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ABSTRACT

STUDY OF THE FLOW CHARACTERISTICS
IN THE ABDOMINAL AORTA

KONSTANTINOS STAVRIANOS

The abdominal aorta is prone to atherosclerosis. Hemodynauic factors are known to be
directly related to the development of the disease. Numerical solutions of steady, unsteady
harmonic, and physiological flows in simplified aortic models are presented. The effects of
Reynolds number, angle of the divider, amplitude and frequency of oscillation and unsymmetry of
the inlet velocity on the development of velocity profiles, separation zones and wall shear are
investigated. The results obtained are confirmed with the work previously published by the other
researchers. During steady flow, no reverse flow regions and oscillatory (in space) wall shear
behaviour are found in areas known to be subjected to atherogenesis. During flow deceleration, in
the case of physiological flow conditions, these areas have been found to be under the influence of
large recirculation zones and time varying oscillations. No stagnation points and space oscillations

occur during flow acceleration.
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CHAPTER ONE

INTRODUCTION
1.1 History of Hemodynamic Research
Early records in Egyprtian hieroglyphics and Greek and Roman manuscripts indicate
the interest of man to acquire knowledge of the anatomy of the major blood vessels and the
mechanics of the circulation. The old theories were sustained until the Renaissance, when

studies in anatomy led the way to the modem scientific approach [1].

At that period Leonardo da Vinci illustrated the great vessels of man, see Fig. 1, and
remarked on the thickening and hardening of the arterial walls with age. which we now call
atherosclerosis. William Harvey, an English physician, presented the modern conception

of the circulation of blood [1].

Later in the eighteenth and in the nineteenth centuries, well known fluid dynamicists,
such as Euier, and recognized polymaths who paid little regard to the distinction between
biological and physical science, such as Bernoulli, Poiseuille and Young, made significant

contributions to our understanding of hemodynamics [2].

By the beginning of the twentieth century, the development of science and
specialization created a separation between the physical science and the study of the
cardiovascular system. Physiological researchers were lacking in mathematics and
mechanics while physical scientists found the complexity, empiricism and terminology of

physiological studies restricting [3].

As a result there was limited advancement in the study of blood hydrodynamics, i.e.
hemodynamics, until the mid 1960's. During that era vascular surgery became common
and created a need to broaden the subject of cardiovascular fluid dynamics and to master the

details of flow through branches. The shortage of information caused engineers,



physicians and physicists to form teams in order to provide answers to questions such as,
how the circulatory diseases were generated and how surgical implants interfere with the

normal function of the system [4].

1.2 Atherosclerosis and Hypotheses for the Etiology of the Disease

A term that designates a variety of conditions that cause arterial walls to become
thickened and hardened is arteriosclerosis. Atherosclerosis is a type of arteriosclerosis.
Many different risk factors such as family history, high cholesterol, diets rich in saturated
fat, smoking and elevated blood pressure can injure the endothelium of the arterial wall.
The injury causes plasma proteins including lipoproteins and cholesterol to rapidly
penetrate into the subendothelial tissues, and platelets and white cells to accumulate on the
exposed subendothelial structures. As platelets react with subendothelial constituents they
release several factors, such as mitogen, which stimulate both the migration of the smooth
muscle cells into the intima and their proliferation. As the intima thickens, it decreases the
size of the artery, thus diminishing blood flow and resulting in insufficient supply of

oxygen to the organs perfused by the artery, i.e. they produce ischemic damage [5,6].

Atherosclerotic lesions develop in certain areas of the arterial system such as the
coronary arteries, the carotid arteries and the abdominal aorta resulting in complications

such as heart attack, stroke and peripheral vascular disease [5,7], see Fig. 2.

Certain regions of the arterial tree, such as bifurcations, branchings and curvatures,
are particularly prone to develop the disease. The propensity for plaque formation in areas
where the local features of the flow profile is affected, has led to the assumption that local
mechanical factors of blood flow potentiate atherogenesis. However, for a realistic answer
to the etiology of the disease, hemodynamics must be integrated with the biochemical,
neurological, hormonal, and pathological influences that interact with and may often

dominate the mechanical aspects of blood flow [1,7,8].



Hemodynamic parameters that have been inferred as contributing factors in the
development of atherosclerosis include pressure, shear stress, flow separation and
turbulence. The pressure hypothesis by Texon et al [39] suggests that atheromatous
plaques emerge in regions of low pressure due to a suction action exerted on the surface
endothelium. This suction causes a tearing response and damages the adjacent wall layers,
with eventual plaque development. However, the model assumes that the transmural
pressure is negative, which is very unlikely to occur in the real arterial system and thus

making the pressure proposal untenable [9,10].

Two opposing theories have been attained by researchers regarding the influence of
wall shear stress on the growth of lesions. Fry [12] proposed that deformation and
eventual erosion of the endothelium may occur at sites where the local shear stress is high.
Caro et al [13] suggested that early plaques tend to develop in areas of low wall shear. A
shear-dependent mass transfer theory put forward by Caro argued the possible reasons for

the diverging results {10,11,12,13].

Fox and Hugh [14] debated that zones of stasis form in areas of local flow
separation. Lipids are trapped as the bloodstream stagnates locally and ultimately coalesce
to form atheromatous plaques. However, the model did not comply with proper geometric

similarity [14).

The basic theory for the turbulence hypothesis is given by Mitchell and Schwartz
[38], who suggest that turbulent velocity fluctuations cause platelets in the flow to coalesce
on the wall. Since the turbulent fluctuations may also cause particles that have coalesced to
break up as they move in random fashion, this assumption is questionable and difficult to

assess [10].




