trautman3, is
that genera] covar1an¢e, in any of its forms, is not essent1a1 for setting

up General Re]ativity. This jnvo1ves putting Newton's gravitationa]

- <y

Gravitation: C. Misn€, K. Thorne and J.A. Wheeler, Freeman, 1973,

)

Gravitation and Spacetime, H.C. Ohanian, W.W. Norton & Co., Inc., : ;
New York, 1976. A : S

u

3 Trautman, A., Brandeis Lectures 1964, Prent%ce-Ha11 Inc.,l1965.

! 3 - e - ' - e e e iy h v e

L d e v e e o o o it i | v [T, - - .
L e il R e i and P 1 Rt NS H i Pt s g\ ey g vmﬁmm‘-m O PN L o iy A




25

model in a geometrical setting, here the affine connection and .

¢

curvature tensor (but ndt the uetric) make their appearance this was T

first done by E. Cartan. Then General Relativity emerges as the-most

"natural" generalization of Speciai Relativity (at this stage the metric

appears) to include Cartan's setting of the Newtonian mode] in .the non- -~

relat]vistic 1imit. This approach is gane into in great detail in.a -

‘rathef massive book by Misner, iho}ﬂe andiwh'eeier.2 T

, . ( \\
L]
v \
: , )
% , ™
5 )
§
. | Misner, C.W., K.S. Thorne, and J.A. Wheeiér Gravitation, -
' W H Freeman, San Francisco. 1973,
- . .
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CHAPTER 11T

" V.. THE TESTS OF THE GENERAL THEORY OF RELATIVI%Y . ‘

Al

How are we to judge a particular mathematical model (theory) to be

a fitting description of nature?

¢
1

-

To be taken seriously a theory must pass certain tests.. The tests

are usua\]y baseﬂ on certain quantitatively verifiable physical

'ﬁhenomena. The theory must'predict each of these required phenomena,

}

and do so as accutately as is verifiable expefimenta11y. If the theory

cannot’ do -this, it should be discarded.

It is important to make our point of view clear as to what is a

- significant test for a theory. Our experimeﬁ% (test) is significant

when,it'he1ps to &istinguish between several competing models, so that

- we are able to choose the one whicﬁ’gives the best description of natkre

'

Yat least some particular aspect of nature). When g model fis successful,

in the above sense, we can sometimes fall into the danger of thinhing of «

the model as reality itself. This is especially true when the model is

"~ is as attractive as is Generdl Re1at1v1ty The correct or healthy

att1tude to have “for a mathemat1ca1 model m1ght be that of J.L. Synge
"Do I believe in the theory of relativity, spec1al‘and
general? Much as I‘dis}ike the name (I would much prefer to
follow Minkowski but it ts now too 'late) my immediate answer is
yes“ but there' are second thoughts, and I count as my seventh
m]1estone the fact that I permit myself to have second thoughts.‘
In saying this, I do not wish to associate myself with that'sma11

bu't persistent group of people convinced that the theory contains

+
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some essenfiaf:error against which they‘protest buf which they

seem unable to make clear. 1 take the Viéw, probably shared by

P

RSP S

many todayﬁthat no mathematical theory can possibly account
accurétely‘for all physical phenomené. Improvements in the
techniques of experiment and‘observafion are bound to reveal
inadequacies 39 all theories which, when patched up to fit thﬁ
fact;,vlose tﬁeir iptellectua1 appeal. 'Qe are concerned with
mathematical structures whic% have in the words of Leopold Infeld, ‘
Rl ’\ links with reatity. Without those 1iﬁksf all so called physical
’\theories'wouid mére1y be elegant piec;5<of pure mathematics with
suggestive physical words thrown in to catch the attention of
physicistsﬂj
Eimstein did not feel the need to test his theory, but~he did.
[} suggest these tests: The pracession of the perihelion of the orbit of
the planet Mercury, the data on this test was available at the ;ime
o +  General Relaiivity\was formulated (1915); . the deflection of starlight
‘ by the sun, confirmed in 1919 by A.S. Eddington; the gravitational red
shift of spectral Tines, ignfirmed by Adams in 1924, AJ//
It is now sixty five years that General Relativity is considered ‘
to be the model for gravity of best fit with the data available, that
is, it has passed all tests people have been thinking up for it. Here
* we consider the test that led ;o the accéptance 6? General”Relativityib
as a replacement_jgr/fﬁé Newfonian gravitational model. We also

¢‘ consider a few of the competing models, those of historical interest,

9

1 My Relativistic Milestones: J.L. Synge, in Albert Einstein's Theory

of General Relativity, (ed. G. Tauber),Crown Pub. Co., New York, 1979.
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then we mention one of the _competing models that is of interest today.]

\ . . f
Recently (1970's) there have sprung up many competing models and even

" Theories of theories, but we shall not mention these again. i
Most basic qf all tests, for any gravitational model, are the ;/,,/ ‘5
EOotvOos-type experiments. These experiments test the weak \principle of g
2equiva1erice'to a very gteat accuracy, as we have seen. This principle _ j .
is built into General Relativity. There is nothing like this in the Z .

Newtonian model: there, nothin§ forbids the existence of say a particle
which is "gravity neutral".

The most accurate after the EGtvos type experiments are those
dealing with the gravitational red shift of spectral lines, This test :
was accurately predicted by Einstein in 1911 using the strong equivalence
principle. The displacemert of spectral lines towards the red end of
the spectrum was definitely established by W.S. Adams in 1924 by
astronomical observations of the dense companion of Sirfus. This effect
on Sirius' dense companion ¥s about thirty times greater than for the
sun. 3ut this test, 1ike other astronomical tést of the same type that
followed lacked convincing quantitative verification until 1959. Thig\\_,—~

was due in part because of the difference between the gravitational

potential at the observer and that at the,sohrce depends on the inverse

3
N
H
4
1.,
1

3

{

4

of an uncertain solar radius. In 1959 R.V. Pound and G.A. Rebka were
able to calculate this effect on earth in a‘tower 22.5 meters high, at
Harvard. The certainty in this test is now veryshigh, thepexperiment‘
having been repeated many tﬂnes. Any gravitational model unable to

describe this experiment accurdtely ﬁust be rejected. As it can be

! The Brans-Dicke Theory. ’ M’Q\f;> .
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obtained using strong equivalence, it is not considered & test of the
field equation of General Re1at1vity, although it is easi1y obta1ned

. from them. R
" The most important test to those 1ntere§ted.in black holes is the
one on the §rav1tationgl dgf1ection‘0f 1ight. Using the strong
equivalence principle Einstein (1911) gave the first scientific
explanation of 1light deflection by gravitational fields. Laplace (1798) °
had assumed 1ight to be influenced by gravity, in his black-hole model, ‘ e e
but Laplace had no scientific basis for this assumption. ' The value .
obtained by Einstein (1911) for star 1ight deflection by the sun is half .
of that obtained later (1915 16) us1ng General Relat1v1ty " \
In 1919 Eddington and Dyson organized two expeditions to~observe -
“the eclipse o#,@ay 29, 1919, on the island of Sobral (off Brazil) and
Principe (in‘the Gulf of Guinea). ,During the eclipse, using an espec5a11y
constructed apparatus, they were able to obgFrve the stars near the sun,
which are only visible in a total‘ec}1p§e,”and by taking photographs of
these stars, they'then’compared these photographs with other photographg
of the same stars taken when the sun was not in this star field,
The values bbtained for sta; light deflection by the sun were:
: at Sobral (1.98 £ 0.16)";
at Principe (1.61 t 0.40)"
/which are of the right magnitude when compared with the predicted value
of General Relativity, which is 1.75". / .
- In telling about the expediti&n later, Eddington, described how
: . heﬁon the island of Principe, hastened po measure his eclipse photographs

and on finding that the observed deflection seemed to agree with tig,/'

predicted value of General Relativity, experienced what he called the

¥
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greatest moment of his 1ife,.

