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ABSTRACT

Structural Analysis of Rectangular Bolted

Flanged Connections for Pressure Vessels

Lihua Xue

The ASME Boller and Pressure Vessel Code contains rules for
non-circular pressure vessels of unreinforced and reinforced
construction. These rules cover the sides, reinforcing ribs, and end
plates of such vessels. For bolted flanged connections of such
non-circular pressure vessels, which are employed extensively 1in

industry, however, no design rules are presently included i. the Code.

In this dissertation, the modeling and analysis of rectangular
bolted flanged connections employed in pressure vessels by uslng the
finite element method are presented. The results are compared with
experimental values from strain gauge measurements on test pressure
vessels and with analysis data derived by two approximate methods
presently used by pressure vessel designers. The relative advantages
and limitations of each method are discussed in terms of results

obtained.

Two types of rectangular bolted flanged connectlions are analysed,
one on a thick walled unreinforced pressure vessel, the other on a
rib-reinforced thin walled pressure vessel. Three types of gaskets are

considered for each of the flanged connections; O-gasket, strip gasket
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and full face gasket.

A modified structural model meshing scheme is proposed to fully
make use of the limited space of the pre-wave front matrix used in the
frontal method of the ANSYS program. The best possible numerical

results that can be offered by the program employed are then obtalned.

The parameter analysis of the rectangular bolted flanged
connections is also carried out via the convenient finite element
method. The influence of design parameters of the bolted flanged
connections on their stiffness and strength characteristics and the
design guldelines are thus established. The analysis results show that
the rectangular flanged structure with strip gasket 1ls very sensitive

to the bolt preload value.

Based upon comparison of the results by using the approximate
methods, the experimental work, and the finite element analysis, it is
concluded that a good correlation between the results from the three
different approaches has been observed. The analytic approximate
methods yield results on the conservative side. The finite element
analysis gives a complete picture of mechanical behavior of the flange

structures, and design guide lines without costly experiments.

—iv—




ACKNOWLEDGEMENTS

The author wishes to express her sincere appreclation to her
thesis supervisor, Dr. A. E Blach, for initiating the study toplec,
providing continued support and guldance throughout the course of this

research.

Thanks are due to the colleagues, faculty and staff at the
Mechanical Engineering Department, Computer Centre, and Composite
Material Research Centre of the Concordia University, for their

assistance and time.

The financial support provided by the assistantships and
fellowships funded by the NSERC grants and the Department of

Mechanical Engineering is gratefully acknowledged.

Finally, the author wishes to thank her family members for thelr

encouragement and understanding, specially her husband, Hong Su, for

his help and valuable discussions concerning the thesis work.

-v-



TABLE OF CONTENTS

Page

LISTOF FIGURES . . . « ¢ ¢ ¢« v ¢« o o o o o o o o o o o o o ix

LIST OF TABLES e x1

NOMENCLATURE T xi11

CHAPTER 1 INTRODUCTION e et e e e e e e e e e e e e e 1

1.1 Objective . . . . . ¢« « « ¢ o v v e e 1

1.2 Literature Review . . . . . . . . . . .« .. 3

1.3 Scope of the Theslis et e e e e e e e e e e e 10
CHAPTER 2 DEVELOPMENT OF RECTANGULAR FLANGED STRUCTURAL

MODELS FOR FIMITE ELEMENT ANALYSIS . . . . . . . . 12

2.1 General e e e e e e e e e e e e e e e e e e e e 12

2.2 Description of the Rectangular Flanged Structures . . 13

2.3 The ANSYS Finite Element Program C e e e e e e 20

2.3.1 3-D Isoparametric Elements . . . . . . . .. 22

2.3.2 Wave Front Procedure . . . . . . . . . . . . 23

2.4 Development of Analytic Models e e e e e e e 27

2.4.1 Structural Symmetry and Analytic Model . . . 28

2.4.2 Nodes and Elements Generation e e e e 28

2.4.3 Finite Element Model of a Flanged Structure . 33

2.4.4 Analytic Models of the Gaskets e e e e e 33

2.5 Other Modelling Considerations e e e e e e e e 38

2.5.1 Boundary Conditions G e e e e e e e e e 3.

2.5.2 Preload and Pressure . . . . . . . « . .. . 39

2.5.3 Material Properties e e e e e e e e e 39

2.6 Summary . . . .t . et e e e e e e e e e e 40

_vl-




TABLE OF CONTENTS (Continued) Page
CHAPTER 3 FINITE ELEMENT ANALYSIS OF RECTANGULAR

BOLTED FLANGED STRUCTURES e e e e e 41
3.1 General e e e e e e e e e e e e e e 41
3.2 Structural Behavior Under the Preload of

Tension Bolts e e e e e e e e e e e 42
3.2.1 O-gasket Flanged Connection e e e e e 42
3.2.2 Full Face Gasket Flanged Connection . 47
3.2.3 Strip Gasket Flanged Connection . . . . . . . 58

3.3 Mechanical Behavior of Rectangular Flanges
Under the Working Condition e e e e e e e . 60
3.3.1 Flange Structure Deflection . . . . . . . . . 61
3.3.1.1 O-gasket Flanged Connection . . . . . 61
3.3.1.2 Full Face Gasket Flanged Connection . 63
3.3.1.3 Strip Gasket Flanged Connection . . . 66
3.3.2 Flange Stresses e e e e e . 68
3.3.2.1 O-ring Gasket Flanged Connectlon . . 69
3.3.2.2 Full Face Gasket Flanged Connection . 71
3.3.2.3 Strip Gasket Flanged Connection . . . 74
3.4 Parametric Analysis of Flanges e e . 78
3.4.1 Flange Thickness Influence e e e e e 79
3.4.1.1 Structure With Full Face Gasket . . . 79
3.4.1.2 Structure With Strip Gasket . . . . . 82
3.4.2 Vessel Wall Thickness Influence e e e e 82
3.4.3 Influence due to Reinforcement Parameters . . 87
3.4.3.1 Rib Size e e e e e e e 87
3.4.3.2 Distance between Reinforcing Ribs . . 89
3.4.4 Bolt Preload influence e e e e e e 89
3.5 Summary . 92

- vii -




TABLE OF CONTENTS (Continued) Page

CHAPTER 4 COMPARISON OF RESULTS WITH ANALYTICAL APPROXIMATE
METHODS AND EXPERIMENTAL WORK . . . .o 83
4.1 General . . . . . .. 0 0 v e e e e e e e s 93
4.2 Analyticul Approximate Methods e e e e e e e 93
4.2.1 Equlivalent Circular Flange Method . . . . . . 94
4.2.2 Frame Bending Flange Design Method . . . . . 88
4.2.3 Numerical Result G e e e e e e e e e e e 106
4.3 Experimental Work . . . . . . . .. . . ... ... 111
4.4 Comparison of Results . . . . . .. . .. .. ... 114
4.5 Summary 117
CHAPTER § CONCLUSIONS AND RECOMMENDATIONS . . . . . . . .. 118
5.1 Highlights of Work and Conclusions e e e e e 118
5.2 Recommendations for Future Work . . . . . . . . .. 120
REFERENCES 122
APPENDIX A  STIFFNESS MATRIX OF ISOPARAMETRIC ELEMENT . . . . 126

- viit -




.10

.11

.12

.13

LIST OF FIGURES

A Rectangular Bolted Flanged Connection
Thick Wall Pressure Vessel

leinforced Pressure Vessel

Typical Phases of an ANSYS Analysis

3-D Isoparametric Element of a Hexahedron
with Eight Nodes e e e

Flow Diagram of Wave Front Procedure

One Quarter of Rectangular Flange .
Simple F;nlte Element Mesh Configuration
157 Elements Configuration

Finite Element Model of Thick Walled Vessel
Flange with 550 Elements and 873 Nodes

Finite Element Model of Ribt-reinforced Flange
with 540 Elements and 1004 Nodes e

Flange-Shell Structure with Strip Gasket
Flange-Shell Structure with Full Face Gasket

Deflection of Bolted Flanged Connection
with O-ring Gasket due to Bolt Preload Alone

Stress Profile of Bolted Flanged Connection
with O-ring Gasket due to Bolt Preload Alone

Deflection of Bolted Flanged Connection on
Thick Walled Vessel with Full Face Gasket
due to Bolt Preload Alone e e e e

Stress profile of Bolted Flanged Connection on
Thick Walled Vessel with Full Face Gasket
due to Bolt Preload Alone

Deflection of Bolted Flanged Connection on

Rib-reinforced Thin Walled Vessel with
Full Face Gasket due to Bolt Preload Alone

_ix-



FIGURE
3.6

3.7

3.8

3.9

LIST OF FIGURES (Continued)

Page
Stress Profiles of Bolted Flanged Connection on
Rib-reinforced Thin Walled Vessel with
Full Face Gasket due to Bolt Preload Alone Coe e 52
Deflection of Boltes Flanged Connection
with Strip Gasket due to Bolt Preload Alone N 56
Stress Profiles of Flanges on Thick Walled Vessel
with Strip Gasket due to bolt preload alone e e 87
Stress Profiles of Flanges on Rib-reinforced Vessel
with Strip Gasket due to Bolt Preload Alone e e e 58
Deflections of Bolted Flanged Connections
with O-ring Gaskets under Working Condition . . . . . 62
Deflections of Thick Walled Vessel Flanges with
Full Face Gasket under Working Condition e e e e 64
Deflections of Rib-reinforced Vessel Flanges with
Full Face Gasket under Working Condition e e e e 65
Deflections of Bolted Flanged Connections
with Strip Gaskets under Working Condition . . . . . . 67
Stress of Bolted Flanged Connections
with O-ring Gasket under Working Condition . . . . .. 70
Stress of Bolted Flange on Thick Walled Vessel
with Full Face Gasket under Working Condition . . . . . T2
Stress of Bolted Flange on Rib-reinforced Walled Vessel
with Full Face Gasket under Working Condition . . . . . 73 -
Stress of Bolted Flange on Thick Walled Vessel
with Strip Gasket under Working Condition . . . . .. 75
Stress of Bolted Flange on Rib-reinforced Vessel
with Strip Gasket under Working Condition e e e e 76
Maximum Stress of Bolted Flange on Thick Walled
Vessel with Full Face Gasket
due to Flange Thickness Variation e e e e e e 80
Maximum Stress of Bolted Flange on Rib-reinforced
Vessel with Full Face Gasket
due to Flange Thickness Variation e v e e e e e e e 81



FIGURE

3.21

=
o u & W N

L
© ® =

LIST OF FIGURES (Continued)

Maximum Stress of Bolted Flange on Thick Walled Vessel
with Strip Gasket due to Flange Thickness Variation .

Maximum Stress of Bolted Flange on Rib-reinforced
Vessel with Strip Gasket due to

Flange Thickness Varlatlion

Maximum Stress of Bolted Flange on Thick Walled
Vessel with Full Face Gasket dus to

Vessel Thickness Variation

Maximum Stress of Bolted Flange on Rib-reinforced
Vessel with Full Face Gasket due to

Vessel Thickness Varlation

Maximum Stress of Bolted Flange on
Rib-reinforced Vessel due to Variation

in Size of the Reinforcements e e e e e e e
Maximum Stress of Bolted Flange on

Rib-reinforced Vessel due to Variation
in Distance Between Relnforcements

Maximum Stress of Bolted Flanged Connections
with Strip Gasket due to Bolt Preload Varliation .

An Equivalent Circular Flange

Reinforced Non-clircular Pressure Vessel

Frame Bending Moments and Stresses v e
Flange Bending with Strip Gasket

Flange Bending with Full Face Gasket

A Schematic View of the Experimental Set-up

Strain Gages and Strailn Gage Analliser

Stresses in Unreinforced Vessel Flanges . . . . . .

Stresses in Rib-reinforced Vessel Flanges .

