l*l National Library
of Canada du Canada

Bibliothéque nationale

Canadian Theses Service Service des théses canadiennes

Ottawa, Canada
K1A ON4

NOTICE

The quality of this microformis heavily dependent upon the
quality of the original thesis submitted for microfiiming.
Every effort has been made to ensure the highest auality of
reproduction possible.

I pages are missing, contact the university which granted
the degree.

Some pages may have indistinct print especially if the
original pages were typed with a poor typewriter ribbon or
if the university sent us an inferior photocopy.

Reproduction in full or in part of this microform is governed
by the Canadian Copyright Act, R.S.C. 1970, c. C-30, and
subsequent amendments.

NL 339 (r.88/04) ¢

AVIS

La qualité de cette microforme dépend grandement de la
qualité de la thése soumise au microfilmage Nous avons
tout fait pour assurer une quahté supérieure ae reproduc
tion.

Sl manque des pages, veuilllez communiquer avec
funiversité qui a confére le grade.

La qualité d'impression de certaines pages peut laisser &
désirer, surtout si les pages ornginales ont été dactylogra
phiées a I'aide d'un ruban usé ou si l'université nous a fail
parvenir une photocopie de quahté inférieure

i a repreduction, méme partielle, de cette microlorme est

soumise a la Loi canadienne sur le droit d'auteur, SHC
1970, c. C-30, et ses amendements subséquents

Canadi

i+l

National Library Bibliothéque nationale
of Canada du Canada

Canadian Theses Service Service des theses canadiennes

Ottawa, Canada
K1A ONA

The author has granted an irrevocable non-
exclusive licence allowing the National Library
of Canada to reproduce, loan, distribute or sell
copies of his/her thesis by any means and in
any form or format, making this thesis available
to interested persons.

The author retains ownership of the copyright
in his/her thesis. Neither the thesis nor
substantial extracts from it may be printed or
otherwise reproduced without his/her per-
mission.

L'auteur a accordé une licence irrévocable et
non exclusive permettant a la Bibliotheque
nationale du Canada de reproduire, préter,
distribuer ou vendre des copies de sa thése
de quelque maniére et sous quelque forme
que ce soit pour mettre des exemplaires de
cette these a la disposition des personnes
intéressées.

L'auteur conserve la propriété du droit d’auteur
qui protege sa thése. Ni la thése ni des extraits
substantiels de celle-ci ne doivent étre
imprimés ou autrement reproduits sans son
autorisation.

ISBN 0-315-59143-9

Canadi

Temporal Object-Oriented DataBase - A Data Model

Rajwantbir Singh Kohli

A Thesis
in
The Department
of

Computer Science

Presented in Partial Fulfilment of the Requirements
for the Degree of Master of Computer Science at
Concordia University

Montreal, Quebee, Canada

June 1990

© Rajwantbir Singh Kohli, 1990.

ABSTRACT

Temporal Object-Oriented Database - A Data Model

Rajwantbir Singh Kohli

In this thesis a data model (Temporal Object Oriented Database) is
discussed. This model incorporates the concepts of Object-Oriented Design with
the concepts of time to model the real world and support applications from the
CAD/CANI, Al, OIS, ete. domains. The System supports schema evolution, ohject
(instance) evolution, versions, multityping and history maintenance. The system
provides a natural desig® environment with temporal capabilities. The maodel ean
support versions and schema management for designs as they evolve (i.c., schemn
evolution with time), and concurrency control for cooperative work in multinser

environment (the issue of concurrency is not discussed in this thesis).

it

Dedicated to

My Parents

and |

D. S. Kohli

G b A N o g # -

iv

Y S

ACKNOWLEDGEMENTS

There were significant contributions from a number of people without which
this work could not have been completed successfully. First and foremost, 1 would
like to express my sincerest thanks to my two advisors Dr. F. Sadri and Dr. I'.
Goyal. I consider myself singularly fortunate to have had the opportunity of
working with them and sharing their experience. I am thankful to Dr. Goyal for
introducing me to the area of Object-Oriented Databases and their problems and
motivating me to pursue graduate studies, for which 1 am very grateful. 1 am
thankful to Dr. Sadri, for his invaluable guidance, immense patience, and
encouragement through every step of the work leading to the preparation of this
thesis. He had to work harder than me in order to help me to mould my fuzzy
half baked ideas and present them precisely. He taught me the art of tackling
problems in a top down manner and conceptually structuring them. Their

patience, encouragement and moral support are deeply appreciated.

Differential fees and inflation make the financial aspect the most worrisome
issue for international students. I am thankful to Dr. Goyal and Dr. Sadri for
sponsering my graduate studies and providing the financial support, thus
mitigating my financial woes.

I am also thankful to Dr. Peter Grogono for helpful discussions and giving
me valuable insights into the issues of Object-Oriented Programming. I thank my
fellow students of the Cave, for providing a stimulating atmosphere for

discussions and criticism. Special thanks to Dr. T. S. Narayanan, Dr. Premchand

\Y

Nair, Derck Pao, Hasan Jamil and Basudeb Dash with whom 1 closely interacted
during my tenure here. Dimitri Livas, Jason Cheng both helped me with the
implementation problems and providing a better understanding of the UNIX
system’s features, Dash and Jamil both did the daunting task of proofreading this

thesis and providing valuable suggesstions.

Last but not least, T would like to express my deepest gratitude to the
members of my family for their unwavering support and encouragement during

the entire course of my studies.

vi

K Contents
! TR0 1174 oo LTI AT} + RO T O PR I
| 1.1 Object-Oriented CONCEPLS civvveeiirienreerirresrenrrrnriiriesssersersssssesssrereeseenns 2
; 1.1.1 Objects, Attributes, Methods and Messagesccvvvveeeeereennnnne, 3
E 1.1.2 Classes, Class Hierarchy and Inheritanceccoovveeeeveeeiivinnnnnnns 5
1.2 Temporal ASPECLS tiviiviiireeiereciriieeieeeeneasreseeressrsssnsereereseesesstsrereseeees 7
1.3 Related Work in Schema Evolution in OODBMSccccovvvrveiciinnennne. 8
2. The Temporal Object Modelvvvveivriiiiierinieeeeeee e 11
2.1 Class DefiNTLION cuoviiiiiiiiiiieiiieierrieiiciiie e e e e e s ese s e e e e e sesans I
2.2 Class StablliZatiOn ..uuceueeeeiriiiir et ee s 15
2.3 Object Base - Schema EvOlution ...eeeeiiiiiiiiiiiiiiineeeneeee e, 20
2.3.1 Class VEISIONS ..cvcvvveeerereriinineeessneneienmuieeninnieeseonsssssssssisnneeesins 20)
2.3.2 Link Changes ..ovccvvviieeieiniieieeiierrieeeceeireee s esesvaeeeeeerreeee s 9
2.3.3 Addition of New Class c.cvvvieierieriiienrieieieinereeneinnniiniieeeneeennns 32
2.4 Methods - MeSSAZeS ciiieiiiieiiiiieiiiiieiiiii e e rerree e 31
2.5 Object Instance - Instance Evolutionccccccevveviieirirvinvmvvinnnnnenneeannns 36
2.5.1 MUBItYPING toreeiriciiieiiirieccerrr e e e s eaane s 3R
2.5.2 Instance MIgration ..cccoeeeeeieeceniieiiiiieiciiirererveee s s sessenns 30
L T s 11 o) o R 10
2.7 Operations - Queries and Updates ..iceeereiiiiiiinieiniiniiinieienseereeeeeenns 1)
2.8 Checkpoints ...ccevvunen. S RPRY ¥
2.9 HIStOTY LOZ coveeiririircriiinniieeereerreeireeeesecsreesaareonsssssnesesssensssssssssnssseens Y|
2.10 Invalidation of LOg EDtries ..cvreereeiiieeeiciieneceinveie e a0

vii

e

3. 1mplementation .ot s 58

3.1 System SEIUCLUIE .ivviiiiiirrrrriieieeseiiiiireeseineiessseressssnineeesesnsannninsseesne 58
3.2 Schema MAnager . iieesioiiiiieiiiiiicesioeraienieerertioreraseinas 59
3.2.1 Class Specificationcciieiiiiiiieninniiniiierinceienee. 61

3.3 Method Manager - Method Specificationcceeviveiiiiiniiiniecennniiiininnnn, 62

3.4 Data Manager oo s e 63
3.1.1 Object TAentifier .oceceiviiveie i, 64

3.5 Class DefinItIoNn .ivviiiiiiiiiiiiiiiiiiiinii s e s 66
3.6 Assigning Version Number ... 70

3.7 Class SLabilization ...ueevieniviiiniir et s sreeeeas 72

4. Conclusions and Research DIirections oocveriiciiicniencnnnee, 73
e JROFCTCIICES ittt e s b ssiss et s sessnte e sas s s e e s s ratsea s s b s rta b ns 75
AL Appendix A: User Manual ciiiii i e 79

viii

o PPOPRTREILETLNOR S 1 wr eag e T
k]

Figure 2.1 ...

N E A RTATLARY ¢ g

Figure 2.4 ...
Figure 2.5 ...
Figure 2.6 ...
Figure 2.7a .
Figure 2.7b .
Figure 2.8 ...
Figure 2.9 ...
Figure 2.10 .
Figure 2.11 .
Figure 2,12 .

Figure 2.13 .

Figure 2.14a
Figure 2.14b
Figure 2.14¢
Figure 2.14d

Figure 2.15 .

RN e

g~

Figure 2.2 ...

Figure 2.3 ...

Figure 2.16 ..
Figure 3.1 ...
: Figure 3.2 ...

List of Figures

9
...................................... U PPN B

.
.. R R A |

33
-- AR Al

‘.)
.. 2

... 41

.. 49

... 46

51
... 5

rr
...)4

................... SR)11

CHAPTER 1

INTRODUCTION

Many new data-intensive applications in computer-aided design and
manufacturing (CAD/CAM), artificial intelligence (Al), office information systems
(OIS), multimedia information systems, computer-integrated manufacturing
(CIN]). computer-aided software engineering (CASE). etc., are quite complex to
model using conventional data base systems (network. hierarchical, or relational).
The domains of these applications are not static. Their domain is constantly
evolving, (domain refers to the conceptul structure of the application). It
undergoes refinement over period of time. These environments are characterized
by constant change. hence they are not static, thus rendering the conventional
data base management systems inadequate to model and support the needs of
these applications. The conventional database management systems also lack the
capability to record and process time-varying aspects of the real world, support
historical queries about past status, permit trend analysis - essential for decision

support systems. and represent retroactive or post-dated changes.

Currently most of the research work in this area is concentrated on Object-
Oriented Databases, for example [6,7,11,13,16,17.,19] are related to ORION system.
carried out at MCC. Their system (ORION) caters for schema evolution and
version control but does not support temporal capabilities. GEMSTONE/OPAL of

Serviologie, [22], is an Object-Oriented database system. based on Smalltalk-80

[14]) is in commercial use, Vbase integrated object-oriented System of Ontologic,
Inc. {3], RIS [12], Graphael's G-Base, and Innovative Systems VISION are other
systems in use. The work on temporal database involve extensions of reiational

model to support temporal concepts [27,28].

Temporal Object Oriented Database integrates temporal aspects into object
model to meet the needs of these new applications, enabling one to model objects
of any complexity, express relationships among objects and support dynamic

evolution of the application environment.

This thesis is organized as follows. In this Chapter the Object Modecl, i.c.,
basic object-oriented concepts are reviewed. Chapter 2 describes the Temporal
object model and Chapter 3 discusses the proposed implementation issues for the

model. Chapter 4 concludes with some open issues for future rescarch.

1.1. OBJECT-ORIENTED CONCEPTS

There are many notions of the term "object-oriented" and object-oriented
databases in literature. In this section the basic object-oriecnted concepts and

terminology relevant to our model are reviewed.