In conclusion, even though an understanding of the role of blood flow dynamics in
atherogenesis has been sought for years, there is no clear answer to what causes the

disease.

1.3 Scope of the Thesis

The present study concentrates on the flow in the abdominal aorta. Geometric
transitions and wall shear stress variations are suspected of inducing the development of
atheromatous lesions, causing severe atherosclerosis beneath the renal arteries. A
numerical method scheme is utilized to obtain solutions on a simplified aorta. Flow
patterns for steady, pulsatile and physiological flow conditions are analyzed and conformed

with those acquired by other researchers.

Wall shear stress distributions are calculated for steady flow in two bifurcation
models. One model includes both the renal and iliac arteries, while the other considers only
the iliac bifurcation. The effects of Reynold's number, angle of the divider and

unsymmetry of the inlet velocity on the coefficient of friction are investigated.

In pulsatile flow the frequency and amplitude of the oscillation are altered, wall shear
stress distributions are obtained and the consequences of these variations are examined.
Finally, velocity profiles and wall shear stress distributions are determined for straight pipe

and bifurcatdon models under physiological flow conditions.



CHAPTER TWO

THE PROBLEM
2.1 Assumptions and Model Description
The aorta is the main elastic artery that provides the internal organs and lower
extremities of the body with their blood supply. It is composed of the ascending aorta, the
aortic arch, the thoracic aorta and the abdominal aorta. The latter refers to the continuation

of the thoracic aortic segment through the abdominal cavity [3], see Fig. 3.

Any attempt to theoretically determine a solution of the flow through the aorta
encounters complexities due to the rheological properties of the fluid, the nature of the
flowfield and the geometry of the area. It seems inevitable that, in order to attain any
explanation, certain assumptions must be made. A schematic of an idealized abdominal

aortic segment including parts of the renal and iliac arteries is shown in Fig. 4.

Blood is assumed to be an incompressible, homogeneous, Newtonian fluid. The
Fahreus-Lindquist effect, which is characterized by viscosity variations, is significant only
when the vessel diameter is less than one milimeter, while the aorta is approximately

seventeen milimeters in diameter [15,16].

The flow is supposed to be two-dimensional and laminar. Even though it is well
known that arterial junctions have a complex three-dimensional geometry, a two-
dimensional approximation is made in order to facilitate the mathematical analysis of the
flow and reduce the computational time required for a numerical solution. Favourable
condivions for the turbulence exist in large arteries. However, velocities exceed their
critical value for short periods of time only and there is no certainty that fully developed

turbulence is ever attained. This uncertainty supports the laminar assumption [16].




The aortic wall is considered to be rigid and with a constant diameter. The
distensibility of the aorta is quite small and its effect is minimal. Although the artery tapers,
an average value of the diameter is calculated [3,16,17]. Precise measurements of the
arterial dimensions are difficult to obtain due to the dilatation of the segment when it is
removed from the body. There is also variation in size with age and sex. The geometry of
the simplified problem is shown in Fig. 5 and the relative dimensions, obtained from a
replica of the aorta taken from a middle aged male, are given in Table 1. Finally typical
experimental measurements of flow division and geometry in the aorta are shown in Table

2 [13,18].

2.2 Governing Equations

The conservative forms of the equations of motion that describe the flow in the
abdominal aorta, after incorporating all the previously mentioned simplifying assumptions,
are [19]:

ou av

continuity: = ay =0 (1)

X-momentum: %;+H§—E-+'-a-3- -lap +V {9—3+a z

ox dy Pox ox2 5-;75} (2)

: I Y DA Ca
y-momentum: ai+"ai+ ay- P837+v {a§2 ayZ} (3)

To transform the equations in non-dimensional forms, let:

s v k=K s

hy
where U,y = [{

=L
=i )

=l
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After substituting (4) into (1), (2) and (3):

continuity: g% . g;— =0 )
) . uav Ou  uiy ou p_g! __1.9P , , uav 0%u 9%
x-momentum; =5 ==+ "o + By o ax * Y 2 [ax2 + ay'-’}
(6)
2 2 — ..
Uy OV U ov Uiy ov op 9? v,
y-momentum: ~AY. 2~ 4 “AV , &V AV IV ] CP viav 2V }

h,
Multiply equations (6) and (7) by —2— to get:
Uav

_h; _du 8u2+auv (P, /puAv) v (0% 0%

X-momentum: usvT ot ox ay ox UAVhl w2 oy2 (8)

hy §1+avu ov2 a(/puAv) v__ 82\'+82\'}
UavT Ot ox Oy . 9y  uanl a2 dy2 9

y-momentum:

To obtain the final forms, let:

RC=M,P=——E——‘,St= h] V2_82 az

Y PUAV uavT * " k2 oy2

where Re and St are the non-dimensional Reynolds and Strouhal numbers respectively.
The former number relates the inertial forces in the fluid to the viscous forces. A critical Re
number classifies flows as laminar, transient or turbulent. The latter number is used in

studing the vibrations of a body past while a fluid is flowing [20]. Substituting in equations

(5, (8), %)




continuity: 3% +—= (10)

S o0u out duv_ . ] o2
X-momentum: St§t—+§x—+-g_ -a-;+§€Vu an

o Ov ovu , dvZ_ dp
y-momentum: St-ét— +—5;-+-a—y- 3y Re




CHAPTER 3

NUMERICAL SOLUTION PROCEDURE
31 The M¢e¢thod
The governing pa;+-u Jifferential equations are mathematically classified as parabolic
(in time). - rabolic equations are associated with diffusion processes and require a
marching procedure to obtain the solution. Beginning with initial conditions for the
velocity and pressure throughout the closed domain, a time marching technique is used to

advance the flowfield forward in time until steady-state isreached [21,22].

