National Library

of Canada du Canada

Canadian Theses Service Service des théses canadiennes

Ottawa, Canada
K1A ON4

NOTICE

The quality of this microform s heavily dependent upon the
guality of the original thesis submitted for microfilming.

very effort has beenmade to ensure the highest quality of
reproduction possible.

If pages are missing, contact the university which granted
the degree.

Some rages may have indistinct print especially if the
original pages were typed with a poor typewriter ribbon or
if the university sent us an inferior photocopy.

Reproduction in full or in part of this microformis governed
by the Canadian Copyright Act, R.S.C. 1970, ¢. C-30, and
subsequent amendments.

NL-339 (r.88/04) C

Biblio nationale

AVIS

La qualité de cette microforme dépend grandement de la

qualité de la thése soumise au microfilmage. Nous avons

:put fait pour assurer une qualité supérieure de reproduc-
ion.

S'il manque des pages, veuillez communiquer avec
funiversité qui a contéré le grade.

La qualité d'impression de certaines pages peut laisser a
désirer, surtout si les pages originales ont été dactylogra-
phiées & l'aide d'un ruban usé ou si l'université nous a fait
parvenir une photocopie de qualité inférieure.

La reproduction, méme partielle, de cette microforme est

soumise & 1a Loi canadienne sur le droit d'auteur, SRC
1970, ¢. C-30, et ses amendements subséquents.

Canada

TEMPORAL OBJECT-ORIENTED DATABASE: DATA MODEL,

FORMALISM AND IMPLEMENTATIONS

Yan Zhen Qu

A Thesis
in
The Department
of
Computer Science

Presented in Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy at
Concordia University
Montréal, Québec, Canada

June 1990

© Yan Zhen Qu, 1990

i+

Bibliothéque nationale
du Canada

National Library
of Canada

Canadian Theses Service Service des théses canadiennes

Ottawa, Canada
KtA ON4

The author has granted an irrevocable non-
exclusive licence allowing the National Library
of Canada to reproduce, loan, distribute or sell
coples of his/her thesis by any means and in
any form or format, making this thesis available
to interested persons.

The author retains ownership of the copyright
in hisfher thesis. Neither the thesis nor
substantial extracts from it may be printed or
otherwise reproduced without his/her per-
mission.

L'auteur a accordé une licence irévocable et
non exclusive permettant & la Bibliothéque

- nationale du Canada de reproduire, préter,

distribuer ou vendre des copies de sa thése
de quelque maniére et sous quelque forme
que ce soit pour mettre des exemplaires de
cette thése & la disposition des personnes
intéressées.

L auteur conserve (a propriété du droit d'auteur
qui protége sa thése. Nila thése ni des extraits
substantiels de celleci ne doivent étre
imprimés ou autrement reproduits sans son
autorisation.

ISBN ©-315-64755-8

Canadi

ABSTRACT

TEMPORAL OBJECT-ORIENTED DATABASE: DATA MODEL,

FORMALISM AND IMPLEMENTATIONS

Yan Zhen Qu, Ph.D.

Concordia University, 1990

This dissertation presents a data model for a temporal object-oriented database
(TOODB) called the dynamic state machine model. The whole life of a real world
entity is called a temporal object. In the dynamic state machine model, a temporal
object is modeled by a multitype composite machine which consists of a set of primary
machines, each of which represents a partial history of the temporal object when it
is associated with an environment that is described by a type-version. Dynamic
multityping, dynamic reference and dynamic extension mechanisms are adopted to
model temporal object evolution. Three time notions (commit time, effective time and
observation time) are used to capture different time semantics. Behavior constraints
are an important modeling construct which enrich the temporal modeling power of
the dynamic state machine model. Retroactive update affection identification is also
addressed.

iii

A linear time temporal logic, called dynamic state logic (DSL), and its proof
system are developed. By using the dynamic state machine model] as the model of
this logic language, the behavior constraints on temporal objects can be specified
naturally and precisely. The proof system of the DSL makes it possible to verify
whether the given requirements or the expected properties can be derived from the
behavior constraints defined in type-versions. A set of algorithms are presented,
which efficiently check whether a TOODB satisfies behavior constraints specified by
a certain class of temporal formulas of the DSL.

As for implementation issues, this dissertation concentrates on designing a suitable
memory management system for the TOODB. A paged virtual memory management
system has been designed, which has a two level secondary storage structure and is
equipped with a scheme (called temporal clustering) for clustering temporal objects.
Unlike most existing design methodologies, in addition to the features of data organi-
zation, possible user access patterns are also considered. An analysis model is devel-
oped to find the optimal design. Based on the analyses, a set of efficient algorithms to
optimize parameters are developed. By changing the values of the parameters in the
analysis model, the results of a series of experiments are described, which are helpful
in understanding characteristics of clustering temporal objects. Based on these ex-
perimental results, some suggestions for efficiently applying the temporal clustering

scheme are presented.

iv

ACKNOWLEGEMENTS

I am sincerely grateful to my two supervisors Dr. F. Sadri and Dr. P. Goyal for
their guidance, advice and encouragement. From them I have learned and improved
my skills in developing, presenting, and analyzing new ideas in a very competitive
field. I feel extremely fortunate to have had the opportunity of working with them
and sharing their experience and insight. They also aided and abetted most of my
other adventures as a graduate student. The combination of freedom and unhesitating
support they provided was invaluable.

Dr. M. Okada, one of my committee members, taught me how to apply the
temporal logic correctly. He also provided insight and encouragement in many useful
discussions. The formalism that I presented in the dissertation would not have been
possible without his guidance.

I thank Dr. B. Gopinath of Rutgers Universty, Dr. H.F. Li and Dr. V.S. Alagar of
Computer Science Department, and Dr. A.K. Elhakeem of the Computer Engineering
and Electrical Engineering Department for their suggestions and comments.

My doctoral studies at Concordia University were made possible through the
Concordia University Graduate Fellowship and the research grants of NSERC for
which I am very grateful.

Special thanks go to my parents and wife, who have constantly given me support

during the period of my studies.

Dedicated to

My Family

vi

Contents

1 INTRODUCTION 1

1.1 THE DEFICIENCY OF TRADITIONAL OBJECT-ORIENTED DATA

MODELS e 1

1.2 TOODB: MODELINGISSUES 3
1.3 TOODB: IMPLEMENTATIONISSUES 7
14 THESISOVERVIEW. 11
2 RELATED WORK 14
2.1 MODELINGTIMEINDATABASES 14
2.2 MODELING OBJECTEVOLUTION 15
221 GemStone e e 15
222 Iris . ..o o e 15
223 ENCORE i, 16
224 UCBVersionDataModel 17
225 ORION e 17
226 AVANCE e 18

23 TEMPORALLOGIC. 19

vii

T R e TE TR O

e R R R R TR R, T TP . SR A © TE ©

2.4 IMPLEMENTATION OF TEMPORAL RELATIONAL DATABASE 21

25 OBJECT-BASED CLUSTERING.................... 22
26 OTHERRELATEDWORK, 23
DYNAMIC STATE MACHINE MODEL 24
3.1 INTRODUCTION ittt i i, 24

3.2 CONSTRUCTS OF THE DYNAMIC STATE MACHINE MODEL . 25

3.2.1 PrimaryMachine 25
3.2.2 Multitype Composite Machine 35
3.2.3 General Composite Machine 39
3.2.4 Relationship betweena opyandaéd, o o .o ..., 41
325 IntegrityRules 41

3.3 MODELING TEMPORAL OBJECTS BY DYNAMIC STATE MA-

CHINES e e e e e e e e 43
3.3.1 Environment Modeling 43
3.3.2 Dynamic Multityping 44
333 DynamicExtension 46
3.3.4 DynamicReferences 46
3.3.5 Trace and BehaviorHistory 48
3.3.6 Retroactive Affection Identification 48
3.3.7 Behavior Constraints 50
4 DYNAMIC STATE LOGIC 53

viii

41 INTRODUCTION i ittt i i o 53
4.2 DYNAMIC STATE LOGIC LANGUAGE 54
43 SEMANTICSOFDSLt 56
44 PROOFSYSTEMOFDSL, 60
BEHAVIOR CONSTRAINTS 74
51 INTRODUCTION ittt i e 74
5.2 SPECIFYING BEHAVIOR CONSTRAINTS BY THEDSL 75
5.3 VERIFYING THE EXPECTED SYSTEM PROPERTIES 78
54 CHECKING BEHAVIOR CONSTRAINTS. 86
A DESIGN OF TOODB MEMORY MANAGEMENT 92
6.1 INTRODUCTION it i i o 92
6.2 DATA ORGANIZATION. i v oo, 93
62.1 BasicDataUnit., 93
6.2.2 Two-Level Storage Structure 95
6.2.3 ClusteringScheme 102
6.3 USERS’ACCESSPATTERNS 106
6.3.1 Primitive Transactions 106
6.3.2 Processing Primary Temporal Queries 108
6.3.3 Relative Frequenciesof PTs 109
6.4 ANANALYSISMODEL 110
6.4.1 ParametersofaNode. 110

ix

6.4.2 Average Distances Between History Records 111

6.4.3 Average Page Access Number Expression 114

7 OPTIMAL PARTITION 116
71 INTRODUCTION it ittt 116
7.2 DEFINITIONS OF SOME CONCEPTS 117
7.3 ANALYSIS UNDER C = DEPTH-FIRST 122
7.4 LOCAL OPTIMIZATION ALGORITHM 127
7.5 ALGORITHM OF GLOBAL OPTIMIZATION 132

8 EXPERIMENT RESULTS 135
8.1 INTRODUCTION i it i e 135
8.2 EXPERIMENT PARAMETERS 136
8.3 CHARACTERISTICSOFAFIXED P? 140
83.1 Effectofthe RP-Ratio 141

832 Effectof S fu/ T fer - - o v v v i e e 142

8.3.3 Effect ofthe 29 (H) . . . o oo vt 144

8.4 CHARACTERISTICS OF THE OPTIMAL PARTITION 147
8.4.1 Characteristicsof MiniR 148

8.4.2 Characteristics of MiniminiR. 151

84.3 Effectof ChangingL 154

8.44 Characteristics of Popto i o 155

8.4.5 Effect of the Clustering Sequence 158

8.5 SOMESUGGESTIONS s 161

8.5.1 Creating a Private Object Base 162
8.5.2 Reorganizing a Private Object Base 164
9 CONCLUSIONS AND FUTURE DIRECTIONS 166

A THEOREMS AND DERIVED INFERENCE RULES OF DSL 175

Xi

List of Figures .

1.1

5.1

5.2

5.3

6.1

6.2

6.3

7.1

1.2

8.1

8.2

8.3

Application of Time Notions 5
Type Hierarchy of Example 5.2 7
Procedure of Product Manufacture 80
Type-version Hierarchy of Example 5.3 80
The PublicObjectBase 98
A Primary Machine TreeSchema. 99
Examples of Some Concepts 104
Examples of Definitions 119
Construct a PMTY i it it e it i et 122
Effect of RP-ratioona P? 140
Effect of ¥ fio/ T feonaPi-(1) 143
Effect of " fur/ T foeomaPi=(2) 144
Effect of T fo/ X feomaPi=(3) 145
Effect of 2" (H)ona P?ot 146
Effect of RP-ratioon MiniR 149
Effect of - fi/ S feeonMiniR. 150

8.8 Effectof 2" (H)onMiniR00 vvvrunnen.. 151
8.9 Effect of RP-ratio and ¥ f;;/ ¥ fer on MiniminiR 153
8.10 Effect of z*(H) and on MiniminiR 153
8.11 Effect of RP-ratio and ¥ fit/ ¥ fer on MaxminiR/MiniminiR 155
8.12 Effect of z*"(H) and on MaxminiR/MiniminiR 156
8.13 Effect of RP-ratio and ¥, fit/L feeon 0.03B 157
8.14 Effect of 29"(H) andon L of MiniminiR. 157
8.15 Effect of RP-ratio and 3, fiy/Z feeon Neof Py 159

8.16 Effect of 27" (H) and on Noof Pope « « « v v v v e e e iie e . 159

8.17 Effect of RP-ratio and 3 fit/T feron Pppe-LBand 160
8.18 Effect of 2¢"(H) andon PorlBand 160
8.19 Effect of RP-ratio and _ fi/ L fer on MiniminiRpyq - MiniminiRg., . 161

8.20 Effect of z9"(H) and on MiniminiRjyq - MiniminiRye, 162

xiii

List of Tables

8.1 Parameters Used in Experiments

8.2 Three Types of RP-ratios

83 X fi/ L fee’'sof Six Types of PTs

8.4 Three Types of RP-ratios

8.5 Value Ranges of Parameters

-

Xiv

137
137
138
139

139

Chapter 1
INTRODUCTION

1.1 THE DEFICIENCY OF TRADITIONAL
OBJECT-ORIENTED DATA MODELS

Object-oriented models recently have come of age with an increasing availability
of object-oriented languages [BKKMSZ86, Co87, GR83, Me88] and database manage-
ment systems [Ad85, B+87, CM84, Di86, EE87, MSP86]. The object-oriented models
support inheritance and encapsulation allowing modeling of complex real world enti-
ties. As a result they have been widely applied in many non-traditional applications
such as VLSI, multimedia data, office automation, CAD/CAM, and software engi-
neering [CM84, B4-87, BK85, Di86, LH88, PPT88, ZABCKMS86]. They, nevertheless,
lack some of the semantics that had been incorporated in record-based systems[CW83,
SA86, Sn86]. The most significant deficiency of the traditional object-oriented models
is the absence of temporal modeling ability. However, the applicability of the object
model to a large number of application domains, for example, scheduling, project
management, process planning, system controlling, etc., requires the ability to model

general temporal relationships between ob jects [BK85, La87, LH88, KCB86, PPT88].

o

The last few years have witnessed a growing research interest in the object evo-
lution. Most of work in this area have concentrated on object schema evolution
[BKKK87, GOQS89, KC88, PS87, SZ86, SZ86, Zd86). Existing models can be clas-
sified into two categories: snapshot and versioning. While snapshot models permit
some changes on the definition of object class schema, they only maintain the last
updated definition, and all object instances created under the old definition have to
be transformed to conform to the new definition. Versioning models apply wversions
to record the changes on objects (either the schema or the instance). The following

characteristics are common to most of existing versioning models:

¢ an absence of a concept of time: versions rather than the notion of time are
emphasized, so that more general temporal relationships among the objects

cannot be modeled;

¢ state-orientation: every version only contains “attribute values”, called states,

there is no way to find why and how an object gets the state;

¢ static lyping: if an object is an instance of a class (type), then it will be bound
the type until it is deleted; the temporal semantics of the association between

an object and a type or types is missed.

¢ lacking behavior constraints: constraints on the temporal relationships among
object operations are not adopted as a modeling construct; this leaves a big

semantic gap between the data model and the real world.

1.2 TOODB: MODELING ISSUES

We call an object-oriented database whose data model integrates the general tem--
poral modeling capabilities a temporal object-oriented database (TOODB). The fol-

lowing issues must be captured by the data model of a TOODB.

The Notion of Time

Three notions of time have to be identifiered in the TOODB: commit time, effective
time, and observation time. A query is an execution of an object operation (i.e.,
method) which retrieves information about the state of the object (i.e., attribute
values), while an update is an execution of an object operation which modifies the
state of the object. Commit time is the time instant when an object operation
successfully completes (commits) an execution in the database. The effective time
specified in an update is the time instant since then the data (i.e., the updated state
of the object) made by the update takes effect (i.e., valid). It can be different from
the commit time. Based on their commit times and effective times, updates can be
classified into three categories: retroactive, normal, and post-dated. A retroactive
update has an effective time which is less than its commit time. A normal update
has an effective time which is equal to its commit time. A post-dated update has
an eflective time which is greater than its commit time. A query in a TOODB is
called a temporal query, which has a temporal construct: the effective time and the
observation time. A query without the temporal construct is considered a special case

of temporal query. If the effective time and /or the observation time are not declared

in the query, they will be considered to have a default value which is the current
time. Only those data with effective times matched with the effective time specified
in the query are retrieved. Observation time is the time instant specified in a query
at which the data will be retrieved with respect to the effective time specified in the
query. Because a retroactive update may invalidate the data of a previous update,
different answers may be given to the same query question at different observation

times. These concepts can be demonstrated by the following example.

Example 1.1:

As shown in Figure 1.1, there is a set of data made by a sequence of updates. We
assume that d; is the data made by the i-th update. In this example, d,,d,,d; and
dg are data made by post-dated updates, since their effective times are greater than
their commit times; ds,d7 and dy are data made by retroactive updates, since their
effective times are less than their commit times; and d4,ds and dq are data made by
normal updates, since their effective times are equal to their commit times. We also
assume that the 5-th and the 7-th updates invalidate the 1st and the 2nd updates
respectively.

If the query “what are the valid data in the database at time #; ?” is associated
with an observation time tg, then the answer is “d,,dy, ds and ds”. If the observation
time is changed as time t, for the same query, the answer out of the database will

be “d4,d5,d6 and d7”.

A Effective Time

dio

@
Post-dated Events

s -+ @a2

d4 Retroactive Events

Observation Time

@ /
(| [} /

1 -
7 8 9 Commit Time

]
1 1
1

Figure 1.1: Application of Time Notions

)
2 3 4

Features of Temporal Objects

We define a term temporal object to represent the whole life of an entity in the real
world. In addition t~ the features modeled by the traditional OODB, the following
new features must be modeled by temporal objects.

Changing Environments - We use a term environment to represent a set of struc-
tural and/or temporal relationships by which a group of entities are associated with
each other at a certain (physical or conceptual) place and during a certain time pe-
riod. An entity may migrate from one environment to another dynamically. The
properties and behaviors of an entity and the relationships between itself and other
entities are impacted by the environments where it is involved. For example, a person
can be in many different environments, such as a family, a company, and/or a school

during his/her life, and the relationships with other entities and the behaviors of a

5

person are different in these environments.

Dynamic References - If two entities are related to each other by a binary rela-
tionship, we say they refer to each other. In the same environment, for the same
relationship, the references between entities may change frequently. For example, in
an office, a manager and a secretary form a binary relationship. However, a manager
may work with different secretaries at different times, or vice versa.

Dynamic Revisiting of an Environment - An entity may enter and leave an en-
vironment periodically or randomly. For example, a person usually goes to his/her
office in the morning and leaves in the afternoon. However, someday, for some reason,
he/she may not show up.

Concurrently Ezhibiting Multiple Properties and Behaviors - Sometimes, an entity
may possess properties and exhibit behaviors which are generally considered to be
related to different environments. This also could be due to applying different points
of view to look at an entity. For example, a person may be a student and a part time

employee during the same time period.

Temporal Relationships of Behaviors

One of theimportant advantages of the object-oriented model is that the behaviors
of objects are captured by ‘eir operations. Therefore, in the context of time, the
temporal relationships of objects operations form an essential part of the behaviors
of objects. The data model must answer how general temporal relationships of object

operations can be modeled.