The database field is concerned with the management of large amounts of

persistent, reliable and shared data. "Large” means too big to fit in a conventional
main memory. "Persistent" means that data persists from one session to another,
i.e. data (objects) are accessible past the end of the process that creats them.
"Reliable" means recoverable in case of hardware or software failures, i.c. data is
resilent in the face of process failure, system failure, and media failure. "Sharing"

implies simultaneous use of the database by multiple users.

New applications of database technology, CAD, CASE, Office antomation, Al

etc., need large amounts of reliable, sharable and persistent data. To cater for the

needs of these users, the approach adopted is to integrate database technology and
the object-oriented approach in a single system - Object-Oriented Database
System [5].

Object-oriented database management systems (OODBMSs) use object-
oriented concepts (discussed in this chapter) and provide additional characteristics
necessary to support large, shared, persistent object stores (facilities for objects
that must persist beyond a single transactions execution’s life-span). These
characteristics include ecfficient processing over large secondary storage
organizations, concurrency control, recovery facilities, and efficient processing of

set-oriented requests or queries.

1.1.1. OBJECTS, ATTRIBUTES, METHODS AND MESSAGES

In an object-oriented system, the database is a collection of objer.s, where all
conceptual entities of any complexity from the application domain are modeled as
objects. An objeet is a self-contained entity which has a state, method
specifieation, and method implementation [4]. The state of the otject is a list of
attributes, each attribute having an associated object type (class), i.e. we can
represent objects of any complexity. The method is a property (behavior)
exhibited by the object consisting of a name, arity and arguments.

Implementation of a method is a internal code which implements the operation.

The object types are defined according to the abstract data type (ADT)
concepts. They encapsulate a data structure and its associated operations, the
eflects of operations being public, the implementation of operation being private
[29]. An object has an interface part and an implementation part. The interface
part is the specifications of the set of operations which can be performed on the

object. It is the only visible part of the object. The implementation part has a

data part and an operation part. The data part is the memory of the object and
the operation part describes the implementation of each operation in some

programming language [5].

Every object is an instance of some type (object type / class) which describes
the behavior of its instances. A type T is a specification of behavior. As such, it
describes a set of operations op (T), a set of attributes atr (T), and a set of
¢ nstraints con (T) that pertain to any instance ¢ of T. Any operation o in op (T)

can be applied to t, and every constraint ¢ in con (T) must be satisfied by ¢ [26].

The behavior »f the objects is encapsulated in methods. Nethods consist of
code that manipulates or returns the state of the object. Objects are autonomous
entities that respond to messages or operations and share a state. Objects can
communicate with one another through messages. Messages constitute the publie
interface of an object, they are implicit invocation of the operations. For cach
message understood by an object, there is a corresponding method that executes
the message. An object reacts to a message by executing the corresponding
method, and returning an object [6]. A message is sent (o an object, called the
receiver, to invoke one of the object's operations. The message includes a symbolie
rname, the selector. which describes the desired operation. It may also contain
arguments to be passed to the operation. The message, then, describes what the
invoker wants to happen, not how it should happen. The message receiver, in
turn, has methods which describe how the operations are performed. A method is
like a procedure in that it is comprised of a sequence of executable statements.
However, methods are inseparable from the objects they are defined for; a method
can only be invoked when the object receives a message whose selector corresponds

to that method.

1.1.2. CLASSES, CLASS HIERARCHY, AND INHERITANCE

Similar objects are grouped together into classes. Objects of the same class
have common operations and therefore they exhibit uniform behavior. (In our
model some objects may have exceptional behavior not common to all objects of a
class). All objects belonging to the same class are described by the same set of
attributes and methods. They all respond to the same message. Objects that
belong to a class are called instances of that class. A class describes the form
(attributes) of its instances, and the operations (methods) applicable to its

instances.

A class is a template, it contains two aspects: an object factory and an object
container. The object factory means that the class can be used to instantiate new
objects by performing the operation new on the class. The object container means
what is attached to the class as its extension, i.e. the set of objects of the system
which belong to the class at this time. The user can manipulate the container by

applying operations on all the elements [5,9,10].

The process of object class definition by specialization, a top down approach.
results in the concept of a class hierarchy, which extends information hiding
capability even further. A class hierarchy is a hierarchy of classes in which an edge
hetween a pair of nodes represents the IS_A relutionship, that is, the lower level
class (node) is a specialization of the higher level class (node) (and counversely, the
higher level class(node) is a generalization of the lower level class(node)). For each
pair of classes in a class hierarchy with an edge between them, the higher level is
called a superclass, and the lower level class a subclass. The attributes and
methods (collectively called properties) specified for a class are inherited (shared)
by all its subclasses. A class inherits properties from its superclass and forms a

inheritance chain. The subclass can add new instance variables (attributes) and

[eTHCaESTy

me bt e BER bk € e S mt e bl

AR

oy

methods of its own. It can also define a method with the same selector as one of

the superclass’s methods; i.e., overriding a method.

When a message is sent to an instance of a certain object class to perform a
certain operation on this object and no corresponding method, (which implements
the response to the message) has been defined with the object class, the search is

cortinued within the superclass.

When a class inherits from a single ancestor (superclass) it is known as single
inheritance, and when it inherits from multiple (more than one superclass)
ancestors it is known as multiple inheritance. model we focus only on single

inheritance.

Inheritance allows new specialized classes to be built on top of the generic
classes and they inherit all the instance variables (state) and hehavior (methods)
of the generic class to which they append specialized states and behavior. The
specialized class can also define a method with the same selector as one of the

superclass’s methods; this overrides the existing generic behavior.

We introduce the notion of Afultityping, i.c., an object may change its type
dvnamically based on the occurrence of some triggering event, but at any given
instance of time the object exhibits the properties of only one object type (elass)
of which it is member at that moment. That is, an object may exhibit the
behavior of several classes. It can be associated with different roles. However at o
given instance it can portray only one role, so multityping differs from multiple
inheritance. For example, an object may be a professor. a parent, and a musician,

portraying diflerent behavior at different instances of time.

Every class inherits from the class OBJECT. This is a class provided by the

system which describes rudimentary behavior common to all objects in the

system. The OBJECT class has methods for testing for class membership, etec..
These methods can be extended and modified in the object’s class to provide more
specific behavior. The subclass/superclass relation structures the classes of the
system into an inheritance tree for single inheritance rooted at OBJECT. The
inheritance relation in case of multiple-inheritance is in the form of a directed
acyclic graph (a lattice).

An object is some private data and set of operations that can access that
data. An object is requested to perform one of its operations by sending it a
message telling the object what to do. The receiver responds to the message by
first choosing the operation that implements the message name, executing this
operation, and then returning control to the caller. The word message bears
strong connotations of concurrency, it is not so. Messages are not a concurrency
mechanism, but a modularity mechanism [9]. Messaging creates the encapsulation
of the data and procedure that is called an object. One may do partial ordering of

messages based on a prior information and introduce concurrency.

1.2. TEMPORAL ASPECTS

Conventional databases represent the state of an enterprise at a single
moment of time. Although the contents of the database continue to change as new
information is added, these changes are viewed as modifications to the state, with
the old, out-of-date data being deleted from the database. The current contents of
the database may be viewed as a snapshot of the enterprise. Temporal
information, representing the progression of states of an enterprise over an
interval of time, is not adequately supported by the conventional database

systems.

The database is extended with the concept of time, which is an essential part

~1

P e s £

W e AT e

g -

of the information about the constantly evolving real world. Facts or data are to
be interpreted in the context of time. which enable one to perform post-dated and

retroactive changes, correct past errors, support historical queries and trend

analysis.

To model changing state and changing structure(schema), two kinds of time:
transaction (commit) time, and effective (valid) time are sufficient to support and
handle temporal information. Transaction time (Commit time) is the time the
information was stored in the database. Valid time (Effective time) is the time
when the relationship in the enterprise being modeled was valid. The semantics of
valid time are closely related to reality, and the semantics of transaction time are
concerned with database activities. Temporal databases emphasize the need for
both valid (effective) time and transaction (commit) time in handling temporal

information. and both of these are orthogonal time axes.

To interpret the facts in the context of time and characterize the behavior,
we need to specify temporal constructs. Temporal constructs like before, equal,
meets, ete are supported by the system. These constructs are based on temporal

intervals rather than time points as discussed in (1,2}.

1.3. RELATED WORK IN SCHEMA EVOLUTION IN OODBMS

Design environments are characterized by continuous change. Traditional
database tools do not deal well with certain kinds of change. In particular,
changing the database schema in arbitrary ways is a very difficult process. The
existing conventional database systems allow only a few types of schema changes:
For example, SQL/DS only allows the dynamic creation and deletion of relations
{classes) and the addition of new columns (instance variables) in a relation. This is

because conventional record-oriented applications do not require more than a few

types of schema changes. More over, the data models they support are not as rich

as object-oriented data model.

To meet the requirements of the design applications, the System needs to
provide flexibility in dynamically defining and modifying the database schema,
that is, the class definitions and the inheritance structure of the class lattice. This

is an essential feature of Object-Oriented Database System.

Skarra and Zdonik [25, 26] have presented one of the initial work on Schema
Evolution. They discuss the problem of maintaining consistency between a set of
persistent objects and a set of type definitions that change. They attempt to
make a type’s changes transparent with respect to nrograms that use the type.
They introduce version control mechanism and a set of error handlers associated
with the versions of a type. The handlers effect.vely expand the behavior defined
by each version so that instances of different versions may be used
interchangeably by programs. They discuss versioning of a class only, rather than

the entire schema.

Class Modification in the GemStone Object-Oriented DBMS [24], discusses
the impact of changing types on persistent instances and how to bring existing
objects in line with a modified class. The Conversion approach, i.e., change all
instances of the class to the new class definition, ensuring that the auxiliary
definitions (such as class's methods) agree with the new definition, is adopted by
GemsStone. In this approach much time can be consumed at the time a class is
modified and the underlying database is coerced to conform to the new class

definition,

Banerjee et al. [6,7] have considered the problem of type evolution in the

context of an object-oriented type lattice. They have classified basic categories of

change. For each category, they then provide rules for keeping the lattice self-
consistent. They have presented a formal framework for schema evolution, and
defined the semantics of schema changes using the framework. The framework is
based on a graph-theoretic model of the class lattice. The framework consists of
invariants and rules. Invariants are those properties of a class lattice that must
be preserved before and after any schema change. The rules guide the selection of
one most meaningful option for preserving the invariants, in cases where more
than one option is possible. The schema evolution model captures the essential
characteristics of a class lattice with multiple inheritance. Their approach
however does not take the time into account, an essential component in modeling

real world applications.

In [18] Kim and Chou propose a model of versions of schema in a multi-user
design environment where the schema of the design objects may undergo dynamie
changes. Their model of versions of schema extends the model of versions of
single objects (class). They discuss three approaches which allow the users to be
able to view and manipulate different sets of objects under different versions of
the schema. One is to view the entire schema as a versioned ohject; this is known
as versions of schema approach. Another is to view each class as a versioned
object; this is the version of class approach. Another is to provide dynamic views,
rather than versions of the schema; this is the view of schema approach. The
model includes notions as derivation hierarchy for versions of schema and
incorporates the view that each version of the schema captures the state of the
database at some point in time and that the state may be inherited into any

derived schema versions for read and update.

10

CHAPTER 2

THE TEMPORAL OBJECT MODEL

The Temporal Object Model captures the inherent dynamics of the object
and its behaviour, versions of classes and object instances are maintained. Version
control is an essential feature of integrated data-intensive applications, to enable
the users to experiment with multiple versions of an object before selecting the
one that meets their requirements [6]. This chapter discusses the temporal object

model and schema evolution.

