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ABSTRACT

STATISTICAL ESTIMATION OF THE PARAMETERS IN
TIIE A.L.M. DISTRIBUTION AND THEIR PROPERTIES

Leila Le Normand

A non-parametric approach is given to the problem of estimating the
parameters of the Almost Lack of Memory distribution (A.L.M.), a new class of
probability distributions.

This distribution is concerned with the random occurrence of some event when
environmental conditions (or other factors) forces the failure rate into a periodic
pattern.

No assumption is made on the random variable representing the first time
occurrence of the event other than the periodicity of its failure rate.

A distribution for the consistent estimators of the hazard function and the
failure rate is proposed. Expected values and variances are derived for the probability
of occurrence in a time interval and for the cumulative distribution function, given
sample observations.

This approach offers flexibility and adaptability to modelling periodic

phenomena, a feature frequently met in environmental studies.
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1. INTRODUCTION

A class of probability distributions exhibiting a periodic behaviour in time and
a random occurrence of some events on each period has been recently introduced by
Chukova & Dimitrov (1992). Further work on this class of distributions has been
done by Dimitrov et al. (1992) and Dimitrov and Khalil (1993). A non-negative
random variable X is in this class if, P(X2ic+x|Xz2ic)=P(Xz2x)
where i=1273,... and ¢>0 is the period.

This property is called Almost Lack of Memory (ALM) and is shared by all r.v.
where failure rate is periodic or constant.

The event of interest is the realization of the first event occurrence X ;
thercfore, the n realizations X,...,X, a collection of independent, identically
distributed random variables having the ALM property.

The following results are given in the recent work of Dimitrov and Khalil
(1993).

If X is a random variable having the ALM property, then

X

Fyx)=1- aH[l ~(1- @) Fy(x —Hc)] :

where [ﬁ} means the integer value of X
c c

and equivalently, X can be represented as the sum of two independent components
X=Y+cZ,
where Y is a r.v. taking values on [0,c) with probability 1 and Z having the
geometric distribution

P(Z=my=a™1-a) , m=0,1,2,..

This condition states that the r.v. belongs to the class ALM(a,Fy,c) .

1



The aim of the present investigation is the statistical estimation of the
following parameters:
(1)  «, the probability of non-occurrence of the event under consideration in cach
interval [i,(i+1)c) ;
2) F,(x) , the c.d.f. of the r.v. X;
3 The failure rate A(t) defined as,

lim 1

AD=4120 E.P[t<xst+At|XZI] or,
F, 't
1-F (1)

4) The hazard function, A(f)= fo ‘A(u)du :

It is assumed that the distribution of X is continuous and that the period ¢ is a known

constant. The following information is known:

- the observed time of occurrence of each r.v. Xj=xj ; j=1..N

- the total number of observations over the time T = rc is n, T or r and n arc
known meaning that N-n random variables did not occur during the observation
time.

The smallest o-field containing all the above information is

Z, , F=0(X,,Xy,-,X,,T,N) .

From a Bayesian point of view, we would regard @&, (the estimator of &) as a

random variable having distribution Beta(b+1,n+1) where b is the observed number

of entire intervals on which the event did not occur.

The estimator &, considered for « is a biased estimator but converges to o almost

surely and in ¥2 when N- . This choice makes it possible to derive a probability

distribution for the sequence of estimated parameters based on the sample data and




o

their ALM properties.
Let Y“)SYQ) s..s¥,, sc be the order statistics corresponding to  Y,,..,Y,
constructed according to the following rule
Y=X,- -? c Li=l,.,n
Then the following results hold:
(1) (1-& )F(Yy) is Beta(k,n+b-k+2), (Theorem 8).
) P(X€IY,,Y))=(1-& )F(¥y) - F(Y,) where P estimates the probability
that Xe[Y,,Y) , is Beta(j-i,b+n-j+i+2), (Corollary 1).
(3) 1-(1-&)FAY,) is Beta(n+b-k+2,k);
@) AfY,)=-In(1-(1-&)F(¥y))=u,+..+u, , (Corollary 2).
where {4} are independent exponential r.v. with parameters (n + b-i+2)! ;
The independence of the u,’s will then allow access to the estimation of
A ) and A,(1) , (T‘heorem 9). '
(5) the estimator of e ?‘(1 -a)= fo : a[?](l -w)d(F,,g) is then derived, and by using
the independence of & ¢ and F‘Y(Y(,‘)) , ﬁx(x) is obtained.
The expected values and variances of the distribution of the estimators are used as
the estimate of the corresponding random variables and their variances.
Throughout this investigation we will assume that the distribution Fy(y) is

arbitrary y €[0,¢) ; in other words, the only propertics assumed for the random

variable X are its ALM properties.



2. ESTIMATION OF THE PARAMETER o« AND SOME PROPER FUNCTIONS
OF o
2.1 THE MINIMUM VARIANCE UNBIASED ESTIMATOR
Let X,,...,X, be the realizations of the first event occurrence in N independent
copies of the model with known period ¢ >0. Suppose the observations have been
obtained during a time T=rc, and N-n copies of the event did not occur.
First, a larger set of events is described. Consider the hypothetical situation
where the event of interest is allowed to occur on any interval
[(i- 1)c,ic) , i=1..r with a probability of occurrence (1-a) .
We denote the 1%, 2™,... time occurrences by x;nx;z oo
We then have N independent copies of the sequence of times of
occurrences (X, , j=1..N, ksr} .
Let &, be the o-field generated by X, j=1..N, kzsr

1, ifXjkel(i—l)c,ic)

and let A‘(xi)={0 ,if Xelli-1e,ic)

A(X) are independent identically distributed Bernoulli variables
P(A (X)=D=a , E(A (X)=ca .
Consider the stopping times

Y () =linfi: A(X)=0t Ar or equivalently

yj(w)={infi : tz[ﬁ]} Ar;
¢

where Xj denotes the first time occurrence X” .

Then Y [(®) is S, measurable, it is finite if r is finite.

Define &, = o-field generated by |J S, ,

r20




=(Beg_ : Bﬂ{y](m)}ES, ,Vr20 .