Temporal relationships among object operations capture additional semantics for
the behaviors of objects. For example, some operations can occur concurrently, some
operations are always causally related, and some operations always occur exclusively.
For example, retroactive updates capture an important temporal relationship between
object operations: some previous object operations may be invalidated by a later
operation of an object.

Retroactive updates are often regarded as some kind of correction activity. For
example, in engineering design applications retroactive updates may be applied for
the correction of past mistakes. In some cases the effect of an invalidated operation
is irreversible, e.g., a product already built based on an erroneous design can not
be“undone” when the error is discovered and (retroactively) corrected. In such cases
we can at least identify affected operations. An object operation invalidated by a
retroactive update may cause an invalidation propagation to related objects opera-
tions. Making the system responsible for identification of object operations that need
verification due to a retroactive update will greatly reduce the complexity of handling

such cases.
1.3 TOODB: IMPLEMENTATION ISSUES

To implement a TOODB, the DBMS must take care of many issues such as mem-
ory management (main memory buffer management and secondary storage manage-
ment), transaction management (concurrency control and crash recovery), high-level

data management (schema management, configuration, security, data distribution,

v EROm pE

constraint management and query optimization). In this dissertation we will concen-
trate on the secondary storage management.

The design goal of aﬁmemory management system is to attain an optimal system
performance measured by data retrieval time. If the demanded page containing the
data to be retrieved is not available in the main memory, a page fault occurs. Page
fault processing time is a major cost of data retrieval. Therefore, we must minimize
the average page fault rate by an appropriate design.

Conceptually, the average page fault rate is a function of the average page access
number and tk= probability of page fault per page access. When a page is referred
to, one page access is counted. The average page access number is a function of
the characteristics of queries and data organizaticn (i.e., storage organization, data
structure and access methods) on the secondary storage. The probability of page
fault per page access is determined by several factors such as buffer organization,
buffer size, replacement algorithm, and data prefetching strategy.

In a TOODB, the characteristics of temporal queries issued by users influence the
data organization as well. Since the temporal construct in a temporal query has an
impact on the amount of data to be retrieved to answer the query, it is necessary to
review all the aspects of memory management systems to see how they are influenced.

Two basic types of object storage organizations have been used in the non-
temporal OODB: reference-based and copy-based. Here a reference means an object

identifier. In reference-based storage organization, whenever an object is referred to,

a reference is stored, while in copy-based storage organization, a copy of the details of

a referred object is always clustered together with the object which refers to it. When
storing objects by the referenced-based storage organization, the memory space effi-
ciency reaches its muximum. However, for queries which need to exploit the details
of referred objects, the reference-based storage organization becomes inefficient. This
situation becomes even worse in a TOODB, because a large number of objects may
be involved in a query which has a long time interval or several different time inter-
vals. Copy-based storage oiganization improves time efficiency, but it will consume
more memory space. It is an unacceptable cost to store an entire TOODB by the
copy-based storage organization. A related issue to copy-based storage organization
is clustering. To design an appropriate clustering technique for the TOODB, we must
consider some new factors introduced by the TOODB, for example, how to group the
historical data of objects with different sizes and data updating rates so that the
clustering can reach the optimal time efficiency for temporal queries.

The characteristics of queries or users’ access patterns can be abstracted through
primitive Iransactions and relative frequencies of primitive transactions. Primitive
transactions can be typed according to their functions. In a TOODB, at least two
basic types of primitive transactions are needed. One is used to retrieve data by
going through consecutive data records of an object. The other one is used to first
retrieve a data from an “owner” object, then to retrieve a data that is referred to by
an “attribute” object. The relative frequencies of primitive transactions that occur
in every object are important for describing characteristics of queries as well. The

distribution of the relative frequencies of primitive transactions has an influence on

the design of the data organization of the physical object base (this will also be
discussed in Chapter 6).

A page access may or may not become a page fault. The design goal of main
memory management is to minimize the probability of the page fault per page access.
High speed buffer storage devices can greatly improve system performance compared
with a system without such devices. Buffer size in a main memory has a direct
influence. Choosing the replacement algorithm and the data prefetching strategy is
critical for main memory management. In this aspect most existing techniques used
in the OODB can be applied to the TOODB with a few changes, since the TOODB
may introduce more requirements, e.g. the data prefetching strategy needs to take
the temporal construct into account as well.

In addition to the time spent on the page fault processing, in a TOODB, a new
cost of query processing results from the characteristics of the eve: growing data space
of the object base. Since the disk-head seeking time is always proportional to the data
space of the object base, insisting on the traditional one-level storage structure will
make it very difficult to improve disk-head seeking time in the TOODB. However,
from the application point of view, a user, in a certain time period, may be only
interested in a very small part of the object base. For a multiuser system, different
users may be interested in different parts of the object base. These facts should be
considered.

These modeling and implementation issues need to be addressed in order to incor-

porate the capabilities of temporal information modeling and processing into object-

10

oriented databases.

1.4 THESIS OVERVIEW

This dissertation makes three contributions: developing a data model for a tem-
poral object oriented database (TOODB), developing a formal system for the data
model, and designing a secondary storage management system for the DBMS of
TOODB.

Our data model is formed by incorporating object-oriented concepts and dynamic
multityping, dynamic instance extension, dynamic reference, event sequence and be-
havior constraint mechanisms into a state machine model. Therefore it is called the
dynamic state machine model. The basic constructs of the dynamic state machine
model are dynamic state machines which are divided into three categories: primary
machine, multitype composite machine and general composite machine. A multitype
composite machine is used to model the whole life of a real world entity which is caiied
a temporal object. It consists of a set of primary machines. Each primary machine
is used to model a partial history of a temporal object when it is associated with a
certain environment which is described by a type-version. There is only one general
composite mackine which consists of all multitype composite machines.

By extending the linear temporal logic developed by Z. Manna and A. Pnueli
[MP83] to contain the temporal operators of past time, we developed a dynamic state
logic (DSL). We also developed a proof system for the DSL. By using the dynamic

state machine model as the model of this logic language, we can specify the benavior

11

constraints on temporal objects naturally and precisely. Based on the proof system
of the DSL, we can verify whether the behavior constraints defined in type-versions
can derive the given requirements or the expected properties. By presenting a set of
algorithms, we have shown that whether the TOODB satisfies behavior constraints
specified by a certain class of temporal formulas of the DSL can be efficiently checked.

To implement a TOODB according to the dynamic state machin. ..1odel, many is-
sues of DBMS, such as memory management, transaction management and high-level
data management, need to be reviewed. In this dissertation, we concentrate on design-
ing a suitable memory management system for the TOODB. Memory management for
non-temporal object-oriented databases has been discussed widely [CDRS89, CK89,
HZ87, St84]. However, in a TOODB, some new questions are waiting for answers.
For example, one typical question is how to cluster temporal objects. Clustering is
a popular techniqr e used in the non-temporal OODB. In clustering, frequently co-
referenced objects are grouped into the same cluster and placed close to each other
on the secondary memory in order to reduce page access number. In a TOODB, all
the temporal objects have their own database histories. To cluster temporal objects
we must decompose these objects’ database histories into “history pieces”. How do
we determine an appropriate “history piece length” so that the clustering can reach a
minimal average page access number? This dissertation contributes one possible »o-
lution to this question. We present a design of secondary storage management system
which has a two-level object base structure. Unlike most existing design methodolo-

gies, our design also takes into account possible user access patterns rather than only

12

the features of data organization. An analysis model is developed for the purpose
of finding an optimal design. Based on the analyses, a set of efficient algorithms to
optimize parameters are designed. By changing the values of the parameters in the
analysis model, we carried out a series of experiments. The results of these experi-
ments help us to understand the characteristics of clustering temporal objects.

This dissertation is organized as follows. Chapter 2 briefly surveys the related
work in object evolution, temporal logic, and object-based memory management and
clustering techniques. Chapter 3 defines the basic concepts of the dynamic state
machine model, and discusses how the dynamic state machine model can be applied
as a data model of the TOODB. Chapter 4 introduces dynamic state logic (DSL),
and shows how to set up the proof system for the DSL according to the operational
semantics of dynamic state machines. Chapter 5, through examples, shows how to
specify the constraints on the behaviors of objects by the DSL, and how to verify the
expected system properties by the proof system of DSL. A set of algorithms to check
if a TOODB satisfies behavior constraints are provided. Chapter 6 presents a design
of a paged virtual memory with a two-level storage structure in the secondary storage.
A clustering scheme for temporal objects is proposed. An analysis model to obtain
the optimal design is developed. Analyses and algorithms are provided in Chapter 7.
The results of experiments are discussed in Chapter 8. Finally, the conclusions and
future directions are presented in Chapter 9. Appendix A provides a set of theorems

and derived inference rules of the DSL for the past time.

13

Chapter 2
RELATED WORK

2.1 MODELING TIME IN DATABASES

Time is an essential piece of information about a constantly evolving real world.
There has been considerable interest in modeling time in databases [Sn86]. Many
researchers have shown how data can be enriched with time attributes to reflect a
history of data evolutions [SA86]. So far, the work to extend databases for sup-
porting temporal information processing has mainly concentrated on extending the
relational databases [CW83, Sn86]. Two approaches to extend the relational data
model for temporal modeling have been suggested: (1) extending the semantics of
the relational data model to incorporate time directly, and (2) adding time as an ad-
ditional attribute and translating queries and updates involving time into retrievals
and modifications on the underlying snapshot states through an extended query lan-
guage. The work of incorporating time can also be found in deductive databases. R.
Kowalski and M. Sergot developed the Event Calculus to formalize the semantics of
valid time in deductive databases [KS86]. A later work extended the Event Calculus

to accommodate the concept of transaction time thereby forming a theory of time for

temporal deductive databases [Sr88).

2.2 MODELING OBJECT EVOLUTION
2.2.1 GemStone

GemStone is an object-oriented database developed by Servio Logic Corporation
[PS87, PSM87]. GemStone allows users to change types (class schemas) without
versioning. The operations on type modification are restricted to adding or deleting
an attribute variable, modifying the constraint on an attribute variable, and labeling
a type either indexable or non-indexable. The changes in the type hierarchy are
restricted to either adding a new type (class) as a leaf node to the type hierarchy,
or removing a type from the type hierarchy. Without maintaining version history
in GemStone, only the last version of a type remains in the system. When a type
is changed, all instances of that type have to be converted to conform with the
new version of the type. The conversion is done as an atomic operation, and all
instances of the type are unavailable for use by others for the duration of the operation.
GemStone’s approach is only suited to applications which do not use historical data.

Very few temporal relationships can be captured by this approach.

2.2.2 Iris

Iris is an object-oriented DBMS developed at Hewlett-Packard database labora-
tory [F+87, F+89]. The Iris data model consists of three constructs: objects, types

and functions. Attributes of objects, relationships among objects, and computa-

15

ERY I (R T e Y e,

4

O it 22

tions of objects are expressed in terms of functions, so that Iris can be considered
a functional system. In addition to supporting evolutions of function expressions,
Iris supports type evolution by allowing new types to be created and existing types
to be deleted. However, new subtype/ supertype relationships among existing types
cannot be created. Unlike other systems, Iris objects may gain or lose types dynam-
ically. But at each moment, an object can only be associated with one type and its
supertypes. Iris objects can be either versioned or inversioned. Versioned object is
represented by a version set containing all the versions of the object. Each version
set has a generic instance which has properties whose values are uniform over all
versions. Any reference to a versioned object can be either a specific reference to a
particular version of the object, or a generic reference to the generic instance. Iris

does not have time notions.

2.2.3 ENCORE

The data model of ENCORE, which was developed at Brown University, exploited
a versioning approach to the type evolution of an object-oriented database [SZ86].
Every modification of a type forms a version of that type. The inclusive summary of
all the versions of a type forms a version set interfuce of the type. If a version set
interface contains more than one type version, every type version must define a set of
“handlers” to filter the differences with other type versions. A type version acts just
like a database view for users to look at an object in an expected “illusion”. An object

instance of a type can be created under any type version and remains bounded to that

16

type version until it is explicitly coerced into another type version by a corresponding
screening handler. Effectively, this is & late binding to the representation of an object.
An inefficient part of this approach is that whenever a new type version is added,
all the existing type versions must be updated by adding a new screening handler
corresponding to the new type version. How to preserve objects behaviors consistent
in type evolution is not addressed by | SZ86]. The concept of time is absent in

ENCORE.

2.2.4 UCB Version Data Model

The UCB Version Data Model, a data model for an object-oriented database
which is specially used for engineering design applications, was developed at the
University of California, Berkeley [KCB86]. In this model, both object type and
object instance are versionable. The structural relationship of the object composition
is called a configuration. The logical (conceptual) correspemdence relationship of
objects is called an equivalence. These two kinds of relationships are also based
on the versions of objects. For example, a configuration, in fact, is a version of a
composite object whose components are bounded to specific versions. The version
derivation is a unique temporal relationship explicitly supported by this model. In

this model as well, time is not addressed.

2.2.5 ORION

ORION, an object-oriented database management system developed by the database

group at Microelectronics Computer Technology Corp., supports a version control

17

mechanism for object evolution on both schema (type and type hierarchy) and in-
stance [B+87, K+87, KC88]. Consistency of schema is specified by a set of invariants
that are enforced by semantic rules. Compared with other systems, ORION has more
schema change facilities. Concepts such as default or shared values and composite
objects in ORION are usually not supported by other systems. A composite object
describes a dependency relationship between the components and the owner object.
ORION also supports versions of composite objects, e.g. a version instance of an
owner object and a generic instance of a component object are treated as a version of
the entire composite object. However, the problem with ORION composite objects
is that component objects are always created at the same time when the composite

object is created. ORION has not incorporated a concept of time.

2.2.6 AVANCE

AVANCEisar -’otype of an object-oriented database management system being
developed at the University of Stockholm and the Swedish Institute for Systems De-
velopment, primarily aimed at applications in the field of Office Information Systems
[Ki89). AVANCE supports two kinds of version control mechanisms: application-
level version control and system version control. For application-level version control,
AVANCE supports not only tracing the historical state or identifiable versions of an
object, but also deriving more than one successor from one “frozen” (immutable)
version. Type versioning is also supported in AVANCE. The screening approach is

applied to handle the problem of mismatching between a type version and an instance

18

version. One of the special features of AVANCE is that it is the first object-oriented

database management system using version control to handle the following issues: (1)
synchronizing access to shared objects, (2) providing rollback recovery from system
crashes, and (3) providing greater concurrency. In AVANCE, the life of an object
version is determined by the user’s applications, i.e. an object version is deletable.
The concept of time appears in AVANCE, but it is only used for ordering versions

and concurrency control. How temporal relationships among objects are modeled is

not addressed by the AVANCE data model.

2.3 TEMPORAL LOGIC

The work on temporal logic basically develops in two directions: (1) adding the
concept of time into the first order classical logic, (2) restricting the modal logic
interpretations.

James Allen’s work [Al84], is one of the most significant contributions to the tem-
poral logic, which uses first order classical logic and is based on the concept of time
intervals. For Allen, the basic entities that are associated with time intervals are
properties, events, and processes. The fact that a property holds for an interval is
denoted by the formula HOLD(p, i), where p is a property type and i is an interval.
A property is true for an interval iff it holds for every subinterval. The fact that an
event occurred over an interval is denoted by the formula OCCUR(e, i), where e is an
event type. In contrast with properties, an event cannot occur over two intervals, one

of which contains the other. An example Allen gives of an event type is CHANGE-

19

POS(ball, posl, pos2). Finally, the fact that a process occurs over an interval iff it
occurs over some subintervals is denoted by the formula OCCURRING(p,i). Some
later work extended Allen’s temporal logic to allow modeling periodical events and
processing imprecise time [Pr85]. Y. Shoham improved Allen’s work by “reifying”
propositions and also allowed using time points [Sh87] . Although Allen’s work is
developed for Al applications, the research work of F. Sadri has concluded that un-
der certain conditions it can be translated into R. Kowalski and M. Sergot’s Event
Calculus which was developed directly for deductive database applications [Sa86].

Another direction of temporal logic research is a branch of modal logic. Interpre-
tations of modal logic consist of a universe of worlds and a basic accessibility relation
between the worlds. Modal operators such as O (called necessity) and ¢ (called pos-
sibility) can be used to describe dynamic change from one world to another. If we
call each world a state and restrict the accessibility relation as the passage of time
(i.e., a state s, is accessible from another state s; if through a process in time s; can
change to s;), then a temporal logic is formed. Such temporal logic can be further
classified into two categories: branching time and linear time. In branching time
temporal logic, time may split into alternative courses representing different possible
futures at each time instance, while in linear time temporal logic, each moment has
only one possible future.

A typical linear time temporal logic is the one developed by Z. Manna and A.
Pnueli [MP83], which only contains the temporal operators describing future time and

is used for specifying and verifying concurrent program properties such as liveliness,

20

safety and precedence.

2.4 IMPLEMENTATION OF TEMPORAL
RELATIONAL DATABASE

Compared with the efforts on conceptual aspects such as modeling, query lan-
guages and semantics of time, few works have been published about the implemen-
tation of temporal relational databases. I. Ahn has investigated several issues for
the implementation of a temporal relational database such as the handling of ever-
growing storage size, the representation of temporal versions in physical storage, and
efficient access methods for both temporal and non-temporal data [Ah86]. He argued
that because of adopting the non-deletion policy, historical data in temporal rela-
tional databases have static characteristics. Also in general, historical data are not
accessed as frequently as current data. Therefore, historical data and current data
can be treated differently. Hence, a two-level storage scheme, one level for historical
data and one level for current data, was suggested in [Ah86).

Another work on physical implementation was done by D. Rotem and A. Segev
[RS87]. They proposed a partitioning scheme of files applicable to temporal relational
databases.

More recently, a new indexing technique, called time indez, was presented by R.
Elmasri and G.T.J. Wuu [EW90], for improving the performance of certain classes of

temporal queries in temporal relational databases.

21

2.5 OBJECT-BASED CLUSTERING

Clustering is a popular technique used in object-oriented databases for memory
management [At85, Ma86, Zd84, HZ87, KBCGW87]. Object-based clustering can
be classified into two categories: static and dynamic. Static clustering performs the
clustering when the system is in a quiescent state, while dynamic clustering does its
job each time an object is created or updated. Paging performances of five static
object-based clustering schemes have been investigated by J. W. Stamos [St84]. This
research concluded that static clustering substantially reduce the number of page
faults caused by an unclustered initial placement, and performance differences be-
tween clustering schemes were not appreciable significant. E.E. Chang found that
when the read/write ratio is high, dynamic clustering can improve the paging perfor-
mance even more [Ch89]. Partition principles applied in existing clustering schemes
can be based on users’ hints, class hierarchy, common attribute structure, or ob-
ject composition hierarchy. To attain an optimal partition, two types of heuristics,
transaction-oriented and single-object evaluation of object usage, are used in the EN-
CORE system [HZ87]. Transaction-oriented heuristics monitor how objects are used
together. Single-object heuristics use three measurements amassed over a period of
time for monitoring: the access count, the open count, and the access ratio. These
statistical data are used to adjust object partitions.

