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- Structural Classification and Relaxation Matching of
o ' . Totally Unconstraingd Handwritten Numerals °

.Louisa Lam

In this thesis, the design and implementation of a

system to classify unconstrained handwritten numerals are

- described., The system comprises a feature extractor and two
< O .
classification algor::;;ﬁLjaﬁctioning in sequence.

In the feature extraction process, the skeleton of a

" character pattern is decomposed into geometrical primitives
consisting of line segments and convex‘péfygons. A set of
features is then extracted from each primitive, and ‘éhese

features provide the“cxiteria for classifying the pattern,
; .

The recognition process contains a stdictural classifier
)

e

to identify the easily recognizable samples, Q a\({yé. Vg

-

relaxation 'algogithm to classify the rest of the data. The
» (-_. - ’ .

structural classifier id fast and processes the majority of

the sémples, while the relaxation method is robust enough to

-, correctly recognize most of the distorted patterns.

The system vas trained and tested on real-life ZIP codes

obtained ffom the U.S. Postal Services. For the training

set of 4000 samples, a recognition rate of 97.38% was

obtained, while the recognition rate for the 2000.samp1es in
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l.i Introduction -

Machine recogn1t1on of hgﬁdwr1tten characters has be n
1nten51ve1y and extensxvely'stud1ed dur1nz recent years. t
;s an intrinsically-. 1nterest1ng problem, and satisfactory
solutions to this problem would be very “useful’ 1n vanzoﬁ%
applications.where it is necessary to process large volume§

~of handwritten data. A variety of approaches have been

proéosed and tested in research work on this subject '([23],“

[38]). The :;proaches have 1Qc1udea the use of heur1st1cs
(IlB] for exgmple), structural and syntactxc ‘classifiers
1([1],. (8}, (26] and I4q] for examp&e), and statisﬁical
descriptors ({111, [13],. (221, 139 a “L42] ,among others).

] . ‘
In particular, automatic recognition  of totally

unconstta:red had%wrxtten characters proves to be an evbn

¢

more challen

ing_prgplem,due to the gecmetric d1vers1ty of
characters ‘producﬁa-;by writers with different habits and
i n the almost coht%nuous spectrum of handwritten
characte;s produced in the absenc: of constraints, any

classification
F A

. ¢

f them into a limited number Of discrete

14

b

s drtegmonls :,;,ga-?-.._e_;:-,;y.,@!:;.;;‘;‘ AR
- ‘.
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B, 1y (:f P2
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classes would .inevitably contain a margxn of error. It is
1nterest1ng té note that even human be1ngs,‘ who have been .

t;axqed‘rto a.greater extéent than any computer, make about 4

LI
- . v . -

ercent mistakes when readihg*' im. &he. absence of context -
p 3 9 & BOSET

[371. ; ~
, | %

.

. In research work on machine recognition of unconstrained:
handwr1tten characters, the gesﬁlt obtained would naturally

be highly . dependent on the qualxty and variability of the

'datg used. It would'depend, for example, on the number of
authors produczng the data, the conditions under which the ‘ i
samples are written, the s1zes of the training and/ testing f

4
mgets, and 'even on the methodologies employed in the

e ’ P
3 ‘

calcuiatién and reporting of the result itself. All these Coe
"are in - addition to the more fundaméntal issue of the
partzcular pattérn recognltlon sy/tem being used So it is

,not surprls1n£ that recent research on automatic recognition
{

'of unconstrained handwritten numerals. (for example, [11], :
{s}, (71, and [35]) has resulted in diverse recognition - ;

 rates ranging from 93% to to 99.5% on testing data.

o B - * .

. R L4
P \ ' 4 . [

1.2 General Pattern Recognition‘Sysfems

o
.

While many .different approaches have been used by

;
}

-Nume rous .researchers for  the  recognition of patterns, a ' 3 ’
. 4 - n«"n ’ . /\?‘
general pattern recognition system can be considered, with ‘ 1
vast oversimplification, to contain 3 ‘basic components: a %

4
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preprocessor, a feature extractor, and a pattern classifier.

A s TI

" A simple block diagram of such a system; is given in

- Figure 1.2.1. . Co .

T ’ J

Rt

" i v{nput [énipg\bggﬁbr . Fe&@urr etassitior Assigned
A Pattern q T “tBxtragtor. il Class
. — —~NT @ e .
1 - . : . A )
 Figure 1.2.1 A General Pattern Recogn}tion System - 13
" ' ' * :
‘vUﬁder this general*schemé, an input pattern, usually in ng
) the form of a matrxx, is first passed through a preprocessor ?
for smooth1ng and image ;nhancement. Significant and E
characterizing features are then. extracted, and finally a é
' c1a551f1catzon is made of the pattern on the basis of the - 3
extracted features.‘ Extraction of features is usually '¥ . 1
~highly problem - dependent, since vhat con§titute§\ - ;
N ;'distinguishing features would depend strongly on the o
patterns to be ciassified. fhis process reduces an input ,‘ é
pattern to its esseﬁtial features, so it reduces the amount ";
of,memofg'requ1red for storlng the pattern, and at the same .2
time it minimizes certain local distortions present in the \ é
pattern. Once the features have been extracted, a great‘ jé
variety of techniques can be used to classify the pattern %
m

according to its features.
“ [}

4
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1.3 The Proposed Recognition System'

A

- In this work, a character pattern is first decomposed

into certain basic geometric subpatterns -or primitives, -

.after which the . pattern -is classified according to the
features of these subpatté;ns and the connectivity between
" ‘them. This is accomplished by the following procedure:

)

"i'_ i}),?;pg;gcessiqg. An input character pattern is
% oy - » .

Cor

. smoothed and s eletoﬁizbd.lzihg skeleten is qhgnJQraced, gnd

. . (¢ ] .
the curves obtained are approximated by ‘line segments." ?T
. . - ) ' . ()

3

S,
! o

(2) Feature extraction.
o .

size and decomposed intp its basis subpatterns or prim{tives'

which consist of convex polygons .and line seéments,

*

[
Features are extracted from each primitive.

e

" (3) Structural ~ classification. ’ Baﬁ?d . on the
. configuration of primitives, certain patterns with simple
s;fuctures ate classified in this bhase by decision trees

according to their primitives and the features’ extracted

from these primitives.

\
«

o -«

(4) Relaxation matching. The patterns not recognized by
(i”?Eé structural classifier are- matched against a set of
templates using a relaxation process; and ‘the distance

betveen the pattern and each template is calculated: The

d 4

The character is normalized in

r““""b

T——

PO e
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' pattern is then classified according to the minimum distance

criterion.

- -

A block diagram o(!this recognition system is [given in

p) Figure 1.3.1. 7
Input . ) . .
Lo ‘ o R .
Character
oy ¥
;/ ' o -~ o v} . .5 A ' R ' f ’ .
Smoothing..- |... .. _ .
aﬂd A 3 v u‘u ' ) 4. C o - !; ) . '; ”
“=.Ske1etonization\ v R e R
| | . - e N o N
‘- . . . . - | - :§ .
i - v . . u
N ™ [ T i . ) ) i ‘Hg
Decomposition |. « Feature ° e }
into =) . - -
-+ | - _Primitives Extraction %
7 . ’ ' , ¥
v | . . i
t " . . ';2
y ) f;
. . . ' H
, - ) . Structural . Relaxation SRS
' . L . . . , _ - i
L cT ' g Classification } Matching g
C e o ' Assigned Class
{ ‘ fi‘ ) ) B N . '
N N ! ) . . T %
R Figure‘1.331 nlock,D}agramgpnghe Proposed System
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1.4 An Outline of this Thgsis

v

In this work, a character pattern is‘decohpbsed into‘its
s

v ' basic primitives, and features are extracted from each
primitive. The character 1is then classified éccording to
the features|extracted, either by the structuxal classifier
or by relaxation matchiné against a set of stored‘masks.
This recognition system is trained and tested on différent

@ sets ‘of totally unconstrained handwritten numerals obtained
{ o

N

‘from ZIP codes in the U.S.

i

H

& -+ In Chapter 2, the preprocessing eof the' input pattern is
‘discussed. The input pattern 1is skeletonized and the
* « .

skeleton is traced.

Chapter 3 contains.a dgscriptibn of the primitives and g
of the process whereby these primifives are determined. The

features to be extracted. from the primitives are then

. .

described. . . R
'In Chapter 4, the . first phase of the recognition’
process, tgat of structural classification, is described."
The more easily fecognizable samples can generally b?
‘“é;assified in this phase by the use of decisioa trees, and
oﬁly the more difficult patterns are processed through the

heavy computational demands of ;g!%xa%ion matching.

&

details are giQen of - the method as it is applied in this

»
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In Chapter 5, the relaxation method is 'considered,- and .
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Chapter .6 contains the results obtained by - this
recognition system as well as analyses of these results, and
we conclude with some observations and possible' directions
|k ‘
for further work in Chapter 7. , .
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CHAPTER 2

PREPROCESSING

2.1 Introduction , B ~

‘The input pattérns used in this work have already been

binarized. These binary patterns4 are skeletonized, and
condition codes are assigned to the pixels of the resulting
skeleton. The use of these condition codes helps ‘to

2

determine the starzgng and end points of each portion of the

skeletpn to be traced, and it also facilitates the tracing

process itself. The skeleton is.then traced in sections.

2.2 Skeletonization

:In -this, work, the skeletonization package uséd is that

-

of [2]. This package contains two main phases: thinning and

adjusting. In the thinning .process, the pattefn is
smodthédi the contour is traced, and the trace-points are
stripped. . This.:is ‘performed ;egggtedly, with the tracing
done 'ip alternately clockwise and coynterclockwise
directions on the outside -as well as the inside of the

L]

ontours in order to obtain a balanced, thinned image.
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Adjustments are then made of the skeleton when necessary in-
! >

order to obtain a curve that is close to the medial%¥he of

the .pattern.

r

’

\) ‘While the- benefits of using skeieton%zation in pattern
~

PREARRY: 5% RER PPN

recognition are not universally agreed upon, there ar 5
) . :
~certain distinct advantages to using a thinned image rather
A Y

than the contour of the;pattern. By using skefetons, the

\
outline of each character is traced once instead of twice

LRS-

(once for each of the inside and outside contours). So the

number of curves, and hence the number of primitives

PR

obtained, would be reduced by about a factor of two. .This »
results in a simpler structural classification scheme, and

the advantage is even more significant in relaxation

-

matching, where both memory and time requirements would be
reduced'by the use of skeletons. The memory required for
storing the  masks would be halved when skeletons are used,
and in relax;tion mafching, where each primitive of eacﬂ
template ;s matched against e€ach primitive of the'input
pattern, a similar reduction in computational time iw

obtained. .

However, it must be noted that skeletonization by the
use of software is a time-consuming process; . the package ;
ﬁsed here requires an average Sf 0.35 seconds to process a
character. Besides, any ské’etonization package, however
well designed,” would «create certain distortions and : g

accentuate some local irregularities suip as noise spurs,

\




#

. 2.3 Coding of the Thinned Pattern

10

- Cross points are always a problem; lines frequentlynbecome-

discontinuous ' when they pass through these points.

§ometimes, as' a result of ékeletonizagion, a'sample of the

: character '8' would become a ‘'typical' sample of the

character '9' when the inside opening of the bottom loop is

very small in the originall ttern; thus. ‘resulting in an

understandable misclassificatdon.