—xi-

Page

83

84

85

86

88

80

91
97
99
101
103
104
112
113
115

116




LIST OF TABLES

TABLE Page
2.1 Dimensional Parameters of Flanged Structure

on Thick Walled Vessel e e e e e e e e e e e 18
2.2 Dimensional Parameters of Flanged Structure

on Rib-reinforced Vessel e e e e e e e e e e e e 18
2.3 Material Properties of Flanged Structure . . . . . . . 40
3.1 Summary of Dt "lectlons of Bolted Flanged Connection

With O-ring Gasket due to Bolt Preload Alone . . . . . 45
3.2 Stress Summary of Bolted Flanged Connection

with O-gasket due to Bolt Preload Alone e e e e 47
3.3 Maximum Deflections of Bolted Flanged Connectlon

with Full Face Gasket due to Bolt Preload Alone . . . . 83
3.4 Maximum Stresses in Bolted Flanged Connection with

Full Face Gasket due to Bolt Preload Alone . .. . . . 54
3.5 Maximum Deflections of Bolted Flanged Connection

With Strip Gasket due to Bolt Preload Alone . . . . . . 59
3.6 Summary of Stress of Bolted Flanged Connection

With Strip Gasket due to Bolt Preiocad Alone . . . . . . 59
3.7 Summary of Deflections of Bolted Flanged Connection

with O-ring Gasket Under Working Condition . . . . . . 63
3.8 Maximum Deflections of Bolted Flanged Connection

with Full Face Gasket Under Working Condition . . . . . 66
3.9 Maximum Deflection of Bolted Flanged Connection

with Strip Gasket Under Working Condition . . . . . . 68
3.10 Stress Summary of Bolted Flanged Connection

With O-gasket Under Working Conditior . . . . . . .. 71
3.11 Stress Summary of Bolted Flanged Connection

With Full Face Gasket Under Working Condition . . . . . 74
3.12 Stress Summary of Bolted Flanged Connection

With Strip Gasket Under Working Condition . . . . . . . 78

- xii -




NOMENCLATURE

length of rectangular shape (m)
outside diameter (m)

width of rectangular shape (m)
width of gasket (m)

space between reinforcing ribs (m)
space between bolts in x direction (m)
space between bolts in y direction (m)
equivalent inside diameter (m)

strain matrix

Code constant
circle diameter bolt (m)

bolt hole diameter (m)

element elasticity matrix

Young's modulus of elasticity (Pa)
modulus of elasticity of gasket (Pa)
hub thickness (m)

moment arm for hydrostatic end force (m)
moment arm for gasket force (m)

moment arm for hydrostatic force under gasket (m)
hydrostatic end force (N)

gasket compression force (N)
hydrostatic force under gasket (N)
Jacobian matrix

ratio of the outside to inside diameter

element stiffness matrix

- xiit -




NOMENCLATURE (Continued)

dimension length (m)

dimension length (m)

length of flange in x direction (m)
width of flange in y direction (m)
distance between flange and rib (m)
width of reinforcing rib (m)

length of vessel in x direction (m)
width of vessel in y direction (m)
height of vessel in z direction (m)
gasket constant

corner moment (N-m)

bending moment (N:m)

external flange moment (N-m)
external flange bending moment (N-m)
wave front size

shape function of the element
internal pressure (Pa)

element displacement vector
elastic section modulus (m’)
section modulus of a rectangular section (ms)
thickness (m)

thickness of bottom plate (m)
thickness of flange (m)

gasket thickness (m)

- Xiv -




NOMENCLATURE (Continued)

thickness of reinforcing rib (m)

thickness of vessel (m)

displacement function of element (m)
coordinate displacement

displacement of the ith

coordinate displacement

coordinate displacement

bolt load on flange (N)

global
global

global
gasket

global
flange
global

global

coordinate (m)
coordinate value

coordinate (m)
constant

coordinate value
parameter of the
coordinate (m)

coordinate value

(m)
node (m)
(m)
(m)

of node {1 (m)

of node { (m)

ASME Code

of node i (m)

Code design factor for rectangular flange

gasket compression coefficient

stress

strain

strain

factor

vector

local coordinate value of node |

local coordinate value of node i

Poison ratio of flange material

Poison ratio of gasket material

-xv-



NOMENCLATURE (Continued)

local coordinate value of node |
stress (Pa)

bending stress (Pa)

frame bending stress (Pa)

flange stress (Pa)

stress vector

uniformly distributed loading (Pa)
inverse matrix of [-]

transposed matrix of [ -]

-xvl—




CHAPTER 1

INTRODUCTION AND LITERATURE SURVEY

1.1 General

Bolted flanged connections are widely employed in pressure
containing apparatus, such as pressure vessels and piping. The
avallablility of bolted flanged connections provides a convenient means
of Jolning together the various pieces of equipment which make wup
plants in our modern chemical and process industries. Bolted flanges,
therefore, constitute a very important part of all pressure containing

apparatus.

Most of the flanges used are of circular shape, such as used in
pressure vessels and piping systems, due to their favorable
geometrical configuration to retain pressure. They are avallable in a
variety of pressure classes and facing types. There are, however, many
applications in which circular pressure containers or condults cannot
be used for various reasons and non-circular pressure containers or
conduits are applied. The inlet nozzles on cyclones, for example, are
usually of rectangular shape as are the wood chip chutes on pulp
digesters; the headers on steam boilers are normally square; and the
inlet and outlet headers of air cooled heat exchangers are
rectangular. For such non-circular cross-sections, flanges are often

required, be it for access or for connection to other equipment.

The bolted flanged connections are part of pressure containing




systems. The analysis and design of bolted flanged connections are
governed by various pressure vessel codes and standards established in
the 1industrialized countries over the world. In north America, for
example, the ASME Boiler and Pressure Vessel Code [1] is used. The
ASME code contains extensive rules for the design of pressure vessels
and pressure vessel components, including rules for non-circular
pressure vessels, However, there are, no rules at present for analysis

and design of non-circular bolted flanged connections.

To investigate the best design for these non-circular bolted
flanged connections, a large number of parametric variation and
analyses have to be carried out. This work normally Iinvolves
evaluation of the mechanical behavior of non-circular flanges, such as
the deflection and stress distribution, under bolt-up and pressurized
working conditions. The evaluation of the bolted flanged connection
structures can, in general, be realized by employing approaches based
on elther existing codes and standards, modified analytical
approximation methods, numerical computation methods such as finite

element technique, or experiment validations.

This dissertation presents the analysis of rectangular bolted
flanged connections used in pressure vessels by using the finite
element method. Several structural models with wvarious boundary
conditions, with or without reinforcement, are established. Bolted
flanged connections with full and strip gaskets, as well as without
gaskets are considered In the modeling and analysis. Deformation and

stress profiles of rectangular flange connection structures are




computed using the finite element method. The numerical results are
compared with data from strain gauge measurements on rectangular
pressure vessels to show consistence and validity of the analysls
results. The relative advantages and limitations of the finite element
numerical method, the two design methods presented in chapter 4,are

discussed and compared with the results of experimental work.

The parameter analysis of the rectangular bolted flanged
connections, 1in terms of deflection and stress distribution of the
structure, 1is also carried out via the convenient finite element
method. The influence of design parameters of the bolted flanges on
their strength and stiffness characteristics and design guldellnes are
established. A modified structure meshing scheme is proposed 1in the
finite element modeling to fully make use of the limited space of the
pre-wave front matrix, used in the frontal method of the ANSYS program
[2], in order to obtain the best numerical results that can be offered

within the limitations of the program used.

1.2 Literature Review

Technical publications contaln a large number of bolted flanged
connection design papers, covering a wide varlety of 1investigations
concerning the analysis of such connections, using different
approaches. There are also several extensive 1literature reviews on
non-circular bolted flanged connections available. A brlef description

of the relevant literature is presented here.




As early as 1880's there were some ploneer literature
publications on flange design by Bach [3) and Westphal [4]. Bach’s
work [3) discussed deflections and stresses of plates of varlous
shapes; this formed the basis for the 'Bach-Method’ in flange design
which was used for many years. Westphal [4] first analyzed stresses in
loose flanges and in straight hub flanges, based on the theory of
elasticity. The analysis showed that the flange thickness can be

reduced, 1if the influence of a hub is included in the strength

calculations.

The theory of elasticity has been extensively employed in
analysis and design of bolted flanged connections. Waters and Taylor
[5] developed an analytical method, based on the theory of elasticity,
for ring and hub flanges with straight hubs. The deflection results
calculated were compared with test results to demonstrate good

agreement .

Based on the theory of beam on elastic foundation, Timoshenko [6]
proposed a simplified method for the analysis of bending of clrcular
rings. The maximum circumferential stresses for ring flanges and
longitudinal stresses for hub flanges can be calculated by using this

method.

Holmberg and Axelson [7] presented an analysis of stresses in
circular plates and rings, with applications to rigidly attached flat
plates and flanges, considering the loading at bolt force points as

well as gasket compression.




The original method of Waters [5), however, could not be used to
solve the problem of tapered hub welding neck flanges which became
popular and are now employed in pressure vessels and piping systems
for higher pressures and temperatures. To overcome the limitatlons, an
elastic analysis by Waters et al. [8] [9], based on the theory of a
beam on an elastic foundation and the deflection of flat circular
plates was proposed in 1937. This elastic analysis forms the baslis of
most of the flange design methods used in industrial countries, such

as the flange design rules of the ASME Boller and Pressure Vessel Code

[1].

The experimental determination of stresses 1s a very rellable
method for the verification of the results of structural analysis of
elements of pressure contain apparatus [10]. Experimental date provide
a base for many important empiric formulas employed in engineuring
practice. Experimental techniques also provides engineers with a
unique means in development and validation of wvarlous theoretlcal,
analytical and numerical methods. The major 1limitations of
experimental stress anaysis 1lie in relatively high costs, time
consuming work, and sometimes limited accuracy, depending on test

method and equipment employed.

Thum [11] was the first to employ strain gage measurement to
obtain stress distributions in hub flanges. He compared the measured
results to those calculated based on the theoretical and analytical

methods proposed by Timoshenko, [§] Waters,[8] [S9] and others. Based



on the comparison of experimental data with analytical values, Thum

preposed an improved design method for flange design.

Andreosso and Flesch [12] employed photoelastic methods as well
as strain gauge measurements to verify a simplified method in bolted
flange design. Stresses were measured at elevated tempretures and
compared with those of the simplified method and with the finite
element method. It has been shown that all the results obtained agree
very well and the simplified method can also be used to calculate the
variation in loads over a period of time, depending on thermal and
pressure loadings. Mckenzie et al [13] also used a two-dimensional
photoelastic test method to measure and analyse the stress and strain
distribution in steam turbine flanges. The photoelastlc test method

proved to be very useful in the design of flanges.

The paper by Spaas and Latzko [14] presented both experimental
and theoretical Iinvestigations aimed at quantifying the thermal
transient effects for light-water nuclear pressure vessel flanges. The
experiments were performed on the 1:4 scale model of the reactor
pressure vessel for the Dodewaadrd I unit (a 50 MWa BWR). Four studs
were equipped with 4 strain gauges each attached in the longitudinal
direction. The cross sections of the vessel and head flanges were
equipped with a total of 74 straln gauges and 70 Chromel-Alumel

thermocouples.




Boissent and Lachat [15] also used strain gauge measurements in
flange design and analysis. The flange was forged in a single plece.
It consisted of a cylinder, a cone of 1linearly varying thickness
(taper hub) and a flange plate with twelve bolt holes. The cylinder
was welded on to a sphere. The straln gauges were located inside and
on the outside surface of the flange. The authors calculated the
stress and deflection by the finite element method, on one hand
assuming the geometry and loading to be axisymmetric, and on the other
hand treating the flange as a three dimensional problem. The
theoretical results were confirmed by experiment results. The relative
difference in the strain results on the two meridians between the two

methods was found to be about 20 percent.

The development of computers with high speed and large storage
space, and the advancement of efficient numerical technique have
introduced new tools in engineering design and analysis. The finite
element method as a powerful computational numeric technique [16]
provides a very useful means in structural and continuum mechanics, as

well as In design of pressure containing apparatus.

Mckenzie et al [13] employed a finite element plane stress
program, which was developed by the English Electric Whetstone
Company, to analyse flange structures. The program uses triangular
elements and can solve a plane-stress problem. The flanges are
rectangular with metal-to-metal contact over the full flange faces.
The structure consists of a split cylinders, i.e., two semi-circular

halves bolted together along longitudinal (axial) flanges. Flanges




with different parameters, such as flange depth, flange width, bolt
location, and so on, were analysed. The calculated stress
distributions made by the finite element program were compared with
the experimentally (photoelastically) determined distributions. It
was shown that there 1s good agreement between experiment and
calculation when the depth of the flange exceeds the width, and the

bolt load acts within the inner half of the flange face.

Irons [17] developed a frontal solution program that assembles
and solves symmetric positive definite equations using only limited
computer working space, which is very much desirable in finite element
applications. The technique is more Involved than the standard band
matrix algorithms, but it 1s more efficient in the important case when
two or three dimensional elements employed have other than corner
nodes. The frontal solution technique is now widely used in many

finite element programs.

Gould and Mikic [18] employed the finite element method to
investigate the contact areas in bolted Jolnts, and compared the
calculated data with that of experiment results. It was found that the

contact areas are smaller that cuggested by previous publications.

