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ABSTRACT
Task Assignment for Workstation Farms
Xiachong Yang

Due to the cxistence of large quantity of interconnected workstations (workstation
farm) and their low utilization, it is very attractive to use the idle CPU cycles of
these workstations to simulate a parallel computer. The performance of such simula-
tion depends heavily on the assignment of the interacting task modules of a parallel
program to the processors. A good assignment should balance the work load of the
processors while minimizing the interprocessor communication overhead on the net-
work, which is usually the bottlekneck of the system performance. In this thesis we
study the task assignment problem for workstation farms with various configurations
and design eflicient heuristics to produce assignments to minimize the completion
time of parallel programs.

We first formulate the task assignment problem for five different configurations
of workstation farms. We study the mechanisms of simuiated annealing and tabu
search and propose a new general technique called stochastic probe for combinatorial
optimization which combines the advantages of botk the stochastic search in simu-
lated annealing and the aggressive search in tabu search. Heuristics based on these
three techniques are proposed for the task assignment problem based on different
optimization models. Extensive experiments demonstrate that our stochastic probe
heuristics are superior to the other techniques in both solution quality and CPU time.

To further reduce the computation time, we study the parallelization of the above

three techniques. We parallelize our sequential task assignment heuristics and run

i



them on butterfly GP-1000. Experiments show that for up to 10 pocessors our par
allel stochastic probe heuristics achieved almost lincar speedup with solution quality

comparable to those of their corresponding sequential versions.
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Chapter 1

Introduction

Workstations have been extensively used in most institutions and companics. But
most of them are active less than 10 percent of time [43]. With the advent of high-
speed optical cables, many researchers and companies are proposing to use the new
cables to connect the existing personal workstations to form a workstation farm,

which can:

¢ provide facilities for utilizing remote computer resources or data not existing

in local computer systems;
e increase the throughput by providing the facilities for parallel processing;

e provide users with the modality, flexibility, and reliability.
But the potential of the enhanced system performance depends on scveral factors:

¢ Hardware, such as the speed of the processors, memories, and interconnection

network;
e Application program, the amount of parallelism in the application program;

o Program mapping, include task partition and task allocation. The task par-
tition and task allocation activities influence the load of interprocessor commu-

nication and potential for parallelism.



Many practical and theoretical problems must be solved to realize the potential of
the workstation farms [39)].

One serious problem is the degradation in throughput caused by the saturation
effect [13]. Ideally, we would expect throughput increases linearly as the number of
processors increases in a multiple processor environment. For example, if there are n
processors, and each has the processing speed of k, then we would expect the system
processing speed to be nk. But in practice, the throughput in a multiple processor
system increases significantly only for the first additional processors. At some point,
the throughput actually begins to decrease with each additional processor. This is
called “saturation effect”, which is caused by many factors, such as control overheads,
excessive interprocessor communication, unbalanced load, queueing delay and the
precedence order of the parts of a task assigned to separate processors, among which
the excessive interprocessor communication and unbalanced load are two key factors
that affect the low processing speed of the system.

The saturation effect will still exist even in the distributed system connected by
high-speed optical cables. Because, even though optical cables have reduced the
overhead incurred by the inter-processor communications, the message transmission
speed on these cables is still lower than that of the ever-improving processor tech-
nologies (including optical computing). Since the bus can transmit only one message
at a time, the sequential message passing can sequentialize the computation and
constitute a bottle-neck of the global system performance.

In order to avoid the saturation, we must eliminate or minimize these inhibiting
factors. Task partitioning and task allocation are two steps necessary to eliminate or
minimize these factors, especially the excessive interprocessor communication. Task
partitioning can be considered as a software design issue, which refers to the break-
down of a processing task into several individual modules with minimum intermodule

connmunication. Task allocation is the process of allocating modules to processors in



such a way that the interprocessor communication is minimized while the computa

tion load is balanced in the system. In this thesis, we will focus on the task allocation
problem. We assume that the task partitioning process has been performed by the
software designer and that each task that arrives in the distributed system is alveady
partitioned into a set of modules. For convenience and consistency, in the rest of the
thesis, we will use term “task assignment” instead of “task allocation”.

Task allocation has two classes of policies: static and dynamic. It depends on
the time at which the scheduling or allocation is carried out. Static task allocation
is a priori allocation of tasks to the processors; it depends on the average behavior
of the system and not its current one, and the allocation does not change during the
life-time of the tasks. Dynamic task allocation is run-time scheduling; the processors
exchange load information periodically and migrate tasks on a dynamic basis. Since
last decade, many researchers have worked on the task allocation problem, some on
static, some on dynamic. Each has its own considerations.

However, the dynamic allocation problem is much more sophisticated than the
static one, and its overhead is more significant. On the other hand, many of the
parallel algorithms which we have been working on have static propertics, such as
scientific problems, engineering problems, etc.. Therefore, in this thesis we focus on
the static task assignment for the workstation farms, in which workstations can be
homogeneous or heterogeneous, and the links connecting each pair of workstations
can also be homogeneous or heterogeneous. In this thesis, five models are studied for
different configurations of workstation farms.

Since our studies on the task assignment problem are to improve system’s perfor-
mance, mainly the speed, the execution time for solving the task assignment problem
itself should be as short as possible. In this thesis, we first emphasize on finding good
sequential solution searching heuristics (algorithms), which mainly depend on good

searching strategies, neighborhood design, and move set design. Then, based on the



good sequential heuristics which we found, we try to find a good strategy to par-
allelize it to take advantage of the existing parallel computing facilities to further
reduce the execution time of the task assignment heuristics.

This thesis is organized as f{ollows:

Chapter two first gives the general formalization of the task assignment problem
for our workstation farms, then reviews some models encountered in the literature.
The related solution techniques for these models in the literature will be discussed
briefly. After analyzing these models, we present five models for different kinds of
workstation farms: 1) uniform m-way graph partition model, 2) nonuniform single-
bus total cost model, which uses total cost as objective function, 3) nonuniform
single-bus completion cost model, which uses completion cost as objective function,
1) general nonuniform total cost model, which uses total cost as objective function, 5)
general nonuniform completion cost model, which uses completion cost as objective
{unction.

Chapter three mainly discusses some solution techniques. After analyzing the
existing techniques in the literature, we emphasize on three heuristics: 1) simulated
annealing, 2) tabu search and 3) our stochastic probe search. We first study the
two general combinatorial methodologies: simulated annealing and tabu search, and
then present our adaptation of these two techniquess to our task assignment prob-
lem. Since simulated annealing is too randomized while tabu search is too aggressive,
we develop our stochastic probe approach which combines the advantages of these
two heuristics. To further reduce the execution time for solving the task assignment
problem, we study some strategies for parallelizing each of the three heuristics. We
provide parallclization of simulated annealing, tabu search, and our stochastic probe
approaches in this chapter. In the last part of this chapter, we address our experimen-
tal environment, our benchmark graphs involved in the corresponding experiments,

and our parameters for each approach.




Chapters four, five, six, seven and eight address the adaptation of the above
three heuristics to the task assignment problem on the five models we designed for
our workstation farms in chapter two respectively. Our experimental analysis, con-
parison of their performances, and observations are also presented in each of these
chapters for the corresponding models.

Chapter nine comes to the conclusion of this thesis work.




Chapter 2
Task Assignment Models

Since last decade, many researchers have been working on the task assignment prob-
lem. Diflerent models for different targeted systems have been proposed, varying
from simple ones to complicated ones. In this chapter, we will first review the mod-

cls encountered in the literature, and then present our models for our workstation

farms.

2.1 Model Review

Consider a set of N processes which is to be allocated to a set of M processors. The
execution cost e;,, which is given by an N x M execution cost matrix, represents the
cost of executing process ¢ on processor j, while the communication cost ¢; ; between
processor ¢ and processor j is given by an N x N communicaiion cost matrix. An
objective function is usually defined in terms of these two kinds of costs. A good
task assignment should minimize this objective function.

The above model can also be enhanced by including constraints which make it
more reali~tic. Such constraints refer to memory and occupancy, precedence relation-
ship of modules in a program, system response time, replication etc..

The models encountered in the literature vary from simple ones, where the sole
aim of the model is to assign a given number of processes to 2 processors, to more

complex ones, where one tries simultaneously to meet constraints on the availability




of processor resources. These models can be classified into three categories: 1) graph
theoretic, 2) 0-1 integer programming, and J) queucing theory. In this seetion, we
review different kinds of models by going through these three categories classified
above. All the algorithms proposed with their corresponding models in the literature

will be discussed briefly along with the models.

2.1.1 Graph Theoretic Models

Most of the Graph Theoretic models were proposed for loosely-coupled distributed
systems, in which the inter-processor communication cost is significant, while the the
communication within a processor is usually negligible. Within this graph theoretic
category, several kinds of models are presented in the literature: 1) network flow
model, 2) graph matching model, 3) the layered, doubly weighted graph model, and

4) graph partition model.

Network flow model

Networh low model was proposed by Stone [40, 39] to solve task allocation problem
for dual-processor systems. In the network flow model, Stone assigned tasks to two
processors and used undirected graphs to depict execution and communication. The
modules are represented by a set of nodes in the graph and the inter-module commu-
nication costs are represenied by the weights on the edges of the graph. Two kinds
of costs are assumed in the model: execution costs and communication costs. The
objective function is the sum of all the active costs for an assignment. In other words,
the task assignment strategy is to minimize the total cost. No resource constraints
are imposed on any of the processors. In this model, each processor is assumed
to have infinite memory to store all the modules assigned to it and their data. In
general, any process is free to reside on any processor.

In order to use the max-flow/min-cut algorithim, the graph needs to be first trans-

ferred to commodity flow graph by adding two more nodes P, and [ to the graph,
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which correspond 1o the two processors, to represent the execution costs with respect

to each processor. The weight on the edge connecting a module node to P, is the

execution cost of the corresponding module on processor Py, and the weight on the

edge conuecting P, to a processing node is the execution cost of that module on pro-

cessor . Then, the max-flow/min-cut algorithm is performed on the commodity

flow graph so that the modules are optimally partitioned into two sets, each allocated

to a particular processor. The value of the min-cut represents the minimum amount

of the intci-processor communication.

Although this method is attractive in its simplicity, it has several serious limita-

tions.

It is for two processor system only. In general, an extension of this method to
an arbitrary number of processors requires an n-dimensional max-flow/min-cut
algorithm which quickly becomes computationally unattractive. This will limit

the usefulness of this method in many applications.

The model does not encourage concurrency. All the task models may be as-

signed to the same processor.

The system considered in this method has no system resources constraints at all.
It provides neither a mechanism for representing limited resources in memory
size or processing time, nor a mechanism for load balance, nor mechanism for

the preservation of data flow precedence.

The maximum flow algorithm can only treat edges of the graph with nonneg-
ative capacity. Although Stone made some effort to overcome this difficulty,

there are still somie cases which this method can not deal with [41).

Because of these advantages and disadvantages of this model and method, many

researchers continue to work on it, propose several modified models based on this

network flow model.




Lo did some work to extend Stone’s network flow model to n-processor svstem
[29]. Lo modecled a system of k tasks and n processors as a network in which cach
processor is a distinguished node and each task is an ordinary node. An edge is drawn
between each pair of tasks ¢; and ¢, and is given the weight ¢, the communication
costs between the two tasks. There is an edge from each task node ¢, to cach processor
node p, with the weight

1

n—1

n—2
inr - Ty

Wia = ys n— |

An n-way cut in such a network is defined to be . set of edges which partitions the
nodes of the network into n disjoint subsets with exactly one processor node in cach
subset and thus corresponds naturally to an assignment of tasks to processors. The
cost of an n-way cut is defined to be the sum of the weights on the edges in the
cut, which is exactly equal to the total sum of execution and communication costs
incurred by the corresponding assignment.

For this model, Lo developed a heuristic algorithm referred to as algorithm A
which combines recursive invocation of Max-Flow/Min-Cut algorithms with a greedy
algorithm to find suboptimal assignments of tasks to processors. Algorithm A consists
of three parts: Grab, Lump, and Greedy. The first part of algorithm A, Grab,
produces a possibly partial assignment of tasks to processors by having cach processor
“grab” those tasks that are strongly attracted to it. If the assignment is complete,
it is optimal. However, if some tasks still remain unassigned, Lump, the second
part of the algorithm A, tries to find a quick and dirty assignment by assigning all
remaining tasks to one processor if it can be done “cheaply enough”. If Lump still
cannot complete the assignment, Greedy, the last part of the algorithm, is invoked.
Greedy identifies clusters of tasks between which communication costs are “large”.
Greedy merges such clusters of tasks and assigns all tasks in the same cluster to the

cheapest processor for that cluster. The resultant assignment may be suboptimal.

Good performance of the heuristic is reported in Lo’s simulation results.
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But the model still uses the total execution and communication costs as the per-
formance criteria to be optimized. Therefore, it keeps the major flaw that no explicit
effort is made on concurrency, yielding assignments to utilize only a few of the avail-
able processors. For this reason, Lo augmented Stone’s model with interference costs
which are incurred when two tasks are assigned to the same processor. Interference
costs reflect the penalty for two tasks to compete for the same resources of the pro-
cessor assigned. The augmented model consists of three kinds of costs: 1) execution
costs, 2) communication costs, as defined before, and 3) the interference costs. An
optimal assignment for this model is one which minimizes the total of sum of exe-
cution, communication, and interference costs. A homogeneous n-processor system
can be modeled as a network in which an n-way cut corresponds to an assignment of
tasks to processors. Let the edge from each task node ¢; to each processor node p,
have the weight
Wiy = - Y zir — ;—l___—fm.'q+ in_l—_l) S I

n—12 1<I<k

Let the edge between two task nodes ¢; and t; have the weight

! -— Ve s
C"J' _CU I.

For this model, if I;; < ¢, 1 £ 7,j < k, the max-flow/min-cut algorithm can
be applied to find optimal assignment for two-processor system. For n-processor
systems, algorithm A can be applied to find suboptimal assignments. Lo’s simulation
results show that heuristics designed to minimize total execution, communication,
and interference costs yield assignments with a high degree of concurrency. But for
arbitrary /,;, Max-Flow/Min-Cut algorithm cannot be invoked. Algorithm A is not
a useful heuristic for the model with the interference costs.

To further introduce the degree of parallelism attained by assignments, Lo pre-
sented other two models in which optimal and suboptimal solutions are measured

by completion costs instead of total costs. Completion costs here refer to as the
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natural extension to latest finishing time. In the model without interference costs,

the completion time is defined as

wy =maticecn( D gt P €)

J(t)=pq 1()=pq

J(ty)tpg
i.e., by Stone and Bokhari [40], the total exccution and communication costs incurred
on the processor for which these costs are maximal over all processors. Similarly, in

the model with the interference costs, completion time is defined as

w;=mam15q5n( Z eiq+ Z CiJ+ E Ilj)

e e e
i.e., the total sum of execution, communication, and interference costs incurred on
the processor for which this total is maximal over all the processors.

No algorithm is proposed for either of these two models in Lo’s work.

Lee, Lee, and Kim [27] extended Stone’s approach to the case for a linear array of
any number of processors. Differing from all systems above, the linear array systems
considered are not fully connected. The allocation strategy is to minimize the sum
of all the active execution and communication costs. Lee and his colleagues solved
the task allocation problem for a linear array network by first transferring it into the
two-terminal network flow problem, then using the Goldberg-Tarjan’s network flow
algorithm [27] to achieve the optimal solution.

All the work mentioned above is about static task allocation based on the network
flow model. Dynamic task allocation problem based on the network flow model is
also studied in the literature.

Based on the network flow model, Stone and Bokhari {40] presented a modified
model for dynamically assigning tasks to two-processor systems, where the notion of
“phase” is introduced. More information is included in the model such as relocation
costs for each module at the end of each phase, costs of residence of the remaining
modules for each processor etc. These information is also represented by an undi-

rected graph. The number of nodes in this graph equals to the number of program
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modules multiplied by the number of phases. The nodes are arranged in a grid with
the vertical “columns” of nodes representing the modules and the horizontal “rows”™
representing the phases. Each individual node represents the residence of a module
during a specific phase. Each node is labeled with an upper-case letter which iden-
tifies the module it represents and an integer which identifies the phase. The single
module that executes during each phase is marked with an asterisk. The “vertical”
cdges connect successive residences of the same module and the weights of these edge
represent the costs of relocating the modules. The “horizontal” edges connect the
executing modules with other modules during the same phase and represent inter-
module communication costs between the executing module and the other modules.
(sce Figure 2.1)

As in previous model of Stone, in order to use the Max-Flow/Min-Cut algorithm,
this graph needs to be transferred to a dynamic assignment graph by adding two
nodes, which represent the two processors. Edges representing the run costs are
drawn from P, and P, to each node representing the executing modules.

In [5], Bokhari shows that a network flow algorithm may be performed in this
dynamic assignment graph to get the min-cut, which gives the optimal dynamic
assignment of modules, i.e., it specifies which modules are to reside on which processor
during each phase.

To extend the dynamic assignment model to n-processor distributed systems,
Stone and Bokhari proposed a directed tree model which is only applied to the case in
which the intermodule communication pattern is constrained to be a tree. Basically,
it 1s an extension to the above dynamic assignment model when the model is applied
to a tree-like structure program. Bokhari designed a dynamic programming approach
called shortest trec algorithm for this model [5] to find optimal assignment. However,
for this model, there exists a serious problem which is very hard to construct a tree.

All systems considered above are similar to Stone'’s. They do not have any system
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Figure 2.1: Incomplete dynamic assignment graph. The horizontal edges represent
communication costs, and the vertical edges represent relocation costs. Asterisk
denotes executing module.

resources constraints, either for static or dynamic task allocation model. But in
reality, any system’s resources are lin.ited, the effect of limited memory size in each
processor is usually needed to be considered. Rao and Stone [35] introduced the
problem of how to assign modules to a two-processor system with one processor
having limited memory capacity so as to minimize the total of execution costs and
interprocessor communication costs. It is shown that the processes allocated to the
processor with limited memory capacity form a subset of the processes allocated
to this processor by the maxflow method used by Stone with no memory capacity
constraints. The general problem is NP-complete. To simplify the original network,
some reduction techniques by means of condensing certain processes into single nodes,
such as techniques based on the Gomory-Hu tree from network flow theory and
techniques based on the inclusive cut graph, are suggested. The solution to the

original task allocation problem can be found by enumerating the cuts of the inclusive
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cut graph, which can be very eflicient for some problems. But no algorithm of

guaranteed polynomial efficiency in the general case is proposed.

Graph Matching Model

Shen and Tsai proposed graph matching model which 1s based on a graph match
approach called weak homomorphism and a cost function representing the maximum
time for a task to complete module execution and communication in all the processors
[37] . The distributed systems considered here are heterogeneous, either in processors
or in communication links, and the processors in the system need not to be fully
connected, and there exists little or no precedence relationship or synchronization
requirement among the program modules.

in this model, the module relationship of a given task and the processor structure
of the distributed system are represented by two undirected graphs, task graph and
processor graph respectively. In task graph, each node denotes a module of task,
and edge denotes the intermodule communication between the two modules at the
ends of the edge. Similarly, in processor graph, each node represents a processor
in the distributed system, and each edge represents a communication link between
processors. A self-looping edge is added to each node due to the fact that two related
modules may be assigned to a single processor. Therefore, the module assignment
to system processors is transferred into weak homomorphism graph matching. The
optimal task assignment can be found by searching the optimal weak homomorphism
which is formalized as a state-space problem. Algorithm A* is applied in search of
optimal weak homomorphism. It uses the task turnaround time as the cost mea-
su.e and minimax criterion of minimization of the interprocessor communication and
balance of processor loading as the criteria for the assignment optimization.

However, the cost measure A in Shen and Tsai’s algorithm A* does not give a

satisfied lower bound of h*, which brings the limitation of their scheme that the
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tree size becomes unwieldy for large problems. The algorithim often requires a large
number of evaluations of a complex heuristic function.

A new hybrid strategy is proposed in {34] which combines Stone's maximum How
algorithm and Shen and Tsai’s A* algorithm. It uses maximum flow algorithm to
compute the cost function for nodes generated during the tree expansion process in
order to reduce the number of nodes. This will result in a decreased total runtime
even if the maxflow computation takes more time per node. To further cut down
the number of nodes in the search tree, dependency among the tasks and consistency
among the tentative assignments are taken into account.

Some other heuristics are proposed in the literature to overcome the widely expan-
sion of the tree at each layer in Shen and Tasi’s A* algorithm and the time consuming
evaluation of the heuristic function {33, 10].

A similar model is proposed by Bollinger and Midkiff [7] for general homogencous
system. A simulated annealing heuristic is presented, with the objective funciion to
minimize the total communication overhead. The objective function is

F= qu + w max ¢
3k k
where weight factor w penalizes any configuration that increases max;(c,x), vary-
ing with temperature. The first term, the total communication, produces a greater
variation in cost, making it more desirable as a cost matrix for simulated anneal-
ing. While the second term, describing the largest communication, more accurately
characterizes the quantity being optimized. Both of total communication cost and
largest communication cost are considered in the objective function with factor w. It
is reported that the approach can anneal into optimal solution for N < 128, where

N is the processor number.
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The Layered, Doubly Weighted Graph Model

For a single-host, multiple-satellite system, Bokhari proposed the layered, doubly
weighted graph model [6]. In this model, all information about execution and com-
putation costs of the modules is included in a layered graph (see Figure 2.2). Each
layer corresponds to a processor and the label on each node corresponds to a subchain
of modules. T'wo weights are associated with each edge: a sum weight and a bottle-
neck weight. In layer k, each edge emanating downward from node < ¢,j > is first
weighted with the time required for processor k to process node i through j. This
accounts for the computation time. To the weight on the edge joining node < a,b >
in layer k to node < b+ 1,d > in layer k£ + 1 is added the time to communicate
between modules b and b+ 1 over the link connecting processors k and k£ + 1. The
influence of both the amount of data transmitted tetween modules b and b+ 1 as
well as the speed of the link between processors & and &+ 1 can be included in the
graph. To take memory constraints on individual processors into account, it suffices
to add up the memory requirements of all modules in every subchain. If the sum of
memory requirements for nodes ¢ through j exceeds the capacity of processor k, node
< 1,7 > in layer k is deleted, along with all edges incident on it. Any path connecting
distinguish nodes s to ¢ corresponds to an assignment of modules to processors. The
objective of task allocation in the system represented in the graph is to find the mini-
mum bottleneck path in the graph, that is, of all paths, the one in which the heaviest
edge has minimum weight. For this model, Bokhari designed an algorithm named
sum-bottleneck algorithm which combines the shortest tree algorithm and bottle neck
algorithm.