These results, at the time (1919), nlade a sensation in the press,
and Einstein became a world celebrity. Light deflection was considered
the confirming test of General Relativity. Ironically, since 1919, many
such;ﬁeasurements have been made and the result range from 1.5" to nearly
3, Today many re1at1vi7; consider light deflection a poor test of
General Reiativity.. But'this view 1s not shared by ever;oneg' ‘

o "No method for determining thé gravitational deflection of

‘]ight hpﬁ as simple a'concept or aﬁ little dependence on secondar
parameters as the classical method that makes use of phgtography
during a goiar ec11p§e. The older eclipse observations can be
criticized on several grounds, including failure to use identical
optics for eclipse and reference exposures, failure to obtain
night plates with exactly the same instrumental setup as used for
day plates, absence of temperature control, and the unavéi]abi?ity
of modern microdensitometric reduction ‘cechm’ques."1

To date.the best publicized eclipse expedition, using modern
techniques, was led by ggyce S. De Witt, known as "The Texas
Maﬁritanian Eclipse Expeditjén" of 1973. For the details on this
- expedition apparatus and problems one should consult 1 and 2

A note of DeWitt's summarizes the results of this expedition:

\

5

Gravitational Deflection of Light, Solar Eclipse of 30 June 1973,
B.A. De Witt; Albert Einstein's Theory of General Relativity (ed.
G. Tauber) Crown Pub. Inc., New York, (1979).

The Texas Mauratanian Eclipse Expedition, B.S. De Witt, General
Relativity and Gravitation (ed. G. Shaviv and I. Rosen), John Wiley
& Sons, 1975, .
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the words of C.W.F. Everitt:

o \ . ] ;
' 31

5

"The analysis rgvea]s that there was much more "noise" on,
the plates than we had hoped, resulting directly from bad’
aimospheric condition§.at‘ec1iése time..,. In éonsequence our
precautions and innovations e.g., art1f1c1${ grid and

- sistometric standards ..;--..--- have proved irrelevant. The
final result of our measurements is z= 0.95 £ 1.0 where
1

= 1.0 corresponds to Einsteins prediction."

A recent (new) test of?General Relativity is described here 'in
L
2

] ' l’—}ﬁ\:;igtest of Einstein's theory, related to the star-light |,
. deflectionrwas suggested in 1968 by 1.1. Shapiro, who pointed
’ odt'thgt a relativistic Jelay may be expected 15 the round-trip
travef'time of radar ranging‘signals to planets or spacecra?t
passing behfnd‘the sun. The delay adds a bump to the apparent
orbit. The effect was first observed to about 10% accuracy in
'rada+ ranging of Venus durihg 1967. It has since been studied
in data frqﬁ Mariner 6 and 7 spacecraft and most rg&ent1y.in
‘ranging to the Viking orbiters and landers on Mars. Many

corrections have‘to be applied to take out subsidiary \effects.

The best data aﬁe from the Viking landers, which agree

relativistic predictiop t6 D.3%, the most accurate of all the

Gravitational Deflection o L1ght Solar tclipse of 30 June 1973,
.+ B.A, De Witt; Albert Einstdin's Theory of General Relativity (ed
. G. Tauber) Crown Pub. Inc., New York (1979).

.

Experimental Tests of General Relat1v1ty Past, Present and future,
C.W.F. Everitt; Albert Einstein's, Theory of General Relativity
(ed. G. Tauber) Crown Pub., Inc., New York (1979).




' \ . 2 3é

tests of Gen;era1 Relativity to date except for Fhé gravitational
" red shift."

A

°

. The importance of this t‘est is in that it distinguishes~be§ween
General Relativity and a competing theory of Brans-Dicke. We shall

discuss the Brans-Dicke theory later. This data is available in (13.*

The earliest test of General Relativity that we have mentidned is

]

the one dealing with the perihelion of the planet Mercury. The observa-

tional data for the motion of the perihelion of Mercury was available
™

at the time Einstein formulated his General Theory of Relativity. It was
seen that General Relativity explained the previously i‘naccountéb]e
. discrepancy between the theoretical motion predicted by Newton's Theory'

of Universal Gravitation and the observational motion.. ' .~ : L0

Early critics of General Relativity claimed the obser‘lvat1ona1 data

to be wrdng; this was possible since "the determination of the
B precessional mation is one o‘f the most difficult problems of- pp_s‘itj?na’l
astronomy if not the most d'lff\',cult."]
The observational data on the motion of Mercury came tuo be
regarded as satisfacftory with the work of G.M. C'lemence.2 This;n_j.est is
again contvroversial, Dicke has é]aimed the sun to be an "obT'ate'spheroid"

with the centre of the sun rotating faster han-the surface. However,

this view is not commonly shared. -

x 1 Test of Theories of Gravity iy the Solar System: J.P. Richard, .
General Relativity and Gravitdtion (ed. G. Shaviv & S. Rosen),
John Wiley & Sons, Inc., New York (1975).

2 The Relativity Effects in Plahetary Motions; G.M. Clemence, Reviews

of Modern Physics, 19, No. 4,(1947), 361.364.
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At the moment this i's being written, the sun is probably as

{

I L

controversjar an astronomicaL object as is Cygnus X-1 , so we shall
disrégard this éontroversy for the time being and accept this original
/ test as still valid. N |
A.N. Whitehead proposed an alternate model for gravity in 192é.
This model yielded the same predictions as General Re1ativity; it was
" able to give the ‘same results for the perihelion advance.” by adﬁjtting
an*additigﬁgT&EHjustab1e parameter. In this way'he could account for any
amount of perihelion advance or relardation. Up until 1971 both
theories were thought to give equivalent result and general re]ativ%sts
preferred their theory on the grounds of simplicity and elegahce.’ In
:197i the work of C.M. Wil showed that the Whitehead model predicts a
tﬁﬁe'dependence for tﬁe ébb aqg flow of.0cean tides, which is quite ‘ s !

©

unrealistic. . ¢

+

. Another model which satisfied the same first three tests wés
Bﬁrkﬁoff's theory formulated in 1943. Unfortﬁnate1y it required thag
. sound waves travel with the speed of light.  This defect was due to
pressu}e inside gravitating bodies beihg equal tg the total dehsity of
mass-energy. Today the most notable competitor to General Relativity
is the Brans-Dicke gravitational model. In the Brans-Dicke model the
\ gra!itafional fields is déscribed by a ten;Of field (as is General
Ré]ativity)’pldﬁ an extra gravitational scalar field, (unlike General
Relativify). The qualitative ef%ect of this extra scalar fie?d is that _ hd
"t makes the gravftation;l constant depend on'position.' [t is often
claimed in the Titerature that experimental evidence is against the

1

Brans-Dicke model,
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Whatever point of view one takes as to the competing gravitatfonal
models either as foils against which to test 'Generé1 Relativity, or as'

b

viable alternatives to General Relativitx,\oné must admit that so far as
solar'systgn expe‘r"iment‘s var-e concerned, the compet'lr;g\'modhels can only )
match General Relativity wh'ich" has passeci al] of these rtests with flying
colours. Thus to find the bést m;del‘tr;at desqr'lfies gravity, one must
Took out_side the salar system where stror;g‘ gravitational fields may be
‘ fc;und. ‘ ﬂ C

) There are many alternate models to General Relativi“ty. many of the‘
'rgcent ones 11ke the ear‘]ier,ones,haveabeen disprovéd and those that
°‘re|i|$1n as reasonable competitors to ,Genera'l Relativity are 1n'yar1ab1y"
more complicated and so are rejecféd on the ground .o'f él éganée‘ and ‘

simp] ic:iuty. , A

L]

: i . , . : & : : .
o = /IR LN . " AT SV R SR I




. . . o 35 ¢
b . 2. THE SCHWARZSCHILD SOLUTION R .
- ) o date most of the: key experiments that have been carried out to
tést the difference betweeh Einstein's Theory of General Relatjyity and
T ’its competitors have been. based on predict%ons obtained’with the use.of
the Schwarzschild solution. The best known of. these pred(dt1ons are: )
(1) The grav1tat1ona1 red shift of spectra] lines; |
. (2)° The deflection ofastar light by the sun; o i :
(3) The p;ecess1on of the perihelion of the orbit of the p1anet
. . Mercury; S o . ' s
_ /a' (4)  Thé time delay;of radar echoes passing the sun. e R

[ . ’ Historically the second and th1rd predictions were gbtained by-

A E1nste1n in 1915 by the use of the method of linear approximation;
whén he hadxlnvestigéted the stati¢, spherically symmetric gravitational
field outside a massive spheritaﬁly symmetrie body; at this time there
were no exact solutidns‘to the field'equationi‘, Karl Schyarzsehild gave
the first exact Solution to the field equetions of General Relativity when he .|

+ considered the same problem in 1916 .