It would appear that some of the distortions caused by

skeletonization may be diminished it the skeletonization

PN [
process were designed to be problem dependent, and the type

of primitives to be extracted are taken into consideration
' - i . .

during -the thinning of the patterns. This poine of view has

been considered and implémented [24] for the strokes of

Chinese characters., X -

i

In -order to decompose a thinned character into

\primitives vhile preserving the connectivity of - the

primitives, it 1is important to trace each section of the

skeleton from an end point to a junction point, or vice

versa. wTo obtain the intersection and end points for the
tracing, and to facilitate:the tracing process, each point
in ‘the skeleton_ is assigned. a ;ondition code according 'to
“the coﬁffgurafion of p@xels in the 3x3 window czntered at

the. given point. “The coding scheme ,used here is an

- .
P
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Tit w111 only be briefly mentioned here.

" Figure 2.3.1.

\,\, . . Pi"l'l‘j'-/i N Pi—l'j ‘ Pi*l,j‘*‘l . ',‘ ) /
. e . . : ’ . >

,Rule 1: If S23, then P1 .

Rule 2: If S=1, then Py, is an end point and Ci,j is

“»

xll- . .N

.« SRS
Aadaptatxon of that in (241, and it has been used in [20], $0 .

4

\

A skeietonizeq” character - is represented by a bznary

matrix. .Suppose the pixel %fj has the 3x3 window shown in ,
' . . 14

B h . ;
. A /
.- . LN . s
. N o

// v
REVEE B I R L - "
’ " N
o Pier, -1 Piel,g | Piel,ind a
v :
=9
R . B K : . '
c Figure 2.3,1 [3x3 Window of Pixel P; j,
. ’ ' s , ’
- S .be the sum pf the 8 neighboring entries of P, 3
[4

The cond1t10n code Ci 3 of P1 3 is assigned a value in ’the
¢

set {-9, 8,...,0 l,...,9} accordxng to the following rules-N

L] ¥

'3«15 a ;unce%on point pnﬂ_ci'j r‘~9.

) e

-%
e

g

assigned a value " in {-8,-7,...,~1} < as shown .in

. ,
I . .
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"Figure 2.3.2(a).

FIY

Rule 3: If S=2, then c,

) as shown in Figure 21312(b).‘

is assigned & value
. . . ”
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(2) Negative Condition Codes from -1 to -8'* - '
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@ - (b} Positive Condition Codes from 0 to 9
'Figure 2.3.2 Condition Codes . -
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There is one significant difference, however, between
[20] ‘and th1s work in the way the condition codes are used
In the previous work, _the codes in {0,5,6,7.,8,9} are

"

considered to -denote pbsefble -turning points, and these
points are tested accordingly.’ In this work only the .
negat1ve cond1t1on codes have topologxcal s1gn1f1cance ‘since
- \ they represent end points and Junctaon points. The
. nqp negat1ve condition codes, however, are useQ to speed up

the tracing process when cons1dered in conjunction w1tﬁ the

coond1nates of the preceding pixel. -

T

4

fFoﬁﬁ’example, if C1 3 .5 and the predecessor of P 1,3 ‘is,

%&% -
Ppi,p" ‘then the next plxel‘Qg be traversed would be Pni n3
vhere . l o ’
S , L . . . 0,
S - ‘ é (i-j+p3, 2*j-pj) if i=pi,
|‘ . (ni,nj I . ' 4 \ ,

(fﬁ 2*j—pj) . l otherw{se.

of the next pixel for the other positive condition codes.

" In this way, a curve is traced until a pixel with a negative

o

the skeleton is reached. - - .

L '
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o : Similar formulas are derived to determine the location

code is encountered, indicating that the end of a section of .
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2.4 Tracing of the Skeleton

‘

The tracing of each curve starts, in the order of

‘preferences-fron . . o

(1) an end point,

(2) & junction point, and .
e ‘ .
(3) the upper left hand corner for characters such as a

.closed '0' in which there are no end or junction points.
o<
The trac1ng proceeds, whenever possible, in the order in
which the characters are usually written, from the 'top of

the character downwards~ When a curve is traced from an end

90

poInt of the skeleton to a Junctlon point, the tracing will
next resume from this junction and proceed outwards. This
was designed to preserve the connectivity of the character.

Bach pixel encountered in the traéing process is stored
B o X A i

'in an array while the pixel is 'switched off'. This ensures

Shat pixels are traversed only once, and it also enables the
procedure to determine when a skeleton has been completely

traced in the case of characters containing disjoint

¢ . — "

strokes.

a

The non-negative condition codes serve to indicate the -

location of the next pixel, while encountering a negative

r

condition code indicates that the tracing is complete for a

section of the skeleton. If tracing ends at a junction

A

PRSP Sy 5 e St .ot
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0

P o ' : .

point, then the locations of all the adjoining junction
‘points aggﬁéveraged to give the end point ~of "this section of
’ the skeleton. This end point would also be the stérting

¢+ point of all other, branches originating from this junction,

Figure 2.3,3, where the bfancﬂ poidts to"be averaged are

°

denoted by '~', and the -end points of curves are denoted by

letters of the alphabet. .. : _ .

- Lo . @

F
L]
-

Figuré 2.3.3 End Points of Traced Curves

. ) ' \e )
‘ /7 . N A . .. »

.
R . o [

-~ line fseg@ents. The line segments are then groupé@ into

y L

. primitives. -

80 it is stored accordingly. . An eiample of this is given in .

-

+ After a curve has been traced} it is approximifed bg' :
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' ' DESCRIPTION AND EXTRACTION OF FEATURES

‘4 | \( ' P o

.

, .
_ ,

LY o .

/ - 3.1 Introduction ‘ .

. . . ' . ' x
. 2

In the feature extract1on phase of pattern recbghitidn;

the features to be extracted are naturally degendent on the

recognltion algorzthm to be wused. .In th:s work, the

g ultimate aim is ‘to study the applicability of the relaxation
method to.the recognltxon 'of handwritten numeric cheracters,rf .

'so ‘the primitives and features are designed in accordance

N . with this objective. " ' . "

The relaxation method has been aﬁplied to the _: n

I

“

SR
4

recognition of handwritten.Chinese characters [43]. ‘Since

1

Chinege characters are compoSed mostly of 11near strokes, it
is natural to use line segments as their prxmltlves. So in . "
[43), character patterns are approx\Khted by line segments, .. -
and features are extracted from theselline segments for

- . relaxation matching. »

ﬂ,

C s
However, the number of approximating line ‘segments per

.

cha?acter * obtained by the above-mentioned process 1s

. relatively large, due partly to‘the complexity of Chinese
4 . ! . ’ ‘
i =~z . . ‘Q

g A

Y
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characters and partly to the fact that the contour of the

»

character is used rather than the skeleton., In ‘this .work,

the skeletons of the chjfacters are used. In addition, it

was felt that, \?n the/ case of Thandwritten numeric
N 4

.

characters, curves oecur with equal or greater freguency

than linear strokes, so the use of line segments alohgﬁ as
primitive$ miéht not have been the best approach for the
character patterns to be classified here. While curves can
always befgpbrpximated bylline segments, the number of line
sé?héﬁ%s used would Be highly dependent on the shape of 'the
particular curve, Tﬁe‘ use of line segmenté as primitives

may therefore result in curves of the same basic type being

represented by diffqreﬁt numbers of"prfmitives, thus adding

another variable to the matchinghprocess.

As a result, it was decided to use convex polygohs and

line segmenté ag.primitives, with the pblygons approximating
curves., .Apart from adhering more to the nature of the

chatracters, the/‘use of polygons also resulted in curves of

the same‘zype being represented by a more consistent number

of primitives independently of their curvatures. Some of

. 9 .
the practical ' advantages of using polygons are reduced

storage requirements and more .rapid qlassifi%ation. The

majority of primitives are composed of several line

seément;, so the number of primitives per character is.

~

significantly reduced. (on the average, each primitive

contains ‘3 line segments). Cohsequently, less memory is o

v o TP e T e

N\

R vt - 25




- ~- - -~ ~—

%

18 3
'*«‘ ' |
- required for storing the masks, énd relaxation matching fs‘
performed on a smaller feature set, hence it can operate
more qu1ckly. In addition, this cﬁoiée of primitives ﬁas-
made poss1b1e the - use of a fast, structural classifier. to

-process the more easily recognizable'charactérs.

0

) The curves tracéd are thus approximated by convex

) polygons and %jne segments. Since the character patterns ) ﬁ&'},

have very dszerent sizes rangxng from about 7x12 to 53x53,

” “

they are normalized in §1ze for match1ng. This is easily
accomplished since normalization is necessary only for the o

vertices of the polygons and the end points of the line .

. ' . Y .
segments. Featpfes are then extracted from each primitive. ' ‘

*

3.2 Description of the Primifives

As stated ébéve the primitives are convex polygons and

/§/K§~segments. It should be noted, however, that the convex ., .

-

polygons may be open ' or that the.polygonal convex regions

may be unbounded. (A polygonal region is unbounded if and

o only if it contains a ray). The polygons are ;laséifiéd as

ea%t, nort), west, and south as shown in Figure 3.2.1.

AR Lt AR BRI
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East * North West South

© Figure 3.2.1 Classification of Polygons

The polygons shown have four sides each, but in this
work' no distfnction is made _ between polygons haviné
different numbers of sides as long as they have the same
orientation, even thoughfé polygon must have qt' leasty\ tue
‘sides for'obvioqg reasons.

. .

Due to ~the continuous rotation that fpdlygdns
undergo, the Border‘lgnes between east and north poiyg-' ,
east and sbuth polygons etc. are necessarily fuzzy. In the

structural classification'phase, a'polygon is considered to

be north or south if the starting and end points of the

'polygon are at most three rovs apagt, and they are _

considered to be Eagt or west otherwise. The direction of

% 5

“the ppening then determines the rest. . In the | geléxation
matching of the primitives, polygons are considered to be

either east or west only, since at thatfsidge the features

extracted from the primitives are used in the calculations,
. \ R ) .
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and these features would also act as ‘Upistinguishing
characteristics. -

[N

~ In both phases of classificétion,.closed polygons or
.loops.are considé;ed to be a different type of prtimitive,

¥ So three types of primitives are used:

-
Y

" A1) lbops,

(2) cénvex.polyqong with unbounded regions; these can be

éast, west, north, or south, and

(3) line segments.

8

3.3 Decomposition into Primitives

-

) When the skeleton of a character has been traced, the

.
e e S ..

.curves obtained are decomposed into a set of primitives of

the fypes described'qbove. This decompogition of a pattern

[y J..Q.u”,'?&u.t':

is achieved in several steps. The traced curves are first

oty

approxiﬁated by seguences of line segments, after which the
. end poiﬁts“ of the line segments are normglized so that all
the resulting patterns would have the same’ size 'for
relaxation matching. - Some seduencesvdf ;pprbximating line
segmenté would already form primitives of the required

- types, while others may have to be regrouped into

N

e S R 2R e R A ‘W.a.;\;-uapr PRI

L appropriate primitives. ' .
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.3.3.1 Polygonal Approximation of Curves
In the approximation of a curve by a polygon, ‘varidﬁs
approaches . have been proposed)(for example, [16], [25], and

[31]). 1In this work, the ‘curves to be approximated are

" relatively short, since tracing of a curve must terminate

when an ‘end point or a junction point of the skeleton is

- reached.

o . - e

.The polygonal approximation algorithm used here is

" adapted from that in [29). Using this method, the beginning

and end points of a curve are first dgtermin;§?¥\This is
obvious if the curve is not closed; in the case Of a. closed
.curve, two pg}nts‘ that axe extreme in opposite directions
‘can be used. A line segment is then drawn to connect these

two points, ﬁnd the point on the curve that .is farthest away

o

from this line is nged as a vertex of the polygon.'provided'

this maximum distance exceeds a certain threshold value. .