The Navier-Stokes equations can be solved numerically either directly or indirectly.
The first method solves for velocities (u and v) and pressure while the second for the
stream and vorticity functions. The numerical method employed belongs to the first

category, and uses the forward time, centered-space difference scheme.

The finite difference mesh used is shown in Fig. 6. The grid consists of rectangular
cells of length 6x and width 8y. The region containing fluid is bound by the darker lines
and is surrounded by a single layer of imaginary boundary cells. The horizontal
component of the velocity (u) is located at the middle of the vertical sides of the cell, the
vertical velocity component (v) at the middle of the horizontal sides and the pressure (p) at

the cell center [23], see Fig. 7.

The difference equations approximating the goveming =quations (i0), (11), and (12)

continuity: 51;(“?31 - u:‘“ﬂ]) + -51; (V‘i‘,}'l - Vx,‘;'ll) =0 (13)

x-momentum: W}}! = uf; + 8t [—81— (PLj - Pi1y) - FUX - FUY + VISX]
X
(14)
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y-momentur: V}}! =W} +81[ (pu plj11) - FVX - FVY + VISY]

where the convective (FUX, FUY, FVX, FVY) and viscous (VISX, VISY) fluxes are
defined as:

2 2
) 46x [+ ui"’l*j) + O‘I uj; + ui+l.j| (uiJ Uy ) - U5+ ;)
alu '*'“1,3'(“1 1" ij)]
FUY = 1
...475;' [(Vld + vl+1J) (ul,_] + U1J+1) + alViJ +vi+l,j I (ul,J . uld.’.])

“OVigen ¥ Vied oD i) - Oy + Vigy o] (i - )]

FvX =Z?3; [Cu* 0y 1) Vi + Vi ) + g5+ U] OV Vier )

- (ui-IJ + “i-l,j+1)("i-1,j + Vi,j) - QL Iui-l,j -+ ui_1J+ll (vi-l,j - Vi'j)]

2

2
[(V + V1,1+1 ta 'Vm + vl,_]+l| (vl,J 1,j+1) - (Vi,j-l + Vi,j)

SOVt Vig | Gig - vig]

VISX = V[ (ul+l,j 2ulJ+ulJ)+ (iJ+1-2uiJ+uiJ_1)]
dx? Sy?

VISY =v [8—)1(2 (Vier j - 2Vij + Vi) + —— 8y2( ig+1 - 2Vij * Vij-)]

All quantities in the convective and viscous fluxes are evaluated at time ndt. The coefficient
o gives the desired amount of upstream differencing to remove the unconditional instability

of the algorithm.
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Nevertheless, continuity (Eq. 13) is not satisfied by the velocities computed
according to Eq. 14. This incompressibility constraint is imposed by adjusting iteratively
the cell pressures until the divergence D of each cell is driven to zero. The iteration
proceeds from left to right starting with the bottom row and working upwards. The

pressure 8p required to make D equal to zero is:

8p = -D/[ 28t (-15 + -13)]

1
ox< dy (13)

The velocity components and pressure of each cell are then adjusted to reflect this change:
Pij = Nyt op

otd
u o —=> ui'+—E

1) J
ox (16)

The iteration converges when all cells have D values satisfying the incquality IDI < € where
¢ is of the order 10-3 or smaller. If there is a desire to accelerate the convergence, 8p can be

multiplied by an over-relaxation factor  [23].

3.2 Boundary Conditions

The boundary conditions are easily imposed by assigning suitable velocities in the
fictitious cells surrounding the flowfield. The walls are considered impenetrable, rigid and
with no-slip. The rigidity of the wall is simulated by applying an equal to the mainflow and

opposite tangential velocity to the boundary cell, so that the transverse velocity on the wall
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is zero. The no-slip condition is imposed on the wall by equating the axial velocity to zero,

see Fig. 8.

At inlet, a parabolic variation for the u-velocity and zero value for v are assumed.
Continuative boundary conditions are prescribed for the outlet plane. Zero velocity
gradient is achieved by setting the respective u and v velocities of adjacent cells equtl, see

“ig. 9.

All boundary conditions, except the ones for the outlet, must be imposed after each

pressure iteration. The outflow boundaries are required only after each cycle.

3.3 Numerical Stability

Computed quantities can often exhibit large oscillations in space, time or both. In
order to avoid these numerical instabilities, restrictions must be applied in defining the
mesh increments 6x and dy, the time increment 8t, and the upstream differencing

coefficient o.

The mesh increments should be small and in accordance with the limitations imposed

by the computing time and memory requirements. Once dx and dy are chosen, the time

increment must be established in a way that satisfies the inequalities:

8t <min {%’k : %’] (17)
1 5x28y2
and 5t<2v _—Sx2+8y2 (18)

The first constraint accounts for the fact that material can not move through more than one
cell in one time step, while the second assures that momentum does not diffuse more than

one c<ll in one time step.
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The centered equations (o = 0) tend to be unstable, so a certain amount of upstream

differencing is required for stability. A proper choice for o [23] is:

12 o> max {‘uﬁl , st
~ m (19)

Finally, the over-relaxation factor should not exceed 2.0, because an infinite number
of pressure iterations will be required to obtain the solution. A value of @ = 1.8, which
proved to be the optimum in the present calculations is used. Other important

computational parameters are given in Table 3.
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CHAPTER FOUR

RESULTS
4.1 Steady Flow
Computations with the aim to obtain the flow characteristics in the abdominal aorta
are made for models I and II. At inlet, the vertical component of the velocity is neglected,

while the horizontal one is assumed to have a general profile given by:

iy =— 2 (Qe-1)y3- (3e?- 1) y? + (B3e? - 2e) y) 20)
(e“-e+{167)
where e is the eccentricity of the maximum velocity from the center line of the main artery.