However, this approach can only work under the contiguity constraint that each
processor has a continuous subchains of program modules assigned to it. In partic-
ular, it can only be applied to chain-structured progrems, multiple arbitrarily struc-

tured serial programs, and single-tree structured programs, and pipelined programs.
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Figure 2.2: The layered graph for a problem with nine modules and four processors.

The other main drawback of the approach is that it is very difficult to construct an

assignment tree needed in the sum-bottleneck algorithm.

Graph Partition Model

Graph partition model is a basic graph theoretic model, in which each module of
program is modeled as a node in the graph and the communication between two
modules is modeled as an edge connecting two nodes corresponding to these two
modules. The weights of nodes stand for the execution costs, and the weights of
edges stand for communication costs. Researchers have worked on this model for
different distributed systems, with different objective functions.

Lo [28] applied this model to an Ethernet-based distributed system, in which
processors are identical and there is only one communication pathway. An optimal
assignment of tasks to processors in the system is defined by Lo as one which mini-

mizes the total interprocessor communication costs incurred under the constraint of
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a bound on the maximum number of tasks on each processor. Two algorithms are
presented by Lo: algorithm M and algorithm H. Algorithm M is to find optimal as-
signments in polynomial time by finding a maximum weight matching in graph, when
the number of tasks is less than or equal to twice the number of processors and when
cach processor may be assigned at most two iasks. Algorithm H is a heuristic for
arbitrary task-processor configuration which uses a greedy type algorithm to reduce
the task graph.

Similarly, Sarje [36] applied this simple model to a distributed system that shares
a common bus or communication ring. A heuristic is presented to achieve optimum
interprocessor cost under the load balancing constraints, which combines the cluster-
ing and reassignment.

In conclusion, graph theoretic models are simple, powerful when no or few con-

straints on the available system resources are imposed.

2.1.2 0-1 Integer Programming Model

The major drawback of graph theoretic models is that they cannot capture and
satisfy the characteristics and requirements of complex distributed systems. Thus
researchers have formulated the task allocation problem for distributed systems as an
optimization problem and tried to solve it by using 0-1 integer programming models,
which can easily introduce constraints of the systems as appropriate as possible.
The task allocation problem, formulated as a mathematical programming prob-
lem, can be stated in a general form as the problem of finding the values of variables

X,x which will minimize z, where

N M N-1t N M M
z=3 Y exzat Y, Y D, D CiTuTjg (1)
i=1 k=1 i=1 j=i+1 k=1 qg=1,q#k
subject to
M
Y rp=1li=1,.,N (1.1)
k=1
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N
Yorrw <R k=1..M (1)

1=1

1 if process i on processor k . A7 , .
g = {0 S on bre P= 1, Nk =1 M (13)

In the above formulation, objective function (1) consists of two parts. The first
term is the sum of execution costs and the second term is the sum of the communi-
cation costs incurred between processes i and j residing on the different processors.
In general, the communication costs between two processes residing on the same pro-
cessor are negligible. Constraints (1.1) are imposed to ensure that every process 7 is
allocated to a processor, and constraints (1.3) require the variables ryx of the problem
to be 0 or 1. Finally, constraints (1.2) refer to the resource limitations and ensure
that the sum of resource requirements r, of all processes ¢ allocated to process . k
does not exceed the processor’s resource capacity . Several sets of this type of
constraints can be included with each referring to a different kind of resource. In the
literature, different models have different sets of constraints for specific distributed
systems [38].

The mathematical problem can be transferred to a linear one by introducing a
set of assignment variables defined by yix;, = zikzjq. The problem then becomes

minimizing z, where

N M N-l N M M
z=3 ) entic+ Y, D O D Cirlfikyg (2)
i+1 k=1 i=1 j4i41 k=1 q=19#k

subject to constraints (1,1), (1,2), (1,3). Two more scts of constraints should be

added to the model, in order to ensure the equivalence of the two formulations:
zik+qu""1 _<.yik1q WlthlS],k#(l (2'])

Yikyg = 0) 1 (22)

Although problem (2) is linear, the number of variables and constraints has bheen

significantly increased. The increased dimensions of formulation (2) can be slightly
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reduced. Thus, the objective function (1) can be written as :
M N-1 N-1
z= Z Zc"‘z"‘ + Z 2 Ciy — Z Z Zcuxth:k (3)
1=1 k=1 1=1 =141 1=l y=141 k=
This can be lincarized by introducing a set of slightly different assignment variables
defined by y], = zikzjx yielding the following linear objective function minimizing

2z, where

N M N-1 N-1 N M
=Y Y eara+ 3 Y - D D I CiYin (4)

1=1 k= 1=1 j=1+1 i=1 j=i41l k=1
1

—

subject to constraints (1,1), (1,2), and (1,3). Variable yi,, becomes one when both

Zik=1 and zj; = 1. The additional constraints in this linearization are
Tik + Tik > 2y (4.1)

Vi =0, 1. (4,2)

Therefore, nonlinear problem as (1) can be transferred to linearized one as (4).

Price [31] presented a model which is the same as the one mentioned above for
a fully connected homogeneous system. No constraint is included in the model. An
iterative technique that performs a series of transformations on an assignment matrix
is presented. But it only guarantees the convergence to a locally optimum assignment.
Global optimurn: van be achieved only when the communication costs is sufficiently
small that they can be ignored.

Later, Price and Krishnaprasad [32] improved the model by introducing a con-
straint of limited memory for cach processor. Three heuristics, — the iterative trans-
formation algorithm, the clustering algorithm, and the Banded Q algorithm —, are
presented. Performance analysis is reported which can serve as a guide to the prac-
tical utility of each method.

Chu [13] presented a model, where the objective function is modified as

Cost(X Z Z (e + L Z wv;;dki T 51)

1<k 5<i

20




Similarly, the first summation term represents the processing cost for cach module
on its assigned processor. The second term sums the volume-distance products that
represent the interprocessor communication costs (X is an assignment. vy, denotes
the volume of data sent from module z to module j, given by matrix V. d,, denotes
distance between processor ¢ and j, given by matrix D.). Besides, Chu used a nor-
malization constraint w to scale processing costs and interprocessor communication
costs to account for any differences in measuring units. Two sets of constraints are
introduced into Chu’s model. A limited memory environment is represented by the
constraint

Es,-:c,-k < R k=1,..,N

where s; represents the amount of memory storage required by module ¢ and Ry
represents the memory capacity at processor Pi.. And the real-time constraint is
given by

Zu.-m;k <T. k=1,.,N

where u; represents processing time required by module i and 7T) represents the
required time limit for processing the modules residing in processor k for a given
task.

The model is solved by linearizing the objective function and adding further
constraints. It is admitted that the dimension of the problemn can be extremely
large. A heuristic clustering algorithm is presented for this model by Chu. ‘1 he
systems considered here have heterogeneous processors but no replica of processes
existing.

Gylys and Edward [21] presented a model similar to Chu's as mentioned above,
except the objective function. They formulated the task allocation problem as a max-
imization problem where, instead of minimizing the interprocessor communication,

it maximizes the intra-processor communication. Execution costs are not included

21




in the model. Tn particular, the objective function in this model is represented

J

N M
Q = Zzzcumthﬂc

k=1 3=11=1

which is the total amount of bus traflic eliminated (or intra-processor communication
generated) by making program share the same processors. Two basic approaches for
solving the optimal allocation problem were investigated. One is based on math-
ematical programming methods, the other on heuristic cluster analysis algorithm.
This model is mainly suitable for the single bus systems. Other related work on the
model can be further referred to [18].

Ma, Lee and Tsuchya [30] gave a more detailed and complet~ description of task
allocation problem and the rules governing a distributed environment. The cost
function is formulated to measure the interprocess communication costs and execu-
tion costs. Several constraints are used to satisfy different application requirements,
including memory constraints, pre-allocation and co-location constraints, and con-
straints referring to replicate processes. The objective function used has the form

minimizing =z,

N M N M

z=3 0 (wenzie + D (cijdia)ittss)

141 k=1 j=1g¢=1
where w is a normalization constant. This objective function is quite similar to
formulation (1), but the interprocess ccmmunication costs between processes i and
7 depend not only on the relevant processes, but also on the distance (di,) between
the processors to which they have been allocated. The problem of task allocation is
tackled by a branch-and-bound exact method, and the solution procedure proposed
consists of a search tree method.

As all the exact allocation algorithms were limited to very-small-sized problems,

Billionet, Costa, and Sutter [4] applied the basic 0-1 integer programming model to
a system in which, processors are heterogeneous, communication links are homoge-

neous, and the capacity of processors and links is unlimited, to study large scale

problem. The branch-and-bound algorithm is applied using the proximate solution
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to the Lagrangean dual problem as the lower bound and using a zero duality gap
to check consistency of 0-1 equation. Excellent experimental results are reported.
Connolly [15] tried simulated anncaling on a similar model. It performs extremely
well, finding improved solution for several of the largest problems in the literature in
only modest amounts of CPU time without the need to “tune” the system for cach
new data set.

In conclusion, the distinguish advantage of 0-1 integer programming maodel is
that it can easily represent the distributed environment with as many constraints of
the system as necessary. But the optimization problem of task allocation is mnore
naturally expressible as a nonlinear programming problem. Most of them can be
linearized as we stated previously, however, the resulting models are ill conditioned

and their numerical stability can not be guaranteed.

2.1.3 Queueing Theory Model

Queueing theory models are usually used to model distributed processing systems. In
particular, computers are represented as servers, modules’ invocations as customers,
and task invocations as external arrivals. Customers are routed for service in accor-
dance with the task control-flow graph and the modules assignment. Fach model
incorporates a job routing strategy, which is divided into two classes: deterministic
and nondeterministic.

For the heterogeneous system with nondeterministic routing (sce Figure 2.3),
each processor is modeled as a queue/server pair. Processor i is assumed to be
characterized completely by its mean service rate u,, cach job enters the system
at mean rate A\. Their interarrival times are modeled as a sequence of independent
identical distributed random variables. The distribution is assumed to be exponential
with a mean of 1. An arriving job is routed to processor i with probability p,
(p, # 1) where the routing decision is based on the outcome of an independent trial.

Each processor services its queue of jobs in first-come-first-served priority order.
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The processing time is modeled as an independent exponentially distributed random

variable with mean “l
)
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Figure 2.3: Heterogeneous system with nondeterministic routing

For the heterogeneous system with deterministic routing (see Figure 2.4), the
model is the same as the previous one except the inclusion of job dispatcher. The job
will be dispatched to queue ¢(s, C), where (s, C) is determined by a system criterion
function C(ny,ny,...,n;,...,n,) which denotes the value of function when the job is
sent to the ith queue. The job dispatching strategy can be set so that the next
processor is chosen to minimize or maximize the expected value of a performance
related criterion function.

Chow, and Kohler [11] presented three state-dependent routing policies: 1) the
minimum response time policy, 2) the minimum system time policy, and 3) the
maximum throughput policy. It is reported that the maximum throughput policy
is conjectured to be optimal among all policies that are based on the system states,
average arrival rates, and average service rate information. The model is proposed
for heterogencous system, but only load balance of the system is considered.

In [14]. Chu criticized that a tractable queueing network model cannot represent
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Figure 2.4: Heterogeneous system with deterministic routing

the distributed system because the routing policy in that model cannot represent
the logical relationship among modules in the system. Therefore, he introduced
an analytical model which consists of two submodels: the module response time
model and the weighted control-flow graph model. It considers such lactors as IIPC,
modules precedence relationships, module scheduling, interconnection network delay,
and assignment of the modules and files to compuicrs. Based on the model, they
developed a search algorithm which uses the sum of task response time and delay
penalty as the objective function. The algorithm searches for local optimal solutions
and then selects the final solution from this set of local optimum. It is reported
that the algorithm can generate the optimal solution for most cases by exhaustive
searching. However, because of the exponential growth in computation requirements,
for large-size system, such exhaustive search for optimal assignment, is not fcasible.
Queueing models are mainly used in dynamic task allocation. They can include
many different factors of distributed system, but they are very sophisticated, and
usually only load balancing can be considered. So far, rescarch is mainly on small

size systems.
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2.1.4 Overview of Reviewed Models

Based on the study of the previous models in the literature, we can conclude that:

e Graph theoretic model is simple, powerful only when no or few constraints on
the available system resources are imposed, it cannot capture and satisfy the

characteristics and requirements of complex distributed systems.

e (-1 integer programming model can easily represent the distributed system
with as many constraints of the system as possible, but it can only solve linear
problem. To be applicable to the nonlinear problem, it becomes ill conditioned
and its numerical stability cannot be guaranteed. Unfortunately, the optimiza-
tion problem of task allocation is more naturally expressible as a nonlinear

programming problem.

e Queueing model is more suitable for dynamic task allocation. Basically, queue-
ing model can include many different factors of a distributed system, but it is

very sophisticated. Usually it only considers the load balance.

2.2 Models designed for our workstation farms

Although 0-1 integer programming model can include as many constraints as possible,
it is only good at solving linear problem which is not natural for task assignment
problem. On the other hand, Queueing model is more suitable for dynamic task
assignment problem. Therefore, for task assignment problem on our workstation
farms, we designed our models based on the theoretic graph model.

Two objective functions are often used in the literature. One is the total cost which
is the total of the computation cost and communication cost incurred by the program
on any processor; the other is commpletion cost which is the maximum cost including
the computation cost and communication cost incurred by the program any processor.

Using completion cost as an objective function for task assignment problems is more
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realistic, however, to calculate the completion cost for a task assignment itsell will
invoke a lot of calculations of maximization and minimization, for which we are short
of efficient tools. Most of models in the literature use total cost as objective functions
for task assignments. In this thesis, we use either of these two objective functions for
different models.

We start with uniform m-way graph partition model for workstation farms with
a single bus, then go to more complicated and recalistic models. Neverthless, no

constraints on system resources are considered in our models.

2.2.1 Uniform m-way Graph Partition Model

Considered a workstation farm in which all the processors are interconnected by
a high-speed bus. We can model a parallel computation by an undirected graph
G = (V,E) in which each vertex in V represents a process and cach edge in &
represents a logical communication channel. The computation load of each process
can be modeled by a function wy : V — I (I is the set of positive integers). The
communicatior load of each channel can be modeled by a function wy : £ — [. Let
m > 0 be the number of processors in a workstation farm. The task assignment
problem for a workstation farm can thus be modeled by the following m-way graph
partition problem: find a mapping 7 : V — {1,2,...,m} such that

Wa(r)= Y wale)

ez{u,v}€E
m(w)#n(v)

is minimized under the constraint that

Wi(m)= 3 |wi(Pa(i)) — wi(Px(5))|

1<1<j<m

is minimal, where P,(i) = {v € V|r(v) =i} for 1 £ ¢ < m. (For any subset C
g V9wl(c) = Z'UEC wl(v)')

This model is designed for systems in which:

1. All processors are homogeneous;
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2. All processors are connected by a high-speed bus;

3. There are no competition for system resources between any pair of processes

assigned on the same processor;
4. Communication between any pair of processes within a processor is ignored.

2.2.2 Nonuniform Single-bus Total Cost Model

For a workstation farm of heterogeneous processors connected by a single high-speed
bus, we can find that the performance of a program consisting of a set of modules

depends heavily on the following three costs (times):

e Computation costs. Since the processors are heterogeneous, computation time
of a task depends on the processor to which it is assigned. The computation
load on the processor depends on the set of tasks assigned to it. To optimize the
system performance, an assignment must attempt to balance the computation

load of the program across the processors in the system.

e Communicalion costs. If two interacting tasks are assigned to different proces-
sors, the intermodular communications need to go through the interconrection
network. The time for communication between two processors depends on the
network topology, and the communication bandwidths of the links between
processor pairs. The time spent by a processor on communication activity in-
creases the completion time of that processor, and an assignment must keep

these communication overheads to a minimum.

o Interference costs. If two tasks are assigned to the same processor, they will
compete for the resources available on the processor (such as CPU, memory,
1/0, etc.). This resource contention results in overheads, referred to as inter-

ference costs [28], which slow down the execution of either module, and reduce




the processor untilization [3, 28]. These costs are processor dependent ina het-
erogeneous system. Since interference costs increase the execution time of the

processor, an assignment must attempt to keep these overheads to a minimum.

Here we include the interference cost (introduced by Lo [29]) in the model to
encourage parallelism in the system.

For the task assignment on this kind of workstation farms, we can formalize it as
follows. For any integer n > 0, let [n]={1,2,3,...,n}, let R be the set of all nonnegative
real numbers. Assume that the system has m > 0 processors, and the program in
the question has n > 0 task modules. Let X : [n] x {m] — R be a function such that
for any i € [n] and j € [m] X (3, ]) specifies the execution cost of running module
on processor j. Let C:[n] x [m] — R be a function such that for any i, € [n] C(,J)
specifies the communication cost between modules 7 and j if they are assigned to
different processors. Let I: [n] x [m] — R be a function such that for any i,j € [n]
I(%,7) specifies the interference cost between modules i and j if they are assigned
to the same processor. The task assignment problem then is to find a mapping
7 : [n] = [m] to minimize the lotal cost

cost(n) = S X(ix @)+ S Clai)+ X 1G,5)

i=1 w(8)#n(J) r(1)=n(3)
<y 1<y

This mode is designed for systems in which:
1. All processors can be heterogeneous;
2. All processors are connected by a high-speed bus;

3. Communication between any pair of processes within a processor can be ig-

nored.

In this model both the communication cost and the interference cost are processor

independent.
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Although using total cost as an objective function is simple and needs less CPU
time for a task assignment, it is just approximate to completion cost. Some exten-
sive expriments have been conducted to compare performance of models with the
two ojective functions. Experiments for clusterd data sets, sparse data sets, and
structured data sets are reported in Table 2.1 to Table 2.3. (Description of data sets

and heuristics refer to Section 3.5)

C30-3 C40-4 C50-5 C60-6
SP | SA | TA]| SP |SA | TA|SP | SA| TA|SP [SA | TA

compl cost | 976 | 976 | 994 | 1461|1501 | 147211965 | 1977 | 1976 } 2587 | 2590 | 2590
CPU (sec.)| 0.2 | 33 | 67| 1.6 | 88 | 41| 6.1 | 148|424 7.0 | 8.7 | 10.3

total cost | 1435|1435 | 1436 | 2342 | 2468 | 2342 | 3468 | 3643 | 3643 | 5152 | 5152 | 5226
compl cost | 1407 | 1407 | 1407 | 2342 | 2468 | 2342 | 3468 | 3639 | 3643 | 5151 | 5151 | 5151
CPU (sec.){ 0.1 {09 ] 02)01|14|01]01}11}02}011]16]|03

Table 2.1: Performance comparisons for clustered data sets

S30-3 S40-4 $50-5 S60-6

SP | SA | TA}SP {SA | TA|SP | SA|TA|SP | SA | TA
compl cost | 248 | 252 | 254 | 277 | 280 | 284 | 350 | 350 | 352 | 461 | 473 | 464
CPU(sec)] 02 (13| 2611|1449 17|65}89]62] 83]154

total cost | 634 | 634 | 634 | 850 | 850 | 850 | 350 | 350 | 352 | 461 | 473 | 464
compl eost | 267 | 300 | 300 | 305 | 305 { 305 | 387 | 411 | 406 | 504 | 555 | 554
el

CPU (sec.)] 0.1 | 28 | 04] 0.1 |45 09}04 |37 11}02] 07|18

Table 2.2: Performance comparisons for sparse data sets

Ilach table consists of two regions for the performances of models with completon
cost or total cost objectives. The up regions demostrate the costs of the task assign-
ment with completion cost objective; while the down regions show the completion
costs and CPU time of the task assignment and its final cost of the objective, i.e. the

total cost.
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Line60-6 Ring60-6 Mesh49-6 Treet0-6
SP | SA | TA | SP | SA | TA | SP | SA | TA | SP | SA | TA
compl cost { 200 | 202 | 208 | 435 | 437 | 437 | 180 { 180 | 194 1 196 | 199 | 234
CPU (sec.)| 1.6 |11.2 183 ] 81 | 9.1 | 28.9] 5.0 | 9.5 | 17.2] 2.7 1 9.3 | 10.0
total cost | 996 | 996 | 1013 1697|1709 | 1703} 816 | 821 | 821 | 1002 1008 | 1011
compl cost { 212 | 212 | 212 | 496 | 533 | 444 | 190 | 176 | 180 | 233 | 221 | 222
CPU(sec.){ 0.1 } 1.2 107105 173120 ]01 ] 12071053526

Table 2.3: Performance comparisons for structured data sets

With the two regions in each table, we can compare the performances of the
models using total cost and completion cost as objective functions. For an example, in
Table 2.1 for cluster data set with n = 30 and m = 3 the assignment using completion
cost for SP heuristic has completion time 1037. For the same data set, using SP
heuristic with total cost objective results in an assignment with completion time
1352 (the entry corresponding to compl cost). This implies that the task assignment
determined by model (using total cost objective) has a 35% increase in completion
time over the assignment using completion cost objective model. Similiar conclusions
can be drawn by observing the other entries in the tables; i.i. in cach column we
observe that compl cost using total cost objective is significantly higher than using
completion cost objective.

Henceforth, for the same system, we also design the following model by using

completion cost as an objective function.

2.2.3 Nonuniform Single-bus Completion Cost Model

Nonuniform Single-bus Completion Cost Model is designed for a similar workstation
farm in Section 2.3.2, in which all processors are heterogeneous and arc connected by
a single high-speed bus. But this model tries to minimize the program completion
time, which is more important in a parallel computing environment. We can formalize

our task assignment on the workstation farm as follows:
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For any integer n > 0, let [n] = {1,2,3,...,n}, let ® be the set of all nonnegative
real numbers. Assume that the system has m > 0 processors, and the program in
question has n > 0 task modules. Let X : [n] x [m] — R be a function such that for
any 1 € [n] and j € [m] X(i,7) specifies the execution cost of running module ¢ on
processor j. Let C : [n] x [m] — R be a function such that for any i,j € [n] C(i, )
specifies the communication cost between modules i and j if they are assigned to
different processors. Let I : [r] x [m] — R be a function such that for any 7,j € [n]
1(1,7) specifies the interference cost between modules i and j if they are assigned
to the same processor. The task assignment problem is then to find a mapping

7 : [n] — [m] to minimize the completion cost

cost(r) = max {X—:X(zw )+ > CGa)+ 3 1(,5)}

x(2)#n() r()=r())
< <y

This mode is designed for the system in which:

1. All processors can be heterogeneous;
2. All processors are connected by a high-speed bus;

3. Communication between any pair of processes within a processor can be ig-

nored;

4. The system objective is to minimize program completion time.

In this model both the communication cost and the interference cost are processor

independent.