To our knowledge, the question of clustering temporal object has not been ad-

dressed before.

22

2.6 OTHER RELATED WORK

A clustering algorithm for the database with hierarchical structure was proposed
by M.A. Schkolnick {Sc77], where all instances of a type are grouped into segments.
These segments are then grouped in a hierarchical tree structure. Access patterns
of data segments are captured by three transaction types and relative frequencies of
transactions. Examining these patterns allows the algorithm to determine a partition
of the tree. Once partitions have been produced, the available disk space is divided
into linear address spaces (LASs), one for each partition (subtree). The instances of
all segments for a given partition are placed in their corresponding LASs in the same
order as they appear in the hierarchical order. In our work, we show that similar ideas
can be applied to build an analysis model for clustering temporal objects. Moreover,
our model takes into account alternative clustering orderings, and different history
piece lengths. We use different transaction types, and also consider the semantics of

various distributions of relative frequencies of transactions.

23

:
!
9
1

. Yo

Chapter 3

DYNAMIC STATE MACHINE
MODEL

3.1 INTRODUCTION

Lacking the temporal modeling constructs, the traditional data model of the
OODB is not able to capture the many dynamic changes common to every day phe-
nomena. Many real world applications involve the management of large amounts of
time-dependent information. In order to apply an object-oriented database in an ap-
plication with dynamic changes, incorporating temporal modeling capability into the
data model is needed. In this chapter we will introduce a data model of the TOODB,
which is called the dynamic state machine model. This model is an extension of the
state machine model. In order to fully model temporal objects, the state machine
model is extended in the following ways: (i) the time notion is introduced; (ii) state
machines are typed; (iii) structural and temporal compositions of state machines are
considered; (iv) behavior constraints are adopted as a modeling construct; (v) the be-
havior history of a state machine is maintained in the trace (i.e., event sequence); (vi)

dynamic changes in a state machine are captured by dynamic multityping, dynamic

extension, dynamic reference, and identification of retroactive update affection mech-
anisms. After providing definitions of the concepts and rules used in the dynamic
state machine model, we will discuss why and how the dynamic state machine model

can capture the features of the TOODB.

3.2 CONSTRUCTS OF THE DYNAMIC STATE
MACHINE MODEL

In this section, we will define the constructs of the dynamic state machine model:
the concepts and rules. We assume the following disjoint countable symbol sets: I,
- types, I, - type-versions, I, - transitions, I, - event identifiers, I, - trace identifiers,
Lid - dynamic state machine identifiers, and I, - variables.

In the dynamic state machine model, every entity in the real world is modeled
by a dynamic state machine. All dynamic state machines are assigned a unique
identifier. A dynamic state machine can be either a primary machine or a composite
machine. Therefore, I;y = Imia U Iomia, Where I,;4 contains identifiers of all existing
primary machines and I,,;; contains identifiers of all existing composite machines.
All dynamic state machines form a three level hierarchy. At the bottom level there
are many primary machines. A set of primary machines forms a multitype composite

machine. All multitype composite machines form the general composite machine.

3.2.1 Primary Machine
A primary machine m is defined by a 5-tuple, i.e.,

m = (M, g}, Em, R, £1n) (3.1)

25

where m € Ipmig, M € Ipia (M represents the multitype composite machine, defined
in Section 3.2.2, which contains the primary machine m), g, is a type-version, E,,
is the event set, R,, is the trace set which contains all traces formed by the events in

E,., 3, is a set of legal state sequences. These notions are further defined as follows.

Type and Type-version

A type p (p € I1p) can be either an atomic type (e.g. integer, character, boolean)
or a non-atomic type (i.e., an abstract data type). A non-atomic type consists of a set
of type-versions, each of which is a kind of definition of the type. Atomic types are
treated as single-version types. We will use only the type-version to define primary
machines.

A type-version g' is defined as a 6-tuple, i.e.,
pi = (tcatfvsup’ V,T,,C) (3'2)

where o' € I, t. is the commit time, t; is the effective time, sup points out the
super type-version, V is a variable set, T, is a transition set (i.e., T, C I,) and Cis a
constraint set.

The commit time is the instant of time when the definition of the type-version
commits. The effective time is the instant of time from which the type-version can
be used to create primary machines.

The variable set V' contains two kinds of variables: attributes and parameters. At-
tribute variables are used to define attributes of a primary machine, while parameter
variables are only used in transitions. Each variable v is assigned a type-version p*,

26

where ¥, € I,, which specifies a domain for v. The domain of a type-version g* is

a subset of I,mis and is denoted as [¢], i.e., |¢*| C Ipmia- Two elements in the same
domain means they are the primary machines with the same type-versions.

To ensure a type-version is well defined, we adopt the following convention: all
type-versions which are used by a type-version being defined must have an effective
time that is earlier than or equal to that of the type-version being defined.

Each transition 7 (7 € I,) in the transition set T, is a kind of operation defined on
the attributes and consists of a specification and an implementation. The specification
of a transition is a 3-tuple (7, input.parameters, output_parameters), whereas the
implementation of a transition is a program consisting of a sequence of steps. Each
step is either a local read, a local write, a local computation or a message. A local
read retrieves a value of an attribute variable. A local write updates the value of an
attribute variable. A local computation is a program segment which makes use of the
functionality of the underlying programming language and the input parameters (i.e.,
arguments) to do some computation but does not modify any stored values outside of
its own local memory. A result of the computation may be returned. A message is an
invocation of a transition defined in another type-version. We assume each transition
has at least one output parameter.

Three kinds of time parameters are used in every transition. The commit time ¢,
is the instant of time when all the steps in the transition 7 commit. The effective
time ¢y is the instant of time at which the data written to an attribute starts taking

effect; The observation time t, is the time when the database is observed. Every local

27

read step in 7 has an observation time. The data retrieved by a local read step should
satisfy the following condition: the commit time and the effective time of the data
are less than or equal to the effective time and the observation time of the transition.
We assume that (1) in a transition containing no local read steps, t, = nill and the
data written by all local write steps have the same effective time; (2) all local read
steps in a transition use the same effective time and the same observation time to
retrieve data.

In this model, we adopt the notions of encapsulation and information hiding.
Primary machines communicate each other through message passing. All the spec-
ifications of elements in T, are the signatures of the messages that can be received
by the primary machines defined by the type-version. Therefore T, is an ezternal
interface.

Formally, a transition defines a mapping such that
7: D" o pov (3.3)

Din is called the input domain of T which consists of the cross product of the domains

of all attributes on which the 7 is defined and the domains of input parameters, i.e.,
Din = Ip.::ll X ... X lp;:ll X |p:[1| X e X Ip;”;l X Ip:¢| X Ip;ll X IP;J (3'4)

D2 is called the output domain of T which consists of the cross product of the domains

of the attributes on which 7 is defined and the domains of output parameters, i.e.,
D =gk, | % oo X 4| % Iy, | X e X |2y, | (3.5)

28

In the above, || is the domain of the attribute variable z;, lP;,' is the domain of
parameter variable y;, |} |, |¢f,| and |p} | are the domains of t,,t; and 1, respectively.
The constraint set C contains the behavior constraints. A precise definition of

behavior constraints depends on the concrete language applied (e.g. a logic language).

Event

An event occurs when a transition 7 is executed. For each event e, we define the

following.

(1) The wvariable set of e, denoted as V,, consists of all the variables that are

used in the transition 7 of e.

(2) The walue set of e, denoted as)., consists of all the values of the variables

in V. after the event e occurs.

P, = {'¢c(vl)’ "/)e(v'z)a ey "l’e(vn)} (36)

where 9.(v;) represents the value assigned to the variable v; (v; can be

either an attribute x, or a parameter such as y, ¢, t; or t,) by the event e.

Now we can formally define the notion of event as follows. An event e is a one to
one mapping from V, to ¥, i.e., e: V. — ¢, where ¢ € I, V. and ¢, are as defined

above.

29

l

Retroactive Event and Affected Event

Assume that 1.(t.) and ¥.(#,) respectively represent the commit time and the
effective time of an event e. The event is called a normal event if Yelte) = e(ty).
It is called 2 retroactive event if v,(t) > ¥.(ty). It is called a post-dated event if
Pe(te) < %elty)-

A retroactive event may be used to explicitly invalidate a previous event or im-
plicitly affect some previous data values and events. The concepts of affected value
and affected event are defined as follows.

Let e;,¢; be two events, and 7, V., %, (L), ¥, ({;) and Tjs Ve, » We,(te), e, (1) be
transitions, .riable sets, commit times and effective times of ¢; and ¢; respectively.
Let z be an attribute variable. We call the value 9. (x) an affected value if the

following conditions hold:

1. ¢; is a retroactive event;
2.z€V, andz €V,;

3. vai(te) <o, (2c) and 3, (t) 2 b, (1)

4. 7; is invoked to assign a value 3, (z) to z.

Let e; be another event with a transition 7, a variable set Ve,, @ commit time
Yeu(Lc), an effective time 1),,(t;) and an observation time ., (1,). Let y be a variable
andy € V,,. The value of y, ¢, (y), isalso an affected value if the following conditions

hold:

1. 7 is invoked to read an affected value 3., (z) at 1, (to),

30

2. e, (t) 2 %, () and ., (25) 2 ¥, (2),

3. 7x is invoked to assign a value to y that depends upon ¢,,(z).

An event e is called an affected event if either at least one of its values becomes

an affected value or it is explicitly invalidated by a retroactive event.

Legal Event

An event is legal until it becomes an affected event.

Trace and State Evolution

For all the events in the event set E, of a primary machine m, a total order-
ing relation < is defined, such that ¢; < e; iff ¢¢(t.) < ¥, (2:). If a set of events

{€0,€1y++s €n1}, Which is a subset of E,, satisfies the following conditions:

1. eg is the first event in the E,,,
2. €g <€ <..< €eu_1,

3. there is no event ¢;, ¢; € Ep, such that e;_q <¢; < ¢,i=1,2,..,n — 1,
then these events form a trace which is denoted as
Th=€®€e..0€Enh 3.7)

where r,, € I..

All the traces of a primary machine m are contained in the trace set R,,.

31

The state-evolution of a primary machine m is an infinite sequence defined as
follows:

Om = S?rns:lms?m'“ (38)

where s = (r;,e;), i = 0,1,..., is called a state, r; is a trace, ¢; is called a state
transferring event which is the last event in the trace r;.

o, satisfies the following conditions:

1. 7o = null and ey executes the transition 7, which initializes all the variables

in the V},,, and 7y can only be executed in the eg.
2. for any two consecutive states (r;, €;) and (ri41,€i41), Tig1 = 1 065

3. every state s' has one and only one state transferring event e; which exe-

cutes a transition 7; which belongs to T..

Legal Trace and State Evaluation

For each state s' = (r;,e;), there is a legal trace which is formed by all the le-
gal events in r; according to a total ordering relation <* defined by the following

convention:
(1) the first event is eg;

(2) for any two legal eventse;, and e, in r, if 1, (£7) < Ye,, (), then ej, <*e;,;

(3) for any two legal events e;, and e;, in r;, if Ye,, (t1) = ey, () and ¢, () <

1/),,-2 (tc), then e;, <*ej,.

32

The legal trace of a state s' is denoted as

TI=ep0e0...0¢,., (3.9)

Let r be a trace variable and e be an event variable. The legal variable set of the 3

state 8* V,i is defined as follows:

Vi= U Ve, U{r,e}, (3.10)

Ve €ry
where V,, is the variable set of a legal event in the legal trace r;. The domain of r is
R, and the domain of e is En,. The legal domain set of the state s' D, is defined as

follows: 5

Di= | Ipil. (3.11) f
Vuev,, ’
The state evaluation of a state s, i = 0, 1, ..., is denoted as &' and is defined as a ‘

mapping & : V,i — D,i, such that:

1. .§i(1') =7, |

2. §(e) = e,

3.
tpc}moz(”)’ for vE ‘/e_,m”
§v) = ¢°""“." (v), forvgV,, . AvEV,,. .
Peo (), forvgV, _A.AvEV,AvEV, (3.12)

where 9., (v) is the value assigned to the variable v, V,, is the variable set

of the legal event e; in r}.

We define the legal state sequence corresponding to om to be the sequence 6y, such

that:
Om = é&,é}n,éfn,... (3.13)

33

We define ¥,,, to be the set of all state evolutions of a primary machine m and

£ to be the set of all corresponding legal state sequences.

Is-a Relationship

A primary machine is often denoted simply by mﬁf , which means this primary

machine has a type-version p* and belongs to a composite machine M.

If a type-version is a generalization (or specialization) of another one, it is called

-r g .

the super(or sub) type-version of the other one. This kind of generalization/specialization

relationship is called is-a relationship. The is-a relationship is anti-symmetric and
transitive. If p' is the super type-version of p? which is the super type-version of

p°, then both p! and p? are called an ancestor type-version of p3. In this model, we

[N - NIRRT

assume that a type-version fully inherits the definition of its super type-version. A
group of type-versions, according to the is-a relationships that they have, form a type-
§ version tree. If p! is the super type-version of p?, then p! is an ancestor type-version
' of p®. If p! is the super type-version of p? and p® is the super type-version of p®,
then p! is an ancestor type-version of 3. All type-version trees form a type-version

forest.

Given two primary state machines mg{ and mg, if p! is the super type-version of

the p?, m% is called a basic machine of mﬁ,‘, and mg is called an eztension machine
of m¥. The part of the m" which is not in the m is called an eztension part of m¥4.
The basic/extension relationship is anti-symmetric and transitive. If mﬁ{ is the basic

machine of m¥ which is the basic machine of mM, then m is also a basic machine

34

of mg . A primary machine may not exist at the same time when its basic machine
exits. The dynamic ertension mechanism is applied to capture this characteristics,
which consists of two integrity rules 3.6 and 3.7 (see Section 3.2.5). An extension
machine may have an event which has the same commit time as that of an event
occurred in one of its basic machine. We treat these events as a complez event which

will be defined in the next section.
3.2.2 Multitype Composite Machine

A multitype composite machine M is defined by a 5-tuple, i.e.,
M= (mchM9EM1RMaiM) (3°14)

where M € Imia and m,, Py, Epy, Ry and) are respectively the cooperating
machine, primary machine set, event set, trace set and legal state sequence set of M.
Cooperating Machine

The cooperating machine m, is a pseudo primary machine, which functions as a

manager of the multitype composite machine M. It is defined as a 5-tuple, i.e.,
m. = (M, ¢, E, R, 5.) (3.15)

m; € Iymig. M is the identifier of the composite machine which the m, belongs to.
pi = (tc, t4,V;, Tey Cc) is a pseudo type-version, where i is the commit time, #; is the
effective time, V. is the composite variable set, T, is the composite transition set, and

C. is the composite behavior constraint set.

35

Basically, in the variable set V., there are at least two set-variables: a, which is
called the component machine activity state variable, and b, which is called the com-
ponent machine variable. Each element of a corresponds to one component machine
and has a value of either active or stopped. The value of b is a set of identifiers of
component machines which are currently associated with the composite machine M,
i.e., the domain of b is the power set of I,4 (denoted as P/ " (Lmia)). V. also contains
the parameter variables used in the transitions defined below.

T. C I.. Tt contains at least the following transitions:

(1) Create: used to add a new component machine;

(2) Stop: used to stop a component machine;

(8) Resume: used to resume a stopped component machine;

(4) Compo: used to test whether a primary machine is a component;

(5) Is-a: used to test whether two component primary machines have the is-a

relationship;

(8) Affected event identification: used to identify all the events which are af-

fected by a retroactive event.

C. consists of the behavior constraints that define temporal relationships among
the 7’s of different component machines and /or those in the T..
The events whose transitions are in T, form an event set E,, and the total ordering

relation based on the commit times of events in E, form the traces in the trace set R..

36

Therefore, we also can define the state, state evolution and state evaluation similarly

to a real primary machine.

Complex Event

In a multitype composite machine, it is possible that several events from different
primary machines (including the pseudo primary machine) commit at the same time.
If an event in a multitype composite machine commits at a time when no other
events commit at the same time, then it is called a simple event. If several events
have identical commit times, they are technically treated as a complez event. Assume
that ey, ey, ..., e, are events with identical commit times. That is, e; : V., — ¥,,,
e2: Ve, = ey, ooy €0t Ve, = te,,, and o, (L) = e, (1) = ... = 1., (2:). The transition
invocated in the event ¢; is 7; : Di* — D2,

The complex event, denoted as e, formed by these events is defined as follows:
e: Ve — 1 (3.16)

where V, = U, V., which is a set containing all the variables used in the n events;
and v, = U, Y., which is a set containing all the values assigned to the variables in
Ve such that ¥.(v) = ¢, (v)ifv e V,,.

The transition 7 used by the complex event e is defined as
7:DI x DI x ... x DIt — D2 x Dgt... x D!

such that

Tl(xlh mytol)s for (zlla "-atol) € .D.’,’:

T(Z11y eeeybogy ooy Tnlyeees Lo) = : ‘
Tn(mnl’ u-,to”), fOl' (27,;1, seey ton) e D;’:‘ (3:17)

37

The transition of a complex event is called a complez transition, while the transi-
tion of a simple event is called a simple transition.

The events ¢,, €3, ..., €, are called element events of the complex event e. Now the

event set of the multitype composite machine M can be defined as follows:

Ey =U,_, {Ee U Esi), (3.18)

where t' represents the current time, and Eg,, and Es,, represent a complez event set
and a simple event set of M respectively.
Correspondingly, the transition set of the multitype composite machine M can be

defined as follows:

T = U, (o U Tsu), (3.19)

where t' represents the current time, and Tg,, and T, represent a complez transition
set and a simple transition set of M respectively.

A total ordering relation < can be defined on all the events in Ejp, such that for
any e;, e; € Ep(i # j), ei < e; if and only if ¥, () < ¥, (t;). Therefore, similar to
the primary machine, the notion of trace can be defined. All of traces of the multitype
composite machine M are contained in the trace set Ry.

The concepts of state and state evolution of the multitype composite machine M
can be defined similarly to those of the primary machine as well. The state evolution
om of the composite machine M is formed by the traces in Ry and events in E)y.