This process is performed iteratively, using a stack, until

no more vegtices can be added.

Due to the diverse sizes of the characters being

considered, it was found that no constant threshold value

would ' yield atisfactofy approxigations in. all cases.

Consequently a piecewise linear thresholding “function . was,

decided upon for flexibility and ease of computation.

F2
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o ‘ For any charactetr, .the threshold value T used is defined
by 3 ~ ? " T
1.2 it X < 30, "
< T = { X*0,04 if 30 < X < 50, '
2 ' otherwvise, :
"where X = m + n if{the character has dimensions mxﬁ. v,

s

Y

in order that

- i

The uppef:Iimit for T was established

large character are not overly

—— 5

" small . subpatterns in a
At the same time, a - lower 1limit was set to

81mp11£1ed.
avoid approxzmat1ng a small character by an excessive number

o

e 2 D A o e pat
* R R s R e

of line segments. The threshol&1ng funct1on is graphed in

Figure,3.3.1.
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Figure 3.3.1 ‘Graph of Thresholding Function.
in Polygonal Approximation’
. ‘Figure 3.3.2 111ustrates the polygonal approx;matxon of
. ‘ some skeletons. In th1s fxgure, letters of the alphabet in

the traced skeleton denote the end points of approximating

. \ f
line segments,
- .

< ' When the mend points of all approximatzng line segments’

have been determxned these points are transformed so that

'all resulting patterns would have the same\dzmen51ons.

.~




these points would have to be 'transformed.
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3.3.2 Normalization of Patterns

v i A . v

'In order to accurately match character patterns against .

templates using featbres (to be described in Section 3.4)
whicyﬂinclude the coofdinates of tpé stirting and end points
of primitives as well as the distance between thesg ppings,
it is important‘ghat all patterns should have the. same size.

SO0 size normalization is required.

For the rest of the feature extraction process, only the

end points of the  approximating ‘line segmentb " are

significant. Con%gqﬁently,

perfdkmed when these points have been deiermibed, ‘and only

<
‘

&
.
P

W
oy

normalization  should be

fﬁ??’requirgé L}
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smaller number of computations, and it also circumvents the

problem of normalizing the skeleton its‘if, where breaks may
. . . . " . )
be created. On the average, a.character contains 55 pixels
.+ in its skeleton, and normalization is required for only 7

points. . '

Each éharéclgr is normalized so that the resulting
’ charac;er " has dimensions 25x20, the average dimensions of
the data set. This +is achieved by using ,tég affine

transformation

F(x,y) = (19%(2-1)/(n-1)+1, 24*(y-1)/(m-1)+1%

when the matrix has dimensions mxn. 1t is well known.that
the image of 'a convex set (in euclidean n-space) under an
affine transformation 1is also convex f12], so the types of

s~

the primitives are invariant under this transformation.

L5}

It is obvious that the normalization,btogess does change the
appearance of 'some characters, especially thosé- vhose
original dimensions are far - from thé ratio 5:4. This
K /'Jéiftortion isvproblemétic in éome samples 6? the character

ol . . . : .
'Y', where. the ' presence of a weak cavity may result in an

L approximation that is closer to a '7'. This problem has

(ﬁ been eliminated here by the use of a repeated 5pproximqtibn

A ' for certain characters, and .this will be discussed in

-

Section 4.3. In other characters, the distortion introduced

i

A e ‘%‘,k e,

PR

After normalization, characters have dimensions 25x20.
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. does not pose serious problems, and normalization is. T -;§
o B * . . - . :3;}
. ‘ . * q'ﬁr
‘ necessarx/fbr the application ¢f relaxation matching. © A
3.3.3 Determfnation of Primitives ,ﬁ
: ) 3
. _When ‘each . curve .of a character skeleton has been 4
. approximated by a sequence o§ line segments, the line 2
. , *
segments are rearranged ,into p;Zmitives ,ﬁﬁ;n necessary. ‘é
This rearrangement may be reguifed for the. following’ k.
reasons: “ ' ) ‘ g
, 27 (1) A very short line segment that is connected at only i
§ ] o
" - :
‘ ' .one end is assumed to be caused by noise and discarded, thus. K
necessitating the 4merging of the line séshtnt seguences to , .
N ' which this seyment was connected.” This is illustrated ip N
Figure 3.3.3, where ‘the deletion of the short segment ?
-, . . £ \ * . . . > \ - '
;.. '°, results in a merging of its neighboring line segments shown .
in  (b). A line segment is discarded this way when it ;
contains at most k pixels, where ‘ t ;
* " N 1 P
) k = min{0.08%(m+n), 4] ;
for a character wifhbdimensions mxn. LA -
\ ‘ ot - .
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Figure 3,3.3 Discard of Short Line Segment
(2) An approximating pelygon is not convex. In this

two or more convex polygons
e S

or line segments, L.

case it Q:ﬁid be decomposed into

It should be noted at the outset that this second

consideration is neceigary only for open polygons. €losed
‘polygons occur from the approximation of loops, and 1loops

are identified iﬁmed{ately from the fact that the starting

and end points of the traced curves coincide.
,l ’ ‘ l) 4 '
The decompos;tion of open polygons into'convex polygons
" 0

is described in the next subsection.
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traversed in order,- If  the rotations measured by the

interior angles of  the polygon do not khave‘ the same .

P

(clockwise or counte}c;ockgiqe) direction, then the polygon.
is . not' convex. For example, the 6-sided polygon in
Figu;e 3.3.4 has 5 interior angles o, -85 . Since 6, and 6,

frepresent .clockwise ‘rotation while 8, is counterclockwise, ‘ )

the pol&goh should be segmented at the veftex of 6;.,
' .
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Pigure\3.3;4 Decomposition into Convex Polygons -
above condition, while sufficient, is not
b3 © ~ / } ! .

necessary. This is illﬁstfated by ' the polygons in

—

However, the

)

Figure 3.3.5, where the direction of rotation remains “the

. same in gach, case even.fhpugh the p;lygon is not convex. .
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R - Figure 3.3.5 'Eddy-type' Shapes .
- ! As a result, the sum of the interior angles of a~§olygon
' ' ' ’
is used here to determine its convexity, while the direction
P -~ . ' R :

of rotation is used to determine -the direction of .its

" ,opening, that.is, the type of the polygon.

)

4

]
It is well Known that the sum of the interior ‘angles of

~

.an n-sided convex polygon is (n-2)r radians. (These
' v

: - 'polygons are closed). To detérmine if* an n-sided open

AR polyéon is convex, it can be assumed that g 2,. since an

." the starting and end points of the polygon, a closed polygon
’ . . > .
having (n®l) sides is obtained. In the polygon shown in

Figure 5.3.6(a),.for example, the polygon having vertices A,
. ‘ Y -

o -

opep‘polygon having only 2 sides must be convex. By joining.
*
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polygon, however, cannot be extendeq ‘to ‘ihéihde‘ vertex E
since a calculation of the newly formed angles 6,', 63' , and
‘eu' shown in Pigure 3.3.6(b) results in

0, +61+62+63'+eu'* 3n radiqns. "In fact, the sum of these

angles equals 3n.if and oﬁly if 9; = 7, which would be a -

eontradiction since it implies that the vertices C, D, and E@L

xﬂare collinear. So the first convex polygon. cannot contain,

vertex E, and point D must be the junction of the two convex,'

-

polygons. * *
P
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Figure/3.3.6'AAngles of a Polygon
N ’ ﬂ )
L 4

When the approximating line .segments have been .grouped

into primitives, the type of each polygon is determined bfl

the procedure described in the ‘next subsection. '

» M ' ' I‘ [ . Pt
B, C, and D isbconvex since 0o 40,40,+ 03 = 21rrad§9Q§, -Phis

»
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3:3.5 Types of Polygons

For a convex polygon, its- type is Qtiermined by the
direction of rotation of -its interior angles when the sides

v

of the polygon are traversed in order. Since the poiygon is
convex, the dire;tion’of‘roﬁapion must remain the. same for
all interior angles as previously stated, so it is necessary
to determine the direction of rotation for only one such

angle.

L4

The direction of rotation of an angle is determined here
by the vector product of the vectors that form the arms of
the angle. Since the vectors are on the xy-pl&ne, they can

also be considered as vectors in .3-dimensional space, and

the vector product of two such vectors is easily calculated.

"It is an elementary result that the vector product of two

A

vectors is a vector in the direction of the positive z-axis

-

°

¢hen the rotation from the first vector to the second is

03

counterclockwise, and it is a vector in the direction of the
Wegative z-axis vhen the rotation is clockwise.

At this stage of the feature extraction process, the
coordinates of the vertices of the polygon are known, so the
vectors and their vector products are easily calculate&T

IS . ©
thus the direction of rotation is determined.

As previously stated, a polygon is classified as north

or south when its starting and end;pofnts are located at '

most three rows spart, and it is classified as east or west

2 ?

’

B A v

e
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~ othervise.

.A west polygon is obtained if
(i) ‘the rotation is counterclockwise when the polygon
is traced downwards (that is, the end point of the polygon

is below the starting point), or

K

(ii) ;hqf rotation is clockwise when the polygon is

tracea upwards. -

o

This is iirustfated in Figure 3,3.7(a), where the two

west polygons shown are obtained from the abéZ?‘conditions.
R L) B oL . . 7
. \ .

\

P

A south polygon 1is obtained "if the starting and end

e >
) LAWY e oy - - _ ~
R R N e S Ly Vamt :

e o, e T e F R B T o g hpe e o

s A IR AR o1

“'%(/ points are located at most three rows apart, and

-

(i) the rotation is counterclqckwise when ' the .polygon -
- 4 . , ' ~
/is traced from left to right, or .

(ii) the rotation is clockwise when the the polygon is

- traced from right to left..

East anq' north p&lygéns are defjnedw anglogously.
, Figure 3.3.5(b shows two east polygons obtained from
'clockwise and counterclockwise rotations respectively, and
Figure 3.3.7(c) 'shows a soﬁfh and a north polygon that .

together constitute a éamp;efof the character '8'.
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A;te% the type of each primitive has been éeterﬁihéd,
the . pri;i£ives are numbered. ' Fiéures 3.3.8 and 3.3.9
illuéfrate the process through which a bin;ry chagacter is
decomposed into érimitives. The binary character is shown -,

in (a) and its skeleton is shown in (b); the - polygonal -
i ; ‘

approximation is shown in (c), and the resulting primitives ' j i
v are shown in,.(d). 1In this and subsequent figures, letters
Yy : . L
' - of the alphabet in the approximations denote the end points :
of line segments, while numerals represent the numbers of
the primitives. )
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3.4 Features extracted from Primitives

AT

When all the primitives of a character have been
determined, the following fea;ureé are extracted from , each

primitives
(1) The coordinates of its starting point,

(2) The coordinates of .its end point.

-

(3). The coordlnates of 1ts center. Th1s is obtained by

averag1ng the max:mum and minimum row and.column numbers of °

S - -
= PRy SAF b ‘;" ooy
N

the vertices in the primitive.

' (4) The length. This is the distance between the

T e

starting and end points. If the primitive is a line
segment, this feature is its length; if the primitive is a

'

polygon, this represents the width of its opening.