Nerli and Bertonl [18] used the finite element method to calculate
the deformation of flange rings due to the influence of bolt loadings
and compared the computed results with that of experiment. Their
experimental apparatus provided for four (4) types of tests,

including the simulation of the real conditions of operation in the




presence of internal pressure, and of use with only tightening of the
bolts, as well as application of the load on the bolts with the model
constrained at the level of the stiffened tank. It was found that the
results derived from the flnite element method are very close to the

experimental values.

The standard flange design method used in the ASME Boiler and
Pressure Vessel Code [1] was established principally based on work by
Waters et al [8] [9], alded by a large number of contributions from
engineers and sclentists over several deccdes. This standard code
method has served as a valuable deslgn procedure and has been adopted

by many boller and pressure vessel codes all over the world.

The ASME Code contains extensive rules for the design of pressure
vessels and pressure vessel components, including rules for
non-circular pressure vessels of |unreinforced and reinforced
construction. These rules are given in Section VIII, Division 1,
Appendix 13, which covers the sides, reinforcing ribs, and end plates
of such vessels. There are, however, no design rules for non-circular

bolted flanged connections presently included in the ASME Code.

Two extensive literature searches of bolted flanged connection
publications were conducted by Cassidy and Kim [20], and Blach and
Bazergui [21], respectively. The literature searches indicate that
very little has been published on the subject of the non-circular
bolted flanged connections. The only type of non-circular bolted

flanged connection which has received some attention seems to be the




flanged Joint in split steam turblne housings. This type of bolted
flanged connection, important for steam turbine housings is, however,

not representative of the majority of non-circular flanges used.

Blach [22] recently presented a paper on non-circular bolted
flanged connections, in which two approximation design methods were
discussed. One of the approximation methods is based on an equivalent
circular flange and then uses all code formulas for the circular
flanges. The other method is called the frame bending flange design
method. The equivalent circular flange method has a limitation of
length-to-width ratio of 1.5, and is applicable only for unreinforced
non-circular pressure vessels where the frame bending stresses are
fully absorbed by the pressure vessel side plates. The second method
employs a combination of frame analysis for the ability of the flange
to retain its rectangular shape, and of bending of a long rectangular
flange section in a plane perpendicular to the frame. This method can
be used for large length to width ratio, and also for reinforced
pressure vessel. The fram. bending stresses can be found from

structural analysis.

1.3 Scope of The Thesis

The objective of this thesis is to model and analyse rectangular

bolted flanged connections used in pressure vessels, using the finite

10



element method with three dimensional elements, and to compare the
computed results with those obtained by experiments and with

calculated values using the approximate design methods.

Chapter 2 deals with the flnite element modeling of the
rectangular bolted flanged connections under investigation. Models for
three contact cases of the flanges are developed. and an improved
meshing scheme is proposed in the modeling. Due to symmetry only one
quarter of the vessels needs to be modeled, boundary and bolt

preloading conditions are selected accordingly.

In Chapter 3, the results of the finite element analysis of the
models are presented In terms of deflectlon and stress profiles. The
results of different cases are compared with each other and discussed
with respect to the strength and stiffness characteristics of the
flanges. A parameter study was also conducted for the unreinforced and

reinforced pressure vessels.

Chapter 4 presents a comparison of the results using the finite
element method with experimental results and the result of
calculations using the approximate methods. The relative merits and

limitations of the different methods are discussed.

Finally, conclusion and highlights of the investigation, and

recommendations for the future work are presented in Chapter 5.

11




CHAPTER 2

DEVELOPMENT OF RECTANGULAR FLANGED STRUCTURAL
MODELS FOR FINITE ELEMENT ANALYSIS

2.1 General

In order to design a noncircular bolted flange optimally in terms
of structural strength and material saving, stress distribution and
deflection profiles of the flanged structure are the most important
information needed. It 1s often impossible to do a complete stress
analysis of the nancircular flange only by using classical analytical
methods. An experimental determination of stresses, though costly and
time consuming, can only get surface stresses (through measuring
surface strains) at several limited points on a flange. The amplitude
and location of the critical stresses can only be estimated. The
finlte element analysis, on the other hand, provides a powerful means
in the evaluation of complicated bolted flanges by deriving complete
information of stresses as well as a deflection distribution within
the whole structure. The first step in the finite element analysis is

to generate a model in terms of nodes and elements of the structure.

In this chapter, two types of rectangular bolted flanges are
modeled for the finite element analysis. One is welded to a thick
wall pressure vessel the other to a rib-reinforced thin wall pressure
vessel. Three types of flange gaskets are considered; O-ring gasket,
strip-gasket and full face gasket. The procedure used to generate a

finite element model of the flange structure is presented.

12




A quadrant of the bolted flanged structural model is developed by
taking advé.ntage of the symmetry of the rectangular structure. The
finite element program ANSYS is employed as the tool for the flanged
structural analysis. The metallic vessel-flange structure and
nonmetallic gaskets are all modeled by using three dimensional
isoparametric elements with different material propertlies. In order to
use the 1limited size of wave front matrix and save CPU time, an
improved model meshing scheme is utilized to reorder the sequence of
model elements based on the properties of the wave front method. The
loading conditions due to preloading of bolts and pressurlzation of on
the vessel, the proper boundary conditions, and the material

properties of flanges and gaskets are also discussed in this chapter.

2.2 Description of the Rectangular Flanged Structures

Flanges constitute a very important part of all pressure
contalning apparatus. While most flanges are circular rectangular
flanges are often required in industrial equipment and on apparatus

having non-circular cross section.

A representative rectangular flanged connection structure, bolted
together with different types of gaskets, is lllustrated in Flgure
2.1. The bolted flange structure was designed and constructed for the
purpose of structural evaluation by using experimental techniques, to
be verified by approximate analytical methods and finite element
analysis. Three kinds of flange gaskets are considered in the finite

element modeling and analysis, that 1s O-ring gasket, strip-gasket and

full face gasket.

13
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The representative structural set-up consists of two types of
pressure vessels, bolted together. One part is a thick walled
section, the other is rib-reinforced, as presented in Figures 2.2 and
2.3, respectlively. The opposite ends of the flanges are rectangular
flat plates. The longitudinal dimensions of the two pressure vessel
sections are chosen based on elastic theory so that flange deflection

and stresses are not influenced by the deflection of the flat ends.

The basic data and dimensions of the two bolted flanged pressure
vessels, which are used for testing, modeling and analysis, are

summarized in Tables 2.1 and 2.2, respectively.

A parameter variations in the bolted flange structure is also
carried out to determine the sensitivity of mechanical characteristics
of the flange to design parameters, by taking advantage of flexlbility
of the computer numerical technique. The parameter variations in the
finite element model include the thickness of flanges, the thickness

of vessel shells, and the size and spacing of reinforcing ribs.
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TABLE 2.1

Dimensional Parameters of
Flange Structure on thick Walled Vessel

SYMBOL DESCRIPTION VALUE

lr Length of flange in x direction 428 mm
X (16.85 in)

1f Width of flange in y direction 328 mm
y (12.9 in)

1 Length of vessel in x direction 300 mm
vx (11.8 in)

Width of vessel in y direction 200 mm
vy (7.87 in)

1 Helght of vessel in z direction 200 mm
vz (7.87 in)

tf Thickness of rectangular flange 25 mm
(.984 in)

t Thickness of rectangular vessel 10 mm
v (.394 1in)

tb Thickness of bottom plate 25 mm
(.984 in)

b Space between bolts In x direction| 94 mm

X (3.7 in)

b Space between bolts in y direction]| 82 mm

Yy (3.62 in)
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TABLE 2.2

Dimensional Parameters of Flanged
Structure on Rib-Reinforced Vessel

SYMBOL DESCRIPTION VALUE
1f Length of flange in x direction 428 mm
X (16.85 in)
1f Width of flange in y direction 328 mm
Y (12.9 1in)
1 Length of vessel in x direction 300 mm
v (11.8 1in)
1 Width of vessel in y direction 200 mm
vy (7.87 in)
1 Helght of vessel in z direction 250 mm
vz (9.84 1n)
t.f Thickness of rectangular flange 25 mm
(.984 in)
t Thickness of rectangular vessel 4.8 mm
Y (.189 in)
tb Thickness of bottom plate 25 mm
(.984 in)
b Space between bolts in x direction| 94 mm
X (3.7 in)
b Space between bolts in y direction| 82 mm
y (3.62 in)
1 Width of reinforcing rib 75 mm
r (7.87 1in)
t Thickness of reinforcing rib 13 mm
r (.512 in)
b Space between reinforcing ribs 74 mm
r (2.913 in)
1f Distance between flange and rib 88 mm
r (3.465 1n)

19




2.3 The ANSYS Finite Element Program

The ANSYS software is a large scale general purpose finite
element program which has capabilities for 1linear and non-linear
static and dynamic analysis. It can handle small and large
displacements, as well as solve problems involving elastic, plastic
creep, and swelling effects. It utilizes the matrix displacement
method for the analysis and the wave front method for matrix reduction
and solution. Over a hundred linear and non-linear elements are

available in its library for modeling purposes.

There are basically three phases involved in the finite element
solution., Figure 2.4 shows a flow chart of the analysis methodology
for any type of problem. The pre-processing is generally carried out
using the Prep7 module either interactively or by inputting the model
data from CAD finite element modeling pre-processor. User interaction
in this module is done by using a command language specific to this
module. Any one of the different analysis options can be specified in
this module before the model is sent for analysis. After the analysis
stage, there are a number of post-processors available within ANSYS
for the plotting and sorting of the data. Postl is the post-processor
in which results are normally transformed into various coordinate
systems. Stress contour plots as well as displaced shape plots can be

generated within this post-processor.
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2.3.1 3-D Isoparametric Elements

In the analysis of complicated structures, isoparametric elements
are widely and successfully employed. For an isoparametric element,
the displacement function and the coordinate expression have not only
the same shape function, but also the same interpolation formula. The
advantages of using isoparametric elements, as compared with ordinary
elements such as the Lagrange element [28], can be summarized as
follows:

1. The use of isoparametric elements can guarantee the compatibility
of displacements between adjacent elements, 1n both local and
global coordinate systems, since the geometry of the edges of an
element will vary in the same way as the displacement function;

2. The use of lsoparametric elements allows any arbitrary geometry
to be closely approximated, thereby minimizing any error
associated with modeling of the geometry and without resorting to
the use of a fine mesh along the boundaries;

3. The commonly used Isoparametric elements, up to the cublc
element, have no internal nodes and are therefore more efficient

from the computational point of view.

The accuracy of the element stiffness matrix and the computation
analysis of complicated structures can thus be improved by employing
isoparametric elements. In this work, a three dimensional
isoparametric solid element is used in the modeling and analysis of
mechanical behaviors of the rectangular flange under bolt-preload and

pressure conditions.
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For a 3-D isoparametric element of a hexahedron with eight node,
as shown in Figure 2.5, the stiffness matrix of the element can be
derived through either a total potential energy or a virtual work

approach [16]. The general form of the element stiffness matrix can be

expressed as:

T
[kl=I[BillD][B‘ldV (2.1)

v
where [ B, ] is the strain matrix and [ D ] is the elasticity matrix,

The stiffness matrix of the hexahedron isoparametric element ls

presented in Appendix A.

2.3.2 Wave Front Procedure

The ANSYS program employs an in-core wave front procedure for the
finite element assembly and solution of the simultaneous linear
equations. The number of equations which are active after any element
has been processed during the solution procedure is called the wave
front at that node point [17]. For most structure analysis problems
the stiffness matrices are very sparse. The wave front procedure,
therefore, takes advantage of this property in reducing the

requirement on computer working space and CPU time.

Compared with bandwidth solution procedure, it has been shown
[28] that the wave front method is never less efficient. For the
majority of cases the wave front procedure is often much mnore
efficient, especially for problems in which elements with midside

nodes are used. The operations of a wave front solver can be split up
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into the following three logical parts:
1) prefront;
2) reduction and pre-constraints;

3) back substitution and post-constraints.

A brief flow diagram of the wave front procedure is 1illustrated in
Figure 2.6. In a wave front method nodes of all elements are scanned
to determine which element is the last to use each node. When the
total system of equations ls assembled from the element matrices, the
equations corresponding to a node which occurs for the last time are
algebralically solved in terms of the remaining unknowns and eliminated
from the assembled matrix in memory. The maximum number of equations
of the working matrix is the size of maximum wave front width

required.