To define the legal trace and state evaluation for a state of a multitype composite
machine, we must first define the concept of legal complez event. Assume that s' =

38

(ri, ;) is a state of the multitype composite machine M. We cali & simple event or
an element event of a complex event in r; an individual event of r;. If more than one
legal individual events in r; have the same effective times, they form a legal complex
event, which can be formally defined similarly to the way to define the complex event
(i.e., (3.16) and (3.17)). If an legal individual event in r; does not belong to any
legal complex event, then it is called an legal simple event. The legal trace of state
s' is formed by all legal simple and complex events in r; based on the total ordering

relation <* defined as follows:

(1) the first event is eg;
(2) for any two legal events ej, and e;, inr;, if e, (t7) < ¥, (ts), then e, <*e;.
The legal variable set of a state, the legal domain set of a state, and the state
evaluation as well as legal state sequence can be defined similarly to those defined for
the primary machine (i.e., (3.9), (3.10), (3.11), (3.12) and (3.13)). We define Iy to

be the set of all state evolutions of a multitype composite machine M and a1 to be

the set of all legal state sequences correspondingly.
3.2.3 General Composite Machine
The general composite machine M, is defined by a 5-tuple, i.e.,

My = (my, Py, Eg, Ry, 23) (3.20)

where My € Imid, and my, Py, Eg, Ry an-l 539 are respectively the cooperating ma-

chine, the multitype composite machine set, event set, trace set and legal state sequence

39

set of M.

The cooperating machine m, is similar to the cooperating machine m, defined
in the multitype composite machine. The difference is that here the domain of the
component machine variable b is a subset of P/™(I ;). In the general composite
machine, a multitype composite machine, which is called schema machine and is
denoted as My, is specially used to model the type and type-version evolution. In
the M,,, each type p has a corresponding primary machine which is identified as m,,.
In the variable set of m,, there are two attribute variables: type-version-id tv and
type-version-definition def. def is a tuple-variable which consists of six elements: i,

ty, sup, V, T,, and C. The domain of tv is I,. The domain of def is derined as
Daes = lp},| % lgi,| % Ly 4 PT(1,) x PY™(L) x |C],

where |C| represents all the constraints. In the transition set of m,, the following

transitions are contained:

(1) New-version: used to create a new type-version of the type.

(2) Parent-Of used to test whether a type-version is the super type-version of

another one.

(8) Ancestor: used to test whether a type-version is the ancestor type-version

of another one.
In the constraint set of m,,, the following constraints are contained:

(1) each type-version belongs to only one type.

40

(2) each type-version has only one super type-version.

(8) the effective time of a type-version must be later than or equal to that of

its super type-version.

Except for these things, all the other concepts in M, can be defined similarly to

those defined in the multitype composite machine.

3.2.4 Relationship between a) and a 6,

Let p = 8,8}, 8%, ... be a legal state sequence of a composite machine M;
let m; be a component machine of the M. To produce the legal state sequence of
m; based on the legal state sequence of M, a projection function is carried out by
the following steps: (i) check the results of each state evaluation &%, and select only
those state evaluations in which the legal trace r} contains events that belong to the
component machine m;, (ii) renumber these selected state evaluations, (iii) remove all
the legal events which do not belong to the m; from the legal traces of these selected
state evaluations.

The result is denoted as &apl,,, = 83ylm,» S3sdm, s -

We claim that 6,,, = oxl},,,. Correspondingly, we define }3Mum. as a set which

contains all dpl,,'s, and claim that Y, = fJMUm...

3.2.5 Integrity Rules

Rule 8.1: All dynamic state machines share the same type-version forest.
Rule 3.2: In a composite machine, when a component machine m; is created, the
corresponding activity state variable is assigned as active; when the m; is stopped,

41

the corresponding activity state variable is assigned as stopped; when the stopped m;
is resumed, the corresponding activity state variable is assigned as active again.

Rule 3.3: In a composite machine, if the activity state variable of a component
machine m; has a value of active, then the component machine m; can execute any
transitions defined in the transition set T,,;. If the value is stopped, then the compo-
nent machine m; can execute only retrieval transitions.

Rule 8.4: When a primary machine is stopped, all its active extension machines
will be stopped at the same time; when a composite machine is stopped, all its
component machines will be stopped at the same time.

Rule 8.5: When a primary machine is to be resumed, if its basic machine is
stopped, then the basic machine must resume at the same time.

Rule 3.6: A dynamic state machine is created according to the following proce-

dures:

1. The general machine is assumed to be created in advance by the system.

2. Any multitype composite machines are created by executing the Create

transition in the general machine.

3. Any primary machine mff is created by executing the Create transition
in the corresponding multitype composite machine by the following steps:

(1) if p' is a type-version of a root type, then mM is created directly,
(2) if p' is a type-version of a nonroot type, then whether an m"‘,," exists

such that g’ is the super type-version of the g* is checked,

42

(3) if the answer in (2) is “Yes”, then (a) if the m} is active, it is taken
as the basic machine of m¥, (b) if the m} is stopped, it resumes and
is taken as the basic machine of mzf ,

(4) if the answer in (2) is “No”, then a mM is inductively created and

taken as the basic machine of my ,

(5) for all conditions, the extension part of mﬁf is created.

Rule 3.7: A primary machine shares only the histories of its basic machines that
existed after the primary machine has created.

Rule 3.8: Every retroactive event will trigger the affected event identification
function to identify all the events and values which are affected by the retroactive

event (directly or indirectly).

3.3 MODELING TEMPORAL OBJECTS BY
DYNAMIC STATE MACHINES

The following section will discuss how the dynamic state machine model can cap-

ture the features of temporal objects.

3.3.1 Environment Modeling

At any time, an temporal object must be associated with one or more environ-
ment. An environment is defined as a set of structural and/or temporal relationships
with which a set of objects are associated at a certain (physical or conceptual) place
and during a certain time period. The notion of type is suitable to model envi-
ronments. Structural relationships can be modeled by is-attribute-of and is-a (i.e.,

43

generalization /specialization) hierarchies. Temporal relationships can be modeled by
the time notions used in transitions and behavior constraints. Because the definition
of a type may involve evolution, types are versionable (atomic types such as integer
and boolean are treated as single-version types). Every type-version is a node in an
is-a hierarchy which is a tree. In our data model, the semantics of the multiple in-
heritance is captured by applying temporal composition (e.g. a multitype composite
machine). Therefore, only a tree structure is needed for the type-version hierarchy.
Since each type may have more than one version, at a given time there may exist a
set of such hierarchies, which is called the type-version forest. Therefore, any change

in environments can be captured by a type-version forest.

3.3.2 Dynamic Multityping

In the dynamic state machine model, a temporal object is modeled by a multitype
composite machine which applies a dynamic multityping mechanism. Essentially,
the dynamic multityping mechanism is used to capture another kind of composition
relationship among a set of objects, which is called temporal composition, i.e., a
temporal object is treated as a composition based on the temporal relationship hold
by its different historical parts. A primary machine is used to model the experience of
the temporal object under a certain environment. Whenever a temporal ob ject moves
into a new environment, a primary machine defined by the type-version corresponding
to the new environment is created and added into the multitype composite machine
which models that temporal object. The behavior evolutions of the temporal object

under different environments are recorded in the corresponding primary machines.

4

After its creation, the primary machine is active. An active primary machine can
execute all the transitions defined in it. When a temporal object leaves an environ-
ment, the corresponding primary machine must stop. A stopped primary machine
can only respond to the queries about its history. A stopped primary machine can
resume again later on if the temporal object reenters the environment represented by
the type-version of that primary machine. A primary machine may stop and resume
many times.

In a multitype composite machine, more than one active primary machine may
exist at a given time. This is because of the following reasons: (1) the semantics
of the is-a hierarchy of type-versions determine that if a primary state machine is
active, then all the ancestor primary machines «iso have to be active, (2) more than
one environment may be associated with a temporal object in the same time period.

We can demonstrate the concepts above by an example. Assume that a person
is named John which is used as the multitype composite machine identifier in this
example. At the beginning, John can only be described by the type-version Person?,
so that only the primary machine m;’, ohn s in the composite machine John. Later

Gl'loﬂ‘

on, John goes to school; hence, another primary machine with type-version Student!,

John

ie.,m
Student

,» 18 created and added into the multitype composite machine John. These

two primary machines concurrently remain active after the creation of the mz:’:‘d':m,.

After his graduation from a university, John is hired by a computer company as a
programmer, and therefore a new primary machine mJ/°"» is created and added

Programmer!

into the multitype composite machine John. However, due to John’s leaving school,

45

¢
& 4
b
ki
3

&
9

the primary machine m;:::,.,: stops. After working for two years, John quits his job

and goes back to university to pursue his master’s degree. At that time, the stopped

John

F’v-oagmmmcrl

John

Student? stops.

resumes, and the m
3.3.3 Dynamic Extension

To support dynamic multityping, the dynamic state machine model applies a
dynamic extension mechanism which permits us to model the connections among the
histories of a temporal object in different environments. The basic idea of dynamic
extension is that when a new primary machine is created, if in the corresponding
multitype composite machine there exits a primary machine whose type-version is the
super type-version of this new primary machine, then this existing primary machine
is taken as the basic machine of the new one. The newly created primary machine
is called the extension machine of the basic machine. The history of the extension
machine begins at the time of its creation, and it starts to share the history of the
basic machine from this point on.

Let’s go back to the previous example of modeling the person named John. When

John

ovdone! is created, it takes the existing primary machine

the new primary machine m
mJohn

Person?

as its basic machine. However, the past history of mi‘e’:':‘ml, that existed

John
Student?

John

ooy Was created, will not be shared by the m

before the m
3.3.4 Dynamic References

By applying the dynamic reference mechanism, the dynamic state machine model

can easily capture the enriched semantics of aggregation in the TOODB. In the

46

TOODB, the is-attribute-of relationship between two temporal objects becomes a
time function. Let’s consider the concept of composition, a special case of aggre-
gation, where a composite object is related to the components that make it up via
the ts-part-of relationship. This relationship is a special case of the is-attribute-of
relationship. For example, a car can be considered as the composition of the en-
gine, body, tires and transmission system. In the traditional OODB, the is-part-of
relationship is modeled by a composite object and component objects. Because of
the lack of temporal modeling, the connection between a component object and the
composite object is fixed: the component objects are created together with the com-
posite object, and they are always connected to each other. This causes a semantic
gap between the object in the database and the entity in reality. For example, for
most car manufacturers, body parts and engine parts are designed and fabricated
independently. Also in real situations, cars may be refitted with new engines. On the
other hand, an engine itself may experience several stages: a new engine, an engine
in use, a reconditioned engine, and a worn out engine. Also an engine may be con-
nected to different cars at different times, e.g. the new engine is connected to car I,
but after it is reconditioned, it is connected to car J. In the dynamic state machine
model, the car and engine are treated as independent multitype composite machine;
both of them consist of different primary machines and maintain their own histories.
The is-part-of relationship makes them related to each other in a certain time period.

This experience is recorded in their histories.

47

ML ol o

3.3.5 Trace and Behavior History

We define the execution of a transition as an event. From user’s point of view, an
event carries out either a query or an update on the “database state ” of a dynamic
state machine. In our model, the database state determined by the event. Whenever
an event occurs the “database state” of the dynamic state machine is updated. That
is, we emphasize behaviors. The behavior history of a primary machine is represented
by the traces consisting of the events associated with the primary machine since its
creation. The behavior history of a composite machine consists of all the behavior
histories of its component machines.

The behavior history provides more information than that provided by the history
which only provide attribute values. For example, we may model a “cursor” as an
object with an attribute “location” and four methods: “move up”, “move down”,
“move left” and “move right”. From a behavior history, we can analyze cursor move-
ment as a function of time. This allows us to know not only where the cursor is, but

also how the cursor moves.
3.3.6 Retroactive Affection Identification

Retroactive updates occur often in many applications. For example, retroactive
salary adjustments, retroactive design corrections. A retroactive update may inval-
idate some of the actions that took place before the update. That is a retroactive
update may result in a cascade of invalidations. The first step in handling retroactive

updates is to identify the actions and data that are affected by a retroactive update.

48

In applications that involve large amounts of historical data, the system rather than
the _ser takes care of the retroactive update affection identification is more prefer-
able. Including the concepts and rules with regard to retroactive update affection
identification in our model serves this purpose.

Let’s consider an example. We assume that John has a checking account in the
bank ANYNAME, and that John’s monthly salary is 1600 dollars which will be di-
rectly deposited into John’ bank account on payday once every two weeks. We also
assume that the bank ANYNAME has the following conventions: (1) if every day
during a month, the balance of a checking account is equal to or greater than 600
dollars, then there is no charge on all the checks or cash transactions made by the
client during that month. Otherwise, each check or cash transaction will be charged
a 1 dollar service fee; (2) if an account is overwithdrawn, then a 5 dollars service fee
will be charged and the amount of money that is overwithdrawn will be charged on
a 20 percent per year interest rate. Let’s assume that somewhere between March 1,

1987, and March 31, 1987, the following sequence of events took place:

(1) On March 1, 1987, John’s checking account had a balance of 600 dollars.

(2) On March 3, 1987, John cashed 300 dollars from his checking account.

(8) On March 7, 1987, John purchased a dichwasher by writing a check for 450
dollars post-dated to March 14, 1987 which is his payday.

(4) On March 14, 1987, because the company where John was working made
a mistake, John’s salary payment was not deposited into his bank account
so that when his check was cashed, the account was overwithdrawn by 150

49

dollars.

(5) On March 15, 1987, John cashed 500 dollars from his account because
he did not know his payment was not available, so that the account was

further overwithdrawn.

(6) On March 25, 1987, John went to the branch of the bank to request a larger
credit limit for his credit card, and got a rejection because of his record of

overwithdrawals.

The event (6) made John realize there was something wrong with his company’s
salary payment. On March 26, 1989, the company corrected the mistake by issuing a
retroactive deposit John’s salary into his account effective on March 14. Because the
database of the bank ANYNAME had the retroactive updates affection identification
function,’ the events (4), (5), and (6) were identified as the affected events. Therefore,
John avoided the charges due to overwithdrawing and got an extended credit limit of

his credit card.

3.3.7 Behavior Constraints

The data stored in a database is used to model real world entities. To insure that
only correct data is stored, it must satisfy certain types of consistency constraints,
e.g. the number of working hours in one week of an employee may not exceed 40

hours.

However, in the TOODB, the consistency constraints also have to include behavior

1This function actually belongs to the futuristic databases

50

constraints, which specify the temporal relationships among the events. Whether data
is correct or not depends not only on the scope of the data but also on the temporal
relationships of the events which produce the data.

For example, in a OODB for a library, we assume that the type * book” is defined

as follows:

Type: Book
Supertype: Print-Material
Attributes:
BID: Book-Id-type
Call-No.: Call-No-type
Title: Title-type
Author: Author-type
Publisher: Publisher-type
Methods:
Borrow (BID)
Return (BID)
Renew (BID)
The system should not permit the following event sequences to be stored into

database, because they have obvious semantic mistakes.
(Borrow(by),t,), (Borrow(b;), t2), (Return(by),t3), (Renew(b), t4)

(Borrow(by), t,), (Return(by), tp), (Return(by), t3), (Renew(b,), t4)

51

Therefore, behavior constraints are an important part of temporal modeling in
our data model. They allow the modeling of consistency beyond what is allowed
by the traditional type system, and capture more semantics of application domains
which are missed by the traditional OODB. Their function cannot be replaced by
other things.

In summary, the dynamic state machine model not only includes all the modeling
power of all the existing approaches related to object evolution, but also captures
the generic temporal relationships of objects and basic dynamic features of object

evolution which so far have not been dealt with by any existing approaches.

52

Chapter 4
DYNAMIC STATE LOGIC

4.1 INTRODUCTION

In this chapter we will introduce a linear time temporal logic, called the Dynamic
State Logic (DSL), for specifying behavior constraints of dynamic state machines.
The DSL is an extension of the linear time temporal logic developed by Z. Manna
and A. Pnueli [MP83]. We assume familiarity with their work presented in [MP83]
and only stress the extensions.

There are two aspects in which the DSL departs from the temporal logic presented
in [MP83). First, the DSL needs to consider the past as well as the future, in order
to trace the histories of objects. Thus, we also use the following temporal operators:
o(Previous), Z(Past-always), S (Since). Correspondingly, we extend the defini-
tions of term and formula. Second, unlike the formal system presented in [MP83],
the formal system of the DSL is a composite system with a hierarchical structure,
which consists of many component formal systems. This corresponds to the composite
structure of dynamic state machines.

We will adopt the following conventions: M represents a composite state machine,

m or mg represents a component machine of a composite machine, and p represents

a dynamic state machine (either a primary machine or a composite machine).
4.2 DYNAMIC STATE LOGIC LANGUAGE

Definition 4-1:

In the DSL, we use the following alphabets
Logical Symbols:
Connectives: -, —
Universal quantifier: V
Parentheses:),(
Temporal Operators: (O(Next), O(Henceforth), U(Until), ©6(Previous),

E(Past-always), S(Since)

Other Symbols:

All the symbols used in the definition of a dynamic state machine (i.e., I, I,
I+, Iy, I, I, and I,,) are also used as symbols in the DSL with the same meaning
as they have in the dynamic state machine model. To distinguish DSL symbols, we
will put a © over them.

DSL is a multi-sorted logic with a set ¥ of sorts. Each sort is a domain for a
variable in the variable set V, of a dynamic state machine p. Transition set T}, event
set E,, and trace set R, of a dynamic state machine are also considered as sorts in

¥. Variables are divided into global variables and local variables. #, 7, and e’ are used

54

as local variable symbols of sorts T}, R,,, and E,,, respectively.
For each n-tuple of sorts there are predicate and function symbols, and for each
sort there is a set of constant symbols. In addition to the functions and relations

defined in Chapter 3, the following predicates will also be used in the DSL.

Parent-Of(p', 9?): p* is the super type-version of g?.

Ancestor(p!, p?): p' is the ancestor type-version of g2

Belong_To(p', p): ' is a type-version of a type p.

Compo(m,M): m is a component machine of the composite machine M.
Typed(m, ¢'): the primary machine m has the type-version g'.

Is-a(my, my): the primary machine m; is an extended machine of the primary

machine m,.

In(m,b): a dynamic state machine identifier m occurs in the component ma-

chine variable b of the manager machine of a composite machine.

Stopped(y): the dynamic state machine yu is stopped.
We will use predicate é = ¥ to represent an event which executes a transition .
Definition 4-2:
We define terms as follows:

1. all the constant symbols are terms;

2. all the variable symbols are terms;

55

¥
¥
¢
«

PR

T TR PP

3. f(t1,...,1x) is a term, if t1,...,t, are terms and f is an n-ary function

symbol;
4, Ot is a term, if t is a term;

5. ©t is a term, if t is a term.

Definition 4-3:

We define formulas as follows:

1. An atomic formula is a string of the form p(#,,...,tn), where p is an n-

ary predicate symbol and t,...,1, are terms. We write t; = t2 instead of
=(t1,12).
2. If w, is a formula, then (~w), (Qu), (Dw), (Bw), and (Zw) are formulas.

3. If w, and w, are formulas, then (w; — w;) , (w,Uw,) and (w,Sw,) are

formulas.

4. If v is a global variable and w is a formula, then (Vv : w) is a formula.

4.3 SEMANTICS OF DSL

Definition 4-4:

The interpretation I, = (S,, A,,5,), where S,, is the fixed structure for g, which
assigns to all global constant symbols, function symbols and predicate symbols the
corresponding constants, functions and relations used in the description of u; A, is

a global assignment which assigns a value to each global free variable; 6, is a legal

56

state sequence in £,, as defined in Chapter 3, which assigns values to all local free
variables.