The local wall friction coefficient is calculated according to:
-299
Ce=%s aﬁ’ n=0 (21)

where q is the non-dimensional velocity parallel to the wall and 1) is the distance in the

inwards normal to the wall.

A velocity field plot for model Iis shown in Fig. 10. The inlet velocity profile is
considered to be symmetric (e = h/2) and the Reynold's number is varied from 100 (rest
conditions) to 2000 (exercise conditions). Reverse flow regions are not found at any

Reynold's number.

Bifurcations with a daughter-to-parent branch area ratio (AR) less than one contain
flow which accelerates, converting pressure energy into kinetic energy and resulting in a
negative pressure gradient in the direction of flow. These factors, which quicken flow and
reduce pressure have been associated with boundary layer stability and laminar flow [41].
As a result, reverse flow regions are most probable to occur at AR > 1. During steady flow

visualization of the abdominal aorta, performed in our laboratory, secondary effects due to
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horseshoe vortex at low Reynoids are also present. These eddy type flow regions
disappear as Re increase. However, the simplified two-dimensional computational model

is not capable of predicting these secondary flows.

The parabolic profile of the horizontal velocity is maintained from the entrance up to
the junction. In the daughter branches, the velocity profile is skewed towards the inner
wall. Due to the sudden change in direction, a centrifugal force drives the fluid away from
the center of curvature, i.e. to the third wall. This effect disappears and the flow resumes

to a parabolic profile as £ increases.

Although geometrical and similitude parameters are different, the results obtained can
be qualitatively correlated to those acquired by other researchers. After experimental
measurements, E] Masry et al [24], Walburn and Stein [25], Batten and Nerem [26],
Siouffi et al [27], Feuerstein et al [28] and Frederick et al [29] found that there is no flow
reversal during steady flow conditions and that the maximum velocity parallel to the wall,
just after the flow divider, is shifted towards the inner wall. In the last three papers there is
a double peak observed in the *relocity profile downstream in the iliac branches which is not
evident in the present study, see Fig. 11. Theoretical computations performed by
Fernandez et al [30], and Kandapra et al [31], show a separation region on the outer wall
just after the corner. Finally, Lynn et al [32] found no reverse flow and skewing of the
velocity profile towards the outer wall. This effect might be due to the imposed parabolic

velocity profile at the exit.

One of the many parameters considered responsible for the initiation and development
of atherosclerosis is the wall shear stress behaviour. Figure 12 shows Cy as a function of £
in the second wall of model I. It can be seen that Cy is almost constant upstream point B.
At approximately x = 0.8 Hl , Cf increases to a maximum in the area of the bend C. After

this point, C; drops drastically to a minimum slightly downstream (x = 0.18 Hl) and
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gradually increases, most likely to a constant value, further down. Since there is no
asymmetry introduced to the inlet velocity profile, the first wall experiences exactly the
same distribution of Cr along £ as the second wall. On the third wall, the local friction
coefficient exhibits a Gaussian distribution, see Fig. 13, with a maximum value attained at

the tip of the divider (point A).

As Re increases, qualitatively similar profiles of Cr to those shown on Fig. 12 and 13
are obtained. The maximum and minimum Cs values as well as their difference decrease
with increasing Re for both the first, see Fig. 14, and the third, see Fig. 15, walls. For
low Reynold's numbers the maximum Cr on the flowfield is located at the tip of the flow
divider with a value approximately 80% larger than that of the maximum Cs at the corner of
the outer wall. Increasing Re, lessens the difference between maximum Cy's at points A
and C. At a certain range (1100 < Re < 1€00) the Cs of the first wall is the highest, see
Fig. 16. The abrupt escalation of Cy, from a constant value upstream to a maximum value
just before the bend, increases along with Re, see Fig. 17. Also, as Re rises so does the
distance from which the elevation of Cy begins, see Fig. 18, contemplating that as Re
increases, the wall just before C is subjected to higher elevations of Cgand is affected to a

greater extent.

The bifurcation angle ¢ is altered for a constant Reynolds number {Re = 700). Figure
19 shows the maximum values of Cg at the tips of the bend and the flow divider. It is
interesting to note that for ¢ ~ 60° both Cgmax's are almost equal. The increase of the angle
¢ generally increases the Cg elevation on the first wall, see Fig. 20. The area affected by

C's escalation reaches a peak at ¢ ~ 50 and narrows as ¢ increases, see Fig. 21.

Similar Cr behaviour as the one shown in Fig. 12 can be found in the computational
work of Friedman and Ehrlich [33], and in the experimental research by Mark et al [34],
see Fig. 22.
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A non-symmetric inlet velocity profile (e = 0.375 hj), produces different Cg
distributions. Even though the Cr oscillation is present on both first and second walls, see
Fig. 23 and 24, the values of Cr are no longer symmetric. Upstream, on the first wall, C¢
increases with £ while it decreases on the second wall. An interesting behaviour of Cr
appears with the introduced asymmetry on the third wall, see Fig. 25. A combination of
high-low shear appears around the flow divider with the highest shear on the side where
the asymmetry is introduced and where the flowrate is larger. A similar effect is obtained

when Qs # Qg is introduced to simulate increased resistance in one of the iliacs.