The wave front method places a restriction on the problem
definition that the allowable size of the wave front depends upon the
amount of core storage available for a given problem. Moreover, the
computer time required for the solution procedure is proportional to
the square of the mean wave front size. Therefore, it is advantageous

to be able to minimize the wave front size for a given problem.

It can be shown from Figure 2.6 that the maximum wave front size
required is determined by the sequence in which the elements are
arranged for a specific problem. In other word, the ordering of the

elements is crucial to minimize the size of the wave front,

To reduce the maximum wave front size, the elements must be
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ordered for the assembly and solutlion so that the element for which
each node is mentioned first is as close In sequence to the element
for which it is mentioned last. In geometric terms, the elements
should be ordered so that the wave front sweeps through the model
continuously from one end to the other in the direction which has the
largest number of nodes. In this way, equations will be
processed and then deleted from the structural matrix as soon as

possible after they are assembled.

2.4 Development of Analytical Models

Two baslic i1ypes of rectangular bolted flange connections for
pressure vessels are modeled for finite element analyslis. One is an
unreinforced pressure vessels with heavy side wall which can resist
internal pressure without excessive deformations. The other is a
rib-reinforced vessels in which relatively thin rectangular panels are
reinforced with frames or ribs to carry the force due to internal
pressure. Both vessel are bolted together as shown in Figure 2.1. The
finite element models are developed using the same concept, one thick
walled unreinforced vessel bolted to a thin wall rib-reinforced

vessel.

Properties of the structure and the finlte element program are
employed to develop a proper analysis model in terms of working space
and CPU time. The structural symmetry of the rectangular flanges is
used in finite element modeling. The generation of nodes and elements

is established by utilizing the properties of the wave front method.
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2.4.1 Structural Symmetry and Analytical Model

It 1s easy to see that the rectangular bolted flanged structure
is symmetric about its center, as shown in Figures 2.2 and 2.3. For a
symmetric loading condition, such as bolt preloading on the flanges
and internal pressure loading on the wall, the deflection and stress
of the linear system will be also symmetric about the same center. In
order to save computer working space and time, only one quarter of the
bolted flanged vessel structure, therefore, need to be considered in

the modeling.
A three dimensional thick shell structure as one quarter of the
bolted flange-shell region, as well as the coordinate system, is shown

in Figure 2.7.

2.4.2 Nodes and Elements Generation

The initial work with a coarse mesh model of 35 elements is shown
in Filgure 2.8. The purpose to use the simple model is two fold: one is
to check ANSYS software package to see 1f it ylelds reasonably
accurate results; the other is to establish a baseline of results for
further comparison with other schemes and methods corresponding to the
same rectangular structure under the same bolt-up and pressure loading

conditions.

It has been found that the model of 35 elements is too coarse to
yleld a smooth result profile and can not simulate gaskets between the
flanges elther. A model of 157 elements with an extra layer of

elements representing the gasket is then generated as shown in Flgure
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Figure 2.7 One Quarter of Rectaigular Flange
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Figure 2.8 Simple Finite Element Mesh Configuration
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Figure 2.9 157 Elements Configuration
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2.9, This model ylelds a reasonably accurate displacement profile. But
it does not permit to simulate the uneven bolt-up pressure exerted
onto the flange-gasket assembly, nor the stiffening ribs of a

reinforced pressure vessel.

In order to properly simulate the varlous gasket configurations
and the flange-bolt interaction, more elaborate meshed models with up
to 550 elements were used subsequently. The final number of elements
used in a model differ for different types of gaskets simulated, and
conflgurations of pressure vessels investigated: unreinforced thick

walled vessel or rib-reinforced thin walled vessel.

As the size of a model is increased, the major challenge to the
structural modeling is the limit of the maximum size of wave front
matrix provided with respect to the software and computer. The
limiting pre-wave front matrix in the ANSYS package in the VAX 8530 at
Concordia University was 200x200. With limited maximum wave front
size, the elements and nodes of a model should be generated with
respect to certaln a scheme, as discussed in section 2.3.2, such that
the best possible (finest) mesh can be used within these limitations

and thus improved results can be obtained.

The Iimproved models of the bolted flange structure in Figures 2.2
and 2.3 are modeled based on the "one sweep" scheme presented in
section 2.3.2. The maximum wave front size required for the model is

n= 189, which satisfled the limits of n=200 available for the program.
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2.4.3 Finite Element Model of the Flmged Structure

The quadrant finite element models of two types of the rectangular
bolted flanged structures are shown Figures 2.10 and 2.11,
respectively. The thick wall flange model, as shown in Figure 2.10, is
modeled with 973 nodes and 550 3-D isoparameter elements. The flange
thickness is 25mm and the shell thickness is 10mm. The finite element
model of the reinforced flange structure, as shown in Figure 2.11, has
1004 nodes and 540 elements. The flange thickness is also 25mm;
however, the shell thickness is only 4.8mm. The rib size of dimension
is 75mm X 13mm. The distance between the ribs is 56mm. The thlckness

of the bottom plate is 25mm (1 in) for both flange structures.

2.4.4 Analytic Models of the Gaskets

In order to analyse the deformation and stress of bolted flange
connection structures more realistically, the gaskets should be
included in the computation models. The finite element method has the
advantage of dealing with different materials in one model. In the
computation models used, two types of gaskets are considered in the
assembly of the bolted flanged connections, namely full face and strip

gaskets, as shown in Figures.2.12 and 2. 13.

The gasket is the heart of a bolted joint. It 1s essentially an
elasto-plastic material which is softer than that of the flange faces.
Under the application of a bolt load, the gasket deforms and fills up
irregularities on the flange face. In this condition, the gasket is
considered to be seated. When pressure is introduced in the pressure

vessel, and the flanges separate by a small amount at the gasket
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Figure 2.12 Flange-Shell Structure with Strip Gasket
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Figure 2.13 Flange-Shell Structure with Full Face Gasket
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location, the gasket should possess enough resilience to maintain

sufficient residual surface pressure in order to keep the Joint from

leaking.

The deformation of gasket material with respect to loading is
essentially nonlinear. After large deformation due to applying the
bolt preloanding, however, the deflection of the gasket with respect to
internal pressure is relatively small. With the presence of the bolt
preloading, the mechanical properties of the gasket materia) |is

approximated to be linear in modeling and analysis.

2.5 Other Modeling Considerations

The input parameters for the finite element models are
established based on the experimental setup for the two rectangular
flanged pressure vessels. The boundary and loading conditions
corresponding to the gquadrant flanged structural models, and the

materials employed are discussed in this section.

2.5.1 Boundary Conditions

The boundary conditions consist of the constraints at the
symmetric planes, and the constralnts on the interface surfaces of
flanges or gaskets according to the type of flanged connection
simulated. For a quadrant flanged model, as illustrated in Figure 2.7,
all nodal displacements on the central piane X0Z in Y direction should
be fixed. The nodal displacements on the central plan YOZ in X

direction, in the same way, are constrained.
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The constraints on the interface plane of the flange or gasket
are established according to the construction of different type of
gasket used by the flanged assemblles. The degree of freedom of nodal
points which are perpendicular to the interface plane of the flanged

connection are all constrained.

2.5.2 Preload and Pressure

The bolts employed in the flanged connection are 3/4-16 UNF with
a nominal diameter 19.05 mm (.75 in), made of SA-193-B7, low alloy
steel. A total of fourteen (14) bolts are used in the connection. The
preloading bolt forces used in the analysls are calculated based on
the preloading stress of the tension bolts and the tightening torques
on the bolts. Two different bolt forces are used in the computation,

namely, 62.3 KN (14000 1bf) and 83.0 KN (20000 1bf).

The bolt force is assumed to be evenly distributed within the
washer covered area, along the bolt line in the analytical models. The
bclt force is then apportioned to the individual nodes in the vicinlty

of the actual location of each bolt In the assembly.

The pressure applied within the bolted flanged apparatus is set
to be 2070 kPa (300 psi) for the testing, which was also used for all
analytical model analyses. The pressure loading is applied on all the

inner surfaces of the structural model.

2.5.3 Material Properties

The material of the flange, vessel and reinforcing ribs is made

of steel SA-516-70. The gasket must be strong enough to withstand the
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bolt pre-load without crushing or extruding out. The gasket selected
is made of compressed asbestos.
The mechanical properties of the flange structure and the gasket

are listed in Table 2.3.

TABLE 2.3

Material Propertlies of Flanged Structure

SYMBOL DESCRIPTION VALUE

E, Modulus of elasticity of 2.0x10'" Pa
flanged structure (29x106 psi)

v, Polson ratio of flanged 0.3
structure

Eg Modulus of elasticity of 5.5x107 Pa
gasket material (7.9x103 psi)

v Poison ratio of gasket 0.32

9 material

2.8 Summary

Finite element models of rectangular flange structures are
developed in this chapter. Two types of rectangular bolted flanged
connections are illustrated. The structural features and modeling
procedures are presented. The analysis program, 3-D isoparametric
element and wave front technique used for the finite element modeling
are discussed. A brief discussion on the gaskets behavior, the loading
types and materials, is also given. The detalled analysis of the
bolted flange structural models will be discussed in the following

chapters.
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CHAPTER 3

FINITE ELEMENT ANALYSIS OF RECTANGULAR
BOLTED FLANGED STRUCTURES

3.1 General

The different structural models of the rectangular bolted flanged
connections, developed and presented in chapter 2, are numerlcally
analyzed in this chapter by employing the finite element method. The
mechanical behaviors of the bolted flanged structures are evaluated
and presented in terms of the structural displacement profiles and

stress distributions, under the specified loading conditions.

For bolted flanged structures, a pre-tension of the bolts should
be required such that a compression stress in the gasket in between
the flanges be generated and remain compressive under the operating
pressure loading in order to ensure a proper sealing. The pre-tension
in bolts is set-up by application of a preloading torque [38]). The
deflections and stresses of a bolted flanged connection structure are,
therefore, the results of the combined loading due to bolt pre-loading
and operating pressure loading. In the finite element analysis, two
types of loading conditions are consiuered in order to identify the
contribution of each loading to the deflection and stress of the
bolted structure, that is (1) preloading condition and (2) working

condition (combined preloading and pressure loading).

The two types of rectangular bolted flanged structures, that is

the thick wall and the reinforced thin wall flanged structures, are
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analyzed for the strip-gasket and full face gasket connections. The
maximum deflections and stresses due to various models and loadings
are identified. The computed results are discussed and compared with

respect to different structural models and loading conditlons.

A parametric study of the bolted flanged structures is also
carried out to show the relative sensitivity of the design parameters
on structure strength and stiffness characteristics. The parameters
considered in the study include the flange thickness, vessel wall

thickness, bolt preloading force and reinforcing rib size.

3.2 Structural Behaviour Under the Preload of Tension Bolts

Bolt pre-tension in flanged connections is required to pre-stress
the gasket for proper sealing. A pre-loading torque is usually applied
to a bolt to perform the bolt pre-tensioning. The flanged connection
structures under bolt pre-loading will yield certain deflection and
stress profiles. The pre-load defelections and stresses for certaln
flanged structures, for example, strip gasket flanges (as will be
shown later), are sometimes significant as compared with those due to

operating pressure,

3.2.1 O-ring Gasket Flanged Connection

In an O-ring gasket flanged assembly, as shown in Figure 2.1 (a),
an O-ring groove is usually machined into one of the flanges and the
O-ring gasket forms a seal against leakage. The two bolted flanges are
actually in contact with each other over the width of the flat faces.

This kind of bolted flange connection is nften utilized in case of low
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pressure vessels. In the finlte element model the O-ring gasketed
flanged structure is therefore modelled as metal to metal connection
at the flange interface. The flange face is constrained from moving

from the bolted region to the flange edges in the Z direction.

Two different values of preload bolt forces are applied for each
model, one is 62.3 KN (14000 1bf) and the other 83.0 KN (20000 1bf) per

bolt, the same as used for experimental tests.

A deflection profile for bolt force of 62.3 KN, in the YOZ plane
at X=0 where the maximum deflections and stresses are identifled, 1is
shown in Figure 3.1 (a). The maximum displacement of the flanged
structure In the Y direction is 0.0038 mm at node 21 of the flange
model, while the maximum displacement in the 2 direction is -0.0063 mm
at node 27, where the bolt force is applied. Figure 3.1 (b) shows the
deflection profile of the flange when the bolt force changed to 89.0
KN. The maximum displacement in the Y direction is 0.0054 mm also at
node 21, In the Z direction the maximum displacement is 0.009 mm at

node 27 of the flange model.
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The stress profile for the bolt force of 62.3 KN is shown in
Figure 3.2. The maximum tangential stress ¢xmax is -22 MPa, while the
maximum longitudinal stress czmax 1s -55 MPa. The maximum stresses
corresponding to bolt force of 83.0 KN are O maxs ~32 MPa and ¢ =

Imax

-78 MPa at the same locations as for the 62.3 KN blt force.