In an object-oriented system, Class (object type) is the building block of the
system, analogous to relations in the relational davabase system. In a temporal
mode] each class is associated with commii_time and effective_time., whose

semantics are discussed below,

The database schema is the class definitions (state and operations) and the
inheritance structure of the class hierarchy. The root of a class hierarchy is the
svstem defined class OBJECT, with all classes as its subclasses, as illustrated in
Figure 2.1. The class definition comprises of the structural specification
(attributes) and the behaviour (methods) of the objects in the class. Each class has
only one superclass in this model, where each subclass is a specialization of its
superclass. This is known as single tnheritance , and is shown in Figure 2.2.,
where class C and class D are subclasses of class A; class A and class B are

subelasses of root class OBJECT.

The semantics associated with effective_time of a class is that it is the time
when the instances of the class are valid, whereas the commit_time of a class
indicates when the class is available for the users to create instances of it and
perform operations on it. The availability of the class is ensured by stabilizing the

classes by the system discussed in the following section.

class: OBJECT ROOT
system defined of class hierarchy

C1 c2 Cn
altrbutes attributes attributes
methods meethods methods

Figure 2.1:Schematic representation of the Database Schema

RO0OT
PORIECT

Figure 2.2 : Database Schema - (SINGLE INHERITANCE)

13

2.1. CLASS DEFINITION

In our model, any real-world entity is modeled as object. An object has
associated state and a behaviour. The state of an object is defined at any time by
the value of its attributes (called instance variables, elsewhere). Attributes can
have as values both primitive objects, such as strings, integers or booleans, and
non-primitive objects; a non-primitive object in turn consists of a set of
attributes. Therefore objects can be recursively defined in terms of other ohjects.
The behaviour of an object is specified by the methods that operate on the object
state. Each object is uniquely identified by a system-defined identifier, which is

independent of how an object is accessed or modeled with descriptive data.

Objects with the same properties and behaviour are grouped in classes. Class
represents a type template, i.e., specifving the domain associated with each
attribute of an instance of the class. A class C consists of a number of attributes,
and the domain (value set) of an attribute A of an object instance of € is a
primitive object class or some other class C'. The class €' in turn consists of o
number of attributes, and their domains are other classes. The class €' i< culled
the component class of class C. The fact that class €' is the domain of an
attribute of class C establishes a relationship between the two classes. A
relationship from class C to class C' specifies that C is defined in terms of class
c'.

Classes are organized in a class hierarchy, also referred to as inheritance
hierarchy. Inheritance allows the definition of a class, called subclass, as a
specialization of another existing class, called superclass. A subclass inherits
attributes and methods from its superclass, and in addition may have specifie
attributes and methods. The model permits versions of a class to exist. A new

version of a class is derived from an existing class. The new version is called the

14

dertved class and the existing class from which it is derived is called the deriver
class.

Cl: s definition of a class includes the superclass, deriver class if any,
structural specification, method specificatior (i.e., interface), implementation and
effective_time of the class.

The structural specification is a list of <attribute_name, class> pairs, where
class is the Object Type of the attribute, thus allowing objects to be defined in
terms of other object types (Class) and model objects of any complexity. The
primitive object types are Integer, Float, Char and Boolean; which are used as the
basis for defining classes. Method specification (i.e., interface) is a list of
<method_name, argument_type_list >, while implementation is the internal code,
which implements the behaviour (operation). Each method is also associated with
its Effective_time.

The creator of the class also specifies the Effective_time associated with the
class. The constraint that the effective_time of the method should be same as that

of the class or later but not earlier than the class should be satisfied.

Class definitions may involve cycles, i.e., a class C may have a attribute
whose domain is class C!, and class €', may have attributes, which may directly
or indirectly have domain class C. The classes involved in a cycle are called cyclic

dependent classes.

2.2. CLASS STABILIZATION

The System provides users the flexibility to specify the classes in any order,
but before the users can operate on the class, the system must ensure that all
components of the class have been specified and satisfy the necessary temporal

constraints, only then is the class available to the users, i.e.. stabilized, and is

15

T TR ATt AR T

GaE T BTNF

e e

el e e YA R

assigned a Commit_time by the system when it succeeds in stabilizing the class.

The Temporal Coustraints to be satisfied by the class are that (1) the

Effective times of the Component Classes are earlier or the same as that of the

class, and (ii) the component classes are stabilized. Stabilization implies that the

Superclass of each component class is also stabilized and they also satisfy the

temporal constraints amongst themselves.

Consider Figure 2.3, which shows the structural specification of class O. class

O contains three attribute of object types C_1, C_2, and C_3, which are user

defined classes and are component classes of class Q. For Stabilization of class 0.

the following constraints need to be satisfied.

1.

[

The Effective_time of component classes C_1, C_2, C_3 should he

* o —y

earlier or the same as that of class O.
The Superclass of class O should be stable.

The Effective_time of Superclass of O should be < Effective_time of

class Q,

The component classes should bestable, or should be stabilized at the

same time the class is stabilized.

Il the class is a derived version (discussed in Class Versions), then it's

parent deriver class version should be stable.

16

Class O

Attr a : C_1

Attr b : C 2
Attr ¢ : C_ 3

Figure 2.3 : Class Structure

Ly e e

The Object base allows us to model objects of any complexity, i.e., classes
can be defined in terms of other classes (Object types). cyclie dependencies can
occur amongst classes. The Stabilization process identifies the cyclic dependent
classes and ensures that they satisfy the temporal constraints. Consider Figure

2.4, which illustrates cyclic dependencies amongst classes.

Class X, consists of component classes J and Y. Class J is defined using
primitive class Integer, whereas class Y is defined in terms of class L, which is
defined in terms of class M, and which in turn is defined in terms of class Y.

There occurs a cyclic dependency amongst classes Y, L and M.

Stabilization of class X, will generate a directed graph, with a directed edge
between the class and component class, for the classes under consideration. To
identify the cyclic dependent classes, the strong component of the graph is
determined and members of the strong component are cyclic dependent on cach
other. The temporal constraint to be satisfied by the cyclic dependent classes is

that they have the same Effective_time and Commit_time.

So stabilization of class X requires that the class J be stable, i.e.,
Commit_time of class J be earlier than that of class X, and Effective_time of class
J is also earlier or same as that of class X. Classes Y, L and M must have tlie

same Effective_time and Commit_time and -~tould be stable, and their

timestamps should be earlier or the same as that of class X.

18

Class Y

Figure 24 : Cyclic Dependent Classes :
Classes Y, L, and M are Cyclically dependent

19

T TR Ty S

e T TR

2.3. OBJECT BASE - SCHEMA EVOLUTION

The data-intensive design applications require the flexibility of dynamically
defining and modifying the object base schema, that is, the class definitions and
the inheritance structure. The changes to schema over time is known as Schema
Evolution. The changes to the Schema may involve changes to a Class definition
in the Class Hierarchy - Class Evolution, changes to the links between classes in
the Class Hierarchy, and creating new nodes in the Class Hierarchy [6,7]. The
approach adopied is that of an Historical database, so nothing is ever deleted, but

at a given time only part of the schema may be valid and be of interest to the

user.

2.3.1. CLASS VERSIONS

Changes to the contents of a node (Class), i.e., stabilized class, in the class
hierarchy results in the creation of a new version of a class. Changes to the
contents of a class involve adding/dropping of attribules and methods. Iigure 2.5
schematically shows Class Evolution. Class A has two versions, version 2 is
derived from version 1. Class evolution results in version hierarchy among classes,
where each version is an independent class by itself. A version may share
specifications of its parent deriver version. Henceforth, class refers to a versioned
class. By defauit, the versions have the same superclass and each derived version
should satisfy the constraint that its Effective_time is later or the same as that of
its parent deriver version. Each version represents a different view of the object, so

one can experiment with multiple versions in design applications.

Figure 2.5 also shows three versions of class B, and two cach of class C and

class D. Figures 2.6, 2.7a, 2.7b and 2.8 schematically illustrate Class Lvolution

and Schema Evolution.

20

ROOT OBJECT . -

CLASS A

Y

CLASSC

Figure 2.5: Database Schema - (CLASS VERSIONS)

ROOT
of class hierarchy

¢lass; OBJECT
systemdefined

TIME
altributes
methods

DATE
attributes

methods

PERSON
attributes

methods

Figure 2.6:Schematic representation of the Database Schema

aftributes

Figure 2.7a: CLASS EVOLUTION

ROOT
of class hierarchy

class: OBJECT
system definad

TIME
attributes
methods

DATE
attributes
methods

SINO
attributes

V4
3 PERSO
aftributes attributes attributes
methods methods methods

Derived Versions
Schema Hierarchy

Figure 2.7 b: Schematic representation of the Database Schema
(CLASS EVOLUTIOM)

ROOT
of class hierarchy

DATE
attributes
methods
V4
PERSO PERSO
attributes attributes
methods methods

Student
altributes
methods

Staft
attribufes
methods

Teaching
attributes
methods

Support
attributes
methods

Figure 2.8:Schematic representation of the Database Schema
(SINGLE INHERITANCE via SPECIALIZATION)

A change to the definition of a class is captured as a new version of the class,
without effecting the existing classes and their instances. The new version may
retain the attributes of its parent deriver version or define them itself. For
instance Version 2 of class A retains attribute al form its deriver version and
defines a2, a4 and ab itself, as shown in Figure 2.9. Each class version is an

independent Object Type, the version hierarchy of classes is shown in Figure 2.10.

Schema Evolution by specialization enforces the (i) Full inheritance
constraint, i.e., a class inherits all the attributes and methods from its superclass;
(ii) the Unique name constraint, i.e., all attributes and methods of a class, whether
defined or inherited, must have distinct names; and (iii) the Domain Compatibility
constraint, i.e., the inherited attribute of the class must have the same domain as
in the superclass or be a subclass of the domain in the superclass, as in ORION
[6,7].

All class versions have the same superclass as that of their parent deriver
version. All the versions retain the inherited attributes from the superclass, hut
may or may not retain the attributes defined in the parent deriver version. For
example, in Figure 2.9, class A_v3, is the superclass of classes C_vl, C_v2 and
C_v3. All the subclasses have the attributes inherited from the superclass in
addition to the defined attributes. Inherited attribute v4 has its domain as D',
which must be a subclass of D, the domain in the superclass. This is ensured by
the system during the specification of the class. The class C_v3 may redefine the

domain of attribute v4 to be D'’ , where D'’ is a subclass of D' .

26

CLASS C

CLASS A

Figure 2.9 : Class Versions

27

CLASS B V1

CLASS D

ad a hek TS s L sty -

* VERSION H!ERARCHY (Class A)
Subclasses of Root OBJECT

Class A V1
Class A V2 \C]ass A V3
Class A V4

VERSION HIERARCHY (Class C)
Subclasses of Class A V3

Class C VI

Class C V2 Class C V3

VERSION HIERARCHY (Class D)
Subclasses of Class A V4

Class D VI

Class D V2

Figure 2.10 : Version Hierarchies
28

2.3.2. LINK CHANGES

Changes to an edge in the Class Hierarchy results in changing the Superclass
of a class. In our model any change to a class will result in a new version. While
making class S a superclass of class C, the following constraints have to be
satisfied. A new version of C will be created called C'. C’' will retain the
attributes defined in C and will inherit attributes and methods from S. The
methods defined in C will be retained in C’ only if they do not have embedded
references to the attributes and methods inherited by C from its superclass. In
addition the eflective_time of C' should be later than or the same as the
effective_time of S and the components should also satisfy the temporal
constraints, The changing of « superclass is envisioned by the user when he/she no
longer wants to use class C, i.e., stop class C and change the design by changing
the hierarchy.