N

Yy
N
And 8328,1 , &, isacfieldand <3,

Then I, is a o-field and y(0) s{T(w)=r} ,

which implies & <&, , e.g. Rao (1984), ch. 7.

y N
{A X),i=l.y, ,j= 1..N} areiid r.v.s. on (r,$,,P)

with a finite common mean E(A (X))=a , then according to Wald (1947),

E(S,)=E(Y )E(8 (X)) ,j=1..N

Y,

where Svﬁ; AX) .

N N
then Elzl SY)=aEXl: Y, »
= J:

X
[_1},,1 , if X, occurs in [0,rc) ;
and y,=) L€

r , otherwise .
For the n variables X,,X,,...,X, that occur in [0,rc)

" [Tf]x

ALY AKX

>

1=1

b
1,ifig|—];
c
and because in [0,y ), A (X)) =1 -
o [X]
0,ifi=|—]|+1.
L | € ]




E
we obtain Y, AX)=) 1=

i=1 =]

Xl
il
Forthe N-n variables, that do not occur in [0,rc)

)
Y AX)=r .

is}

N N Y,

Therefore, Y 8, =Y 3 A(X)= ):[ f]+(~—n)r :
J=1 Yi J=1 i=1 J=1 c
We define
1 X
B=E[—1]+(N-n)r s
1 1€

(H

where B is the total number of entire intervals on which the event did not occur
Then the following relation holds:

;‘;Y IX;[[X} ] +(N-n)r= n{j[ ]+(N nr ;

N

Y v,=n+B .
Jj=l

If X; has the ALM property, then

E’-]c) .
C

.Xj
Xj= ? C+(XJ-

It has been proven by Dimitrov et al (1992) that
X ] X X
e aX-|Lle , X-|L|c €[01) .
c | T le 7 le

Therefore, (y j—l)c 1 X,.

X,
-1
Cc

ie, the stopping time y , isindependent from its distribution within an interval of



length ¢. This fact is denoted by 1 . We can therefore assume that the random

variables in S, , stopped at their first time of occurrence, have a periodic failure

r

rate, in which case the o-field §, is the same as &, = olX,...X,,T,N) .

We use the special notations:

Y
X=x,8,X)=6, b=1i]§ 8,,n=n yJ=LoWN i=1.,r ()
for the observed values of the r.v.s in &, .
Therefore in &, , Wald’s equation is E(B)=(n+b)a or, « =%(+£bl
Thus n?b is an unbiased estimator of  in &, . In this way we have proved:
Theorem 1.
An unbiased estimator of the parameter o of an ALM distribution is & = nEb ,

where B is given (1), n and b in (2).

2.2 THE UNIFORMLY MINIMUM VARIANCE UNBIASED ESTIMATOR
B

n+b
unbiasedness of this estimator is a desirable feature because, if it can be shown

In Theorem 1 it is shown that is an unbiased estimator of o in &, . The

that B is a complete and sufficient statistic for «, then according to Bahadur

(1957), pb is the unique uniformly minimum variance unbiased estimator
n+

(UMVU) of a.

To show sufficiency, we first observe that:

N Y

the distribution of =Y Y A (X)) is binomial, ie. we have
J=1 =]

P(A (X)) = 8,0l (X)) =8, ;@) =ab(1- )"
and P(P=b|n+p =n+b;a)=(";b)a"(l -—a)" .
where (n;b) is the number of ways {f =5} can occur in a sample of size n+b

observed time periods of length c each. Moreover,



P(A (X,)= 8,0 (X)=5 |B=b,n=n)

_ Py - 8, ppeensd (X)) =0 5 0)
P(B=b,m=n;a)

_ ab(1-a)" =(n+b)"
(n;b)a b(l _ a)” b

which does not depend on the value of the parameter a.
As for completeness, by definition, a statistic T is said to be complete if, satisfying
E[AD]=0 forall per implies A7)=0 a.e. For a fixed sample size b+n, we

have

n+b

E,,mm1=2ﬂi)(";”)a‘<1—a)"
=0

N nn#b n+b igrs
=(1-a) Z( i )aﬂt) .

i=0

n+b
If E[f(B))=0 then Z("Tb)ﬂi)a'w :
1

1=1

This means that all the coefficients of « are zero, or fi)=0 forallb
which proves the completeness of § for a fixed n+b. Thus we have proven:

Theorem 2.

B

n+

The unbiased estimator & =

in & .

r

, found in Theorem 1, is the UMVU estimator of «




2.3 THE VARIANCE OF THE UNIFORMLY MINIMUM VARIANCE
UNBIASED ESTIMATOR

In section 2.1, we have seen that A ‘(Xj) is a sequence of iid Bernoulli r.v.s with

parameter o,

Therefore its variance is E(A ,(XI) ~a)=a(l-a)

Let 8, }‘7 (4,(X)-a)

N N VY, N
then . 87=Y Y A (X)-Y v
P S =1

N N
Morcover, in &, , Y v,=n+b , then Yy Sv"/=B-(n+b)a

’ J=1 J=l
N2 )
and (/E Sv(;) =(n + b)? B —ar ,

=1
? + b)? B
=(n+b) Var('Hb) .

n+

N 2 )
E(Z s;;) -(n+b?E| Lo
J=1 L b

Because A (X) and v, depend on X; alone, the independence of X;’s implies the

independence of S"D/ ,j=1..N.

n+b

N N
Thus, EY (SV"})2 =EY} (Sv"]) = (n + b)* Var(_g_)
=1 J=1
According to the second part of Wald’s theorem we have:

E(Sv")2 =Ev VarA (X) ,

when the process is stopped at the optional time v, .

N N
Then EY (S7]'=EX v, Var(a (X)) 3)

/=1 =1



ie. (n+b)? Var(—ﬁ-) =(n+b)Var A (X) , by equation (3)
n+b J

B y\__1
n+bj n+b

Lehman (1983) shows that the unbiased estimator of
n+b is

B(n+b-P)
(n+b-1)(n+b)

a(l -a)

X)=
Var A ( J) ey

Therefore Var(

Q)

a(l - a) given a sample size

A slightly modified version of the proof is given below:

Let g(B) be the unbiased estimator for varA (X) ,

E@(p)=a(l-a) ,

n+b

ie. Y,
b=0

(";”)g(b)a"(l o) = a(l-a)

Then it is true that:

with p= sothat ¢=—P— and 1-a= !
- l+p l+p
Then it will be true that
nt n+b
( Pl o1+ )= p1+p)?

b=0
n+b neb-2 neb-1

b nob- b-2 n+b-2
E('” gbypb=p(l+p)"*?=p ¥ (m )p”= Y ( ' )p” .
bo\ b ) b=0 b b1 \ b-1

Equating the coefficients of p® we arrive at the equation

on

g(b)=m )

for (n+b) being fixed and for a given p=b , g(b) is an unbiased

estimator of a(l-a) .
Therefore, by equation (4)

10



B )= bn
n+b” (n+b)*(n+b-1)

Var(

which is the unbiased estimate of Var pb . Thus, the following result holds:
n+

Theorem 3.

