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ABSTRACT

The function of blades in turbomachines is
described and the need for an accurate stress analysis is
emphasized. Due to the inherent complexity of the blade
geometry most of the available analytical methods make many
simplifying assumptions. Three of these methods, namely, the
simple beam theory, the finite element techniques and the
experimental stress analysis are outlined briefly in this
report. A technique known as the slender bar method which
provides a powerful tool for stress analysis of curved beams is
described in detail with all relevant equations. The feasi-

bility of this method is demonstrated by examples.

The blade geometry, equilibrium conditions and
compatability equations are expressed using vector formula-
tion. The procedure of applying the slender bar method to
three dimensional twisted blades is explained and recommenda-
tions for analyzing the stresses in the blade in general are
outlined. Curve fitting required for this method is also

described.
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RESUNE

Le rfle joué par les ailettes de Turbines est décrit, et le besoin
d'une analyse précise des contraintes est mis en lumidre. A cause
de la complexité de la glométrie des ailettes, la plupart des
méthodes analytiques disponibles font plusieurs suppositions pour
simplifier le problime, Trois de ces méthodes, notarment, la
théorie des poutres simples, la méthode des elements finis et des
ms$thodes experimentales d'analyse des contraintes sont décrites
bridvement dans ce rapporte. Une technigue connue sous le nonm de
"néthode des barres minces" pour l'analyse des contraintes dans

‘les ailettes & trois dimensions est ici décrite et la faisabilité de

cette méthode est démontrée par des exemples.

La géométrie de la blade, les conditions d'équilibre et les équations
d'équilibre, sont exprimées, en notation vectorielle. ILa procédure pour
appliquer la méthode des barres minces est expliquée, et des recommendations
pour analyser les contraintes dans les ailettes sont donées. Les lissages

nécessaires 4 la méthode, sont aussi inclus.
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NOMENCLATURE

global coordinate system
local coordinate system
unit vectors along the local axes

position vector with respect to the global
coordinate axes

length, or distance between two points along
the bar axis

parametric function, with subscript indicating
the dependent variable

unit vectors forming the principal triad. T is
the unit tangent vector, n is the unit normal
vector and b is the unit binomial vector

curvature of the blade axis

twist of the blade axis

angle between n the normal unit vector and
the maximum principal axis of inertia of the
blade cross-section

Daraboux vector, a vector which represents
the rate at which the principal triad rotates
as one moves along the blade axis

vector representing the rate at which the
principal axes of inertia of the blade cross-
section rotate as one moves along the blade axis

components of the vector ® along the local
axes x, y, 2

displacement vector of a point on the blade
axis

components of the displacement vector D along
the local axes

rotation vector of a point on the blade axis

components of the rotation vector 0 along the
local axes

vii
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vector representing the stretching of the blade
axis

vector representing the applied force per unit
length on an element of blade

vector representing the applied torque per unit
length on an element of blade

the reaction force vector at a blade cross-
section '

the reaction couple vector at a blade cross-

- section

moment of inertia of a blade cross-section, with
subscript indicating direction

polar moment of inertia of a blade cross-section
Young's modulus of elasticity

Shear modulus of rigidity

Poisson's ratio

stress, with subscript indicating kind or
direction ‘
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CHAPTER I

INTRODUCTION

1.1 GENERAL REMARKS

Turbomachines obtain their motive power from the
change of momentum of fluid flowing over a curved vane,
called the blade. The fluid, while moving over the curved
surface of the blade, exerts a pressure on the blade due to
its centrifugal force. This centrifugal pressure acts
normal to the blade surface and along the whole length of
the blade. The resultant of the centrifugal pressure plus
the effect of change of velocity is the motive force on

the blade.

The torque or turning power applied by the
blade to the driven machine, usually a generator, is governed
by the rate of flow and the change in energy level of the
fluid between the inlet and outlet of the blade. Thus, for
the energy to be transferred efficiently, the whirl has to
be reduced to a minimum,zero if possible, at the exit of the
rotor. Excessive residual whirl reduces the efficiency of
the exhaust system and tends to produce cavitation, as well
as vibration in the draft tube. These are known to have a

detrimental effect on the draft tube [2]7

* Numbers in square brackets refer to the list of references
given at the end of the report.



To make the fluid exert equal work at all
positions along the blade, and to ensure that the flow enters
the draft tube (or exhaust duct) with a minimum possible
whirl velocity, the guide vanes and the blades are twisted.
The blades are designed to possess a stagger angle greater
at the tip than at the root. Figure 1 shows schematically,

a typical blade configuration for a gas turbine.

It is clear that the blade is the basic component
of any turbomachine. The design of blades is based
mainly on hydrodynamic considerations, with a trend towards
the use of aerofoil shape. In order to meet all the design
requirements, the blade has generally a very compli-

cated shape and is often difficult to manufacture.

Improperly designed blades are susceptible to
large deformations as well as fracture [3]. Increasing
the blade thickness to reduce the stresses adds more weight
which in turn, contributes to additional centrifugal forces.
Therefore, it is vitally important that the design of a blade

must be based on an accurate calculation of stresses.

A turbine blade is normally subjected to a combina-

tion of loading which could be divided into three types:

(i) centrifugal forces
(ii) bending stresses due to steady component

of fluid flow, and
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(iid) vibratory bending stresses due to fluctuation

"~ in fluid pressure.

The stresses due to (iii) is generally taken as a function

of the stresses due to (ii). For high output machines, ex-
ternal forces reach high values and induce considerable stresses
in the blade. Further, the vibratory bending stresses induce
high cycle fatigue, whereas, the fluctuation of the machine

load or speed will cause low cycle fatigue. The importance

of these vibratory stresses in the determination of fatigue

strength of the blades has been demonstrated by Armstrong [4,5].

The aim of the present study is to outline the
importance of blade stress analysis and to describe different
techniques that are presently used. One of the techniques
called the slender bar method [1,6] is emphasized and
presented in detail with all relevant equations. This method
esséntially considers a slender bar along the blade as a finite
element and provides a powerful technique for the numerical
analysis of blade stresses using comparatively low computing
time. The method is demonstrated using the examples of (i)

a curved beam under transverse forces, (ii) a helical
spring under axial load. Conclusions and recommendations are

given and future work in this area is also identified.



1.2 STRESS ANALYSIS TECHNIQUES

The objective of any blade analysis is to evolve
a mathematical model as close to realities as possible, that
will examine the stresses at highly loaded zones, especially
at the blade platform junction. Such an analysis will give
basic information on deflections and fatigue life of the

blades.

The identification and evaluation of the different
forces exerted ,though essential for any stress analysis, is
considered out of the scope of this study as this requires

considerable hydrodynamic analysis.