Y

‘o 1!' f f' ) We wou]d ‘1ike to digress before considering the Schwarzschild
: | ; §otut10n in deta1},-aq€;ment10n the c1rcumstanees under which )
AT . - Kard Schwahzschi1d:dértved hi; famous solution. This is not only a -
QAE v o great piece of mathematics, but hgst also stand out as an outstanding
: - exgmpl% of human‘courage. In 1915, Karl %chyarzschi]d”was with the

¢

German army on the Eastern Front, there at this time he contracted an

" \

Pe ' 1nfect1ous disease. Given by army doctors on]y a few weeks to live he

‘ ) -y returned to Germany Pn the 1ate fall of 1915 he was to die.on the 11th
' May 1916 During th1s perlod when he was dying, he wrote his two most .

| -~ ', -famous papers« One was on the theory of the Stark effect and the -
i . o
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\ 4 ' ’ .
o foundations for the interpretation of band spectra on the Bhor-Sommerfeld
[3 . v *

theory; in the other ;:BEr he gave the first exact sélution to Einstéin's

P

field equations. This solution would become known as the Schwarzschild ]
solution. In this second paper Schwarzschild used his solution to . :
calculate the predicted values for;both thelperihelion of Mgrsury and \: ‘Ig

lijht deflection By the sun. Eddington would write in a notice published o h% .

later in 1916: ' o ’
"Schharzsch11d s end is a sad story of Tong suffering from

a terrible illness contracted in the field borne with courage and

‘patience.t!  © :
. ‘ Pa ense. .

* Here we list the assumptions that we shall use, as did
, Karl Schwarzschild, to find a mathematiéh1‘mode1 for the gravitationa1

field surrounding a. spher1ca]1y symmetric; electrical1y neutra1 mass 3

AR L O B+ s

o distribution at rest in a vacuum. These are:
+ (1) . The grathationa] field sﬁal] be static;

(2) The gravitational f1e1d is itself spher1ca1ly symmetric,

T s QRSN
.

(3) The space becomes flat at infinity.
The static character~of the‘gravitational field imposes

: restrftfions on the form of the metric .

-

Pare % R A S W L]

L ' "2 4
- ds ginx dx

h
~
Fared LM o 4
.

By static we mean that the field 1§'both tipe independent \

3g, - e S U, é
ji;sfi\:%r%l =0 for ij=0,1,2,3), and time symmetric .(terms of the
. X' M . .

s

- - 1 Deve1opment of Gené?h] Re1at1v1ty, S. Chendroseker Nature, Vol. 252,
. e . Nov. 1, 1974,

5 .
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form 9og @ O ° 1,2,3 in the metric, must be zero otherwise the terms of

the form dqu§9' °cpange sign under the time reversal x? + -xo). So

»
the static requicenent means that out metric takes the form

2

ds” = goo(dxo)2 ax®

'+gadedx

The demand for spherical symmetry of the gravitational field means .
that, in this problem at least, the spherical co-ordinates (t,r,8,p) ' are
favoured. Radial symmetry impiies that there is no preferred angular

direction,. thus the metric is independent of the terms involving

dé do, dr d6, and dr do , which would change sign under the trans-

formations 6 * -6 and ¢ * -,
. J

- The metric becomes entirely diagonal, that is, has the form

2

_. 1,2 , .
=gqy(dx’) ~

Also since the on]& rotational invariants are

e - ~ ds

r

rdr
2

13

: dr2‘+ rzde

+ r2 s1n2 ede2

& .
fhe metric must take the form

‘ds? = A(r)dt? - B(r)(dr? + rPde? + rPsinedg?) - C(r)dr (1)

¢ ' h - .
'\\_\~_ﬁ—_//J where A B and C.are functions of r only by our assumption of radial

. symmetry.

“ L The metric (1), can be simpfigﬂed if we let S -

-

~ s
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th =t

r* = rVB(r) :
0” =8 ;

® =0

so that (1) becomes ,
N

as? = m () (@) - 87 (r) ()2 - (1) 2 (007) - (r)? sin%e"(de")?

—

e SRS AT, Rines - b

s L o R T R bl

¢
where )
A=A , B =B +C..
If we omit the primes we have
ds2 = A(r)dtz'- B(r)dr2 - rz(de2 + sinzed¢3)
In order to exhibit clearly the signature of gfj and the sign of thg
determinant detg_ij =g we wrkte Air) and B(r) as the intrinsically
positive functions:
Define 2a(r) = nlA(r)| ,
*
2b(r) = £niB(r)!
so the metric becomes
. d52 - eZa(r)dtZ . e2b(r)dr2 _ rz(dez ‘ sid23d¢g)
The boundary condition (3), will be satisfied if we have both
a(r) and b(r) go to zero when r approaches infinity.
Siﬁce
| 2 o o 0
0o  -e¥ o 0
g -« =
13 0 0 % 0
0 0- 0 -rPsin’e .
' it e e . o m——YET UL PPOE PR
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5
L3 : LA - | - L > 3
K L so we have o ‘ '
? N 2(a+h) 4 : 2
g = ~e'(a+~) r sin’6 .
{To find the Christoffel symbols of the second kind |
- - R , v ) " n ‘
2] .1 & .
{m n} z 9 (gmk,n Y nkem " gmn.k)
we first have to find gf‘j where gi‘jg“‘ = éik . v
Since _ ) L \
. | elalr) g 0. 0 : _ ,
. s ' B > § 3
0. -e2(n) 0 | .
945 = 0 0 -r? 0
6 a., 0 0 -r s1n26 :
we must have ']
| e 0
0 2l gy |
ij . ’
g = 2] .
0 ‘ 0 i 0'
“ r R
. 1
0 0 0 - >3-
rsin 6 ik
, o ewith A )
o XX=t, X =r, kP8 x3ap.
§ ‘Clearly the only non-zero Christoffel symbols of the second kiﬁ,d are:
B 3 R N ‘ .
A . .
\ . ’//* ' . | ' .
"“\‘/I' . X “ ;
RN




1

_fol ... 11, .- ,2(a~b)’
{1 o} oo '{o o} a e

v

} .
R R R R o -

4 ’
’

{323} = - sin6 cosd , {332} = {233} = coth ..

Now we calculate the Ricci tensors .

‘R;ﬁ" e ; {mzz}.n 3 {mzn}!t * {nzs} {msz} - {Lzs} {msn}

.and obtain’
2 20asD) w2, e 22° b
R00 e (-a" - (a°)° + a”b” - S (2)
\
. w2 .. 207
Ryp. = a" + (a%) - a b”- -{}- (3)
- | Rop = (1 +ra” - r-b’)'e"2b -1 ' : (4)
. R,y =R,, sin " (5)
6 ) ' 33» 22 , K :
In a vacuum we must have * '
: Roo * Ryy = Rpp = O
I . ' . .
i Thus Ry, + R11 =0 gives a” + b= 0 which implies that a + b is

00
constant. The boundary conditions on a and b as r +« yield

a+b=0. Next on replacing a” = -b” in (4) and setting equal to

o zero we have (]+2ra')eza =1 or (reza)’ =1, ' R

; , - - -
~r e pp- R MM




,Thén'on‘integrating we have

r e2a =r-C

where C 1is some constant. Thus

and

The metric for a static spherica1iy symmetric field takes the

form

2

ds? = (1 -§)dt2 N

= dr” - r2(d6% + sin8dy?)
e - .
: |

2Gm

It is easy to show that the constant C is 5= in c.g.s. units.

. . ¢
If we choose ¢ = G = I, the Schwarzschild metric is then

/ .

2 2

. = 2m, .2 1
ds (] -T)dt -v-]——zﬁ‘ dr

- —

2. v2(do? + sin

This is the Schwarzschild solution in standard form.