2.2.4 General Nonuniform Total Cost Model

The target system of this model is connected by a interconnection network instead

of a bus as in the previous two models. Processors in it are also heterogeneous.
Since the system consists of heterogeneous processors, computation costs, com-

munication costs, and interference costs are therefore considered as its three basic

costs to evaluate the performance of the system.
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In this kind of workstation farm, the task assignmert problem can be for-
mally defined in graph theoretic terms as follows. For any integer n > 0, let
[n] = {1,2,3,...,n}. Assume that the system has m > 0 processors, and the program
in question has n > 0 task modules. The distributed program can be represented as
an undirected task graph G = (V, E), where |V| = n, cach vertex v € V' represents
a task module, and each edge e = (u,v) € E represents two communicating (in-
teracting) modules. Each modules can be assigned to any one of the m processors.
For any vertex v € V and any integer 1 <z < m, X(u,1) denotes the execution
cost of running modules u on processor ¢. For any edge (u,v) € E and any integers
1 <14,7 £m, C(,j,u,v) denotes the generic cost between modules u and o if u is
assigned to processor ¢ and v is assigned to processor j. If ¢ # j, C(¢,7,u,v) rep-
resents the interprocessor communication cost between modules u and v under this
assignment. If i = j, C(¢,4,u,v) represents the interference cost between modules u
and v caused by resource conflicts on the same processor.

Given a task graph G = (V, E), a distributed system of m heterogencous proces-
sors, along with the costs X(u,¢) and C(¢,j,u,v) forall 1 <i,7 < m and u,ve V,
the task assignment problem is to find a mapping 7 : V — [m] to minimize the total

cost

cost(r) = Y X(u,m(u)) + Y C(r(u), 7 (v),u,v)
ucV ufv
Generally, the model is designed for system in which:

1. All processors can heterogeneous;
2. All processors are connected by an interconnection network;

3. Communication between any pair of processes within a processor can be ig-

nored;

In this model both the communication cost and the interference cost are processor

dependent.
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For the same system, by using the completion cost objevtive, we design next

model.

2.2.5 General Nonuniform Completion cost Model

'The target system of this model is similar to the system in Section 2.3.4. However,
the system objective in this model is to minimize program completion time.

First of all, we model the system’s architecture interconnection as a graph
G, = (V,, Ep) where Vp = {py,p2,...,pm} denotes processors and E, describes the
interconnections among the processors. The properties of the interconnection net-
work are provided by the delay matrix D, where D(z, j) denotes the communication
delay (cost/time) for sending a message (of unit length) from processor i to processor
7, for 2,7 € {1,2,...,m}. We assume that the communication delay betweeu a pair
of processors is identical in both directions, i.e., D(i, ) = D(j,1).

For the parallel program (task), we can model it as a task graph G = (V, F) where
vertices V = {v1,vs,...,v,} represents the interacting program modules (tasks) and
the set of edges E represent data communication dependencies between the tasks.

The characteristics of the program are represented by the following parameters:

o X(i, k) represents the computational load of task ¢ when executed on processor

k,foralll<i<nandl1<k<m.

o Y(7,j) represents the amount of communication required between tasks 7 and
7y fori,j € {1,2,...,n}. This is defined as the total number of unit length data
to be transferred between the two tasks. Since we are assuming a blocking
sending-receive model, we have Y(7,j) = Y(j,7) for all 4,5 € {1,2,...,n}. We
have Y(i,i) = 0 for all 7 € {1,2,...,n}. If there is no communication between

tasks 7 and j then Y'(7,)) = 0.

o I(k.i.j) denotes the interference cost caused by assigning both modules i and

J in processor k, for 7,7 € {1,2,....,n} and k € {1,2,...,m}. As discussed in
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previous models, *hese costs reflect the overheads caused by both modales com

peting for the same resources. We assume [(A,1,1) = O for all 2 € {1,2,...0n}.

Using the parameters Y and D we can construct an m X m X n X n generic cos!
matriz C(i,5,u,v), for 7, j € {1,2,...,m},u,v€ {1,2,..,n}, which can be computed

as:

.. Y(u,v)-D(i,7) i#7;41€{1,2,...,m};u,v € {1,2,...,n};
Clirgyuv) = { I{i, u, v) i=7514,7€{1,2,....m};u,v€ {1.2,....,n};

If: = j,C(3, J,u,v) denotes the interference cost on processor i when tasks u and
v are executed on processor . If 2 # j, C(7,j,u,v) indicales the communication cost
on processor ¢ and j when communicating tasks w and v are executed un processor
¢ and j respectively which is the time to send the message of size Y (u,v) between
processors i and j. Due to the blocking send-receive model, it follows that the cost
function C(i,j,u,v) is symmetric in terms of both parameter pair (u,v) and (1,)),
ie., C(z,j,u,v) = C(j,%,v,u) for alli,j € [m],u,v € [n].

Then our task assignment problem on this kind of workstation farm becomes to
find a mapping 7: [n] — [m] to minimize the completion cost
cost(m) = lrg}ca&)'cn{ Y X(u,b)+ Y. C(r(u)yr(v),u,v)+ Y C(x(u),7(v),u,v)}

- ﬂ(u):k w{u)=h r{u)=k
n(u)#n(v) m(v)=k

Generally, the model is designed for system in which:

1. All processors can be heterogeneous;

2. All processors are connected by an interconnection network;

3. Communication between any pair of processes within a processor is neglected;
4. The system objective is to minimize program completion time.

In this model both the communication cost and the interference cost are processor

dependent.
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Based on the different system configurations and the complexity of different objec-
tive functions we designed the above five models for task assignment on workstation

farms. In the following chapters we design efficient heuristics for these models.
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Chapter 3

Solution Techniques

In the review of task assignment models in chapter 2, we can sce that the techniques
used to tackle the task assignment problem in the literature can be classified into the

following categories:
e Graph theoretic methods,
e Mathematical programming methods,
e Heuristic methods.

Graph theoretic algorithms are usually used for graph theoretic models such as
Stone’s max-flow/min-cut algorithm for the graph network flow model {40, 39], Shen
and Tsai’s state-space search A* algorithm for graph matching model [37], and so
on. Mathematical programming techniques are usually proposed for the 0-1 integer
programming models, such as the standard linear zero-one programming algorithm
[12], branch and bound algorithm [30]. Standard queueing network techniques are of-
ten applied to the queueing models. All above techniques are proposed to achieve an
optimal solution. However, obtaining the exact optimum to the task allocation prob-
lem for distributed systems, especially for systems with more than two processors, is
often, in practice, either impossible or simply unattractive. In many formalizations
of the task allocation problem, finding an optimal assignment of tasks to processors

is found to be NP-hard in all but very restricted cases [17). Therefore, much research
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focuses on the development of heuristic algorithms {13, 29]. Even though heuristic
methods only aim to find suboptimal solutions, they are more practical, faster and
simpler than the exact methods. In fact, in some cases, heuristic methods may be the
only available tools for solving difficult problems. In the literature, heuristics have
been extensively applied to different kinds of models for task assignment problem.
For instance, Lo designed a quite successful heuristics for graph theoretic model [29],
while Chu proposed a heuristic for his 0-1 integer programming model [13].

Tabu search and simulated annealing are two of the most important methods
for general combinatorial optimization. Even though they are new (having histories
less than 10 years) and still under development, they have claimed success in many
application domains.

In this chapter, we first study these two methods, then we adapt them to our task
assignment problem. To further reduce the execution time, we study the parallelism
of these two approaches, and propose their parallel versions. However, with our
experiments, we find that simulated annealing is too randomized while tabu search is
too aggressive. Therefore, we develop our stochastic probe method which combines
the advantages of these two methods. To further reduce the execution time, we also
study the parallelism of this new method and propose its parallel version. More
details are elaborated in the following sections. Before we go to theses heuristics, let
us give some definitions (notations) which will make our discussion more conveniently

and concisely.

3.1 Background and Notation

o describe the working of our following heuristics, we present the task assignment
problem in the following forms, which is consistent with all of our five designed
models.

(p)  Minimizing c(7) : 7 € Q,
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where Q is the set of all mappings V' — {1,2,3,....m}. The objective function e{x)
may be linear or nonlinear. In some setting (p) may represent a modified form of
some original problems, as where 7 is a superset of the vectors that normally qualily
as feasible, and ¢(7) is a penalty function, designed to assure that optimal solutions
to (p) likewise are optimal for the problem from which it is derived.

A wide range of heuristic algorithms for solving problems capable of being written
in this form can be characterized conveniently by refcrence to sequences of moves
that lead from one trial solution (selected m € X) to another. Let S be the set of
all defined moves. We use S(7) (7 € ) to denote subset of moves in S applicable
to 7, and S(7,v) {r € Q,v € V) the subset of moves in S(x) that redefines w(v).
For any s € S(7), s(r), the new solution obtained by applying move s to 7, is called
a neighbor of w. We call {s(r)|s € S} the neighborhood of solution 7 in solution
space §2, and |S(7)| the neighborhood size of solution 7 (all of our moves are 1-to-1
mappings). For any move s, we define the gain of s relative to the current assignment
7 € 0 to be g(s) = ¢(r) — ¢(s(7)). Informally, given the current assignment 7 and
the move s, function g(s) returns the net improvement in the ccst of assignment,
obtained by applying s to =, over the old cost of .

Vertez move and verter ezchange are two popular classes of moves for graph
partition. Let 51 = {(u,v)| u € V,i € [m]} be the set of all moves for moving one
module away from its current assigned processor. Given any move s = (u,1) € S, and
7 € §, s(7) is identical to 7 except that s(x)(u) = i. Let S; = {(u,v)| u,v € [n]}
be the set of all modules swaps. Given any move s = (u,v) € S; and 7 € 2, s(7)
is identical to m except that 7(u) and w(v) are swapped. Given any = € {l, the
neighborhood sizes of 7 based on S; and S; are O(nm) and O(n?) respectively.

Our experiments show that module moves in S} are very effective in distributing

the modules among the processors to minimize the total execution cost, while maod-
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nle swaps in Sz are very effective in refining the assignment to minimize the total
communication and interference costs. The best order and mixture of the module
moves and module swaps are problem instance dependent.

To compromise the neighborhood size and the effectiveness of the moves, our
algorithins use a special set S3 of moves, where for any 7 € X, S3(7) = Si(7)U Sy(7),

and

S5 = {exchange u and v |v € V, moving v to Pr(j) maximizes gain

which is < 0; u € P.(7)}.

Informally, we give module moves higher priority than medule swaps. For a given
assignment 7 and a given module v assigned to processor 7, we first try to move v to
all the other processors. If moving v to processor j has the best gain which is less
than zero, then we also try to swap v with each of the modules assigned to processor
7. Given any 7 € §, the neighborhood size of 7 based on S3 is O(nm). Experiments
show that S3 performs better than S; or S; alone in terms of both running time and
solution quality for all our three task assignment heuristics [41).

These design issues addressed above are common to all the following heuristics.

3.2 Simulated annealing

Annealing is the physical process of heating up a solid until it melts and cooling it
down until it crystallizes into a state with a perfect lattice. During this process, the
free energy of the solid is minimized. But the cooling must be done very carefully
so as to escape the local optimal lattice structures with crystal imperfections. In
combinatorial optirnization, there is a similar process which can be formulated as the
problem of finding — among a potentially very large number of solutions - a solution
with minimal cost.

Simulated annealing was first introduced by Kirkpatrick, Gelatt and Vecchi {23,

24} and Gerny [9] independently. It is based on a strong analogy between the physical
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annealing process of solid and the problem of solving large combinatorial optimization
problem. It tries to avoid being trapped in local optima by accepting both *good”
and “bad” moves at the beginning of the iterations, and gradually lowering the
probability of accepting “bad” moves. It consists of iterative scarch of the solution

space by repeating three steps:
1. Moving from the current solution to a new solution;
2. Evuluating the cost of the new solution;
3. Deciding to accept or reject the new solution to replace the current solution.

Even though in theory, simulated annealing can find global optima if we lower the
above probability slowly in exponential time [41], its performance in a practical time
frame depends heavily on the parameters comprising its “cooling schedule”. In gen-
eral, simulated annealing is time-consuming, but it has been successfully applied to

many optimization problems.

3.2.1 Sequential simulated annealing

Simulated annealing can be viewed as an enhanced version of the local search. The
central idea of simulated annealing is that some mechanisms are included to prevent
an optimization scheme from getting stuck in a poor local optimum. At the very
beginning, it attempts to accept both improving and worsening solutions. Little
by little, the probability of accepting worsening solutions is reduced. This is done
under the influence of a random number generator and a control parameter called
temperature T which controls the probability of accepting the worsening solutions.
As typically implemented [22], the simulated annealing approach involves a pair of
nested loops and two additional parameters: a cooling ratio r, 0 < r < 1, and
an integer temperature length L. A generic simulated anncaling algorithm is shown

in Figure 3.1. In step 3 of the algorithm, the loop terminates when no further
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1. Get a random initial solution .
2. Get an initial temperature T' > 0.
3.  While stop criterion not met do:
3.1 Perform the following loop L times:
3.1.1 Let n’ be a random neighbor of =.
3.1.2 Let A =cost(n’')—cost(x).
3.1.3 If A > 0 (uphill move),
set T = 7.
3.1.4 It A <0 (downhill move),
set © = x’ with probability e
3.2 Set T = rT (reduce temperature).
Return the best 7 visited.

~A/T,

-

Figure 3.1: Sequential Simulated annealing

improvement on cost(r) seems likely.

There are two main issues related to the adaptation of this general approach to
the task assignment problem. The first is the design of moves and the neighborhood
structure, the other is the design of the cooling schedule which would mainly affect
on the solution quality. We use S; (see Subsection 3.1) as the set of moves. More
specially, during cach iteration, we randomly choose two processors i and j (¢ # j),
then we randomly choose a module u such that #(u) = ¢ If moving u to processor
J has a nonnegative gain, then we use its resulting assignment as ='; otherwise we
randomly choose a module v such that n(v) = j and try to swap modules » and v,
and use the assignment resulting from the move with better gain as «’.

As for the cooling schedule design, we made the following decisions.

1. Welet L =n-SIZEFACTOR, where SIZEFACTOR is a parameter.

o

The initial temperature Tp is chcsen so that the initial acceptance rate is around

INITPROB, another parameter in the range (0, 1).

3. For cach temperature, we measure the acceptance rate of the proposed moves.
The algorithm stops when for five temperatures the acceptance rate is lower

than MINPERCENT and the best visited solution is not improved in that
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period of time. Here MINPERCENT is another parameter in the range (0, 1).

All the parameters for our simulated annealing algorithm are not independent.
We tune the parameters of our annealing algorithm for cach of our benchmark graphs
one at a time. We repeat the process until no perturbation of the parameters can
improve the performance.

The time complexity of each iteration of our simulated anncaling heuristic is

O(n?).
3.2.2 Analysis of parallelism for simulated annealing

Even though simulated annealing is generally applicable, flexible, and is theoretically
guaranteed to converge to the global optimum, in practice the convergence procedure
is extremely slow. It requires the potentially burdensome amount of time . This has
motivated the development of parallel simulated annealing to reduce computation
time.

Since each iteration of simulated annealing (including move, evaluate, and decide)
depends on the result of the last iteration, simulated annealing has an inherent se-
quential nature in essence. In the literature, two basic approaches have been used to
parallelize simulated annealing. In the first approach, the sequential decision making
(Markov chains) are maintained; the resulting algorithms usually produce solution
with qualities comparable to that of their sequential counterpaits, but with a speedup
within O(log P) for P processors [42, 25]. In the second approach the basic sequential
properties of simulated annealing are broken in order to maximize speedup. The re-
sulting algorithms usually have good speedup but produce inferior solution qualities
to their sequential counterparts (8, 16, 1].

Kravitz and Ruienbar proposed a parallel simulated annealing with the serial
decision-making sequence maintained. As stated in [42], on four processors, only

speedup 2.5 is obtained for the placement problem, and additional processors would
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not improve the run-time significantly.

In [42], by using speculative computation, Witte, Chamberlain and Franklin devel-
oped another parallel simulated annealing which is problem-independent and main-
tains the serial decision sequences. In essence, they make use of the enough number
of processors in the system to build a processor tree to speculate about the total
number of iterations required at a temperature. They assign one processor to work
on the first iteration and use two other processors to perform speculative computa-
tion. One of the other two processors speculates that the result will be an accept and
begins to work on the next iteration under this assumption; while the other processor
speculates that the result will be a reject. When the decision is made, some work has
heen done on next iteration by the other two processors. The three processors make
a binary tree in which the first processor is the root and the other two processors
are the left (accept) and the right (reject) children of the root. To begin work on
the next iteration, the root must send the accept or the reject processor a current
solution. Since the reject processor assume the root will retain its current solution
and thus needs the current solution. The accept processor assumes the the root will
replace the current solution with the new solution and thus needs the new solution
generated at the root by the move function. The root determines which of the two
child processors has correctly speculated about the outcome of the first iteration.
Once the decision is made, the solution chosen by the incorrectly speculating child
will be discarded. The binary tree can be extended another level with 2 exponential
number of processors which speculate the outcome of the subsequent iteration. This
can continue until no processor is available.

However, in their work, only log, P speedup on P processors is reported by this
parallel simulated annealing. This is because of some potential problem in this par-
allelization. In general, there will not be enough processors to speculate about the

total number of iterations required at a temperature. As a consequence, it needs
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to take out some processors from the existing tree for the deeper levels, Therefore,
it needs a lot of time to layout the processors to construct the tree. On the other
hand, when the tree goes to deeper and deeper levels, the serial dectsion sequence is
destroyed little by little.

From either practical or theoretical point of view, we can see that to maintain the
serial decision sequence will sacrifice a significant part of execution time which will
hamper us from getting a good speedup. Therefore, our consideration is placed on
the second class which violates the serial sequence somehow but still can achieve so-
lution with quality comparable to that of sequential version. Some parallel simulated
annealing algorithms of this class are proposed in the literature [8, 16, 1]. However,
they are tailed to certain specific problems. Qur work concerns the development of
a parallel simulated annealing which can be generally applied to different problems.

Two considerations advise our development of parallel simulated annealing:

1. In theory, an execution of simulated annealing is a Markov chain which consists
of certain number of Markov subchains , and each Markov subchain corresponds
to a part of execution at a certuin temperature[2]. Therefore, to achicve a solu-
tion with good quality, we should maintain the chain structure (serial decision

sequence) somehow.

2. Basically, simulated annealing is a search of solution space. At each tem-
perature, each Markov subchain searches a subset of the solution space. By
expanding the set of solution space searched by each Markov subchain with
multiple processors, it can search the same size of the solution space with less

time.

Based on these two considerations, we develop two strategies to parallelize simu-

lated annealing:

1. Reduce the whole length of Markov chain for an execution of simu-
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lated annealing

At cach temperature, we use n processors to accomplish n Markov sunchains
simultaneously (independently or interactively). To put it another way, Step
3.1 in Figure 3.1 is executed by n processors in parallel. Ideally, the solution
space scarched by n processors at a temperature is n times the space searched
by one processor. With this assumption, we thus reduce the whole length of the
Markov chain to 1/n, which will lead to the same solution space size searched

by a sequential simulated annealing.

2. Maintain the whole structure of Markov chain for an execution of

simulated annealing but reduce the length of each Markov subchain

As shown in Figure 3.1, we use p processors to execute 1/p part of the loop 3.1

simultaneously. More details are discussed in Section 3.3.

Extensive experiments are conducted for these two parallelization strategies. Qur
experiments show that the first strategy for parallelization of simulated annealing
cannot obtain a good speedup even with 2 or 3 processors while the second strategy
can achieve a much better speedup with up to 10 processors with solution quality
comparable to those of its sequential version.

After studying more deeply on the first strategy, we find that 1/n length of the
Markov chain does not mean that it can be executed with 1/n execution time. Be-
cause during cach execution of simulated annealing, it spends much more time on
cach high temperature than on each low temperature. In other words, the execution
time of simulated annealing is dominated by the execution at high temperatures (ini-
tial cooling period). That is why we cannot obtain speedup by reducing the cooling
period. Figure 3.2 shows the execution time distribution over different temperatures
during cooling procedure for Graph R£100.2.

Our second strategy basically maintains the inherent nature of simulated anneal-
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Figure 3.2: Execution time distribution over temperature units for Graph 1100.2

ing, the serial decision sequence or the Markov chain. It only changes the Markov
subchains somehow by using multiprocessors. We apply this strategy to parallelizing
the simulated annealing.

Even though we have not got speedup from the first parallelization, we believe
that there is still some potential for this strategy. Cooling schedule here is a critical
factor which might improve the result. Here we propose some strategies for the

cooling schedule as future work:
e Speed up the cooling procedure;

e Find out a proper final temperature to terminate the execution, which will not

terminate the execution at the initial phase but still allow a good speedup.

3.2.3 Parallel simulated annealing

To compromise solution quality and speedup, we adopt the second approach and
designed the parallel simulated annealing algorithm outlined in Figure 3.3 for our
task assignment problem.

Our parallel simulated annealing uses the same cooling schedule as sequential

one. Temperature decreases by the factor r. But at each temperature, n processors
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Get a random initial public solution m,.
2. Get an initial temperature T > 0.
3. Set the sequential loop length Lg;
Get the parallel loop length L, = L,/n; (n:processor number)
4. While stop criterion is not met do:
4.1 Copy solution 7, to the local solution ;.
4.2 Perform the following loop L, times:
4.2.1 Let 7/ be a random neighbor of m;.
4.2.2 Let A = Ws(r]) — Wa(m).
4.2.3 If A > 0 (uphill move),
set m = m/.
4.2.3 If A < 0 (downhill move),
set m; = 7| with probability e2/T.
4.3 Update 7, with the best ; visited in the last
run of step 4.2
4.4 Set T = rT (reduce temperature).
5. Return mp.

Figure 3.3: Parallel Simulated annealing

do step 4.1 in parallel. The algorithm starts with an initial public solution m,. At
the same initial temperature T', each processor copies the public solution m, to its
local version m;, does loop L, times to find the best local solution 7], then at the
end of the execution of step 4.1, the best solution m; found so far within the last L,
iterations updates the =, if it is better than the current m,. Then the temperature
is reduced by step 4.3, the algorithm goes to the next phase of search with the new
temperature. The algorithm terminates until some stop criterion is met.

During each temperature, we reduce the loop length L, to L, (L, = L,/n) for
each processor’s execution. Since we use n processors to do the loop 4.1 simultane-
ously (each processor searches its own set of solution space), ideally, the size of the set
of solution space searched by the parallel simulated annealing at each temperature
should be almost the same as the one searched by sequential solution. However, in
practice, the sets of solution space reached by different processors overlap to some ex-
tent. In other words, the size of the solution space set reached at certain temperature

is smaller than the one searched by sequential algorithm. To make the possibilities
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of the overlap as little as possible, we try to relate the random number generator at
step 4.1.2 to the executing processor's 1D in the system.