For the observations X,..X, on a random variable Xe ALM(a,Fy,c) , the
bn B

unbiased estimator of Vara is . Here, a=
(n+b)*(n+b-1) n+b
uniformly minimum variance unbiased estimator of the parameter «, n is the number

is the

of actual observations on X, and b is the sum of all intervals of length ¢ on which
each X, ,i=1..N failsto occur during the time T=rc.
2.4 A BIASED ESTIMATOR OF «

As the value of « is unknown, it can be considered as a r.v. having the a
priori uniform density distribution. That is,the assumption e ~U[0,1] merely
reflecting our ignorance of its value and expressing the fact that all numbers in [0,1]
are cqually likely to be the true value of the unknown parameter.

We know that in a fixed sample size n+p=n+b , § is complete and
sufficient for the estimation of « so that the only useful information in &, for this
purpose are n and b .

For a given sample size n+b, the joint density of f and « is
g0 =b10)=5(B=b,0)=( ", Jet-0)"
The density of f is then

fiB=b)= f('”b) a®(1-a)"do

(mb)f a?(1 - o) "da (n+b)l‘(b+l)l"(n+l) .
b b L(b+n+2)

Hence fa|Z)=fa|P=b)= g;(Bp bb;l)

Y e

11



I'(n+b+2)

abl-a)" .
F'(n+1T(b+1)

R |F)=

Therefore, the conditional probability distribution of « is Beta (b+1,n+1) , thus we
have derived the following:

Theorem 4.

If the a priori distribution of the parameter « is uniform, then the conditional
expectation and variance of the posterior distribution, given the observations

X,..X, , rc are:

__b+1

E(al'?')—b+n+2 '
Var(e | F) = b+ D(n+1) .
(b+n+3)(b+n+2)?

We now ask the question: Is there a prior Beta(k,s) p.d.f. of « such that the posterior

distribution of o satisfies E(a |b,n) = b ?
n+
Let o be Beta(k,s), i.e.
I'k +S) s-1
Ra)= Hl-ayt, (5)
INGING )

Then the joint distribution of f and « as defined in (4) is
Y(B=b,e)=g(P=b|a)Aa)

('Hb) I'(k +5) ab k- 1( a).nn—l
I‘(k)I‘()

The marginal density of f is

n+b) bek-1;_ ysen-1
fo( b )a (i-a) da

=(n+b) L(k+s) T(b+k)(n+5)
T(T(s) T(b+k+n+s)

12




Thus we obtain the posterior distribution of equation (5)

=I‘(b+k+n+s) bek-101 _ )5+ n-1
felZ = rpormen & O Y

is Beta (b+k,n+s) and therefore,

b+k
brn+s+k

E(x [.7)=

Hence, E(a|.%)= —1;2— is true when k=0 and s=0
+n

The function Beta(0,0) is not a proper probability distribution since

fl L do=o
0 a(l-a)

We have thus proved the following result:
Theorem S.
There is no proper a priori Beta distribution for the parameter «, that would generate

an unbiased estimator of the same parameter.

2.5 COMPARISON OF THE & DISTANCES BETWEEN THE ESTIMATED
PARAMETER o AND ITS BIASED AND UNBIASED ESTIMATOR

Since « does not belong to &, for any integer r, we conclude that independence

holds:

n+b+2

( P -a))w(ﬁ,n+l3=n+b)

Therefore, we have

for e T e )
n+b+2 n+b+2 n+b+2 n+b+2

and

E(__g:_n___a)z_ (b+D(n+1) EE( B+1 )_ar _
n+b+2

13
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By Wald’s equation E(B)=(n+b)a we obtain

E( p+1 )z(n+b)a+l .

n+b+2 n+b+2

Hence

E_B.il_ —a:g_:_b)_a_i-a
n+b+2 n+b+2 ’

E p+1 ce= 1-2a
n+b+2 n+b+2

then

g1 _ a]z _1-deld-o) o0y constant, and
n+b+2 (n+b+2)?

E[E B+l _a]?= 1-4a(l - a)
n+b+2 (n+b+2)

By Theorem 3, the unbiased estimator of E[ Bb - oz]a given (B=b,n=n) is
n+

V,= bn :
(n+b-1)(n+b)?

Let V, be the unbiased estimator of E[ P-1 -a]z , given by

n+b+2

- (b+1(n+1) . (n+b)Y(n+b-1)-4bn
2 (n+b+3)n+b+2? (n+b+22n+b)(n+b-1)

Figures. 1-3 illustrate the graph of V¥, and V, versus § , where

B varies from O to n+b for n+b=10, 50 and 100. It can be seen that if § is close

to 0 or close to n+b, then V<V, .

n+b+2

2 2
Therefore E(Vl)=E(n—EI;—a) <E(—p-f'—1--a) “E(V) .

14




However, for most values of B we have the reverse inequality;

2 2
ie. E AR «| <E B a| leading to the following conclusion: The biased
n+b+2 n+b

estimator —Ei—l_i can be considered a better estimator than the unbiased
n+b+

one Bb because its mean square distance to o is less than that of the unbiased
n+

estimator in the range (0.2,0.8). In the range close to the bounds [0,0.2] and [0.8,1],

the unbiased estimator Bb is preferable, being closer to the unknown value of the
n+

parameter o.

Fig. 1:
- V1l and V2 as a function of B for (n+b=10)
% ) - — - —— o m——— =
o V1 wv\v2
“© &
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020
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010 o
000 1 ] 1 1 4 J 1 L 1
0 5 10
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Fig. 2:

. V2
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2.6 CONVERGENCE OF THE ESTIMATORS

We consider now the properties of these estimators of o in each o-

field & , r=1,2..