The deflectlons and stresses results of the O-ring gasket flanged
structure under the preload bolt force only are summarized in the

Tables 3.1 and 3.2, respectively.

TABLE 3.1

Summary of Deflections of Bolted Flanged Connection
With O-ring Gasket Due to Bolt Preload Alone

mm
direction Y 2
node # 21 24 27 21 24 27
F1 0.0038 |[0.0025 [(0.0028 |~0.0024|-0.0054|-0.0063
» »
Fe 0.0054 |0.0036 | 0.004 |~0.0034|-0.0077( -0.009
» -

F1- 62.3 KN.
F'; 83.0 KN.

* denotes the maximum value
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TABLE 3.2
Stress Summary of Bolted Flanged Connection With
O-ring Gasket Due to Bolt Preload Alone

MPa
element # 15 17 18 19
ol - 22.2 | - 22.2 13.1 2.28
F1
L 51.4 | - 54.8 32.3 3.37
L% B 31.7 - 31.7 18.7 3.26
F2
cz - 73.5 - 78.3 46 4.8
F1= 62.3 KN
F2= 89.0 KN

oxs tangential stress

o= longitudinal stress

It can be seen from the analysis results that for the O-ring
gasketed flanged connectlon with flat faces, the major displacements
and stresses due to the preload bolt force are all around the bolt
areas. There are only insignificant displacements and stresses along

the vessel shells.

3.2.2 Full Face Gasket Flanggd Connection

This type of flange structure is also called a flat-face flange.
In the finite element model the gasket 1s modelled as a layer with a
different modulus of elasticity from that of the flange. The top
gasket face In Z direction 1s fixed, while the bottom face of the
gasket is connected with the whole face of the flange. Both thick wall
and reinforced thin wall structures are analyzed for the bolt

preloading of condition,

The deflection profiles in the YOZ plane at X=0 for the thick
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wall structure, for bolt forces of 62.3 KN and 89.0 KN, are presented
in Figures 3.3 (a) and (b), respectively. For the bolt fcrce of 62.3
KN the gasket has the maximum displicement of 0.032 mm at node 7 in
the Y direction. The maximum displacement of the flange 1n the Y
direction is 0.017 mm at node 38. The maximum displacement in 2Z
direction is -0.061 mm at node 21. For a bolt force of 83.0 KN, the
maximum displacement values of the same structure model are
proportionally increased and with the same profile, as summarized in

Table 3.3.

Figure 3.4 shows the stress profile of the thick wall structure
with full face gasket under bolt pre-load alone. For a bolt force of
62.3 KN, the maximum gasket stresses are ¢ = ~-5.92 MP2» and ¢ =

Xxmax ITmax
-14.98 MPa. The maximum flange stresses are T -54.6 MPa» and
 max - -60.2 MPa. When a bolt force of 89.0 KN is applied, the stress

level is also increased proportionally as shown in Figure 3.4 and

Table 3.4.

The deflection profiles of the reinforced thin wall structure
under the bolt forces of 62.3 KN and 89.0 KN are shown in Figures 3.5
(a) and (b). It can be seen that the maximum gasket displacements
occur all at node 7. The maximum displacement of the flange in the Y
direction 1s at node 31 and in the Z direction at node 21, as
summarized in Table 3.3. The stress distributions of the reinforced
thin wall flanged structure due to bolt pre-load alone are shown in

Figure 3.6 and the maximum stresses are listed in Table 3.4.
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TABLE 3.3

Maximum Deflections of Bolted Flanged Connection With
Full Face Gasket due to Bolt Preload Alone

mm
thick wall model reinforced shell model
locatlion]| gasket flange gasket flange
é 0.032 0.0346
F y
! 5, - 0.061 - 0.0614
é 0.0456 0.0495
F y
2 5 - 0.0865 - 0.0877
F1= 62.3 KN
Fz' 89.0 KN

ay- deflection in Y direction
62= deflection in 2 direction
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TABLE 3.4

Maximum Stresses in Bolted Flanged Connection With
Full Face Gasket Due to Bolt Preload Alone

MPa
thick wall model reinforced shell model
location gasket flange gasket flange
ol - 6.27 - 54.6 - 8.33 - 16.96
F
! o,| - 14.55 - 60.19 - 14.7 - 35.76
o - 8.46 - 78 - 8.57 - 24.23
F X
2 o | - 212 - 85.98 - 21.68 - 51.1
F1- 62.3 KN
Fz' 89.0 KN

cx- tangential sresses
o, " longitudinal stresses

It is clear that the displacements ard stresses of the full face
gasketed flanged structure due to bolt force alone are similar to that
of the O-ring gasket. The large displacements and high stresses are
found in the flange, in vicinity of the bolts, only insignificant

values are found in the vessel shells.

A comparison of the results of the structures with metal to metal
interface (O-ring gasket) and full face gasket shows that the
deflections of the gasket due to bolt force is significant because of
the relatively low value of modulus of elasticity of the gasket. The
gasket therefore introduces an additional displacement to the whole

flange structure in the Z direction.
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3.2.3 Strip Gasket Flanged Connection

The rectangular bolted flanged connections assembled with a strip
gasket, as shown in Figure 2.1 (c¢), is analyzed for bolt preload
alone. In the finite element model, the strip gasket is modelled by
using elements with a different modulus of elasticity from that of the
flange. Only the top face of the strip gasket is fixed i{n the 2
direction. Both thick wall and reinforced thin wall structures ere

evaluated.The bolt force employed is 44.4 KN.

The deflection profile of the thick wall structure in the YOZ
plane at X=0, due to bolt preload alone, is shown in Figure 3.7 (a),
while the deflection of the reinforced thin wall structure is shown in
Figure 3.7 (b). The maximum values of deflections for both structures
are listed In Tabie 3.5. In contrast to the flat-face cases, it can be
seen that the deflections in the vessel shells for both structures are

larger than those of gaskets and flanges.

The stress profiles of the strip gasket flanged connections for
thick and reinforced thin wall structures are illustrated in Flgures
3.8 and 3.9, respectively. The maximum stress values at different
locations are summarized in Table 3.6. The results show that the
maximum stress values, due to bolt preload alone, are no longer in the
gasket as compared with those of the O-ring gasket and full face
gasket cases. For the thick wall structure the maximum tangential

stress 1s found in the flange (-71.5 MPa). The maximum longitudinal
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stress of 113 MPa is located in the shell, while for the reinforced
thin wall structure both maximum tangential and longitudinal stresses
are all located in the vessel shell, valued as 21.2 and 130 MPa

respectively.

TABLE 3.5

Maximum Deflections of Bolted Flanged Connection
With Strip Gasket deu*p+25Xto Bolt Preload Alone

mm

Thick wall model Reinforced shell model

location| gasket flange gasket flange

8 max - 0.142 - 0.339 - 0.088 - 0.256
TABEL 3.6

Summary of Stresses of Bolted Flanged Connection
With Strip Gasket deu to Bolt Preload Alone

. MPa
iocation gasket flange bolt circle shell
thick o, - 15.74 - 70.7 - 71.48 44.1
wall
model c, - 40.21 - 15.8 - 34.68 113. 16

reinfor-{¢ - 12.3 - 18.2 - 20.3 21.2

ced wall =
model o, - 31.5 - 7.53 -14.7 130.7

o= tangentlial stress

o = longitudinal stress
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It is obvious that the bolt preload on the strip gasket flange
connection generates a bending moment in the flange which in turn
ylelds a large deflection and high stresses in the rectangular vessel
shell. The stresses in the vessel shell are larger than those in
flange and gasket. It is also observed that the structure with a strip
gasket may needs a tapered section in order to reduce high stress on

the flange and in the hub.

The parametric study of bolt force influence on the rectangular
flanged structure with strip gasket will be discussed in section

3.4.4.

3.3 Mechanical Behavior of Rectangular Flanges
Under Working Condition

The working condition applied to the rectangular bolted flanged
vessel structure is the combined loading due to both bolt preload and
internal pressure in the vessel. The pressure value utilized in the
analysis is the same as the one used in the tests, namely 2,070 KPa

(300 psi).

In this section, for the purpose of easy comparison, the
stiffness characteristics of the structure, under the combined working
loadings, are first discussed in terms of deflections using various
gaskets. The strength properties of the structures, presented as
stress profiles of all the bolted flanged connections, will then be

compared and discussed after the stiffness prcperties.
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3.3.1 Flange Structure Deflections

Under working conditions, the 3.2 mm thick gasket is compressed
due to the bolt forces applied on the two flanges. The flange thus has
a displacement along the bolt force direction due to the deformation
of the gasket. The rectangular bolted flanged vessels also have
additional deflections due to flange bending moment and frame bending

caused by pressure effect.
In the following sectlons, the stiffness characteristics of the
rectangular bolted flanged connection, under working loadings, are

evaluated for three types of gaskets.

3.3.1.1 O-ring Gasket Flanged Connection

The displacement profiles of the O-ring gasket flanged connection
under combined working loading conditions in the YOZ plane at X=0, are
shown in Figures 3.10 (a) and (b), for an internal pressure is of
2,070 MPa (300 psi). Figure 3.10 (a) is for a bolt preload of 62.3 KN
(14000 1b), and (b) for a bolt preload of 89.0 KN (20000 1b). Table

3.7 summarizes the deflection results of the analyslis model.

As compared with the results of bolt preload only, shown in
Figure 3.1, it is easy to see that the internal pressure dominates the
structural deflection, while the influence of the bolt preload is
limited. The rectangular vessel shell with the O-ring gasket in the

flanged connection ylelds a large deflection produced by the bending

moment due to the internal pressure.
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moment due to the internal pressure.

TABLE 3.7

Summary of Deflections of Bolted Flanged Connection
With O-ring Gasket Under Working Condition

mm
direction Y A
node # 22 a3 40 22 33 40
F1 0.133 | 0.276,| 0.13 0.018 | 0.013 [0.0453,
F2 0.134 | 0.277,| 0.13 0.018 | 0.012 |0.0447,
F,- 62.3 kN
F,- 89.0 KN

* denotes the maximum value

3.3.1.2 Full Face Gasket Flanged Connection

The deflections of the thick wall vessel structure with a full
facegasket flanged connection under working loading conditions are
shown in Figures 3.11 (a) and (b), for different bolt preload values.
It can be seen that the internal pressure agaln domlnates the

structural deflection as similar to the case of the O-ring gasket.

Figures 3.12 (a) and (b) show the displacement profiles of the
rib-reinforced thin wall vessel structure with full face gasket
flanged connection under working condition. As compared with the case
of bolt preload alone in Figure 3.5, it is observed that the internal
pressure has a dominant influence on the structural deflection. The

large deflectlion is induced in the vessel wall between the flange and
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wall model, 1is relatively small, due to the effects of rib

reinforcement.

The maximum deflect:ons of the model with full face gasket

connection are summarized in Table 3.8.

TABLE 3.8

Maximum Deflection of Bolted Flanged Connection
With Full Gasket Undef Working Condition

mm
thick wall model reinforced shell model
location gasket flange gasket flange
F1 0. 154 0.313 0.117 0.135
F2 0. 168 0.32 0.132 0.14
\F,- 62.3 KN
Fz' 89.0 KN

3.3.1.3 Strip Gasket Flanged Connection

The deflection profile of the thick wall vessel structure with a
strip gasket connection is shown in Figure 3.13 (a), under working
conditions with a bolt preload of 44.4 KN and an internal pressure of
2,070 KPa. Figure 3.13 (b) 1illustrates the deformation of the
reinforced vessel structure with a strip gasketand the same oprating,
and bolt preload condition. The maximum deflections of both structures

are summarized in Table 3.9.

As compared with the results of the strip gasket due to the bolt

66



uoy31puc) BudJoy Japun siajsed didis YIm
suojjosuuc) paduerd pajlog jo suojjoelyed €1°€ 2mBid

2Jn3oNnJa3s
ITeM Uyl padJoyulay (q) 2an3onJd3s 1ieM JOIYL (®)

-
i L

™

|

|
I
!

!

1

!