If we assume that a composite machine M consists of a set of component machines
m;, then Ipg = U I,,. For every m;, we have I,;, = (Sm,; Am;y0m,), Where S, =
Smlni Am, = Aml,,,, and 6, = 6ml,,,- Sm, = Sml,,, means that Sy, is formed
by those assignments in the Sy which are used only for the constants, functions and
relations for describing the m;. Am, = Ay{,,, means that A,,, is formed by the global
assignments in the Ajs which assign values to the global variables of m;. We claim
that Iy, = Inl,,, -

The set of all the interpretations which have the same global assignment A, but
different legal state sequences 6, is denoted by II,. II, is exactly that class of in-
terpretations which are models for describing the properties and behaviors of the

dynamic state machine u.

Definition 4-5:

Let I, = (S,, A,,6,) be an interpretation. Then we define the following:
1.

[= Iy, forp=M
7\ I, forp=m;

2. L,[f] is a function assigned to the function symbol f by I, and IL[f] =
Su(f)-

3. I[p] is the relation assigned to the predicate symbol p by I,and I, [p| =

Su(p)-

57

teiniadis

I = (8,,Au,6) , where k >0, 600 = 8k, 8+ .which is the k-
truncated suffiz of the &, = 39, 31,...., i.e, I®) js the interpretation ob-

8

tained from I, by replacing &, with 6(*). I, is the abbreviation of I (©,

. I(v/d) =(S,, A,(v/d), 6,), where A,(v/d) is the assignment which maps

v to d and agrees with A, on all other global variables distinct from v.

; Definition 4-6:

j We associate with each interpretation I, and every term ¢ an element I,[t], by

1.

2.

3.

using induction on terms.

for each constant symbol ¢, I,[c] = S,(c),
for each global variable v, I,[v] = A,(v),

for each local variable =, I¥[z] = 3%(z), where k >0,

. for any term ¢, IWM[Ot] = IHD[¢], (k > 0),
. for any term ¢, IP[ot] = I-V[¢], (k > 1),

. for each n-ary function symbol f and terms t,,...,t, (all of appropriate

sorts), I[f(t1,...,tn)] = L[fl(Zu[t1), s Loltn).

Definition 4-7:

For all interpretations J(!), we use | 0w to represent that J () satisfies w, where

w is a formula. We define the satisfaction inductively as follows:

1.

|=l§,*)(t1=tz) iff Ity = IP[t,),

58

10.

11.

= gop(tyy cnta) i (IR[ta), o, IPfE]) € 1),

E "(‘u)(-w) iff not|=,£u)w,

Fyo(wr —wy) iff s otk m(-wy),

Fw(Ow) iff Fpaw,

'=1£*)(Dw) iff for every i > k, hé‘.-)w,

|=I£k)(w1 Uw,) iff for some j > k, I::d,)wz and for all i,k < ¢ <
Js |=,£.)w1,

|=]9)(ew) iff }=l§‘k-1)w, where k > 1,

l=l£k)(Ew) iff every 0 <i<k, such that |=I‘(‘.)w,

I=I£k)(w1 Sw,) iff forsome j, 0 < j < lc,|=[£,)w2 and for all i,
J<iLk,)=,‘(‘.)w1,

|=I£k)(Vv :w) iff forallde€ D, |=1£.)(u/d)w where v and its quantifier

are of sort j.

Definition 4-8:

If for any I,("" = (S“,A“,éu(")) in I1,, [=pmw, where k > 0, we say w is I1,,- valid,
M

and denote it as f=p; w.

Abbreviations:
disjunction w;Vw, for ~w; — w,
conjunction wyAwy for ~(w, — —wy)
bicondition wy & wy for (w; = w2) A (w2 — wy)

59

eventually Quw for ~DO-w

past-sometime Vuw for -=-w
before wB w, for —(-w,Uw,)
after w A w, for =(-~w;Sw,)
existential Jv:w for =Vv:-w

4.4 PROOF SYSTEM OF DSL

The proof system of the DSL consists of four parts.

Part (a) of the DSL proof system formalizes the pure temporal logic properties
of sequences in general. In this part, all of the axioms and inference rules which
are related only to the future time are inherited from the proof system of [MP83].
Since we have some temporal operators related to the past time, here, we list ten new

axioms and one inference rule. All these extended axioms and the inference rule of

Part (a) will be denoted by the prefix “APA™ or “APR”.

(APA1) Fi "Vw e S-~w

(APA2) Fa E(w1 — wa) = (Swr — Swy)
(APA3) Fe Sw—ow

(AP A4) Fi ~Ow e 0-w

(APA5) Fi ©(w — w;) = (Bw) — Owy)
(APAS6) Fo Sw— Ow

(APAT) Fi Sw— 6Zw

(APAS) Fa E(w - 6w) = (w — Ew)

60

(APA9) Fa (w1 S w2) & (w2 V (wy AB(wy S wy)))
(APAlO) l‘;‘ (wl S wg) — VU)g
In addition to axioms, a new inference rule is also added as follows:

(APR1) Z 1- Z Insertion

I-,-,w

Part (b) of the DSL proof system consists of the axioms that describe the proper-
ties of primary machines defined by a type-version. These axioms can be considered
as domain axioms, since all the primary machines defined by a type-version form a
domain. The properties of a domain can be written as formulas of DSL. If a formula
of the DSL is valid for a domain, then that formula is an axiom of part (b).

For example, the definition of a type-version Queue! contains the following;
V = {header,tail,length}

T, = {Insertion, Deletion}

where the type-versions of three attribute variables are Integers, and the two transi-

tions are defined as follows:
Insertion : tail := tail + 1; length := length + 1

Deletion : header := header — 1;length := length — 1

To express the properties of the primary machines defined by the Queue?, we have
the following DSL formulas:

61

Py & = Insertion — ((length = length + 1) A (fail = 6fail +1)),
'-'hgucuel él = Deletion - eiength 2 i)

Based on the semantics of the queue and the properties of integers, it is easy to
show the formulas above are valid for primary machines with type-version Queue!,
so that they are axioms of Part (b). In fact, these formulas can be considered as the
constraint part of the definition of type-version Queue!.

All the axioms of Part (b) will be denoted by the prefix “BA”.

Part (c) of the DSL proof system contains axioms and inference rules that de-
scribe the relationships among the component machines of composite state machines.
Part (c) can be further divided into two subparts: (i) axioms and inference rules for
the ic-a hierarchy, (ii) axioms that describe the special relationships among compo-
nent machines and the relationships between a specific composite machine and its
component machines.

All the axioms and inference rules of Part (c) will be denoted by the prefix “CA”
or “CR".

The axioms and inforence rules of Part (c-i) are listed as follows:

(CA1) COPA - Component Axiom
Let 1 be a component machine of a composite machine A and b be a component

machine variable of M, then
by éompo(ﬁz, M) & fn(r‘h, b)
(CR1) COMP - Composition Rule

Let M be a composite machine, i be a component machine of the M, and w be

62

a temporal formula, then

(CA2) TATA - Type and Type-version Axiom

Let §' be a type-version, §,; and $; be two different types, then
Fir,, Belong.To(B',¢n) — —Belong To(¢',)

(CA3) SUTA - Super Type-version Axiom
Let ¢*, $2 and ¢° be three different type-versions, and let g?.sup be a variable

which value is the identifier of its super type-version, then

1. F iy Parent Of(p*, %) & (§2.sup = §7)
2, by Parent Of(p!, §) — —~Parent O f(§*, ')
3. by Parent_Of(3", 6%) = —Parent_O f(3*, °)

(CA4) ASTA - Ancestor Type-version Axiom

Let ', $2 and $° be three different type-versions. We have

1. by Parent Of(g',5?) - Ancestor(p?, %)
2. by Ancestor(g!,3?) — -~Ancestor(?, ¢')

3. Fir (Ancestor(p!, $?) A Ancestor(?, $°)) — Ancestor(g', 5°)

63

b o

(CA5) TYPA - Typed Axiom
Let /i be a primary machine, &' be a type-version and #.p* be a variable which

value is the identifier of m’s type-version, then

i Typed(i, §') — m.p' = §'

(CA6) ISAA - I's.a Axiom
Let m; and 7, be two different primary machines, g' and G? be two different

type-versions, then
L by Isa(ig,ig) = (g = 6') A (e.p' = 67)
A((Parent.Of (8", 5*)) V (Ancestor (i, $)))
2. Fur Ts.a(vhy,1hy) — —Is_a(ihy, y)
3. ki (Is.a(vhy,1hs) A Is.a(ihy, 3)) — Is.a(n, s)
(CR2) ISAR - Is-A Rule
Let 7i2) and 2, be two primary machines in the composite machine M, let ¢! and
§* be two different type-versions, and let w be any temporal formula, then
'-7711 w
Fxr w A (& = Create(ins))
F 31 Compo(riy, M) A Compo(rinz, M)

F js.a(rhg,rhl)

|‘,;,2 w

The axioms and inference rules of Part (c-ii) are listed as follows:

64

(CR3) CREA - Creation Rule

Let 7 be a component machine of a composite machine M, and 7, be the initial-

ization transition of the m, then

by & = Create(in)

~

",ﬁ é = f‘o

(CAT7) STOP - Stop Axiom

Let 7, f1; and 7, be component machines of a composite machine M, then

1. kg & = Stop(rn) — Stopped(rh)
2. by (Stopped(ins) A Is.a(rny,ih,)) — Stopped(ri;)

3. tuy (Stopped(M) A Compo(rn, M)) — Stopped(rn)

(CA8) RESU - Resume Axiom

Let 1, 71, and 77, be component machines of a composite machine M, then

1. by & = Resume(in) — —Stopped(in)

2. ki (&= Resume(r,) A Is_a(1hy,1h,)

A © Stopped(iny)) — €' = Resumne(fny)

In Part (c-ii) we allow additional new axioms according to concrete appli-
cations. For example, assume that a multitype composite machine M consists of
two component machines m, and m,, and that Vi, = (211, 212) , T3y = (721, T2),s

Vm, = (3721,3322), T,

1'"|2

= (721, 722). Suppose we have the following requirements: (i)

65

DA Al o

= TR TRT T e N L

when z,; = 5, the execution of 7;; will trigger the execution of 73, (ii) 7y, is allowed
to be executed once.

These two requirements can be translated into formulas of DSL as follows:

(Fl) l-ﬁe(é’=7~'11A511=5)—.é'=7122
(F2) F V(e = 1) — (e = #)

Obviously, according to the requirements above, we can easily show that F, and F,

are IIps-valid, so that we can treat them as axioms.

Part (d) of the DSL proof system consists of all the axioms and inference rules
that reflect the common properties of dynamic state machines. All the axioms and
inference rules of Part (d) will be denoted by the prefix “DA” or “DR” respectively.
The axioms and rules of Part (d) are as follows:

(DR1) INIT - Initialization Rule
Let 75 be the initialization transition of a dynamic state machine i and w be a

state formula (i.e., w does not contains any temporal operators), then

3 wS(&' = 7o)

f‘;, =W

(DA1) TEXT- Trace Extension Axiom

Let 7 be a trace and 7 is the transition executed by the most recent event, then

-~

Fa (¢=7)— (F=0fee)

(DA2) OSTE - One State Transferring Event Axiom

66

Let 7, and #; be two transitions in the T, which is the transition set of a dynamic
state machine g, then
Fa (= Fi)=n(e = 7)
Definition 4-9:

The proof system of DSL is sound iff F; w implies |=n”w for any w.

Theorem 4.1:

The proof system of DSL is sound.

Proof:

Since P(a) is extended from the Z. Manna and A. Pnueli ’s linear time temporal
logic, we need only prove that all the axioms (AAP1) to (AAP10) and the inference
rule of = Insertion are Il,-valid. The proof of these axioms and inference rule are as
follow.

I1,-validity of (APAL):

'=ﬂ,‘ —|V‘w <> F"“ 'ﬁ(—TE_\w)

< #n" E—‘w
I1,-validity of (APA2):

Fn, Ew - w) = }=I§‘k) Z(w;, — wy)

= b (wow), 0<i<k

67

=
=
=

=

I1,-validity of (APA3):

i=n,. —w =

II,-validity of (APA4):

'=n,, "Ow

IT,-validity of (APAS5):

Fg ~workEm w, 0<i<k
=y E-wyor l=1f,") Zw, ,
Fn, E-wi oy, Sw,
FEn, ~Ew or g, Ew:,

f=1£k) Ew
}‘=I£.) w, 0<:<k
}'—=]‘(‘k) w, for i=k

l=n,, w

g |=,g=) 0w k21
& not |=I£u) Bw k21
& not |=,#_1) w k>1
& |=I‘<‘k..1) ~w k>1
© |=,y) ow k21

< hn” e “w

Fn, 6w —w) = l=,g:) O(w —w), k21

68

= o (wa = wg), k21

= I=,9-x) ~w; 0rl=,g:-n) w, k21
= l=,§‘~) 6"w10?|=,§‘k) Ow, k21
= Fn, ©~wior En, ©w:,

= |, ~Oworly Ouw,

= Fn, (Owi— ow)

I1,-validity of (AP AS):

|=n" =w = th‘k) =W

I1,-validity of (APAT):
|=n“ = |=’£k-l) zw k21
=> [k i O6Zw k21
= b, OFw
I1,-validity of (APAS8):
Fn, Z(w—oow) = i=,£k) Z(w — Bw)

= ‘:d‘.) (w—-»ew), 0<i<k

69

I1,-validity of (AP A9):

=n,

(wlSwg)

'=1f~‘) w, 0<:<k,

orl:,'(‘.) Bw, 1<i<k

Fw ~w, 0<Zigk,
or|=19_:) w, 1<i<k

'=1f,') ~w, 0<i<k,

or}:,f‘,) w, 0<i<(k+1)
Fo ~w, 0<igk,

or|=l£.) w, 0<i<k

|=I£.) -vwor|=,§‘.) w, 0<:1<k
|=I£k) -w or |=1§‘k) w, for i=k
Fn, ~worfq, Ew

I:n” (w = Zw)

Fiw, (w1Sw,)

|=,§‘:) wy , for somej, 0 <j <k,

and |=If.') wy, foralli, j<i1<k

[we, for somej, 0 <j<(k=1); or =y we],
and ”=1£')wl’ foralli, <i<(k—1); and |=]£k)w1]
w2V (wn A ©(w15w2))

Fn, w2V (w AS(w;Swy))

70

11,-validity of (APA10):

b, (wiSu) = kg wy, for somej, 0<j <k,
andl:,s-) wy, foralli, <i<k
= g "Enw,
= |=1§‘*) Vw,

= F'—'n” sz
I1,-validity of (APR1):

t:n“ w = l=1f.") w, forany I‘(‘k)EH“
= ’=I£k) =w

= bEq Zw

m

The II,-validities of the axioms in Part (b) directly follow from concrete applica-
tions.

The II,-validities of axioms and inferences rules in the Part (c) and Part (d) can
easily be proved according to the operational semantics of the dynamic state machine
model. We will give the detailed proves to some axioms and inference rules. For the
other axioms and rules, we only provide the proof outline.

IIp-validity of (CA1):

Let I,(J;) = (SM,AM,O‘Q;)) be any interpretation in the Ilps, and assume that

|==,<’:)C~’ompo(ﬁ1,1\~l), i.e., I,(";) satisfies Compo(rh, M). According to the definition of

the multitype and general composite machines, when a new component machine m

71

is created, the identifier of the component machine will become one element of the
value of the component machine variable b. That is, |= ,(A:)I.n(ﬁz, b). Since I,(J;) is any

interpretation in the IIs, we have proved that
|=nMC'ompo(rh, M) — In(#, M)
Similarly, we can prove that
|=ann(ﬁz,M) — Compo(in, M)

Hence, the IIps-validity of (CA1) has been proved.
I1,-validity of (CR1):

Assume that Compo(in, M) is provable in the M, and that w is provable in 7.
According to the soundness theorem, =5, Compo(rn, M) and Fn,, w. We must show
=n,, w- Since m is a component machine of M, according to the related definitions
in Chapter 3, 2 component machine is a part of a composite machine. Therefore, a
formula of 2 is a formula of M. Thus, if I, w is provable in n, then F a7 W is provable
in M. Also, for every I,, we have I = I{) . where I € II,,, and I{} € Tp.
Thus, from |=p_ w, we have |=;, w. That is, the II,-validity of (CR1) has been
proved.

The proof of the II,-validities of (CA2) is based on the convention that every
type-version belongs to only one type.

The proves (CA3), (CA4), (CA5) and (CA6) are based on the related definitions
and conventions in the dynamic state machine model.

II,-validity of (CR2):

72

Assume w is provable in the ,;; wA(é' = Create(rn,)), Is.a(fa, ™), and
Compo(1hy, M) A Compo(th,, M) are provable in the M. According to the soundness
theorem, |=n,..,"” Fn,, wA(E = Create(iny)), |=ans_a(rhg,rh1) and
l=nu(:'ompo(ﬁz1, M) A Compo(thz, M) We must show |=nm2 w.

Since m, is an extension machine of m, (or m, is the basic machine of m,),
according to the dynamic extension mechanism defined in the dynamic state machine
model, after m; is created, it will inherit everything of the m;. This means that, after
m; is created, (i) a formula of 7, is a formula of 7, so that w is provable in the m,
implies w is provable in the rh; (i) I{¥) is a subset of a I{¥). However, I¥) ¢ 11,
and I{¥) € I1,,,. Thus, from |=n,.., w, =, wA(E = Create(n,)), |=nMI~s-a(ﬁzg,ﬁzl)
and }:nMC'ompo(rhl,M) A Compo(riy, M) we have Fn.,, w- That is, we have proved
the IT,-validity of (CR2).

The II,-validity of (CR3) directly follows Rule 3.6 and the definition of state-
evolution in the dynamic state machine model.

The II,-validity of (CAT) directly follows Rule 3.2 and Rule 3.4 in the dynamic
state machine model.

The I1,-validity of (CA8) directly follows Rule 3.5 in the dynamic state machine
model.

The IIp-validities of (DR1), (DA1) and (DA2) directly follow from the definition
of state-evolution in the dynamic state machine model.

Hence the proof system of the DSL is sound.

73

Chapter 5
BEHAVIOR CONSTRAINTS

5.1 INTRODUCTION

In the dynamic state machine model, constraints are a part of a type-version.
We call constraints behavior constraints. These consist of not only the structural
relationships among objects such as membership and range of data, but also the tem-
poral relationships among the object operations such as causality and concurrency.
To specify the behavior constraints, we need a language capable of describing dy-
namic changes. The DSL is developed to serve this purpose. Behavior constraints
are specified as formulas of the DSL. Specifying behavior constraints by the DSL has
an additional advantage. That is, based on the proof system of the DSL, we are
able to verify whether the behavior constraints defined in type-versions can derive
the expecied properties. While the time complexity for searching a proof may be
exponential, the time complexity for checking whether the database history of a dy-
namic state machine satisfies a given behavior constraint is linear in the number of
event records of the dynamic state machine. Since every dynamic state machine has

a database history consisting of a finite number of event records, each of which deter-

mines a state. In this chapter, we will demonstrate, in Section 5.2, some examples of
how behavior constraints can be specified by the DSL formulas. Then, in Section 5.3,
through another example, we will show how to verify whether the design of behavior
constraints in type-versions can derive the expected system properties based on the
oroof system of the DSL. Finally, in Section 5.4, by presenting a set of algorithms, we
will show that a certain class of DSL formulas that contains various kinds of temporal

operators for past time can be checked efficiently.