N ¥ N
Let b,=) Y8, , n+b =) ¥, .
j=1 =l j=1

N
Then E(B |F)=b, , ELZ Y,-|-7,’]=",*b,
el
N
The Wald equation E(p)= aE(/E yj) implies
=1

N
E(p |-9;)=ELE Y,|‘73]E(a E AR
j=1
Denote by E(a [#)) , the unbiased point estimator of « in Z,

We obtain a sequence &,=—— , r=1,2,.. of estimators of c.

Theorem 6.
The sequence has the following convergence properties

(a) almost sure convergence i.e.

im 55
lim =q]=1
rw N +b

(b) <? convergence i.e.

b 2
E[ — - a) -0 as r-eo
n+b,

Proof:

Let M, =E(«|%)

17



the process M is a martingale relative to {#},P because the following conditions are
satisfied:

E(x |#) is adapted
EM, |5 )=EE(|F) | T )=E(e|F )=M,,

br <o

b
0< 'b <1 implies E

n +

,+b, n+b

I r

Therefore, M is a martingale bounded in <% because forall r, 0sM <1
implies 0<M><1 , therefore EM? <
then according to Williams (1992), p.111,

M_~M,_ almost surely and in &> .

Moreover, because « €5 then

r

E(x [F)=a , Therefore, for the sequence &, = , the assertions of the

nr + bl
theorem are true.
Theorem 7.
: : b,+1 ,
The biased estimators sequence Bana achieve the almost sure convergence and
+h +
r r

the &2 convergence under the condition that r-e and N-e .
Proof:

b,+1 ) n+b, ( b, . 1
b, +n+2 n,+b,+2Ln,+br] b,+n, +2

We represent

as n,+b ~« ,then obviously

im _5*1 lm _b
r-= p+n+2 % n+b,

=0 a.S.

18




since
N
b’ +n, = 21: Y/
l.

P(y,=m)=a"'(1-a)
therefore, P(y,=e)=1- Yy Ply,=m}=0
m=]
Therefore, in order to have b,+n, -~ we should have N-« in which case the

sequence converges almost surely to a.

The family {—’-’fil—-} is bounded, and
n +b +
b,+1 o b,+1 Y\
0<—"——<1 implics |—————| <1 forall r21
n +b +2 n+b +

By the bounded convergence theorem for martingales e.g. Williams (1991), p.130,we

have
E[ b,+1

—_——a| 0 as n-w | r-o
n,+b +2

which proves &2 convergence.
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3. ESTIMATORS BASED ON THE ORDERED STATISTICS y,, IN (0,c]
3.1 INDEPENDENCE OF y,’s AND CONTINUITY OF THEIR DISTRIBUTION
Let X,..,X, be continuous independent and identically distributed random variables

having the ALM property. Then their common density function is continuous.

X
Consider the random sample Y,,...,Y, where Yl.=X,.—[—1]c
¢

If X,€[0,c) then X =Y, ,
therefore, Y,=X,|X, €[0,c) , and

fix)
1-a

where x, €[0,c)

fy(y,) =fx(x=x,' lxiE[O,C)) =

Therefcre the continuity of f,(x) implies the continuity of f/y) , and ¥, 'sare

identically distributed. Also the joint density of Y,,...,Y, is

le,. ..Yn(yl"“’yn) =fX1, ..X,,(xl""'xn |xl""’xn € IO’C))

S AR |
a)n n

1 fx)
(1- =1 l1-a

and the Y,,...,Y, are also independent.

3.2 ESTIMATION OF F(Y,)

Consider the order statistics of the random sample
Y s¥y s Yimsc .

Since F, is an increasing function, then
Fy(Yu)) < FY(Y(Z)) s..sFJUY, )< Fyc)=1

Moreover, since F, is continuous, then F/Y) is uniformly distributed over [0,1].

20




Also, F(Y,) is the kth order statistics of a sample of size n. Its density function

is f(F(Yy) = F(Y, ' -F(Y )" .

n!
(k- DI(n-k)
Therefore, Fy(yw) has a Beta distributior. with
parameters (k,n-k+1) and

k
E(F ,(}’(k,) = m’ ’

k(n-k+1)
(n+2)(n+1)
We refer to the following result (Rao 1965):

Var(F (y,) =

If X and Y are independent Beta variables with parameters (y,8,) and
(¥,,8,) if y,=v,+d, ,the distribution of U=X'Y is also a Beta variable with

parameter (Y,,8,+8,) .

F(Y,) isa function of (¥,..Y,) each y,€[0,c) i =1..n with probability 1. As in
section 2.1, we again introduce the r.v.
N Y,

p=3 3 A)

J=1 =1

where A (X) depend only on o and vy, is independent of Y, .

+1
Then we conclude that & = —L—— is independent of F(Y,) . The proof of a

n,+br+

more generalized result follows.

21



Lemma 1.
Let g(a)eZ, and F,(Yw) €S, ,r<e

Then Efg(e) FAY,) | F1=EF (Y )E(e) |F]

Proof: On the basis of conditional expectation properties we have

Elg(e) Fy(Y,) | 7] = EEE(2) () | 9D | 5]
=El(g(0)E(F (Y, |9 | F]

=El()E(F(Y,) | 5) | 5]

=E(F(Y,) | )E@E(®) |F) =E(F (Y, )Elg(e) | 7] .

Since « is an unknown constant in &, , then

s {

1-a , a[‘] , and (a[:](l -a))? are also in &, .
Because of Fy(Y(k)) € o(Y,,..,Y )€ , we conclude that:

1. El(1-a)FAY,) |F1=EF[Y,)El(1-0)|F] ;

t

2. E[a[ﬂ(l-a)F,(Yw)|z]=EF,(Y(k))E[a[?](1-a)|9;| :

'
Bial ki - @) FY ) | 7]
=E[F,<Y(k,)12E[(a[f](1 - @) |F].
It has been shown in Theorem 1 that &, can be considered as a r.v. having a
Beta(b+ 1,n+1) distribution. Then (1-&,) hasa
Beta (v,,8,) distribution with y,=n+1 &, =b+1

The ordered statistics F\(Y,,)) has a Beta (v,,8,) distribution with parameters

Y,=k , 8,=n-k+1 .