A number of investigators, such as Caro et al [13], Mitchell and Schwartz [38],
Texon [39] and Mustard et al [40], reported relative sparing of the flow divider from
atheroma and heavy involvement of the disease on the outer wall of the junction. Sharp et al
[8] notes, after experiments on aortic models similar to those in our study, that with acute
bifurcation angles there are higher rates of shear on the inner walls of the iliac arteries, and
lower rates of shear on the outer walls. As the bifurcation angle increases, the difference

between rates of shear stress diminishes.

It is apparent from the results of steady flow conditions obtained, that low Reynold's
numbers and small bifurcation angles result in severe oscillations of Ct value around corner
C. These sudden changes in shear stress might interfere with the normal interactions of the
endothelial cells, damaging the area of the bend. The injury will upset the symmetric nature
of the flow, causing Cr oscillatiors at point A and thus eventually harming the tip of the
flow divider. With age, endothelial cells are expected to have a delayed reaction to abrupt

shear stress fluctuations, thus inducing the above mentioned irregularities.

For the aorta with the renal arteries, model II, the velocity field plot is given in Fig.
26. It shows the same characteristics as model I downstream from the renals. A small area

of flow reversal is observed just after the downstream corner of the junction. The same

-
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high-low behaviour of Ctis also present, see Fig. 27, with negative shear after the right
comner of the bifurcation. In addition, Fig. 28, illustrates a second oscillatory behaviour of
Cr taking place in the neighbourhood of the renal artery. Similar distributions of wall shear
can be found in the theoretical work of O'Brien and Ehrlich [35].

Table 4 gives the percentage error between the theoretically calculated average exit
velocity and the one computed numerically. The average error is found to be 0.18% or 1.8

ml/lit.

4.2 Pulsatile Flow

The pulsatile nature of the aortic flow is simulated by a sinusoidal periodic functicn.
The introduction of time-dependent flow adds complexity to the computations. The input
flow rate varies according to Fig. 29 and is distributed conforming to Eq. (20). Different
amplitudes (A) and periods of oscillation (T), as well as the corresponding Womersley (o)
parameter are given in Table 5. Due to previously mentioned assumptions, such as
incompressibility of the fluid and rigidity of the wall, it is safe to consider that the pulse
wave will propagate at infinite velocity from the entrance to the exit and thus no phase lag
between the inlet and outlet pulses will be present. Steady periodic conditions are achieved

after five periods.

A plot of the velocity profile is shown in Fig. 30. The shape of the velocity is
skewed towards the inner wall, as was the case for steady flow conditions. However,
when compared with the steady flow case, the location of maximum velocity for pulsatile
flow is slightly shifted toward the center of the channel. Variation of amplitude and period
of oscillation produces no apparent effect on the skewing of the velocity profile. Similar
profiles are found in the experimental results of Walburn and Stein [25], Siouffi et al [27],
Batten and Nerem [26] and the numerical solutions of Fernandez et al [30] and Einav and

Stolero {36].



19

The distribution of the wall friction coefficient is similar to that for steady flow
conditions. Figures 31 and 32 show the alteration of Cgpax on the outer and inner walls
respectively, as the amplitude of oscillation increases. The amplitude plays an important
role in the variation of maximum Cg only at the time of minimum flow input. No influence

is noticed on the minimum Cp just after point C, when amplitude changes.

As the fluid accelerates, Cr increases at the corners of the bend and decreases at the
apex of the flow divider. When the fluid decelerates, Cr increases at the tip of the third wall
while it decreases just before point C, see Fig. 33. The Cf fluctuations are higher as the
amplitude of oscillation increases. During one period, the tip of the inner wall is exposed
to the highest wall shear friction coefficient. As amplitude increases, the difference
between Cymax's at inner and outer walls increases dramatically at minimum flow, where
the third wall experiences fourteen times higher shear stress than the corner of the outer

wall. At maximum flow both walls have equal Cgmax, see Fig. 34.

Reverse flow regions are not present at accelerating flows and for small amplitudes of
oscillation (A < 0.2). However, transient flow reversals appear at small ratios of mean
velocity to amplitude of oscillation, on the outer wall. Further decrease of the ratio
prolongs the presence of flow separation. The third wall is not influenced by velocity

reversals.

Secondary effects may be the main cause for the absence of the flow separation
during maximum flow conditions on the outer wall. Brech and Bellhouse [42] reported
that at accelerating flows, streamlines from the top and bottom of the pipe cross over to fill
the region on the outer wall of the trunk. A forward moving deflected streamline would
result in positive velocities in areas where otherwise reverse flow might be expected.
These secondary effects vanish during the decelerating stage of the cycle. Experimental

results from Walburn and Stein [25], Batten and Nerem [26], Mark et al [34] and the
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numerical solution by Fernandez [30], suggest the existence of negative velocities at the
vicinity of point C for low Re. For such Reynolds numbers which imply large amplitudes
of oscillation, similar effects can be predicted from the present study. In reference [26] the
recirculation zone is extended upstream corner C, complying with the results mentioned
above. Ku et al [43] report that reverse flow regions occur rapidly with decelerating flows
in the carotid bifurcation, while they do not appear during accelerating flows. After a
detailed comparison of hemodynamic measurements with quantitative merphologic studies
of the distribution of atherosclerosis they concluded that, low mean shear stress and
oscillations in the direction of wall shear stress may be critical factors in the atherogenetic

process.

Frequency variation does not produce a significant effect on the magnitude of the wall
friction coefficient. There is only a small growth in the reverse flow region area along the

first and second walls.