Tuning parameters in the parallel simulated annealing are the same as those in
sequential version.

Experiments show that our parallel simulated annealing algorithimm can produce
solutions with qualities comparable to those of its sequential counterpart, and achieve

a speedup better than those reported in the literature with similar solution qualities.

3.3 Tabu search

Tabu search is a new approach to combinatorial optimization characterized by ag-
gressive local search during each iteration, and avoiding cycling in the solution space
by keeping a short history of the attributes of the recent moves [19, 20]. It differs

from simulated annealing on two main aspects:

e It is more aggressive. For each iteration the whole neighborhood of the current

solution is usually searched exhaustively to find the best candidate moves.

o It is deterministic. Each iteration repeats the above exhaustive search for best
candidate moves. The best candidate move which does not cause cycling in
the solution space will be used no matter what sign its gain has. A tabu list
is usually used to record the recent move history to avoid solution cycling, so

comes the name of the approach.

In general, tabu search algorithms are slower than other problem-specific heuris-

tics, but they have achieved impressive success in many problem domains.

3.3.1 Sequential tabu search

Tabu search is distinguished by two key elements [19, 20]:
1. Constraining the search by classifying certain of its moves as forbidden (tabu);
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2. Frecing the search by a short term memory function that provides “strategic

forgetting.”

IFigure 3.4 outlines a generic tabu search algorithm using 7 to represent a solution,

cost the cost function, and ¢t the length of the tabu list. Given a random solution,

1. Get a random initial solution .
While stop criterion not met do:
2.1 Search whole neighborhood of 7, get a
neighbor 7' maximizing
A = cost(n') - cost(n) and not visited
in the last t iterations.
2.2 Setr =7
’ 3. Return the best  visited.

Figure 3.4: Sequential Tabu search

the algorithm repeats the loop at Step 2 until some stop criterion is met. During
cach iteration, the algorithm makes an exhaustive search of the solutions in the
neighborhood of the current solution which has not been traversed in the last ¢
(t > 1) iterations. The best solution found in this process will be used to replace the
current solution.

The main design issues for a tabu search heuristic are as follows:

1. The design of the neighborhood (moves) of the current solution. A large neigh-
borhood usually makes each iteration more aggressive but also more time-

consuming.

o

The design of the contents of the tabu list. If move s is used to transform the
current solution to m, the corresponding cell of the tabu list should capture some
attributes of 7 or s so that = will not be traversed again in the next ¢ steps. At
one extreme, we can store solution 7 directly in the tabu list. But in practice,
to save memory and cherking time, some attributes of s will be stored in the

tabu list to prevent s to s™! (resvered s) to be used in the next # iterations.
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If we use a more detail set of attributes of a solution or a move in each cetl of
the tabu list, more memory space and checking time will be incurred during
the solution-space search, and the searches will be less restrictive since less
solutions (in addition to the ones visited in the last f iterations) will be tabued.
On the other hand, if we use a more abstract (simplified) set of attributes of
a solution or a move in each cell of the tabu list, the implementation will be
more space and time efficient for each iteration, and the scarches wili be more

restrictive since more extra solution will be tabued.

. The design of the aspiration level function. To make the implementation more
space and time efficient, most designs of the contents of the tabu list will have
too many solutions in addition to those visited in the last ¢ iterations, thus risk
to lose good move candidates. As a make-up, we can define an aspiration level
A(s,m) (usually an integer) for each pair of move s and solution = such that
if costy(s()) < A(s, ) the tabu status of s for the current solution 7 can be
overridden. In practice some attributes of 7, instead of 7 itsclf, will be used in
the definition of A(s, 7). A(s,w) is designed to capture the common properties
of the earlier applications of s to solutions sharing the same attribute values as

.

. The design of the length ¢ of the tabu list. Parameter ¢ determines how long
the move history will be saved in the tabu list. Supposec that 7 is a local
optimum, and it needs at least ¢’ consecutive “uphill” moves to go to another
local optimum #'. Then t < t' is a necessary condition for 7 to reach #’. In
general, the longer the tabu list is, the more time it spends on checking tabu
status for each move, and the more restrictive the search process is. On the
other hand, a too short tabu list risks introducing cycling in the solution space.
Parameter ¢ can be a constant or a variable during the execution of the heuristic.

For many applications, a tabu list length around 7 is found appropriate [19].
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The following is the description of our tabu search heuristic for task assignment:

1. We use Sy in Section 3.1 to define the moves and the neighborhood of the

current solution,

2. For the tabu list design, we use a circular list to maintain the vertices moved
(swapped) in the last t (¢ > 1) iterations. We find that a more detailed charac-
terization of the past moves usually traps the search process in a small subspace
of the solution space (many vertices may never be moved). A constant tabu list

length of 5 produces the best performance for most of our problem instances.

3. We use the cost of the best visited solution as the aspiration level A(s, ) for
all pairs of s and n. Based on the same observation pointed out in the last
item, more “flexible” searches implemented by a more sophisticated aspiration

level definition tend to limit the real search freedom in the solution space.

The time complexity of each iteration of our tabu search heuristic is O(n?).

3.3.2 Parallelization of tabu search

Unlike simulated annecaling, tabu search performs the transition from one feasible
solution to another deterministically. In each iteration, the whole neighborhood is
searched before the best solution (according to a given criterion) is found and taken
as the current solution. Empirical studies show that tabu search is slower than
problem-specific heuristic, it spends excessive running time on aggressive search.

At present, few parallelization efforts are reported in the literature. Roberto
Battiti and Giampietro Techiolli proposed a parallel tabu search which basically let
each processor execute the sequential tabu search algorithm independently and report
the best solution [3].

For tabu search heuristic on our task assignment problem, we observe that the

execution of tabu search can be functionally divided into two parts, which contain
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quite different features for parallelization:

Part A: the part of the aggressive scarches (composed of all search for the best
neighbor at each iteration). It takes over 90% of the running time, and is executed
independently without too much information exchanged.

Part B: the part to administrate the execution procedure. It needs to access a
lot of information.

From parallelization point of view, it is obvious that Part A should be parallelized,
because it does the mechanical search and needs little information. In theory, we can
derive ideal speedup with a certain parallelized rate!. For example, if the parallelized

rate is 90%, then

T;

, — — 4o ______
speedup T 0.1xTp+0.9xTo/n

where Ty be the running time of the algorithm executed by one processor, and n
be the number of processors involved.

Figure 3.5 gives an overview of the speedup in theory. Each curve corresponds to
the speedup for different parallelized rate with up to 10 processors. From this figure,
we can conclude that a good speedup can be obtained by parallelizing the Part A

when it takes over 90% running time of the whole program.
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Figure 3.5: Speedup for different parallelization rate

YThe percentage of the part of a program being parallelized over the whole program.

93




Qur parallel tabu scarch algorithm outlined in Figure 3.6 is based on the even
par-ition of the solution search space during each sequential iteration.

'To evenly divide the solution search space among the processors, we divide the
whole neighbourhood (at a certain step) into n parts with each part containing ap-
proximate 1/n neighbours (n is the number of processors available in the system).
In particular, for a system with m processes and n processors, the whole size of its
neighbourhood is mn/2. The neighbourhood can be defined as a search area deter-
mined by two interger variables z and j with 1 < i< nand 1 <j<mandj <.
Then at that certain step, the part of nerighbourhood assigned to procesor k is an

area with j:1..7 and

i:1.. [7";. J when k& =1, i.e. for the first processor;
or

i:(ll‘—‘é\/mEiJ+l).. [’%—’:J when 1 < k < m;

o

r
i: ([535'::"—11 +1) .. [%J when k = n, i.e. for the last processor.

Therefore, each processor in the system will get a evenly n-divided part of the

neighbourhood at .hat step.

p—t

Get an initial public solution m, randomly.
2. Set a strategy to partition the neighborhood of a solution
during each iteration
3. While stop criterion not met, do in paraliel:
3.1 Copy , to local solution ;.
3.2 Search the corresponding part of the neighborhood
of 7y, get a neighbor 7} maximizing
A = cost(m]) — cost(m) and not visited
in the last t iterations.
3.3 Update , to = if necessary.
4. Return the best m, visited.

Figure 3.6: Parallel Tabu search

Parallel tabu scarch starts with a random initial solution. The neighborhood of
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the current solution during cach iteration is evenly partitioned among the processors,
During each iteration, each processor first copie: the public solution to its local one,
then searches its corresponding part of the neighborhood to find a best neighbor in
this neighborhood which has not been traversed in the last { (¢ > 1) iterations, and
updates the current public solution 7, with the best neighbor found by the processor
if necessary. The algorithm repeats the loop at Step 3 until some stop criterion is
met.

Tuning parameters in the parallel tabu search algorithm are the same as those in
its sequential version.

Experimental study shows that this parallel tabu search algorithm can achieve

almost linear speedup for large problem instances.

3.4 Stochastic probe heuristic

In general, simulated annealing and tabu search heuristics are slower than problem-
specific heuristics. Their excessive running time mainly results from the search strate-

gies of these two heuristics.

¢ As for the simulated annealing algorithm, it is not aggressive in neighborhood
search. Fach iteraticn chooses a random neighboring solution, which is usually
not the most profitable one. The solution cost improves mostly in a narrow
time range. The solution searches after this range is mainly limited to a small

subspace of X.

e As for the tabu search algorithm, the utilization of information is low. For
example, if we use S3 to define the moves, then each iteration needs to search
a neighborhood of roughly n + ;—;— solutions while using the information for
only few (no more than the length of the tabu list plus one) of the neighboring

solutions. The deterministic search process also limits the solution search to



a small subspace of X, as evidenced by the fact that many vertices are never

moved during the execution [41].

The objective of this section is to introduce a new approach for general combina-

torial optimization.

3.4.1 Stochastic probe heuristic

Stochastic probe heuristic design is based on our following convictions:

e Aggressive neighborhood searches are essential to finding “good” solutions in a
practical time frame. But a more aggressive search usually implies more search
time. While tabu search and simulated annealing approaches represent the two
extremes, a good trade-off must be made to compromise the aggressiveness and

the running time of the search process.

e A good search algorithm should have the ability to effectively leave local optima
when they are reached. The trace of the current solution should be controlled

by the recent move history, not by “random walk.”

e Randomized search is more effective in avoiding cycling in solution space than
the tabu list technique. But the acceptance of moves with very bad gains (as

simulated annealing does in high temperature) is usually not profitable.

The result is a combination of the aggressive search process in the tabu search
and the stochastic search process in the simulated annealing approach. We call our
new approach stochastic probe.

Given an initial solution 7 and a vertex v, we use S(m,v) to denote the subset
of movies in S(7) that redefines n(v). For any integer p < 0, we use random(—p)
to represent a random integer between —p and 0 inclusively. Figure 3.7 outlines

our stochastic probe approach. Informally, the algorithm consists of a sequence of
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1. Get a random initial solution .
Let L be a circular list of the vertices in V',
Set v to any of the vertices in V' (the current vertex).
3. While stop criterion not met do:
3.1 While there is any A > 0 in the last & iterations of this loop do:
3.1.1 Let v be the next vertex down the list L.
3.1.2 Let s € S(m,v) maximizing A in 3.1.3.
3.1.3 Let 7' = s(7), A = cost(r') — cost(m).
3.14 If A > random(-p), set ¥ = r'.
3.2 Set (3 according to current statistics.
3.3 Perturb randomly the value of #(u) for 8% of the vertices u in V.
4. Return the best 7 visited.

Figure 3.7: Stochastic probe

well-organized probes, each probe searches for a local optimum. The last solution
in a probe will be modified randomly to some extent so that it bhecomes the initial
solution for the next probe. The algorithm stops when no improvements on the best
visited solution occur for several consecutive probes. Each probe in turn consists
of a sequence of iterations; each iteration makes an aggressive scarch for the most
profitable move involving the current vertex. Variable p is used to control the toler
ance of “bad” moves. The chosen move will be accepted if and only if it has a gain
greater than random(-p). This mechanism is designed to help the solution scarch
leave local optima when they are reached. A probe finishes when the gains for the
last k consecutive iterations are all less than or equal to zero. 'T'he following are the

main design issues to apply this approach to the solution to a particular problem.

e The parameter p. The value of p controls the extent of tolerance for “bad”

moves.

e The parameter 8. A small # will lead to more thorough solution searches in a
small subspace of w, whereas a large # will enlarge the scarch range to exploit

more local optima.
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e The stop eriteria for each probe and for the heuristic. The former is determined
by k. A larger k makes a more thorough probe into a subspace of w with more

running time. There are similar trade-offs for the stop criterion of the heuristic.

For the task assignment problem, we find that the following decisions are appro-

priate:

o We run the algorithm for 1000 iterations with p set to zero. We set p to 20%

of the average absolute value of the negative gains for the 1000 iterations.

o We set f to a fixed value rangirg from 10n to 20n depending on problem

instance.
o We set k to a value from 0.2n to 0.9n depending on problem instance.

o The algorithm stops when the best visited solution cannot be improved for a

few consecutive probes.
The time complexity of each iteration of our stochastic probe heuristic is O(n®/m).

3.4.2 Analysis of parallelism for stochastic probe

Our stochastic probe is a generally applicable optimization approach based on iter-
ative search techniques, which takes the advantages of both the randomized search
in simulated annealing and aggressive search in tabu search. Since our problem is
task assignment on workstation farms, we should not only solve the problem as fast
as possible but also take the advantages of the existing parallel computing facility
supplied by the workstation farms themselves. Therefore, we further study the par-
allelism of stochastic probe. Our design of the parallelization focus on the following

two aspects:

e Improving the solution quality with comparable execution time;
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® Reducing the execution time with comparable solution quality, i.e. obtaining

significant speedup;

Sequential stochastic probe heuristic consists of a serial of well-organized probes.
An execution of stochastic probe algorithm is a search of solution space, and an
execution of a probe is a scarch of solution subspace. Each probe starts with a
randomly modified solution from the last probe. By expanding cach probe's search
subspace, it will need less number of probes for same quality solution, or same number
of probes for the better quality solutions.

This conviction motivates the design of parallelizing our stochastic probe algo-

rithm. Two strategies have been designed and studied.

e For better quality solution with comparable execution time
As discussed in Section 3.3.2, in sequential stochastic probe, each probe starts
with a solution modified from the last one, then randomly chooses a vertex wu.
It first tries to find a partition p which will promise best cost gain G1by moving
vertex u to partition p. If Gy < 0, it tries to find a vertex v in partition p which

will promise best cost gain G,. An action is taken by following the rules:

- move vertex u to partition p if (G; > 0) or (G; > G»);

- exchange vertex u with vertex v if (G; < 0) and (G, < G>).

In general, this procedure is to find a neighbor, which is the best one based
on the randomly chosen vertex v. Therefore, with n processors available, we
can get n neighbors based on n randomly chosen vertices, and choose the hest,
one. As a consequence, the algorithm can search more thoroughly at cach step.
To an extreme, by using enough processors, a one-step scarch can be a whole

neighborhood search at that step.

e For less execution time with comparable quality solution

With multiple processors available, each probe’s scarching space is expanded by

|4
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multiple processors’ concurrent execution. Each processor independently exe-

cutes its own probe search with its initial solution, which is modified somehow

from a public solution. Once all processors finish their probe search, the best

solution is chosen as the final (best) solution of this probe.

Extensive experiments are conducted on both of the two parallelization strategies.

We apply the first strategy of parallelization on our five models.
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Figure 3.8: Graph R200-4 for m-way graph partition model (n=200, m=4) (a) So-

lution quality; (b) Execution time.
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Figure 3.9: Graph S60.6 for uniform total cost model (a) Solution quality; (b) Exe-

cution time,

Figure 3.8 to Figure 3.12 show the performance regarding solution quality on

example graphs, one for each of the five models. (More detail on these graphs can

60




T AEARARAMRS SR AL SR A A 1BO j~ v J v vy v v v ey
470 v 160
o
<
460 |- 1 140
) Q .
- - 4
] L\/\/\/‘/\/\ E V20T \/\J
g 450 1 g 100
[ - &
8 440t 1 3 80
2 x Sof
UO) 3]
430} y 40
JPUN S UPETT SO U S S W 20 S P UDNTET W S
0 5 10 15 20 0 5 10 1h 20
Number of Processors Number of Processors

(a) (b)

Figure 3.10: Graph S60.6 for uniform completion cost model (a) Solution quality;
(b) Execution time.
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Figure 3.11: Graph S60.6 for nonuniform total cost model (a) Solution quality; (b)
Execution time.

be found in next section.)

Experimental results show that quality improves when more processors involves,
but not satisfactorily. This is due to the fact that combinatorial optimization is in
general very complicated, a current best solution at first step does not always lead
to a final optimal solution. There should be a mechanism such as a function which
can direct the searching procedure. Unfortunately, it is usually time consuming as

studied in the literature.
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Figure 3.12: Graph S60.6 for uniform completion cost model (a) Solution quality;
(b) Fixecution time.

For our task assignment problem, we focus more on reducing execution time. Our
experiments demonstrate that the second strategy can obtain a desirable speedup on
all of our five models. Therefore, we apply this strategy to the parallelization of

stochastic probe for task assignment. More details are discussed in the Section 3.4.3.

3.4.3 Parallel stochastic probe

As analyzed in Subsection 3.3.2, our parallel stochastic probe algorithm is based on
the idca of expanding each probe’s searching subspace. we parallelize it by reorga-
nizing its probes as outlined in Figure 3.13. The heuristic consists of a sequence of
searching phases. Each searching phase consists of a certain number of well-organized
probes (I} probes). Each searching phase tries to find an optimum in separate so-
lution subspace, and each probe tries to find a local optimum as probe in sequential
version does.

During cach searching phase, each processor performs the following operations in
parallel: (1) get alocal copy of 7, and randomly modify it using parameter S, to get
its local initial solution m; (2) run the sequential stochastic probe; (3) use the best
solution visited to update the global solution 7,. The searching phases are repeated

until the stop criterion is met.
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1. Generate a random initial public solution .
Let L be a circular list of the vertices in V',
Set v to any of the vertices in V' (the current vertex).
3. While stop criterion not met, do in parallel:
3.1 Copy the public solution 7, to the local solution m;.
3.2 Perturb randomly the value of mi(u) for 3, % of the vertices w in V.
3.3 Repeat k&g times:
3.3.1 While thereis any A > 0 in the last &, iterations of this loop do:
3.3.1.1 Let v be the next vertex down the list /.
3.3.1.2 Let s€ S(m,v) maximizing A in 3.3.1.3.
3.3.1.3 Let n{ = s(m), A = cost(n]) — cost(my).
3.3.14 If A > random(-p), set 1 = /.
3.3.2 Set f; according to current statistics.
3.3.3 Perturb randomly the value of m(u) for 5;% of the vertices v in V',
3.4 Update mp, with the best m; visited in the last run of step 3.3.
4. Return .

Figure 3.13: Parallel stochastic probe

All parameters in sequential version are also used in the parallel version. In
addition, to make the search more effective, we introduce (or modify) some new

parameters:

o Perturbation Parameters
Two perturbation parameters 8, and 3, are introduced to escape some local
optima. We use f; to provide an initial solution for the next searching stage,
and [, to provide an initial solution for the next probe within a searchirg stage.
B is always greater than (2 to ensure that the solution subspaces searched by
different processors do not overlap, while each solution subspace is scarched
as thoroughly as possible. Figure 3.14 shows the cffect of the various value
of B1/B: on the solution quality when we fix the other parameters for graph

R100-2 on 8 processors.

o Loop Parameters

The parallel stochastic probe is divided into a sequence of searching phases,
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Figure 3.14: Tuning B;/6; for graph R100;

and each processor performs k; probes during each searching phase. The thor-
oughness of the solution subspace seaich is determined by k,, and the number
of probes performed during each searching phase is determined by &;. A larger
k, allows a more thorough probe search in the solution space with much more
running time, and a larger k; increases the granularity of parallelization while

decreases the number communications and coordinations among the processors.

Our experiments show that it is more appropriate to set k; at the range of 1 ~ 3.
Because sequential stochastic probe itself is composed of well-organized probes,
it has some continuity. If &; is too large, the parallelism will destruct this

configuration, and the possibility of missing a good solution will be increased.

3.5 Design of Experiments

In the following chapters, we present how we apply these heuristics to each of the
five models we have designed for our work-tation farms in Chapter 2 and what their
performances are. To state them more concisely and clearly, we first discuss some

issues related to our experiments in this section.
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3.5.1 Experiment environment

All of the experiments of sequential heuristics are performed on a SUN Spare 2
workstation running SUN-OS Relcase 4.01. All of the experiments of our parallel

version of these heuristics are performed on a Butterfly GP1000.

3.5.2 Benchmark graph

The experiments can be classified into five parts, each part corresponding to one of
the five designed models. Benchmark graphs are generated for cach of them.

We generate our benchmark graphs based on the following considerations:

o They should represent the fundamental characteristics of the workstation farms’

physical background;

e They can provide basis for repeatable experiments, and constitute a broad
enough spectrum to yield insights into the general performance of our tech-

niques when applied to the task assignment problem.

All the benchmark graphs in this thesis can be divided into two groups: one for

uniform m-way graph partition model, one for the rest four models.

1. uniform m-way graph partition model
We use two general classes of graphs for our performance comparisons: random
graphs and geometric graphs. Both of the two classes of graphs are mainly
characterized by two parameters: n, the vertex number, and d, the expected

degree for each vertex.

Random graph generation: Given n and d, define p, = df(n —1). Value p,
specifies the probabiiity that any given pair of vertices constitutes an edge.
The vertex and edge weights are generated randomly in some specifie integer

ranges.
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Geomelric graph generation: Given n and d, define k = /d/(nn). The coorii-
nates of n vertices are first generated randomly on a unit square plane. Two
vertices share a connecting edge if and only if the Euclidean distance between
them is k or less. The vertex weights are gencrated randomly in a specific
integer range. The weight for any edge is the ceiling integer of the product of
a scale-factor S and the ratio of the distance between the vertices incident to

the edge over k.

Our benchmark graphs are specified in Table 3.1.