Consider Figure 2.11 which shows the changes to an edge in a Class
Hicrarchy. Class B_vl is a subclass of class A_v1. It inherits attribute X and Y
and methods M1 and M2 from the superclass and defines attribute Z and method
M3. Changing the superclass of B_v1 will define a new version B_v2 (it is not a
derived version), which is a subclass of class C_v1. Class B_v2 inherits attributes
A and B. and method M from its superclass C_v1, and retains the defined
attribute Z. The retention of method M3 is determined by the system. It is
retained if the method M3 has no embedded references to inherited attributes X,
Y and inherited methods M1, M2, There is no semantic relationship between class
B_v1l and class B_v2, as they are independent and not derived versions. The
classes should satisfy the following temporal constraints. where the effective_time
of class is denoted by ET(Class), and that of a method by ET(Method). The
ET(class B_v2) > ET(class C_v1), the ET(B_vl) < ET(B_v2) and ET(D_v2)

29

< ET(B_v2). The effective_time of inherited method is coerced to satisfy the

condition ET(M4) > ET(B_v2).

30

< OBJECT _>

Class A vl Class C v

Class B vi

OBJUECT

Class A v Class C v

Ciass B v1 Class B v2

Figure 2.11 : Changes to an Edge (SCHEMA EVOLUTION)

31

2.3.3. ADDITION OF NEW CLASS

Addition of a new class in the class hierarchy can be done by defining a class
as a subclass of the Root OBJECT, or by defining a new version (derived) of o
class or by specialization of a class. A class can also be added to the class
hierarchy by inserting a class in between the existing hierarchy, i.e., If class B is o

subclass of class A, one can insert class C as a subclass of A and superclass of B.

Insertion of class C should satisfy the system constraints, i.e., temporal
constraints, full inheritance constraint, unique name constraint and domain
compatibility constraint. Class C must have all the attributes and methods
defined in class A, in addition to its own defined attributes and methods. The
defined attributes of C will be inherited by it's new subclass B', if the defined
attribute has the same name as that of an existing attribute in it’s subelass, the
user should ensure that they have the same semantic interpretation, cither they
may have the same domain, or the domain of the defined attribute in class € is
superclass of the domain of the attribute in the existing subclass, which conforms
to the domain compatibility constraint. Similarly, if class C defines a method
which exists in its subclass, the method in the subeclass is treated as it's

redefinition in accordance to the Object-Oriented design principle.

Figure 2.12 shows schema evolution by inserting the class in the Clase
hierarchy. Initially the Schema consists of class B_vl and class A_v1, where class
B_v1 is a subclass of class A_vl. On inserting a class C_v1 as a subclass of A_v]
and superclass of B_v1, a new class B'v1 is created, which is an additive clone of
B_v1, a new class independent of B_vl. Class C_vl is a subclass of A_vl and

superclass of B/.vl. The schema contains both the views of the system.

Class A vl

Class B v

A INT
B:Dv1
C : CHAR
E:Hvi

M1, M2, M3

Class A Vi

Class C vi

Class B v

M1, M2, M3

Figure 2.12 : Inserting Class in the Hierarchy
33

2.4. METHODS - MESSAGES

Method is the implementation of the objects behaviour, whereas AMessage is
the signature describing the operation which will cause the invocation of methods.
Each class defines its interface by a set of strongly typed operation signatures, i.e.

messages , during method specification.

The methods capture the behaviour of the objects in a class. Methods may
enforce integrity constraints, which are statements that must always be true for
objects in the database; referential integrity, which asserts that a reference by one
object indeed leads to another object; and simulate triggers to help in constraint
enforcement. In general the systems should have a constraint manager, which
ensures that operations on objects maintain the semantics associated with the
schema. This decouples the necessity of encoding the semantic constraints within

method implementation.

To enforce Encapsulation, which states that the objects are accessible
through well-defined interface (operation signatures of a class), only the met hods
implementing operations for objects can access the representation used to store the
state of the object, thus allowing one to change the representation without
disturbing the rest of the system. In case of specialization, where new classes are
specified by extending the existing specification, the methods for the new classes
should not directly access the underlying representation of the superclass, but,
should access any attributes of the superclass only through methods inherited
from the superclass. This approach should be adopted by the implementor of
methods to honor the information-hiding principle of Abstract Data Types used in

Object-Oriented Design.

Full inheritance of methods in subclasses with redefinidion is permitted, ie.

34

ok e PR

methods with the same signature as in superclass with different implementation
can be specified. Moreover, all the inherited methods will conform their
eflective_time to be the same as that of the subclass’s effective_time or later, as a
method’s effective_time should be same or later than its class. For example,
consider class S with effective_time T, having methods M1, M2 and M3 with
eflective_times T, T,, and T3 respectively, which are > T. In addition assume
that Ty =T, Ty > T and T3 > T. Also thereis a class C, which is a subclass
of S, having effective_time T/, T/ > T. Assuming that T; < 7' and
T, < T', and T3> T'. When class C inherits methods M1, M2 and M3, the
effective times of M1 and M2 for class C are set to T’/ and that of M3 remains
T3, to satisfy the constraint that the effective times of the methods of a class are

same or later than that of the class.

The methods of a class are usually implemented using inherited methods of
the class and can also use methods of its component objects, which constitute
PART_OF relationship among classes. In Eiffel terminology a class is said to be a
client of its component class. The implementor should ensure that all the invoked
methods (inherited/component’s) have been specified. The methods are categorized
as external or internal. An External Method is the one which can be invoked by
the user and an Internal Method is the one which can only be invoked by the
systemy, e.g. indirectly invoked by a method, but not by the user. For example.
consider class PERSON_vl, with attribute name of type NAME_vi1. The
component class NAME_v1 has methods specified getfirstname and getlastname.
which are categorized as internal methods and the class PERSON_v1 has the
method specified getname which is an external method invoked by the user. The
method getname in turn calls methods getfirstname and getlastname defined on

the component class to find the name of a given person object.

35

2.5. OBJECT INSTANCE - INSTANCE EVOLUTION

Object instance (object) of a class is a mapping f:A — 17, where A is the
set of attributes of the class, and V is the set of values, such that f maps an
attribute A; to a value corresponding to the type of A; . For primitive types,
the value is represented directly by a value in the corresponding domain (e.g.,
integer, character). For other types a value is actually an object instance on the
type class, represented by an object identifier. Each object instance has a unique

identifier (oid) assigned by the system internally.

Each instance is associated with it's valid timestamp, which is same as that
of its class or later than its class. As operations (updates) are performed on the
instance, it's state changes. This results in the evolution of the instance, which we
consider as the creation of a new version of that instance. Each update operation
is associated with it’s effective time, the time when the update should take effeet.
The default situation is where the eflective time is taken to be the same as the
commit time, that is the time when the operation (method/action) commits. The
use of the effective time of the operation allows one to model retroactive and
post_dated updates. Updates with an effective time earlier than their commit time
are retroactive, while those with eflective time later then their commit time are
post_dated. The validity of the instance is implicit until the existence of its next
version. If the object is the only instance or the last version (in order of valid
time), its validity is from its valid time onwards, i.e. their is no limit on

upperbound (in general), until another version of the instance is created.

The system allows the user to stop a class, i.e. the validity of the class is
upto its stop time only, and the system keeps track of all the stopped classes and
their stop times. Once the class has been stopped no more update operations euan

be performed on the instances of the class and neither can new instances be

36

created, but one can query the state of the existing instances of the stopped class.

Example 1: Consider a class Employee_vl, with effective time Jan. 1, 1990. Let
John be an instance of the class Employee_v1l, with effective time and commit
time being Ja1. 25, 1990, (default situation), having a salary of 32,000 and
holding the position of Systems Analyst in the Electrical Engineering department.
Later on John is transferred to Computer Science department by an update
operation having effective time and commit time Feb. 28, 1990. The update
operation will result in creation of another version of John, the validity of the
first instance version is from Jan. 25th to Feb. 27th 1990 and the validity of the
second instance version is from Feb. 28th 1990 onward. The system records the

instance evolution by keeping track of the operations performed on objects. O

The effects of retroactive updates need to be propagated to the necessary
objects. The system should identify the affected objects, and the user will have to
take necessary actions. Automatic propagation of the effects of retroactive updates
is possible only in simple cases as discussed in Example 2. In general corrective

action should be taken by the user.

Example 2: Assume that a retroactive salary increment of 5%, effective Feb. 15,
1990 is awarded to John on March 10th 1990 (commit time). The effect of this
retroactive update should be reflected in the queries corresponding to John’s salary
depending on the observation time. John's salary on Feb. 15 as observed on
March 9th is 32,000 while as observed on March 15th is 33,600, reflecting the
retroactive update. In such simple cases th2 system may be able to propagate the
effects of retroactive updates, but in cases of design environment where retroactive

updates represent corrections to past errors, these may not be automatically

37

propagated to all the affected versions. In such situations, the system identifies the
invalidated objects and the user has to take the necessary corrective action as

deemed by the semantics of the application. O

2.5.1. MULTITYPING

Multityping is a feature introduced in this model, it refers to the ability of an
object to have more than one type, i.e., an object can be an instance of several
classes. It allows one to capture multiple behaviours exhibited by the object
depending upon the role associated with the object. For example, an object X may
be a member of class employee, class musician and the class hockey_player. The
object X will exhibit different behaviours, i.e., respond to different messages, or
even respond differently to the same message, according to the role exhibited by
the object X at a given instance of time. This also reflects objects evolution from

one type to another.

Example 3: Consider the class Student_vl having attributes name, idno,
department, and university with effective time Jan. 15, 1990; and class
Musician_v1 having attributes name, instrument and organization with effective
time Mar. 20, 1990. An instance Bob of class student_v1l with effective tiime Jan.
20, 1990, studying at Concordia University is multityped as an instance of class
Musician_vl with eflective time Mar. 25, 1990, undergoing by the psendo_name
Jack Brown, who plays the instrument piano with the organization Montreal
Symphony Orchestra. The response to the message getname on class student_v1 is
the name of the object, while the response by class musician_vl is the
pseudo_name of the object. The receiver class of the object identifies the role
being played by the instance. Moreover, prior to Mar. 25, 1990 Bob exists only as

a student but after Mar. 25, 1990, he exists as a student as well as a musician, O

38

2.5.2. INSTANCE MIGRATION

In Object-Oriented Model, all instances of a subclass are also instances of the
superclass but not vice-versa. In our model an instance of a superclass can evolve
and become a member of the subclass, a new class, which is another form of
object evolution. The migration of instances from superclass to subclass is at the

discretion of the user. In general an instance can migrate to any class.

Both multityping and instance migration are evolution of the association
between an object and the class, which attempts to model the real world naturally
and precisely, where the association between an object and the class is a function

of time.

Each class has membership constraints associated with it, which are satisfied
by all the instances of the class. In general a membership constraint may be a
First order logic expression. A membership constraint enumerates the acceptable
state of the instances belonging to the class. A special form of a constraint is a
conjunct of the acceptable state of the instance, i.e.,

(A, =z .0r. A, =y).and (A, 2z .0r. A, <2)

where A; and A; are attiibutes of an object and x, y, z, and z' are the values
of the attributes. Menbership constraints are application dependent and during
schema evolution the membership constraints of the subclass subsumes that of its
superclass, i.e., the membership constraints of the subclass are more restrictive
than that of its superclass. Constraints of a subclass logically imply the

constraints of the superclass.

Membership constraints enforce data integrity to be satisfied by the objects.
Automating the enforcement of general constraints by the system is an area of

future research concerning constraint management. Constraints such as the salary

39

W.w‘«;«mmM. -y b

of the manager is greater than that of his employee would require searching the
database on every update effecting salary. Usually integrity constraints are coded

in appropriate update methods, to ensure data consistency.