4.3 Physiological Flow

Velocities and the local wall friction coefficient are computed for physiological inlet
flow conditions. The aortic blood flow is assumed to vary according to Fig. 35.
Discretization of the time steps give the corresponding input flow rates, the maximum being
5.68 lit/min during systole and the minimum Q.89 /it/min during diastole. Difficulties to
measure velocities in the human abdominal aorta leave us only with flow rate information
of the ascending aortic input and restricts us to the assumption that there is constant wave
propagation and no blood bleed as the fluid travels towards the abdominal aorta. Velocity
measurements performed by Rieu et al [37] on the arterial tree confirm our input as that of
the ascending aorta. The abdominal aortic input is qualitatively similar to that of Fig. 35,

but with a reduced maximum flow rate to 2.6 fit/min.
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Velocity plots are obtained for models I and TI. Six cycles are required before steady
periodic conditions can be reached. The period is characterized according to the presence
of reverse flow regions, by four distinct sections. On the early systolic acceleration a large
recirculation zone is present on the outer walls of the bifurcation, mainly due to the
deceleration of the flow at the end of the previous period. As the flow continues to
accelerate the reverse flow region contracts to a small area upstream the bend on t..e first
and second walls, and disappears at approximately t = c, see Fig. 36 and Fig. 37. During
the remaining systolic acceleration and the beginning of the deceleration no fluid reversal is
found, see Fig. 37. Att = e the fluid starts slowly to invert at the outer wall, near the
entrance. As the deceleration persists, the separation zone thickens and extends into the
positive axis of walls 1 and 2, see Fig. 38. As the diastole starts, a new region of flow
reversal appears downstream the flow divider at the third wall. At the same time, the
inverse flow region at the outer walls propagates past the exit As diastole advances, so
does the reverse flow region at wall 3 towards the flow divider tip, see Fig. 39 and Fig.

40.

The velocity profile in the daughter tube is skewed towards the inner wall just
downstream from the apex. However, at the exit and at t = a, the maximum velocity moves
towards the outer wall. As time progresses, the exit profile exhibits two points of
inflection close to the walls, see Fig. 41. When flowrate maximizes, the exit velocity
profile becomes parabolic and remains such until the late stages of systole, see Fig. 42. At
t = f and prior to the diastole, the exit profile is skewed towards the outer wall and during
diastole it attains the so called, "m" distribution, see Fig. 42. Finally the velocity profile
upstream the junction maintains its parabolic distribution during the early stages of systolic
acceleration and at the late stages of systolic deceleration. At Re > 1600 the profile is flat,
while during diastole, it exhibits the "m" distribution. It seems that for physiological type

flow, the centrifugal forces exerted on the turning fluid are weaker than for steady flow.
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Qualitatively similar experimental results are reported by Siouffi et al [27], at peak
systolic and diastolic conditions. Rieu et al [37] show similar velocity plots for the entire

period with comparable flow reversal regions and skewing of the velocity.

The wall friction coefficient is calculated according to Eq 21 along the £-axis. At the
onset of the systole until Re = 785 the first and second walls experience small, sieady,
negative shear stress values along the negative E-axis. Just before the bend, Cy increases
continuously until Re = 338, while it drops suddenly and then rises gradually at Re= 785.
At the third wall, Cy drops to a minimum at approximately x = 0.8 El and escalates as &
increases, see Fig. 43 and Fig. 44. As Re increases, Cy becomes positive at all locations,
increasing rapidly at the entrance. No oscillations occur in space up until the bend, where
the familiar high-low pattern appears. At wall no. 3, the Gaussian distribution previously
obtained for steady and pulsatile flow conditions reemerges, see Fig. 45. Where the
systolic deceleration originates, walls no. 1 and no. 2 experience a sudden decrease in Cr at
inlet, followed by a gradual increase. The area of steady Cr along the wall diminishes and
no space oscillations are apparent at the corners of the bend, see Fig. 46. For Re less than
1000, as well as during diastole, Cy becomes negative along the outer walls. The shear
augments prior to reaching point C and continues to increase downstream the daughter
tube, see Fig. 47. Figure 48 shows the difference between the local wall friction
coefficients of the apex and the corner of the bend as a percentage of Cy at point A. At
prior and post-peak systolic conditions, the outer corner experiences the highest shear
stress while during diastole and both early and late systole, the greatest amount of shear
stress is endured by the flow divider. The position of maximum and minimum Cg at the
outer walls during one period is shown in Fig. 49. Maximum Cs takes place at the exit, at
the time of diastole and decelerating systole (Re < 1015). During the remaining systole, Ct
maximizes just before corner C. Cg is minimum at the inlet during peak systole and

progresses downstream never exceeding X=-2.4. Lastly, in Fig. 50, the Cy difference
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between points D and C is given as a percentage of Cr at C, for one time period. Once
again, shear at the corner dominates during systole while the shear at point D is highest for

diastole and late systole.

The area of the outer wall upstream the bifurcation is subje ~ted to low shear during
diastole and accelerating systole. At the time of decelerating systole, Cr increases sharply
as it travels towards the comner. At the vicinity of point C, the high-low Cs fluctuation
appears whon ¢ < t < f. During the remaining period, Cr does not oscillate in space but
rather experiences an increase just before and after the corner. Downstream the daughter
branch, Cy increases to a maximum value for t > f and t < a, and eventually becomes

constantforc <t<f.