A large number of stress analysis techniques are
available at present and are used to assist in the development of
the blade to meet reliability, maximum service life, and the
increasing demand for more specific power. Three techniques
that are commonly employed by turbine.industry are described

briefly here. They are:

(i) the simple beam theory
(ii) the finite element technigques

(iii) the experimental stress analysis

1.2.1 The Simple Beam Theory

In this approach, the elastic connection between

two masses is approximated by a uniform beam whose elastic



properties are averages of those of the different components.
The blade is assumed té remain constant in shape and the
deflection of the blade is defined by infinitismal rotations
and translations of the blade sections. Formulae giving beam
stresses and deflections to handle different types of loéding,
as well as a variety of end conditions, may be found in

handbooks [7,8,9] .

The stress analysis of blades using simple beam

theory is based on the following assumptions:

(1) the blade is of homogeneous material
(ii) the blade is straight, or nearly so. If
slightly curved, the curvature is in the plane
of bending, and the radius of curvature is at
least ten times the depth.
(iii) the cross-section is uniform.
(iv) all loads and reactions are along and
perpendicular to the axis of the blade.
(v) the maximum stress does not exceed the
proportional limit of elasticity.
(vi) the blade is long in proportion to its depth.

(vii) the blade is not disproportionately wide.

If, for any particular case, the above assumptions
are violated, then the analysis will yield results which, at

best, are approximate, and sometimes may be grossly in error.



For example:

(i) The derivation of the flexure formula ¢ = M%—,
assumes that the blade is initially straight.
The effect of the curvature is to increase the
stress in the inside and decrease it in the
outside fibers of the beam, and shift the
position of the neutral axis from the centroidal

axis towards the concave or the inner side.

(ii) The flexural axis is normally assumed to be the
locus of the shear centres. This may not be

true for a blade with considerable pre-twist.

(iii) St. Venant's torsional stiffness constant is
used when the blade is under torsion. This is
true only for long blades where end conditions
do not have appreciable influence on torsional
stresses. Otherwise, an additiénal constant
should be used to allow for warping constraint

stiffness.

For blades with a large amount of curvature, the error involwv-
ed in the use of ordinary beam formulae is considerable and

curved beam formulae must be used.

From the above outline of the simple beam theory,
it is clear that it is intended primarily as a simple tool
for preliminary design. Thus, great precision in numerical

work is not justified. For most cases, slide rule calculations



giving results to three significant figures are sufficiently
precise [8]. The use of the simple beam theory for
preliminary blade analysis requires the engineer's judgment,

and it is impossible to lay down rigid rules of procedure.

1.2.2 The Finite Element Technigue

The finite element method is extensively used
for the analysis of structures such as dams, buildings,
aircraft and ship structures, etc... [10]. Although the
method was originally developed for structural problems,
it is a mathematical technique with a wide range of appli-
cations. New understanding of the concept,:and the
development of a wide range of finite elements make this
technigue a major tool for general stress and vibration
problems, heat and fluid flow analysis, and recently, for

problems in transients [10,11].

In a finite element analysis, the physical
object, in this case the blade, is idealized into an elemen-
tary system for which a solution is available. However, the
accuracy of the analysis of the idealized system in relation
to the actual structure depends largely on the type of
element chosen. This imposes certain constraints on the
flexibility available in modeling the structure. The model
will then consist of a number of elements obtained by means
of fictitious cuts through the original structure. These

elements are considered to be connected to each other



at the common points called nodes.

The next step of the analysis, is to compute the
element stiffness matrix for each finite element. These
are derived from the concept that, when the structure is
deformed due to external loads, the contihuity between
neighbouring elements be maintained at the common nodes.
Nodal point forces are expressed in terms of nodal point
displacements, and the nodal point displacements are determin-
ed through the equilibrium conditions at the nodes. Using
the connectivity information, the elemental stiffness matrices
ﬁay be assembled into a total stiffness matrix for the object
using the p?inciple of superposition. The analysis then
consists of solving a set of simultaneous equations in the
form

[K]{s} = {F}

where [KR] is the total stiffness matrix, {8} is the nodal

displacement and {F} is the nodal force.

Different types of elements such as triangular,
rectangular, etc... have been developed to suit various types
of applications. A list of these types may be found in any
textbook dealing with finite elements [10,11]. The analysis
also permits handling of models consisting of different
types of elements. Fig. 2 shows an example of a representa-
tion of a particular tubine blade through a set of triangular

finite elements. Because the turbine blades have a compli-
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cated shape, elements that can represent highly distorted
shapes are usually required. Isoparametric elements formed
by the degeneration of a three-dimensional solid have been
found to give excellent solutions for twisted blades (1217,
since the arbitrary curved shape of the element models closely

the turbine blades.

The fluid pressure, which could be considered as
a distributed load, is replaced by equivalent concentrated
nodal point loads. The boundary conditions are dealt with
much better by the finite element technique than by any other

purely analytical method.

Another attribute to this technique is that
it can handle inhomogenous and anisotropic materials, by
allowing each element to have its own set of specified
pProperties. This is vital for the future application of
fibrous materials in the manufacture of blades. A critical
part of this method involves the solution of a 1argé system
of simultaneous linear equations. In general, the capability
of such a fool is limited only by the memory capacity of
the computer and the time required to complete the computat-
ional phase. Two major aspects to be considered are the
accuracy of the final answers and the time and labour

involved in obtaining the results [5].
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1.2.3 Experimental Stress Analysis

A complete theoretical solution for the stress
distribution in -a blade is almost impossible. Whatever may be
the method of analysis, the stress in some areas of the
blade will be underestimated while at the other areas, it
will be overestimated. This is mainly because of the dis-
crepancies between the actual blade and the mathematical
model. Secondly, the methods of analysis are valid only
within certain limitations and are applicable only to certain
types of models. To assess these theoretical methods, as well
as to determine stresses at critical zones 6f the blades, one
has to rely on experimental stress analysis. The experimental
technique is also capable of detecting weaknesses, flaws
unusual wear or fatigue in the blade due to defects in

manufacturing.

The most direct way of determining the stress
produced under a given loading is to measure the accompanying
strain. Direct strain measurements are possible by mechani-
cal and electrical pickup devices, such as extensometers,
strain gauges, brittle lacquers, photogrids and cathetometers.
The exact procedure and the relative merits of different
experimental evaluation of stresses may be found in any

standard texts [8,13] on this subject.

Under conditions of uniaxial tension or compression,

it is sufficient to measure strains in one direction
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whereas, under conditions of combined stresses, it will be
necessary to measure strains in more than one direction,
preferably in the direction of principal stresses. In the
latter cases, brittle lacquer coatings are very convenient,

as they graphically present an overall strain picture,
including the principal strain directions. The method
consists of coating the specimen with lacquer, which becomes
brittle on hardening. When the strains in the blade reach

a prescribed magnitude, the surface elongation will produce
cracks in the coating at a right angle to the principal
tensile strain. This method gives quantitative results that
are accurate to within % 10%, and can be used to detect

static and dynamic strains in tension or compression. In

the case of turbine blades, stress concentration occurs around
the junction between the blade and the hub. Identification

of these stress concentration zones and their magnitudes are
easily done through stress coating techniques. Since the
stfess concentrations are usually 300% greater than the
overall figure,the brittle lacquer method indicates accuraﬁely
the value of the stress level} as well as the direction of

the principal stresses [16] .