8de’) |
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3. GRAVITATIONAL RED SHIFT -

Consider a 1ight emitted at the surface of the sun at the point
(r1 ,0,9) and received on earth at the p61nt (rz ,0,9). Assume
"that in both these points there is a standard clock. The proper-time

1ntervals‘at the sun is related to-the co-ordinate-time intervals by

2 _ . 2my .2 |
ds ] (1-;—1—)dt o (1)

Similarly, on earth, the proper-time intervals are related to the

coordinate-time intervals by

¢

2 _ 2 )
d52 = (1 - F—)dt | (2)

2

Suppose that n_ waves of frequency v, are emitted in proper

time As1 f;om an atom on the sum. Then

no=vyas, ‘ : (3)

On earth one must receive n wavés; but the frequency and time

N

duration'of the wave ‘train have thangéd. So we have

.

n o= v, as, . »H (4)°

| S B
Thus (3) and (4) imply that —— = —

‘ S, Asé and from (1) and (2) we

obtain

42




A3

. Jam 1 .
‘ v T N2 ’
-V 2m ) i
1 \1-r2 }‘
1 1
o-2F 0-2)° ~

" "2 |
= 1-i"—-l4"'2/+ 1+5“-—+3‘4'“2+ =1-2,:0_ (5) ‘

r, 82 B 727 - r, T

1 r 2 ™ 1 "2
. to first order in- gL and 2 . On simplifying équation (5) we have
1 2 :

e

vg’- Yy Sy o
A 2 N

13

(6)

¢

Now since’ T, >r our change of potential is negative and we

have the freqﬁency of'iight decreasing as it leaves thé sun and when it

is received on earth, we see a §h1f% toward the red end o? the spectrﬁm.

N

. g
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4. THE PERIHELION OF MERCURY

In what follows.we shall be concerned with a central:spher1c311y
symmetric grévifating body and a test particle; by a test particle we
ﬁean a particle that does not influence the gravitational field.
Henceforth when we write particle we shall mean test partic]e,.unlesé
otherwise stated. We postulate that the motion of a particle in a

gravitational field, not acted upon'by any qther forces, is gdverned by

the geodesic equations

a

2 k mo.n ' '
d™x k | dx" dx _ i
Gt (AT S LI (m

]

and that the motion of a photon, under similar conditfons, is governed

)

by the equations

2 k .
d°x { k } m ..n
+ dx  dx
dcz mnf o g =0 ’ (2)

- since for a photon the proper time s is zero, where we have to choose

some other parameter o. It follows from (1) that for a particle

A

wé have the constant of motion

i J o
dx_ dx¥ ’
%5 ds ds~ - (3)

2

and from (2) that for a photan we have the cons t of motion

?

T 4. : ,
dx .dxy _ , .
i@ o O » (4)
" The motion of a particle moving about in the grévitatioqal field
of a spherically symmetric body shall be taken as the model for the

motion of the pﬁanét Mercury about the sun. In this moqe1 it is assumed

S SR T
> - =ia .

A ian T B e
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that the other planets or stars do not significantly perturb the motion.
of Mercﬁr}, s0 ‘none of them are included in the model. (i.e. in the .
v}hole untverse there is only the Sun and Mercury) so then the world

line of Mercury is a Jeodesic in the four dimensional manifold associated

with the Schwar;z;chﬂd metric.

JFrom
2 m, 2 1 2 2,2 2.2
ds” = (]--—r—)dt - T—-E dr® - r°(d8" +sin"8dy")
= ;
we Have :
-3 a4y, a
r

= op(] - 20
r(1 - .

. .
]}=-rsin2_6(l--2%"-._ ‘ o

= - sin@ cos® \ ,

S (3 = cotb , ' ) ‘ .
,{32} e L T

as the only non-zde'ro\ Christoffel symbols of the second k'ind._

.

RO
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Replacing the non-zero Christoffel symbolé of the second kind into

 with the constant of motion given by equation (3) which is

6. .

equation (1) we obtain

1

]

;’—}3*2{001}%’?%’2—?0 - e
R o
%* %} & %ﬁ* {3?{3} ES) * 0 - (1 i

or equivalently we have on substitution . . ) .

LN

2 -1 '
d’t . 2m 2m\ " dt dr _ . .
) ‘ , 1
dr , m (y_2m\ (3t)_ m .2y’ (dr 2_,,(1_2_@) (d_9.>2 o
w20 )2 08 @) U ) -
G
- résine (1 -?ﬂ> (dﬁ)z = 0. (6) !
: r/ \ds . C '
- . , (
!_g + %-%§~9% - sin8 cosé (3?) =0 - (7)-
ds )
d2p . 2 dr do do do
AR ORI o il | (8)
. .

for obvious redsons we do not want to use equation (6) so we replace it




, L J
o SR A
(-2 (@) s () - Rt (8 1
U'r ’ds/ O _Zﬁ ds) d SO \ds) -
. ! re . i
yet‘us assume fpat our particle mo&es in the plane 8 = % that is §
g%l = 0 . and cos® = 0 ,3.
. t=0 :
from equation (7) we have
2 ‘ n-. 't
- 48 - t
) X =0 ‘ |
, E?luo *
4" '
hence -f%- =0 for all n, :
ds =0 " S . ,‘ !
Thus for 6 = % at any time the equation (7) vaﬁishes and equations ] R
(8) and (9) simpfify to . ' ’
dzw 2 dr do _ - . i - |
B A i i - (o
ds ’ .
and . ‘ ) o R
. 2 2 N2 - . Co
2m\ [dt 1 dr 2(dg ‘
(D@ @y e
r * H

Now equation (5) is equivalent to

N T IS,

from which we must have’ Y - -

Zm\ dt .
\("T>H'§' k
L

¢ for some constant k. Also equation (10) can be put in the form

S RE(H-m

t

. ! - o " T
; . Ao ™ e i




. -which implies that -
2

o

‘= . (13)

for some constant h. With proper'uge of (12) and (13) we can

eliminate t and" s from (11) and abtain
~ gm)( h )2_ _zm) hdr)2 2(n\2
v\ ~2m r _?'&3 2
. r .
OY.‘ . ' . . ! 0 .o

@-aleBen-e] 7w

" on substituting " r = %, into (14)° we have

2 . . . ‘
. d“) i- L [(1+h2u2)(1-2mu) 2 k2]
( ;2.2R5 . hue
~ hence .
-~ Az , " " . . ‘ N i "
(&) - ;‘L‘, [0 +r32) (1 - 2mi) - 2] | (15)
now differentiate (15) with respect to ¢
2 ) ) L
»du d7u 1 { du
2 - 224 (1 - 2nu) + (1+h W2)(.- 2m)] . (18)
@ol w

We can reduce equation (16) to ~

g—-—g—+u-&nu2+7 e - an
dop B oo .

, . . rd
For planets in the solar system “3mu® 1s much smalier thdh‘_m/hz». 50

2

if we neglect the term 3mu‘ we then ﬁave‘the orbita1 equatién of the

'Newtonian theory. Neg]ecting the term 3mu2, the solution to equation

A}




;i ‘ . .
t - ‘,
7 N 49 N
'k v
‘ A \ \
A \ . . :
" T’ . ., R m s N ’
N ‘y - . a4 U= ;2— [l te cos_(tp-cpo)],. . (18)
Y . . l . T T ' . . )
. * - , € .
' “,, » ' where e- is the eccentricity of the elliptic orbit and @, 1sthe
- > _longitude of the per‘lpeHon ’ i B ]
v 1
. . {
L I L If we now consider equation (17) w1th the term ‘a‘mu2 with "u
e ' ! .,
' replaced by the value given in (18) we have !
o 2 3° o | Uy
d"u 3m [ 2 ¢
. . tu=+ 1+2ecos(cp cp)+e cos (cp m)] K
A A o 0 , -
f T ) e L
,‘ R .. now for ; ngarly circular on91t-n g? is very small; so we may.neglect ; .
; . . : " K r 3m3 e & ) ' . ;
| . " the term, containing it. The\te(mv ;‘T' ca[n also be 1gr}mredf, :::oﬂ we are,
, - Jeft with ' e a ).
> . . ' ' . ‘ .
o o &y ms m T - | |
) . ; +u ==+ 6e—cos(o-9,)
b ) k! . ’ . W.‘ ;]? . -’;E : 0 E \ . v ) \ -