5.2 SPECIFYING BEHAVIOR CONSTRAINTS
BY THE DSL

We classify behavior constraints into two categories: internal and ezternal. Inter-
nal behavior constraints describe the structural and temporal relationships between
attributes or events in the same primary machine. External behavior constraints de-
scribe the structural relationships and temporal relationships between attributes or
events of different primary machines. Because we are describing temporal relation-
ships, DSL becomes a suitable language to specify behavior constraints in TOODB’s.
Through the following examples, we will see how to use behavior constraints to in-

corporate additional temporal modeling capabilities in our model.

Example 5.1:

Consider the example of the library database used in Chapter 3. To avoid incor-
rect event sequences to appear in the database, we can add the following behavior

constraints into the definition of type of Book:

75

Constraints:
(1) Fae' = Borrow(i) — (0¢’ = Return(in) V E-&' = Borrow(ih))
(2) Fae' = Return(in) — (0¢’ = Borrow(ri) V 8¢’ = Renew(in))
(3) Fre' = Renew() — (O¢' = Borrow(rn) V B¢’ = Renew(m))
where 7 is a primary machine which represents a book. According to these
behavior constraints, a book has been borrowed and not returned yet cannot be
borrowed again; only a borrowed book or a renewed book can be retur B 10"
a borrowed book or renewed book can be renewed.
The example above is also an example of internal constraints. The following

example will show the use of external constraints.

Example 5.2:

Assume a company has three departments: Research Department, Production
Department, and Sales Department. Every employee at a given time works in only
one department. We design a TOODB for the company. Because the employees of
different departments have different behaviors, it is natural tc treat them as different
types which are subtypes of a type Employee (for convenience, in this example, we
treat these types as single-version types). The type hierarchy is as shown in Figure
5.1.

It is possible for an employee to transfer from one department to another de-
partment. For example, an employee who works in the Research Department is able

to transfer into the Production Department. In the type Research_E we give the

76

Employee
/

Research_F Production_E Sales_E

Figure 5.1: Type Hierarchy of Example 5.2

following formulas:

(1) Far_ (6€ =Transfer To(},.uen_g, Production_E)
AS _'E‘.ziSting(ﬁl%oduction_E))
- (é' = éreate(ﬁz%’oduction_E)
Aé’ = Stop(ThRMesearch_E))
(2) Fﬁ‘g‘m'ch_s (eé’ = Transfer_’l'o(ﬁzﬁ’e“archj, Production_E')

AB Stopped(rh%-oductionj))
— (&' = Resume(mM ion_E)
Production_E

Aé’ = Stop(ﬁlﬁlnearch_&'))

M represents a composite machine identifier, here an employee. Transfer_To
is a method defined in the type Research.E. Create, Stop, and Resume are the
functions defined in the temporal object M. © operator is used to express the causal

relationship between two events such as Transfer_To and Create: the Transfer_To

occurs ahead of the Create.

77

The two formulas above are the transferring constraints in two cases. The first
formula is for the first case: an employee transferring from the Research Department
into the Production Department where he/she never worked before. In this case,
Transfer_To event in the m}{,... ., o will trigger the Create event to add a new
primary machine m} 4, ;0. into the composite machine M and trigger the Stop
event to stop the primary machine m¥,,..... &, because at a given time an employee
belongs only to one department. The second formula is used for another case: an
employee transfers from the Research Department to the Production Department
where he/she used to work before. In this case, instead of triggering the Create event,
the Transfer_To event in the m¥,,,.. .. g will trigger the Resume event to reactivate
the primary machine m}. 4, 1ion_g- Meanwhile the m¥,. . . o itself will be stopped.

Since the above formulas involve events outside of the primary machine

mMY,,.arch_g» they are the external constraints of mM areh E-

5.3 VERIFYING THE EXPECTED SYSTEM
PROPERTIES

Since behavior constraints are specified by the formulas of the DSL, we can verify
whether the expected system properties are held by or can be derived from the behav-
ior constraints defined in type-versions through the proof system of the DSL. This is
very helpful for checking the correctness of the design of a TOODB. We demonstrate

this point by the following example.

78

Example 5.3:

Assume a company is going to set up a TOODB to store the information about
the products manufactured by the company. The following is a brief description.
A product is made by two steps: design and production. The production can be
further divided into three substeps: assembling, testing, and packing. If a product
fails the testing, it will be sent for repair. If a product cannot be repaired, then it
is discarded. Whenever a product is transferred from one step/substep to another,
it may wait some time before the next treatment. The whole product manufacture
procedure can be described by Figure 5.2.

Some expected system properties of this TOODB are as follows:

Fy: Every tested product has a test report stored in the database.

F,: For every product, only one copy of data is stored in the database.

F3: Every product which need to be repaired has to tested after it is repaired.

In the following, we will show how the type-version hierarchy for this TOODB can
be designed, and how we can check if our design meets the above expected system
properties. First we design a type-version hierarchy which is as shown in Figure 5.3,
where we treat every type as a single-version type.

In this example, we will consider only the production step. We will use notation
& = 7;(mM) as the abbreviation of ¢ = # A Compo(tn, M) A Typed(rn, 3;). The
definitions of some type-versions are given as follows.

Type-version: P_In_Production (gps)

Sup: Product (p,)

79

T TSRS

T TR - T

p—

e

j!

WaltAsembling

WaltRepairing

Figure 5.2: Procedure of Product Manufacture
Object(go)
Product(gp;)
P_In_Design(g,) P_In_Production(gps)

P_In_Ass.(ps) PInWait(ps) PInTest(ps) PIn_Rep.(pr) P-In_Pack(gps)

Figure 5.3: Type-version Hierarchy of Example 5.3

80

Attributes:

(z31) Product-Schematic-Number: Integer;

(z32) Product-Production-Place: String;

(z33) Product-Production-Manager: Name;

(z34) Total Working Hours: Real;

Methods:

(7a1) Starting Production;

(732) Reporting Production;

Constraints:

Internal:

(BAa) l’ﬁ'% €o = ‘731("7’%)2

(BAsz) *',,,313 V(e = (M) = (e = T (R})));
(BAsa) ",.,,313 V(e = () = (€' = Taaligy));
External:

(CAst) Fyy © (6 = Fn(M)) — (& = Create(r));
(CAz) iy © (€ = Fan(iM)) — (¢! = Stop(yy));
(CAss) Fy((¢ =7) A(F € mM)) — —Stopped(iM i=3,4,5,6,7,8;
(CAszq) Fyy—Stopped(M) — V5 #1: Stopped(ﬁz%);

(CAss) FpyStopped(M) — Vk : (—(€’ = (M) i=3,4,5,6,7,8

Type-version: P_In_Testing (ps)
Sup: P_In_Production (gs3)

Attributes:

81

(ze1) Number of Tests: Integer;

(z62) Testing Hours: Real;

(ze3) Testing Person: Name;

(ze4) Testing Conclusion: String;

Methods:

(r61) Testing;

(re2) Wait-Repairs;

(re3) Test-Report;

Constraints

Internal:

(BAg1) I-m% O (¢! = T (M) — (fes = PassV &e4 = DiscardV #gq = Repair);
(BAcz) 't Fot = Repair — (€ = fea(mM));

(BAss) F o V(Fes= Repair) — (€' = Tea(ri}y));

(BAg4) I—m% (%64 = Pass V $¢q = Discard) — (¢! = Tes(raM));

(BAsgs) I-m% (Zo4 = Repair A ~(€' = a1 (M) — O(%64 = Repair);
External:

(CAe1) F,(¢' = Create(inM) v ¢ = Resume(inM)) — (¢! = Fa(i¥));
(CAgz) Fg © (€= To(M) V € = Fos(irgy)) — (¢' = Resume(nM));
(CAgs) V(&' = Resume(M)) — (¢! = Stop(mM));

(CAss) F, (€' = Resume(aM)) = (Zo4 = s52)-

Type: P_In_Rep. (p7)

Sup: P_In_Production (gp3)

82

Attributes:

(z71) Number of Repairs: Integer;

(z72) Repairs Hours: Real;

(z73) Rep-Person: Name;

(z74) Repairs Conclusion: String;

Methods:

(71) Repair;

(772) Send-To-Test;

Constraints:

Internal:

(BAn) Fom V(e = (M) — (¢ = F(mM));

(BAz) f—m% (71 = MazNumber) — (&4 = Discard);

External:

(CAn) b, (e = Create(mM)v e = Resume(mM)) — (' = #n(mM));
(CAn) F,© (¢! = Fra(M)) — (¢! = Resume(mM));

(CAzs) F, (€' = Resume(aM)) — (e’ := Stop(aM));

Now we translate the requirements abcve into formulas of the DSL as follow:
(F1): FigV © (¢ = Create(nM)) — V(€' = Fe3(mM));

(F2): Fye' = V‘7'32(7'7"g) — (e = faz(ﬁ‘g));

(F3): Fpyi(Zes = Repair) = ((¢ = far(1aM)) A((e' = (M)

83

Proof:

We have to show F; - F3 are provable.
F:(i-;,é' = C'reate(r’h’g) —e= fel(r‘hg) (CAa)
(2) FiVO(e' = Create(inM)) = VO (&' = Far (M) (1)(APRL)(APR2)
(3) F s © (¢ = Faa (M)
— (%e4 = PassV fey = Discard V Geq = Repair) (BAg)
(4) f'M © (é' = ‘7'61(777%))
— (f64 = Pass V 3¢y = DiscardV #g4 = Repair) (3)(CR1)
(8) FuV © (¢ = 7a(mM))
— V(&g = Pass V #¢4 = Discard V Z¢; = Repair) (4)(APR2)
(6) FiV © (¢ = Faa (M)
— (V(%e4 = Pass)VV (¢4 = Discard)VV(Ze4 = Repair)) (5)(APTS)
(7) bV (¢ = Create(nM))

— (V(%6s = Pass)VV(5gq = Discard)VV(Ze4 = Repair)) (2)(6)(PR)

(3) F"‘Q’e (Fe4 = Pass V g4 = Discard) — €' = Foa(RM) (BAeg4)
(9) Fy(Zeq = PassV igq = Discard) — &' = Fea(RM) (8)(CR1)

(10) FyV(Zes = PassV 3¢y = Discard) — V(e' = 7e5(m¥)) (9)(APR2)

(11) F(V(Z6s = Pass)VV(ieq = Discard)) — V(¢! = fea(M)) (10)(APTS)

(12) '-ﬁ;M V(fis‘; = éepair) — é’ = isa(ﬁ'lx) (BAsa)
(13) FpV(Zes = Repair) — ¢ = Fea(nM) (12)(CR1)
(14) b VV(%6q = Repair) — V(e = faa(nM)) (13)(APR2)
(15) FxV(Zes = Repair) — V(€' = 7e3(alM)) (14)(APT4)

84

ket ARG, TASIAYTISG A T T T T

(16) FV © (¢' = Create(nM)) — V(e' = 7as(nM)) (6)(11)(15)(PR)

That is, F} is provable.
Fz H (1) F*% Vé" = ‘Faz(ﬁ'lx) — -'(é' = 7’32(172{":)) (BA32)
(2) FyVe = Fu(M) = (e = Faa(mM)) (2)(CR))

That is, F; is provable.

Fy: (1) b (Ze4 = Repair) — (&' = Foa (M) (BAs2)
(2) Fy(Zea= Repair) — (¢’ = -Feg(ﬁz’g)) (1)(CR1)
(3) Fe' = Tea(lh)) — —Stopped(hlt)) (CAz)
(4) Fjy—Stopped(mM)) — Stopped(mM)) (CAal)
(5) Fui(Zes = Repair) — (e = 7y (1RM)) (2)(3)(4)(CAss)

(6) F it (Z64 = Repair A =(e' = 76 (12M))) — O(&6s = Repair) (BAss)
(7) by (Ees = Repair A =(¢! = 7oy (M) — (Zes = Repair) (6)(CR1)
(8) Fyr(Zea = Repair) = ((¢' = For(Rll)) A(e' = 7 (1)) (5)(7)(APRI5)
That is, F; is provable.
The inference rules APR1, APR2 and APR15 as well as the theorems APT4
and APTS8 that we have used in the proof above are listed in the Appendix A. PR

represents the Propositional Reasoning Rule, i.e.,
"ﬁ w; A waA.LAw, — Wn41

Fawi Awa A Aw,

l“ﬁ, w"+1

85

-

5.4 CHECKING BEHAVIOR CONSTRAINTS

We use the database history of a composite machine as a model for a formal system
of the composite machine in the DSL, and the database history of a primary machine
as a model for a formal system of the primary machine in the DSL. We assume that
every event of a dynamic state machine leaves an event record in the TOODB. At
any time, in the TOODB, every dynamic statc inachine has a finite number of event
records. Therefore, checking whether the database history of a dynamic state machine
satisfies a given behavior constraint specified by a DSL formula is decidable. If we
assume all the data in an event record can be retrieved once, then the time complexity
of a decision procedure of checking whether the database history of a dynamic state
machine satisfies a behavior constraint is linear in the number of event records of the

corresponding dynamic state machine which are stored in the TOODB.

Example 5.4:

Let w;’s i=1, 2, 3 bedifferent formulas specifying states (i.e., w; does not contain
any temporal operators), and x be a dynamic state machine. Suppose we are going
to check the following behavior constraints: (i) bz wy — Zwy, (i) Fz w; — Ve,
(iii) ki wy — weSws, (iV) F; ZEw; > we and (v) Fz Vuy — ws.

We can check these five behavior constraints by going through the database history
of u. Assume for each behavior constraint, there is a checking procedure denoted by
Procedure;, i = 1, 2, ..., 5. The algorithms for these procedures are presented as

follows.

86

We need two variables: state and result. The record variable state is used to
contain the event record which is currently reviewed. The boolean variable result is
used to remember the conclusion of the checking. We use “endstate” as a technical
symbol to represent that the checking procedure has passed through all the event
records. Here, we assume that all the event records have been sorted according to
their ordering in the legal trace.

(i) Procedure,

BEGIN

result := false;
state := the last recent event record;
IF w, and w, hold in the state
THEN BEGIN
result := true;
state := the initial event record;
WHILE (state # endstate) A (result = true) DO
IF w; holds in the state
THEN state := next event record
ELSE result := false;
END;
IF result = true THEN output SUCCESS

ELSE output FAIL;

87

END{ Procedure, }.

(i) Procedure,
BEGIN
result := false;
state := the last recent event record;
IF w, holds in the state
THEN BEGIN
state := the initial event record;
WHILE (state # endstate)A(result = false) DO
IF w, does not hold in the state
THEN state := next event record
ELSE result: = true;
END;
IF result = true THEN output SUCCESS
ELSE output FAIL;

END{Procedure,}.

(iii) Procedure;

BEGIN
result := false;
state := the last recent event record;
IF w,; holds in the state

THEN

88

S TNETe T

BEGIN

state: = the initial event record;
WHILE (state # endstate)A(result = false) DO

BEGIN

IF ws holds in the state
THEN
IF w, holds in the state
THEN
BEGIN
result: = true;
state: = next event record;
WHILE (state # endstate). result = true) DO
IF w; hold in the state
THEN state: = next event record;
ELSE
BECGIN
result: = false;
EXIT;
END;
END;
ELSE EXIT;

ELSE state: = next event record;

89

END;
END;
IF result = true THEN output SUCCESS
ELSE output FAIL

END{Procedure;}.

(iv) Procedure,
BEGIN
result := false;
state := the last recent event record;
IF w, holds in the state
THEN BEGIN
result := true;
state := the initial event record;
WHILE (state # endstate)A(result = true) DO
IF w, holds in the state
THEN state := next event record
ELSE result := false;
END;
IF result = true THEN output SUCCESS
ELSE output FAIL

END{Procedure,}.

(v) Procedures

90

BEGIN
result := false;
state := the last recent event record;
IF w, holds in the state
THEN BEGIN
state := the initial event record;
WHILE (state # endstate)A(result = false) DO
IF w; does not hold in the state
THEN state := next event record
ELSE result := true;
END;
IF result = true THEN output SUCCESS
ELSE output FAIL

END{Procedures}.

Obviously, all these checking procedures need to go through the database history
of the dynamic state machine u once, so that the time complexity of them is linear
in the number of the event records of the database history of the dynamic state
machine u. These algorithms show only the design principles. In real application,
the algorithm design should take the concrete data storage organization into account,

e.g. the data of an event record of a complex event may be stored separately.

91

Chapter 6

A DESIGN OF TOODB
MEMORY MANAGEMENT

6.1 INTRODUCTION

Since a TOODB stores the historcal data of objects, the data volume in the
TOODB is ever growing. Therefore, designing a suitable memory management system
becomes very important to implement a TOODB. In this chapter, we will present the
design of a paged virtual memory management system for the TOODB. Our design
goal is to minimize the cost of processing page faults by minimizing the average page
access number. The main problems to overcome are: (a) ever growing data space, (b)
clustering data having different updating rates and sizes, and (c) increased complexity
of design optimization due to temporal constructs. Because these problems mainly
influence the secondary storage management, we direct our attention to the secondary
storage management. Qur design takes into account the characteristics of both data
organization and users’ access patterns. To handle problem (a), a two-level storage
structure physical database is adopted. To provide a solution to problems (b) and

(c), we develop a clustering scheme and an analysis model which demonstrates the

relationship between the average page access number and the parameters reflecting
the characteristics of both data organization and users’ access patterns. Based on the
analysis model, we are able to find the optimal design in terms of minimal average
page access number. In this chapter, we will first introduce a set of data organization
constructs, then present a way to abstract users’ access patterns. Then the analysis
mode] will be presented.

In this chapter, some previous notations have been redefined, whenever this is

done, the new definition is given.

6.2 DATA ORGANIZATION
6.2.1 Basic Data Unit

In the physical database, each dynamic state machine has two kinds of data to
be stored: description information and history records. For a primary machine, the
description information means the definition of a type-version. Every type-version
is stored in a type-version record which consists of seven fields, i.e., a field for type-
version identifier plus other six fields, each of which corresponds to one part of the
type-version definition. Whenever a simple event or an element event of a complex
event occurs, a history record will be stored into database. A history record comprises

the following fields:

e Transaction-id: The identifier of the database transaction which invokes the

transition in the event;

93

o Sequence-no: The number to indicate the order of execution of the transition

invoked within a database transaction;

o Invoker-id: The identifier of the dynamic state machine which invokes the tran-

sition of the event;
o Receiver-id: The identifier of the dynamic state machine where the event occurs;
o Transition-id: The identifier of the transition of the event;
¢ Commit-time: Commit time of the event;
o Effective-time: Effective time of the event;
e Observation-time: Observation time used in the event;

o Write-Set: for every variable in the event variable set V., there is a variable-
value pair such that the value is written to the variable by the transition of the

event.

e Read-Set: for every variable in the event variable set V., there is a variable-value

pair such that the value is read from the variable by the transition of the event.