Table 3.1: Characteristics of the Benchmark Graphs

name | n (d| wy | w2 [ S | dnin | dnaz | |E]
R100.21100 12} 1-511-5 0 8 101
G10022(100 (2] 1-5 10 0 6 91
R200.4 {20014 1-5}11-5 0 11 410
G200.4 1200 |4 1-5 10 O 8 387
R400.8 {400 {8 | 1-5 | 1-5 0 18 11625
R100_8 {400 | 8 | 1-5 10 0 16 | 1471

The first letter of a graph name designates the graph class: R for random
graph, and G for gecometric graph. For each graph we specify its vertex number
n, expected degree d, range for w;, range for w, (for random graphs), scale
factor S (for geometric graphs), minimum degree dp,j,, maximum degree dmay,
and total edge number |E|. The last three entries are measured from the
generated graph. We in general choose small d as most interesting applications
involve graphs with a low average degree, and because such graphs are better

for distinguishing the performance of different heuristics than denser ones [22].
. Nonuniform single-bus total cost model, Nonuniform single-bus com-
pletion cost model, General nonuniform total cost model

The graphs used in these three models are organized into three categories, ac-

cording to the communication pattern of a problem instance. The data set are
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basically generated following Lo's experiments designed in {28]. The communi

cation pattern of a problem instance can be:

o clustered, in which there are roughly 3m clusters, and 10% of the commu

nication costs in C are nounzero;
e sparse, in which only 1/6 of the elements in (7 are nonzero;

o structured, in which the inter-module communication pattern can be line,

ring, square 2 — D mesh, or binary tree.

Let n be the number of task modules, and m the number of processors. To
model the situation in which some task modules cannot be executed on some

processors, we set 5% of the execution costs in X to infinity.

For all of our data sets, the cost are randomly generated. All the computational
cost, in X(¢,7) for i € [n), 7 € [n], range from | to 20. The amount of
communication (number of messages) between any pair of communicating task
modules, in matrix Y (¢, j) for ¢, j € [n], ranges from 1 to 10. All the interference
costs, in matrix I(k,z,7) for i, 7 € [n], k € [m], range from 1 to 5. For clustered
data sets, all inter-cluster costs range from 10 to 20. For our experiments on
completely connected architectures, the communication cost matrix C'(¢, j, u, )
was generated randomly (as opposed to the matrix Y(z, 7)) with entries in the

range 1 to 10.

General nonuniform completion cost model

Experimentz for this model are classified into two parts based on the archi-
tecture interconnection network: (i) experiments based on the completely-

connected network; (ii) experiments based on mesh and hypercube networks.

Graphs for the completely-connected networks are generated as those in last

three models. For mesh and hypercube networks, we assume the program on
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these models has 256 tasks, and the system has 64 processors. We generate

graphs in the same way as those for the completely-connected networks.

For total cost models (uniform or nonuniform), we generated graphs with n
ranging from 60 ~ 120 and m ranging from 6 ~ 12, while for the completion cost
models (uniform or nonuniform), we use smaller n and m with n ranging from
30 to 60 and m from 3 to 6. We choose smaller n and m for the completion cost
models due to the fact that these two models are much more time consuming
than the total cost models in experiments. So just for simplicity, we generate
graphs with smaller n and m for the completion cost models, which are still

good enough to represent our work without generality.

In the ensuring discussion and the tables, the name of each data set begins
with “C” for clustered, “S” for sparse, or the name of topology for structures

communication paiterns, followed by n and m.

3.5.3 How we compare the performance?

The quality of a sequential algorithm is mainly determined by solution quality and
exccution time. The quality of a parallel algorithm is determined by, in addition
to those for sequential algorithms, also the speedup® and the processor utilization or
efficiency’.

Experiments are conducted to compare the relative performances (solution quality
and execution time) of sequential simulated annealing, tabu search and our stochastic
probe heuristics, and to evaluate the speedup and solution quality of their parallel
versions. For parallel experiments, we run every benchmark graph with 1 to 10 pro-
cessors for all the five models. All our experimental results are presented in the

following chapters model by model. To simplify presentation, we use SA, TA, and

“I'he runming time of the parallel algorithm executed on one processor, divided by the running
time of the parallel algorithm executed on a number of processors.
YThe speedup divided by the number of processors used to execute the algorithm.




SP to denote our heuristics based on simulated annealing, tabu scarch and stochastic
probe respectively. Each of our data sets contains one problem instance, Al the val-
ues reported are averages over 10 runs of a heuristic, except for some time-consuming,

cases.
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Chapter 4

Uniform M-way Graph Partition
Model

This chapter considers the general single-bus homogeneous workstation farms, in

which:
¢ All processors are homogeneous;
o All processors are connected by a high-speed bus;

e There are no competition for system resources between any pair of processes

assigned on the same processor;
o Communication between any pair of processes within a processor is negligible.

As discussed in chapter 2, we can model this kind of workstation farm by m-
way graph partition. We can model a parallel computation by an undirected graph
G = (V, E) in which each vertex in V represents a process and each edge in F
represents a logical communication channel. The computation load of each process
can be modeled by a function wy : V — I (I is the set of positive integers). The
communication load of each channel can be modeled by a function w, : E — I. Let
m > 0 be the number of processors in a workstation farm. The task assignment

problem for a workstation farm can thus be modeled by the following m-way graph




partition problem: find a mapping 7 :V — {1,2,....m} such that

W2(7r) = Z 11'2((‘)

e={uv}€EE
w{u)En(v)

is minimized under the constraint that

Wim) = 3 fwi(Pe(i) — wi(P())]

1<1<y<m

is minimal, where P,(:) = {v € V|r(v) = 7} for | <7 < m (For any subset ('
C Vw(C) = Lyec wi(v)).

In this chapter, we will apply all the above threc techniques (both scquential
algorithm and parallel algorithm) on this model. Experimental studies are presented
in the following sections of this chapter to evaluate their performance o this uniform
M-way graph partition Model for task assignment problem for all our benchmark
graphs. Section 4.1 addresses some problen.-spccific design issuse. It is followed
by our sequential experimental studies and parallel experimental studies in Section
4.2 and Section 4.3 respectively. Our observation of these techniques for the task

assignment problem on this model is presented in Section 4.4.

4.1 Craph transformation

The time complexity of an iterative algorithm is largely determined by the efficiency
by which the objective functions and the constraint conditions are evaluated. In this
model, there are two objective functions involved, and they vary inconsistently. While
Wa(7) allows simple incremental update after each vertex move or vertex exchange
operation, Wj(r) needs at least O(m) update steps after cach of such operations.
Theretore we adopt the following graph transformation in [26] to combine Wy(w) and
Wa(7) into a single objective function easy for incremental evaluation.

Transformation algorithm:

Given a graph G = (V| E) described in the last section we transforin ¢/ into

another graph G* = (V, E*) where £* = {{u,v}|u,v € V}, and define a new edge

71



measurements | SP SA TS
W, 2 2 2
W, 22.5 28 39.6
CPU time 25.92 | 102.77 | 114.84

Table 4.1: Sequential performance comparison for R100-2 (m=3)

weight function wy : E¥ — R (R is the set of all positive real numbers) such that

ws(e) = { wy(ujwn(0) 2 = wy(e) if e ={u,v} € F;
T L mum )R ife={uv}€ £ -E

where R is a positive real number called augmenting factor.
As pointed out in [26], if R > ¥.cgwa(e), any partition 7 that maximizes

Wia(r)= Y. wyle)=R 3 wi(Pr(i))wr(Pr(f)) — Walr)

e={u,v}€E® 1<i<3<m
n(u)#n(v)

will minimize W(r) under the constraint that 3 ¢icj<m Wi(Pr(i))wi(Pr(5)) is max-
imized, which in turn is equivalent to minimizing Wi (7) [41].
Bared on the above transformation, from now on, we will focus on graph partitions

7 that maximize W3(7) in this chapter.

4.2 Experimental studies with sequential algo-
rithms

Ixperiments are conducted to compare the relative performances of these three se-
quential techniques (simulated annealing, tabu search, and our stochastic probe) for
all benchmark graphs (refer to Section 3.5.2) on this model. We run each algorithm
10 times for each graph, and report the details for the solution quality and execution
time in Table 4.1 to Table 4.6.

We can conclude from these data that

I. For all our problem instances, our sequential SP always outperforms SA and

TA in terms of solution quality. Compared with SA, it improves on the average




measurements | SP SA TS
W, 2 2 2
W, 0 0.4 0.9
CPU time 29.74 | 6.4.56 | 75.68

Table 4.2: Sequential performance comparison for G100_2 (in=3)

measurements SP SA TS
wi 0 0 \
W, 286 340 331
CPU time 183.08 { 390.98 | 556.03

Table 4.3: Sequential performance comparison for R200_4 (m=>5)

measurements | SP SA TS
144 0 0 0
W, 12.8 34.1 29.0
CPU time 499.56 | 1021.92 | 1088.76

Table 4.4: Sequential performance comparison for G200-4 (m=5)

measurements | SP SA TS
Wi 24 24 24
W, 2049 2165 2156
CPU time 891.02 | 1503.11 | 1491.97 |

Table 4.5: Sequential performance comparison for R400.8 (m=10)

measurements SP SA TS
Wi 24 24 24
W, 169 196 231

CPU time 598.16 | 22.47 | 2262.79
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Table 4.6: Sequential performance comparison for G400.8 (m=10)



35.3% on the solution quality over all of our benchmark graphs; compared with

TA, the average improvernent is 40%.

2. For all our problem instances, our sequential SP always has minimal execution
time. The average execution times for SA and TA are 2.37 and 2.93 times that

for SP respectively.

3. For cach of these problem instances, all the algorithms reach the same minimal

Wl(ﬂ").

Our sequential experiments demonstrate that SP always outperforms SA and TS

both in solution quality and running time.

4.3 Experimental studies with parallel algo-

rithms
SP SA TA
Proc. No. Wy speedup W, speedup Wy speedup
1 22.5 1.00 24.0 1.00 34.0 1.00
2 22.6 1.97 30.5 1.74 36.2 1.95
3 22.5 2.90 31.5 2.33 34.5 2.65
4 22.2 3.83 29.0 2.76 33.5 3.44
) 22.6 4.74 31.0 3.09 32.2 4.11
6 22.2 5.62 27.3 3.44 36.7 4.66
7 23.8 6.61 31.0 3.74 32.8 5.01
8 23.8 7.46 30.8 3.90 34.2 5.36
9 23.5 8.25 32.5 3.93 32.5 5.65
10 23.6 9.05 28.0 4.16 32.3 5.76

Table 4.7: Speedup and W, for R100-2 (m=3), W;=2

Parallel experimients are performed to evaluate the speedup nd solution quality for
all the three techniques (simulated annealing, tabu search, and stochastic probe) in

parallel version for the task assignment problem in this model. We run each of the
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Sp SA TA
Proc. No. W, speedup W, speedup W, speedup
1 0.0 1.00 0.0 1.00 2.0 1.00
2 0.0 1.84 0.0 1.72 2.5 1.86
3 0.0 2.68 1.0 2.28 1.0 266
4 0.0 3.51 0.5 2,70 2.0 3.5
5 0.0 4.33 1.0 3.02 2.0 1.08
6 0.0 5.16 0.0 3.31 2.3 1.60
7 0.0 5.97 0.8 3.51 2.0 5.11
8 0.0 6.77 0.5 3.72 1.5 5.40
9 0.0 7.46 0.8 3.88 2.0 5.89
10 0.0 8,32 1.3 4.01 1.8 5.90

Table 4.8: Speedup and W, for G100-2 (m=3), W;=0

three parallel algorithms on 1 to 10 processors for every one of the six benchmark
graphs. The results for both the solution quality (W;,W;) and execution time are
reported in Table 4.7 to Table 4.12.

4.3.1 Speedup evaluation

o T /T T . 10
sk o sP b 9
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7 7
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| v/v/v/v/o—'v/i )
v/
2F 2
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Number of Processors Number of Processora
Figure 4.1: Speedup for graph Figure 4.2: Speedup for graph
R100.2 with up to 10 processors G100-2 with up to 10 processors

Figure 4.1 to Figure 4.6 show the speedup obtained by the three parallel algorithins
on cach of our six benchmark graphs. From these figures, we can conclude that (with

up to 10 processors) :



sp SA TA

Proc. No. w, speedup W, speedup W, speedup
1 286.0 1.00 332.0 1.00 351.0 1.00
2 283.5 2.00 318.3 1.65 357.0 1.95
3 2844 297 321.3 2.20 360.3 2.88
4 287.0 4.00 348.7 2.58 359.3 3.72
5 287.8 4.95 342.0 2.87 361.0 4.63
6 287.4 5.94 370.0 3.10 361.0 5.51
7 289.6 6.70 343.7 3.33 355.5 6.36
8 287.9 7.54 358.5 3.49 363.6 6.70
9 289.9 8.02 343.0 3.55 365.7 7.29
10 290.9 9.30 355.3 3.77 262.0 7.41

Table 4.9: Speedup and W, for R200_4 (m=5), W,=0
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Figure 4.4: Speedup for graph

Figure 4.3: Speedup for graph
(G200-4 with up to 10 processors

172004 with up to 10 processors

l. Parallel stochastic probe can achieve almost linear speedup. With up to 10
processors, it obtains over 80% and 76% processor utilization for random graphs

and geometric graphs respectively.

o

The speedup obtained in parallel tabu search varies with the problem size to
some extent. The bigger the problem instance is, the better speedup obtained.
With up to 10 processors, parallel tabu research can achieve over 60%, 70%, and
90% processor utilization for 100-node graphs, 200-node graphs, and 400-node

graphs respectively.



TA

sp SA
Proc. No. W, speedup W, speedup W, spvv:lnu;
1 12.8 1.00 44.0 1.00 47.0 1.00
2 13.1 1.79 33.0 1.81 50.5 LOs
3 14.4 2.62 34.2 2.46 H2.4 | 288
4 14.2 3.41 41.8 3.03 8.7 LTh
5 14.1 4.41 42.0 3.50 19.8 136
6 14.9 4.90 42.3 3.89 45.8 511
7 13.7 5.49 54.0 4.21 50.7 5.66
8 13.1 6.86 51.7 1.48 45.5 6.38
9 14.5 7.40 49.0 4,79 11.7 6.80
10 14.0 7.92 50.7 5.03 51.5 7.22
Table 4.10: Speedup and W; for G200.4 (1n=5), W;=0
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Figure 4.5:

Speedup for graph

R400_8 with up to 10 processors

Figure 4.6:

Nuint=r of Procesaors

Speedun for graph

G400.8 with up to 10 processors

3. Parallel simulated annealing achieves generally increasing speedup with using

up to 10 processors. And it performs a little better with geometric graphs than

with random graphs. Around 30% and 40% speedup are obtained in random

graphs and geometric graphs respectively.

4. For all problem instances, parallel stochastic probe can obtain the best average

speedup.
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Sp SA TA

Proc. No. Wy speedup W, speedup ‘-‘7';) spvmiu p-
1 2049 1.00 2118 1.00 2125 1.00
2 2043 1.59 2146 1.72 2021 | 1e9
3 2045 2.15 2124 2.29 2121 204
4 2057 3.04 2188 2.70 2100 301
5 2060 3.77 2192 3.06 2122 182
6 2063 4.26 2246 3.34 2148 5.79
7 2065 5.09 2221 3.58 2126 6.71
8 2092 6.96 2220 3.78 2157 7.59
9 2070 7.51 2248 3.98 2125 8.41
10 2076 8.04 2270 4.12 2120 9,20

Table 4.11: Speedup and W, for R400_8 (m=10), W;=24
4.3.2 Solution quality comparison

From Table 4.7 to Table 4.12, we can draw the following conclusions on the solution

quality:

1. For all the problem instances, parallel stochastic probe can always outperforin
the parallel simulated annealing and tabu search in terms of solution quality.
Table 4.13 represents the average W, obtained from the three parallel algo-

rithms over the six benchmatk graphs.

2. For all problem instances, the solution obtained from the parallel versions of
tabu search, simulated annealing and our stochastic probe are comparable to

those of their corresponding sequential versions.

3. For parallel SP, SA, and TA, the average fluctuations for W, over different

processors for all benchmark graphs are 5.87%, 20.4% and 47.4% respectively.

4.4 Observation

From the above experiments, we can make the following observations:
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SP SA TA
Proc. No. W, speedup speedup W, speedup
1 169.7 1.00 161.0 1.c0 198.0 1.00
2 170.6 1.60 155.5 1.75 232.3 1.84
3 167.0 2.10 184.0 2.36 223.0 2.89
4 170.4 2.80 188.5 2.88 221.8 3.95
5 169.2 3.40 218.5 3.26 223.0 4.83
6 173.0 4.36 218.0 3.63 226.2 5.76
7 167.1 5.08 223.5 3.99 223.8 6.63
8 176.9 9.70 245.5 4.20 212.7 7.58
9 171.5 6.09 245.5 4.54 224.8 8.32
10 182.7 7.62 278.5 4.67 221.4 9.21
Table 4.12: Speedup and W, for G400.8 (m=10), W, =24
Graph e
PN TSP [ sA | TA

R100-2 22.7 29.6 33.4

G100-2 0 0.5 1.9

R200-4 287.4 343.3 359.6

G200-4 13.9 44.3 48.4

R400-8 | 2062.2 | 2197.2 | 21274

G400-8 171.8 211.9 220.7

Table 4.13: Average solution cost (W _2) over all experiments for each benchmark

graph with the three parallel algorithms

1. Our sequential stochastic probe always yields the best solutions for all the

problem instances with less CPU time.

2. Parallel stochastic probe obtains almost linear speedup by using up to 10 pro-
cessors with solution quality comparable to those of the sequential version; par-
allel tabu search obtains over 60% processor utilization with up to 10 processors
with solution quality comparable to those of its sequential version; parallel sim-

ulated annealing obtains over 30% processor utilization with up to 10 processors

with the solution quality comparable to those of its sequential version.




3. The specdup in parallel tabu search varies with the problem sive. The higger
the problem is, the better speedup the parallel algorithm gets. This is due to
the way we parallelize it (parallelizing the aggressive scarch at each iteration).
To speak more concisely, the speedup depends on the the percentage of program

parallelized (the aggressive search part) as we describe in Figure 3.5.

4. Parallel simulated annealing achieves stable speedup over all the problem in
stances. With 10 processors, it achieves over 30% processors utilization, which
is not worse than those reported from Witte E.E’s speculative parallel simulated

annealing (refer to Section 3.2.2).
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Chapter 5

Nonuniform Single-bus Total Cost
Model

The workstation farm considered in this chapter is a general heterogeneous system

connected by a high-speed single bus. In particular, the system has the following

characteristics:

o All processors can be heterogeneous;
e All processors are connected by a high-speed bus;

e Communication between any pair of processes within a processor is negligible.

The system performance is mainly affected by three of costs: ezecution cost,
communication cost, and interference cost, among which the communication cost

and interference cost are processor independent.

As stated in chapter 2, the task assignment on this kind of workstation farms can
be modeled as the Nonuniform Single-bus Total Cost Model. The task assignment
problem is thus to find a mapping 7 : [n] = [m] to minimize the total cost

('ost(vr):i:X(i,w(i)))-F Y. Cl)+ X I(,5)

w(1)#=()) r(1)=n(y)
1<y <
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In this chapter, we apply all the above three techmques (both sequential algonthm
and parallel algorithm) to solve the task assignment problem on the model. Experi-
mental studies are presented in the following sections of this chapter to evaluate their
performances on this Nonuniform Single-bus Total Cost Model for task assignment
problem for all our benchmark graphs. Section 5.1 and 5.2 present our sequential
experimental studies and parallel experimental studies respectively, followed by our
observation of these techniques for the task assignment problem on this model in

Section 5.3.

5.1 Experimental studies of sequential algo-

rithms
C60-6 C80-8 C100-10 C120-12
SP | SA | TA | SP | SA | TA | SP | SA | TA | SP | SA | TA
cost 5152|5152 | 5152 | 8622 | 8622 | 8622 |14803]1536215257|20571{20571[2057 1
CPU (sec.)| 0.1 | 1.6 | 0.3 | 03 | 0.6 | 03 [ 05| 1.3 | 06| 09| 1.9 | 0.9

Table 5.1: Performance comparisons of sequential algorithms for clustered data sets

S60-6 S80-8 S100-10 5120-12
SP { SA|TA | SP | SA | TA | SP | SA|TA | SP | SA [ TA
cost 1805{ 1817|1818 | 3054 | 3065 | 3089 | 4628 | 4657 | 4645 | 6469 | 6509 | 6503

ICPU (sec.] 0.2 [ 1.8 [ 1.8 08 |61 [47[12[35]33]15]83]43

Table 5.2: Performance comparison of sequential algorithms for sparse data sets

We conduct sequential experiments to compare the performances of the three algo-
rithms in sequential version (simulated auncaling, tabu search, and our stochastic
probe) for the task assignment on this uniform tolal cost model. We run cach algo-

rithm 10 times for each henchmark graph (Section 3.5.3). The experimental results
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Line60-6 Ring60-6 Mesh49-6 Tree60-6
SP I SATTA L SP | SA|TA|SP |SA|TA | SP | SA | TA
cost 996 [ 997 11013 1697117091704 817 | 821 | 822 | 10021009 | 1011
CPU (sec.] 0.6 { 61 | 26 ] 05 1.7]120]01}1.2{07]05]| 35|26

Table 5.3: Performance comparison of sequential algorithms for structured data sets

for clustered, sparse, and structured data sets are reported in Table 5.1 to Table 5.3.

From these results, we can draw the following conclusions:

1. Compared with SA and TA, the average improvements of SP for solution quality

(cost) over the 12 problem instances are 0.67% and 0.79% respectively.

2. In terms of computation time, the average CPU times for SA and TA are 6.69

and 3.94 times of those for SP respectively.

Our scquential experiments demonstrate that, for the task assignment on this
model, SP always outperforms SA and TA both in solution quality and running

time.

5.2 Experimental studies with parallel algo-
rithms

o cvaluate the performance of parallel simulated annealing, parallel tabu search,
and parallel stochastic probe for the task assignment on this model, we run each of
these three parallel algorithms on 1 to 10 processors for all our benchmark graphs
generated for this model. The experimental results of both solution quality and

specdup arc reported in Table 5.4 to Table 5.15.

5.2.1 Speedup evaluation

Figure 5.1 to Figure 5.12 show the speedup obtained by each of the three parallel

algorithms in the 12 problem instances for different types of data sets (clustered,
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Ny SA TA
Proc. No. - -
cost speedup cost speedup cost speedup
1 5220 1.00 5165 1.00 H1H2 1.00
2 5220 1.94 5165 1.78 51562 1.50
3 5220 2.82 5165 2.41 H152 1.68
4 5220 3.65 5165 2.89 5152 187
5 5220 4.43 5165 3.32 5152 1.90
6 5220 5.15 5165 3.68 5152 1.96
7 5220 5.86 5165 3.98 5152 2.18
8 5220 6.52 5165 4.21 5152 1.99
9 5220 7.08 5165 4.12 5152 2.16
10 5220 7.68 5165 4.62 5152 1.97
Table 5.4: Cost and speedup for Graph C60.6
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Figure 5.1: Speedup for graph

C60-6 with up to 10 processors

Figure 5.2:

Number of Processors

Speedup for graph
S560.6 with up 1o 10 processors

sparse, and structured). From these figures, we can conclude that (with up 1 to 10

processors):

1. Parallel stochastic probe can achieve almost linear speedup. With up to 10

processors, it obtains around 80% processor utilization for all the problem in-

stances.