\v ‘ 7 The so'lutionab'f,this“dlifferentm equation is - : - oo

0 * B € . ,\ . :
&> - . 3 & Lo
.- ) in oL u =o_:z {ﬂu-e cos(w -wo) * 3 f{— ® sin(ip-qao)] | | : ;
o . : S |
A _
‘which isﬂgpproximately . {
1 S m ‘ 3"‘2“ 1 “{éﬁw : ~
C o !““Ez‘[" te Cos(cp-spow‘--';-z—w)J _ ' (19) . o
v ' v . ) "\ ‘ . N » ) R ’ (h , . . 3 ‘
! a ’mnz ' ' mz - s
Cq | 1f <y o is-small., We shall denote -—-z-(gﬁ by & . ° o
~le o . * h h i 3 '
L f' o = ' , - ren A
. .‘ | | . - 4 , “ i J ¥ ) | I r‘ b . F:‘Li‘ ‘
“E‘éf N & - This s equivalent to a change in the constant %‘ and p)’odu“ces no -

. R ." interesting observable effacts. . h
Fl ’ 1 i .
. - - . v )
¥ R 1 ’ A e 7 L7 .
- s * , ! L '
4 ot L * 7 r s © X ¥ * .-
" 3 wr e . ’ . )
“, . L . , , \
Tl - . N ke ' . T " ‘.j’la - b
T -, 4 r 1’ . ) R
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Thus the major axis of\the elliptic orbit is slowly rotating about its .t

: focus, and ethgng will bé an advance of perihelion of the orbit per'

P

. 2 » ’
revolution which is given by & = Q'YE— or.in cgs unit we have
, , _ h ‘ .

\ g ) \
% 2 \
g = Gn)"
do = o (§F) .,
From equation (18) we have .
S A
m 1 +e‘cos(tp-cpo) :
also it is known that the equation of an eﬂ]‘f,pse has the form
‘ - . r = all- e?) : .
, - ‘T+e cos(cp-goo) . s
where a s the semi-major axis. Thus we Have
’ hz =ma(l - e2')t‘ '
and S : ‘
- bn sz o
. & = —7 ’ ‘ . (20)
. ~, . ac(1-e7) ~ ) ' 7

©

So when we know .G, the universal gravitational constént,\t‘he

mass m_ of the sun, c the.speed of tht,-the( semi-major axis of the

Pt

century, hence we'can see very good agreement- between the predicted

value and the observed value. ,

*
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’ To finish with the.advahce of perihelion of the orbit of the
planet Mercury we quote a letter Einstein wrote to Paul Ehrenfest in
% 1916. This is more in order to show the frame of mind of this man than
- as to the importance he attached to the experimental verification of. his L
o - theory. " ' ]
n ; "Imagine my joy at the fedsibility of the general covariance i
and at the result that the equatfons yield the correct perihelion .
motion.ef Mercury. I was beside myself with ecstacy for days."
d . %
. . )
/ 4
A ¢
- ' . RN )
' ’ '
i ~ N ‘




§. LIGHT DEFLECTION

R

-4t

“The equations of motion of a phgton afe 1ike those ‘of a particle

¢
except that since proper-time s 1is zero we must use some other parameter |

0. The;equations of motion that we choose are

»
.

2

dt c2m 1 dt _<L=0 (1)
ot %‘1’-1"‘ & &
T ,
) . ;s .
46 , 2 dr d =
;;7 + TE gine cos® (Eg) =0 : - (2)

do

dé do

* do do

"HN

al-ég +2coth == =0 . | (3) -

&

.
\ ' J
B e
f . ,

we omit the equation corresﬁanding to equation (6) for the,perihelion,‘

.

~ - and take in itsvplace the constant of motion for a photon
r (dt am\ Var\2 2(d8\2 2 . 2.(dg\? ‘
(-2 \T) (-8) (@) @) - smo(®) -0 - @

‘ As we did for the perihelion we take 6 = % 0 that equation (2)

”

. ‘vanishes and (1) and (3) become

2

alg
"-
>

h some coné%ant, _ .
_ 2n) dt
(-F) &

N -F\u .
k some consf?ht; respectively, rug:equation (4) becomes

OB 0 G

PSP L
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now = =U; so that % = p.cos¢ but r.cosp 1{s the cartesian

53
' ) - (dr 2
upon the appropriate substitutions. Now we solve for (36) and
. ) Lo ,
obtain '
: éﬁ)z = rt k2 - h2 0 JImyo
do ;7 Z r ’
r
.now on replacing r with‘l% in the above we get
2 | ‘
(- 11;%(—‘;) JE [kz - w20 - 2mu)]
u uh =
we next differentiate the above with respect to ¢ thus,
gduddy 1 [ 2, o 22]di L
’ 3(37 —2- u u a-‘ﬁ b
.l d‘o h . .
and this reduces to ..
2
d’u 2 .
+u = 3mu (5)
o
If we neglect 3mu2 in equation (5) the solution is @
Uy = A cos(¢- ) : (6) .

. by an appropriate orientation of axes {6) may be written

.' U0 = A cosy | . . v//),zﬂ\

-
‘

1

‘\co—ordinate "x, which is the equation of a straight 1ine parallel to

the y-axts. (The 1ight ray on first approximation is not deflected by

the sun's gravitational field). Let a = % then a = r cosy

and rmin

light ray ).

=a (i.e. the mfnimum distance between.the sun and the -
. - . ’

~

¥
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Replacing ‘ -

1
U= 2 cosp } s

into equation (5) we have

2 )
i—% +us= -&-5- COSF(D »
dw a (7)

= g-ﬂ% (1 + cos2y)
a-

(\ I

Clearly ﬁhe solution of equation (7) must be of the form uy = a+B cos2y

and since

-

'_-¥d2 ‘ . .
b u o Y
+ uy = a - 3B cos2p

doy

we have

L3m |
A e

. ) . . o ’.h
and uy = ;fz (3 - cos2p) . The complete.solution is .
P u=ug +u ‘
ﬁ = 5 Cosw + Eﬂz-(3 - €0s2p) (8)
a . . - f
: » A
' -4 . - R i R .
Equation (8) is the perturbation of the equation of a straight

,  line, this perturbation produ&es a small deflection in a light ray

bassing near the sun.

Now as r+® -u=+0 ﬂan&
| ' %-coso + 'EZ‘(3 - cos2p) = 0 .
\ ’ 2a .

<
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or
N coszm-%cosw-2= 0
which has solutions
[ 4
cosco=—(— \/-a-z+8) .
. ) m . .
, ' _a_( / 8(3m)§)
| ‘ S (9)
C _a_( 4(3m)2 g(m)*t )
m\ g, 81 a
’ 2m 11 A(' - Y

 to first order in 3m.

Clearly 'cp=1g-+6 or w=-g—-6 where & f{s small**

and positive and equation (9) becomes

siné = —21"-
or ‘
X : 5=
to first order in 6, for either x+& or % -6. Thus the total .
'deﬂect'lon of the tht ray is A= -‘:ﬂ (or A= :—CG% in cgs, units).

For Aa Tight ray which just grazes the sun we have

6 35 ‘
f RO 6.96 x 10" cm. and My = 1.99 x 10 gm, which gives a « |
] ' predlcted deflection of A = 1.75". ’ . Ce
‘{;;r' ) - 4
& ‘ * Choosing the negative sign.
¥ N

I . ** To first order. : . S,




‘CHAPTER IV )

BLACK HOLES

o Now that we ?ave seep how}one can use the Schwarzschild solution
to obtain the theoretical values of the three c{assical Lests for the
Theory of General Relativity, (the gravitational red shift, the
perihelion of the planet Mercury, and the deflection of star Tight by
the sun), we now investigate this solution in its own right and
especfally with respect to st}ang gravitational fields.

Perhaps the first Ehind we should nqte about the metric of

K. Schwarzschild

_ My 4.2 1 2 2, 442 , 2
ds” = (1 -1;Jdt - ;ijzﬁ— dr”® - r°(d6" + sin"8de

2 ? 2
)
v .
is that it is here that mass makes its appearance for the first time in
General Relativity, and that it does so as the integration constant 2m.

If m is zero our metric takes the form - v

2 + sinzed 2)

A

~ds?