2.6. HISTORY

In Object-oriented system, the basic operation mechanisim is message passing.
Where a message is an expression of the form "<receiver> <message-sclector>
[<arguments>]", where <receiver> is the object to which the message is sent,
< message-selector> is a name of the type of interaction the sender desires with
the receiver, <arguments> are the values for the formal arguments. A message
requests an operation on the part of the receiver. The selector of message
determines which of the receiver’s operations will be invoked. The number of the
arguments and their types along with the receivers type participate in deciding
the method to be applied. A method may return an object, to which another
message can be sent. Each message can be considered as a transaction. All
operations are performed through message passing. To keep track of the systems
operations and evolution, a log of these operations are maintained, which
constitute the History of the System. This history is referred to answer the
queries. To facilitate queries, checkpoints of objects are maintained which in
conjunction with the history are used to materialize the current state of the
objects and answer queries. Transaction, Checkpoints and History Log are

discussed in section 2.7, 2.8 and 2.9 respectively.

2.7. OPERATIONS - QUERIES AND UPDATES

Queries are methods which retrieve information about the state of the
objects, whereas updates are methods which modify the state of the objects. Due

to the introduction of the notion of time in the system, the actions (events) are

40

categorized as either retroactive, normal or post-dated, these are schematically
shown in Figure 2.13 where the two orthogonal time notions, Commit time and
Effective time are plotted on X-axis and Y-axis, and an event associated with both
of these times is shown. Also because of the dynamic behaviour of the objects,
their state is dynamic. So at different instants of time, different answers may be
given to the same query. Likewise Queries have two temporal parameters
associated with them, the effective_time and the observation_time, whereas the

updates have effective_time and commit_time as their parameters.

The state of the object is a function of time, i.e., it may be observed to be
different with respect to different effective times. The observation_time is the
instant of time specified in the query at which the state of the object will be
retrieved with respect to the effective time specified in the query. The response to
a query will take into account the effect of all the actions (updates) with
commit_time upto the observation time of the query and eflfective_time upto the
effective time of the query. Any retroactive action with commit time later than
the observation time of the query and effective time earlier than that of the query
will not be reflected in the response to the query. This is schematically illustrated
for queries Q1, Q2, Q3 and Q41 in Figures 2.14-a, 2.14-b, 2.14-¢, 2.14-d, where

events under the scope of each query are indicated within a box.

41

P

R €. S

x (Postdated Action)

Effeclive
Time

-

ks
>

(Normal Action)

x (Retroactive Action)

- i
l

—
—r

| t

—rr
—r

Commit Time

Figure 2.13 : Events Piotted against Two independent Time axis

42

Effective
Time

Q1

N | 1 I

==

s f] | —

Commit Time

Q1 Observation
Time

Figure 2.14 a: Update Events on an object Plotted against

Two independent Time axis

13

T AT TR SRR YIS ST

e T B

Effective
Time J X
Q2
X
X
X
X
— i i i i t i i
Comnit Time
Q2 Observation
Time

Figure 2.14 b : update Events onan object Plotted against
Two independent Time axis

Effective] X
Time

Q3

—
———

] f
Commit Time

Q3 Observation
Time

Figure 2.14 ¢ : ypdate Events on an object Piotted against
Two independent Time axis

Effective X

Time
Q4
X
X
X
] X
f f i t — i] f
Commit Time
Q4 Observation
Time

Figure 2.14 d : Update Events on an object Plotted against
Two independent Time axis

406

The response to the query requires identification of the events within the
scope of the query in the history and executing these events in the order of their
effective time, to recreate the effective state of the object at the effective time of
the query as viewed at the observation time. To facilitate temporal query
processing, the current state of the objects are materialized at selected time
instances, which serve as checkpoints. The checkpoints along with the history log

are used to answer the queries (Discussed in section 2.8).

The following examples illustrate temporal query processing which involve

corrections as well as proactive and retroactive updates.

Example 4: A transaction T1 is an event which hires John with a salary of
45,000 on March 1, 1989, and the information is entered into the database also on
March 1, 1989, through transaction T1. It was subsequently discovered that John
was hired with a salary of 40,000 and this information was entered into the
database by another transaction T2 on March 15, 1989. As a result of ongoing
negotiations with the administration, an agreement was reached that all the
emplovees will get a 5% increment effective March 1, 1989. This information was
entered into the database on June 15, 1989. The materialized database has the

following information about John:

Transaction Effective Commit

Time Time
T1 John $45,000 March 1, 1989 March 1, 1989
T2 John $40,000 March 1, 1989 March 15, 1989
T3 John $12,000 March 1, 1989 June 15, 1989

Transaction T2 is a retroactive correction of the salary of the object John. the

validity of any correction must not be prior to the creation of the object. In this

47

case the validity of both the creation of the object and the retroactive update is
same. The validity of the update can be same as that of the cbject or later but
not earlier than the object’s creation. The response to the query "What was John's
salary on March 10, 1989 as observed on March 13,1989?", will be $45,000. While
the answer to the query "What was John’s salary on March 10, 1089 as observed
on March 17, 1989?", will be $40,000. The response to the second query will
require processing transactions T1, and T2 with commit time less than the
observation time and eflective time less than that of the query, in the order of
their commit times. Transaction T3 is not within the scope of the query as its

commit time is later than that of the observation time. O

Example 5: A transaction T4 is an event which hires David with a salary of
45,000 as a Systems Analyst on Feb. 1, 1989, and the information is entered into
the database on Feb. 6, 1989, through transaction Td. It was subsequently
discovered that David was hired as a Systems Analyst on I"eb. 10 1989 and this
information was entered into the database by another transaction T5 on Feh.15,
1989. Transaction T5 revises the effect of transaction T4 completely. In order for
the system to reason and respond to queries, a complementary Transaction T4/
which invalidates T4 is entered into the database prior to ThH. It has the effeet of

deleting the existence of David created by Td. The database has the following

information:

Transaction Effective Commit
Time Time

T4 David, Systems Analyst Feh. 1, 1989 Fcb. 6, 1989

T5' Invalidate T4 Feb.1s, 1989

T5 David, Systems Analyst Feb.10, 1989 Feb.13, 1989

-

The answer to the query "What was David’s position on Feb. 8, 1989 as observed
on Feb. 12, 1989?", will be Systems analyst but the response to the query "What
was David’s position on Feb. 8, 1989 as observed on Feb. 20, 1989?", will be that
David is not a valid object on Feb. 8, 1989. The Transactions enable the system
to reason temporal belief periods. It is the users responsibility to ensure that the
transactions emulate the semantics of the application. In this example it was
believed that David was a Systems Analyst from Feb. 1 onwards which was

revised by transactions T5', and T5. O

Example 6: Susan is hired as a Supervisor in June 1, 1988, and the information
is entered into the database through transaction T6 on June 1, 1988. A Decision
is taken in August 1, 1988 to promote Susan to Assistant Manager for a period of
2 years effective October 1, 1988 and then to promote her to the Managers
position at the end of that period. These proactive updates are recorded in the
database through transactions T7 and T8. Susan is found to be extremely
brilliant and therefore promoted to Managers position in December 1, 1988 with
effect from July 1, 1988 through transaction T9. Transaction T9. is an retroactive
update aflecting earlier proactive updates, some of which have already taken
effect. For the system to determine the belief periods and the relationships that
hold, compensatory transactions T7', and T8 , which invalidate transactions T7
and T8 respectively, have to be entered into the database. The database will have

the following information:

Transaction Effective Commit
Time Time

T6 Susan Supervisor June 1, 1988 June 1, 1988

T7 Susan Asst. Manager Oct. 1, 1988 Aug. 1, 1988

19

T8 Susan Manager Oct. 1, 1990 Aug. I, 1088
T7! Invalidate T7 Dec. 1, 1088
TS’ Invalidate T8 Dee. 1, 1988
T9 Susan Manager July 1,1988 Dec. 1, 1988

The response to queries "What is Susan’s position on Aug. 1, 1988 as observed on
Aug. 1, 1988?", is Supervisor, and the response to queries "What is Susans
position on Nov. 1, 1988 as observed on Nov. 1, 1988?", is Assistant Manager,
while the response to queries "What is Susan's position on Dec. 1, 1988 as
observed on Dec. 1, 1988?", is Manager. The response to the third query takes into

account the affect of transaction T7', which invalidates the affect of 1'7. O

An external method invocation is treated as a Transaction, it comprises of all
the method invocations generated by the initial invocation and subsequent
invocations. Thus the transaction is a nested transaction comprising of
subtransactions. The history keeps track of the transaction invocations. Ior
example, consider an invocation of method MI, which in turn invokes M2 and
M3. The method M2 in turn invokes calls to methods N1 and M5 which do not
invoke anv more calls, whereas method M3 invokes method NG which ecalls
method M7. The method M7 does not invoke any more methods. Thus 4
transaction T1 consists of method invocations M1, M2, M3, M4, M5, M6, and M7.

This is illustrated in the figure 2.15.

50

IURNRPPRPORPER,

Transaction T1
M1
M2 M3
M4 M5

M7

Figure 2.15 : Nested Transaction

2.8. CHECKPOINTS

To facilitate query processing, the system materializes the state of the objects
at selected instances of time, which serve as checkpoints for the object. One
approach towards generating checkpoints for an object is to specify at the time of
its creation that after how many versions should it be materialized. Each instance
is materialized on its creation, i.e., the first version of instance, and the trigger
associated with the object will materialize every n’th version of the instance,

specified by the user.

Suppose an object has checkpoints Ost;, Ost;, Osty, etc, representing the
effective states of the object at time instances (,. ¢;, and &, where 1 < j < k.

Consider a query about the state of the object with effective time ¢, and

7
observation time o,, where {; < e, < f, and {, < o, < t;. To process the
above query the system makes use of the checkpoint Ost; as the initial state of
the object and consults the history log for events (actions) with eflective time
greater than f; and less than equal to e, With commit time upto the observation

time of the query 0,, to determine the effective state of the object at the

observation time of the query.

Retroactive updates may invalidate some of the checkpoints generated. Query
processing will account for invalidated checkpoints and use the most recent

unaflected checkpoint as its initial base. Consider a retroactive event R,. i, where

¢! is the effective time and j' is the commit time of the retroactive event and
' >34, ¢/ > 4. A Query with observation time o, < j' will use Ost, as the
initial base where as the query with observation time o, > 7' will use the most
recent unaffected checkpoint Ost,, as its base. This is schematically illustrated in

figure 2.16.

Events (Et & Ct)

—
Effective Time

Figure 2.16 : CHECKPOINTS OF AN OBJECT

53

2.9. HISTORY LOG

The system keeps track of all the operations performed on the objects. This
history of actions is conceptually stored as log entries. Each entry includes the

following information:

Transaction id. (Tr. 1d.)
Sequence no. (Seq. No.)
Invoker id. (Sender)
Receiver id. (Reev. 1d.)
Method invoked.
Commit time.

Effective time.
Parameters (A1guments)
Read set.

Werite set.

Observation time.

When a transaction is executed this information is entered into the history log for
each method invoked on behalf of the transaction. The methods invoked by the
transaction have a unique transaction id and the sequence number. The sequence
number indicates the order of execution of the methods within a transaction. The
invoker id, i.e. the sender of the message, and the receiver id, i.e., the receiver of
the message is recorded for each method invocation. The name of the method
invoked and the values of the formal arguments passed to the method apre ale
recorded. During the execution of the method the system keeps track of the
attributes read and written by the method. These constitute the Read set and

Write set of the method invocation. Parameters, Read set and Write set are <et

.

valued attributes of the entity history log. We will consider them as such in the
following discussion, though the log entry may be implemented using its first
normal form representation. The commit time indicates the commit time of the
transaction. All the methods invoked on behalf of the transaction have the same
commit time in this model. Similarly the eflfective time indicates when the
transaction takes effect. It is assumed in this model that all subtransactions
comprising the transaction take effect at the same time. There are situations
where the subtransactions may have different effective time, depending on the
semantics of the operations and application. Such situations should be managed
by the concurrency control mechanisms adopted by the system. The issues of
concurrency control are not discussed in this thesis. The observation time is

associted with queries and is also recorded in the log.