Pt e

. (5) The type of the feature; this is represented by a g
. number as follows: ‘ — . ' ;
Type of Feature Type Number - ;

_ Line segment -2 a _ . y

+ Loop , o o . i

. ' ;

'Near' loop  .-° 1,2,3,4 " for west, south, E

: - east, and north £
Polygon 5,6,7,8 respectively. §

) b

r
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‘A polygon is assumed to be a loop if its length is at

most 4.5 units; otherwise it is designated a 'near' loop if

its length is at most B. The ‘criterion for loops was

B

£~

designed to deal with the frequent occurreﬁG% of broken

, .
loops in the data set. 'Near' - loops are used only in

'structural classification; in this phase, not all the
' - b .
extracted features are used, and so a finer partition among

the primitives is useful.
(6) The direction; this is the angle from the horizontal
axis to the line joining the starting and end points. If

the primitive is a. line segment, this obviously measures its

angle of its opening, which is useful in some cases.

(7) The starting point primitives. These are the
5 primitives that end at the starting point of the primitive
being considered.

. \

- . .
3 PN

" that start’ at the end point. of the primitive :'being
P . '
o \\) ‘ ‘considered. T - -

“

The » features (7) and ‘(8) are éignificant since they .
N\ 'f . define the connectivity of the primitives, and this provides:

the contextual information used in relaxation matching.

\ &

, “This information is not used in ‘structural classification.

‘slope; if the primitive is a polygon, this indicates the

. -9 . »
(8) }hé end point primitives. These are the primitives'

= g -
R U,

SRR g e v T T

rl
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In order to reduce the st;ucture‘of a character to its . g

. essential ' components, primitives which are very short line
segments (with length les; than 1.5 units) aée' ignored.
Since this wou{d create gaps between sdﬁe primitives, tws
primitives are considered to be adjoining, af the stafting
point of one is located within 1.5 units of the "end boin; of

o Y

the other. So the starting and end bpint primitives are

determined accordingly. , ‘ .
! L -
* The feature extraction process, from reading and tracing A

8

of the skeleton to obtaining all the features, _requires on-

the average 0.08 seconds per character, - ¢ L 4
‘ - ' . A
"Figure 3.4.1 shows a character and its approximating
¥ .

« %D

primitives, and Table 3.4.1 lists the:. features extracted

from these primitives. T . : A\F

. et
.
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Table 3.4.1 Features extracted from Primitives.

\
a

o

d a
: -~ NSRS
40 .
‘7,- -n- " -
L ll“ © "
..- -n - :
- ™ 3 1
™ M 2 1
. - Y] "t 3 [}
. " " 3 TS
.- ‘M M » n“ f
- “.."“"'"«m""‘ "n""“.. '
um- I‘:
-u . .“ ~
vy [
N 2
: (é) Skeleton (b) Primitives
' Figure 3.4.1 A Skeleton and its Primitives
-
- . ]
- ﬁ“@ing, End - \
(:4 tive oint - Point [Center |Length|Type | Dir |SPP | EPP _
1 A( 1,20) { B(12,13)| 6,16 | 13, -2 58 2,5
: . . .
’ 2. 8(12,13) | c(14, 8) 13,0 5.39) -2 22 1 3,4
, .
3 :c(14, 8) | E(6, 7)] 20, 5 8.06] 7 97 | 2
P
4 c(14, 8) | G(25, 1)| 19, 4 | 13.04. 5 | 58 | 2
§ | B(12,23) | H(14;17)| 13,15 | 4.47| -2 (153 | 1
) )
) Dir = Direction . *
SPP = Starting Point Primitives
i EPP = End Point Primitives
N
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) When Sllr features .have 'been exfracted from 'eéch

pr1m1t3¥e of a character, the c1a551f1cation process beg1ns.
While the aim was to cla551fy¢handwr1tten numerals by the
use of relaxation matching, and the features were extracted
accordingly, it was felt at the same time that using

14

relaxation matching afone would be very time-consuming.

A ¢ ’ This algorithm requires the matching of every primitive of
an input pattern against every primiti&e of a selected
subset of masks, and heavy pomputatious are involved. Even

!
|
% o though the number of necessary comparisons has been
! s1gn1f1cant1y reduced through the added us;?’of polygons

. (1nstead of 11ne segments alone) as primitives, it would

H ¥

\ still be expedient to have an "alternative classification

+ scheme for the easily }ecognizable‘bharacters.

/Q{ \ 'designed. This process was made possible by the choice of

primitives, and these primitives'together with some of their

, 5
t'«

-

t -

. S CHAPTER & :
s h
f - v
o (« STRUCTURAL CLASSIFICATION ‘
T ¥
4.1 Introduction A o

v A Conseguently, a - structural classificJtion scheme vas

s

-
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features are the 'parameters used in the cl,assificg:ion.

It is rhec'ogniz,ed at the same time that a étrhctural
claésification scheme that can . reliably ident’ify all
unconstrained handwritten numerals woulé have to  be
considerabdy more éomplica‘tegi than what is presented here.
It may have to use. mox:e types of primitives [22] and/pr more
ext:lracted featurés. The classification proceés may have to
be mére sophisticated ({1]), [34), and [35] for examplé)‘.

.

Such was not the intention here. -

¢ -

o : ' o
- Instead, the intention (‘was to design a structural

classifier that uses the features already extracted to

"classify the easily recognizable characters rapidly. Only

the characters that cannot be classified.in this phase ‘are o

passed off  to the heavy computatfonal demands of relaxation
matching. "In the results given in Chapter- 6, it can be seen
that the use of this structural classifier does expedite the

classification process significantly.

« -

~
» o

4.2 Use of Structural Classification .
‘,z Generally, only characters having at most two primitives

are made for certain samplesjf '4' and '8' whose
a

B N ~‘\_-/‘
distinctive structures make the sily rgcognizable\ These

are samples ‘of '4' that are fomposed exclusively of at least

five liqe segment primitfves, and samples of '8' that

‘

are processed through the structural classifier. Exceptions{

-
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T,

contain two loops Jjoined ‘by a. line segment. In thg§e

“ , .

o saﬁples of '8',lthe line segment between the loops is often-

» . the result. of skeletonization. oo

o -»

Apart from these samples of '4' and '8", characters’
 having at least three p;fmitives are not considered'inighis
phase; Characters having two brimitivea.ére,vi;nsidgfed',if

' the primitives are aligned vertically so that the center of .

one primitive is at least 5 rows above the tcenter of the

B

Feranhakaat

niy

other. ‘All other characters are passed, to relaxation ‘

. , matching; and the same is true of characters that the -
. ¢ . ) o . s
f [ structural classifier cannot.identify uniquely. “About 80% R
, - . of the samples are classified in this phase, and the other ., :§
. / ) 20% are passed to reIhxag}on matching., : 1§'
‘ i . LY ., . ' g rr . f
4.2.1 Merging of Primitives ° .R e . ﬁ
- : ;
R ‘ E l In certain input characters, a merging of the primitives . .
is performed before stryctural cldssification. That this is N
l . . N . - ‘< J/. . , - f:‘
j . * ' desirable is illustrited by the samples in Figure 4.2.1 1
. i - : 4
. y L .

- Cor
B ‘ . . . . ,.L) ) ' . <
f

L4
<
k]
7 i‘ﬂa et 2,
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Figure 4,2.1 Samples with Primitives to be merged
: R
- Since tracing of the skeletéh and - determination of

‘primitives alWays étdp at end or junction points of ‘curves,

each of the samples in Figure 4.?.1 contains 3 primitives as

f\vun shown, This means that the‘ samples cannot be élassffied

structurally (without increasing the complexity of the .

-

. structural classifier) even though the .samples are eadily

P ., R o \
' . BN .

. .recognizable, y . oo

Ve e " -
. . L )

v '

to

In view of ‘the above, a crite:xon for merg1ng pr1m1t1ves

— was establzshed- two pr1m1t1ves are merged to form a ‘nzk
vpr1m1t1ve if the mergzng results in a pr1m1t1ve, '.e.,'the
result is a convex polygon of a line segment. Determlnation

of 1this cond1tzon is by use of the same. procedure descr1bed

- in Subsect1on 3.3.3.

( . .
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LN . ‘ . .
result of merging, each of -the samples in

As a2
Figure 4.2.1 has 2 primitives as shown in Figure 4.,2.2. P
\ R
1 ;)||9'|l|1;l
At 1 i ”"
1t . £
[ 4 ]
1] N f
1 ¥
) N [ ] v
R PR
.8 . . . "
3 ! I . 1A
1 - LA ARRRRRRRRT ]
I . .2
) z
$° * 4
* 17 -~ \ X
t . k]
[ 2,
\ 1
11y X . R : B
(4] : 22
2 22
. . 22
31223M . 22 Lo
N 821322 t £ 2 L . *
ﬂ
" -
r - . ‘
: Fﬁgife.G.z.z Result of merging Primitives . .
. *

w

should be noted thatnmerglng primitives destroys the
Figure 4 2. 2,

It
.connectivity . 1n£ormatlon. in each sample of
two primitives are no longer adjoxn1ng because the. end

.the
in merging.

peint of the first pr1m1t1ve has been_ changed
among the primitives are
the -merged priﬁitives

Inireiaxation

'‘Since cbnnections important.

.parameters for relaxation matching,

* are used only- for structural classification. .
L i : . 3
matching, the features used are thoge already described in
Section 3.4. : S

. ‘s_~ . ‘ . ]

a €
v In this way, each input c?aracter is reptesented by two -
'Y

slzghtly dlfferent sets of features. The second .set of
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features is easily obtained from the<firs£. This also doesr\
not increase the memory Eequi;;ments to any extent, since
.eaéh character contains on the\a;eraée only 2.3 primitives

before merging .and 2 primitive; after merging. For the
masks, of éourse, only one set of f?atutes would be reqpired-
since they érq'used only for relaxation hatqhiqg. o
) ' R . ~ | Y
4.2.2 Features used in Structural Classification -
o in'the‘stfuctural classification 'ogl a characteré .the
follo#inéﬁfeatures of each pr&mitfve.ate‘cbqsidered:

‘ Cop o , «'." A - -
(1) The type.- Co ‘

i (2), The center. - : EE e T S

(3) The length. ’ - o - c_ L

wTl L bt

(4) The direction. S o . :? '

The: above "are the ﬁarametefs most often - used. 1In

.addition;;thg following fgaturesld?é'éometimes ‘'useful,. and

PRI TR X Sk SR O RN

.

they are available from the féatﬁrg Eitraction érocess;

0

P

(5) The number of sidés in a polygon; this measures how

'curved' a polygo:ﬁis.' - : < E .%
' ’ - | 1 , . . . ¥
(6) The direction -of -rotation:  clockwise or ¥
. . 4 )y - - s v \\ "?
N counterclockwise; ’ ﬁ
: ‘ - i
, . - B 3 . ' "?
(7) The row and column displacements bf the primitive: 1
‘ « A - ’ ]
\ ;\ i




these are the differences between the , maximum and ﬁinigg:
) { . ) . ) SE
~row and column numbers of the vertices in the primitiv

These values are obtalned in the process of determining the

the pr1m1t1ve, and they 1nd1cate the size of the

" center of.
primitiVe; ;//’
(8) The direction of the first line segment in the first
primitive, : 4 ‘ ) B 3
Use of these features in the classification process will 3
be illustrated in Section 4.4. ' ST ) L E
L . , 4 . . ‘
Characters having at most two primitives are. processed .o !
through the structural classjfier using- dec151on trees., 'The/f ' :§
rules used in the decxs:ons are derived from considerations, §
’ of .the characters. not only- as they are expected to b ' %
‘written, but also as they are actually. written. In the = /1§4
. : . ' ! ',:’ Y o §
" process- .of defining this classification ‘procedure, /an. . B
] ' ' L . /) H
initial set of rules vere established .through theor 1cal/ é
considerations of the structures of these characters.//These i
, 5
rules wqre then gradually refined 1n the tra1n1ng pr ss.by‘ }
their application to about 3000 characters in the tqZ1 ing \ é
) . P . ¢ [ a % -
et., ' . T
we \ 4
h) N ,gt
. 3
i
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4.3 Classifiéatibn of Characters‘with’One Primitive

. .