22




Since y,+8,=k+n -k+1=n+1=y, then according to the above Theorem, we
conclude that (1-&,)F/(Y,) isaBeta(k,n+b-k+2) r.v.,
Fy(Y,)=(1~-a)F(Yy) . Thus by Lemma 1,
E(F(Yy) | Z) =E(F LY )EU - a) | F)
Ther.v. &,=E(a|B,n+P=n+b) is the estimator of  in F , and the above

equation implies that (1-& )F(Y,) is the corresponding estimator of Fy(Y,) and
that it is a Beta(k,n+b-k+2) r.v. which proves the following:

Theorem 8.

The r.v. &, , the estimator of a in &, has an a posteri Beta(n+1,b+1) distribution
implying that F xYg)=(-a YF(Y,) isthe corresponding estimator

of FX(Y(k)) and is Beta(k,n+b-k+1).

E((1 - &) F¥,) | 9) = —%

n+b+2 ’
Var([:'x(Y(,‘))) - k(n +b-k+ 2) .
(n+b+3)n+b+2)

3.3 ESTIMATION OF THE PROBABILITY THAT Xe(Y,,Y ;)
The probability that the r.v. X lies in the interval between two ordered statistics
satisfies the equation

P(Xe(Y,,Y)=(1-a)FY)-(1- @) F(Y5)

=(1-a)(FLY-FLYy) ,i<j .
We will use the following results e.g. (Reiss 1989): If F, is a continuous c.d.f., then
it is true that

FAY,) - FAY, ) =FyY, ) .
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therefore FAY;)-FAY,) has a Beta (v,,8,) p.d.f. with y,=j-i ,
and &,=n-(-1)+1 .
The estimator of the probability P(X E(Ym- Y(D)) is (1-& r)(F}‘(Y(J)-FY(Y(i)) , and
it is a product of Beta variables since (1-&,) has a Beta v,,8,) p.d.f.
with y,=n+1, §,=b+1 (based on Theorem 1);
In accordance with Rao’s theorem cited above, we conclude that the parameters of
the B distributed factors in (1 - &,)[F,,(Y(D) -F ,.(Y(l))] satisfy
Yy +8,=j~i-n-(j-D+1=n+1=y, .
Corollary 1.
Therefore, it is true that the estimator of the probability P{X e(Y(,.),Yw)}

has a Beta distribution with parameter (j-i,b+n-j+i+2).

E(PX (Y- Y,) =E((1 - )(FAY,) - FAY) | F) = bf ,_,:2 '

G-db+n-j+i+2)
(b+n+2)%(b+n+3)

Var(P(X e (Y(0 , Y(;))) =

The proof is now a simple consequence from the previous considerations.

3.4 ESTIMATION OF A(Y,)

Corollary 2.

On the basis of section 3.2 we conclude that the estimator of the function
exp-A,(Y,) is 1-(1-&)F(y,) . Moreover, it will then have a Beta(n+b-k+2,k)

distribution. Therefore,

n+b-k+2

B((1- )F(Y,) |9 =2t

k(n+b-k+2)
(n+b+3)(n+b+2)?

Var(1-(1- & )F(Y,) |.%) =

24




3.4.1 DENSITY FUNCTION OF THE ESTIMATOR OF A (Y,)
Let A Yy be the estimator of AX(Y(k)) , and let us set
S=1-(1-&)F(Y,) .
Then S has a Beta(n+b-k+2,k) distribution. Hence, for
Aoy =-In § or S=e MW we obtain
ds
dA ,(y,)

ie.

=e A ,

I'(n+b+2)
T'(n+b-k+2)I'(k)

Thus

ﬂS) = Sn<b~k'l(1 _S)k-l )

2 D(n+b+2) -& ookl Aol -Ax0a
A = ‘ l1-e ¢ e
ﬂ X(y(k)) P(n +bh-k+ 2)P(K) [e ] [ r

_A +b-k+ _A -
} M(n+b+2) [e A ,,()'(,))Tl 2[1 _eh ,(y(,))r 1 .
T'(n+b-k+2)INK)

is the conditional p.d.f. of A (Y,) .

3.4.2 MOMENT GENERATING FUNCTION OF AX(Y(I:))

Theorem 9.

If X,,..,X, are iid observations on a r.v. XeALM(«,F,,c) , then the estimate of
the hazard function A,(f) at the order statistics Y(k) has the distribution of the sum
of k independent exponential random variables u,,...,u, Wwith parameter

\;‘=(n+b—i+2)'l ,i=1,2..k

k
ie Ay(Y)=Y u, ue€exp(v), v,=(n+b-i+2)"

i=1

Proof: In order to simplify the equations obtained in 3.4.1, we set
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a=n+b-k+2 , q=M— ;

T(@)I'(k) A @)

The density function of A xO'w) =Z can then be written as

R2)=qle 1 - !
Its moment generating function is

MfD)=q f e(1-e1dz=q [ e 71 - e 7 Nz
Integrating by parts after setting

u=(1-e3+1,; dv=e"©"dZ7 ,

~(a-nZ
du=(k-1)(1-e3*2e-2d7 ; v=2

a-t

in j:udv=uv|;-j:vdu

we obtain

Mj1)=qe @ %(1-¢ -z l|0+qf k-1 e @21 g2t 2g7 |

Now we observe that when Z is zero, 1-e7%] =0 : when Z is

z=0
infinite, e"@92=0 s0 that e"@%(1-¢ 2*!|*=0 , and
Mz(t)=fmqﬂe-(a-:-1)2(l_e-z)k-zdz '
¢ "a-t

k-1

a-1

Proceeding the same way with u=(1-¢"2)f? | dy= e @ V247 we obtain

__ qk-1) aenzyy -2z
M= @ e L

»_(k=DK=2) (23 p-artizgg
0 (@a-t)a-t- l)

The first term is zero, hence

*q
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oo k- Dk-2) (23 p-a-t-2)2
ML) qfo ava-rn )¢ dz

Repetitive integration by parts gives

Mm=[" gk - D! ~(ak-Z g7
20 fo (a-t)(a-t—1)...(a+k—t—2)e d
_ q(k-1)! o-(a+k-Z -
(a-a-t-1)..(a+k-t-1)
= q(k—l)! where q:M
(a-da-t-1)..(a+k-t-1) [(a)L'(k)
I'(a+k) k)