Example 7: Consider the class PERSON.1 which has the following definition:

CLASS : PERSON.1
SUPERCLASS : OBJECT
sin : SIN.1
dob : DATE
name : NAME.1
salary : FLOAT

The class PEERSON.1 has attributes sin, dob, name, and salary of object types
SIN.1. DATE, NAME.1 and FLOAT respectively. The classes DATE and FLOAT
are system defined classes whereas SIN.1 and NAME.1 are user defined classes.
The class PERSON.1 has a method crpersoni, defined which creates an instance
of class PERSON.1. The method crpersonl in turn invokes calls to methods
crsinl, crdate, crnamel and crfloat, which create an instance of classes SIN.1,
DATE, NAME.1, and FLOAT respectively. Each of these methods returns an

internal object identifier of the instance created. which is recorded in the log. The

o
(4]

Rl e & Sl

Poegys e v -

invocation of method ecrpersonl will generate the following log entries.

parameters and the read and write set are not shown below.

Tr. Seq. Invoker Recv. Method Effective Commit
Id. No. Id. Id. Invoked Time Time

1 1 uid oid crperson] Jan. 1, 1989 Jan. 1, 1989
1 2 crpersonl oid crsind Jan. 1, 1989 Jan. 1, 1089
1 3 crpersonl oid crdale Jan. 1, 1989 Jan. 1, 1089
1 4 crpersonl oid crnamel Jan. 1, 1980 Jan. 1, 1989
1 5 crpersonl oid crfloat Jan. 1, 1980 Jan. 1, 1089

The

Conceptually the receiver of the create message is the class, (In our model Classes
are also treated as objects), which on receiving the create message creates an
instance of the class. For the purpose of query processing it is necessary to know
the instance’s identifier. The instance's identifier is returned by the method which
implements the create message. The oid of the instance created is recorded in the
log as the receiver of the message. The oid are used by the system for query
processing, and the user do not have access to the internal object identificrs. The
uid represents the user identifier, the id of the user who initiated the transaction,

The system identifies each user with a unique id. O

2.10. INVALIDATION OF LOG ENTRIES

Retroactive updates have an effective_time earlier than its commit_time,
Such a transaction will affect the transactions (queries/updates) that has
read/written a retroactively updated value. Recursively other transactions that
read/write an attribute from an affected transaction are also affected. The system
identifies such affected transactions and informs the user to take appropriate

action.

Consider a retroactive update transaction T,, with a write set W;, having
effective_time ¢,; and commit_time ¢,. Consider a update transaction T, with a
write set W;, having an effective_time, {,; and commit_time ¢,;. The transaction
T, will be affected by the retroactive update transaction T; when the following

3

holds. If ¢, < t, and W, N W, # Jor R; N W, # (J and either

ity <t, — T, is invalidated

ity <t — Tjisvalidintime t,ef <t < ei

o7

CHAPTER 3

IMPLEMENTATION

A Temporal Object Oriented Data Model is proposed and a prototype has
been implemented. The programming language used for the implementation is C,
and the system is implemented on Apollo Workstation running under Domain OS
and SUN workstation running under SUN’s UNIX. The system provides a
structured menu-based interface which assists users in defining and accessing the
database. The data operations supported by the system include schema definition
(including evolution), database creation, and data manipulation i.c., retrieval and
updates by invoking operations on objects. The system offers the basie
functionalities of database system and object-oriented system: persistence,
concurrency and recovery, static type checking, encapsulation, object identity,
complex objects management, single inheritance, and overloading. In the following

sections, the structure and implementation details of the system are deseribed.

3.1. SYSTEM STRUCTURE

The System con<eptually comprises of Schema Manager, Method Manages,
and Data Manager, which interact with the underlying System Hardware and
Software, to provide an Object-Giiented Environment. Schema Manager is
responsible for creating, storing and maintaining the (type) structure description
of the Classes and method specification (interface). Method Manager is responsible

for storing and maintaining the source and executable codes of methods. Dala

M anager is responsible for creating, storing and maintaining objects, i.e., instances
of Classes. These components interact with each other to provide a cohesive

Object-Oriented Environment.

The major implementation issues of the system are to facilitate Class
specification, Method specification, their storage on secondary devices, creation
and storage of object instances to provide persistence of objects, and ease of

accessibility to objects.

3.2. SCHEMA MANAGER

Schema Manager keeps track of the Classes and Method specifications. of the
system via system files classname.sys,. classhirchy.sys, verlirchy.sys., time.sys,
classver.def,

The system file classname sys acts as the Class name server of the system,
ensuring that all the Classes being defined have a unique name. It also records the
number of different versions of a Class existing in the system. When a class is
being delined for the first time, it is the first version, any subsequent (schema)
change to the class definition results in a new version of the Class. This class
evolution is ecaptured by the system file verhirchy sys. which keeps track of the
parent deriver version and derived version of the Class. The System Class
Hierarchy is recorded in elasshirchy. sys file, which records the superclass of a class.
and the class specific information (discussed below).

The system files make use of System Defined Class Time, to record the
valid_time and commit_time of the classes, which are the instances of Class Time

and are stored in system file time.sys. The Class Time has the following structure:

time.sys
vear : INT
month :+ INT
day : INT
hour : INT
minute : INT
seconds : INT

It permits one to have a wide range of granulity of time scale. The temporal
operations on Class Time (Before, After, Equal) may use different granularities of

time scale.

All instances of user defined classes are internally identified by system
assigned object identifiers, oid. The oid serves to identify the cass of the instanee,
the instance id in the class. and version id of the instance, so cidsiid:vid make up
the oid. A class can have many instances, and each instance can have muny
versions (object evolution), the system files classhirchy.sys and ordinfsys keep
track of this information. The generation of oid is discussed in the section of Daty

Manager.

The structure of the system files classname sys and verhuchy sys is shown

below.

classname sys

Obhject _Name
Version_Count

string
INT

The above record struciure is used to capture list of Classes in the system and
their version count. INT is the integer type supported by C and string is the

character array.

6O

verhirchy.sys

Object_Name : string
Object_Version : string
Derived_From : string

The system file verhirchy.sys keeps track of derived version hierarchy of the Class.
Object_Name concatenated with Object_Version gives the Class name, and

Derived_From indicates its parent deriver version.

.

3.2.1. CLASS SPECIFICATION

To specify the description of the class structure, a Class Definition Language
is proposed. The Class Definition Language. CDL. has the following textual

format.

/* hierarchy status ¥/
OBJECT_NAME : <string>
SUB_CLASS OF : <string>
[VER. NO.: <integer>]

/* state definition */

List of Attributes:
ATITRIBUTE : <string>
T™PE : <string>

[VER. NO.: <integer>]

/* Attributes Status */

KEY/NON_KEY [K/N] : <string>
CATECORY [V/N] : <string>

/* Classes Validity */

VALID_TIME : <yy/mm/dd>

The Class specification is captured by system files classhirchy.sys and class
definition file, class.def, one for each class specified. In CDL, each class being

specitied is either the subclass of the root OBJECT or an user defined class whose

61

TR TR

name and version no. is to be specified. The attributes of the class ean be either
primitive types (CHAR, INTEGER) or of user defined types, which are specitied
by the class name and its version no. In order to uniquely identify the object the
attribute may be specified as key attribute, the user can refer to the object by
specifving this key value. The Category indicates whether the attribute is volatile
or non-volatile, all key attributes have to be non-volatile, Volatile means that the
attribute may be a void object when the instance is created, all non-volatile

attributes have to be specified on creation of the instance.

3.3. METHOD MANAGER - METHOD SPECIFICATION

The Method Manager keeps track of the methods specified for a cluss and its
details. Just like class specification there is a Method Definition Language, NDI,,
for specifyving the method name and its parameters, which makeup the interfuee,

MDL. has the following textual format.

METHOD NAME : <string>
ARITY : <integer>

For ii=1 to arity
ARGUNMENT TYPE : <string>

METHOD TYPE : <Inherited/Defined /Redefined >
METHOD CATEGORY : <lInternal/Externual>

VALID TIME : <yy/mm/dd>

The Arity indicates the number of parameters to be passed on method invocation,
and the type of each method is specified, where the typeis any primitive type or
user defined class version. In addition, the method type, method category and

method’s valid time are specified.

The method specification is captured in svstem files elassver mhd, and

classver.pds, one for each class. The structure of classveranhd and cassverpds je

62

as follows:

classver. mhd

Method_Name : string
No_of_Parameter : INT
Exec_code_file : string
Valid_Time ¢ time
Method_Type : string
Method_Category @ string
Implemented : INT
Method_No ¢ INT

classver.mhbd records the general method information whereas the parameter

description of the methods is recorded in classver.pds.

classver. pds

Method _No : INT
Parameter_No ¢ INT
Parameter_Type : string

When the user has coded the implementation of the method. then the user
specifies the name of the exccutable filename which implements the method. This
is recorded in classveranhd and the flag Implemented is set on indicating that the
method is implemented. It is the users responsibility to ensure that all the
auniliary internal methods have also been implemented which will in turn be
invoked by the method implemented. At the time of the specification, the system
ensures that the valid time (effective time) of the method is same as that of the

class or later.

3.4. DATA MANAGER

Data Manager keeps track of the instances of each class. It is responsible for
their ereation, storage and retrieval. To identify each instance it generates a

unique object identifier. The instances of each class are materialized on creation

63

and stored in elassver.ins file, one for each class.

3.4.1. OBJECT IDENTIFIER

Each object is internally identified by the system by its unique system
generated identifier. The identifier has three components, cid - the class identifier,
iid - instance identifier, i.e., instance of a class, and vid - version identifier., i.c..

the version of the instance.

For each class the system generates a unique class identifier, when the class is
specified. and initializes the instance count to zero. Both the instance count and
class code are stored along with the other class information in the system lile
classhirchy.sys. When an instance of a class is created the instance count is
monotonically incremented. and a version count one is assigned to the instanee.
The class code. instance count and version count which make up the identifier are
stored in the system file oidinf.sys On any update operation on an existing ohject
a new version of the instance is created, which is assigned a new identifier by
incrementing the version count of the instance in system file oidinf.sys, Botly
classhirchy.svs and oidinf.sys record the current count of instances and versions

respectively. Their structures are shown below,

classhirchy sys

Object _Name : string
Object_Version : string
Suyger_Class : string
Effective_Time : time
Commit_Time : time
Stable : INT
Class_Code : string
Instance_Count : INT

In addition to the identifier’s information, the system file classhirchy.sys records
the System’s Class Hierarchy by storing information about the clicses

(Object_Name concatenated with Object_Version) Superclass, It records the

64

classes Effective_time and Commit_time which are oid’s of time instances. There
is a flag Stable which is used for indicating whether the Class has been stabilized
for usage or not. Stabilization is discussed in sections 2.2 and 3.7.

oidinf. sys

Class_Code : string
Instance_NNumber : INT
Version_Count : INT

The system is a collection of utilities, which are discussed in Appendix A.
The system is setup by executing the system utility initdb, which creates the
necessary system files classent.sys, classhirchy.sys. odinf.sys, time.sys. verhirchy.sys.
and classname.sys. This utility is to be executed only once in the beginning., when
the system is initialized.

The user can build the system hierarchy by specifying the classes and their
methods. The system allows the user the flexibility to specify the method interface
of a class independent of the class specification. If the user wants, he/she can
specify the methods along with the class specification. To specify the class user
makes use of the system utility define. which interactively prompts the user to
enter the classname, its superclass, its parent class version if it is a derived class.
followed by attribute names and their types (Class). Lastly the user enters the
clisses valid time. This information is recorded in appropriate system files listed
ahove.