\ The only numeric characters which can consist of ‘only
one primitive are some sampleé of the characters '0', 'l1',

'6', and '7', Naturally, these characters can also be
L‘ B
written

In fact, when the character '6' is more o less correctly

in a variety of ways consisting of more primitives. °

: written, it should cohtain at least two primitives.

Nevertheless, given a character having oniy ~-one primitive,
~ the task s to determine the class (among the fopr noted S
, -t "above) to which this character can most reasonably be

- %séigned. . Some samples of such character$ are shohg in

s Figure 4.3.1.. . )
"IN ' ('
. . . . i
. 'y
. 4
- 5
[ X a PR
[T . , %
[ SNY | P "e P
o , S Meery I
+ ] 1 | 1 - . R
' ' . s 'R ' I
4 y: vy P 1 [] %
' l IS i 1 ' ;
i - ot ! ! ' ' ' i
' ' : A ’ : : ]
LK ! 1, [ k4
- - ' 4
. " : - |5[ ' " i
) - AN ' ' ' ;
" ' \ 1 1 M . : #
¥ 1
L] ' * [} ] '
\ . ' H \ N 1
] L 1 LI ° 1 -
1 N 1 L I ’
‘- . ! ,
'y |n" " 1 B )
. 1p i
1 , ¥ Mean B e ' . ’
5 K1 ! '
M “ ]
. .. Figure 4,3,1 Some Characters with one Primitive 3
- . ° . 3
., . ' "l‘
. N < ) - .
. . - J ) . \
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'Thése chdracters are classified according to the

follow1ng thles:

14

(1) If the primitive is a loop or a polygon that is
close enough to a loOp, i.e,, the openlng is small, then the

_character is classxf1ed as '0'. .

(2) 1f the pr1m1tnve is a north or south polygon, the‘
character is rgjected since any classxfxcatxon of such would
involve a vh1gh degree of uncertaxnty. These rejected

characters are not passed on to relaxation matching.

(3) If the primitivé is a west polygon, the character is

classified as '7'; otherwise it is a '6"'.

(4) If the primitive- is a single line segment, the

character is '1':
-3 f

In the application of Rule (1), the frequent occufrencd
of handur1tten zeros with broken loops has to be taken into
consideration. So it is necessary to determine when a:
polygon can 'be reasonably‘ considerod to be a loop. Xn\
‘ emplrzcally established condition 15 that the length of its
opening shéuld be at most 12.5. Of couse this condition was

used only for characters with one primitive.

In the apoljcation of Rule (3), it was found that

samples of 'l® that . are written with weak cavities are

‘
.

sometimes approximated by polygons as a result of

forma;ization. "In  order to"aVoid. misclassif&ing these

:
\ .
A ' .

>

£
K
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=~
P
-

SR

characters, characters having only one primitive that 1is a

*polygon with at most three sides are approximafqd agaih

e
T
!

A
A
SR

using a larger threshold valhé‘ in' the polygonal
approximation., This results _in a coars;r approximation
which 'preserves only the broad outline of the charactér,‘and
‘this n;w\approximation is used ih the classification. This
procedgre was‘\vefy effective in distinguishing: between
samples of 'l' and '7', and it floes not affect the

.

classification of other characters since these . other
characters would not have such simple 'structures. o

Structural classification of characters having two

primitives is considered in the next section.

» “ 'A"
' ' :, 4.4 Classification of Other Characters .-

For characters having two‘primitives, their structural  ‘l ‘ .
classification is éonsider;b}y mﬁr; complicatéd,‘ané the .-
features of the primitivés often 'have to be used as
pérame:ers.‘in. the decision;ﬁaking prchsg. Decision trees f

i Al

are used, with the top primitive as root and the assigned -

classes as leaves. It is well known ‘that the geometrig
&l,‘ ' diversity of shapes for hahdwrittén numerals makes linear

separation difficult, so there is more than one leaf for

'

B T TV SN Py

each class. ‘ , ’ - :
As an exampié, the deqisioq\tree in Figuyre 4.4.1 might /
PR . 1 . {

. A
¢ I . N !

be considered. . . v

A}

\




West Polygon

v . .
West Polygon Line Segment " East Polygon

{213r5} . {214r7} ’ {214} .

Figure 4.4.1 Example of Decision Tree
.The majority of the éamples of the character .'3' are

classified according to the left branch of the tree, in

.Figure 4.4.1. ' However, . some samples of the characters '2'
-and '5' have the same.two primitives; examples of these are

. shown in Figure 4.4.2.

in \this and subsequent figures and discussion in this

- chapter, the primitiveé considered are ~those used in

structural classification,. so they are the result of merging

primitives whenever this process is appropriate, and the

nuher;c characters in the approximations represent the

numbers of these primitives.

“
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1 118 - T

~tl"ll'

Figure 4.4.2 §ample§'o£ '2' and '5' with two West Polygons

+
i L

v

As a result, features of the second primitive (its . row

displécement and direction of rotation) would have to be

- used to distinguish’ between samples of 2! aqé *3'.. When
the row dfépiédément of the seconé p;iﬁitive-fs'smali, or
" when its direction of rotation is clockwise, then the sample
is'claséified as 'i'; othefwise.itvis'a '3, ‘

v I

The. sample of 'S’ shown occurs due to the fact that the
top horizontal stroke is sometimes lost in the prepatition
of the dat;.‘ To distinguish between suc§ samples of 'S' and
samples of '3', the number of lin; segments‘ in the first

primitive and the direction of the first line segment was

considered. If the first primitive has only two line

segments of which the first is between 60 and 90 degrees

. from tﬁ;\hérizontal, then the sample is'classified as 'S';

A . L. .
A s 2T A e

-

S N

ey




N

otherwise it is a '3',
i}

' The center branch
result of samples .of

Figure 4.4.3.

-« Figure 4.4.3 Samples of '2','4',

of "the tree in Figure 4.4.1 is a

2, 4, and v shown in

[ XXXRET]
1 AR

-
<
»
-
N N
e VR
e A

i e,
o

. oo
LS I e

and '7’ ' t ' :

'with same Primitives
AN .

'The .. above sample of ‘'4' .is’ ea§ily "identified by :
considering the direction of the first primitive, since this d
angle is usually small. Distinguishing between the '2'’and .

|

'7'
direction and lquth

"entirely successful.

The right branch o

of saﬁples'iilustratéd in Figure 4.4.4, and the feature used

is much more dxff;cult and the criteria used here ;

f the tree in Figure 4.4.1 is-a result

(the

of the .second primitive) is not

A

o
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to diétfnguigh_getween them is the diréction of the second— ..

"

P
primitive. *
.
R .
. . N .
hal Al
-
. . ¢ J
TIIR s
" '
v
! ° '
| a4 A 1
1 : ! N '
Y . ' \
; ! N L v v
. 1 . ! '
Ve ! !
[} ' M 1
' ' '
. [EEX TN ]
c 133
o 2 2222
1 ' 2
" . :
, M 3 t ]
° " o " .
) 2 2
2 HS
. 2
L2 ez32e :

< JFigure 4.4.4 Saﬁples of '2' and '4' with same Primitives

a

8

It must, be admitted that 'in this structural

classification, the distinquishing features selected are not

" However, this method does provide an efficient means for
classifying B80% of the characters, and thelrepognition rate

-

obtained is 98.08%. . .
. . » ‘
’ > 1
. - -
~ o

. . \

. . L

. ] w . s .
- -9
. - . . .
* N . € » " )
' . l

entirely foolproof, and they do fail in &some cases.
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4.5 Observations on Struttural Classification ; ' J

The structural classifiet presented here fs not a
complete~classificati6n scheme for all handwritter numerals,
"and its efficacy depends ‘on the patticular character  class.
In _this section, tﬁe effectiveness of this method is

.considered.

1t is worth noting that there is very little difference
. between the results obtained from the training and ‘testing I §
"sets when this method is used. There are essentially two -

.reasonsg for this. First of all, this method)deals with the

= - g@eneral structures of the ‘charactgﬁs and their .possible, ‘ ;
variations rather h than | with the. particular samples .
themselves; no effort was made to médify the rules in order -

to accomodate highly unusual samples since thag would
inevitably lead to misc}aséifications elsevwhere, Secondly, |

, when the classification kules were refined during the
’ training process, a 'large enough ;et of data (about 3000 o

samples) was classified so ghat the resulting rules can

. .
" probably be applied with generality and consistency.

The applicability of this method to the classification

iy [ [3 - . o ‘ "‘¢ .
of ngse characters is considered below. The results given’ 0
o r , ) 4 Lo
"‘E' . here are the combined results from the training and testing &
E data, so there are altogether 6000 characters, with 600 k:

characters per’class. As previously stated,” not all tﬂE

1
;. . o characters are cl§§sified in this phase; out of these 6000
X : . .
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< 7

characters, 4783 were classified, 'and a confusion matrix 1is
. e . : )
given _at the end of this section. Separate results for the

[

training and igsting sets are given in Chapter 6.

e F . .
As might ;E“Expected, this classification scheme is most
‘effective for the character classes '0', '1', and '7', which
S oo ¢ ,
have the simplebt structures. Samples of the character '9’,
F

however, usually. contain only two primitives, and most of

them 'are also glassified in this phase..

"For the character "i';: no problems were encountered
éfter the i;troduction of a coarser polygonal approximation
for samples having only one primitive with at most three
line - segments. All samples"of this character wvere

. v
classified correctly in this phase.

Almost all samples of the character '0' were ¢lassified
structurally, and substitutions are due to extensions of thg
samples above the loop, causing them to be mis lassified as
“é' or '8'. (At the-same time, somé samples of '6' and '8’

are misclassified as\ég' vhen the top primitives of. the

samples are very -small,) ' ‘ ' ,

.~ Misclassifications of '7'" are ~usually due to
similarities betﬁeqn these‘sampies and some sambles of "¢’
and '9'. Substitutions of saméles af '9'?are due mainly tQ
;ﬁe facththat samples of this character can be continuously
‘transformed +to samples of ‘5', and vice versa. Some of the:

_samples of '9' are visually ambiguous, and it is difficult

i
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] a " j ‘

to distinguish them from certain samplés of '5'.v An example K

- - g ‘ | B . 4
" of Fhis.is given in Figure 4.5.2(f). . o ﬁ%

§ Ty ' N . . , o

) ‘ s - e . ' A;g,
"‘Samples gf '3', '5', and~!6' are also edsy' to  classify . 4
s}rpctu?ally. ¢ Samples o¢f '3 consiét mostly of tﬁo vest
bolygonsf vwhile those of '5' ,would contain a east polygon

above 5 vest polygon vhen the top horizontal streoke is not

missing. -Samples of '6' are classified by a loop topped by

a line segment or a east polygoh with a wide opening. 1In

this scheme, an 'eddy-typé' shape with- clockwise rota;ionv

R LR e TR L T
o AL o e B EIRASE B LW B Ty SRR N S

PN -

and a wide opening is alsp qss!gped to the class '6"'; thié

seems reasonable since no other character can have this type

.o ' ;
The structural-classifier is not as widely applicable to

>

' of structure.