- at? - grf - ¥P(a0

v

this being the metric of Spécial Relativity in sphericallco-ordinates,

as would be expected. Iq our calEulatjons for the three classical tests
Iwe assumed that m was positive, and there we showed that the orbits

of planets, in the first approximation, are ellipses just as they are in
the Newtonian modél. Here we lan say that gravity is attractive. Had

we assumed that m is Aegative, then we could have shown that the orbits

of planets are hyperbolas. . In this case we caﬁ say_that gravity is

repulsive. Observational evidence leads one to believe that mass should

N . -t Py
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be gositive and the gravitational fields atfract*ve.\ Steven Hawking,
Roger Penrose, and others in their investigatiohs of the.global structurg
of space-time, which resulted in the now celebrated singularity theorems,
made the assumption that gravity is attractive.]

For about twenty years one of the majo? outstanding questions in
General ﬁe]ativity, known as the positive mass coﬁigcture, was to show

{ -

that an isolated gravitational system which has a non-negative local

mass density must have a non-neQative to}al mass as measured
gravitationally at spatial 1nfinity.\ The conjecture was at first shown
to be true in a large number &f speci¥l cases,2 the most interesting
being the spherically symmetric case; the proof here was of surprising
d%fficu]ty.3 The conjecture wa§-finally proved true in general in f979
by Schoen and Yau4; this closed one of the majer open pﬁob]ams in

°”; General Relativity.

)

T~

The large scale structure; Hawking & E11is (Chap. 8) Cambridge
University Press 1973. ’ '

Brill, D. and Deser, S., 1968, Ann. Phys., 50, 548. ]
Brill, D., Deser, S. and Foddev, Le, 1968, Phys. Letters, 26A, 538.

PP

) Leibovitz, C., and Jareal, W., 1970, Phys. Rev., ID, 3226.
: . Misner, C., 1971, in Astrophysics and General Relativity, ed.
. * M. Chretien, S. Deser and J. Goldstein (New York: Gordon & Breach).
Jang, P.S., 1976, J. Math. Phys., 1, 141..

St A L o ATl S ol e 8

~ R. Schoen, S. Yau, 1979, Commun. Math Phys., 65, 45.
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'valid for r >2m since )

58

. - Qur next ohservation is that thé Schwarzschild solution is

asymptotically flat, that is

for large r. This is not surprising since it was a boundary condition

used in obtaining the solution.

The Schwarzschild solution, in the form it now takes, is only

»

ag2alr) _; _2n

900 ry
must be-positive and
\ . ¥
. a2b(r) 1 7
9y 7 - ¢ 1A .
: . r e
1s divergent r = 2m, _ T

v

’

js called the Sdhwarzschild radius. The exact nature of this singularity -

was not understood at’ the time this"s“olution was discovered,

v

Karl Schwarzschild in a second/ paper, published a month after one which

introduced, his solution, c1ai}:4efi that the singularity was not relevant.
Where his first paper had 1n/ﬂéroduced his exterior solution, here he
introduces an interfor solution valid inside a "star". Considering the
f1e1cd equation of General Rela't‘ivity appropriate to -the equilibrium of
a sta.tic.s‘phe;‘e of constant density, he argued that a "star" of such .
configuration must always have a radiusﬁgrea,ter than or equal to}

1.125rg. o U S

A
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This result was invalidated.by Birkhoff's theor%n.(1923).
George Birkﬂoff showed tHat a spherically symmetric solution-satisfying
L . .
the field.eguations in a vacuum must necessarily be static and thus

- Schwarzschild's (exterior) solutions is applicable even if the source

(spherically symmetric) is not static, hence the lower 1imit of 1.125rs

uis not applicable under non-étatic conditions.
Eddington showed in 1924 that there is no real singularity in the
geometry of space-time at r = re- This was done with the singular

mapping defined by the equations:
t N .

’ t=t',£bn£n(£—m—-1) -
r=r’ /
\
' 48 = 87 -
©=Q ’
which yields - ) .
| ) 2m 2m ,
]-*F- t'—r:- 0 0 .
( . 2m - 2m
) B i I 0 .
g N =
i, 0 0 2 o '
“ 2' . ?
0 0 . Q -r"sin”®

from which we have the metric

ds? = dtf2 - dr? -‘%?(dt‘ t ar)2 - rz(d92‘+ sinzedwg)
Eddington was thus able able to show that the singularity at

re=r.’ is a co-ordinate singularity, since none of the g;j diverge

S

r=r.. But unlike the solution in standard form the Eddington solution

’ is not static since both 961 and g{o are not zero. .

s . ) )
. .
LN ) ' -
.

!
i
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Note that both solutions have a singu]arify at r= Q. This
* singularity is not removab'le, unlike the ong at r = rg. This is
becausé the four nonvanishing curvature invariant are not singular at ”*;fv
‘ L but are singular at the origin. That is,if'one of the ~
curvature invariants is singular at some value of  r = "o in one

,‘ coordinate system then this singularity is present in all coordinate

¢

systems . | ' | - K
" Since the singu1ar1{y in the Schwarzschild metric at r = r_ ds '
a coordinate sir;gular-ity.' we ask, what is the real significance of the . »
y surf;ce r=r ?  Since the Schwarzschild field applies to }the empty . g |
space.outside a spherically ‘symmetric source,l we shall 1;1rsf assume we }
have a source which is concentrated within a coordinate radius r less
‘than re Later‘ we shall consider such 6bjects in greater detail.
I1f we consider the radial motion of a photo‘ry\ in a Schwarzschild

. field, then we have

0= (1-Iat - (1 A7 o “
: - [
which yields S '
. dr)z . (1.2 |
dt, r
and ' . -
dr )
= ( -
a-t— r=rs .

that is, the radial coordinate velocit}\of light is zero at r = re

This means that if we have an observer, at infinity from ‘the source, with@ﬁ,

a clock running at the coordinate time rate of the photon, he would see

]

the phdlfoh passing the r markers at ever 1ncrea;sing intervals of time

-
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~thus as - r,*r_  , t +>= for any r, > F] .

61

stoppingué1together at r = re- |
.One must be careful about interpr&ing this result, siﬁcg we have

not yet examined the significance of the radia]-coordiné£g§i~ The pédpef

length of an infinitesimal measuring rod oriented along the radius vector

at rest at radius r is given by
: <=1

i om\T! 2

ae (1 ) o
from’yhich we have '

1 .
- hd . = g@-\-z-
df‘ (1 - r} df.

so we see that as r rs' the r .markers get infinitely closely spaced.
. H

We now evaluate the time taken for a photon to get out from ra#ius r,'

we have:
-1
L(y.2m
dt = ( - r) dr
2m ) . !
« =114+ d
2 ( r-2m
" so that
ry .\
2m
. h | t=f(]+r—_aa/dr

"
' ’ r, - 2m
= (r‘z-r‘]) + 2m £n (?—1—_—-2-1;‘-) s
2" "s The conclusion here is
inescapable: 1ight (thus anything capablguofucar?ying a signal) cannot
‘get, out past r = ros ‘
This result might appear to be associated yith the sipgularity

in 917- However we see that the rate at which a standard clock at rest

is ;o
- o -

s
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. " ‘.. ’ 1
T ‘ ds=(.1’——2'1)?dt :
. ' . r
hence at any disdtance gfeater than rs, clo’cks appear to run infinitely P8

slowly at r = rs and light is infinitely red shifted.
Thus a source of gravitation lying whoﬂy within the critical
radius r = r is ‘enveloped in an. event horizon {the surface r =r.)

o

making communication with the‘outside world impossible. Such a source

is called a black hole, ST ¢
Consider now a material part1c1e/,fa11ing‘; radially into a static
b1ack;h\o1e.' S'i'nce (to, x1 ;“xz,'x3) = (t, r, 6, ») we have
dx® . dt dx dr - dx? L P S N
ds- ds * ds " d * & " ds ds ds o ]
. , -
The motion here is determmed.by the geodesic equation
2.2 o ‘
d%x dx dx" e ' . . .
S AL
S B . .
so that " )
2.0 . ’
d x 1. 06 : dx dx e
' 4sl 39 (9o n * s m T nn,0) ds a5 =0
thus we have
2.0 1 '
- d”x do dx® dx .
AR L B i I |
. , ' ) —»Y !
or eventually Co ' o , ‘ ;o ¢
dzio + 99 d”(goo) dx?
4s2 | 9 ds “ s~ _
; L
.. T . . v "
multiplying the above by 990 . "€ have v
' l ! - ' : % - . ’
! ! ) ~
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-~ v - s . .
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* v . .