In conclusion, unsteady flows are characterized by periods of space and time
oscillations of Cs. Space oscillations are defined as variations of skin friction coefficient
along the wall at a fixed time level, while time oscillations designate variations of Crat a
fixed location on the wall durimg different time levels. The outer corners of the junction are
subjected to space oscillations during accelerating flows while large oscillations in time are

present during decelerating flows.

In order to examinc the effect of the bifurcation of the flow characteristics of the
abdominal aorta, a straight pipe model is used. Model III produces results with similar
velocity profiles as those obtained in model 1. As expected, after the flow adjusts to the
inlet changes, it maintains a constant velocity profile and wall shear stress coefficient, see
Fig. 51. The minimum Cs along the first and second walls of model III remains the same
as that in model I during one period of oscillation. However, the maximum Cs of the
bifurcation is greater throughout the period than that of the straight channel, see Fig. 52.
At the accelerating phase of systole, the difference in Cymax between the two models, drops

to a minimum where Re peaks and gradually increases to a maximum at decelerating
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systolic conditions {t = e). As flow rate continues to drop, so does the Cimax difference

which becomes zero at the decelerating phase of diastole.

In conclusion, the bifurcation proves to increase the wall shear stress. However, the
actual shape of the flow-type input function appears to be the factor responsible for

initiating reverse flow regions in the model and bifurcation serves to amplify them.
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CHAPTER FIVE

CONCLUSION
Numerical solutions of steady, unsteady harmonic and physiological flows in
simplified abdominal aortic models were presented. Many assurnptions were made in order
to obtain an explanation on the influence of hemodynamic factors on atherogenesis. Blood
was considered Newtonian, incompressible and homogeneous, the flow was supposed to
be two-dimensional and laminar, while the aortic wall was assumed to be rigid and with
constant diameter. Also during unsteady flow conditions, the inlet and outlet pulses were

assumed to have no phase lag.

During steady flow conditions, sites most prone to atherosclerosis, such as the outer
corners of the bifurcation, were found to be subjected to large space oscillations of shear
stress. Small Reynolds numbers and angles of bifurcation, increased the magnitudes of the
shear oscillation. Regions of reverse flow were not present. Strong centrifugal forces
caused skewing of the velocity towards the outer wall of the bifurcation. The flow
asymmeltry, introduced at the inlet, in order to simulate increased resistance in one of the
iliac arteries, produced fluctuations in wall shear stress at the leading edge of the flow
divider. Models simulating both the iliac and renal arteries showed a space oscillation of the
wall friction coefficient just before and after the renal arteries along with a small

recirculation zone downstream the renals.

Pulsatile flow conditions produced reverse flow regions on the outer walls during
decelerating flow and large amplitudes of oscillation. The shear stress distribution along the
walls was similar to that of steady flow. Frequency variation did not produce a significant

effect on the flow characteristics.
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Physiological flow conditions complicated not only the computations but the response
of the wall shear to inlet flow acceleration and deceleration as well. In addition to space
oscillatory behaviour, the wall shear stress near the vuter corners of the bifurcation
exhibited time varying oscillations. Time dependent reverse flow regions appeared on both
the inner and outer walls. The effects of the centrifugal force on the skewing of the
velocity profile at the entrance of the doughter tubes proved to be weaker than in the case of
steady flow conditions. Finally, the straight pipe model demonstrated the great influence of

the input function on the development of the reverse flow regions and produced lower

shear stress values than the bifurcation model.

Based on arteriograms, the progressive history of atherogenesis has shown to initiate
on the outer wall and progresses to the inner wall. The results of the study give us
confidence to b:lieve that it is not the low or high shear stress that is responsible for the
formation of atherosclerotic lesions but rather the drastic fluctuation of the shear stres- *hat

may trigger an abnormal response in the endothelial cells.

Future work in biochemistry should focus on studies which will assess the influence
of shear stress as well as shear stress variations in time and space on the functional
behaviour of endothelial cells. From the engireering point of view, the response of

, hemodynamic properties to a:terations in the input normal cardiac wave so as to simulate
hypertension and high blood pressure mus: be examined. Furthermore, a realistic three-
dimensional model is requised for more meaningful answers to be obtained with respect to

the etiology of atherogenesis.
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Table 1. Dimensions of simplified aorta

¢ Ar_ |hy =hy fhy=hs | ] b Iy Ax |4y
30° 0.564 |1 0.531 }0.187 |3.452 |1.352 }0.933 |0.187 [0.05
40° 0.535 |1 0.517 10.137 |3.503 {1.316 |0.687 {90.137 }0.05
48° 0.601 |1 0.548 10.112 ]3.425 }1.353 }0.562 |0.112 ]0.05
50° 0592 |1 0.544 {0.107 [3.485 |1.301 [0.536 ]0.107 ]0.05
60° 0.541 |1 0.520 |0.087 {3.421 |1.300 [0.433 |0.087 |0.05
Table 2. Typical experimental measurements of diameters and division of flow in the
abdominal aorta
a) Average values based on 16 models of various ages [13]
hy=1 h, = 0.594 h, = 0.626
b) Average values based on 55 models of various ages [18]
Abdominal Aorta Left Hiac Right Iliac Left Renal | Right Renal
h =1 h, = 0.743 h,=0743 | hy;=0.343| hs=0.343
Angle with horizontal 25° 25° 65° 60°
Flow division at 390 [15%) 390 [15%] 390[15%]) 390 [15%])
Rest in [ml/min]
Post prandial 370 [13%] 370 [13%] 370[13%] | 370(13%]
Exerdise 2270[40%] | 2270[40%)] 290[5%) | 290 (5%}
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Table 4: Error between theoretical and numerical exit velocities