B T

samples of the characters '2", '4', and 'B' because a large

A nuﬁger 'of these samples contaigyat least three primitives.
The character '2' ﬁas the lowest pefcentage (47%) of samples
classified structurally. For the character '4', the~§roblem

; . is due partly to discqptinuities at tﬁe cross point caused
' by skeletonization. It should also be noted that cépturing

o ‘
the essence of this character'in terms of the primitigﬁs

) selected has proved to be rather elusive; the top primitive,
4 . o ‘. . ) .
for example, can be a north, east, or west polygon depending
’ 1

on the way the character is written. The class 'B' contains.

wes bt

more samples with' at leasf?threQ,primitives than any other

character, . partly as a tesult of broken loops and partly as

a result of skeletonization (when a line segﬁent is created

CPY ,
M ! .
i

.
L3

~

RS 52 B e e ©
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Only 2 samples were rejected in this phase since most
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.in Figure 4.5.2, and the confusion matrix ..
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- view that an image or scene can be nepresented by a

o pattern
. templates. Ma;ching can be performed on several different

CHAPTER § -

_RELAXATION MATCHING . . -

5.1 Introduction

4

A

A class1ca1 approach to the problem of scene. and image

analys1s is ‘that of template matching. It is based~6q the
vector

or. ‘matrix ' of features, and that the features of an input

can be matched against those of the stored

. levels, from comparisons of very preczse correspondlng,

locations td the higher 1level matching of regions. Some
examples of the former are [10] and [33), and of the latter

ane [9) and [3].

;n;, the template matching of features, one often

overlooks the relation of a segment or subpattern to the

vhole,

extent by cons1der1n9 contextual znformat:on in the matchxng:

processm S ' . C
C :

Many relaxaiion schemes have been proposed for image

‘analysis tasks;-different repkesentetionstof the image as

The relaxation method overcomes this neglect to some\
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well as different matching procedures have been devised.

Some features used are corners of the images ([21] and
[401), eﬂées or ~ region  boundaries of"images [31,
approximating eliipsoids [9]), -and pattern points [301.
Variodﬁ relaxation matching, algorithms have been propo;ed in
14), * {15k (181, .[27], and ' (321, for example. A

. , B
comprehensive review of relaxation ,algorithms and their

;‘applidations is given in [19].

- -

-I'n using the relaxation method, the features of each

»

segment or subpattern M of a template is matched against the

features of each segment I of an input or object pattern. -

The likelihood of the match i's based on the proximity of the

‘features, and the initial probability of  this match is

.définéa by.this local information, ..

This .initial probability . is then reviged according to
the similkrity‘of tbé context in which each sggmeﬁt appears.

This is achiéved by considering the probability of a match

» between the\‘neighbdring segments 6£q M and 1. The

probabilities are. adjusted iteratively in this manner, and

associations between template and object segments - are

establzshed by the highest probab111t1es obtained Using

thxs association function, a distance betveen the‘ template
D

: and ob]ect patterns can be determxned and 'the object

pattern is then c1a351f1ed accord1ng to the minimum &1stance\

N

cr1terxon.

.
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) In  this work the pattern’ segments used are the
primitives descripéd in Se;tjﬁn 3.2, and the features uysed
in the matching procéss are those described in Spctiq& 3.7,
THe relaxation matching algorithm used will be. discussed in
tﬁe following séétion: Whilé this procedure is adapted from
[43], it conta§n§ many modifications; ,apart from using

different primitives, the matching process itself also has

considered here.

o

-

5.2 Relaxation Process . ) .

!

In this work, the basic subpatterﬁs or primitives used

in the matching §rocessh are line segments and convex

d, . polygons, and every character pattern is deécomposed into a

set of these primitives, Each primitive is represented by &

[

set of features. . *

L4

5.2.1 Feature Set of Primitives )

Eachlprihitive is represented by a set of features which

-

consists of eight characteristic measurements of .the

primitive itself together with two lists of primitives.

‘
a

The set of characteristic measuremerits are,
, .
i

i
!
H

. ‘ . S (xs,ys,xé,ye,xp,yc,l,t,ﬁ), where |,

been adjusted according to the nature of the patterns:
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;(xs,ygj are the coordinates of its.starting point,

(xe,yé) are the coordinates of its end point,

' / . . N .
(x,,y,) are the coordinates of its center,
., A\

¢
.

1 is the length of the 1line segment L joining the

starting and end points,
"t is the type of the p:imitive, and

8 is- the angle from the horizontal axis to L.
- . . . 3

o’

o ;The two lists of primitives are the starting. and  end.

point primitives, ,i.e., the primitives with end point
(xs;ys) and  the primitives wixh starting point (xé,yé)‘

respectively, ' B

[

5.2.2 Initial Probabilities , -

In matching primitive M, of a mask character against . '« ..

primitive Ik‘of an-input character, ‘suppose that M, has

. \
[" .

characteristic measurements '
(xsi'ysi'xei’ ei'xci' ci'li ' ti '91)4

while I, has corresponding measurements

. C ' (xgye e Yoi 1%k 1Yok "ok Yok 12 r k%)

P N

L

A ' . A

N o - ®
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Theﬁ \Ik is cdnsidéred to, be associated with M, if the

following initial conditions are satisfied:
g \—L\/ )

- < e
ekl a

(1) |e 5

i
(2) lli.- lk|f a,

(3) as ] de <'a4,'where dsi

| OBk ik Tk k'
are, respectively, the distances between the starting

deik, and dcik

points, end points, and centers of M, and I,. The constants

a,, ay, and a, are parameters used to establish possible

associations.

é

)t =y This condition is imposed to ensure that

only primitives of . the same type,can be associated. The .

types'of pfimitives are line segments, loops, and polygons.
: \

1§ Ik is associated with.‘Mi , then the initial

prqbébility of the match is determined By the similarities

in these measurements as follows:

~ * ,
~ € M . ’
Let dl- max'(lei -9 0),

b
>

LY
o eggr 000 T B

= max{ 1, -1
dy= max(dsik—“aédrnj, s
d,= max(de,, - a,,, 0), and
2 '
an ma;(dcik- aza,.o).

b}

A e U
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A

The parapetérs a,, a5, and aza'are . the permissible
th;é}holds for small variations. The quantities d, - dg

thup measure the dilffegences between M, and I, , and the

initial probability of the assog:iation‘ of /Ik to Mi'is ; A
defined by 3
§
0 o ;
Bl = maxll - vt 0 g 980 44 ), OF, ?
] * A
" < where W and w, are assigned weigf:ts.
,The values of the parameters used in this work are given -
below: ° ~ '
a2 = 30, ,a..3 = 7, a4 = b,
L Bt 20 a6 2, 2
\ ey 0.011, w, = 0.2, ,
It should be noted that in [43], “which deals with
relaxation matqhihg of Chinese characters, Pio(.;) is defined
in the following way: - B e
' - W * * ; )
Pik) =17 %*lv*d+d,+d4d,), and
0 . . pe ":a"r l
- p0 . P L ‘
- idk) — - ‘
o e ‘ . . e ot
]z("i'pi (k") ) | . ' P B N : .
- where .the sunmation is over all the input line segments I \

kl‘

-
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agssociated with Mi.

g

The modification made here is in accordance with the
I4 ' .
structure of the characters considered and the primitives

used. In general, Chinese characters contain many strokes,
AN

\

" and many line éegmenis are used in their approximations.  So

a8 mask segment M, usually has several associated segments,

and P 0

(k) S@&n be obtained from the above ratio,

¥

In the case of numeric characters and with the

" primitives used, a mask primitive M, usually has at most one

associated primitive Ik,in_the input character, The use of

°

the above ratio would generally result in pi?k) having a

- value of either 0 (when Mi and Ik are not associated), or 1

. {when they are associated). This would ‘obliterate the

infqrmation already obtained on the degree of similarity

between Mi and Ik

was therefore modified in thé mannerxétated above in.order

vhen they are associated. The computation

)

to preserve this information.

Different values vere also used here for the parameters

ar

to compensate for the more variable quality of the data set

considered; some permissible thresholds were assigned larger -

values for this reason,

T v el RS
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5.2.3 lteration

Suppose primitive 1, of an input pattern is a?sociated'
vith mask primitive M, and the initjal probability P;nk)'of
- the association has been established accordihg to the local

Kcompat{bility of the primitives described above. . The

‘relaxation process then revises this probability according

_to the contexts in which these primitives occur. This is an

iterative process duéing vhich the starting and end point

primitives of M, are considered. In iteration t, the

revised probability pit(k)' with t 2 1, is obtained.

Suppose Mj is a starting point primitive of Mi and In is
an input primitive assocfated with %j' This would require
that 1 and M.j be of the same {ype. A function‘rij(};n) can
be defined that would indicate théeydegree to which the

matching gf M& to Ik

to In. 1t has sometimes. beean assumed that there are ‘spfing

"is compatible, with the matching of N%

connections between. the starting point of the pair (ﬁi,lk)
and the end point of the pair (Mj'ln) [6), and that rig(k,n)

is the starting point tension. This is illustrated in

-

Figure 5.2.1, . z

e N s

t . -
. R - N
R S T A T e e e |
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Eigure‘slz.l ‘spring Conngctions

The value bf rij(k,n) is determined by the proxim}ty of

the end point of 1, to the starting point of Ik'" I1f this

distance is denoted by d ,, then

@ f ~
.
Il

T WL NPVLAC NN

’ rij(g,n) = max(min(l-w3*dhk+a25, 1), 0},

-

where a_. is the threshold for small variations and VAR

25
the assigned weight. The fact that r:j(k,n) can be flonzero

even vhen I and In,atelnot neighboring primitives éllovs

TOPORLLITAIR U REE R I m“ VTS

for .the bossiﬁle nwfching of characters Aith different

numbers of primitives, or for ‘'missing' primitives. 'In this

work, w3-'0.3‘ and a, = 0.45; using thé€se values, the graph
. ) ~

4

,of rij(k,n) as a function of dnk is Ahown in Figure 5.2.2.

ny




' . Figure 5. 2 2 Graph of r (k n)

R
J
. .
N ' [

i* an . inpyt grmutwe associated with M then the éngi

s~ poxnt tension of the spring connectlon is fmed'mb{

. < Y - ’ , ' -
e y : X . 4

(r"ij (krn}, ‘dma,X{l'V3 *q(ﬁ+325 ’ 1): 0;} ' :

o{‘p v L3 . ,l .
vhere dkn is the dzstaﬁ’%e between’ the end pbmt of I, and

L]
uthe*st‘artlng pom}:/( L.
. / ’ N -

-

'Uniilge [43], when H;, is a starting point primitive of

r

.. M, the distance between the starting point of M, ‘and \the
co \

. P . . [ ]
end point of. M, is ot ‘used here in the definition of |
rij(k Q) 'I‘hls is due\fo a dlffel;ence between ho‘*wntten

- Dumeric’ and _Chinese ¢harg&teqs.»- Numeric' characters are

[
.
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"

' usually connected, whereas& Chinese characters are not. So.