!
L

-——— - ---'.._.__.L..__ - -

R R ekt s

—— e e . =y -

T

|
!
!
1
|
i
L
1

- e ey - -
|

= =7
/A=t
d. oA

67 -




preload alone in Figures 3.7+25X(a) and (b), it can be seen that the bolt
preload dominates the deflections in the gasket and in the flange,
while the def'lection on the rectangular vessel wall are influenced by
both bolt preload and internal pressure, this is different from the

cases of the O-ring gasket and the full face gasket flanged

connections.
TABLE 3.9
Maximum Deflection of Bolted Flanged Connection
With Strip Gasket Under Working Condition
mm
The structure The structure
with thick wall with relnforced shell
location gasket flange gasket Tlange
8 max - 0.0573 0.45 - 0.045 ~ 0.2985

3.3.2 Flange Stresses

The strength of rectangular flanged connections and vessels,
under working conditions, is evaluatec in terms of stress
distributions of the structures. In the same way as for deflection
analysis, the stress results are organized with respect to the

different types of gaskets used.
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3.3.2.1 O0-ring Gasket Flanged Connection

The distributions of tangential stress, o, of the rectangular
flanged vessel structure with O-ring gasket connectlion are illustrated
in Figure 3.14 (a) and (b), for bolt preloads of 62.3 KN and 89.0 KN
respectively. The intern.' pressure applied is of 2,070 KPa. The
stress profiles are shown in the YOZ plane at X=0 where the maximum
siress values are identified. Figures 3.14 (b) shows the longitudinal
stress profile L of the O-ring gasket flanged connection. Table
3.10 summarizes the stress results of the O-ring gesket structure

under the working loadlngs.

A comparison of the stress results with those due to bolt preload
alone in Figure 3.2 reveals that the internal pressure.dominates both,
tangential and longitudinal stress values, in the same way as in the
deflection results. The highest stress level is 171.9 MPa (24.9 ksli),

on the rectangular vessel wall along the longitudinal direction.
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TABLE 3.10

Stress Summary of Bolted Flanged Connection With
O-ring Gasket Under Working Condition

MPa
element # 6 12 19 22
o 75.3 72.5 - 56.4 74.5
F X
! o | -eo - 25.5 - 130.3 171.9
o 78.8 74.4 - B5.5 74.7
F X
2 o | -40 - 36.2 - 129 171.9
F1= 62.3 KN o tangential stress
F2= 89.0 KN cz= longitudinal stress

3.3.2.2 Full face Gasket Flanggg Connection

The tangential stress profiles o for the full face gasket
flanged structure with thick vessel wall are presented in Figure 3.15
(a) for both bolt preload values, while Figure 3.15 (b) shows the
longitudinal stress profiles c,- The stress proflles for the
reinforced thin wall vessel with full face gasket are shown in Figures
3.16 (a) and (b), for tangential stresses o, and longitudinal stresses
o, respectively. A summary of the stress analysis results 1is

presented in Table 3.11.

As can be seen from the stress results, the internal pressure
dominates the maximum stress levels of the flanged structure. The
gasket stresses are, however, mainly dependent on the bolt preload. It
alsc shows that the maximum stress is of 99.3 MPa (14.4 ksi) occurs on

the thick vessel wall along the longitudinal center 1line. In
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reinforced thin wall structure, however, the corresponding maximum

stress value reducesto 76.8 MPa (11.1 ksi).

TABLE 3.11

Stress Summary of Bolted Flanged Connectlon With
Full Face Gasket Under Working Condition

MPa
thick wall model reinforced shell model
location gasket flange gasket flange
¢ - 7.85 89.8 - 7.03 66.3
F X
! o,| -20.2 - 22.3 - 18 - 20.1
c - 10.4 99.3 - 9.6 76.8
F X
2 o,| -28.8 - 29.85 - 24.5 - 278
F,- 62.3 KN
Fz' 89.0 KN

o tangential stress

o~ longitudinal stress

3.3.2.3 Strip Gasket Flanged Connection

The profiles of tangential o, and longitudinal o stresses,
for the flanged thick wall vessel structure with strip gasket are
shown in Figures 3.17 (a) and (b), respectively. The bolt preload used
is of 44.4 KN, while the internal pressure applied is of 2,070 KPa.
The stress profiles are shown in the Y0OZ plane at X=0, where the
maximum stress values are identified. Figures 3.18 (a) and (b)
fllustrate the stress profiles for the reinforced thin vessel wall

structure with strip gasket connections. Table 3.12 summarizes the
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stress results for the strip gasket flanged structure under the

working conditlons.

A comparison of the stress results of the two structural models
with strip gasket shows that the maximum tangentlial stress o of the
thick wall vessel is of 107.8 MPa (15.6 kpsi). For the rib reinforced
thin wall vessel, this stress reduces to 28.6 MPa (4.15 kpsi),
shifting the maximum tangential stress value of 54.7 MPa (7.9 kpsi) to
the flange instead. For the longitudinal stress, the location of the
maximum stress levels for both vessels is similaras can be seen |irn

Table 3.12.

As further comparison with stress results due to bolt preload
alone, as shown in Figures 3.8, 3.8, and Table 3.6, it cen be observed
that the bolt preload has a strong influence on the longltudinal
stress c, for the rectangular strip gasket vessel structure. For the
thick wall case the maximum stress c, in the vessel wall due to the
combined working loading is 181.9 MPa (27.8 kpsi); while the bolt
preload alone contributes the stress of 113.2 MPa (16.4 Kkpsi). For the
reinforced thin wall case, the bolt preload contribution to the stress
level is 130.7 MPa (18.9 kpsi) out of the maximum stress of 185.9 MPa
(26.9 kpsi) under the working loadings, which is up to 704 of the

maximum longitudinal stress.
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TABEL 3. 12

Stress Result Summary of Bolted Flanged Connection
With Strip Gasket Under Working Condition

MPa
location gasket flange bolt line shell
thick |o - 17 84.57 - 39.8 107.8
wall 2
model T, - 43.3 - 30 - 35.76 191.9

reinfor-iec - 12.3 54.7 - 18.9 28.6
ced wall |-~
model c, - 31.45 - 1.86 - 18.3 185.9

c." tangential stress

c,- longitudinal stress

3.4 Parametric Analysis of Flanges

A preliminary parametric study of the rectangular bolted flanged
structures is presented in this section. The relative sensitivity of
the design parameters with respect to the structural properties Is
briefly discussed. The parameters considered in this study include the
flange thickness, vessel wall thickness, bolt preload, and rib

reinforcement parameters.

3.4.1 Flange Thickness Influence

The influence of the flange thickness values on maximum stresses
of the rectangular bolted connections is analyzed for both thick wall
and reinforced thin wall structures. The full face and strip gasket

connections are employed in the finite element models. The sizes of
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the flange thickness are varied with reference to the values used for

experiment (as discussed in Chapter 4), which are from 13 mm to 25 mm.

3.4.1.1 Structures With Full Gasket

The maximum stresses in the thick wall vessel structure with full
face gasket due to the variation in flange thickness are shown 1In
Figure 3.19. Both maximum tangentlal c, and longitudinal o, stresses
are found to be in the vessel wells. When the flange thickness s
decreased both o and o, stresses are Iincreased. Fligure 3.20
illustrates the changes of maximum stresses in the reinforced thin
wall structure with respect to changes in flange thickness. It can be
seen that the maximum longitudinal stress in the vessel structure |is
comparatively more sensitive to the reduction of the flange thickness.
When the flange thickness value is further reduced the stress on the

flange will become the maximum value.

3.4.1.2 Structures With Strip Gasket

The maximum stresses in rectangular bolted flanged vessels
employing a strip gasket with variation in flange thickness are shown
in Figure 3.21 for thick wall, and in Figure 3.22 for reinforced thin
wall vessels, respectively. It can be observed that the maximum
stresses will decrease when the f'lange thickness is increased; while

the changes in maximum longitudinal stress ¢, are relatively

unaffected.
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In a comparison of the results in Figures 3.21 and 3.22 for the
strip gasket and in Figures 3.18 and 3.20 for full face gasket, it can
be seen that the maximum stress of the vessel with strip gasket 1is
much more sensitive to flange thickness changes. In other words, the
maximum stress level is strongly related to the type of
gasketemployed. The vessel structure with strip gasket will ylelds a
larger stress value than other types of gasket when subjected the same

loading conditions,

3.4.2 Vessel Wall Thickness Influence

The ~hange of maximum stresses in the thick wall vessel structure
with full face gasket due to the variation in vessel wall thickness is
illustrated iIn Figure 3.23. It is shown that both tangential o, and
longitudinal o, maximum stresses are increased as the wall thickness
is reduced. Especially when the thickness value 1s less than 10 mm the
rate of change 1n stress increase in the vessel shell 1is very much
significant. On the other hand the maximum stress in the flange |s
much less sensitive to shell thickness change than that of the vessel

wall stress.

Figure 3.24 shows the influence of the wall thickness on the
maximum stresses in the reinforced thin wall structure. It 1is clear
that the tendency of the change in stresses is almost the same as that
of the thick wall case. A too thin vessel wall will yleld a stress
level greater than the zllowable stress value of the material, which,

if the yield strength of the material is exceeded, will then lead to
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fallure of the vessel.

3.4.3 Influence Due to Reinforcement Parameters

The parameters presented in this section include the influence of
the size of rib reinforcement and the distance between ribs on the

maximum stresses of the reinforced thin wall vessel structure.

3.4.3.1 Rib Size

Filgure 3.25 shows the change of the maximum stresses in the
bolted flanged structure due to the change in rib size. The height of
the rib is fixed while the width of the rib is varied with respect to
the original size, from the ratio of 1/3 to 2. It 1is observed that
when the rib width value is relatively small, the maximum stress level
in the thin wall vessel is lower; when rib width is increased the
maximum stress level also increases, which can be explained in the way
that when the rib reinforcement stiffness is compatible with the wall
stiffness, then the maximum stress level will be lower. When the rib
reinforcement is too stiff as compared with the wall stiffness, there
will be a large deflection within a small area of the thin wall, a

higher stress level is therefore generated.
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3.4.3.2 Distance Between Reinforcement

The change of maximum stress in the rectangular flanged structure
due to distance variation between reinforcements is shown in Figure
3.26. The distance varied is the distance of the first rib with
respect to the flange. It can be seen that the maximum stresses in the
reinforced thin wall structure are increased when the distance between
the reinforcing ribs is increased. It can be =also seen that the
longitudinal stress c, is more sensitive to the distance change than

the tangential stress cw

3.4.4 Bolt Preload Influence

As shown in sections 3.2 and 3.3, the strlp gasket structure lis
much more sensitive to the bolt preload than the O-ring gasket and
full face gasket cases. The change of maximum stresses in the flanged
vessel with strip gasket due to a change in bolt preload is shown in
Figure 3.27. The preload force value varies from 4/7 of F1 (F}= 62.3
KN) to F2 (F}= 838.0 KN). It can be seen that the 1longltudinal stress
c, is very much sensitive to a bolt preload increase. When the preload
reaches the value of F2 , the maximum longitudinal stress c, due to

bolt preload alone will be very close to the allowable stress of the

material.
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3.5 Summary

The rectangular bolted flanged connection structures are
numerically analyzed by employing the finite element method. The
stiffness and strength characteristics of both thick wall and
reinforced thin wall flanged structures are evaluated {1 terms of
deflection and stress profiles. Three types of gaskets are
incorporated in the analysis. A brief parametric study of the bolted
flanged structure 1s also carrled out to identify the relative

influence of the design parameters.

The numerical results show that the rectangular flanged structure
with strip gasket is very sensitive to the bolt preload value. It 1is
also observed that a too stiff reinforcement and too thin vessel wall

will result in a high stress level in the shell of the structure.
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CHAPTER 4

COMPARISON OF RESULTS WITH ANALYTICAL
APPROXIMATE METHODS AND EXPERIMENTAL WORK

4.1 General

The ASME Code contains extensive rules for the design of pressure
vessels and pressure vessel components, including rules for
non-circular pressure vessels. There are, however, no rules for
non-circular bolted flanged connections. In order to evaluate such
non-circular bolted flanged connections, approximate design methods,
and sometimes experimental analysis are used by pressure vessel

designers.

In this chapter, some of the approximate design methods presently
used by pressure vessel designers are critically reviewed and compared
with straln gage measurements of rectangular bolted flanged
connections.The results of both, approximate methods and experimental
work, are then compared with the finite element method. The relative
merits and limitations of the different methods are also discussed,

based on above comparison.

4.2 Analytical Approximate Methods

There are several analytical approximate design methods which can
be used in the design of non-circular bolted flanged connections. Two

of these methods, preferred by pressure vessel designers, are reviewed
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in this chapter. One of the methods is based on an equivalent circular
flange approximation, in the case of square or nearly square flanges.
The other one uses a combination of frame analysis for the flange to
retain its rectangular shape, and of bending of an Iinfinitely long
flanged section in a perpendicular plain with respect to the frame.
The analysis results of the rectangular bolted flanged structure by
using the approximate methods are obtalned and then compared with that

of the finlte element analysis.