To specify the methods for a class the user makes use of the utility mthspec.
it prompts the user to enter the name of the class, the methods name. its arity
and the type of each parameter. It also prompts the user to enter the methods
valid time. The method interface specified by the user is recorded in classver.mhd.
and classver.pds. When the user has implemented the method. he/she can use the

utility mthexee, to record the executable file name in the system and indicate that

65

the method in the class has been implemented.

During Schema specification, the system provides users the flexibility to
specify attribute types, i.e.. classes, which have not been specified yet. These
unspecified classes are assigned version number zero by the system, indicating that
they are yet to be specified. The user can make use of the utility asgnverno, to
assign a version number to the type of an attribute in a class, when the attribute
type (class) has been specified. The asgnverno is deseribed in detail in the
forthcoming section. The user can use the utility Stabilize, to ensure that the
necessary temporal constraints mentioned in Chapter 2, are satisfied and the class
is available for use. The Stabilize utility and the define utility are discussed in the

following sections.

The user can use the utility brouse, to display the class specification, i.e., it's
superclass, its parent class version if it is a derived version, and list of attribhute
names and their types. It also indicates the category of the attribute, i.e., defined,

inherited, or redefined. The display has the following format:

CLASS: <classname.verno>
SUPERCLASS: <superclassname>
(DERIVED FRMI: <parent classname.verno>|

{ <attributename : attributety pe> (defined/inherited/redefined) }

3.5. CLASS DEFINITION

The user makes use of the define utility, in the current implementation to
define, i.e. specify. the class specification. The system assigns a version number to
each class defined by the user. The version numbers of a class are monotonically
incremented and assigned by the system. The system keeps track of the version
count of each class in the system file classname sys. When a new elass is defined, it

is assigned version number one. on subsequent definition of the class it is assigned

66

'

-

a new version number by the system. Each version of a class represents a different
view of the Object. Classes with versions greater than one are called derived
classes, i.e., representing a different view. Each derived class is a result of a change
to existing class version, during schema evolution. Hence each derived class version
has a parent class version, from which it is derived. This class version derivation
hierarchy is recorded in systemfile verhirchy.sys. All the versions of a Class have

the same superclass.

The user can use the utility listclassses, to find out the classname and its
total versions specified and the utility Dispverhire, to display the Classes version

derivation hierarchy.

The class being defined, can be categorized to belong to one of the following

groups in the system class hierarchy.

I. The class is a subclass of the system class hierarchy Root OBJECT. and is

the first version of the class.

II. The class is a subclass of an existing user defined class, and is the first

version of the class.

III. The class is a subclass of the system class hierarchy Root OBJECT, and is a

derived class, i.e.. version other than the first.

IV. The class is a subclass of an existing user defined class, and is a derived

class.

This is schematically illustrated in Figure 3.1.

The attributes of the classes belonging to Group I, are categorized as defined

attributes. Defined attributes are those which are specified by the user while

Tor TUPRRT Hpfaeem 3 Ve G

specifying the class. The attribute of the classes belonging to Group 11, are
categorized as either defined or retained. In group I1ll, derived versions are
specified, these may have some new attributes defined by the user and may share
some of the attributes from its parent deriver class. The attributes shared between
the derived class and its parent deriver class are called retained attributes, their
semantics are similar to that of defined attributes. The attributes of the classes
belonging to Group II, are inherited or defined. Full inheritance is being modeled
in our implementation, and classes belonging to the Group II, inherit all the
attributes from its superclass, these attributes are called inherited attributes. The
attributes of the classes belonging to Group IV are also either defined or inherited.
In addition, the system permits the user to redefine the types of inherited
attribute belonging to classes in Group Il and IV. The redefined attributes must

have the type which is a subelass of their original type.

68

OBJECT

TR P AR S (1T 21 VI R AL LS UGIT TP URIOY VL 1oy Nyl TR SR LAY ST RN T R W W e oyl P T S+ 4 iR TR FITEAEREST S Sy D7 70w s %
IR RINN <X baaie v = 22

e

e

Figure 3.1

6Y

3.6. ASSIGNING VERSION NUMBERS

The utility asgnverno. allows the user to assign version number to the type
(class) of an attribute in a class. The assigned version number is propagated to
the existing system hierarchy. The system ensures that the class to which the
attribute belongs is unstable, and the attribute is not an inherited one. The
utility assigns the version number to the attribute type (class), and then
propagates the assigned value to all the subclasses of the class to which the
attribute belongs, which have inherited the attribute and not redefined it. In
addition to propagating to the subclasses of the class to which the attribute
belongs, the version number is also propagated to the derived classes of the class
to which the attribute belongs if they have retained the attribute, and to their

subclasses if they have inherited and not redefined the attribute.

The version assignment is said to be inconsistent when the inherited attribute
is redefined and the type of the redefined attribute is not a subelass of the
assigned type. asgnverno identifies such assignments and undo’s the assignment to

maintain a consistent schema.

Consider Classes D_v1, D_v2, E_v1, A_vl. A_v2, A_vs, F_vi, B_vl and
C_v1 shown in Figure 3.2. Class E_v1 is a subclass of class D_vl. Cluss F_vl is o
subclass of class A_v2. Classes B_v1 and C_v1 are subclasses of class A_vi. Class
A_vl1 has an attribute w of type D_v1, which is retained in derived versions A_v2,
and A_v3. It is inherited by subclasses F_v1 and B_vl. It is redefined in elase
C_v1 to be of type E_vl. The attempt to assign version D_v2 to atiribute w of
class A_v1 is an inconsistent assignment because the type of the attribute in the
subclass C_v1 is redefined to E_v1, and E_v1 is not a subclass of D_v2. the new

tyvpe of the attribute in the superclass.

70

CLASS A

CLASS B V1) (cLASS C V

CLASSD

Vi
V2 :

CLASS E V1

Figuer 3.2

3.7. CLASS STABILIAZTION

The utility stebilize, ensures that a class satisfies the necessary temporal

constraints incorporated in the model and is available to the users. It tests for the

specification of the component classes of the class being stabilized. It builds a

directed graph, with a directed edge between the class and the component class, as

illustrated in Chapter 2. It finds the strong component of the graph, to identify

cyclic dependent classes. Then it tests for the following constraints which are to be

satisfied by a class.

1.

©w

Test whether the superclass of the class being stabilized is stable. If so, it test

whether the Effective_time(Superclass) < Effective_time(Subclass).

Determines whether the class being stabilized is a derived class, If so, it tests
whether the diiver class (parent class version in derivation hierarchy), is

stable .

Tests for the constraints to be satisfied by the component classes. Determines
whether the superclass of the component class is stable. Iff so, tests wlhether
the Effective_time(components superclass) < Eflective_time(component class).
It tests whether the Effective_time(component class) < Effective_time{elnss).
It determines whether the component class is a derived class. If so, it tests

whether the driver class of the component class isstable.

Lastly, it tests whether the cvelic dependent elass have the same

Effective_time.

CHAPTER 4

CONCLUSIONS AND RESEARCH DIRECTIONS

Database applications may be classified into two categories: traditional
"commercial” applications and newly emerging data-intensive applications. The
former is characterized by large amount of data with relatively small and static
conceptual structure (schema). Examples of such applications irclude banking.
reservation, personnel, inventory systems. etc. The database systems used for
such applications are dominated by those with record-based modeling technology
(hierarehieal, network, and relational database models). The latter is exemplified
by applications such as oflice information systems (OIS), design of engineering
databases (CAD/VLSI). artificial intelligence (Al) svstems. These application
environments are more dynamie in nature than those of traditional business
applieations, In these application environments, the amount of structural
information i~ large and much complex tha» that of traditional business
applications. Moreover changes to the e aceptual structure of the database for
these appiications is quite common phenomena. The conceptual structure of the
database changes when the application environment that the database models
evolves, Such application "dynamies” are not adequately supported by existing
database svstems. Object-based modeling approaches are being used for these
applications, but to eapture the behaviour and evolution of design applications. it

is essential to have the notion of time, which is lacking in the existing Object-

T

Ey'A~

Oriented Data Models.

In this thesis we have presented a Temporal Object-Oriented Data Naodel,
which captures the inherent dynamic changes of the conceptual structure
(schema), of the non-traditional data-intensive design applications. The model
incorporaies the notion of time into cbject-oriented databases to capture ohjeet
evolution. Schema evolution has been proposed and the temporal constraints to be
satisfiled by each class and instance is mentioned. Constraints for scheme
validation are identified and Version management is supported by the systew,
Methods are used as a means of query processing, which uses history log and
checkpoints. Notion of Multityping is introduced to eapture the dynamic
behaviour of objects, which is a function of time. Membership constraints for each
class are proposed which require further study.

Temporal Object-Oriented Databases is an active area of rveseaveh. Eflicient
mechanisms for persistent object management is another area of rescarel.
Currently work is being done on developing indexing technigues for eflicient necess
to the objects and support queries over complex objects, Representation of
constraints and constraint management is an open rescarch issue for TOODBNS,
In our model we are limiting the instance evolutions of a elass to one defuult
version. In can be extended to allow multiple versions of instances to be derived

from potential instance active at any instant of time,

Further work is required to efficiently access and manage the history log. T'he
database may be periodically materialized, thus reducing the size of the log. This
implies a restriction on the period of retroactive updates whicli are usually

dependent on the application semantics.

REFERENCES

[1]

[6]

7]

8]

19]

[10]

James F. Allen, "Maintaining IKnowledge about Temporal Intervals", in
Communications of the ACM, Nov. 1983, pp. 832-843.

James F. Allen, "Towards a General Theory of Action and Time". in
Artificial Intelligence 23, 1984, pp. 123-154.

T. Andrews, C. Harris, "Combining Language and Database Advances in
an Object-Oriented Development Environment’, in OOPSLA, 1987.

I*.Bancilhon, “"A logic programming object oriented cocktail”. in AC\I
Sigmod Record, 15:3.pp. 11-21, 1986.

F.Bancilhon, "Object-Oriented Database Systems", in Proceedings of the
Seventh ACM SIGACT-SIGMOD-SIGART Symposium on Principles of
Database Systems, March 1988, pp. 152-162.

Banerjee,J.. et al. "Data Model Issue for Object- Oriented Databases
Applications™, in ACM Trans. on Office Information System, Jan 1987.

Banerjee, J., W. Kim. HJ. Kim. anmt HF. Korth, "Semantics and
Implementation of Schema Evolution in Object-Oriented Databases”, in
Proe. ACM SIGNOD Conf. on the Management of Data, San Francisco.
Calif., May 1987, pp. 311-322,

Elisa Bertino, "lssues in Indexing Techniques for Object-Oriented
Databases”, in Proceedings of Advanced Database Systems Symposium’89,
Iyoto Research Park. Kyoto, Japan, December 1989, pp. 151-160.

Brad J. Cox. "Message/Object Programming: An Evolutionary Change in
Programming Technology", in IEEE Software, Jan. 1984, pp. 50-61.

Brad J. Cox, Object Oriented Programming, An Evolutionary Approach:
Addison-Wesley Publishing Company, ISBN 0- 201-10393-1, 1986.

-1

Ut

(17]

[18]

(19]

20]

ChouH.T., and W.Kim, '\er‘:lons and Change Notification in an Objeet-

Oriented Database Systems”, in Proc. Design Automation Conference, June
1988.

D.H.Fishman, D.Beech, H.P.Cate, E.C.Chow, T.Connors, J.W.Davis,
N.Derrett. C.G.Hoch, W.Kent, P.Lyngbaek, B.Mahbod, M.A.Neimat,
T.ARyan, and M.C.Shaw, "Iris: An Object-Oriented Database
Management System"”, in ACM Transactions on Oflice Information
Systems, January 1987, pp. 48-69.