Af M, .and M, are neighboring primitives in. a numeric

chdracter, the digstance between them can be assumed to be
negligible. The same consideration was used in the

defifiition of r° (k,n).
v Al
For t>0, the probability. Pjﬁi) is obtaingd fr<\>m the

following calculations:
]

: . - , |
Pt(k) ® 9 (k) *pi(k) (5-1),  where

—~ .
% () ql(k) : i
——— . - {5-2),
q“k) ns + ne S
T s . t. . |
) : qi(k) jzlmax{!.sj(k ,N)% PJ( y } .(5‘ 3), ané
e B {te (k ) P } o ‘(544)
L | = );max n . “4).
1(%) j=1 n 13 3 {n) .

In Formula (5-2), ns and ne are, respectively, the

L4

numbe}s of the starting and end point pfimi-tives,of Mi'.) In
Formula (5 3), _each summand is the’ maximm\: value of
- {

(k n)*p. . where. the maximum is taken over all the

J (n) '
4‘9"14t1ves I associated with the mask primitive Mj . The

&summation in Formula (5-4) is analggbus.

v

thle the calcylat:lons of the probab111t1es can be

repeated for \a desired number of 1terations, no ' noticeable .

y . -
. ; ' ﬂ‘
[

* - ' " oo . T
Ny ‘ . YO
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difference was .observed between the correct classification
rates obtained from using one or more iterations. . "So only
one iteration was used. A similar observation was made in

(18], vheré a relaxation ﬁethod'was used for pointfpattern

matching., ’ o '
L ‘ “" ) L N

"~ In 'Figure 5,2.3, a mask and an .input character ar

shown, and-thé_ppobabilitiés'obtained in relaxation matching .

: . . f
: ‘g ' !
. are given 'in Table 5.2.]. .
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- Figqure 5.2.3° Mask and Input Character

- -

I D
L ]

e e e e A —cad
z

\i

o |

P
Lo

3 ') 0.967 . | 1.000 -,
; i . t ' 3
.\ 4 5- i 1.000 1.000
L ‘ | L : - ;

¥

K1l other values are equal to zero

P(1) =1, P(3) =&, F(4) = 5

0

* “Table 5,2.1 Probability Pi(k;l .
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5.2.4 Distance Computation

%4

To determine the distance D between a mask and an input
character, it is necessary tb calculate, for every‘ mask

. }' ) primitive Mi and every input p;imitive‘H( associated with
' 'Mi, the probability Pi?k)’ vhere t is the desired number of

iterations, Using these probabilities, an association .

# .
// function F can be defined so that F(i)=i' denotes the ‘input

a5 ‘, primitive that is associated vith the mask primitive Mi'with
the maximum probability. The distance 'D is obtained by
using the function ‘F. Let. m be the number of mask

9

primitives of which m, have assaciated primitives defined by

4
/
#
“
;
y
&
il
‘l
s

F. Let m, be- the number of unmatched input primitives.
A

For any mask primitive M, such that F(i)=i' is defined,

s

the following quantity R, ., measures a degree of

‘correlation between M, and I, ,where

r ) : ) .

i N8 8 ne )

< g r (i,5nepE ep B, (i, 3Rl L R E

: 3=1 1j J_l 3G j2=1 i3 30 i) i) 1
; \ i

R =
14 ne + ne

where ns and&§ne are the numbers of starting and end point

primitives respectively of N&, and F(j)=j', 2

N . 4 .
- ]

o

“ -

L 4
~
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v The distance D between the mask ‘and input characters is
then given by ‘
-
ml- 1 ]+ ( )
) z -R . + (m-m, )+m
D = =1 i(i;?" 1772

N

Since (m~m1) and o,

and input primitives, they represent additions "to the

distance measurement caused by 'missing' primitives,

5.2.5 Classification Criteria

’

' For apy input character, ifs'aistance from each mask can

be calculated according to the procedure described in this

section. -“However, due to the 'penalty’ imposed‘by'missing

primitives in the distance measurement, it is very wunlikely

for the closest- mask to contain a significantly different\

number of pijmitives from the input. PFor this reason, and

also to reduce the computations involved, an input character

 with n.primitives is only matched »againsta masks having

*

between (n-1) and (n+l} primitives.

‘The distance of the inpqt character from each such mask

N

is calculated, and the two closest masks are éetermined.
« .

The input character is assigned to the class of the mask of

minimum distance Dpin provided that one of the following

-  conditions is satisfied: . | ' 3

. ¥
i

O T e
‘ ! . :

are the numbers of unmatched mask

ok B b g ey Sl 4 o
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\
(1) The two masks belong to the séme class and pmin does

not exceed a certain upper bound U .
; , ! S

(2) The two masks belong to different classes, the

. !\ . « . ‘,’
distances of the input from the two masks differ by more
than a minimum value 4, and Qnin does not exceed an upper

Tolimit 5.

'In this work, the values established through analyses of

. the results are: ul'- 1.5, U= 1,3, and d = 0.005.

N
)

Figur_e 5.2.4 shows some. substitutions that result from

relaxation matching, and Figure 5.2.5 "shogs, some of the

samples rejected when the above criteria wer.é aﬁplied.

o
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X ,
5.3 Mask Generation and Training
' )

In the training phase of relaxation matching}\masks were

selected and the values of the parameters wvere established.

]

In the mask selection process, a set of 165 masks were
initially chosen to represent the different combinations of
primitives that could constitute each character class.
However, any such preliminary selection would obviously be
far from complefe.. qSo, during the training procéss;
misclassified characters in the training set ‘%ere examined

and- some o¢of them were added to the mask set. At .the same

time, masks which resulted in too many misclassifications

were replaced. About 1000 characters were proceésed through

/’,,,———celaxatiod’métching in this phase, and a set of 242 masks

4

was eventually obtained.

No fixed number of masks per character class was set in

the training process; a mask was added if it was considered

useful. Since relaxation matching wvas used here to

-

complement structural classification, the character classes

that are moétly classified by structural analysis might need
.fewer masks, and vice versa. This has been the case, and

the number of masks per class range from 0 for the claés 'l

(wheif felaxation matching was unnecessary) to 44 for the

class .'2' (whéere, as previously explained, structural

‘classification could’ oniy identify ‘about 47% of the

samples). ' The number of masks ber class 1is given in

S
\

[
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Table 5.3,1.

Character | 0 12 3 4

.~

| "#Masks |4 0 44 22 44 31 33 15 41" 8

[

Table 5.3.1 Number of Masks per Class ;

Due to the distortions present in some of the samples in
expected that the

" the ‘ training. set, it was not
" classification would be completely correct. The use of
seriously distorted samples for masks was also considered
inadvisable since 6€het misclassifications mfght result,
The recognition rate for the training set‘of 819 samples Qas

94.02%, and the sh?stitutién and rejection rates were 3.91%

and 2,07% respectively. 'Confﬁsion - matrices are given in -

Chapter 6. , ‘
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N 5.4 Conclusion

-, >

In this work it has been observed that relaxation

matching is, in most respects, a rdbpst process. The
:‘ : correct recognition rate .is faifi; indebendent of small
| | variations in tge values of the weig parameters, and
it remains almost constant regardless ol the number of

iterations used.

: . , -ﬁeverthe1éss, the essence of fhis method isv mask
” - ' selection, especially in highly variable data sets, as is
,the case here. For- this process to function with a high
degree of reliability, it is essential to have a mask et
that is representative of the entire spectrum of the -
pa£térns. This is not easy to achieve when the data set can:

be distorted in many different ways. In such cases, it is

obvious that repeated training with large sets of data would

//be required. The generatidnl of masks is itself a simple

7 B

, .. process, since features are extracted by the same procedure
' and stored. .
TR | €
; ‘ R | ) ‘
However, the use of a large set of masks would require a
./ " . corresponding amount of storage as well as a proportional
amount of computing' time. The latter problem can be
alleviated by taking advantage of the highly parallel nature
of the relaxation process. Since all the local

compatibility computations for a given iteration ‘are

independent, they can be performed . simultaneously on a

a




~

S

: guitable multiprocessor computer. ' -

-

relaxation process should provide a consistent and reliable
. " - r

~ means of recognizing Highly variable patterns. This would
g be especially true of the approach considered here, where
primitives are selected also to preserve geometric and

topeclogical properties of the patterns, /

-

If fhese'practical cohsiderations are not problemafic,'

and a compréhensiﬁe mask set .is obtained, then the



- were used in the recognition pr

CHAPTER 6 LT v

o

EXPERIMENTAL RESULTS = '

i

6.1 Experimental Data . ‘

w
©

The data used~in this work. js a.set of totally

" unconstrained handwritten 2IP codes collected from dead

letter envelopes by the U.S. . Postal Services, For- this

reason, -the number -of authors is unknown, but it can be

'asguméd to approach the number of sampleé itself. The data:
8 ' . ‘

had been digitized and binarized. - The pcgbared charéeﬁer

_samples are accompanied by identifying labels,«sdme'éf which

are obviously wrohg and some others are ambiguous or open to

interpretation. The definitely erroneous ,31abe}§ were

f N , /7 .
. corrected, ‘but no effort was made to eliminate any ambiguity,

sinqefthis was considered to be part qf‘thék nature of- the

data, i SO

[

«  The Samples°.§ere 'skeiétozéggd, ﬂ“d'Onlﬁgiheiékeletbns

Sémples —ah@~’their‘ske1eibns S;e-shoﬁp in Pigufes 6.1.1 amd -
“6‘1‘02‘. ~ '

>/

ess. . Some ' typical dhfa-l

T TR ST, P OS¢
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In the training process about 5000. samples were used.’

'0f these, about 1000 were used initially to select a set of
165 masks for relaxation matchinq, and the other 4000 °(400
samples per  class) were processed repeatedly to revise the 7

N | rules for structural‘clﬁssification and at the same time to

] : advance the mask selection.process.

The testing set consists of 2000 s&mples (200 per class) n
Lt not used in the\fraining process. The assignment of samples

) : to the training and testing data was completely random, , ;

” S ;

!

" 6.2 Results of Structural Classification g - ' ﬁ

'An° analysis of the performance of this classifier has

been presented in Section 4.5, where it was observed that

Ry

the recognition rates obtained fr;m the\training and tegting a
»  data are almost idéntical. This is probably due to the
randomness of the characters, the large number of’samples

~ used in training, and the fact tha%.the clissification rules . | ;

. were designed to account for many possible Vvariations in the

*structure of each class.

Out of 4000 samples in the training set, 3181 were
classified in this phase, with recognition and substitution
rates of 98.24% and 1.7% respectively.‘ The confusion matrix

is given in Table 6.2.1. ‘

o
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For the 2000 samples in the testing set,'lsoz vere
classified in this phasg} with recognition and substitution:
tates'lof 87.75% and 2.25% respectively. ' The confusion

matri¥ is given in Table 6.2.2.
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- data sets.
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6.3 Results of Relaxation Matching .// Co

With the use of relaxation /éatching, there is a
[t

difference of 5.08% between the correct recognition rates

. 7 N ~
obtained from the training and §esting data. Of the 819
samples processed in the trQihi g, set,'the recagq&tiod rate
is 94.02%, and the substitutiof and "rejection' rates are

L 3
3.91% and 2.07%, respectively, wh;le the correspond1ng rates

" are B8.94%, 6. 78%, and 4. 27% or the 398 samples processed

$

in the testing set.