Re Model I Model T | VrrEo(®/S) | Ywum®@5) | % error
400 X 0.0851 0.0849 0.24
600 X 0.1277 0.127: 0.31
700 X 0.1487 0.1485 0.14
800 X 0.1701 0.1698 0.18
900 X 0.1914 0.1910 0.21
1000 X 0.2126 0.2121 0.24
400 X 0.0765 0.0764 0.13
600 X 0.1150 0.1148 0.17
) 700 X 0.1339 0.1338 0.08

Table 5: Computationai parameters for pulsatile flow

Q, vean (Qit/min) | T (sec) | A (ZQqpgan) Re o

10 360-440

1.0 20 320-480 10.05
i 30 280-520
10 360-440

0.988 0.8 20 320-480 11.24
30 280-520
10 360-440

| 0.6 20 320-480 12.97
30 280-520
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Table 6. Input parameters for physiological conditions

POINT | CYCLE | Qi (1it/min) t Re &
a 5 0.84 0.221 338
b 10 1.94 0.239 785
c 20 5.04 0.275 2039
d 30 5.68 0.311 2296
e 60 3.69 0.419 1492
11.24

f 70 251 0.455 1015
g 80 1.15 0.491 466
h 85 0.00 0.509 0

i 90 -0.57 0.527 -232
j 95 0.21 0.545 86
k 100 0.00 0.564 0




Fig. 1. Ilustration of the great vessels at the root of the neck by Leonardo
da Vinci [1]
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COMPLICATION

STROKE
TRANSIENT ISCHEMIC ATTACKS

%HE{NE ATTACKS

ANEURYSH
HEART ATTACK
ANGINA

HYPERTEXSION

Fig. 2. Schematic representation of the discrete character of atherosclerotic lesions and
the major complications associated with them in the aorta and its branches [5]
(From the United States Department of Health, Education and Weifare, 1977)
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Fig. 3. Main arterial tree
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Fig. 7. Typical cell with the arrangement of finite difference variables
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Fig. 8. No-slip boundary conditions
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Fig. 8. Zero gradient boundary condition
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Re=800 0Qz=0.5Q,

a) Stream line patterns from El Masry et. al [24]

b) Spatial Variaton of U, steady flow, Re =900 Siouffi et. al {27]

Fig. 11. Velocity profiles obtained by other investigators
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Fig. 12. Friction coefficient vs £&. Symmetrical inlet velocity, model I, first and
second wall (Re =700, ¢ = 60°)
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Fig. 13. Friction coefficient vs. ¢. Symmetrical inlet velocity, model I, third wall
(Re =700, ¢ = 60°)
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Fig. 14. V. .ation of maximum and minimum Cf with Reynolds number.
Symmetrical inlet velocity, model I, first and second wall.

(6 = 48°, x - max, + - min)
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REYNOLDS

Fig. 15. Variation of maximum and minimum Cf with Reynolds number.
Symmetrical inlet velocity, model I, third wall

(6 = 48°, x - max, 0 - min)
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Fig. 16. Reynolds number vs difference between maximum friction coefficients on

third and first walls as a percentage of the first
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Fig. 17. Reynolds number vs percentage increase of Cy between points just before
the bend and upstream on first and second walls.
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Fig. 18. Reynolds number vs position § where Cj starts rising surply on walls

no. land 2
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(Re =700, 0 - wall 3, x - walls 1,2)
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b) Non-dimensional shear profile on the outer wall {33]

Fig. 22. Comparison with Cy distributions of other researchers
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Fig. 24. Cqvs E. non-symmetrical inlet velocity, model I, second wall
(Re = 400, ¢ = 48°)



55

v

i

Fig. 25. Ctvs Z for non-symmerrical inlet velocity, model I, third wall
(Re =400, ¢ = 48°)
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Fig. 27. Variation of maximum and minimum Cg with Reynolds number at the renal
bifurcation for symmetrical inlet velocity

(¢ = 48°, x - max, 0 - min)
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Fi<. 29. Sinusoidal input for pulsatile flow conditions
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Fig. 30. Velocity profile at bifurcation. for pulsatile flow conditions
(T=1.0sec,A=0.1 QiMEAN)
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Fig. 31. Cfmay vs amplitude of oscillation A for T = 1.0 sec, first and second walls
(- T/4,x-t/2,0-3T/4, a -T)
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Fig. 32. Cfmax vs amplitude of oscillation A for T = 1.0 sec, third walls
(¢-T/4,x-v2,0-3T/4, a -T)




J ey

62
.24~ o
/ \
/ \
4 \
/ \
/ \
// - \
/ // AN \\
A AN \
/ s N
/  / . \
vl e N
167 R oy
. 4"” \\
/’/
-’
._—" ’/ 7
i /,/,
x ///
»
l\.
'08“ ‘\
n
A
025 050 075 100

T (sec)

Fig. 33. Cfmax vs ime for T = 1.0 sec (— first and second walls, ----third wall,
«-A=0.1,x-A=02 4 -A=0.3)



% Difference x 102

63
{l
152
10-
5 p
.
25 50 75 1.0

T (sec)

Fig. 34. Percent difference of Cymax at third wall to Cimax at first and second walls
vstime forT=1.0(-A=0.1,x-A-0.2, a-A=0.3)
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Fig. 41. Velocity profiles at the entrance of the daughter ribe. The arrows show the
positon of maximum velocity
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t=j
Fig. 42. Velocity profiles at the entrance of the daughter tube. The arrows show the
position of m.aximum velocity
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Fig. 43. Cyvariaton along the walls of the aortic model
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