M) =

T()T'(k) (a-ta-1-1)..(a+k-t-1)

For a=n+b-k+2 we have

C(n+b+2) 1 1 1
M =
Ax(y“‘)) I‘(n+b—k+2)(n+b+l—t)(n+b—t) (Il+b"k+2‘t)

- (n+b+2) ( 1/(n+b+1) )( 1/(n+b
T(n+b-k+2)\(n+b+1-0)(n+b+1) )\ (n+b-1)/(n +b)

( 1/(n+b-k+2)
Nm+b-k+2-0j(n+b-k+2)

_ I‘(n+b+2)( 1 (ot ' (ot )!
T(n+b-k+2)\n+b+1 n+b+1) n+b n+b)

1 - 4 -
“n+b-k+2\ n+b-k+2

_ _T(n+b+2) 1 (-t )'1(1_ t \!
I'(n+b-k+2) (n+b+1)(n+b)...(n+b—k+2)\ n+b+1 neb)

ot Y\
( ) n+b-k+2)

__T(n+b+2) Tm+b-k+2)(, ¢ '11_ t ! 1 t -1
T(n+b-k+2) T(n+b+2) n+b+1

27



M o) =1-——) (1) 1o —
A’Ow)_( n+b+l)( n+b) ( n+b—k+2)

MA,()’(k)) =(1- vlt)“ (1- vzt)‘1 w(l-v ,‘t)‘1 ,
where

v,=(n+b+ 1),
V2=(n"'b)-l;

v,=(n+b-k+2)""

This is the moment generating function of the sum of k independent exponential
random variables u,...u, with parameters v,...v, as above. Hence,
Mi\x(y(k))(t) - M"l"‘z’ "'“l(t) ‘

By the uniqueness theorem we have
X k
AX(Y(k))=Z; u o,
i=

where u, has an exponential distribution with parameter (n+b-i+2)"! as stated in
the theorem.
Corollary 2.

The expected value and the variance of A x(Yyy) are:

k
A 1
E[AX(Y("))]= Z'; n+b-i+2
k

. 1
Varlh (F]= Y s

k
Proof: E(A (Y, =Y E()
=1
and since u; s are independent it implies
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k
VarlA (Y)]= Y Var(u)
=1

and the corollary is obvious.

3.5 ESTIMATION OF THE FAILURE RATE
Using the result of Theorem 9, it is easy to see that
Ay(Yiry - AX(Y(k)) =l

where u,,, is an exponential r.v. with parameter (n +b-k+1)!

By definition A,0)=["A(0dt ;

e Ays)-Ay )= ["Adr .
Therefore, the estimator i <O of A,(») should satisfy:

- " Yy 2
AV - ByYyy) = fr(: R OLL
or equivalently

u,., =fyy“‘"’ix(t)dt .

*)

The mean value theorem for integrals states that there exists a

ye(y, Y(M)) such that ix(y) satisfies uk‘l=ix(y)(Y(M)-Y(k)) .

)
If A,() isanestimator of A,(y) forall ye[¥y,Y.,) , then

1
(Y- Yy )n+b-k+1)

E(),0) |F)=

and Var (X,0)].9)= varti.) ! if YE[¥y, Y.y
g e B ’ ’ . .
Y(kol)_ Y(k) (n+b-k+ 1)2()’(/“1)_ Y(k))2 *®)? % (k+1
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Theorem 10,

y u + . . .
The function A(y)=~—21 — for y€lYy, Y.,y is a consistent estimator
GV

i u
of A,0) i.c.it satisfies - m:xx(y) if and only if b and n-e as

N-w | This condition is fulfilled when « #0 and «=1
We will consider two possibilities:
(1) Assume b=E(B |F)~ and n=E(n|F)~= as N-w
Fix a point y , y€ [Y,,Y,,) , k will increase as N~ but stays smaller than n.

(a) Suppose Y,,,,-Y,, does not go to zero as b~ and n-o

1
kel)” Y(k))(n +b-k+1)

then E(X ()=

.

Since we have k<n+1 |, then ETOO E(A ,()=0

Also, in accordance with Corollary 1, we have

P(YE[Y(,‘),Y(M.)) is a r.v. having a Beta(l,n) distribution.

i

lim lim 1
n-o E(P(YE[Y(k)’Y(bl))))=n.-.oo n+l =0 f

Then,

P(.) is a non-negative function. We conclude that

P(YE[Y,),Y,,,)=0 ae.

Therefore, the density function of any Ye[Y,,Y,, ) is

_ )
£ =0 , hence A,()= W -0

thus E(A,0))~A,0) . (4)
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. u,, . . :
ie. Ay,0)= -——-—"—_'—— for ye(¥y,,Y,.,) isa consistent estimator of A,y
k)70

We observe that b~ and n~« as N-e is a necessary condition for convergence,
since N-= implies b+n~w . If either b or n is finite, the convergence in (4) is not
achieved.

(b) Suppose Y(M)- Ym*O as b-o and n-eo | (then N-o )

i Ay, )-ALY,
Then it is fulfilled that 11:,”:& Yoy ~AxTgy)

Y(,“ )~ f 0]

_lim A Yy - A Yy
Neo Y=Y

Denote At=Y,,, -Y,, ,then the above expression is

x>

lim AyY,+An-A xYe)
At-0 At

=4 y(Y,) by definition.

We have Y, <y<Y,,, ,and Ar-0 implies Y-y

therefore k,nj R CORY )

Thus, as N-ow

u
—H_if Y€[Yyy» Y1y is a consistent estimator of A,0() .

Y(k' VA ()

i'x()')=

(2) Suppose that b=E(B |F) <~ as N~
then E(B | &)<

X
For r=1 we have y,.={[—4]+1} Al=1 .

c
N oY, N

since =YY A ()= Ax) ,
jo1 aml P
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N
we have E(B |#)=) EA (x)=Na .

j=1
If E(B|F)<= as N~ | then it implies 1It,n_1‘°°Na<oo ;

this is possible iff =0 .

Therefore, b<e~ as N-o iff «=0 .

Suppose that n=E(n | F)<= as N-o

N Y,

We have n=Y_ Y (1-A (X)) ,

sl jal

N
then E(n %))=Y E(1-4 (X)=N(1-a) .