4.2.1 Equivalent Circular Flange Method

The equivalent circular flange method is essentlally similar in
approach to the procedure presented in the ASME Code, Section VIII,
Division 1, Article UG-34 [1], for the design of non-circular flat
covers. In the code, a factor Z2 is Introduced to relate a flat cover
of rectangular shape to a clircular one. The factor Z 1s defined as:

2.4 b

a

Z=3.4 -

(4.1)

with the limitation that Z does not need to be larger than two and =a
half, (Z s 2.5), and wherea and b are length and width of the
rectangular shape, respectively. The square root of the factor 2 |is
used as a multiplier of the small side of the rectangular cover to
obtain an equivalent diameter B to be used in the formula for the

cover thickness.

B=b /2 (4.2)

It can be seen, by comparing square and rectangular cover stress
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factors with equivalent circular cover factor, that for a welded flat
cover, this approach ylelds a cover thickness on the safe side. In the
case of a rectangular cover with little fixation at the rim (thin
vessel, thick cover), from Roark and Young [26], the factor B in

the stress equation of the cover

2
c=8p [—f-] (4.3)

is 0.287 for a square plate and approaches 0.750 for a long
rectangular plate with length-to-width ratio a/b > 4. Using the Code
formula for rectangular plates, a comparison can be made with the
factors given in equation (4.3). Equating the stresses from both

formulas given by (1] and [26] ylelds,
2 2
o=Bp[—-€—] =ch[—$—} (4.4)

It can be seen that the factors B and c¢Z should have the same values.
In fact, using the Code constant ¢ = .33 and the appropriate values
for 2, the product cZ is always numerically larger than 8, hence the

Code formulas yleld results on the safe side.

In the equivalent circular flange method, the square root of
factor 2 is used as a multiplier for the small side of the rectangular
pressure vessel and thus an equivalent circular shape is obtained. Any
obround or rectangular flange can then simply be designed and analyzed
as equivalent circular flange, and all flange design Code rules per

Appendix 2 or Appendix Y of the ASME Code [1] are applicable without

modification.

85




In the case of full face gaskets, often used with rectangular
flanges, no ASME Code rules exist at present. References [33] by Blach
et al. and [36] present flange design methods for the full face

gasketed bolted flanged connection.

The application of the equivalent circular flange method a the
rectangular flange of 200 x 300 mm (8 x 12 1inch) 1is 1illustrated in
Figure 4.1. The equivalent circular flange is superimposed over the

rectangular one. The factor Z of the rectangular shape is obtained per

equation (4.1),

(2.4)(200) _ ,
300

Z=23.4 - .8 (4.5)

The equivalent inside diameter of the circular flange 1is then

calculated per equation (4.2),

B= (200) / 1.8 = 268 mm (4.8)

The bolt circle and outside diameters are then obtalned by adding of
the actual bolt location distance and the flange wldth to the

equivalent inside diameter, respectively, as shown in figure 4.1.

This method, which apparently has never been verifled, seems to
yield a safely designed rectangular flange if the length to width
ratio is close to unity, that is, for ‘"almost square" rectangular
geometry. For long rectangular flanges with length to width ratios of
over two (2), however, there is no more resemblance in the behaviour
of the rectangular flange when compared with a circular flange. This

fact is acknowledged by designers, and length to width ratio 1limit of
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Figure 4.1 An Equivalent Circular Flange
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1.6 is usually applied.

For rib-reinforced rectangular vessels, however, this method does
not seem to properly account for frame bending stresses present in
such flanges. In unreinforced rectangular vessels frame bending

stresses are absorbed in the vessel walls.

4.2.2 Frame Bending Flange Design Method

The equivalent circular flange method discussed in section 4.2.1,
in addition to limitations on length-to-width ratio, 1{s applicable
only for unreinforced non-circular pressure vessels where the frame
bending stresses are fully absorbed by the pressure vessel side
plates. A large percentage of non-circular pressure vessels, howvever,
are of reinforced type as shown in Figure 4.2. In this case, the
flange must also act as stiffener for the vessel side plates, as well
as to provide a tight seal between components. Such flanges thus have
to resist, in addition to flange bending stresses in planes parallel
to the vessel axis, the frame bending stresses in a plane

perpendicular to this axis.

The two bending stresses of the relnforced rectangular flange,
that is, the frame bending and flange bending stresses, are obviously
the result of blaxial loading and should, therefore, not really be
separated. Most designers, however, add these two stresses in order to
compute a safe flange thickness. This procedure is thus considered to

yield a flange design on the safe side.
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Frame BendingﬁStresses

The frame bending stresses of a rectangular flange of uniform
thickness can be found by structural analysis. For rectangular frames
of uniform cross section, that is, flanges with uniform width, the

corner moment MA, due to uniformly distributed loading w, 1s gliven by

3 3
& + ¢

M,= w1 2 (4.7)
12 81 + 82

And the bending moment Me' at the center of the long span of the frame

are expressed as

-M (4.8)

Owhere 81 and 22 are the length dimensions taken between the centrold
of the flange sections, or of the flange shell Jjunction if part of the
connecting shell is included in the calculation, as 1illustrated In
Figure 4.3. When flanges are of unequal width, a stiffness factor
must be included in equation (4.7), which may be obtained using the
"three moment equation”.

The maximum frame bending stress s with respect to the elastic
section modulus S of the flange, can then be calculated by

M
S

o =

; (4.9)

Flange BendingVStresses

The flange bending stresses due to bolt-up and operating pressure
for a long rectangular flange (a/b > 2) can be approximated by

considering a unit width of flange at the center of the longer slide.
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Though the pressure distribution in such a flange is not uniform, the

maximum stress is known to occur at this point.

To calculate the stress at the center of the longer side, it |is
convenient to introduce a factor 8 which can be taken from the stress
distribution of a rectangular plate with fixed end conditions, as
presented in [26] and other books on structural analysis. This factor

B varies numerically from 0.308 for a/b = 1 to 0.500 for a/b > 2.

For flanges used with strip gaskets which are fully 1inside the
flange bolts, as shown in Flgure 4.4, the flange bending moment per

unit length is given by

M°= HD hD + HG hG + HT hT (4.10a)
or

M°=BbPhD+2t’.mPhG+(g-b)PhT (4.10b)

For flanges used with full face gaskets, as shown in Figure 4.5,
the gasket compression on the outside of the flanges provides some
resistance against rotation. This resistance has been included in the
flange bending moment by using the flange design method described in
[33]. The flange bending moment per unit length for full face gasket

can be then given by

- o
M = [HD b+ H, hT] (4.11a)
1+a
or
M o= —2 [BbPhD+—%—[c-b-d]hT] (4.11b)
1 +a
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Figure 4.5 Flange Bending with Full Face Gasket
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where
Etd ¢,
a = ——;—E—-zz— (4.12)
G

E is the elasticity modulus of flange material, EG is the elasticity
modulus of the gasket. The moments in equations (4.10) and (4.11) must
be resisted by a unit width of the flange, assuming that the
connecting strip of shell plate is 1n direct tension only. This
assumption is based on the fact that the shell plate attached to a
rectangular flange is usually much thinner and thus more flexible than
the flange. The same reasoning is made by the ASME Code in the case of
the "loose optional flange", where the contributions of connecting

shell in resisting bending are neglected.

The section modulus of a rectangular section of unit width can be
expressed as
2
6

The flange bending stress 1In the rectangular flange can thus be

S =
u

(4.13)

calculated by

o = (4.14)

For a safe design, stresses due to frame bending are wusually
combined with stresses due to flange bending. At the center of the
long side of the flange, the frame bending stresses at the inside of
the flange are compressive. For flanges with strip gaskets, the frame

bending stresses should thus be added to flange bending stresses
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occurring at the same location. Whlle for flanges with full face
gaskets, flange bending stresses should be added to frame bending

stresses at both inside and outslde of the flange.

It may be argued that flange and frame bending stresses occur in
different planes and need not be simply added together. In a safe
design method, however, it is often suggested that these stresses be
added to ensure a flat and undistorted flange surface for easy sealing

of the flanged joint.

When flanges are used with non-reinforced rectangular pressure
vessels, the connecting shell plate is wusually of considerable
thickness. The frame bending stresses on the flange, in this case, are

relatively small and need not be included in the computation.

4,2.3 Numerical Results

The rectangular bolted flanged connection structures, described
in Chapter 2, are analyzed by employing the two approximate design
methods presented in the previous two sections. A design pressure of
2070 kPa 1is used, the same as was actually employed for the
experimental work. A 3.2 mm compressed mineral fiber gasket is used.

The gasket constants are m =2, y = 11 MPa, EG = 55 MPa.
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Equivalent Circular Flange Method

The inside dlameter of the equivalent circular flange
corresponding to the rectangular bolted flange was obtained per
equation (4.6) in section 4.2.1, as B = 268 mm. The other dimensions

of the equivalent circular flange are presented in Figure 4.1.

The method presented in ([33] is used in analysis of the
equivalent circular flange with full face gaskets, for the
unreinforced pressure vessel flange. The ratio of the outside to

inside diameter, K, of the equivalent circular flange is obtained as

A _ 39 _
K= g = —g = 1.478 (4.15)

The flange parameter, Y of the ASME Code is then given by

2
v=——?———[[1-v]+2[1+v]5—2-1-"—x—] (4.1)
n (K- 1) k2 - 1
= 5.14

vhere v is the Poisson's ratio of the flange material. The hydrostatic

end force on the circular flange is computed as

H="glp (4.17)
D
4
=¥ [2882] (2.07] = 116770 N
4

The moment arm, hD for the hydrostatic end force is obtained as

By

]

1
= [c - ] (4.18)
= -% [344 - 268] = 38 mm

The hydrostatic force under the gasket, HT is given by
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2 2
HT=E[[C- ]-B]P (4.19)
a

2
=T [[344 -22] - 2682] [2.07] = 51880 N

4

The moment arm, hT for hydrostatlic force under the gasket is
1
hT = -7 Ec B+ D] (4.20)

= -}I [344 - 268 + 22] = 24.5 mm

The gasket compression coefficient, a is computed by
2Et’ ¢
YnE 1
G
2 (200000) (25)° (3.2) _,
(5.144) m (55) (64)"

.34

The external flange bending moment, Mo is obtalned as

_ o
M = [ Hoh o+ H h ] (4.22)
1 + 0o
= 1.34 [[118770] [38] - [51880] [24.5]] = 3267700 N mm
2.34

The flange siress, o, is then computed by

YM
&)
o =

T 28

_ (5.144) (3267700) _ 400 5 ypa

(25)2 (268)

(4.23)

Frame Bending Flange Design Method

For the reinforced pressure vessel, shown in Figure 4.2, the
flange stresses are calculated by using the equations presented in
section 4.2.2. This method calculates two stresses due to the frame

bending moment and flange bending moment, respectively.
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1) Frame Bending Stress

The uniformly distributed load per unit length of the flange in

the frame plane, W is
W= eg P= [44] [2.07] = 91 N/mm (4.24)

where tg is half the distance between the flange and the first

reinforcing rib. The corner moment MA, is given per equation (4.7)

3 3
M= 31 364" *+ 264 _ go1560 Nemm (4.25)

A 12 384 + 264
The frame bending moment MB, at the center of the span is computed per

equation (4.8) as

_ (91)(364)2

8 5 - 804580 = 702580 N-mm (4.26)

M
The elastic section modulus S of the flange is

t ¢ _ (25)(80)° 3

S= 3 5 = 17070 mm (4.27)

The maximum frame bending stress o, can then be calculated by

O, = — 5 "2 = 41.2 MPa (4.28)

2) Flange Bending Stress

The length-to-width ratio of the rectangular flange is

2 .30 _,5 (4.29)

o
[\M]
o
o

The factor B is then found from [26] to be B = 0.45.