Garza,J.F., and W Kimi "Transaction Management in an Object-Oriented
Database Svstem , in Proe. ACM-SIGMOD Intl. Conf. on Management of
Data, Chlcago. May 1988.

Goldberg, A. and D. Robson. "Smalltalk-80: The Language and its
implementation, Addison-Wesley, reading, MA 1983,

P.Goyal, M.Okada. Y.Z.Qu. F.Sadri. "Temporal Object-Oriented
Database:(I) Data Model and Formalism” in Proceedings of Advanced
Database System Symposium'89, Kyoto Research Park, Kyoto, Japan.
December 1989, pp. 121-128,

Kim, W., H.T. Chou. and J. Banerjee, "Operations and Implementation of
Compl(\ Objects”, in Proc. Data Engineering Conference, Los Angles,
Calif.. Feb. 1987.

Kim. W.. et al. "Composite Object Support in an Object-Opfented
Database System" in Proc. Object-Oriented Programming Svstens,
Languages. and Applications, Oct. 1987, Orlando, Florida, pp. 118-125,

Kim, W., H.T. Chou, "Versions of Schema for Object-Oriented Databases”,
in Proceedings of the 14th VLDB Conference, Los Angeles, California 1988,
pp. 148-159.

Kim, W., Elisa Bertino, J.F.Garza, "Composite Objects Revisited",in Proe,
ACM-SIGMOD June 1989.

Q.Li, Accommodatmg Application Dynamics in an Object Database
System"”, in Proceedings of Advanced Database System Symposinm’9,
I\yoto Research Park, Kyoto, Japan, December 1989, pp. 97-104.

76

[26]

[30]

Lung-Chun Liu, Ellis Horowitz, "Object Database Support for a Software
Project Management Environment"in Proceedings of the ACM
SIGSOFT/SIGPLAN Software Engineering Symposium on Practical
Software Development Environments, 1988.

Maier, D., J. Stein, A. Otis, and A. Purdy, "Development of an object-
oriented DBMS", in Proc. ACM Conference On Object Oriented
Programmimg Systems, Languages, and Applications, Portland, Oregon.
September 1986.

Josephine Micallef, "Encapsulation, Re&usability and Extensibility in
Object-Oriented Programming Languages”, in Journal of Object-Oriented
Programming, April/May 1988, pp. 12-38.

D.Jason Penney, Jacob Stein, "Class Modification in the GemStone
Object-Oriented DBMS", in OOPSLA 87. pp. 111-117.

Skarra, AL, and Z.B. Zdonik, "The Nanagament of Changing Types in
an Object-Oriented Database”, in Proe. ACM Conference On Object
Oriented Programming Systems, Languages and Applications. Portland.
Oregon, September 19806.

Andrea H. Skarra, Stanley B. Zdonik, "Type Evolution in an Object-
Oriented Databases”. in Research Directions in Object-Oriented
Programming, 1987, pp. 393-41.

Snodgrass, 1. Aln, " A Taxonomy of Time in Databases”, in Proc. Int’]
Conf. Management of Data, ACM SIGMOD, Austin, TX. May 1983, pp.
2306-2146.

Richard Snodgrass, Ilsoo Ahn, "Temporal Databases". in IEEE

Computer, Sept 86, pp. 35-42.

Michael Schrefl, Erich J. Neuhold, "Object class definition by
generalization using upward inheritance”, in IEEE Proceedings Fourth
International Conference on Data Engineering, Feb 1-5, 1988, pp. 4-13,
1988,

S.M. Sripada, “A logical framework for temporal deductive database”. in
Proceedings of the 14th VLDB Conference, Los Angeles, California 1988,

~1
~1

[31)

3

[>]

]

pp. 171-182.

Francois Bancilhon, Gilles Barbedette, Veronique Benzaken, Claude
Delobel, Sophie Gamerman, Christophe Lecluse, Patrik Pfefter,
Philippe Richard, Fernando Velez "The Design and Implementation of O2
,an Object-Oriented Database System”, Advances in Object-Oriented
Database Systems, Lecture Notes In Computer Science 331, pp. 1-22,

Woelk,D., Kim,W., Luther,W. "An object-oriented approach to multimedia
databases”, in Proceedings of ACM SIGMOD Conference on the
Management of Data, ACM, New York. 1986.

78

APPENDIX A

TEMPORAL OBJECT-ORIENTED DATA BASE

User’s Manual

A.1 User

1. Initdb

Purpose:

Usage:

2. Define

Purpose:

Usage:

Commands

To initialize the system and create system files.

initdh

This set’s up the system by creating the system files classent. sys.
classhirchy sys, odinf sys. time.sys. verhirchy.sys, and classname.sys. in
a subdirectory sysfiles. During system initialization, the specification of
the System Delined Class TIME is recorded in classhirchy.sys. A class
id is generated for the class TIME, and its system default valid time

Jan 1. 1900, is recorded in time.sys,

To specify class description.

define

This utility allows the user to specify the structure of a class. It

records the structural information in system files classver.def.

9

o

classhirchy. sys, classname.sys, verhirchy.sys.

3. Dispcvtime

Purpose: To display the valid time of the given class.

Usage: dispevtime <classname.verno>

Searches the system file classhirchy.sys for the existence of the elass.
Scans the system file time.sys and displays the valid time of the class.
The time object identifier from the classhirchy.sys is used as senrch

key in time.sys. The system displays "class vtime is DD MM YYYY"

4. Changecvtime

Purpose: To change the valid time of the given class,

Usage: changecvtime <classname.verno>

Searches the system file classhirchy sys for the existence of the elass
and ensures that it is not stabilized. Aecepts the new valid time for the
class and replaces the previous valid time in tone sys with the new one

using time instance oid from the classhirehy.sys as the key.

5. Mthspec

Purpose: To specify the method interface of a class.

Usage: mthspec

The user enters the class for which the method ipterfare s to be

specified. The system file classhirchy.sys is scaned to aseertain that the

80

class exists. The user is prompted to enter the method name, its
formal parameter types, method type, method category and effective
time of the method. This information is stored in system files
classver.mhd and classver.pds. It also checks for the temporal
constraint between the class and the method. If the method is older

than the class, the user is informed of it.

8. Mthexec

Purpose: To specify the exccutable code file name which implements the method

Usage:

in a class.

mthexee <classname.verno methodname>

Searches the system file classhirchy sys to ascertain the existence of the
class whose method has been implemented. If the class exists then the
classver.mhd is scaned to determine that the method has been
specified. If the method exists. the executable file name which
implements the method is accepted and recorded in classver.mhd.
Appropriate flag is set indicating that the method has been

implementd.

7. Dispmvtime

Purpose: To Display the valid time of the method in a class.

Usage:

dispmvtime < classname.verno methodname>

Searches the svstem file classhirchy.sys to ascertain the existence of the

class, and search for classver.mhd to determine that the methods have

81

been specified for the class. Scan the file classver.mhd for the
methodname, if the method exists scan the system file tone sys and
display the time using tfoid (time instance object identifier) from
classver.mhd as the key. The display has the following format:

Valid time of method < methodname> in class <classname.verno> is

DD MM YY.

8. Changemvtime

Purpose: To Change the valid time of the method in a class.

Usage:

changemvtime <classname.verno methodname>

Searches the system file classhirchy sys for the existence of the eluss
and ensures that it is not stabilized. Search for eclassver mhd to
determine that the method have been specified {or the class. Sean the
file classver.nhd for the methodname. if the method exists, aceepts the
new valid time for the method and replaces the previous valid time in
time.sys with the new one using time instance oid from the

classver.mhd as the key.

9. Asgnverno

Purpose: To Assign a version number to the type of an attribute in a Class, and

Usage:

propagate it to the system hierarchy.

asgnverno <classname.verno attrname attrtype >

Searches the system file classhirchy.sys, to determine that the class

whose attributes type has to be assigned a version number exists and

is not stabilized. Searches the file classver.def, to ascertain that the
attribute is not inherited. It assigns the version number to the
attribute type, and finds the subclasses of the class and derived classes
of the class. It propagates the version number to the subclasses which
have inherited the attribute and to the derived 4asses which have

retained the attribute.

10. Browse

Purpose: To display the structural specification of a Class.

Usage:

browse <classnaine.verno>

Searches the svstem file classhirchy.sys for the existence of the class,
and finds the superclass of the class. Scans the svstem file
verhirchy sys. to determine if the class is a derived version or not. and
scans the classver def file to find the structure of the class. It displavs
the Classname, its superclass. and parent class version if it is a derived
class version. It also displays the list of attribute names and their

types and eategory of the attribute (defined, inherited or redefined).

11. Disphirc

Purpose: To Display the System Class Hierarchy.

It scans the system file classhirchy.sys for the information about the
classes specified and constructs a multiway tree. Each node of the tree
represents a class and its children represent its subclasses. The
subclasses of a class are sorted by name. To display the class hierarchy

the depth-first search of the multiway tree is performed. For example,

83

consider a system consisting of classes A.1, A.2, A.3, B.1, and C.1,
where A.1. A.2 and A.3 are subclasses of the root OBJECT. B.1 and
C.1 are subclasses of A.1. The display of the System Class Hierarchy

has the following presentation.

OBJECT

> o

ot ¢

12. Stabilize

Purpose: To Stabilize a Class for user usage.

Usage:

stabilize <classname.verno>

It scans the classver.def file and construets a directed graph with edges
between the class and component classes. It repeatedly scans
classver.def file of all the classes involved in the graph until no new
nodes are inserted in the graph. Once the graph is construeted, the
nodes in the strong component of the graph are identified. These nodes
represent cvelic dependent classes. To stabilize the class the following
constraints are checked. The superclass of the class being stabilized
must be stable. The effective_time of the superclass of the class being
stabilized must be earlier or same as that of the subclass. If the class
being stabilized is a derived class then its deriver class must. bhe stable.
The superclasses of the component class must be stable, and the
effective_time of the component classes must be earlier or same as that

of the class. The cyclic dependent classes must have the same

84

effective_time.

13. Liststable

Purpose: To list the stabilized class in the system.

Usage:

liststable

Scans the system file classhirchy.sys and displays the classname’s of

the classes which have their stable flag set, i.e., they are stabilized.

14. Lismth

Purpose: To List the methods specified in a class.

Usage:

lismth <classname.verno>

searchs the system file classhirchy. sys for the existence of the class. and
searches classver.mhd to determine whether methods have been
specilied for the class. Displays the methods specified using the

following format:

{ Method: <methodname> }

15. Disverhire

Purpose: To Display a Classes version derivation hierarchy.

Usage:

disverhire <classname>

Searches the system file classname.sys to determine whether the class
has derived versions. It scans the svstem file verhirchy.sys to display

the list of derived versions of the class and their parent class version.

85

The display has the following format:

{ CLASS VERSION: <classname.verno> DERIVED FRM: <parent

classname.verno> }
168. Listclasses

Purpose: To display the classes specified and their version count.
Usage: listclasses

Scans the system file classname.sys, and displays the classname and
the version count of the versions of the class specified. The display has

the following format:

{ OBINAME: <classname> VERSIONS: <versioncount> }

17. Resetverno

Purpose: To Assign a version number to the type of an attribute in a Class.
Usage: resetverno < classname.verno attrname attrtype newverno>

This utility is used for testing during system development. It allows
thie user to assign any version number to the type of an attribute of a
class. The user specifies the class and the attribute of the class and its
tvpe. The system scans the classver.def file for the existence of the
attribute with the specified type. If the attribute with the specified
type exists, it is assigned the newverno. It is the users responsibility to
ensure the validity of the schema after the assignment of the new

version number to the type of Lhe attribute.

86