J=1
If E(n | )<= as N- , it implies n_ N(l-@)<e |

This is possible iff a=1 .
Therefore, n<e as N-« iff a=1 .

In either case, A 4() does not converge to its estimated parameter.
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4. ESTIMATOR FOR FUNCTIONS OF THE PARAMETERS OF
THE ALM(a,Fy,c) DISTRIBUTION

4.1 ESTIMATOR OF THE HAZARD FUNCTION A (1) , t>0

¢ be the kth ordered statistics in [0,c¢)

X
Let X,—[-—'
c

X
that is, Y(k)=X‘—[—‘]c is the ordered statistics of the conditional times to failure,
c

counted from the beginning of the period.

Since summation is a linear function, and the failure rate is periodic, then
. . x).
A (X)) =A (Y, )+ " A y(c)

The end of the period ¢ can be considered as the y,, th ordered statistics. Then

AX)=A (Y +

X1,
—C— AX(Y(mI))

k
It was shown in Theorem 9 that A(Y(k))=z u, where u,’s are independent
izl
ueexp(v) , v, =(n+b-i+2)" .
nel

k
Let V=Y u, and V,= Y u, ,
1=] 1=kl

Then, AyY,)=V, and AY,. )=V +V, .

The r.v.s ¥V, and V, are independent since the u,'s are independent.

AyX)=V+

x'(V V.
" 1+ V)

The relation f\x()’(k,n)—f\x(}’(k))=u,‘.1 where u, , is an exponential r.v. shows that

33



all the moments of A, are constant over [Y,,Y,,,) - We can replace

X
X,—{—C.i]c‘:Y(,‘) in the previous derivation by t—[ }c €Yy Yury » 220 .

This gives the following result:

X [ t
Adn=Vv, +H(V, V) =(H+ 1);/1 +H v, =(H+ 1)1/, +HV2
Theorem 11.

The estimator of A,(f) , t>0 is a time satisfying

{-

i—}c e[Y(k),Y(k‘l)) , has the form

g

its expectation and variance are given by the equations

E(Ax(z))=(H+1)EV1+[ ]EV :

Var([\x(t))=([c] ) VarV, Hﬁ VarV,

where

n+l
1
EV,= S EV,= Y —/
Z n+b i+2 2= X n+b-i+2

t=1] 1=k+}

nel

1 1
Varv,=) ————— ; VarV, = E —_—
2 (n+b-i+2)> 2 Gh (n+b-i+2)?

4.2 ESTIMATION OF SOME FUNCTIONS OF THE PARAMETER «

The probability that the event will occur in any interval of the form
[(i-1)c,ic) is {P(A X)= IP"P(A,(XI)=O) .

Therefore POXe[(i-1)c,ic))=a'"'(1-a) .
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Here, « is an unknown constant in & . We can however, compute an estimate of

this probability by using the Beta(b+1,n+1) distribution of the estimate of @ in &, .

r

The following theorem, Chung (1974) ,p.340, will be used:

For a fixed integrable r.v. Z, it is true that

lim E(Z |#)=EZ|%) .

r-»

Since we have «"'(1-a)eS and [a"'(1-a)]® are fixed integrable r.v.s, then it is

true that

lim E(a'' (1 - @) |F) =E(a"'(1-a)|H=c"'1-0a) ,

remw

and
lim E(le'(1- )P |F) = a®D(1-a) .
Theorem 12.

A consistent estimator of «5(1 - a)* is

(n+b+ DI+ b (k+n)!
bin\(s+b+k+n)!

E(x*(1- @)*|.F)=
Proof:

E(e’(1 - )*|F) - a*(1 - «)* By Chung’s theorem i.e. E(a*(1-a)*|5) isa
consistent estimator of «%(1-a)* .

We have

E(e’(1 - a)* |9;)=f0’a‘(1 -a)*dF, ,

=fla’(l—a)" Pin+b+2) o601 -g)da
0 L'+ DI(n+1)
(n+b+2) 1

- Seb(1 _ oyken
Tb-DirDo ® U @)"de

i} Tn+b+2)IN(s+b+ N (k+n+1)
T+ DI(n+DI(s+b~k+n+2)
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= (n+b+1)(s+b)! (k+n)
bnt(s+b+n+1)

Now getting back to the estimation of «'(1-) , we have by Theorem 12,

Yn+b+ DIGE+b-1)!

l"ll- =(n+1
E[a"'(1-a)|F] bl(i+b+n+1)

as a consistent estimator.

In the same way, we observe that the estimator of [e!(1- a))? is

(n+2)(n+1)(n+b+ N1 (2i+b-2)!

E((1- o) ¢20-D -
(- a™ 715 Bl (2i+ben+ 1)

Since
Varle"'(1 - «) | 7] =E[e® V(1 - ) | F]-[Ea (1 - 0) | T}
then

Varla''(1-0) | F] =

(n+ D+ b+ DI (n+2DRi+b-D! _ (n+H(n+b+ DI +b-1N’
b! Qi+b+n+1)! bV [Gi+b+n+ DI '

As a conclusion, we list some particular equations to be used in the following section:

By Theorem 12
(n+1)(n+b+ 1)! (H+b)!
c

E[a[%]a - @) |F]=
b! ({i]+b+n+2)!

) (6)

c

and

23

H (n+2)(n+1)(n+b+1)! (2[£] + b)!
E[(l1- «)’a !¢!|F] = ¢

(7)
b!(2H+b+n+3)z
[
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[i] (n+b+ 1)!(b+[—t])!
E(al | - S ®)

b!(b+n+H+1)x
[

(n+b+1)!(b 2H>!
c

b7 ) -
bl(b+n+2

—t-]+ !
c

Then
varel 25119y~ il

(b+n+1)!(b+2H)! (n+b+1)!(b+[l])!
- c| _ ¢

; ()]
b!(b+n+2[i])! (b+n+H+ 1)! b!
c| c

n n+2)(n+)n+b+ 1)!(2H+ b)!
E(e Y1~ a)| )= < : (10)
b!(z[l +b+n+3)!
c

I t
Moreover, E(a[‘](l - )Fy,) | F) = E(F,,(y(k)))E(a["](l -a)|#) by Lemma 1,
Fy(y(k)) has a Beta(k,n-k+ 1) distribution.
Using the result in 3.2 we have

B(F(H) -~ - (11)

By equation (6)

!