A recent technique to be used in experimental
stress analysis is holography. The suc¢cessful application of
the holographic non-destructive inspection is due to Leith
-and Upatnieks [14]. The science of holography enjoyed an

active revival with the advent of the Lasar. Holographic
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techniques [15] provide a method of storing three-dimension-
al information on a two~-dimensional recording plane for
subsequent viewing of the object in its original three-
dimensional form. The recorded pattern called hologram

bears no resemblance to the original object, but nevertheless,
contains all the information about the object. The method of
interferometric holography, a technique whereby minute
surface deformations, in the order of microinches, induced
by various stressing methods, can be detected by comparing
each point on the surface with itseif, before and after
stressing. Interferometric holography appears to offer some
promise in the detection of weaknesses, unusual wear or
fatigue in turbine blades, however experimental implementa-
tion and fringe interpretation would be somewhat a time-
consuming process. An experimental set-up using holographic
techniques for measuring the deformation of a stressed

blade is shown in Fig. 3.

In all experimental techniques described pre-
viously, the prototype is stressed and tested. There are
methods such as photoelastic analysis where models are used,
rather than the actual object. Information on photoelastic

methods may be found in standard texts [13] on the subject.
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THE SLENDER BAR METHOD
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CHAPTER II

THE SLENDER BAR METHOD

2.1 INTRODUCTION

The analysis for a twisted-curved beam involves certain
added complication over that for the simple beam. When é
beam is twisted and warped, the cross-sections do not remain
plane. Unequal warping causes additional stresses (warping
stresses) that normally occur near the fixed end. Further, the
simple beam theory assumption that the flexural axis is the
locus of the shear centres, is not true for ﬁre—twisted beans.

Hence, the flexural formula

is no longer valid for curved beams.

Taking advantage of the fact that the stresses in the
direction of the blade axis are much higher than the stresses
in the direction perpendicular to the blade axis and employing
certain approximations, the stresses in a twisted blade could
be considered unidirectional. In this manner, a turbine blade
could be considered as a slender tube for the purpose of stress
analysis. The slender tube is then rep£esented by a curve
passing through the centroid of consecutive cross-sections.
This curve will have a double curvature because of the twist

in the blade and is represented through the following quantities.
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(i) Curvature defined by
1 _ae
p ds

where 0 is the angle to the tangent at a point

on the curve and §p is the radius of curvature.

(ii) Torsion defined by
1 _dn
T ds

where n is the angle between the binormals
at two points separated by a distance As on
the curve and T is known as the radius of twist

of the curve.

The stress analysis technique called the slender
bar method is described in detail in the following sections.
This analysis is useful for calculating the stresses and
deflections and also in obtaining the dynamic behaviour of the
blade under centrifugal field and fluid pressure. Shroud
restraint and root flexibility could also be included in

this procedure.

2.2 CURVES IN SPACE

2.2.1 Definition

A space curve is a locus of points whose coordinates

are functions of a single variable. Thus the coordinates
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of a point P on curve C, as shown in Fig. 4, are given by

a parametric equation of the type

r = r (s) (2.1)
where

r = rxi + ryi + rZE'

r, = fx (s)

ry = fy (s)

r, = £, (s)

s is a parameter chosen to be the length measured from a

reference point A  on the curve.

Since
| ax |
llm-—A—S—' = 1
As=0
. dx .
then 5 Way be defined as the unit vector along the tangent

to the curve.

2.2.2 The Principal Triad

At each point on the curve, a right-handed triad
may be defined, as shown in Fig. 4. The components of the

triad are:
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ES

FIG. 4 ELEMENT OF A CURVE IN SPACE SHOWING
THE POSITION VECTOR AND THE PRINCIPAL
TRIAD
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(1) T is a unit vector tangent to the curve at
the point P under consideration and defined
as positive in the direction of increasing s.

This is defined as

(2.2)

Qi o
15

T =

T is-called the unit tangent vector.

(ii) n is a unit vector normal to I, and defined

by

at .
.a.E = kn . (2.3)

n is called the unit normal vector describing
the directional change in T. k 1is a constant

to be defined later.

(iii) b is the unit binormal vector, and forms a right-

handed system with T and n. This is defined

by

b = 17xn (2.4)

The triad formed by these vectors is called the princi-
pal triad. The plane passing through P and perpendicular
to 1 is called the normal plane. The plane passing through

P and perpendicular to n is called the Osculating plane.
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For a twisted curve, the principal triad rotates about

T as the point P moves along the curve.

2.2.3 Curvature and Twist of a Slender
Bar

Eq. (2.3) defines both k and n. k is the magnitude
dt - ,

of the vector ag and is called the curvature.

The binormals to a set of points on a plane curve are
normal to the plane of the curve and are parallel to each

other along the curve.

For a curve twisted out of its plané} the binofmals
will continually change directions depending on the degree of
twist of the curve. The rate of change of direction of the
binormals defines the curve twist and is given by the

expression

X = lim -1 (2.5)

AS=O As

where n is the angle between two successive binormals shown
in Fig. 5, corresponding to an incremental displacement As

on the curve.

From Fig. 5, one can see that

Ab.n = |Ab]| = - q (2.6)
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FIG. 5 DIAGRAM SHOWING THE CHANGE IN BINORMAL
OF A TWISTED BLADE

22
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Substituting this in eq. (2.5) results in

X = “g 1 (2.7)

In order to determine the curvature k and twist ¥,
it is necessary to express them in terms of the position wvector

r . This is explained in the following.

From egs.(2.2) and (2.3)

a’r d’r

k = _— e (2-8)
das? ds?

Differentiating eq. (2.4)

db dt dn
&E T @ rRtI¥gs (2.9)
and using in eq. (2.7), it follows
. dn
X = -n.7TZXgz (2.10)
Differentiating eg. (2.3)
&’ dn
—= = _— 2.
ds?® k3 . (2.11)

The cross-product of egs. (2.3) and (2.11) gives
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a*r d°c dn
—= x = k% nx Is (2.12)
ds? ds? - S
Therefore
dr 3&*r adr —
= -—x— =-Ki.tx®8 (2.13)
S gs? ds?® ds

From egs. (2.10) and (2.13), it may be shown that

1 dr ad*r a‘r

ds? gs?

Egs. (2.8) and (2.14) indicate that the curvature k
and the twist yx can be determined by direct differentiation

of the position vector «r.

2.2.4 The Seret-Frenet Formulae

The Seret—Frenet'formulae are a set of equations
which relate the curvature parameters k and x with the
vectors, 1, n and b. The formulae are given below and
can be obtained from the derivatives of the components of

the principal triad.