- -
= §
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“ N q " *
by .
Y 4 . v
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\ E
ey, ’ »

Y .
or equivalently r
.. ’ d dx°y | .
N & (50 %) - 0 .
/ v . , °
: thus \ : '
: dx° - ¢
) 4 goo -35— k ] . |
where k fs constant; k s the value of Ggp When the particle R
- starts to fall. : : ) o o
Q-. ‘Next we multipu the constant of motioq Lt _ o
S ‘ n 7. u:ix1 a3 '
. ‘ " 945 ds ?s_
o , dx® AU I
. - . 90075— M IR ) A .
ce by 900,. sO we have
A - . S , . ,
) | . - { e de 2 . . dX] 2 e ’
“ %0 " \9%0 ds) * %o \ds) >
4 . . )
« substituting - 3 s -
' | @k L] ‘
" %0 t‘“‘ LENEE P
B e |
, ‘we obtafn e

"'gw)entu_all y

'- .(1-.21),"2 .(%E)Z . &

5 : . - . ' . u o
. . L .

4 For a falling body we have %—;— <0 hence




oy -t~

;
g—':a( (1_m)f
. ' ds
f now we have °
ar, dr dso -
- @t ds dt
f . 1
| o oo 2. atam\ ] 2m
ST (-t P (-8
. . ] .
. . 1.y
SN T,
Suppose that the ‘particle is now close tq the surface r = r_
* we have |
- . L d
."’“2{‘""'5
where & is small enough thafqu can neglect 52. . Tﬁqn
. ‘ \
Q pLaLy
r ]—:E-
‘. )
N L £, E.2 ,£,3 »
) I (BT T3¢ Lt L
5, *E \
4 H‘ ¥

then (1§ becomes

; o ‘ - . 1
‘\' . ' 2

ﬁ' dr--g -"]'i
‘T e E A 2

— . therefore =~ . R

’
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(1) o ;
. . ]
] 13
so that .
-~ ‘.‘\
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Zm I d
. dt l- -F- dr
g .. 2m dr L '
r-2m- ( v )
-~ . 1ntegra£1ng this we-have

t =.- 2m ¢n(r-2m) + const. . :
*Thus just as in the case ofa phbtoh,‘as r+rg .t > = that s, the
particle would seem to an observer at ¥->> ro to take infinite time to

reach the surface r =;r;. if the particle is emitting 1ight of a certain

B S Cocaiian i o e
o . Tl o S >

. spectral line, the observer sees the light being red shifted by a factor

1 : ..
91]27 , this factor becoming Anfinite as the particle reathes the

u

surface r = re: The observer will see all physical p?ocgsses on the.

2, B E

particie going more and mofé.slowlx as it reaches the event horizon. -«

An observer cq-traveliing with the partic¢le would have his time .

. scale measured by «d§, proper. time. Since
1

g .. k'h<1 ;12 (1 -%ﬂ))?

tends to k as- r +3rs the particle reaches that event horizon aftgr |

B ITh

a'lébse of finite proﬁer time for the co-moving observer. Also we see -

Q

. that the co~mov1ng observer will reacﬁ r=0 in finite proper time.

Although we have just seen that an event -horizon is physical, that

is, a co-ordinate independent property of sbaée—fime. they ane easier e 'g
Ve . C - , ’
to recognize and study when we have a particularly well choseh set of

to-ardinates Lemé?tre,\Rosen,Synge, Finkelstein, and Kruskal, and many

others, have, like Eddington, introduce new Eefs offéoordinates in order

remove thé singuldrit} at r = Fos in the,Schﬁar25§h11d metric.

° 3

 to
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However for the metric to become well behaved at r = res we have to
pay a price; in‘the new set of coordinate the metric no longer appears
static, not even in the exterior Qggion.’ This we saw with Eddington's
transformation. -

Here we shall only consider Kruskal's coordinates. We do this not
becguse we wish to show, once again, that the singularity at r.- ;s is

removable, but rather because of the unusual topology involved. The

Kruskal coordinates v,u,8,p are defined by

ot - v2~= T2<ﬁl - 1) exp —

13 r‘s
2uv t
—2_—” = tanh — s
u +V2 rs

where T 1is an arbitrary constant. The Schwarzschild\;:?hzzknow takes

the form 1
. 3 1] *
. d52 = égg_ exp (.i%) (dv2 - duz) - rz.(de2 + sin29d¢g)
rT N

This metric is non-singular if r2 >0, that is if

u2 - v2 > - T2 .

Thus &uring the time interva 0<v<T, the
metric is a smooth finite function of 'u, for all [gai; ui Now her

" of 992 933 vanish when u = 0, so that we can approach tﬁe ) 1g{n
u=0 from the right, and keep going on into negative u. The space
described by this met}ic is singularity free, consisting of two identical
sheets u >0 and u <0, jo*ned in a smooth way by a branch point

at’ u=0. When v reaches time T the two sheets detach from each

other, and the metric has a real singularity at u=2V vz- T (1.e.

.when r = 0). Incidentally, fhe metric has no s{ngularity at u= v,

-

N -
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=
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. which corresponds to r = re-

]

‘The interpretation of some of thgse results are best illustrated
by a few comments of M.D. Kruskal: }

"The maximal extension & has a non-Euclidean Topo]ogy.;.
It is remarkable that it presents just such a "bridge" between
two otherwise Eucli?ean spaces as Cinstein and Rosen sought to
obtain by modifying the field equations. 4t may also be
interpreted as describing the "throat of a wormhole" in the sense
of Wheeler, connecting two distant regions in one Euclidean .
‘space...it is impossible to send a signal‘through the th;oat in
the throat "pinches off" the 1ight ray before if can get through."l
The geometry described above is most easily illustrated with the

Penrose giagrmn below:

A N :
In the diagram, the surface r =r_ divides space-time into

four regions. I and III are the Euclidean reﬁions connected by a

wormhole, region II is the black hole region, region. IV is a white hole
o ' :

o
¢

' M.D. Kruskal, Phys. Rev. 119, 1743 (1960).

*

0 » -
“aw A et - + -./—Xr ey et e A ———_ ST T A et R T N ATV NP e

{

such a way as to contradict the ﬁrinc1p1e of causality; in effect’
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) .
region, this may be regarded as a time reserved black hole. Signals

from region 1V could go into region I and IfI, but no sign frmﬁ

can enter into region IV.

f? should be noted that this discussion for the maximalsextension
of the Schwarzschild metric (Kruskal's gedmetry) dbes not -apply to the
problem of gravitational collapse sincg.for v < T, space ig empty for
all u. These arguments can oqu apply to black holes that were created
joint]y with the universe, at the timé of the "big bang".

A %tatic black hole has the interesting property that it can have
a light ray going about it in a circular orbit. This is the last property
we shall Fonsider. To understand this recall that tﬂe equation for the

motion of a photon in a Schwarzsqhild field is qiven by

. Wy e g o2 Y
w2 9 -
N d‘p .Y €
Where u = % . Clearly u = %ﬁ is a solution to this equation. This

means that a 1ight ray can be in a circular orbit, of radius r = 3m
abqug<a black hole. The special surface of radius r = 3m ‘i; called
tgéélotosphere of the black hole. This orbit is unstable as can be
seen if we cpnsider : e

u = g% +&

where € 1is sma]l and of first order.- Then

— - - dzu
. X —7.® u (3mn - 1)
Yy
- = (g + €)1 + 3mE - 1),
:J ;'l =E . .‘ ‘,
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: Cqanp 1 dl
“ Thus when u 1is slightly larger than -, is positive
W
f
2

1 el .
and when u 1s slightly smaller than I then~.g_% is negative.

do

There are a number of ways in which black holes can form;

these are: . . P

€
(1) As a result of fluctuations in the early universe when,

densities were enormous.
(2) By'gravitationa1 collapse or after the end 6f normal
evolution of some ordinary stars.
(3) By gravitational collapse o% supermassive stars, ga]qctic P
nuclei or star clusters.. |
Here we shall consider only (2) and do so with ; minimum of
physical and mathematical forma1ism.l In‘the early 1930's
S. Chandrasekhar and L. Landau showed, respectively, that according to
the.Newtonian mpde]hfdk grayity, there is m&ximym mass of the order of
onel;o1;} mass for a cold ;;ar.a The non-Tinearity of,the field

equations of General Relativjé& reduce this maximum limit even more.