H (n+1)(n +b+1)!([il+b)!
E(e!'l1-0)[F)= ¢

b!([—t-]+b+n+2)!
c

Therefore
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k(n+b+ 1)!({-‘]+b)!

E(a[?](l - Q)F LY, | %)= ¢ (12)
b!([—t-]+b+n+2)!
C

We also have

Var (a[?](l - ) FAY,) | %)

Bl ek - 0) FY ) |- Bl k- OFLY ) TP .
By the conditional independence we can write

= E(F,(Y@’)E(az[?]a - |F)- [E(FY(Y(k)))E(a[:](l - @) |FP
or

2 G+ D)

E(F,04)) D1

where
d id ven i equat

E(al®i(1-a)|#) and E(a )1 -a)? |#) are given in equations (6) and (7).
Therefore

Var(a[?](l - )Fy(Y,) | %)

2
k(k+ 1)(n+ b + 1)!(2[-‘]+b)! (n+1)(n+ b+ 1):(11]+ b)! ,
_ ¢ _ ¢ ) . (13)
b!(2H+b+n+3)! b!(H+b+n+2)! n+l
c

4.3 ESTIMATION OF F,(1) , t>0
Theorem 13.
If X has the ALM distribution, then the estimator of F,(¢) in & will have the

following properties:
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() E(F) %=1 +(,(£-2 - 1)
1

) o2k kkeD) ) A, 2k K
(i) VarF,(1) Cz(l Z,+2 (Zz+2)(zz+3)) Ci{l Z,+2 (Zl+2)2]

k is determined by t,c and the ordered statistics ¥,,...,Y,, as the integer which
satisfies
t—{-‘—]c €Yy Yu.y 5 &b 6o Z, and Z, are defined by the equations:
c
(n+b+ 1)!(b+2H)!
c

!
c

(n+b 1)!(b+[ }!

¢,

s (2=

’

b!(b+n+[£]+1)1 b!(b+n+2H+1)z
C (o

Zl=n+b+[—t—] ; Zz=n+b+2[£] .
c ¢

Proof:

Let t—[-ﬂce[Y(k),Y(bl)) , >0 .

|4

then Fy(t)=1 —aH(l ~(1-0)FAY,)) .

!

Therefore E(Fy (1) |F) =1 -E(a[-‘-] |9;)+E(a[;](l -0)FUY,) | ,

t

4
where E(a[‘] |#) and E(a[‘](l -a)FAY,) |#) are given by equations (6) and

(1h.
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Hence we have

(n+b+1)!(H+b)z k(n+b+l)!({r}+b)!
C

E(F,(0) |#)=1- + ¢
b!(n+b+H+1)! b!41]+b+n+2)!
c c
Thus
(n+b+ 1)!({-’—]+b)!
E(F,(0) |F)=1- el fy.__* :
b!(n+b+[ﬂ+l)! l [%]+b+n+2

and hence the result (i) follows.

In a similar way we obtain (ii)

LS
c

Var(F,(1) | .F)) = Var(a[ ]— a[f](l -a)F(Y,) | F)

t
c

= Var(a[ ] |.#) - 2Cov[a[%],a[_:](l ~a)F (Y |F)

. Var(a[?](l ~)F Y, )T |
where

{4 4

Cov[aH, a[;}(l - a)FAY,) | Z)

L4 t 4 4

=E([a[7]-E(a[7] |9;)][a[7]F,(y(k)) -E(a[?](l - WFY,) | D))

2 14 !

=E( [7](1-a) | FIEFLY,,) -E(a[ﬂ I.Z)E(a[;]l -a) | DEF LY | F).

By Lemma 1, it is true that

4 ¢

EF(Y,)- [Eaz[—:](l -a) |F) -E(aH I-Z)E(a[?](l -a) |,
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where

EFAY,) , E(az[%](l—a)l.Z) , E(a[_:]l.?,’) and E(a[%](l—a) Ea

arc given by equations (11), (7), (8), and (6) respectively. After substitution and

simplification, we obtain

Cov(a[—:’] : a[ﬂ(l - Q)FY,) |F)

[(ru Db+n+ l)!(2[-£]+b)! (n+b+l)!(b+[-£])!
k ¢ _ c

=n+1

k
(n+b+2H+2)! (b+n+H+1)!b! n+b+[—‘]+2
C c C

' -

The Var(aH |#) and Var(a[‘] |.#) are given by equations (9) and (13). Equation
(14) states

¢

! !
Var(F (1) | #F) = Var(a[;] | #) + Var(aH(l - a)FAY,) |%)
BE
-2Cov(al®), at€i(1-a)FLY,) | F).
The result (i) is obtained after substitution of the last expressions in (14); factorizing
the terms:
Var(F,(1) |.7)

+b+ D (b+ ! !
(n+b+ DI 2[c]) % k(k+1)

b (b+n+2| L]+ 1)! n+b+2[i]+2 (n+b+2[-‘-]+3)(n+b+2[l]+2)
c| c c c
.t 2
NN R
- - + .
(b+n+[i}+1)!b! n+b+[i}+2 (n+b+ l}+2)2
¢ C c
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5. CONCLUSIONS

In this work, estimators of the parameters of the distribution of a
r.v. X € ALM(a,Fy,c) under the assumption that N independent copics of X arc
observed for a time interval rc, r>0 is a given integer have been derived.

The results are expressed as a function of:

(i) - the ordered statistics of Y,=X;- é]c , Y,€[0,¢) ,
(ii) - the number n of intervals on which the r.v. X, have occurred, i=1,.,N .
(iii) - the number P of intervals with no occurrences.

A biased and an unbiased estimator of the parameter o given the sample
information have been derived and their properties are investigated (section 2).

Built on these properties, it has been proven that the estimator of the hazard
function is expressed as the sum of exponential variables, and this is a consistent
estimator (section 3.4).

The estimator of the failure rate, expressed as a lincar function of an
exponential r.v. is also established and it is proved that it is a consistent estimator
(section 3.5).

The estimator of the cumulative distribution function is derived along with its
variance (section 4). Estimators of some functions of « are also given (section 4.2)

More work is required for constructing confidence intervals, prediction

intervals, and most importantly, designing a testing procedure for these paramelers.
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