;!1
i = kn ' (2.3)
db
s ~ ~xn (2.15)
dn
55 = ¥b - k7 (2.16)
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2.2.5 The Daraboux Vector

The motion of the principal triad T, n, b, whose
origin is a point P on a spatial curve C, consists of a
translation of P along the curve and the rotation of the
triad about P. The rate of rotation of the triad per unit
length of the curve is characterized by the Daraboux vector

2 and is given by

o]
i
QO
-1
-+
bl
)
+
D

L B (2.17)

By definition

dt
35 - Q XT==0 b+ Q

Comparing with eq. (2.3)

Qn = 0 (2.18)
and
Similarly,
dn
& =8%n =-or+a b

Comparing with eq. (2.16)

Q= x (2.20)
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Now, eqg. (2.17) may be written as

2@ = xt+kn (2.17a)

Consider another coordinate system Xx,v,z2 with unit
vectors i,j,k, respectively. Let the z-axis of the new
system be along the tangent to the bar, i.e., coinciding with
1 of the principal triad. Further, let x and y axes
coincide With the principal axes of inertia of the bar cross-
section. Then x and y axes lie on the n-b plane. The

new triad i,j,k is related to the principal triad by

i cos¢ sind 0 n
J. = -sin¢ cos¢ 0 b (2.21)
k 0 0 1 T

- -

where ¢ is the angle between the unit vectors n and i

of the two systems of axes.

w, the rate of rotation per unit length of the bar,

for the new triad i,j,k differs from Q by %g. That is,

= asé
w o= Q+ = k (2.22)
and
p = QX = k sing¢ (2.22a)
g = &_ =k cos¢ (2.22b)



27

- g—i - ——
r Q_ + 3= x + (2.22c)

where p,qg,r are the components of w along the new axes
X,¥:2. p and q are the x and y components of the

curvature and r is the twist of the bar.

2.3 SMALL DEFORMATIONS OF AN INITIALLY
CURVED BAR

In order to determine the drformation of a curved bar
under external loading, a system of local axes Xo,Vo,Zo,
with origin at Py, is used. This system of axes is defined
in Section 2.2.5 and is illustrated in Fig. 6a. The sub-
script 0 denotes the unstrained state. Only small deforma-

tions are considered in this analysis.

When the rod deforms, the axes xo,y0,20 will take a
new position, x,y,z shown in Fig. 6b. The z-axis is
taken tangentially to the strained axis of the bar. The
Xo—axis would have moved along the curve PP and taken the
position xot The x-axis is then defined to be perpendicular
to the z-axis in the plane of z-x;. The y-axis is chosen
such that it.forms with x and 2z an orthogonal set of

axes in the same sense as Xo,Y0,20-

As one moves along the curve the triad at P, rotates

at a rate given by wo, while the triad at P rotates at a

rate given by w.



FIG. 6a Zy FIG. 6b

unstrained axis
of the bar strained
axis of the bar

FPIG. 6 DIAGRAM SHOWING THE DEFORMATION OF
A BAR AXIS
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Under external forces, the bar is assumed to deform
slightly. Every element of the bar will undergo a small
translation PoP, given by the vector D, and a small rotation
given by the vector 6. The components of D in the
Xo0,Y0,20 system are defined to be u,v and w. The components
of rotation 6 defined on the same reference system are
%, B and vy. The triads through P, and P are related to'

each other by the rotation 6 and the relation is

i = io + 8 x i, (2.23a)
3 = Jo+ 8 x Jo (2.23b)
k = ko + 6 x ko (2.23¢)

The transformation equations expressing the relations

between the two triads are then

B -
i 1 v -8B io
il = |y 1 « jo (2.24)
k B -a 1 ko

The stretching of the bar could be considered as if
the point P is moving along the bar axis. For a unit rate

of stretching V , shown in Fig. 6, gi\}en by

V = V_+V (2.25)
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where V_ is the strain defined by

and zs is the translation of the x¢,v0,20 system represent-

ed by

= Vo + Wo XD (2.27)

Referring to the system xo,Y0,%Z0, the coordinates of
P are the displacements u,v,w. The direction cosines of
the tangent to the bar axis at P are, from eq. (2.24), B,
-a, 1. Because V is a unit vector along the tangent, these
direction cosines are also the projections of V along the

Xo,Y0 20 axes. Therefore
V = Bio =~ a Jo + ko

but, from egs. (2.25), (2.26) and (2.27)

V = Vp + (gow-rov)io +
+ (rou-pow)jo + (Pov-goulko +
du . dv . dw
tagsiot g ot gk
and
Vo = ko

These equations lead to a set of relations known as



the first set of Clebsch's equations and are given by

B = qow - rov + glsl (2.28a)

-0, = Trou - w + dv (2.28b)
0 Po dS -

0 = pov - gou + dw (2.28c)
. ds *

Following the same procedure for w, we have

w o= we + o (2.29)
where
_da 48, dy
W = gs Lot gslet g ko

The projections of wo, and @, upon the x,v,z

may be written, using egs. (2.24), as

wo = (potygo-Bro)i + (got+oro-ypo)j +
+ (rot+Bpo-age) k
and
=r = '(%Y% 830 i+ (EreTE 3D 5+
+ (%§+B§g —agg) k

Neglecting second order terms and denoting the change in

curvature and twist by

31

axes
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Ap = p - po (2.30a)
A = g - qo (2.30b)
Ar = r - r, (2.30¢)

and substituting in eq. (2.29) the values of Wo

and w_ results in

r
_ do
Ap = 'd? + ygo = Bro (2.313)
Ag = 8B - (2.31b)
q ds Xy YPo . -
Ar = %g + Bpo - ago (2.31c)

These equations determine the change in curvature and
twist, and are known as the second set of Clebsch's equations.
The first and second set of Clebsch's equations define
completely the deformation of the bar. They are, in fact,

the compatability equations.

2.4 EQUILIBRIUM OF AN ELEMENT OF
THE BAR

Fig. 7 shows schematically, the free-body diagram of
an element of the slender bar. The external forces applied
to the element are represented by means of a force F and a
couple M per unit length of the element. The components of F
and M referred to the principal triad are Fx,F ,Fz and Mx'

Y

ay'Mz’ respectively. The reactions at the ends of the element

are expressed by means of a force R and a couple T acting



FIG.

7 FREE BODY DIAGRAM OF AN ELEMENT

OF BAR
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at the centroid of the section.