The hydrostatic end force HD. per unit length is computed as
HD =8 b P=(.45)(200)(2.07) = 186 N/mm (4.30)

The hydrostatic force under gasket, HT is found to be
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1
W’i% b ﬂP (a.31)

= % [276 - 200 - 22] [2.07] =56 N/mm

The moment arms for the hydrostatic end force and for the force under
the gasket are
obtalned as hD = 38 mm and hT = 24.5 mm, respectively. The gasket
compression coefficient, a is calculated per equation (4.12)

Et® 6 (200000)(28)°(3.2)
8 E, ¢ ~ (8)(55) (B4)"

= 1.35 (4.32)

The external flange moment M° is then obtained per (4.11)

1.35
2.35

M =

o

[(186)(38) N (55)(24.5)] = 4848 N (4.33)

The flange bending stress e, in the rectangular flange can thus be
calculated per (4.14)
6 M

b tZ

o _ (6)(4848)

5 =46.5 MPa (4.34)
25

The total stress of the rectangular flange is obtained by simply

adding of the flange and frame bending stresses.

c=o to = 41,2 + 46.5 = 87.7 MPa (4.35)

This stress is then compared with the allowable stress. If it
exceeds the allowable stress, a thicker flange is assumed and the

calculations are repeated.
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4.3 Experimental Work

The experimental set-up described in [22] and used in the
comparison of results, i1s shown in Figures 4.6 and 4.7. It consists of
two rectangular pressure vessel structures, 200x300 mm in cross
section. One of the vessel is unreinforced with relatively heavy wall
thickness; the other is thin walled and rib-reinforced. Both vessels
have identical flange dimensions, to permit bolting them together.
Furthermore, the flanges of both vessels were welded with full
penetration welds to permit machining down the flange thicknesses in

successive steps for a series of straln gage measurements.

Five different flange thicknesses from 25 to 13 mm were tested,
in 3 mm decrements, all with strip and full face gaskets, using two
gasket materlals in two different thicknesses. The vessels were used
in series of bolt-up and pr'essur'i‘zation tests. Some of the bolts were
instrumented to ensure a correlation between bolt torques and induced

bolt stresses.

The two gasket materials used in the tests were the following:
1.6 mm and 3.2 mm thick coimpressed mineral fiber composition and
synthetic rubber with 75 durometer hardness. Both materials and

thicknesses are extensively used in process industries.
Strain gages were mounted along the center of the long side of

both pressure vessels, as shown in Figures 4.6 and 4.7. Biaxial strain

gages were used.
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Figure 4.6 A Schematic View of the txperimental Set-up
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Figure 4.7 Strain Gages and Strain Gage Analyser
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4.4 Comparison of Results

The results of the finite element analysis are compared with the
results from experimental strain gage measurements, and with numerical

results by using the analytic approximate methods.

The numerical examples considered use the same dimensions as the
test pressure vessels, that 1is, unreinforced and rib-reinforced
vessels with both strip and full face gaskets. However, no
metal-to-metal contact calculations are included. The design pressure
assumed was 2070 kPa, the maximum test pressure used in the
experiments. For the comparison, a 3.2 mm compressed mineral flber

gasket was assumed.

The finite element analysis permits the calculation of principal
and surface stresses. In the comparison, principal stresses are used.
Local surface stresses, in particular stresses at bolt locations, are
often appreciably higher than principal stresses. Such stresses, in
accordance with the philosophy of the ASME Code [1], are considered
safe if they do not exceed the yleld strength of the material (see
[1], paragraph UG-23(c)). All stresses are compared along a section
through the center of the long side of the rectangular pressure

vessels.

The comparative values due to the three approaches have been

plotted in Figures 4.8 and 4.9, for various flange thicknesses. A

logarithmic scale is used for the flange thickness in order to better

114




Flange Thickness (mm)

Full Face Gasket Strip Gasket
B Experimental O Experimental
4 Finite Element ® Finite Element

25 -0-® <
1“\ N
22 B4

AN N,
&, \Y%
18 4—t I 0 10—~ &
& &
e ANCS
.6, \¢
16 S*Gt £ -9 <
\
\ \
13 - - ————
100 150 200 250 300 350

Flange Stress (MPa)

Figure 4.8 Stresses in Unreinforced Vessel Flanges
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Figure 4.9 Stresses in Rib-reinforced Vessel Flange
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describe the behavior of the flange stress as the flange thickness |is
reduced. The results shown In Figure 4.8 are stresses 1In the
unreinforced pressure vessel due the three methods, while Figure 4.9
presents the comparative stress results for the rib-reinforced

pressure vessel.

Comparing the numerical values from the finite element analysis
with the calculated values by using the analytic design methods, and
with experimental data, it can be seen that a good correlation Iis
obtained with the experiments. For calculated values wusing the
analytic design methods, it appears that the results are on the safe

side and conservative, as required for simplified design methods.

4.5 Summary

Two approximate design methods presently used by pressure vessel
designers are reviewed and used to calculate the stresses 1in the
rectangular bolted flanges. Strain gage measurements on the
rectangular flanged structure are also employed to provide comparison
data with analytical methods. The results of both approximate methods
and experimental work are compared with the numerical results using
the finite element metheor.. It is concluded that a good correlation
between the results from the three different approaches has been
observed. The analytic approximate design methods yield results on the

conservative side.
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CHAPTER S5

CONCLUSIONS AND RECOMMENDATIONS

5.1 glghlights of the Work and Conclusions

Non-circular bolted flanged connectlons on pressure vessels are
employed extensively In industry. Due to the complexity of the
rectangular bolted flange connections, it ls often necessary to carry
out stress analysis of non-circular flanges to determine thelr
acceptability for a specific application. The ASME Boller and Pressure
Vessel Code contains rules for non-circular pressure vessels of
unreinforced and reinforced construction. These rules cover the sides,
reinforcing ribs, and end plates of such vessels. For bolted flanged
connections of such non-circular pressure vessels, however, no design

rules are presently included in the Code.

In this thesis, the finite element method is utilized to model
and analyze rectangular bolted flanged connections employed 1in
pressure vessels. The results are compared with experimental values
from the strain gauge measurements, and with analysis data derived by
approximate analytical methods presently used by pressure vessel
designers. Two types of rectangular bolted flanged connections, thick
walled vessels and on reinforced thin wall vessels, are discussed for

three kinds of flange gaskets: O-ring gasket, strip gasket and full

face gasket.

118




A modified structural model meshing scheme is proposed to fully
make use of the limited space of the pre-wave front matrix used in
the frontal method of the ANSYS program. The best possible numerical

results that can be offered by the program employed is then obtained.

A parameter analysis of the rectangular bolted flanged
connections 1s also carried out via the convenient finite element
method. The influence of design parameters on the bolted flanged
connections, and on their stiffness and strength characteristics are

thus established.Design guldelines are also given.

Based upon comparison of the results by using the approximate
methods, the experimental work, and the finite element analysls, 1t is
concluded that a good correlation between the results from the three
different approaches has been observed. The analytical approximate
methods yield results on the conservative side. The finite element
analysis gives a complete picture of mechanical behavior of the flange

structures.

The analysis results show that the rectangular flanged structure
vwith strip gasket is very sensitive to the bolt preload value. It |is
also observed that the stiffness of the reinforcement should be
properly designed with respect to the wall stiffness. A too stiff
reinforcement and too thin vessel wall will results in a high stress

level of the structure.
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It has been shown from the work that to obtain the best design
for these non-circular bolted flanged connections, a large number of
parametric variation and analyses have to be carried out. The finite
element method, which utilizes a discretized structural model and
computer numerical technique, 1is the most accurate and efficlent
approach out of the three methods presented, to obtain design

sensitivity and guide-line without costly experiments.

5.2 Recommendations for Future Work

The work presented in this thesls, with respect to the analysis
and design of non-circular bolted flanged connections, is by no means

complete. Recommendations for the future work are gliven below.

1) The gaskets used in flanged connections are usually non-linear
materials and subjected to large deformation under preloading and
operating pressure. In order to predict the Iinfluence of
rectangular gaskets, under both frame and flange bending moments,
on the deformation and stress distribution, sealing
characteristics and connection performance, the plastic material

behavior should be accounted for in the analysls.
2) The fatigue strength of the rectangular bolted connections
subject to cyclic thermal and pressure loadings could be studied

by using the finite element method.

3) Dynamic analysis of the rectangular bolted flanged structures
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4)

could be carried out to predict natural frequencles and dynamic
characteristics of the structures 1in dynamic loading

environments.

A more complete parametric study for different design variables
should be carried out to determine the sensitivity of the
rectangular bolted flanged connection to each variable. The
optimal design technique could be employed to obtain the

optimized flange design with respect to strength and weight.
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APPENDIX A

STIFFNESS MATRIX OF ISOPARAMETRIC ELEMENT

For a 3-D isoparametric element shown in Figure 2.5, the
displacement function in the local coordinate system (&, m, {) can be

expressed as:

8
u= z N‘(gl L C) ui (A.l)
i=1
where,
u = displacement function of the element
u, = displacement of the ith node (i=1,2,...,8)
N = shape function of the element

For linear element, the shape function N'(E. 7", {) can be gliven as:
N(E 7, &) = -1+ £6)(1 + nm)(1 + £ Q) (A.2)
8
(t =12, ..., 8)

where €i, n, and ci are the coordinate values of node §.

The global coordinates x, y and z inside the element domain can

be described in a similar way by

8

x= & NI(§ n Q) x (A.3)
i=1
8

y= & N m Q. (A.4)
i=1
8

z = z Ni(ﬁ. n, C) zi (A.S)
1=1
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where XY, and z, are the global coordinate values of node {.

The strains of a three dimensional element are expressed as [28]:

. [N » Ou o
ex ax
e av
y oy
€ ow
z dz
{e} = ¢ b = 4 < (A.B)
d Bu_, 8v_
Xy 3y +
7 av aw
vz tay
Y u ow
S {3z ¥ ax

Since from equation (A.1)
u

8
= 2 N(E 2, &) { v (A.7)
ju

The strains are, therefore, obtained as:

{e}=0B1l{(q}=10BB,...B){q) (A.8)

where
{gq}t=[0u v, wuvw...uyv LA ] (A.9)

and
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(A.10)

The shape functions of lsoparametric elements are defined with

respect to the

curvilinear

coordinates

& m

and

g. The

relationship between the derivatives of the two sets of coordinates

-

BNi

ox

8N,
i

{ ——

ay

8Ni

8z

-

b= [ J ] 4

(€, n, ¢) and (x, y, z) can be obtained by:

r 4 r

aNi ax ay 8z

E13 ag E13 E13

_fﬁl | = ax dy dz

1 "7 a7 an an

6Ni ax ay dz

o¢ o¢ a¢ o¢g

It

vhere matrix [ J ] is the Jacobian matrix.

Jacobian matrix, substituting equations (A.3) to

ylelds the following expression:
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o

In order to obtaln the

(A.5)

into

[ J 1




. -
8 O8N 8 8N1 8 8N
) x E—=V ) z
ot € i j=1 8 Yi § =1 9€ i
8 BNi 8 BN,' 8 :31\!i
[J]) = 2-6—,0—)(1 S-Wyi E—Bn—21 (A.12)
i=9 i=1 i=1
8 BNi 8 8Ni 8 aNi
& — X E—=—V S5 2
{1 T4 i (=1 8¢ i g1 g i

After substituting the derivatives of the shape function with respect
to the local coordinates €, 7 and { into equation (A.12), the Jacobian
matrix [ J ] 1is obtained. With [ J ] determined it 1is a
straightforward matter to express the derivatives of the shape
function with respect to global coordinates x, y and z through the

inverse matrix of [ J I:

6N‘ 3Ni
8x €
aN1 -1 6Ni
4 5y v = [ J ] 4 5 [ (A.13)
aN‘ _8{‘]1
dz 8¢

The general form of element stiffness matrix is given as:

T
[k]=I[Bi][D][Bi]dv (A.14)

v
where the straln matrix [ B‘ ] 1s given in equation (A.10).

Matrix [ D] 1is the elasticity matrix,
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{c}t=[(Dl{e} (A.15)

where { ¢ } is the stress vector. For a 3-D element with 1sotropic

properties,
[ Hoon ]
-5 1o © 0 )
M M
L B
T-g = O 0 0
B M
= £ 1 0 ) 0
[D] = okl | 1mn 1o (A.16)
(1+p) (1-2p) 1-2u )
0 0 0 sy O 0
1-2un 0
0o 0 o0 o0 2(1-p

| o o o0 o o 2(i-p

vhere E is the Young’s modulus and p is the Polsson's ratio. The dv

can be expressed in terms of the local coordinates,

dv = | J | d€ dn dg (A.17)

The stiffness matrix of the hexahedron \isoparametric element |is,
therefore, obtained from equations (A.14) to (A.17):

1.1.1

.
[k]=JJI[BiJ[D][BillJldEdndc (A.18)
-1v =174y

The integration range for equation (A.18) 1is a cublc body. The
stiffness coefficlents can be calculated through numerical

integration, such as Gausslan quadrature.
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