\ 3 1
The following two extract of S. Chandrasekhar describe the final stages

in the evolution of stars:
"the 1ife history of a star of small mass must.be ééseht1a11y
differenf from the 1ife history of a star of large mass., For a
star of small mass the natural white-dwarf stage is an initial
;tep towards complete extinction.. A star of larﬁe mass cannot go

into the white-dwarf stage and one is left speculating on other

e
7

E
@
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possibilities."]

“The existence of an upper 1imit to white-dwarf

confiqurations inevitably requires that in the course of

evolution of at least some massive stars, black holes - as we .

now call them - must for-m."2
f{ There are varﬁous mathematical models, based on General
Relativity, that show a spherically symmetric cloud of dust of '
negligible pressuré must collapse to a single point. The first such
model was constructed By Oppenheimer and Snyder as was mentioned in
the h15tot1ca1 survey

In a sense the gravitational col]apse of such a "star" (du;t cloud)
never ends. To an outside observer the surface of the collapsing "star"
;symptoticall} approaches its Schwarzschild radius but never reaches it.
In another sense a co-movihg observer would see the dimensions of the
"star" shrink down to iﬁfinitely small values, in fiﬁite'proper times
For the outside observer, at least, it has been‘suggested that the name
"frozen star" is more appropriate than black hole. Since the intensity
of light emitted by a collapsing surface decregses shrply as the red
shift 1ncreases the gravitational .and e]ectromagnetic fields
surraunding a "frozen star” asymptotically approach the configurations

that correspond to a black hole. Thus the name black hole is appropriate

to either observer.

1 Chandrasekhar, S., Observatory, 57, 373 (1934).

\ )

¢ Chandrasekhar, S., Nature, Vol. 252, Nov. 1, 1974 (J1-15-17).

A4 s TG




PR

n

During the collapsing stage of a spherically symmetric body
(electrically neutral)* the exterfor solution is always the
- -Schwarzschild solution, this is guaranteed by Birkhoff's theorem (1923).
For the case of a—fotating body which is collapsing there is no an&log

“to Birkhoff's theorem, we have many different exterior solutions which

\

depend on the shape of the mass, until the mass J1stribut1on has
cb]lépsed inside its eventwhorizon. When everything becomes stationary,

a long time after collapse, the solution is given by the Keer metric.

It is not our intention to dwell on the Keer solution but wodld make the

comment that depending on a parameter a , known as the angular

momentum per unit mass, if

A} .

' (1) a’ < m’ - the Keer solution will have two event horizon.

2 m2 the Keer solulion has one event horizon.
a >nmn the Keer solution és no even orizon.
(3) a®>md the K lution h t hori

—

~nN>

~—
[~
"

Case (3)° is of interest, here we have a singularity not surrounded by

an horizon, such a singularity is called a naked singularity.

»

If the body is electrically charged, then the exterior solution is
Reissner-Nordstrdm (Hoffmann's theorem, 1933) °

2m

2 2 .
2 _ Q°, .2 m, Q51,2 2,2 .2
. ds (.1D-—+;-2—)dt - (1- = +-;-2-) dr® - r°(de° +sin

2
- Bdy ).
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Roger'Penrose,has conjectured

‘"that a phy%ipa]ly realistic collapse will not result.iq

naked singularities."1

This {is known as the cosmic censorship hypothesis.
"we may regard this as possibly the most important

unsolved problem of classical general relativity theory."?

Since it is not our aim to dwell on the Keer solution we shall

a

not mention it explicitly again.

 We now tonsngr w1thgut proof some of the so-called no-haiﬁ
theorems. “It is now almost accepted dogma that in the absence of
external material and electrical charge sources an asymptotically flat
black ho]evat equilibrium state is completely charaéterized by just
three parameters: mass (ﬁ), electric charge (Qf, and spin angular
momentum (J). This conjecture ha§ been proved rigorously in some

important special cases:

Israel's Theorem (1957)r1ff J = 0, then the stationary ‘solutions

are uniquely characterized by m ,and 0.2 ' ‘

Robinson's Theorem (1975) if Q = 0, then the stationary solutions

are uniquely characterized by m and J. 2 - 3

*

P "~ .

] Roger Penrose: Singularities of Space-time, in Theoretical Principles

_in Astrophysics and Relativity; ed. N.R. Lebovitz, W.H. Reid,
P.0. Vanderoot; The University of Chicago Press (1978).

2 B. Carter: The geneEal theory of the mechanical, electromagnetic and
thermodynamic properties of black holes, in General Relativity;
ed. S.W. Hawking and W. Israel, Cambridge University Press (1979).
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Thus if the conjecture is true two very different stars could

form two' identical black holes . that would depend on m, Q and J, and
no other parameters (e.g. nuclear f&rces), This 1s why we say a black’
hole has no hair. Of course a re?l black h?1e cannot’be in an e*acf]y
‘sfat1onary‘state.'

We have chosen to describe the beginning of a vast theory which .
derives from the théory of static black holes. To go any fu;thgr would "

involve us in a survey of mode?n,astrophysi&s and of the paradoxes which

result when quantum effects are congidered. If we have been successful

in desc¢ribing the significance of the Schwarzschild solution in the

. ©
foundation of the theory, our purpose has been achieved.

»
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SUMMARY

The search for a un1f1ed theory has intensified in recent years.
The approach now taken is no lonqer geometric, but rather that of the
unified gauge theory of Weinberg and Salam. It is generally agreed
lthat’any new comprehensive theory should include StevenLHawking's very
pretty result on black hole evaporatfon, this being the most successful
combination of Quanfum Mechanics with General Relativity to date. ,

Qur survey of cosmology gave a brief outline of the early "history
of what is today a vast field of theoretical research For many years
cosmo]ogy was the main user of General Re]at1v1ty, each subject
contributing to the deve1opment of the other. In cosmo]ddyﬁhore than in
any other scientific field the 1mag1nat1on of the scholar is given
complete freedom;th1s is certainly the main attraction of cosmo]ogy. It
" should be noted ehat the scientific community does not consider all
results of cosme]ogy as equally valid. .
‘ In our survey of the literature we saw many of the eifferent
epproaches taken to-obtain the field equations of'General Reiativity.
One gets the feeling each author has his own apﬁroach and does not like
'anyone else's. This is to be expected since generaI Relativity is a ~
mathematica] modelhof'a particular aspect of,hature, gravitation, and
one shoh1d not expect a unique set of pr1ncfp1es 5; defining‘such a
:mathematica1 modei If one takes the f1e1d equations as an axiom of

General Relativity, one is choosing the best motivated axiom any

mathematical model ever had.

b o s ©
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We have seen that the three c1ass1ca1‘te§ts of General Relftivity
(the g(avitational red shift of spectral Hiqés, the périhelion of .the

b]anet Mercury, and the deflection of star 1ight by the sun); can all be

based on the Schwarzschild solution. In' fact the Schwarzschild

—so1u£10n is the best experiménta11y verified solution of the fje]d :

. equations of General Relativity. The importance of this particular

solution lies hereu ‘There are oéher so1u§10ns‘to the field equations,.
some Qith‘ﬁmiraculous" properties, but none of thése is empirically
supported. Here, one miéht draw an anaiogy with Maxhe]]{s equations, ’
itris well knoﬁn‘that‘spme ;p]qtions of the Maxwe11 equations are -
incompatible with obiervationsl | - . .
‘Certa1n1yltﬁe ﬁost important aspect of “the échwarzsch11d solufiﬁn,
aside -from experimental verification,, is the Birkhoff tﬁeqren which

guarantees that the sphérical]y symmetric vacuum solution is indeed

the static solution of K..Schwarzschild. Thus we must conclude thét

if an object is collapsing, and is spheric;]]y symetric (or close to
it), once it has passed inside the critical radius re s 2m, thé object
is trapped behind ﬁn event horizon, and is cut dff,from communicétion
whith the rest of ;he universe. This 1ead; naturally to black-hole

theory. ' , .
y - o
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