The element under consideration is in equilibrium if

ar
F+aqg = 0 (2.32)
| ar
M+[T xRl + o= = 0 (2.33)

The reaction R is given by

R=R_i+R j+R_ k

and its derivative is

dr dr di dr dj dRrR dk
— = X — 4 2L — + 2 —
ds ds = * Rx ds * ds 4 + Ry as ' & k+ Rz ds
Since
ai
s T wuxzi = - gk + rj
dj
35 = WxJj =-xi+pk
dk
gs = exk =-pj+tai
therefore
d_}.i dRX de -
as = (G + R, - rRIL + (gg= + YR, - R +

dRrR
+ (zz= * PR, - aRk (2.34)
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Similarly one can write

aT d'rx dar
_— = (E’ + q'rz —rTy)_:; + (_lds + ::Tx - pTy)l +

aT
+ (g + PT, -aT )k (2.35)

Substituting eqg. (2.34) into eqg. (2.32) one gets

de

gt 9R, - TR, +F_ =0 (2.36a)
dr :

331 + rR, - PR, + Fy =0 (2.36b)
i |
-d—s-— + pRy - qu + FZ =0 (2.360)

Substitution of eq.(2.35)into eq.(2.33) results in

daT

x —
-a-s—— + qT - ITY - R _+ Mx =0 (2.37&)
daT
—Y-ds + rT - pT, - R, + My =0 (2.37b)
de
= * pTy -qT, + M, =0 (2.37c)

Egs. (2.36) and (2.37) are known as the Kirchoff's relations
which govern the equilibrium of a bar element. These six

equations contain nine unknowns Rx'Ry'Rz' Tx’Ty’Tz and p,q,r.
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Therefore, three additional relations between these quantities
are needed. These additional equations may be obtained from
the relationship between the bending moment and the curvature

given by

EI, Ap (2.38a)

Tx =

= EI_ A 2.38b
TY y A4 ( )
Tz = GJ Ar (2.38¢c)

Kirchoff's equilibrium egs. (2.36) and (2.37) and
Clebsch's deformation egs. (2.28) and (2.31) provide all
the information needed regarding the stress diétribution
and deformation of an element of slendef bar under external

loading.
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CHAPTER III

APPLICATIONS OF THE SLENDER BAR METHOD TO THE
STRESS ANALYSIS OF TWISTED BLADE

3.1 GENERAL REMARKS

Stress analysis of blades may be organized into

three major tasks. They are:

(i) The definition of the blade geometry.

(ii) The determination of applied hydrodynamic

and centrifugal forces.

(iidi) The determination of stress distribution in

the blade.

The determination of hydrodynamic and centrifugal
forces will be considered in this report as known quantities
since they represent a certain loading condition. To

define the blade geometxy one needs to:

(i) Choose a suitable system of reference axes.
(ii) Divide the blade into a number of sections.
(iii) Determine the area, the centroid, the moment of

inertia, as well as the principal axes for each

cross-section,
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(iv) Determine the radii of curvature and twist for

each section.

In the following sections, the procedures for
defining the blade geometry and the determination of the

stress distribution in the blade are explained in detail.

3.2 DETERMINATION OF THE BLADE GEOMETRY

3.2.1 Blade Reference Axes

To relate all the different aspects of the
problem, a global coordinate system is needed as reference.
. Any type of coordinate system could be used. In this
analysis a right-handed Cartesian system of axes are chosen,

such that:

(i) The Z~-axis is along the axis of rotation of

the blade and is considered positive in the

direction of flow.

(ii) The X-axis is normal to the Z-axis and passes
by the blade root.
(iii) The Y-axis is perpendicular to the plane

containing X and 2% axes such that the three

axes form a right-handed system.
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The definition of such a set of global axes is indicated

schematically in Fig. 8.

3.2.2 Definition of the Blade Axis

To be able to apply the slender bar method, an
analytical expression of the blade axis is required. This

expression is in the form of the parametric equations

X = fx(s) (3.18.)
y = fy(s) (3.1b)
z = fz(s) (3.1c)

where s is the distance along the blade axis. Curve
fitting may be used to determine the functions £f_(s), fy(s),
and fz(s). It is shown in the appendix that for this type
of analysis Chebyshev polynomials possess the most suited
form for expressing these functions. This is mainly because
of the ease with which Chebyshev polynomials could be
differentiated and integrated. To determine s, the distance
along the blade axis, several points are selected along the
blade,as shown in Fig. 8. These points should be as many as
possible and preferably, though not necessarily, be equally
spaced. The coordinates of these poinés are obtained from
the design drawing of the blade. The length s at any

particular point is given by
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FIG. 8 FRANCIS TURBINE RUNNER SHOWING THE
GLOBAL COORDINATE SYSTEM
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o]
.

(3.2)

%]
I
o]
L e I 1}
v
0

where

= — 2 = 2 — 27
As, = /(xn+l Xn) + (yn+l yn) (2 Zn)

3.2.3 Definition of Cu»vature and Twist
of the Blade

At each point along the axis, the blade section
properties such as area, moments of inertia, principal axes,
etc.... are determined, so are the curvature k and twist

X. From eq. (2.8)

= W2 w2 w2
k = fX +fy +fz (3.3)
and from eqg. (2.14)
fl fl fl
X y z
x = | g £" £" (3.4)
k2 X Yy z
" 1" ns
fx' fy' fz

The principal triad is then given from .egs. (2.2),(2.3) and

(2.4) as

i+ £k (3.5a)
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= :_L_ w3 n o3 "
n " (£, 1 + fy it £ k) (3.5b)
] 3 k
- 1 t 1 1
b = = |f £ £ (3.5¢)
= x | ¥ y z
" " "
fx fy fZ

Now that the principal triad and the principal axes of inertia
are known at each section, the angle ¢ between the normal n
and the maximum principal axis of the section can be found.
The angle ¢ is then a function of s. The analytical
expression for the relation between S and ¢ can be found

using curve fitting.

The rate ® with which the principal axes rotate

as one moves along the blade can be found from €g. (2.22),

namely

w = P i+aq jtr k (3.6)
where

p = k sin¢

g = k cos¢

ro= ox+ 2
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Any change in ® will be caused by the applied bending stresses

as explained in Section (2.4).

3.3 THE EQUILIBRIUM AND COMPATABILITY
EQUATIONS

Since the loading on the blade due to hydrodynamic
and centrifugal forces do not produce bending, egs. (2.32) and

(2.33) become

dr
.a_g. = - E (3'7)
dr
3 tlkxR]l = 0 (3.8)

By analogy between stress and strain one can write

as
-a—s— = g (3.9)

- dp
It [k x 8] = 0 (3.10)
where § is the change in curvature and D is the displace-

ment.

To be able to perform the analysis numerically,
an integral form of the above four equations is
more convenient than a differential form. Thus, the above

equations may be written as



s
So
s s
T = To-Jlkx(R -/ F dt)] ds (3.8a)
S So
s
8 = B+ /S 8 as (3.9a)
So
s s
D = Do+ S [kx (80 + S & dt)lds (3.10a)
So So

where Ry,Ty,60,D0 are the initial values of R,T, 6§ and D
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respectively. Since k is the tangent unit vector

s
kds = 9 - 2, (3.11)
So - -
From eq. (3.7a)
s s ' s
S [k xRlds = 7 [k x (Ro -~ / F dt)] ds (3.12a)
Sy So' So

Applying Dirichelet formula, eq. (3.12a) -could be written

as

f [k x R] ds
So

(2 - %) x Ro -

S .
J o [&(s) - 2(t)] x F(t) dat  (3.12)
So

Similarly
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S
f[kX_Q_]dS=(2-&o)X_e_o+
So_ -
S
+ S [2(s) = &(£)] x §(t) dt - (3.13)
So