2. Both parallel tabu search and simulated annecaling achieve moderate speedup.

With 10 processors, around 35% processor utilization is obtained. However, the
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Sp SA TA
Proc. No. cost speedup cost speedup cost speedup
1 1809 1.00 1803 1.00 1818 1.00
2 1811 1.98 1813 1.79 1818 1.78
K] 1811 2.88 1809 2.42 1818 2.35
4 1809 3.63 1820 2.94 1818 2.83
5 1812 4.45 1816 3.38 1818 3.31
6 1811 5.22 1826 3.78 1825 3.61
7 1810 5.91 1827 4.22 1818 3.90
8 1812 6.61 1823 4.49 1818 4.12
9 1810 7.25 1825 4.70 1818 4.23
10 1810 7.91 1824 4.90 1825 4.27

Table 5.5: Cost and Speedup for Graph S60.6
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Figure 5.4: Speedup for graph

5808 with up to 10 processors

speedup of parallel tabu search varies a little around the speedup of parallel

simulated annealing. As an extreme, for Graph C60.6, it only gets speedup

less than 2. This is due to the fact that the parallel rate (defined in Section

3.2) in this problem is very low.

3. For all the problem instances, parallel stochastic probe can obtain best speedup

among the three parallel algorithms.

4. Processor utilization decreases with more processors used.
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Sp SA TA
Proc. No. cost speedup cost speedup cost ! spm‘d;n—p— B
1 8850 1.00 8856 1.00 8622 1.00
2 8695 1.96 8622 1.80 8622 1.74
3 8695 2.87 8622 2.47 8622 236
4 8695 3.78 8622 3.03 8622 278
5 8695 4.73 8622 3.54 8622 3.12
6 8695 5.39 8622 3.93 8622 3.35
7 8695 6.16 8622 4.27 8622 3.56
8 8695 6.86 8622 4.62 8622 3.62
9 8695 7.60 8622 4.92 8622 360
10 8695 8.23 8622 5.16 8622 3.74

Table 5.6: Cost and speedup for Graph C80.8
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Figure 5.5: Speedup for graph Figure 5.6: Spcedup for graph
€100.10 with up to 10 processors S5100.10 with up to 10 processors

5.2.2 Solution quality comparison

Table 5.16 summaries Table 5.4 to Table 5.15 on solution quality by showing the
average cost of each algorithm for each problem instance over different number of
processors. From this table, we can draw the following conclusions in terms of solution

quality:

1. For the 8 sparse and structured problem instances, parallel SP improves the
average solution quality of parallel SA and TA by 0.52% and 0.69% respectively.

For the other 4 clustered problem instances, parallel SP gets solutions with a
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Sp SA TA
Proc. No. cost speedup cost speedup cost speedup
1 3032 1.00 3046 1.00 3060 1.00
2 3034 1.78 30561 1.64 3046 2.12
J 3034 2.50 3053 2.43 3054 2.54
4 3034 3.37 3062 3.14 3054 3.16
5 3041 3.95 3064 3.59 3056 3.64
6 3051 4.90 3054 4.01 3059 4.19
7 3041 5.38 3061 4.36 3047 4.51
8 3042 6.13 3054 4.72 3049 4.66
9 3044 7.39 3072 4.86 3060 4.88
10 3044 7.10 3048 4.89 3079 5.10

Speedup

Table 5.7: Cost and Speedup for Graph S80_8
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S$120.12 with up to 10 processors

little worse solution quality than those of parallel SA and TA.

2. For all problem instances, the solutions obtained from the parallel versions of

tabu search, simulated annealing and our stochastic probe are comparable to

those of their corresponding sequential versions.

3. For parallel SP, SA, and TA, the average fluctuations for cost over different

processors for all benchmark graphs are 0.52%, 1.38% and 1.04% respectively.
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Sp SA TA o
Proc. No. cost speedup cost ' speedup cost speedup
1 15229 1.00 15220 1.00 15257 1.00
2 15155 2.01 14830 1.57 15257 1.75
3 15189 2.96 14830 2.02 15257 2.30
4 15190 3.90 14830 2.34 15257 2.76
5 15155 4,94 14830 2.56 15257 3.1
6 15190 5.65 14830 2.79 15257 3.34
7 15155 6.49 14830 2.93 15257 3.62
8 15154 7.46 14830 3.01 15257 3.72
9 15155 8.20 14830 3.18 15257 3.96
10 15155 8.88 14830 3.26 15257 3.88
Table 5.8: Cost and speedup for Graph C'100.10
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Figure 5.9: Speedup for graph Figure 5.10: Speedup for graph
Line60.6 with up to 10 processors Ring60.6 with up to 10 processors

5.3 Observation

From the above experiments, we can make the following observations:

1. Our sequential stochastic probe always yields the best solution quality for the
all problem instances with less CPU time on this nonuniform single-bus total

cos! model,

2. Parallel stochastic probe obtains almost linear speedup by using up to 10 pro-

cessors with solution quality comparable to these of the sequential versions;
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sp SA TA
Proc. No. cost speedup cost speedup cost speedup
1 4607 1.00 4624 1.00 4630 1.00
2 4613 1.74 4628 1.64 1658 2.07
3 4620 2.73 4619 2.24 4623 2.88
4 4622 3.36 4646 2.65 4624 3.53
5 4620 3.90 4648 3.0¢ 4650 4.23
6 4618 4.89 4639 3.25 4638 4.79
7 4634 5.74 4626 3.53 4636 5.20
8 4617 5.78 4654 3.81 4628 5.54
9 4624 7.21 4677 3.85 4628 6.12
10 4521 8.12 4660 4.12 4647 6.11

Table 5.9: Cost and speedup for Graph 5100.10
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Figure 5.11: Speedup for graph Figure 5.12: Speedup for graph
Mesh49.6 with up to 10 processors Tree60-6 with up to 10 processors

3.

parallel tabu and simulated annealing achieves moderate speedup with up to

10 processors, and 45.2% and 43.1% average processor utilizations are obtained

respectively.

The speedup on parallel tabu search varies with the problem size: the bigger
the problem instance is, the better speedup the parallel algorithm gets. This
is due to the way we parallelize it (parallelizing the aggressive search at each

iteration).
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Sp SA 1 TA

Proc. No. cost speedup cost speedup “cost -s:;:\v_(ll.u; i
1 20915 1.00 20910 1.00 20571 1.00
2 20915 1.97 20684 1.58 20571 179
3 20015 2.88 20684 2.03 20571 2.0
4 20914 3.81 20684 2.39 20671 205
5 20914 4.64 2068 2.67 20571 332
6 20914 5.54 20629 2.78 20571 3.67
7 20913 6.22 20629 2.97 20571 3.94
8 20914 7.00 20749 3.10 20571 420
9 20915 7.82 20749 3.23 20571 128
10 20914 8.32 20571 3.25 20571 42|

Table 5.10: Cost and speedup for Graph C'120_12

4. The speedup achieved by this parallel simulated annealir« for our task assign-
ment on this model is better than that obtained by Witte’s speculative parallel

simulated annealing.
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SP SA TA
Proc. No. cost speedup cost speedup cost speedup
1 6432 1.00 6486 1.00 6569 1.00
2 6435 1.96 6504 1.69 6546 1.84
3 6451 3.11 6466 2.34 6522 2.57
4 6446 3.82 6470 2.85 6546 3.23
5 6449 4.83 6496 3.16 6534 3.87
6 6446 5.38 6475 3.44 6473 4.34
7 6450 6.17 6495 3.72 6405 4.85
8 6449 7.04 6486 4.05 6528 5.17
9 7650 7.54 6481 4.11 6489 5.50
10 6464 8.20 6487 4.40 6501 5.70
Table 5.11: Cost and speedup for Graph 5120.12
SP SA TA
Proc. No. [ cost speedup cost speedup cost speedup
I 1698 1.00 998 1.00 1013 1.00
2 1698 1.89 998 1.81 1018 1.78
3 1698 2.75 2003 2.46 1018 2.34
4 1700 3.64 1009 2.90 1017 2.8v
5 1700 4.39 1000 3.51 1018 3.30
6 1700 5.11 1006 3.97 1013 3.64
7 1699 5.89 1013 4.32 1013 3.88
8 1699 6.50 1017 4.61 1018 4.06
9 1701 7.22 1009 4.81 1013 4.24
10 1701 7.80 1012 5.09 1018 4.28

Table 5.12: Cost and Speedup fro Graph Line60_6¢
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SP SA TA
Proc. No. cost speedup cost speedup rost speedup
1 1698 1.00 1712 1.00 1715 1.00
2 1698 1.89 1709 1.83 1697 1.80
3 1700 2.78 1710 2.49 1697 2.34
4 1700 3.62 1720 3.18 1714 2.80
5 1699 4.35 1713 3.57 1697 3.34
6 1700 5.19 1716 3.90 1728 3.68
7 1698 5.81 1714 4.36 1725 J.87
8 1703 6.59 1708 4.70 1697 4.18
9 1700 7.30 1711 4 .91 1697 4.28
10 1698 7.80 1718 5.19 1697 4.49
Table 5.13: Cost and speedup for Graph Rirg60.6
SP SA TA
Proc. No. cost speedup cost speedup cost speedup
1 816 1.00 825 1.00 816 1.00
2 820 1.99 826 1.76 847 1.67
3 824 2.88 816 2.34 821 2.26
4 822 3.69 827 2.81 822 2.69
5 820 4.24 818 3.17 821 2.87
6 821 4.90 816 3.61 816 312
7 818 5.30 820 3.91 835 4.75
8 819 5.01 821 4.06 839 4.68
9 821 6.50 824 4.36 828 3.72
10 819 7.00 831 4.58 821 J.14

Table 5.14: Cost and speedup for Graph Mesh19.6
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sp SA TA
Proc. No. cost speedup cost speedup cost speedup
1 1003 1.00 1006 1.00 1002 1.00
2 1005 1.82 1005 1.83 1009 1.81
3 1005 2.61 1009 2.58 1009 2.38
4 1005 3.39 1010 2.98 1015 2.85
5 1007 4.21 1011 3.46 1019 3.32
6 1008 4.94 1014 3.80 1015 3.60
7 1007 5.53 1014 4.13 1009 3.93
8 1004 6.11 1015 4.42 1009 4.20
9 1007 6.79 1016 4.75 1009 4.19
10 1008 7.51 1017 4.83 1009 4.34
Table 5.15: Cost and speedup for Graph Tree60.6
Graph Average Cost
SP SA TA

C60-6 5220.0 | 5156.0 5152.0

S60-6 1810.5 1818.6 18194

C80-8 8710.5 | 8645.4 8622.0

S80-8 3039.7 | 3045.5 3056.4

C100-10 15172.7 | 14869.0 | 15257.0

S100-10 4266.2 | 4642.1 4636.2

C120-12 20914.3 | 20697.3 2057.1

S120-12 6447.2 | 6484.6 6511.2

Line60-6 1001.4 1006.5 1015.9

Ring60-6 1699.4 1713.1 1706.4

Mesh60-6 820.0 8224 826.6

Tree60-6 1005.9 1011.7 1010.5

able 5.16: Average solution cost over all experiments for each benchmark graph
with the three parallel algorithms
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Chapter 6

Nonuniform Single-bus
Completion Cost Model

In this chapter, we study the Nonuniform Single-bus Completion Cost Model which
is proposed for a general heterogencous high-speed single bus workstation farm. In

this workstation farm,

e All processors can be heterogeneous;
e All processors are connected by a high-speed bus;
e Communication between any pair of processes within a processor is negligible;

e The system objective is to minimize program completion cost.

Similar to the system in Chapter 5, the erecution cost, communication cost, and
interference cost are three key factors for the performance of the system, among
which the communication cost and interference cost are processor independent.

Thus the task assignment on this kind of workstation farms becomes a problem
to find a mapping 7 : [n] = [m] to minimize the completion cost

cost(1r)=lrsnkaé)’(n{il)((i,w(i)))-{- o Clj)+ Z I(3,5)}

n(1)# () n(o)=w(y)
<y 1<z
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In the following sections, we present our experimental studies on this model.
We apply all the above three techniques (hoth sequential algorithm and parallel
algorithm) to the task assignment problem on the model. Section 6.1 and Section
6.2 present our scquential experimental studies and paraliel experimental studies

respectively, and in Section 6.3 we make some observations on these experiments.

6.1 Experimental studies with sequential algo-
rithms
C30-3 C40-4 C50-5 C60-6
SP | SA| TA|SP |SA | TA| SP | SA | TA| SP | SA | TA
ost 976.3) 976.8 994.51461.41501.'%1472.81965.31977.61976.42587.32590.7 590.6
ICPU (sec.) 0.2f 3.3 6.7 1.6 88 41 6.1 14.8 424 70 8.7 103
Table 6.1: Performance comparison for clustered data sets
S30-3 540-4 S50-5 $60-6
SP | SA| TA|SP |SA | TA|SP [ SA | TA] SP | SA | TA
cost 248.4] 252.7) 254.5 277.3| 280.7| 284.4] 350.4f 350.8| 352.7) 461.2 473.4] 464.8
CPU (sec.) 0.2 13 24 1.1 14 4. 1.7 6.5 8.9 6.2 8.3 154
Table 6.2: Performance comparison fro sparse data sets
Line60-6 Ring60-6 Mesh49-6 Tree60-6
SP | SA| TA|SP |SA | TA|SP | SA | TA| SP | SA | TA
cost 200.3} 202.6) 208.4f 435.5| 437.4] 437.8 180.4/ 180.7] 194.5] 196.3 199.4{ 234.2
iCPU (sec.j) 1.6 11.2 18.3 8.1} 9.1 289 5.0 9.5 1.4 2.7 9.3 10.0

Table 6.3: Performance comparison for structured data sets

We conduct sequential experiments to compare the performance of the three algo-

rithms in sequential version (simulated annealing, tabu search, and our stochastic
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probe) for the task assignment on this nonuniform single-bus completion cost model.
We run each algorithm 10 times for cach benchmark graph (Section 3.5.3). The
experimental results for clustered, sparse, and structured data sets are reported in

Table 6.1 to Table 6.3. From these results, we can draw the following conclusions:

1. Compared with SA and TA, the average improvementis of SP for solution quality

(cost) over the 12 problem instances are 1.0% and 2.5% respectively.

2. In terms of computation time, the average CPU times for SA and TA are 14.8

and 4.42 times of those for SP respectively.

Our sequential experiments show that, for the task assignment on this model, SP

always outperforms SA and TA in both solution quality and running time.

6.2 Experimental studies with parallel algo-

rithms
SP SA TA
Proc. No. cost speedup cost speedup cost speedup
1 976 1.00 992 1.00 1003 1.00
2 981 1.93 998 1.99 998 1.90
3 984 2.86 999 2.98 989 2.65
4 985 3.66 976 3.95 985 2.98
5 983 4.58 976 4.90 989 4.59 |
6 985 5.38 976 587 991 4.40
7 983 6.12 976 6.81 979 4.30
8 995 7.12 976 7.72 985 4.45
9 985 7.60 976 8.58 988 5.23
10 986 8.56 976 9.50 998 517

Table 6.4: Cost and Speedup for Graph C30.3

To evaluate the performance of parallel simulated annecaling, parallel tabu search,

and parallel stochastic probe for the task assignment on this model, we run each of
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Sp SA TA
Proc. No. cost speedup cost speedup cost speedup
1 249 1.00 261 1.00 260 1.00
2 253 1.91 260 1.97 253 1.87
3 253 2.81 260 2.90 260 2.64
4 254 3.78 261 3.80 259 2.99
5 251 4.53 258 4.64 258 3.66
6 254 5.25 261 5.38 258 4.57
7 254 €.30 251 6.27 256 4.47
8 255 6.73 257 6.91 259 4.85
9 254 8.11 262 7.51 251 5.66
10 254 8.17 262 8.12 254 5.83

Table 6.5: Cost and speedup for Graph S30_3

these three parallel algorithms on 1 to 10 processors for all our benchmark graphs
generated for this model. The experimental results for both solution quality and

speedup are reported in Table 6.4 to Table 6.15.

6.2.1 Speedup evaluation
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Figure 6.1: Speedup for graph Figure 6.2: Speedup for graph
(303 with up to 10 processors S530.3 with up to 10 processors

Figure 6.1 to Figure 6.12 show the speedup obtained by each of the three parallel
algorithms in the 12 problem instances for different types of data sets (clustered,

sparse, and structured). From these figures, we can conclude that (with up 1 to 10
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SP SA TA
Proc. No. cost speedup cost speedup cost spv('(—lgpm
1 1474 1.00 1470 1.00 1472 1.00
2 1475 1.94 1489 2.00 1507 1.0t
3 1469 2.84 1487 2.99 1493 2.65
4 1476 3.72 1476 3.97 1470 3.43
5 1480 4.56 1468 1.95 1474 1.01
6 1490 5.47 1469 5.92 1499 4.15
7 1477 6.32 1474 6.90 1486 5.06
8 1477 6.86 1474 7.86 1462 5.89
9 1486 7.51 1477 8.79 1491 5.16
10 1477 8.61 1469 9.73 1506 5.74

Table 6.6: Caost and speedup for Graph C40.4

=)

Speedup
P R VR O B S
T

5

X
6 ?

s
8

Number of Procesrors

Figure 6.3:

Speedup for graph

1
9

10

C40.4 with up to 10 processors

processors):

T
o
@ TA
v 8

Speedup
«»

1 2 3

T

4

—

5

—

NN ARG WD UV NS SN ST W

6 7

8 9 1w

Number of Processors

Figure 6.4:
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540.4 with up to 10 processors

1. Both parallel SP and SA achieve almost linear speedup for all problem in-

stances. Processor utilization decreases gradually. With 10 processors, 8.88

and 9.03 average specdup are obtained by parallel SP and SA.

2. Parallel TA achieves almost linear speedup for most of problemn instances, ex-
cept two 30-node graphs.
determined by aggressive scarch is much lower than those in other problem

instances. With 10 processors, it obtains 6.84 average speedup over all the 12
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sp SA TA
Proc. No. cost speedup cost speedup cost speedup
1 284 1.00 283 1.00 283 1.00
2 279 1.91 277 1.97 279 1.92
3 283 2.80 291 2.90 281 2.70
4 280 3.68 298 3.81 280 3.48
5 284 4.54 282 4.69 282 4.07
6 283 5.53 288 5.52 280 4.72
7 282 6.10 293 6.34 285 5.43
8 280 6.94 286 7.11 282 6.17
9 286 8.06 286 7.85 280 5.91
10 284 8.33 289 8.54 282 6.16
Table 6.7: Cost and speedup for Graph S40_4
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Figure 6.5: Speedup for graph Figure 6.6: Speedup for graph

C50.5 with up to 10 processors

problem instances. Processor utilization decreases when more processors are

used.

$50.5 with up to 10 processors

6.2.2 Solution quality comparison

Table 6.16 summaries Table 6.4 to Table 6.15 on solution quality by showing the
average cost of cach algorithm for each problem instance over different number of

processors. From this table, we can draw the following conclusions in terms of solution

quality:
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SP SA TA
Proc. No. cost speedup cost speedup cost speedup
1 1998 1.00 1979 1.00 2006 1.00
2 1984 1.96 1996 2.00 1974 1.94
3 1990 2.90 1996 2.99 1993 2.71
4 1986 3.84 1998 3.97 1983 3.69
5 1996 4.74 1996 4.95 2000 1.36
6 1987 5.69 2006 591 1999 5.05
7 1979 6.48 1998 6.88 1974 6.13
8 1993 7.39 1999 7.84 1987 6.15
9 1993 8.23 1991 8.80 1991 7.18
10 1989 9.09 1993 9.71 1975 8.17
Table 6.8: Cest and speedup for Graph C50.5
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Figure 6.7: Speedup for graph Figure 6.8: Speedup for graph

C60.6 with up to 10 procesrors 5606 with up to 10 processors

1. For all the 12 problem instances, parallel SP improves the average solution

quality of parallel SA and TA by 2.26% and 1.79% respectively.

2. For all problem instances, the solution obtained from the parallel versions of
tabu search, simulated annealing and our stochastic probe are comparable to

those of their corresponding sequential versions.

3. For parallel SP, SA, and TA, the average fluctuations for cost over different

processors for all benchmark graphs are 2.37%, 3.70% and 6.02% respectively.
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SpP SA TA
Proc. No. cost speedup cost speedup cost speedup
1 348 1.00 346 1.00 358 1.00
2 252 1.96 348 1.96 386 1.93
3 350 2.90 354 2.88 350 2.70
4 346 3.84 355 3.77 356 3.64
5 345 4.77 355 4.62 355 4.29
6 349 5.65 360 5.45 352 4.92
7 350 6.56 356 6.25 358 5.88
8 348 7.37 360 7.00 354 5.94
9 347 8.23 359 7.72 361 6.78
10 350 9,01 359 8.4 355 7.71
Table 6.9: Cost and speedup for Graph S50.5
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Figure 6.10: Speedup for graph
Ring60_6 with up to 10 processors

Figure 6.9: Speedup for graph
Line60.6 with up to 10 processors

6.3 Observation

From the above experiments, we can make the following observations:

1. Our sequential stochastic probe always yields the best solutions for all the prob-
lem instances with less CPU time for our task assignment on this nnuniform

single-bus completion cost model.