A multitype composite machine can be treated as a set of primary machines (
including a pseudo primary machine). Therefore the data of a multitype composite
machine is the collection of the data of its component primary machines. The data

of the general composite machine is all of data stored in the database.

94

6.2.2 Two-Level Storage Structure

In the physical database, we adopt a two-level storage structure. The first level is
a public object base which stores all the data of all existing dynamic state machines.
The second level consists of a set of private objec! bases, each of which contains
the data related to a specific time period of some dynamic state machines that are
queried often by a user during a certain time period. In the public object base,
the reference-based storage organization is adopted, while in private object bases, a

revised copy-based storage organization is adopted.

The Public Object Base

The public object base consists of two parts: type-version forest storage and ma-
chine storage.

In the type-version forest storage, every type-version record is stored in a segment
which consists of pages. All segments of the type-versions of a type-version tree form
a linked-segment-list. There is an Id-indez in the type-version forest storage, from
which a type-version identifier is mapped into the starting address of the segment
that contains the type-version.

The machine storage consists of an Id-index and a set of segment-list-groups. The
data of a multitype composite machine is stored in a segment-list-group which consists
of a set of linked-segment-lists. All history records of a primary machine are stored
in one linked-segment-list. The history records of a primary machine are sorted based

on the ordering of their commit times. Every linked-segment-list consists of a set of

95

paged segments, each of which has a segment descriptor and a data chain. The seg-
ment descriptor contains three fields: number of history records, pointer to the nezt
segment, and the starting address of the first history record. Every element of the data
chain is a pair: a history record and the length of the history record. The data that
are related only to the multitype composite machine are technically treated as the
data of a pseudo primary machine, and are stored in one linked-segment-list. Every
segment-list-group has a group descriptor and a time index. The group descriptor
is a 4-tuple (Id, PMnum, IndezxAdd, PMs), where Id con‘ains the identifier of the
multitype composite machine, PMnum contains the number of primary machines, In-
dezAdd contains the physical address of the root node of the time indez, and PMsis a
set of pairs (PMid, FSAdd), where PMid contains the identifier of a primary machine,
FSAdd contains the physical starting address of the first segment of the primary ma-
chine. The Time-indez is a B* tree. The key value of the index represent effective
time. In the leaf level of the time index, every key value represents the starting time
of a time interval, and every pointer points to an ID (identifier) block, i.e., every
ID block corresponds to a time interval. If the primary state machine associated
with the multitype composite machine has at least one history record whose effective
time overlaps with a time interval, then it has one entry in the corresponding ID
block. Each entry is a 4-tuple (id, type, address, nezt), where id is the identifier of
the primary machine, type contains a type or a type-version identifier of a primary
machine, address contains a starting physical address of the page containing the his-

tory records of the primary machine, and nezt contains a physical address of an ID

96

block which corresponds to the next time interval in which the primary machine of
type type has some history records. The Id-index maps an identifier of a multitype
composite machine into the physical address of the segment that contains the corre-
sponding segment-list-group descriptor. Figure 6.1 shows the structure of the public

object base.

The Private Object Base

The purpose of building private object bases is to reduce the data space and speed
data retrieval. Since we assume a private object base has only one user, the clustering
can be applied to improve paging performance. Conceptually, a private object base
is a view of the public object base. The view maintenance problem will not discussed
in this dissertation. We will concentrate on how to cluster the database history of a
primary machine.

Because a primary machine may have a composition hierarchy in which a circular

M

reference may occur (e.g., a primary machine m;i may be referred to by a primary

M

o1 as an attribute value), the pure copy-

machine m» which is referred to by the m
based storage organization cannot work. Therefore, a revised copy-based storage
organization is adopted, which is described as follows.

A tree type data structure which is called the primary machine treeis used to
store the data of a primary machine, which is the basic storage unit of a private

object base.

A primary machine tree has a schema which is a type-version composition hi-

97

ot T F 4

. type— -
i o type- . e

[4 13 L

) ¥
s type— o typr s type
verslan wversion ® » & version

1 1 1

) [KN
type type~

'..k

phozo] Javer] fo+of]

ene
[] o [
_Yype |
%L—s adirers | sddcews
et 0--\ '_;;t_-j e & o .~m
. o . -t .
L d . L]
S S Awt-ﬁu U
/ A Y
n oF hr an of hr nn of hr
sl mwnt o [rext o T
sta. aed sto. acld S0 aukd
Mta Cwn Mt Cun hata Cram
H . 4
- *
=
/ L] L] L]
- L]
- L] -
*]

10 = Segrent Iescreptor FIA = First Segrent Address

Type-
Verewan
forons
Sherege

Figure 6.1: The Public Object Base

98

-

Univ.
Prof. Stud. Dept.

77 JIN IR

Pid. Univ. Dept. Sid. Univ. Dept. Univ. Prof. Stud

| |

Integer Integer

Figure 6.2: A Primary Machine Tree Schema

erarchy formed by the type-version of a primary machine and the type-versions of
the attribute variables, each of which may have their own attributes. A type-version
composition hierarchy can be represented as a directed graph (each edge directs from
the parent node to the child node). To avoid circular reference structure, we have
the following convention: for any path starting from the root node, if a non-atomic

type-version has been a node on a upper level, then it becomes a terminal node.

Example 6.1:

An example of type-version composition hierarchy or a primary machine tree
schema is shown in Figure 6.2. In this example, the root node is “Univ. » which
occurs in other level as well. When “ Univ.” occurs again on a lower level, it becomes
a terminal node.

For convenience, the notation ¢ is used to represent the root node of a primary

machine tree schema, and ¢* to represent a child node of g. The notation PM T is

99

used to represent a primary machine tree rooted at node ¢, which sometimes means
only the schema of a primary machine tree and sometime means both the primary
machine tree schema and the data that are stored in the primary machine tree.

To store all the data effective in a time period H of a primary machine by a

primary machine tree, the following conventions are adopted:

(1) if an history record of the primary machine with an effective time that falls

in H, this history record is stored in the root node q.

2) If a primary machine is referred to by an attribute value of the attribute
p

¢' in a history record with an effective time ¢, then the history record of

this referred primary machine which effective time overlaps with the ¢, is

stored in the node ¢,
(3) (2) is recursively applied until the leaf level.

(4) If a node being referred to represents the same primary machine that is
represented by a node at a upper level, then a pseudo history record is
formed in which the physical addresses of the history records of the primary
machine being referred to are stored such that the effective times of these
history records are matched with that of the history record which refers to

the node.

(5) In all nodes, history records are sorted according to their commit times.

100

Delta vs. Checkpoint

Each history record only stores new data which is different from those stored in
the last history record and is called a delta. Conceptually, to reply for a temporal
query, all the history records of the machine whose commit times are less than or equal
to the observation time of the query need to be reviewed. Obviously, if a sequence
of n history records needs to go through, the time complexity is O(n). However, a
recent research result has concluded that by a suitable data structure which requires
three times memory space compared with the the memory space required by a linear
data structure such as an array, the time complexit, of going through n deltas is
O(log log n)[Go90).

Another alternative is to adopt the checkpoint mechanism. At a selected instant of
time which is called a checkpoint, for each primary machine, the system summarizes
all deltas whose commit times are less than or equal to the checkpoint and mate-
rializes the resulting summation as a checkpoint record. In an extreme case, every
history record becomes a checkpoint record so that the time complexity of processing
a temporal query is O(1), i.e., a constant. However, the checkpoint mechanism will
consume much more memory space than those of the delta mechanism.

A trade off between the delta mechanism and the checkpoint mechanism is pos-
sible. For example, a checkpoint is set up after every m deltas. While a checkpoint
record is used as an initial base for the query processing, deltas will help to save
memory space. In this case, the time complexity of a query is bound by O(loglog m).

We apply the mixture mechanism above in both the public object base and private

101

object bases. We assume that all primary machines stored in the public object base or
in the same private object base will follow the same checkpoints. In the public object
base, all checkpoint records of a primary machine will be inserted into the linked-
segment-list of the primary machine. In the private object base, the first record
stored in every node of a PMT? must be a checkpoint record. In fact, in both public
and private object bases, a checkpoint record is treated the same as a history record.

Retroactive updates occurring later may invalidate some of the checkpoint records
generated. Query processing will account for invalidated checkpoint records and use
the most recent unaffected checkpoint record as its initial base. To handle the af-
fected checkpoint records, the system may include a mechanism for resetting them

periodically.
6.2.3 Clustering Scheme

To achieve a better paging performance, we present a clustering scheme to organize
data in the private object base. To describe the clustering scheme, the following
concepts need to be defined.

For every pair of parent-child nodes of a PMT", a partition variable is defined,
which can be assigned either 0 or 1. If the child node is denoted as q¢*, then the
corresponding partition variable is denoted as py.

A PMT? with n nodes has a set of (n — 1) partition variables. Therefore there
are 2(*=1) possible combinations for the values of (n — 1) partition variables.

Every combination of the values of all partition variables of a PMT? is called

a partition of the PMT?, and is denoted as P?. We use Partition-Set(PMT?) to

102

represent all the possible P?’s for a PMTY.

If a partition P? € Partition-Set(PMT?) contains k 0’s, then the PMT? is decom-
posed into (k + 1) subtrees, and each such subtree is called a cluster.

The value of a p; assigned by a partition P? has the following meaning;

_J 1, ¢* and its parent node are in the same cluster
P = 0, ¢* and its parent node are not in the same cluster.

For convenience, a partition P? can be written as a string consisting of 0’s and/or
1’s.

A clustering sequence is an ordering in which the nodes in a cluster (i.e., a subtree
of a PMT?) are traversed. We use C to denote a clustering sequence.

There are two basic types of clustering sequences: depth-first traversaland breadth-
first traversal. A clustering sequence is used as the storage ordering of nodes in the

same cluster of a partition in the secondary memory.

Example 6.2:

As shown in Figure 6.3 (a), a PMT* consists of five nodes : a,b,c,d, and e.
Assume that a contains three history records a;, a;, a3; b contains four history records
b, by, b3, by; ¢ contains three history records ¢;,¢;, ca; d contains five history records

dy,d,,d3, dy,ds; and e contains four history records ey, €3, €3, €4.

Since there are five nodes, we have four partition variables {p, pc,pd,pc}. The
total number of possible partitions is 2°~1) = 2* = 16. Two examples shown in

Figure 6.3 (b) are

Pt:{p=i,p.=0,p4=1,p. =1}, or P§=1011,

103

Figure 6.3: Examples of Some Concepts

P} :{py =0,p. =0,pa =1,p. =1}, or Fp =0011.

P? partitions PMT® into two subtrees (clusters): one consists of a,b,d and e; the
other one consists of c. P¢ partitions PMT*® into three subtrees (clusters): the first
one consists of a; the second one consists of b, d and e; the third one consists of c.
Under the P?, the history records in the first cluster are stored in the ordering of
depth-first traversal as follows : a,, a3, a3, b1, b2, by, by, dy,d3,d3,dy, ds, €y, €2,€3,€4.
Let H represent the total time interval of a private object base. That is the

104

effective times of all the history records stored in the private object base must fall
into the H. Let L represent a length of reference time interval By the L, H is
divided into N reference time intervals which is half opened (i.e., an reference interval
is represented as [t;,1;), where t,,t; are two time points). N = [H/L].

Based on their effective times, all history records stored in a node of a PMT? can
be distributed into N reference time intervals, so that a PMT? can be decomposed
into N pieces, each of which is associated with one reference time interval. We call
each piece of he PMT? an hp-tree and denote the j-th hp-tree as PMT]. Every node
in an hp-tree is cailed a history piece and is denoted as hp.

In summary, based on the concepts defined above, our clustering schema consists
of the following rules.

(1) Hp-tree Clustering Rule:
All hp-trees of a PMT? follow the same partition P? on the PMT".

(2) Page Assignment Rule:

(a) I two hp’s of an hp-tree do not belong to the same cluster of a partition,

their history records are stored on different pages.

(b) If two hp’s do not belong to the same hAp-tree, their history records are

stored on different pages.

(c) All the kp’s in the same cluster of an hp-tree are stored on a set of pages

with contiguous physical addresses.

(8) Data Storing Ordering Rule:

105

All hp-trees of a PMT?* follow the same clustering sequence C to store hp's in the

secondary memory, and history records keep their original ordering within an Ap.

(4) Data Distribution Rule:

(a) If the effective time of a history record of the root node ¢ overlaps with the
Jj-th standard time interval (j = 1,2, ..., N), a copy of this history record is

stored into the j-th hp of the q.

(b) If a history record in a child node of the g is referred to by a history record
in the j-th hp of the ¢, then it is stored in the j-th hp of the corresponding

child node.

(c) Recursively apply (b) until the leaf level.
6.3 USERS’ ACCESS PATTERNS

To abstract users’ access patterns, we define a set of concepts in this section.

6.3.1 Primitive Transactions

We define a primary temporal query (PTQ) to be a query which only accesses one
PMT?9 to retrieve some data of a primary machine that are related to a time point
or time interval. To process a primary temporal query, the system will first select
a suitable checkpoint record in the root node of the PMT? as the initial base and
accesses the history records with effective times greater than the selected checkpoint
and a commit time less than or equal to the observation time. The same idea will be

used when a node at a lower level needs to be accessed.

106

In a private object base, we treat a checkpoint record the same as a history record.
From now on, when we say a history record it means a history or checkpoint record,
except when they are clearly distinguished.

We define the basic operations to process a primary temporal query to be primitive
transactions. A primitive transaction (PT) retrieves data from the history records
that are stored in a PMT9. It accesses at least one record but at most two history
records.

We further classify all primitive transaction into three types:

IT1: a primitive transaction first visits a history record in an hp of a node, and
then either stops or accesses the successor history record in the same hp

of the same node.

IT2: a primitive transaction first visits a history record in an Ap of a node, and
then accesses the successor history record in a successor hp of the same

node.

ET1: a primitive transaction first visits a history record in an hp of a node,

and then accesses a history record in the same hp of one of its child nodes.

For converience, we sometimes use ITx to represent IT1 and/or IT2.

IT means internal transactions and ET means ezternal transactions. Two history
records accessed by an ITx (type) primitive transaction are in the same node of a
PMT?1, while two history records accessed by an ET1 (type) primitive transaction are

in a pair of parent-child nodes of a PMT?*. The ITx primitive transactions are used

107

to get more history records of one object when a query involves a time interval. The
ET1 primitive transactions are used to get the details of a primary machine referred to
by a history record. Technically, the root node can be considered as having a pseudo
parent node user, so that the temporal queries issued from users to the PMT? can
be simulated as ET1 primitive transactions between users and the root node gq.

The following example is used to clarify the definition above.

Example 6.3:

This example is a continuation of Example 6.2. Primitive transactions that in-
volve two history records in the same nodes such as (a;,a2), or (b3, bs), or (ez,€3)
are examples of ITx primitive transactions. Primitive transactions that involve two
history records in a pair of parent-child nodes such as (a1, b1), or (bs,d4), or (b2, €3)

are examples of ET1 primitive transactions.

6.3.2 Processing Primary Temporal Queries

By using the concepts that we have defined, we can think of processing a primary
temporal query as an execution of a sequence of primitive transactions. The pro-
cessing procedure starts from an ET1 primitive transaction between the user and the
root hp (node) of an hp-tree and is followed by a series of ITx and Jor ET1 primitive

transactions in a set of hp’s. We have the following rules:

1. if the next primitive transaction can be either an ET1 or an ITx, then the

ET1 has priority.

108

2. the ordering of accessing nodes of the hp-tree is identical to the clustering

sequence C which is chosen.
6.3.3 Relative Frequencies of PTs

We assume that the statistical data about how many IT1, IT2 and ET1 primitive
transactions occur in every node of a PMT? are available. Fro..: these data we can
easily find out corresponding to every primary temporal query issued to a PMT? by
the users, on average, the average numbers of IT1, IT2 and ET1 primary transitions
at every node of the PM T during a certain time period, which is called the primitive
transaction distribution. Based on the primitive transaction distribution, for every
node of a PMTY, we defined three average relative frequencies, each of which is for
one type of primitive transaction. We used fﬂ:, fﬂ; and f—,‘,’:l respectively to represent
the average relati: e frequencies of IT1, IT2 and ET1 primitive transactions in a node

¢* € PMT? The definition of the average relative frequencies is as follows.

o+ _g* n _g* e g*
fin = Ciu/ Z[Ciu + Cia + Ccu]
k=1
=k ko, ok k k
iqtz = 5?:2/ Z[E?u + 5?:2 + EZu]
k=1

- _g* n o5 g,
1 = Conf Z[citl + Cipz + cetl] (6.1)
k=1

where n represents the total number of nodes in the PMTY; E:-’:l, E:-’:z and EZ:I repre-
sent the average number of IT1, IT2 and ET1 primitive transactions in the node ¢*
corresponding to every one primary temporal query respectively.

If a PMT? is decomposed into N = [H/L] k; -trees, then for the j-th hp-tree we

109

have

T = JuIN

k -

Fa = JaIN

o= JOIN (6.2

6.4 AN ANALYSIS MODEL

To find out how to minimize the average page access number, an analysis model
which is an expression of the average page access number of a PMTY7 is set up. We

first define a set of parameters which reflect the characteristics of data organization.

6.4.1 Parameters of a Node

Assume the length of reference time interval L and the total time interval H have
been given. Let s represent the page size in bytes.

For every hp of a node ¢* € PMT?, we defined four parameters: (i) z9"(H), the
total number of history records in H, (ii) v**(H), the summation of history rezord
sizes in H, (iii) 2% = [29*(H)/N1, where N = [H/L], the average number of history

. oy gk
record in an Ap, and (iv) o%

= [v™*(H)/29"(H)], the average history record size.
Thus, the average hp size of ¢* is 2% * 5% . The units of v"'(H) and 5% are bytes.
29" (H) is a parameter representing the updating rate of data. v9"(H) is a param-

. . —ak . _ak
eter representing the requirement of data space. 9% is an integer and a constant. z%

18 a function of L, and can be used to adjust the size of hp’s.

110

e T Y,

AT ORMSET T e

6.4.2 Average Distances Between History Records

The distance between two history records is the offset in terms of bytes between
the starting addresses of these two history records.