Substituting these values in egs. (3.7a), (3.8a), (3.9a) and
(3.10a), and resolving the vectors R,T,6 and D into three
components with respect to the principal axes, x, y, 2, we

have

s
Rx = R°x - f Fx ds (3.14a)
SoS
R = R - F_ ds 3.14b
Y v S{ y ¢ )
s
Rz = Roz - f FZ ds (3.14c¢c)
Sy
) s
Ty = Toy = (¥-¥o)Ro, +s{ (y-y (£))F_(t) dt (3.15a)
s
T = T - (%-x%xp)R - J (x-x(t))F _(t) a4t 3.15b
v oy ( 0) 0, . ( (t)) z( ) ( )
T, = To, - (X“Xo)Roy + (Y‘Yo)Rox +

S
+ f {[x—x(t)]Fy(t) - [y—y(t)]Fx(t)}dt (3.15¢)

So
0 = 8 S BT T ds (3.16a)
x = 0y + f v Tx
So
S
0 = EI._ T ds (3.16b)
v eoy + S{ v Ty

¢ = 907 + fs GJ T_ ds (3.16¢)
’ 0



-
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S

Dy = Do, + (y-Yo)eoz - s{ [y-y(t)JGJTz(t) dt (3.17a)
S

D, = Do, + (x—xo)eoz + sf [x-x(t)]GJTz(t) dt (3.17b)

D, =D, - (X-Xo)eoy + (y-YO)eox -

Z
s
- S{ {[x—x(t)]EIy Ty(t) -
- EyFy(t)JEIx T, (t)} at (3.17¢)

In egs. (3.15) ang (3.17) t is a dummy variable,

since the integrations are berformed between limitg, All the

Other variables which are not functions of t are considered

as constants in these integrations.

It is recommended that numerical techniques such
as Simpson's rule or Gauss-Legendre Quadrature [17,18] be
used when performing the integrations. The use of computer
facilities removes the tediousness of the method ang allows

the use of more points along the blade axis, which will then

lead to accurate results.

The twelve €gs. (3.14 to (3.17) are the relations
which govern the equilibrium andg compatability conditions of
the blade. These equations represent Clebsch's ang Kirchoff's
€quations given by egs. (2.28), (2.31), (2.37) and (2.38) in

a different form.
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The solution of these equations leads to the
determination of the reactions and deflections at any section
of the blade when the boundary conditions are specified. The
boundary conditions required in this analysis are (i) the
conditions at the blade root, and (ii) the condition at the

blade tip.



CHAPTER IV

ILLUSTRATIVE EXAMPLES
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CHAPTER IV

ILLUSTRATIVE EXAMPLES

To determine the feasibility and the application

of the slender bar method, two examples are considered:

(1) Determination of the stress distribution in
a beam initially bent in the form of a circular
arc due to a load normal to the plane containing

the arc.

(ii) The stress distribution in a helical spring

due to a tensile axial load.

4.1 CASE STUDY 1l: CURVED BEAM UNDER A
TRANSVERSE FORCE

Figure 9 shows a beam AB curved in the form of
a segment of a circle of radius a. The beam is of uniform
circular cross-section. 1It.is fixed at A and the other
end B, where 6 = y, is free. The concentrated load W at

B is normal to the plane containing the curved beam.

The position vector r of any point Py, on the

curved beam, as shown in Figure 9, is given by
r = £ i+ f i+ £ k (4.1)

where



FIG. 9 DEFORMATION OF A CURVED BEAM UNDER
A TRANSVERSE FORCE
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fx = a cosb
fy = 0

and
fz = a sin®

In the unstrained state, the curvature ko, and the

twist Xo are given by egs. (2.8) and (2.14).

kK, = %. (4.2a)

Xo = 0 (4.2b)

Since the beam has a uniform cross-section, the
principal axes of inertia of the rod coincide with the

principal triad. Therefore

¢ =0 (4.3)

In the strained state, due to deformation of the
beam, the curvature and tWist will change. The components
of the curvature and twist along the principal axes of the
deformed bar are given in terms of Vv the out-of-plane
displacement and vy the rotation about a tangent to the

beam axis. From Clebsch's egs. (2.28) and (2.31)

(4.4a)
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_ 1
g = 1 (4.4b)
- 1 av 1 ady
tE-, 3t an (4.4c)

Substituting the values of the curvature given by
Eqg.:. (4.4) into Kirchoff's equilibrium egs. (2.36) and (2.37),
the reactions at any section will be given, after neglecting

second order terms, by

RX = Wy ‘ (4.5a)
R = W " 4.5b
v ( )
_ W dv
R, = 2ap (4.5¢)
de .
ae——- + TZ - aW = 0 (4.63)
daT
aﬁz - ayWw = 0 (4.6b)
dTZ
a5 - TX = 0 (4.6c)

The boundary conditions are such that at the free
end, 8 = ¢

T =T =717 = 0 . (4.7a)

and at the fixed end 6 = 0
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v = 0 (4.7b)
dv _
a5 - 0 (4.7¢)

The simultaneous eqgs. (4.6a) and (4.6b) become

™ +T = 0
ae? x
and
ay +T_ = awW
dae? z
The solutions to the above differential equations
are
T, = -aW sin (y-9) (4.8)
and
T, = aW[l - cos(y=6)] (4.9)

Ty and T, may also be obtained from the change

in curvature given‘by eq. (2.38)

2
v, = EI - 1 dv, (4.10)
a? de?
= 1dv ,  1dy :

From egs. (4.9) and (4.11)
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a? o
vViay = —== of aw [1 - cos(y-8)] ase
3
= "-%-J- [6 + sin(y-6) - sin¥] (4.12)

From eq. (4.8) and (4.10)

d’v _ _a

ay = =
ae2 (BT 7%

Substituting this in eq. (4.12), one gets

[6 + sin(y-6) - siny] - g%i sin (y-6)

.d_i.‘_’-l-V:.v_q_ai

ae?

whose solution is

3
v = = [36 cos(y-6) ~ % sinbcosy] +

3 :
+ g%— [6 - sin® -~ siny + sinycos® - Lsinbcosy +

+

1pcos(y-8)] (4.13)

Using this in eqg. (4.12) one gets for the angular

displacement vy

- Wa? ., . 1 '
Y = B [4sinfcosy - L6cos (¥-0) +
Wa? . _. . 1
+ == [sin® - 1sinBcosy - i6cos(Y-6)] (4.14)

GJ
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The variation of the displacements V and y with

8 are shown in Figure 10 for a curved beam having Y = %

_ E
andG—m.

Once the displacements are known, the reaction
forces and couples can be determined at any section along the

rod.

X z y
R =W
Y ;

(4.15)
T = - a W coséb
X
T, = aw{l - cosb}

The maximum stresses occur at the fixed end,
8 = 0, and they are directly computed from the reactions as

follows.

o = leWa
shear, max d?
_  32wa y
%bending,max nd® (4.16)

The maximum principal stress is

" - 16V5 Wa
max rd?

where d is the diameter of the beam.
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4.2 CASE STUDY 2: HELICAL SPRING UNDER TENSILE
AXIAL LOAD

Figure 11 shows schematically a helical spring
under an-axial load W. The spring is made of a wire having
a uniform circular cross-section. The axis of the wire
describes a helix defined by the quantities a, and «ao,
where aqy is the radius of the cylinder on which the helix
lies and do is the angle between the tangent to the coil

and a plane‘perpendicular to the axis of the helix.