2. Both the parallel stochastic probe and simulated annealing achieve almost linear

speedup for all the problem instances with solution quality comparable to those
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SpP SA TA
Proc. No. cost speedup cost speedup cost speedup
1 2596 1.00 2613 1.00 2617 1.00
2 2576 1.97 2595 1.98 2581 1.95
3 2572 2.89 2601 2.04 2610 2,78
4 2583 3.83 2592 3.88 2716 3.52
5 2577 4.73 2587 1.81 20687 4.13
6 2579 5.60 2609 5.73 2800 5.02
7 2575 6.41 2603 6.66 262 5.82
8 2590 7.18 2622 7.52 2681 6.32
9 2589 7.99 2603 8.40 2599 6.71
10 2597 8.84 2619 9.27 2617 7.18

Table 6.10: Cost and speedup for Graph C60-6
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Figure 6.11: Speedup for graph
Mesh49.6 with up to 10 processors

of their sequential versions.
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Figure 6.12: Speedup f{or graph
Tree60.6 with up to 10 processors

3. Parallel tabu search can also get almost linear speedup with solution quality

comparable to those of its sequential version, but the speedup is a little bit worse

than that of the parallel SP and SA. This is due to the way we parallelize it

(parallelizing the aggressive search at each iteration).
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sp SA TA
Proc. No. cost speedup cost speedup cost speedup
1 465 1.00 468 1.00 463 1.00
2 459 1.98 470 1.97 466 1.95
3 458 2.93 488 2.90 449 2.77
4 457 3.89 488 3.82 458 3.57
5 456 4.80 477 4.68 489 4.48
6 457 5.71 486 5.55 460 5.16
7 459 6.62 489 6.39 464 5.85
8 459 7.51 487 7.17 472 6.33
9 461 8.33 490 7.93 461 6.87
10 460 9.16 494 8.67 472 7.44
Table 6.11: Cost and speedup for Graph S60_6
SP SA TA
Proc. No. cost speedup cost, speedup cost speedup
1 206 1.00 202 1.00 203 1.00
2 199 1.98 204 2.00 201 1.92
3 199 2.94 207 2.98 202 2.76
4 199 3.87 204 3.97 196 3.52
5 199 4.79 202 9.33 208 4.49
6 200 5.61 202 5.88 204 5.17
7 200 6.51 201 6.79 198 5.85
8 201 7.32 203 7.74 196 6.64
9 200 8.17 207 8.64 204 7.00
10 200 9.00 206 9.51 205 7.43
Table 6.12: Cost and speedup for Graph Line60.6
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sp SA TA
Proc. No. cost speedup cost speedup cost speedup
1 447 1.00 435 1.00 413 1.00
2 434 1.99 150 1.97 433 195
3 432 2.92 449 2.94 429 2.76
4 431 3.80 447 3.83 435 3.59
5 432 4.77 453 4.71 429 4.51
6 436 5.61 463 5.62 428 5.18
7 436 6.44 453 6.-14 456 5.89
8 438 7.28 458 7.30 434 6.66
9 437 8.11 458 8.10 449 7.00
10 439 8.82 455 8.85 432 7.56
Table 6.13: Cost and speedup for Graph Ring60-6
SP SA TA
Proc. No. cost speedup cost speedup cost speedup

1 183 1.00 186 1.00 187 1.00
2 177 1.97 181 1.98 190 1.89
3 178 2.94 182 2.94 183 2.81
4 176 3.88 186 3.85 190 3.66
5 175 4.83 186 4.81 178 4.08
6 177 5.71 179 5.72 177 4.91
7 175 6.66 189 6.50 187 5.96
8 176 7.59 182 7.37 191 5.96
9 178 8.41 189 8.23 196 7.10

B 10 176 9.43 185 9.06 207 6.5

Table 6.14: Cost and speedup for Graph Mesh49_6




Sp SA TA
Proc. No. cost speedup cost speedup cost speedup

| 202 1.00 202 1.00 196 1.00
2 196 1.96 198 1.99 207 1.95
3 197 2.93 207 2.94 199 2.75
4 194 3.84 199 3.89 211 3.55
5 195 4.77 200 4.84 210 4.45
6 197 5.70 201 5.72 211 5.12
7 199 6.57 206 6.60 207 5.79
8 200 7.45 204 7.47 202 6.52
9 195 8.26 201 8.28 213 6.72
10 198 9.54 204 9.11 215 7.15

Table 6.15: Cost and speedup for Graph Tree60.6

Graph Average Cost
P SP SA | TA
C30-3 984.3 982.1 990.4
S30-3 253.1 259.3 256.8
C40-4 1478.1 | 1475.3 | 1485.9
S40-4 282.5 287.3 281.4
C50-5 1989.5 | 1995.2 | 1998.2
S50-5 348.5 355.2 358.5
C60-6 2583.4 | 2604.4 | 2656.2
S60-6 459.1 474.9 465.4
Line60-6 200.3 203.9 201.7
Ring60-6 | 436.2 | 4521 | 436.8
Mesh49-6 177.1 193.1 187.6
Tree60-6 197.3 202.2 207.1

Table 6.16: Avcrage solution cost over all experiments for each benchmark graph
with the three parallel algorithms
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Chapter 7

General Nonuniform Total Cost

Model

In this chapter, we study the General Nonuniform Total Cost Model. The target
system for this model is a general heterogencous workstation farm connected by a

interconnection network, in which

e All processors are heterogeneous;
o All processors are connected by an interconnection network;

e Communication between any pair of processes within a processor is negligible;

As a general heterogeneous system, the crecution cost, communication cosl, and
interference cost are three key factors for the performance of the system. Since the
interconnection network is used to connect the system instead of a single-bus, all the
three costs in the system are processor dependent.

Based on this model, our task assignment problem is to find a mapping 7 : V —

[m] to minimize the total cost

cost(m) = Y X(u,m(u)) + Y C(n(u),n(n),u,v)

ueV uFv
Our experimental studies on the task assignment for this model is presented as

follows. All of the three solution techniques for the problem studied in Chapter 3
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are applied. We study both the sequential performance and parallel performance for
each of the algorithms.
Details are presented in the Section 7.1 and Section 7.2 respectively. We present

our observation for the experiments on this model in the last section.

7.1 Experimental studies with sequential algo-
rithms

We conduct sequential experiments to compare the performances of the three algo-
rithms in scquential version (simulated annealing, tabu search, and our stochastic
probe) for the task assignment on this general nonuniform total cost model. We run

cach algorithm 10 times for each benchmark graph (Section 3.5.3).

C60-6 C80-8 C100-10 C120-12
SP |SA|TA|SP |SA|TA| SP | SA | TA | SP SA | TA
cost 5104 (510415104 | 8864 | 8864 | 8864} 15511 |15511 {15511 {21775 | 21775|21775
CPU (sec.)| 3.3} 6.1] 1.6{10.8/29.2| 5.8 36.7| 57.7| 13.6]| 82.8f 156.2| 29.8

‘able 7.1: Performance comparison of sequential algorithms for structured data sets

S60-6 S80-8 S100-10 S5120-12
SP |[SA|TA|SP |SA [ TA| SP | SA | TA | SP SA | TA
cost 1659 {1659 [ 16592702 | 2718 | 2743 | 4087| 4088 4140| 5791 | 5842] 5817
CPU (sec.)| 35.2| 59.1| 41.7] 29.0110.1 | 54.7] 81.0|138.3(113.9]118.3 | 246.5| 123.1

‘able 7.2: Performance comparison of sequential algorithms for structured data sets

The experimental results for clustered, sparse, and structured data sets are re-
ported in Table 7.1 to Table 7.3. From these results, we can draw the following

conclusions:

I. Compared with SA and TA, the average improvement of SP for solution quality

(cost) over the 12 problem instances are 0.21% and 0.42% respectively.
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Line60-6 Ring60-6 Mesh19-6 Tree60-6

SP |SA|TA|SP |SA|TA} SP | SA | TA | SP | SA

TA

cost 9781 986f 981 976 977 989| 987| T88| T88] 959| 94

959

CPU (sec.)] 9.5(80.1{18.5]|15.1|46.1{ 52.4| 22.3| 26.2| 27.6] 1.1.6] 35.8

23.3

Table 7.3: Performance comparison of sequential algorithms for structured data sets

2. In terms of computation time, the average CPU times for SA and TA are 2.70

and 1.53 times of those for SP respectively.

Our sequential experiments show that, for the task assignment on this model, 5P

always outperforms SA and TA both in solution quality and running time.

7.2 Experimental studies with parallel algo-
rithms

To evaluate the performances of parallel simulated annealing, parallel tabu search,
and parallel stochastic probe for the task assignment on this model, we run cach of
these three parallel algorithms on 1 to 10 processors for all our benchmark graphs
generated for this model.

The experimental results of both solution quality and speedup are reported in

Table 7.4 to Table 7.15.

7.2.1 Speedup evaluation
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sp SA TA
Proc. No. cost speedup cost speedup cost speedup
1 5146 1.00 5562 1.00 5104 1.00
2 5398 2.00 5104 2.42 5104 1.24
3 5398 2.50 5104 3.26 5104 1.17
4 5398 2.87 5104 3.94 5104 1.15
5 5398 3.00 5104 4.50 5104 1.04
6 5398 3.20 5104 4.96 5104 1.00
7 5398 3.20 5104 5.33 5104 0.95
8 5398 3.26 5104 5.63 5104 0.97
9 5398 3.33 5104 5.91 5104 0.92
10 5398 3.45 5104 5.97 5104 0.86
Table 7.4: Cost and speedup for Graph C60_6
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Figure 7.1: Speedup for graph Figure 7.2: Speedup for graph

C60.6 with up to 10 processors

S560-6 with up to 10 processors

Figure 7.1 to Figure 7.12 show the speedup obtained by each of the three parallel

algorithms in the 8 problem instances for different types of data sets (clustered,

sparse, and structured). From these figures, we can conclude that (with up to 10

processors):

1. Moderate speedups are obtained for these three parallel algorithms. For 10

processors, over 6.63, 5.53, and 3.50 average processor utilization are achieved

by parallel SP, SA, and TA respectively.
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SP SA TA
Proc. No. cost speedup cost speedup cost speedup
1 1667 1.00 1659 1.00 1667 1.00
2 1665 2.00 1667 1.77 1664 230 |
3 1666 2.53 1659 2.62 1664 2.54
4 1665 3.14 1660 3.23 1664 3.07
5 1672 3.77 1659 3.94 1659 3.91
6 1677 3.64 1668 4.28 1664 107
7 1670 3.90 1689 4.77 1664 1.14
8 1667 4.19 1693 5.09 1673 1.59
9 1666 4.42 1689 5.71 1667 3.47
10 1668 4.62 1686 5.72 1664 3.26

Table 7.5: Cost and speedup for Graph 5606
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Figure 7.3: Speedup for graph Figure 7.4: Speedup for graph
C80_-8 with up to 10 processors S580.8 with up to 10 processors

2. The speedup in parallel tabu search varies with the problem size. The bigger
the problem is, the better speedup the parallel algorithm gets. This is due to

the way we parallelize it (parallelizing the aggressive scarch at each iteration).

3. Parallel simulated annealing achieves better speedup than that of Witte E.Is

speculative parallel simulated annealing (refer to Section 3.2.2).

7.2.2 Solution quality comparison
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SP SA TA
Proc. No. cost speedup cost speedup cost speedup
1 8864 1.00 8864 1.00 8864 1.00
2 8864 2.00 8864 1.98 8864 1.70
3 8864 2.70 8864 2.60 8864 2.18
4 8864 3.48 8864 3.18 8864 2.41
5 8864 4.30 8864 4.21 8864 2.67
6 8864 5.50 8864 4.77 8864 2.89
7 8864 5.90 8864 5.13 8864 2.98
8 8864 6.11 8864 5.51 8864 3.09
9 8864 6.78 8864 5.79 8864 3.21
10 8864 7.45 8864 6.21 8864 3.45

Table 7.6: Cost and speedup for Graph C80_8
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Figure 7.5: Speedup for graph Figure 7.6: Speedup for graph
C100.10 with up to 10 processors S5100.10 with up to 10 processors

Table 7.16 summaries Table 7.4 to Table 7.15 on solution quality by showing the
average cost of each algorithm for each problem instance over different number of

processors. From this table, we can draw the following conclusions in terms of solution

quality:

l. For the 4 cluster data sets, parallel SP improves the solution quality of parallel
SA and TA by 0.43% and 0.92% respectively; for the 4 structured data sets,
parallel simulated annealing finds solutions with quality 0.37% and 1.87% better

than those of parallel SP and TA; for the 4 sparse data sets, all of them obtain
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Sp SA TA
Proc. No. cost speedup cost speedup cost msp('vdupw
1 2705 1.00 2718 1.00 2743 1.00
2 2704 2.00 2724 1.79 2742 1.74
3 2705 2.81 2745 2.70 2751 223
4 2705 3.43 2716 3.29 2749 250
) 2707 3.99 2733 3.91 2763 2.84
6 2704 4.65 2721 4.22 2771 3.01
7 2703 5.26 2715 4.41 2774 3.21
8 2706 6.02 2739 4.73 2771 3.29
9 2706 6.84 2729 5.23 2740 3.50
10 2704 7.41 2744 5.57 2746 3.55

-
o

Table 7.7: Cost and speedup for Graph 580.8
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Speedup for graph
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Figure 7.8: Speedup for graph
5120.12 with up to 10 processors

2. For all problem instances, the solution obtained from the parallel versions of

tabu search, simulated annealing and our stochastic probe are comparable to

those of their corresponding sequential versions.

3. For parallel SP, SA, and TA, the average fluctuations for cost over different

processors for all benchmark graphs are 0.49%, 1.30% and 0.59% respectively.
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Sp SA TA

Proc. No. cost speedup cost speedup cost speedup
] 15511 1.00 15511 1.00 15511 1.00
2 15511 2.00 15511 1.82 15511 2.00
3 15511 2.75 15511 2.39 15511 2.54
4 15511 3.42 15511 2.89 15511 3.01
H 15511 3.94 15511 3.14 15511 3.21
6 15511 4.65 15511 3.65 15511 3.29
7 15511 5.38 15511 3.98 15511 3.67
8 15511 5.91 15511 4.25 15511 4.25
9 15511 6.67 15511 4.72 15511 4.51
10 15511 7.35 15511 5.04 15511 4.89

Table 7.8: Cost and speedup for Graph C100.10
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Figure 7.9:

Speedup for graph

Line60.6 with up to 10 processors

7.3 Observation

From the above experiments, we can make the following observations:

Number of Processors

Figure 7.10: Speedup for graph
Ring60.6 with up to 10 processors

1. Our sequential stochastic probe always yields the best solutions for all the

problem instances with less CPU time for our task assignment on this general

nonuniform completion cost model.

2. Modcrate speedup is obtained by the three parallel algorithms with solution

quality comparable to those of their sequential versions. Paralle] SP obtains
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Figure 7.11:

Speedup for graph
Mesh49.6 with up to 10 processors
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Sp SA TA
Proc. No. cost speedup cost speedup cost speedup
1 4087 1.00 1098 1.00 4125 1.00
2 4095 2.00 4039 1.82 4140 2.01
3 4092 2.83 4038 2.37 4125 249
4 4094 3.40 4088 2.94 4125 3.10
5 4095 3.91 4094 3.25 4131 345
6 4087 4.58 4089 3.72 4125 3.72
7 4094 5.60 4092 4.01 4137 3.99
8 4089 6.11 4093 4.18 413Y 4.32
9 4089 6.93 4095 4.72 4127 4.52
10 4095 7.65 4095 5.04 4127 1.79
Table 7.9: Cost and speedup for Graph S100-10
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Figure 7.12: Speedup for graph
Tree60.6 with up to 10 processors

best speedup among the three parallel algorithms.

3. Parallel tabu search can also get almost linear speedup with comparative so-

lution quality to those of its sequential version, but the speedup is a little bit

worse than that of the parallel SP, and SA. This is due to the way we parallelize

it (parallelizing the aggressive search at each iteration).
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SP SA TA
Proc. No. cost speedup cost speedup cost speedup
| 21775 1.00 21775 1.00 21775 1.00
2 21775 2.00 21715 1.92 21775 2.00
3 21775 2.65 21775 241 21775 2.40
4 21775 3.57 21775 2.99 21775 2.97
5 21775 4.40 21775 3.94 21775 3.71
6 21775 5.25 21775 4.12 21775 3.98
7 21775 6.11 21775 4.75 21775 4.20
8 21775 6.78 21775 4.93 21775 4,35
9 21775 7.07 21775 5.01 21775 4.77
10 21775 7.49 21775 5.15 21775 4.89
Table 7.10: Cost and speedup for Giapn C120.12
SP SA TA
Proc. No. cost speedup cost speedup cost speedup

1 5795 1.00 5842 1.00 5850 1.00
2 5795 2.00 5849 1.89 5855 2.00
3 5795 2.70 5849 2.63 5855 2.97
4 5799 3.49 5854 3.42 5855 3.59
5 5798 4.42 5849 3.94 5855 3.94
6 5794 4.94 5847 4.28 5855 4.09
1 5798 5.31 5854 4.83 5863 4.24
8 5798 5.83 5855 5.09 5855 4.59
9 5799 6.40 5857 571 5863 4.97
10 5799 7.21 5850 5.93 5863 5.13

Table 7.11: Cost and speedup for Graph §120-12

115




SpP SA TA

Proc. No. cost speedup cost speedup cost. speedup '
1 980 1.00 975 1.00 979 1.00
2 982 2.20 931 1.73 979 181
3 980 2.91 975 2.42 973 211
4 980 3.69 979 3.09 932 2.16
5 981 4.49 977 3.40 979 2.23
6 983 4.91 978 3.82 977 2.71
7 978 5.73 978 4.07 975 248 !
8 985 5.73 978 4.39 977 2.53
9 985 5.77 978 4.63 932 2.33
10 989 6.68 980 4.62 978 2.67

Table 7.12: Cost and speedup for Graph Line60.6
SP SA TA

Proc. No. cost speedup cost speedup cost specdup
1 978 1.00 976 1.00 987 1.00
2 977 2.30 976 1.84 976 1.69
3 979 3.14 976 2.35 988 2.10
4 977 4.28 976 3.07 976 2.49
b 979 4.83 976 3.52 987 2.74
6 977 5.68 976 4.15 988 2.94
7 977 5.82 976 4.50 987 3.16
8 977 6.40 976 4.51 987 3.32
9 979 7.18 976 1.97 938 3.27
10 983 7.36 976 5.08 987 3.39

Table 7.13: Cost and speedup for Graph Ring60_6¢
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sp SA TA
Proc. No. cost speedup cost speedup cost speedup
1 787 1.00 793 1.00 987 1.00
2 789 2.00 787 2.06 987 1.70
3 788 3.26 787 2.91 987 2.25
1 788 4.22 787 3.50 987 2.51
5 791 4.98 787 3.89 987 2.62
6 789 5.28 788 4.46 987 2.80
7 789 5.53 788 4.72 987 2.93
8 792 5.78 798 4.87 987 2.92
9 791 6.00 798 5.13 987 3.06
10 789 6.62 787 5.89 987 2.92
Table 7.14: Cost and speedup for Graph Mesh49.6
SP SA TA
Proc. No. cost speedup cost speedup cost speedup
1 961 1.00 959 1.00 987 1.00
2 969 2.00 959 1.91 959 1.67
3 968 3.56 959 2.66 964 2.08
4 965 4.16 959 3.55 964 2.22
5 966 4.15 959 4.03 959 2.48
6 963 5.21 959 4.62 964 2.35
7 966 5.27 959 5.10 959 2.40
8 961 5.69 959 5.49 959 2.68
9 966 6.00 964 5.44 982 2.46
10 967 6.28 961 6.11 959 2.24

Table 7.15: Cost and speedup for Graph Tree60-6
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Graph Average Cost
SP SA TA
C60-6 5402.8 5149.8 5104.0
S60-6 1668.3 1672.9 1665.0
C80-8 8864.0 8864.0 8564.0
S80-8 2704.9 27284 2755.0
C100-10 15511.0 | 15511.0 | 15511.0
S100-10 4091.7 4092.1 4130.1
C120-12 21775.0 | 21775.0 | 21775.0
S5120-12 5797.0 5850.6 5856.9
Line60-6 982.3 977.9 978.6
Ring60-6 978.3 976.0 985.1
Mesh49-6 789.3 790.0 987.0
Tree60-6 965.2 959.7 965.6

Table 7.16: Average solution cost over all experiments for each benchmark graph
with the three parallel algorithms
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Chapter 8

General Nonuniform Completion
Cost Model

The workstation farm we study in this chapter is a general heterogeneous system
connected by an interconnection network, similar to the one considered in the last
chapter. Execution cost, communication cost, and interference cost are all processor-
dependent. Our task assignment problem on this kind of workstation farm is to find
a mapping m: [n] — [m] to minimize the completion cost

cost(m) = 112}\6&)7(:;{ 3 X(u,k)+ > C(r(u),n(v),u,0)+ > C(n(u),n(v),u,v)}

- = 1r(u)=k n(u)=k n(u)=k
n(u)en(v) m(v)=k

The following are our experimental studies about task assignment on this model.

All the three techniques studied in chapter 3 (both sequential version and parallel

version) are studied here.

All the experiments of this mnodel are classified into two parts according to the

architecture interconnection network:

1. Experiments on the completely-connected network;

2. Experiments on mesh and hypercube networks.

Qur sequential and parallel experimental results are presented in Section 8.1 and

8.2 respectively, followed by Section 8.3, the observation for the experiments.
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8.1 Experimental studies with sequential algo-
rithms

Sequential experiments based on the above two categories are conducted to compare

the relative performances of these three techniques in sequential versions. We run

each algorithm 10 times for each benchmark graph (Section 3.5.3).

8.1.1 Assignments on completely-connected networks

C30-3 C40-4 C50-5 C60-6
SP | SA | TA JSP | SA | TA | SP | SA|TA | SP | SA | TA
cost 1037.711051.21042.51465.7/1492.51 483.6{1964.2({1968.9]1998. 6[2510.0R2579.712573.9]
CPU (sec.)) 0.4 2.1 8.9[ 21 460 6.9 2.6 8.6 12.1 17.1] 524 39.7

Table 8.1: Performance comparisons of sequential algorithms for clustered data sets

S30-3 540-4 $50-5 S60-6
SP | SA[TA | SP | SA [TA | SP | SA|TA | SP | SA | TA
cost 273.2{ 293.7 297.5 315.5 319.8] 322.3] 348.00 358.3) 365.7| 420.3 432.% 422.8
|CPU (sec.)) 0.6 2.2 1.8 4.5 7.9 12.00 9.4 259 15.5 10.8 58.9 49.9]

Table 8.2: Performance comparisons of sequential algorithms for clustered data sets

S30-3 S40-4 $50-5 S560-6
SP | SA | TA}JSP|[SA |TA | SP | SA|TA | SP | SA | TA
cost 189.3] 191.7 21,5 3 192.0 194.6) 195.8 173.1] 174.8 176.5| 186.2 188.9 190.4
ICPU (sec.)] 15.3] 47.1 47.6] 14.4] 23.4] 58.24 4.0 26.1 34.7} 20.77 29.7 42.3

Table 8.3: Performancc comparisons of sequential algorithms for clustered data sets

The experimental results for clustered, sparse, and structured data sets are reported

in Table 8.1 to Table 8.3. From these data, we can draw the following conclusions:

1
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1. For all the 12 problem instances, SP improves the average solution cost by 1.7%

and 3.5% for SA and TA.

2. In terms of computation times, the average CPU times for SA and TA are 3.24

and 6.16 times of those for SP respectively.

In summary, the sequential stochastic probe heuristic provides better solution

with less CPU time for the task assignment problem on this model.

8.1.2 Assignments on mesh and hypercube networks

We assume the program has n = 256 task models, and the system has 64 processors.