The difference in the regognition rates may be partly

B

explained by the fact that some of the trainings samples were

‘ . . . .
used as masks, but thgre may also be differences among the

The. training

-

was processeé through relaxation

matching in two /parts., The first set consists of 415

samples, of which/83 were eventually sefectéd as ‘masksf

while amon§ 404 samples in the second set, 45 were selected

as masks. The/recognition rates obtained from the two sets,

however,m arg//not noticeably different, as shown in the

nconfu51on mdémgces given in Table 6.3.1 and Table 6.3.2. -In

addition, /thg 1nc1us;on of more masks vas attempted but was

found to-be,;nconsequentlal. So the, conclusion was that the

relaxation process "had largely stabilized when the testing

data

. ’
¢, ' / }

as processed, and that the difference in tHe -results

uaé due ﬁhrtly to the variable quality of the data sets. It

A ]
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is also possible that continued training with a larger -data. .. i
N s . 1

o

set would improve the f";nal results,

5

< The confusion matrix. for the testing da

"

Table 6.3.3. -
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structurally, and the rest by relaxation
N ~. ' -

6.4 Overall Results p R

-

/Y In using 'a combination of the two methods of structural
classification and relaxation matching to . clagsify

handwritten numerals, each method %s*nGt'appiigd to the)same

extent. ‘In.general,‘about 80% of the samples are classified.

matchiﬁg,. This*®

:

would seem to.be a logical approach given the vast disparity

in the computing time required by the two methods.

W

-When i emented on a Cyber 835 computer, str
classification requifes on the average 0.24 millisec
character, while —}élaxation matching requires

milliseconds per character. 1In each case the time given is

. that of ‘theé recognition process alone; feature extraction

(excluding skeietoq}zation)'.,requires approxiqatély 80

milliseconds per character. Table 6.4.1 gives a summary of

the time requirements. | N o
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" that the second recogniﬁion phase would 'require more (,\/

‘relaxation process is directly' relatedA to the‘ number of

.used only for “samples Q\V1ng s1mp1e£\§§;uctures (at- most two

. ” . "
iaa ' 7 ) , gl . - ‘M,&l .
v . /—L\ 97 ‘ .
B - é : ’ ~
. ) o o
N —_ - '
) “ ot .
’ Process i Time (milliseconds/character) .
]
‘Skeletonization . ¢+ 350— -, : , ;
- . ‘. “ ' , ) K
{Feature extraction. . ' 80 \ ;
' : ' e . ;
Structural classification Q.24 o K
: T ' 3
., . \ " “

Relaxation- matching <.d" 662 E
TN Y - , , é
e - - =T a : - é
/ * :%
. "ol

Table €ﬁ4.1 'Summarj of Time Requiréﬁentsl

It should be noted that structural classzfxcatzon is:

-.zzm.nz

% o PR gl

br1m1t1ves) and that-‘even among thes samples, the samples

ey

that are more dlff1cu1t to classify are passed on to the

second method for recognition.. So it should be expected

compufing time, In addition, . the : time required by the

1,

PST AE N
SR SRS T

o

masks compared and'-the number of prim1t1ves 1n the 1nput o
H
pattern. This is shown in Tables 6.4. 2 and 6.4.3.
Table 6.4.2 nges the frequency distF1but1on of the i ‘ .E'
masks according to the number of primitives in the masks, —%—
' and Table '6.4.3 gives the average time distribution of - d
t —%

relaxation matching by the number of pggitives in the input

®

q -,
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Table 6.4.2 Frequency Distribution of Masks by =~ -
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In Table, 6,4.3, : /the nuinber of masks 'compare'd " ‘is

determined from the fact that a character with n pfimitives{"

3

is co@ared to masks, ‘having between (n-1) and . {(n+l)
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~ 4 .Primitives .| # Masks compared _-Ayerage Time(msecs)
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. Table 6.4.3  Time Distribution of Relaxation Matching =
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An exanfnation of the raw data shows that the time

-

.:7 required fqg: relaxation matching of & haracger is",

% R o 2 PR M

’

approximately the product of, its number- of primitives and

T e g

- - __ the number of masks gompared. As shown in Table 6.%.2, a 2
W Y , ptedominanf number of masks contain two, to four primitives,‘
L~ i E and th1§ is also true of the samples prolessed by relaxation

matchxng So a large ma:or:ty of the charactets have to be

1

.
PR V1. AN S

compared to most of the masks, -thus compoundzng the time

5
¥
*

K

%
b
&
3

required. . v o ' oL - : C
: S ) o o

", . In l1ght of the above observat:ons, it is apparepf‘that N
a more rap1d scheme should be used to classify the easxly

[ ',i‘ recognizable samples, and ,thls' was achzeyed'fhere by

considering the same strucnﬁrak fqatutlf‘that are used Dby

\ -
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'93,5% (for  the classes '4', '7', and '9') to 10Q%\f0r the’

.

s * 100

™

the relaxation process itself.
: L

While each K method was notiutilized to the same extent

across the character classes, and some classes are more

amenabli to ;Xructurar classification than others, the ufe ~

-"”‘-x,n. . .
the two methods 'im cenjynction has resulted in generally

e o \

consistent recognition rates across the characva??b%gssesq.\\,

For the training set of 4000 samples, the recognition rrates
range from 96% for the class '7' to 100% for the class '1l',
whi?e‘in the testing sét of 5000 samples tﬁ%’range is from
class ;L'. ‘ ' ’ . ’ ) ) \

In both the training and testing data, the recognition
rates are lowest for the cla;;gs/'7‘,-'9'. and '4'. The
probiems‘encountered in classifyiné éamples of '4' have
already beeq describedi For Ebe classes '7' gnd '9';\it
wthd appear that cefgain samples are vritten in ways
lacking distinguishing characteristics. For example, it is

L
diffigult to separate some samples of '7' from those of ‘4’

or '9', while éome samples of '9' can resemble those of '5'.

For the training data, the overall recognition rate was

97.38%, and the substitution and rejection rejection rates

v
* o )

were 2.15% and 0.47% respectively. For the testing data, -

the corresponding rates were 96%, 3.15%,. and 0.85%. The
overall confusion matrices for the training‘and testing.data

are given in Tables 6.4.4 'and 6.4.5 respectively.
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Since the sub;tituiion rates appear to be ‘rather h%gﬁ,
new rejection gﬁ}esﬁolds. were also tested in relaxation
matching. By using smaller values for U and U, (see
Subsection 5.2.5fff;ﬁe,substitptipn'raté can be reduced and
the rejecfion rate increased at the éxpense of the

recognition rate.

* Paete

- NS L .ﬁﬁen U= 1.1 and 4= 0.5, the overall recognition rate

for the'téstiﬁé data waS~93;15%,,wbi}e the substitution ‘and

. confusi atrix is given in Table 6.4.6.
}£ is a logical conseguence that the  reduction of ;he
substitution rate by 0.9% should be acuompaﬂiéd by a
' feduction of 2.85% in the recognition raée, since the method
éescribqu\ here, when performing at its lowest 1level,
“Eorrectly recognizes ébout 3 cég;acters out of 4.
Naturally, it can also be arguéd that the use of the new
‘thresholds has resulted in a reliaﬁf&jtyr rate of 97.64%
- .., (when the rejectéd samplgsvé;e excluded from consideration)

E . \ ;

versus 96.82% for the original thresholds, and that in this
“sense the new results are preferable. Ultimateiy, this is
one of the areas where adjustments can be made according ‘to

- - . practical considerations. . . )

-~

. L - When the -same new ﬁiﬁresholds were applied to the

. training data, the recognition, substitution, and rejection

rates were 95.58%, '1.45%, and 2.97% respectively, and the

SN
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rejection .rates were 2.25% and " 4.6% respectivelyd ‘The\\;::ii>/,
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reliability‘ increased from 97.84% ‘to 98.51%. In this
respect, the use'of tﬁe new thresholds was more effective in“
réducing the substitution rate in tHe training set.(/ This
last result is only to be expected given the nature of the
training process. Perhaps a logical next step would be to
S} continue the training process until the diverse structures
of every character ¢lass has been taken into consideration.
. 1f this were achieVed,\the results obtained from processing

unknown data may be made to agPtoach those of the trainiﬁg
. - . N '
. - data itself. -
- o s
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. . CHAPTER 7

) CONCLUSIONS ANS FUTURE DIRECTIONS .7 1\

It was the purpose of thls work to design and- 1mp1ement

‘a system class:fy totally unconstraxned handwr:tten

numerals, and this aim has been largely met. ’ -

Using skeletons .obtained from binarized -characters,

features are extracted, and the characters are classified in

-

two &phases} . There is a fast structural classifier to

“
LEE
+
s 43
i
=3
B
2%
)
-
Bh
g
v
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»
3
-3
b
8
5
8
s T
¢ !/
. 3
2.
4
;

prockss the easily recognizable characters, and a robust .
relaxation progess to. complete the task\ vhen no unique ﬁ
identification is ' obtained from the first _phase. "g.ﬁ
Es;éntial{y the  same féatu?es‘ are used iq the 'tvo /}} é
classification 'schemes, so feature'extraction ié performed ¥

'énly once and without, redundancy.

. Thg system has Dbeen tested on real-life samples 65 | P
handwritteh sz' codes obtaineé from the u,s., and~ éhe
performance is con51stent. The i?sults obtained, wh11e not
perfect, are at least on the level achieved by the human eye .
in -deciphering handwr;tten characters in the absence of

context, and is comparable to ‘other reéults;>obtained in

- - N
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current research on the subject (fpr example, [1], [5]), and

. ~ ,.

Naturally, while most of the problem has been solved bﬁ
théée means, some of the challenge remains. Several
suggestions for improvement and future ° research are

discussed below: - ! .
. ’-\' /
3

kl) More types of primitives can be used to ensure a
finer separation of the q@qracﬂer classes. It is also
possible to extract more features from each primﬁfive, even
thouéh the feature set used heré\does contain a considerable
amount of information which(has;nqt‘been fully utiliied.

(2) Refinements and improvements carn be made on the:
decisioh trees used in structural classification. They can

. aiso be extended so that more charactérs b?n be classified,

or,

. - (3) Structural classification can be used to give a

-

+ .preliminary classification of an .input character. If no
Iunique'identificatidn‘can be obtained in this phase, perhaps

" the bhéraqte; can’ be assigned to a subset of possible
‘¢lasses. This is mofe‘ complicated than it may aépeaf_

¥

because of the ldrge number of possible variations in each

cha;acfer class. TFor example{ it has been:- found that any’u

v [}

character except 'l' can contain a loop, so any reliable

.
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_preliminary ¢lassification .would have . to use ‘finer

partitions. 1f an effective pfocedure can be designed for

this task, it would narrow the scope for the next phase of

e . .
the classification process. © .
gt} ‘?
iy o
Rar . .
a . ;

(4) The  relaxation: process can be expedited by taking

advantage of its essentially parallel 'nature, perhaps

Eﬁ(gugh the use of hardware. .
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APPENDIX N
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. ‘Other Decision Trees

Bast Polygon

~

East Polygpn.

A R ) . Pl P)

~{4,5,8,9] - {4,5,7,9} .- {6,8Y - (4,9}
. B | . ,
. :_,l' I North Polygon . T " South Polygon
| | €
_ . A A
. v R CI"
, ' Line Segment . Loop g - . "West Polygon Loop
. o : . t. ,“ . 2 )
’ . .
: ‘ ' .' ‘ ’ ’ ‘:' N
- o {4,7&(9} {8} ~ {2,3,91 . (8}
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