The position vector r of any point Py on the

spring, as shown in Figure 11, is given by

'r = fx i+ fy‘l + fZ k (4.17)
where
fx = ag cosH
£ = ap sinb
Yy
fz = ap O sindg

In the unstrained state, the curvature k, and

the twist yxo are defined by the guantities

ko cos? ao/a0 (4.18a)

Xo sinagy cosag/ag (4.18Db)



FIG. 11 EELICAL SPRING UNDER AXIAL ILOAD
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Since the spring wire is of uniform circular cross-
section, the principal axes of inertia of the wire and thé
principal triad will always coincide. Hence, ¢, the angle
between the principal axis of inertia and n of the princi-

pal triad, is equal to =zero.

From egs. (2.22), the components of wo are given

by -
Po = 0 (4.19a)
qo = cos?0g/as (4.19b)
o = sinapcoscg/ag - (4.19¢)

In the strained state,both the spring parameters
a and o will change. The incremental change in curvature

and twist will therefore be given by

Sdp= 0 (4.20a)
2

8q = (=25 " (4.20b)

or = §(8inacosa, (4.20c)

From egs. (2.37), the reaction couples are

T = 0 ' (4.21a)

2
Exa(c—":_“) (4.21b)

+J
]

sinccoso
GJ S (———=2)

~~
[
.
[\$]
(]
C

L
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From egs. (2.36), the reaction forces are

R_=0 (4.22a)
2 .
= cos“a sinacoso
Ry GJ 3 S ( 2 )
2
- EI sinacosad(f-‘?—z—ﬁ) (4.22b)
Rz = RY tana (4.22¢)

From boundary conditions, the spring reactions at

the end A are given by

Ry = W cosa (4.23)

Tz sina + Ty cosa = 0 ' (4.24)

Expressing the height H of the spring and ¥,
the total angle of the coil, in terms of o, the helix angle,
and &, the length of the wire, we have
H = & sina (4.25)
Y = = cosa (4.26)
For small deformations, the change in H and
are expressed as

8H = £ cosa 8a (4.27)



60

Sy = - é sina o -
2
- = coso Sa (4.28)
a?
Therefore,
da = 6H/L cosa (4.29)
'§§ = - (sina S6H+a coso 8y)/fa cos?a (4.30)
a
sindcosa _ SH . Y
6(———5————) = Ccoso Ta + sinao - (4.31)
2
cos“a - sy . SH
60—7;——) = cosa —; sina -— (4.32)

Substituting these values in egs. (4.22), (4.23) and (4.24)
W = —%E [(GT cos?0+EI sin?a) §H+ (GI-EI)sina cosa a SP](4.33)

—%5 [ (GJ-EI)sino coso 8H+(GJ sin?a+EI cos?a)a SY] = 0 (4.34)

The solution of these simultaneous equations may be written in

the form
s 2 2
_ 2 ,8in“a cos“q
SH = WL a“( BT + eh ) (4.35)
and Y = WL a(—l—-— -l—osina cosa (4.36)
GJ - EX ‘

s 2 2

2 ,8in‘aq cos“o,
a7 (gr— * &5
of the stiffness of the spring.

) in eq. (4.35) is the inverse

The quantity
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Substituting the values of 6H and 6y from
egs. (4.35) and (4.36) into egs. (4.30)to(4.32) and then

back into egs. (4.21) and (4.22), one gets

T, = 0 (4.37a)
TY = Wa sino (4.37b)
- T, = Wa cosa (4.37c)
R, = 0 (4.38a)
Ry = W coso . (4.38b)
R, = W sing (4.38c)

The sets of egs. (4.37) and (4.38) give the reaction forces and
couples at any section of the spring. From these forces and
couples, the stresses may be determined as follows, using

elasticity formulae.

32W sinaqg
md?3

Gdirect

(8 + a)

= EQE (% + a cosa)

o
shear Tasd

and the maximum Principal stress may be given by



c =

and the maximum shearing stress

T =
max

l6Wa
wd?

lowWa
a3

(1 + sina)
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CHAPTER V

CONCLUDING REMARKS

In this thesis, various techniqués for determining
stresses in a three—dimehsional curved blade are briefly
explained. Out of these, the slender bar method_is shown to
be a powerful tool for stress analysis of curved shapes such
as blades, springé, curved beams, etc. Although this method
is not as accurate as the finité element method, it renders
results which are sufficient for general design purposes.
Also, the slender bar method yields the most accurate closed
form solutions for the determination of stress distribution

in twisted bodies.

The basic assumptions of the slender bar method

are:

(1) The stresses in the direction of fhe_blade
axis are much higher than the stresses in the
perpendicular direction. Thus, under this
approximation, the stresses in a twisted blade can

be considered as unidirectional.

(ii) 'The blade is long enough so that the end
conditions do not drastically affect the stress

distributions.

The procedure of stress analysis using the

slender bar method consists basically of the following steps:



- 64

(i) The blade is divided into several sections. The
geometric properties such as area, centroid, moment

of inertia and principal axes, are determined for

each section.

(ii) The section centrxoids are joined by a smooth
curve, called the blade axis. Curve fitting is

used to provide an analytical expression for the

blade axis.

(iii) The blade geometry, as outlined in Chapter III,

are defined.

(iv) The blade loading condition is determined from

hydrodynamic consideration of the problem.

(v) Kirchoff's egs. (2.36) and (2.37) and Clebsch's
egs. (2.28) and (2.31) are solved for the reactions

and deflections at each section of the blade.

(vi) The stresses at each section of the blade are

then calculated from the numerical values obtained

in (v).

Two applications are given in Chapter IV of this
thesis, mainly to illustrate the procedure and to demonstrate

the feasibility of the method.

The shortcoming of the method lies mainly in the

fact that the blade is treated as a slender rod neglecting
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the effect of increase of flexural rigidity due to Poiéson's
effect. This beam type analysis, although good for long
blades, cannot be expected to give accurate results for low
aspect ratio blades. Such blades ought to be treated as a

pretwisted plate, rather than as a pretwisted beam.

The slender bar method has also the potential of
being used as a finite element within the body under considera-
tion. This might provide a powerful technique for the numeri-
cal analysis of blade stresses using comparatively low
computing time. However, this is subject to future investi-

gation and justification.
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APPENDIX

CURVE FITTING

The data will generally be in the form of discrete
points (xi, yi); i=1,2, ..., n. Usually, these points
are scattered, and they may or may not be equally spaced.
However, they may show a definite trend, i.e., the data might
belong to a function f£(x) which one seeks to know. The
difference r, between the calculated value y(xi) and
the given data Y; is a measure of the accuracy of the fit and

is called the deviation

r, = y(xi) -y (A.1)

The topic of curve fitting deals mainly with finding a

simple model y(x) in the form of a series
ylx) = I a; F;(x) (a.2)

which is as close as possible to the unknown function f(x).