Cluster Sparse Mesh Tree
SA Sp TS | SA | SP | TS |SA|SP|TS | SA|SP |TS
cost 18624.1120106.226853.21984.212838.814381.1]154.1204.9648.9 96.1(124.2[746.8
CPU (sec.)] 236.8 220.1 319.9 257.5 206.5 239.8253.4?58.2240.2242.2246.3241.?]

Table 8.4: Performance comparisons on mesh networks

Cluster Sparse Mesh Tree
SA Sp TS | SA | SP | TS |SA|SP|TS | SA[SP |TS
cost 9545.813130.4/15126.241188.31248.212672.61122.6134.4648.8} 79.2 94.1641.
CPU (sec.)l 167.8§ 170.3 160.2 296.2] 205.5 240.0§273.2265.30240.51350.6350.5[344.

Table 8.5: Performance comparisons on hypercube networks

The experimental results for various types of data sets (clustered, sparse, mesh,
and tree) are reported in Table 8.4 and Table 8.5.

Among the three heuristics, SA always outperforms SP and TA in solution quality
with nearly equal CPU time. Compared with SP and TA, the average improvements

of SA over the 8 problem instances are 17.6% and 64.2% respectively.
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8.2 Experimental studies with parallel algo-
rithms

Parallel experiments are conducted to evaluate the performance of parallel simulated
annealing, parallel tabu search, and parallel stochastic probe for task assignment on
this model. They are also divided into wwo parts according to the interconnection
network architecture: the completely-connected networks and mesh and hypercube
networks. We run each algorithms on 1 to 10 processors for all our benchmark graphs

generated for this model (Section 3.5.3).

8.2.1 Assignments on completely-connected networks

SP SA TA
Proc. No. cost speednp cost speedup cost speedup
1 1050 1.00 1062 1.00 1076 1.00
2 1051 1.93 1076 1.99 1076 1.94
3 1052 2.86 1062 2.95 1076 2.69
4 1053 3.72 1070 3.92 1076 3.12
5 1050 4.40 1073 4.85 1076 3.87
6 1059 5.52 1077 5.73 1076 4.93
7 1055 6.31 1073 6.59 1076 1.80
8 1058 7.02 1072 7.40 1076 5.24
9 1058 8.07 1065 8.19 1076 6.50
10 1057 8.79 1062 8.88 1076 6.81

Table 8.6: Cost and speedup for Graph C30.3

Table 8.6 to Table 8.17 shows all the experimental results in terms of solution cost

and speedup.

Speedup evaluation
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Sp SA TA
Proc. No. cost speedup cost speedup cost speedup
1 270 1.00 292 1.00 286 1.00
2 271 1.93 282 2.00 273 1.89
3 272 2.82 273 2.96 287 2.67
4 272 3.71 270 3.92 273 3.06
5 274 4.62 278 4.87 280 3.73
6 273 5.06 278 5.73 273 4.78
7 271 6.06 274 6.58 286 4.58
8 272 6.91 278 7.37 286 5.09
9 273 7.40 282 8.21 287 5.84
10 277 8.62 278 8.90 286 6.31
Table 8.7: Cost and speedup for Graph S30_3
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s e s 6 7 8 s o T e s s 7 8 s o
Number of Processors Number of Processors
Figure 8.1: Speedup for graph Figure 8.2: Speedup for graph

C'30.3 with up to 10 processors

To evaluate the speedup from these experiment results, we summarize them in Fig-

530-3 with up to 10 processors

ure 8.1 to Figure 8.12. For all the problem instances, all of these three parallel

algorithms achieve almost linear speedup, with parallel TA’s speedup a little bit

worse. Processor utilization decreases while the processor number increases. With

10 processors, the average speedup for SP, SA and TA are 8.88, 9.24 and 6.90 respec-

tively.
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Sp SA TA
Proc. No. cost speedup cost speedup cost specdup
1 1469 1.00 1472 1.00 1470 1.00
2 1464 1.92 1491 1.98 1470 104
3 1471 2.83 1501 2.95 1470 2,71
4 1475 3.68 1487 3.86 1445 3.49
5 1469 4.58 1490 4.77 1446 1.06
6 1471 5.50 1489 5.69 1470 1.69
1 1469 6.24 1539 6.48 1470 5.37
8 1469 7.05 1518 7.28 1445 6.17 |
9 1471 7.85 1507 8.08 1470 5.76
10 1475 8.61 1506 8.78 1445 6.12

Table 8.8: Cost and speedup for Graph C40.4

10 T ¥ T T 10 i T T L
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2t 2r
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Number of Processors Numbar of Proceseors
Figure 8.3: Speedup for graph Figure 8.4: Speedup for graph
C40_4 with up to 10 processors S540_4 with up to 10 processors

Solution quality comparison

From Table 8.6 to Table 8.17, we can draw the following conclusions on the solution

quality:
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SP SA TA
Proc. No. cost speedup rost speedup cost speedup
1 321 1.00 318 1.00 310 1.00
2 318 1.93 325 1.99 320 1.95
3 319 2.83 326 2.98 310 2.74
4 316 3.67 317 3.91 317 3.49
5 317 4.45 322 4.87 318 4.16
6 318 5.38 321 5.80 315 4.84
7 318 6.08 325 6.72 318 5.50
8 317 6.76 325 7.56 317 6.43
9 323 7.74 317 8.41 314 6.07
10 324 8.72 320 9.21 314 6.32
Table 8.9: Cost and speedup for Graph 540.4
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Figure 8.5: Speedup for graph Figure 8.6: Speedup for graph

C50.5 with up to 10 processors

S$50.5 with up to 10 processors

1. For all the problem instances, parallel stochastic probe can always outperform
the parallel simulated annealing and tabu search in terms of solution quality.
Table 8.18 represents the average cost obtained from the three parallel algo-

rithms over the eight benchmark graphs.

2. For all problem instances, the solutions obtained from the parallel versions of
tabu search, simulated annealing and our stochastic probe are comparable to

those of their corresponding sequential versions.
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Sp SA TA

Proc. No. cost speedup cost speedup cost speedup
1 1984 1.00 2006 1.00 2000 1.00
2 1979 1.94 1993 2.00 1963 1.93
3 1983 2.86 2052 2.97 2020 2.70
4 1999 3.79 1980 3.88 1988 3.74
5 1990 4.69 2012 4.82 1983 1.30
6 1986 5.59 2004 5.71 1966 4.95
7 2000 6.46 2000 6.55 1989 5.96
8 2006 7.56 1993 7.31 1964 0.97
9 2001 8.44 2003 8.10 1995 6.71
10 1988 9.09 2021 | 8.77 1958 7.84

Table 8.10: Cost and speedup for Graph C50.5
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Figure 8.7:

Speedup for graph

C60.6 with up to 10 processors

Figure 8.8:

Number of Procesaors

Speedup for graph
560.6 with up to 10 processors

3. For parallel SP, SA, and TA, the average fluctuations for cost over different

processors for all the benchmark graphs are 2.36%, 4.22% and 4.59% respec-

tively.

8.2.2 Assignments on mesh and hypercube networks
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SpP SA TA
Proc. No. cost speedup cost speedup cost speedup
1 360 1.00 369 1.00 459 1.00
2 355 1.97 369 2.00 428 1.95
3 354 2.90 360 2.98 436 2.75
4 352 3.83 365 3.94 440 3.53
5 355 4.79 366 4.92 424 4,43
6 359 5.66 357 5.87 428 4.98
7 359 6.60 354 6.80 429 5.73
8 356 7.37 363 7.69 435 6.30
9 359 8.21 365 8.63 428 6.34
10 358 9.21 364 9.48 421 6.92
Table 8.11: Cost and speedup fro Graph $50_5
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Figure 8.9: Speedup for graph Figure 8.10: Speedup for graph

Li::260.6 with up to 10 processors Ring60_6 with up to 10 processors

Table 8.19 to Table 8.26 report all experimental results of speedup and cost for all

problem instances of the three algorithms solving the task assignment on this model.
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Speedup

Figure 8.11:

Sp SA TA

Proc. No. cost speedup cost speedup cost speedup
1 2557 1.00 2559 1.00 2522 1.00
2 2556 1.95 2552 1.99 2522 1.94
3 2582 2.87 2554 2.98 2022 2.78
4 2569 3.79 2550 3.95 2547 3.78
5 2575 4.72 2574 4.94 2522 4.4
6 2579 5.61 2549 5.89 2536 5.70
7 2571 6.80 2563 6.86 2547 6.04
8 2583 7.45 2566 .77 2532 6.98
9 2580 8.27 2551 8.70 2534 6.70
10 2576 9.18 1574 9.62 2522 7.02

Table 8.12: Cost ad speedup fro Graph C60-6
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Mesh49.6 with up to 10 processors

Speedup evaluation
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sp SA TA
Proc. No. cost speedup cost speedup cost speedup
1 421 1.00 402 1.00 418 1.00
2 423 1.95 418 2.00 425 1.96
3 424 2.89 408 2.99 424 2.76
4 423 3.83 413 3.98 431 3.56
5 425 4.81 407 4.95 437 443
6 421 5.62 416 5.92 437 5.04
7 421 6.58 431 6.87 427 5.75
8 424 7.44 420 7.79 417 6.27
9 427 8.34 420 8.72 417 6.69
10 427 9.20 424 9.62 418 7.16
Table 8.13: Cost and speedup for Graph S60.6
10 T T ~r 10 . . . ; ——
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Figure 8.13: Speedup for Graph Figure 8.14: Speedup for Graph

cluster on mesh network with up
to 10 processors

sparse on mesh network with up to

10 processors

Figure 8.13 to Figure 8.20 summaries the performance in terms of speedup from the

above Table 8.19 to Table 8.26. From these figures, we can conclude as follows:
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Sp SA TA
Proc. No. cost speedup cost speedup cost speedup
1 197 1.00 190 1.00 196 1.00
2 192 1.97 194 1.99 197 1.95
3 190 2.92 193 2.98 194 2.77 |
4 192 3.84 192 3.96 193 3.58
5 191 4.76 102 1.91 189 1.50 |
6 193 5.70 192 5.87 198 5.11
7 195 6.50 191 6.81 190 5.81
8 193 7.28 195 7.72 195 6.61
9 197 8.09 194 9.18 197 6.91
10 196 8.95 198 9.52 197 7.06

Table 8.14: Cost and speedup for Graph Line60.6
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Figure 8.15: Speedup for Graph
mesh on mesh network with up to

10 processors
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tree on mesh network with up to
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1. For all the problem instances, all of these three parallel algorithms achicve

almost linear speedup, with parallel simulated annealing’s speedup a little bit

worse, especially for the mesh and hypercube networks. With 10 processors,

the average speedup for SP, SA, and TA are 8.99, 5.78 and 9.07.

2. Processor utilization for all the algorithms decreases when more processors are

used.
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SP SA TA
Proc. No. cost speedup cost speedup cost speedup
1 195 1.00 193 1.00 192 1.00
2 190 1.98 194 2.00 195 1.94
3 194 2.92 196 2.98 201 2.74
4 191 3.84 193 3.95 185 3.57
5 192 4.76 195 4.92 202 4.38
6 193 5.66 192 5.89 204 5.09
7 190 6.61 196 6.80 193 5.71
8 193 7.39 191 7.70 196 6.47
9 197 8.10 194 8.66 194 6.86
10 195 9.00 201 9.50 195 7.28
Table 8.15: Cost and speedup fro Graph Ring60.6
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Figure 8.17: Speedup for Graph
cluster on hypercube network with

up to 10 processors

Solution quality

Number of Processors

Figure 8.18: Speedup for Graph
sparse on hypercube network with
up to 10 processors

‘able 8.27 and Table 8.28 summarize Table 8.19 to Table 8.26 on solution quality

by showing the average cost of each algorithm for each problem instance over differ-

ent number of processors. From these two tables, we can conclude that SA always

outperforms SP and TA in solution quality; and compared with SA and TA, the

average improvements of SP over the 8 problem instances are 19.53% and 269.29%

respectively, and all the solution quality are comparable to those of their sequential

131



Number of Processors

Figure 8.19: Speedup for Graph
mesh on hypercube network with
up to 10 processors

versions.

8.3 Observation

Number of Processors

Sp SA TA

Proc. No. cost speedup cost speedup cost spm—'(-lup
1 176 1.00 172 1.00 172 1.00
2 1mn 1.98 170 1.99 179 1.90
3 171 2.94 171 2,98 173 280
4 174 3.88 173 3.93 183 3.59
5 174 4.80 175 4.88 175 4.08
6 174 5.70 181 5.83 181 4.741
7 169 6.65 174 6.72 166 6.01
8 174 747 173 7.61 174 5.8
9 173 8.35 180 8.47 171 7.20
10 174 9.24 173 9.33 169 6.65

Table 8.16: Cost and speedup fro Graph M esh19_6
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Figure 8.20: Speedup for Graph
tree on hypercube network with up
to 10 processors

From the above experiments, we can make the following observations:

1. Our stochastic probe always yields the best solutions for all the problems on the

completely-connected networks with less CPU time, while SA obtains the best

solutions for all the problem instances on the mesh and hypercube networks.
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Sp SA TA
Proc. No. cost speedup cost speedup cost speedup
1 195 1.00 187 1.00 197 1.00
2 191 1.95 190 1.99 192 1.94
3 194 2.84 185 2.96 186 2.76
4 191 3.71 188 3.92 201 3.56
5 197 4.50 193 4.88 201 4.47
6 190 5.22 193 5.78 194 5.15
7 192 5.91 190 6.72 192 5.71
8 194 6.69 194 7.58 189 6.61
9 201 7.48 195 8.45 195 6.81
10 200 7.89 196 9.28 192 7.25
Table 8.17: Cost and speedup for Graph T'ree60.6

2. All of parallel SP, SA, and TA obtain almost linear speedup for all problem
instances on both the completely-connected networks and mesh and hypercube
networks with solution quality comparable to those of their corresponding se-
quential versions. For parallel SA, a little bit worse speedups are found for

mesh and tree graphs on mesh and hypercube networks.

3. Parallel SP obtains the best solutions for all the problem instance:s on the
completely-connected networks, and parallel SA obtains the best solutions for

all the problem instances on the mesh and hypercube networks.

In general, regarding the parallel versions, all these three parallel algorithms can
achieve almost linear speedup for our task assignment on this general nonuniform
completion cost model. Parallel SP obtains the best solution quality for problem

instances on completely-connected networks while parallel SA provides the best so-

lution quality fro problem instances on the mesh and hypercube networks.
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Average Cost
Graph SP SA TA
C30-3 1054.3 | 1069.2 | 1076.0
S30-3 272.5 278.5 281.7
C40-4 1470.3 | 1500.0 | 1463.0
S40-4 319.1 321.6 315.3
C50-5 1991.6 | 2006.4 | 1982.6
S50-5 356.7 363.2 432.7
C60-6 2572.8 | 2559.8 | 2530.6
S60-6 432.6 415.9 423.1
Line60-6 193.6 193.1 195.6
Ring60-6 193.0 193.5 193.7
Mesh49-6 173.0 172.2 174.2
Tree60-6 194.5 191.1 193.7

Table 8.18: Average solution cost over all experiments for cach benchmark graph
with the three parallel algorithms

SP SA TA
Proc. No. cost speedup cost speedup cost speedup
1 21535 1.00 17176 1.00 26789 1.00
2 21597 1.98 17379 1.96 26712 2.00
3 21564 2.90 16489 2.67 26765 2.98
4 21664 3.83 17281 3.53 25517 3.9
5 21732 5.05 16744 4.14 26426 4.85
6 21813 5.50 16492 4.72 25517 5.75
7 21668 6.25 17305 5.55 25517 6.83
8 21902 7.11 17168 6.01 25517 7.82
9 21940 8.21 16207 6.32 25595 8.56
10 21973 8.99 17639 7.20 25517 9.07

Table 8.19: Cost and speedup for cluster graph on mesh networks
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Sp SA TA
Proc. No. cost speedup cost speedup cost speedup

1 2809 1.00 2129 1.00 4360 1.00
2 2969 1.96 2163 1.89 4454 2.00
3 2987 2.92 2166 2.71 4747 2.98
4 2998 3.83 2189 3.44 4394 3.94
5 3006 4.73 2154 4.07 4706 4.85
6 3014 5.50 2089 4.59 4359 5.75
7 3024 6.39 2079 5.16 4695 6.83
8 3036 717 2161 5.75 4178 7.81
9 3044 8.22 2114 6.18 4178 8.56
10 3055 9.00 2251 6.78 4178 9.07

Table 8.20: Cost and speedup for sparse graph on mesh networks

SP SA TA
Proc. No. cost speedup cost speedup cost speedup
1 192 1.00 149 1.00 727 1.00
2 191 1.98 155 1.83 771 2.00
3 194 2.93 165 2.54 764 2.98
4 202 3.85 171 3.15 714 3.93
5 203 4.76 179 3.69 737 4.85
6 215 5.55 173 4.14 761 5.75
7 219 6.25 181 4.54 753 6.82
8 225 7.13 175 4.90 722 7.81
9 235 8.30 179 5.27 751 8.54
10 242 9.07 186 5.54 718 9.06

Table 8.21: Cost and speedup for mesh graph on mesh networks
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SP SA TA
Proc. No. cost speedup cost speedup cost speedup

1 115 1.00 107 1.00 744 1.00
2 115 1.98 105 1.71 744 2.00
3 118 2.92 111 2.25 723 2.98
4 118 3.83 117 2.69 720 3.941
5 122 4.74 116 3.01 705 4.85
6 128 5.75 114 3.31 764 5.74
7 127 6.36 111 3.54 717 6.82
8 132 7.16 122 3.71 711 7.81
9 146 8.33 125 3.90 707 8.56
10 144 9.09 126 4.05 711 9.08

Table 8.22: Cost and speedup for tree graph on mesh networks

Sp SA TA

Proc. No. cost speedup cost speedup cost speedup

1 12383 1.00 9863 1.00 15140 1.00
2 12967 1.97 10005 1.87 15140 2.00
3 13300 2.88 10361 2.78 15140 2.498
4 13348 3.75 9604 3.36 15140 3.91
5 13411 4.63 9849 4.04 15140 4.85
6 13472 5.28 9874 4.01 15140 575
7 13546 6.17 9630 5.17 15140 6.83
8 13459 7.15 10207 5.76 15140 7.82
9 13672 7.85 9815 6.20 15140 5.56
10 13419 8.77 10158 6.69 15140 9.07

Table 8.23: Cost and speedup for cluster graph on hypercube networks
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SP SA TA
Proc. No. cost speedup cost speedup cost speedup
1 1226 1.00 1190 1.00 2569 1.00
2 1229 1.97 1194 1.93 2567 2.00
3 1241 2.96 1207 2.81 2513 2.98
4 1261 3.89 1210 3.63 2552 3.94
5 1290 4.83 1217 441 2552 4.85
6 1323 5.64 1211 5.12 2586 5.76
7 1374 6.35 1223 5.82 2552 6.83
8 1436 7.26 1222 6.64 2514 7.82
9 1482 8.44 1236 7.11 2514 8.57
10 1532 9.22 1240 7.70 2514 9.08

Table 8.24: Cost and speedup for sparse graph on hypercube networks

Sp SA TA
Proc. No. cost speedup cost speedup cost speedup
1 146 1.00 128 1.00 661 1.00
2 143 1.97 133 1.72 658 2.00
3 144 2.93 135 2.28 661 2.98
4 143 3.83 132 2.68 664 3.94
5 147 4.71 138 3.04 669 4.85
6 154 5.60 138 3.34 580 5.75
7 151 6.34 142 3.57 659 6.82
8 155 7.14 139 3.75 566 7.82
9 163 8.30 144 3.95 573 8.56
10 161 9.07 144 4.10 631 9.07

Table 8.25: Cost and speedup for mesh graph on hypercube networks
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Sp SA TA
Proc. No. cost speedup cost speedup cost sp('vdlrlr
1 93 1.00 85 1.00 628 1.00
2 91 1.99 83 1.73 633 2.00
3 92 2.95 89 2.29 631 2.98
4 90 3.90 89 2,70 634 3.94
5 90 4.80 91 3.06 655 4.85
6 94 5.71 92 3.40 639 5.76
7 94 6.61 95 3.62 658 6.75
8 95 7.36 95 3.79 647 7.82
9 96 8.28 95 3.99 656 8.56
10 100 8.92 94 4.15 642 9.08

Table 8.26: Cost and speedup four tree graph on hypercube networks

Average Cost

Graph | —s——5A T TA

Cluster | 21728 .8 | 16988.0| 25987 .2
Sparse | 2994.2| 2149.5| 4442.7
Mesh | 211.8| 171.3] 74L.8
Tree | 126.5| 115.4] 725.2

Table 8.27: Average solution cost
over all experiments for each bench-
mark graph on mesh network with

the three parallel algorithms

Average Cost
Craph I~ 5T SA T TA
Cluster|13297.7| 9936.6|15140.0
Sparse | 1339.4| 1215.0f 2543.3
Mesh 150.7] 137.37 632.2
Tree 93.5 90.8] 642.3

Table 8.28: Average solution cost
over all experiments for cach bench-
mark graph on hypercube network
with the three parallel algorithms
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Chapter 9

Conclusion

This thesis studies the task assignment problem for workstation farms.

We first design and propose five task assignment models for workstation farms
with different physical configurations: 1) uniform m-way graph partition model, 2)
nonuniform single-bus total cost model, 3) nonuniform single-bus completion cost
model, 4) general nonuniform total cost model, and 5) general nonuniform completion
cost model.

Three effective heuristics based on simulated annealing, tabu search, and stochas-
tic probe are proposed for the task assignment problem. An efficient move set 3 is
designed to combine vertez move and verter exchange. To further reduce the com-
putation time, we study the parallelism for these three heuristics. Three effective
parallel algorithms are developed based on these three heuristics.

To study the performances of these algorithms (both in sequential versions and
parallel versions) on our task assignment problem, we conduct experiments with each
algorithni on the five proposed task assignment models. Our experimental results

show:

1. Our sequential stochastic probe always yields the best solutions for all the

problem instances for the five models with less CPU time.

2. Parallel stochastic probe achieves almost linear speedup for all the problem

instances on the five models with solution quality comparable to those of its
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sequential version.

. The speedup of parallel tabu scarch varies with the problem instances. The

bigger the problem instance is, the better speedup the algorithm gets.

. Parallel simulated annealing obtains speedup better than that of Witte's spece-

ulative parallel simulated annealing.

. For the task assignment on both uniform completion cost model and nonuniform
completion cost model, all of these three parallel algorithms achieve almost
linear speedup with solution quality comparable to those of their corresponding

sequential versions.

. In general, parallel stochastic probe can get good speedup with high quality

solution, and its performance is most stable over different five models.
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