Two basic criteria are available to minimize the error.

(i) The Least Square Approximation

In this case, one sums all the squares of the
deviation r; at all data points. This sum is then minimiz-
ed with respect to the unknown parameters a;. This results

in a set of equations called the "normal equations" which
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are solved for the parameters a;.

(ii) The Minimax Approximation

In this case, one chooses, among the class of
polynomials of degree m, the one which has the least E,

where E is given by

E = max |r,| (A.3)

Any textbook dealing with numerical analysis
[17,18,19] will contain information on numerical approxima-
tion of functions. The purpose of this appendix is to brief
the reader with the topic of curve fitting and to select
among the different models available the one which is more
suitable for representing the blade axis. Several mathemati-
cal models are used to perform the fitting; however, the best
suited model for a particular problem is determined by exper-
ience. In the present case of blade axis curve fitting,

Chebyshev polynomials are recommended.

In the slender bar method, a highly desired
feature, is the ability to differentiate and integrate the
fitted function egs. (3.3),(3.4), etc. This could easily be
achieved when Chebyshev polynomials are used. This model

has other advantages, such as:
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(i) The Chebyshev series has an evenly
distributed error in the range of interest

because of its "equal ripple property".

(ii) The Chebyshev series converges very rapidly,
thus a fewer number of terms are needed to

guarantee a given degree of accuracy.

(iii) When solving for the unknown coefficient a;
in eq. (A.2) it yields a well conditioned matrix.
Another point of consideration is the degree of

fit. Given a number of data points (xi,yi); i=1,2,...,n,
different orders of m for the approximating polynomial will
yield different values of the error r;. Evidently, as m
increases, the error will decrease. However, the error will
be zero, when m = n-1. 1In such a case, the fitted curve -
will be forced to pass through all the data points. This is
highly undesirable, since all the smoothing properties of
the least square approach will be lost, and the fit for the
intermediate points will be inaccurate. Therefore, it is |
recommended to try several values of m‘ as the order of fit,
and the maximum error in each case is plotted against the
value of m. The smallest value of the order m that gives
an acceptable level for the error is then chosen as the best

fit.



REFERENCES



(1]

[2]

[31

[4]

[51

[6]
[7]
[8]
[9]
[10]

[11]

[12]

[13]

[14]

69

REFERENCES

Kovalev, N.N.,"Hydroturbines Design and Construction",
+ranslated from Russian and edited by Israel Program
for Scientific Translation, Jerusalem, 1965,

"rthe Jet Engine", Edited by Rolls-Royce, Publication
Ref. T.S.D. 1302, second edition.

Massoud, M.P.,"Vectorial Derivation of the Equations for

Small Vibrations of Twisted Curved Beams", Trans.
ASME, Journal of Applied Mechanics, June, 1965.

Armstrong, E.K., and Stevenson, R.C., "Some Practical
Aspect of Compressor Blade Vibration", J. Royal
Aeronautical Soc., 1960.

DiPrima, R.C., and Handelman, G.H., "Vibration of
Twisted Beams", Quarterly of Applied Mathematics,
Vol. 12, No. 3, October, 1954.

Prager, W., "Theory of Structures", Brown University,
mimeographed note , 1944.

Eshback, W., "Handbook of Engineering Funamentals",
Wiley Engineering Handbook series, (Chapter 5).

Roark, Raymond J., "Formulas for Stress and Strain",
McGraw-Hill Book Co., New York.

Fluge, W., "Handbook of Engineering Mechanics",
McGraw-Hill Book Co., New York, 1962, (Chapter 35).

Holand, Ivan and Bell, Koblein, "Finite Element
Methods in Stress Analysis"”.

zienkiewicz, 0.C., and Y.K. Chung, "The Finite Element
Method in Structural and Continuum Mechanics",
McGraw-Hill Book Co., New York, 1967.

Ahmad, S., Anderson, R.G., and 7ienkiewicz,0.C., "Vibration

of Thick Curved Shells, With Particular Reference to
Turbine Blades", Journal of Strain Analysis, Vol. 5,

No. 3, 1970.

Dally, James W., and Riley, William F., "Experimental
Stress Analysis", McGraw-Hill Book Co., New York.

Leith, E., and Upatnieks, J., "Wavefront Reconstruc-
41

.
1 S P U . - e o & o e =2 e =
n With Diffused Illumination and Three~Dimensional



[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]
[23]
[24]

[25]

[26]

[27]

[28]

[29]

70

Optics", J. Opt. Soc. Am., Vol. 54, 1964, p.1295,.

Investivation of Applying Interferometric Holography
to Turbine Blade Stress Analysis, United Aircraft
Research Laboratories, Report J990798-13, February,
1970.

Drew, D.A., "Developments in Methods of Measuring
Stresses in Compressor and Turbine Blades on Test
Bed and in Flight", Published by the Inst. Mech. Engrs.

Mansour, W.M., "Introduction to Numerical Approximation
of Functions", Series of Lectures given at Sir George
Williams University.

Mansour, W.M., "Introduction to Finite Differences,
Interpolation, Differentiation and Integration",
Series of Lectures given at Sir George Williams
University.

Scheid, F., "Numerical Analysis", Schaum's Outline
Series, 1968. :

Timoshenko, S., and Goodier, J.N., "Theory of
Elasticity", McGraw-Hill Co., New York.

Timoshenko, S., "Strength of Materials", Part I,
D. Van Nostrand, Inc., New York, 1940.

McConnell, A.J., "Application of Tensor Analysis.
Green and Zerna, "Theoretical Elasticity".

Love, A.E.H., "A Treatise on the Mathematical Theory
of Elasticity", Dover Publications, New York, 1944.

Eisenhart, Luthexr Pfahler, "An Introduction to
Differential Geometry".

Streeter, Victor L., "Handbook of Fluid Dynamics",
1961, McGraw-Hill Co., New York.

Streeter, Victor L., "Fluid Mechanics", 5th Edition,
McGraw-Hill Co., New York.

Buider, R.C., "Fluid Mechanics", .Prentice-Hall, Inc.,
Chapt. 17, 4th Edition, New York, 1950.

Hoer, Kenneth L., "Writing Technical Report That
Communicate", A.S.E. Report No. 680195.



[30]

[31]

[32]

[33]

71

Gupta, J.P., "Experiment or Theory - Which Comes First",
E.I.C. Journal, June, 1972.

Armstrong, E.K., Crowcroft, R.S., and Hunt, T.M.,
"Fatigue Life of Compressor Blading", Proc. Inst. Mech.
Engrs. 1965-1966, Vol. 180, pt. 3l.

Petricone, Ralph Donald, "Vibration Characteristics

and Deformation Due to Centrifugal Loading of Low Aspect
Ratio Compressor Blades", Stevens Institute of Techno-
logy, Ph.D., 1970, Engineering, Aeronautical.

Tyrer, Ray, "Ceramic Coatings Measure the Complex
Stresses in Gas-Turbine Blades", SESA, Experimental
Mechanics, August, 1972.