Two history records can be either in the same node or in two different nodes of a
PMT9. The two nodes can be either in the same cluster or in different clusters of a
partition P9. We assume that only the history records that are in the same cluster
are stored continuously in a physical memory space. Technically, we assume that the
distance of two history records that are not in the same cluster is equal to the page
size s because whenever the distance between two history records greater than or
equal to a page size, one more page access is needed. This technical assumption and
the following definition of path partition ezpression allow us to have a general formula
for distance.

Considering a PMT?, let (¢*, ¢%),(¢%,¢%), ---,(¢*?, ¢*) be the edges which form a
path from node ¢! to node ¢*, and let p,, ps, ..., p; be partition variables associated
with the corresponding edges of the path.

A path partition expression of two nodes ¢ and ¢, denoted as: z\"lqk, is defined

p LA g P2 %P3 * .. * D (6.3).

where * represents the arithmetic multiplication operator.

Let d% be the average distance between two contiguous history records in the

node ¢* of j-th hp-tree of a PMT?, which is defined as follows:

&=o% (6.4)

111

k
We use d2, to denote the average distance between two history records in the
node ¢* and its parent node ¢~ of the j-th hp-tree of a PMT",

(i) For C = depth-first traversal, we have

k { ’
@ = (1/2)(3% %59 + 59 «59) *pe + 8% (1 — pi)
+ 3 a%xp (6.5)
o"'es(g")
q:'<q:

where

q‘l ql’ qll q‘" q’"
WY = 2% %00 * A + Z 2% x 0% x Ay (6.6)
qllles(qll)

is called the size of an hp-tree PM Tg".

In the above, S(z) represents the set of child nodes of the node z, and these nodes
are in the same cluster with node z. The expression £ < y means that the node z is
on the lef, side of node y.

(ii) If C = breadth-first traversal, we assign every node in a PMT? a number

according to the breadth-first traversal ordering, then we have

k ! ’
Ay = (1/2)(29 % +2%9%) pi +5+ (1~ pi)

+ Z E‘I;'ﬁq;' * Aqq" * /\qq* * Dk
'q"!S(g"')
n(g*)<n(e")<n(g*)
+ ¥ @ sprp (67)
q"'es(q"')
n(g")<n(q*)

112

where q is the root node of a PMT?, n(z) represents the ordering number of node

z. We assign every node in a PMT? a number according to the breadth-first traversal

ordering.

Example 6.4:

Assume N = 1. Considering the PMT* in Figure 6.3 (a), the distance expressions
of each pair of parent-child nodes are given as follows :

(i) C = depth-first traversal

d’ (1/2)(2"v® + 22v%)p, + s(1 — p)
& = (1/2)(2"v* + 2°v°)p. + s(1 — p.)
+[z*0°py + 270 ppy + 20 pope]pe
d? = (1/2)(z** + 2%v?*)py + s(1 — pa)
de = (1/2)(2%® + 2°v%)p,. + s(1 — p.) + z%v°pap.

(ii) C = breadth-first traversal

d = (1/2)(z°0% + 2%%)ps + s(1 — ps)

QL
o
i

(1/2)(z"v" + 2°v%)pc + s(1 — pc) + z*v°pype
d? = (1/2)(z** + 2%v)pa + s(1 — pa) + 2°v°pspcpa
d = (1/2)(bvb + 2°v%)p. + s(1 — p.)

+2°0°pepepe + 2"v pape

113

6.4.3 Average Page Access Number Expression

Because most of the time a history record is involved in two contiguous primitive
transactions, we assume that for every primitive transaction the first involved history
record has been already in the main memory.

To determine the page access number, we consider each type of primitive trans-

action.

(i) For IT1, two history records involved are in the same cluster and also in the
same hp-tree. If we assume that the first history record can be placed with
uniform probability anywhere within a page, the average page access num-
ber for the second history record can be determined by the average distance
between two history records and the page size s. Therefore, by denoting
the average page access number r":-';l, we have the following definition:

k
J

9 Ji’;l/s’ for “-'?;1 <s
1, ford], >s (6.8)

where d% is determined by (6.4).

(ii) For IT2, the two history records involved are not in the same hp-tree,
so every IT2 primitive transaction needs one page access for the second

history record.

(iii) For ET1, there are two possibilities: (a) the two history records involved
are not in the same cluster, (b) the two history records involved are in the

k k
same cluster. For (a), we technically assume that d3, = s. For (b), d2,

114

is determined by (6.5) or (6.7). Therefore, for ET1, we have the following

definition:
13 ' 3
o { ifs, for &y <
1, fordj >s (6.9)

Based on the parameters defined above and the relative frequencies of primitive
transactions, the average page access number of the queries on a database history of
a PMT?, denoted as R, can be determined by the following expression:

s RE L Lt
R'=N x Z {fir*Th + fie + [feh * (reh * P+ (1=)]} (6.10)
q:‘EPM T:
We will always assume that for the root node q we have p, = 0. R? is a function

of multiple parameters that are related to each other. In the next chapter, we will

discuss how to find suitable parameters to minimize the RY.

115

Chapter 7
OPTIMAL PARTITION

7.1 INTRODUCTION

Among all the parameters used in the expression of average page access number
(i.e., (6.10)), the length of reference time interval L plays a dominant role. The
relative frequencies in an hp of a node ¢* (i.e., _ﬁ,’:, f':’; and _f:{:) are a function of L.
The average page access number of a node ¢* (i.e., FZSI) is a function of L as well.
For a fixed value of L, if there is a partition P? such that the R%(L, P?) is minimized,
then we say that the RI(L, P?) is the local optimal R?, and that the P? is the local
optimal partition. The global optimal partition is one of the local optimal partitions
such that its corresponding local optimal R? is the minimum of all local optimal RYs.
Different values of L may result in different local optimal partitions. In this chapter,
we will first discuss, for a fixed value of L, how to design an efficient algorithm to
find the local optimal partition. For a PMT? with n nodes, there are 2(n-1) possible
partitions. A trivial algorithm to find the local optimal partition is enumerating all
possible partitions and comparing the resulting average page access numbers, which

is essentially an exponential algorithm. To apply our design methodology in practical

applications, we must find a better algorithm. To discuss the clustring, we need
to choose a clustering sequence C. From the experiments that we carried out, we
found that in all cases, the average page access under the condition of C = breadth-
first trav 1 is greater than that under the condition of C = depth-first traversal.
Based on this finding, C = depth-first traversal is used in the our analysis. After
examining the properties of C = depth-first traversal, an efficient algorithm to find
the local optimal partition and its corresponding local optimal R? will be presented.
Conceptually, to find the global optimal partition and the global optimal R?, we need
to choose many values of L and compare all the corresponding local optimal R?’s.
However, from the experiments that we carried out, we found that the local optimal
R? is a nonlinear function of L, and that the curve of the local optimal R? against
the L has only one minimum in the interval (0,H), where H is the length of total
time interval. That is the local minimum is the global minimum in the interval (0,H).
This fact allows us to design the algorithm for the global optimization by applying
any existing “line search” algorithms, which are used in the numerical analysis to find
the minimum of a nonlinear function with one variable.

All the notations defined in the Chapter 6 will be maintained.
7.2 DEFINITIONS OF SOME CONCEPTS

Definition 7.2.1:

Let ¢ € PMT? and PMT? represent a subtree of the PMT?, where the ¢' is the

root of the subtree. If ¢* £ g, then PMT? is called a true subtree.

117

Definition 7.2.2:

Let P¥ € Partition-Set(PM T9') and P? € Partition-Set (PMT?), where PM T
is a true subtree of the PMT?. If P? is a substring of P9, denoted as sub(P?, P9),
then we say that (a) P is a restriction of P?, denoted as P9, i.e., P¥ = P3¢, (b)
P9 is an eztension of the P9", (c) the rest part of P9 after removing the P, denoted
as rmu(P?', P%), is an estension-head of the P¥".

Let PMT? be a true subtree of a PMT?, P? € Partition-Set (PMT?), P¥ €
Partition-Set(PMTY), and P? = P3¢, Assume the clustering sequence C has
been given. First we decompose the PMT? based on the P, then we decompose the

PMT? based on the P%. We adopt the following definition.

Definition 7.2.3:

If in the two decompositions above, the relative position of any two history records
in PMT? and the distance between them are identical, then P9 is called a sequence-
preserving eztension of P9 under the C. Otherwise P is called a non-sequence-
preserving extension of P? under the C.

We also define the concept of root-involving cluster and its size.

Definition 7.2.4:

Let P? € Partition-Set (PMT?). We call a cluster of the P? which contains the
root node q a root-involving cluster or g-involving cluster. The size of a root-involving

cluster is defined as the summation of the average node size of all the nodes in the

118

®
OIS, ®
)OO W 56
00000000
) (™

(c)

Figure 7.1: Examples of Definitions

cluster. Similar definition is adopted for each hp-tree of the PMTY.

Figure 7.1 shows some examples to demonstrate the definitions above. Two pri-
mary machine trees are shown in Figure 7.1(a). PMT? is a true subtree of PMT®.
Two partitions on PMT* are shown in Figure 7.1(b). Two partitions on PMT* are
shown in Figure 7.1(c). If we assume that C = depth-first traversal, then P? and P}
are sequence-preserving extensions of the P} and P} respectively. However, if C =
breadth-first traversal, then only P} is a sequence-preserving extension of the P},

In the following discussion, we assume L is known. For convenience, L will not
appear in the formulas within the following lemmas, corollaries and theorems. Also,

~ is removed from the related parameters.

119

Lemma 7.2.1:

Assume that C =depth-first traversal, PM T4 is a true subtree of PMTY, P e
Partition-Set (PMT®'), and P? € Partition-Set (PMT?). If sub(P, P9), then the

P9 is a sequence-preserving extension of the P,

Proof:

Consider two possible cases: (a) the PM T is an independent cluster in the P?,
(b) the PM T% is a part of a cluster in the P?. For case (a) the claim of the lemma is
straightforward. For case (b), based on the characteristics of the depth-first traversal,
the relative position and distance of any two history records in the subcluster formed
by the PMT? are not influenced by any other parts in the same cluster, so that the

statment is also true. Therefore, the lemma is proved.

Lemma 7.2.2:

Under the condition of C = depth-first traversal, if ¢'’s are child nodes of the g,
then the average page access of the PMT?, denoted as R(P?), can be described as
follows:

R(P%) = fla* 7'?:’1 + fla + Z {[f:t'l * (7'321 * ppr + (1 "Pq'))] + Rq.(qu)} (7.1)
9*€S(q)

where R (P%') is defined as (6.10).

120

4
9
[
4
s
E
L

Proof:

We assume that a set of PMT?"’s exists, where i = 1,2,...,m, and the PMT"
is formed by adding a node g and connecting it to the roots of PMT?’s as shown
in Figure 7.2. We choose a P? such that it is the sequence-preserving extension for
all the P, ie., Vi : P? = pald, Therefore, according to the definition of the

sequence-preserving extension, the following expression holds:

RY (P%4') = RY(P?)

where RY(P?) is defined as (6.10).

From Figure 7.2, we can write down the following formula,

h* ":‘11)1 + fla + Z {[fcqt'l * (":ix *pp +(1- Pq"))] + Rq'(Pq)}
9'€S(q)

or

flaxrdhi+fla+ X {[fo* (v *pp + (1 = pp))] + R (P97}
g*€S(q)

That is, the lemma is proved.

Lemma 7.2.3:

Let PMT? be a true subtree of a PMTY, and let P{",Pg"ﬂ be two different
partitions of the PMT?, and Py, P§ be two sequence-preserving extensions of the
P{' and P{‘, respectively. If (1) the extension-heads of the P§' and Pz"i are the same,

(2) R(P{') < R(P{), and (3) in both P{ and F{, p: = 0, then R%(Pf) < R(FPY).

121

Figure 7.2: Construct a PMT?

Proof:

According to (3), we can decompose the PMT? into two parts: the first part
consists of the PMT?, and the second part consists of the rest part of the PMT?®

which excludes the PMT? . Therefore, we can express the R?(Pf) as follows:
RY(Ff) = f2 + B (P}) + R(rmo(P, FY)), 1=1,2

Based on (1), the second parts from the P and Pj are identical, so that we have
R(rmv(P{, P})) = R(rmv(Pgi, P§)). From (2) and the analyses above, we can con-

clude that R9(P{) < R(P{), so that the lemma is proved.

7.3 ANALYSIS UNDER C = DEPTH-FIRST

In this section, we are only concerned with the case of C = depth-first traversal.

122

Theorem 7.3.1:

If C is fixed as depth-first traversal, then (7.1) holds for any true subtrees of a

PMT?.

Proof:

The proof of the theorem is straightforward by induction on the height of the

PMT9 based on Lemma 7.2.1 and Lemma 7.2.2.

Theorem 7.3.2:

Assume that C = depth-first traversal and P? € Partition-Set(PMT?). If ¢' is a

child node of the node ¢ and p, =0 (i = 1,2,...,m, p, € P?), then

min(R(PY) = fli s i+ flo+ 3 [+ min(RT(PY))] (7.2)
¢*€S(g)

Proof:

The proof of the theorem is streightforward by applying Theorem 7.3.1 and Lemma
7.2.3.
Let P{’i and P§' be two partitions on a true subtree rooted at ¢' of a PMT?, and

w%(P§") and w% (P§') be the sizes of gi-involving clusters in P{ and P§', respectively.

Theorem 7.3.3:

If RY(Pf') < R*(P{') and w(PY') < w%(P§'), then for any PMT?, where ¢*

is an ancestor of the ¢', R""(Pfk) < R"*(P{*), where rmv(Pl'",Pfk) = rmv(P,"',P{}).

123

Proof:

First, we assume q* is the parent of the ¢'. Let P§' be any extension of the
P,qi. For any such Pofk, we can find a Pf. which is an extension of the P such
that rmv(Pfi,P{’k) is identical to rmv(P{i,Pz".). Because C = depth-first traversal,
according to Lemma 7.2.1, P,"* and Pz"* are sequence-preserving extensions, so that
the formula (7.1) can be applied. We only need to consider two kinds of cases: (1)
in both P{’k and P.fk, Py =0, and ie, the node g¢* is not in the same cluster with
PMT?; (2) in both P?" and ng, pp = 1, ie,, the node g¢* is in the same cluster
with the PMT?. For the case (1), according to Lemma 7.2.3, we only need to prove
R(Pfk) < R(Pz"k). Since this is known to be true according to the given condition,
the theorem holds for case (1). For case (2), by (7.1), the following expression holds:

B (P = farrli+ flat T Uftarrfa(R)+ ROPP)), 1=1,2

g*€5(¢*)

Since rmv(Pl"',Pfk) = rmv(Pz"',Pz"*), we have
k k k k ' q* k ([k 1 ' . '
RU(A) - RY(Pf) = (fla xrea(P) — fin * reh(P]) + (B (P{) - RV (F))).

By (6.5) and (6.6) and the assumption of w’j(Pf') < w (P{'), we have dZ%,(P,"*) <
d:%l(quk), and hence by (6.9) we have rZél(P{'k) < rZé,(Pfk) We have known that
R'(Pf') < R'(PJ') so that R (P{') < RY(P{"). That is, the theorem holds for the
case (2). Since the average page access expression has a recursive structure under
the condition of C = depth-first traversal, by induction, we can prove the claim of
the theorem holds for g* being any ancestor of the ¢. Hence the theorem has been

proved.

124

Theorem 7.3.4:

If Re(2f) < RY(P) and w%(P{) > s, then for any PMT?" where g is an

ancestor of the ¢*, R (P§") < R™* (F{'), where rmo(P{', Pf*) = rmu(P{, P§").

Proof:

The proof is similar to that of Theorem 7.3.3. First, we assume ¢* is the par-
ent of the ¢'. Let quk be any extension of the Pz"‘. For any such P{k, we can
find a Pl"* which is an extension of the P{' such that rmv(P.f‘,Pg"k) is identical to
rmv(P,’i, Pz"*). Because C = depth-first traversal, according to Lemma 7.2.1, qu* and
P.}* are sequence-preserving extensions, so that the formula (7.1) can be applied. We
only need to consider two possible cases: (1) in both P{’k and P,"’k, Py = 0, ie, the
node ¢* is not in the same cluster with PMT?; (2) in both Pfk and P-}k, Py =1,
i.e., the node ¢* and the PMT? are in the same cluster. For case (1), according to
Lemma 7.2.3, we only need to prove R(Pfk) < R(P.fk). Since this is known to be
true according to the given condition the theorem holds for the case (1). For case
(2), we have two possibilities: (i) w%(P{') < s and (i) wH (PF) > s. If it is case (i),
according to the formula (6.5) and (6.6), we have eil(qu*) < d:%l(P{*), which is the
situation of theorem 7.3-3. If it is case (ii), by (6.5) and (6.6), we have d:%l (P{’k) >s

and d:%,(P.f*) > s, so that rZél(Pfk) = rZil(Pg*) = 1. By (7.1), we can derive

k ' " (] -
RP Y= fhwrih+ flat 5 [+ROEY), 1=3,2
'€S(g%)

so that
R (P') — R (P§") = R (PI"") — RY(P"') = R¥(PY') — R'(PY')

125

We know that R°‘(P1"i) < R (P{')so that R"'(P,"*) < qu(quk). That is, the theorem

holds for case (2). Since the average page access expression has a recursive structure
under the + condition of C = depth-first traversal, by induction, we can prove the
claim of the theorem holds for ¢* being any ancestor of the ¢’. Hence, the theorem
has been proved.

Let ¢*, a node in a PM T, be the parent of the nodes ¢, ¢*2, ..., g*». Assume for
all k;,i=1, 2, ..., m, the minimal R?" (P™)’s are known, where every P represents

a partition on the PMT®™ such that R™ (P?*) is the minimum of all possible R*"’s.

Theorem 7.3.5:

If Wk : (1/2)% (2% %0 + 20 40h ') > s, then one of optimal partition will contain
a P such that P™" = {ps, =0,pe2 =0, ppm = 0} U P UP?...UP"™, where

U represents the union operator.

Proof:

First we prove by the assumption of the theorem that if P?" = {pp =0,p, =
0,...,ppm = 0}U P UP™...yP?™™, then R"k‘(P"*) is the minimum. Since we
know that Vk; : (1/2) x (2% *v% + 20 v":') > s, by (6.9) for any partition P*" on

k'
the PMT?", then r3 (P**) = 1. Hence, we can derive

k
R'(P") = fhisrih + M+ L % + R (P™))
gk eS(g*)

By the assumption of the theorem and Theorem 7.3.2, we know that if

P = {p = 0,p, = 0, ., =0} P Y P Y P,

126

Bt S oY

then
: k k & x ,) ki . k, ki
min(R" (P7)) = .'qu*":"i'l i+ Z (s +min(R* (PV))]
a*ies(e*)
Since in the P?*, we have Py = 0,ph = 0,.yPgem = 0, in this case the size of
the root-involving cluster w® = 2% *v% is also the minimum of all possible choices.

According to Theorem 7.3.3, we can conclude that the claim of the theorem is true.
7.4 LOCAL OPTIMIZATION ALGORITHM

Based on the theorems above, we present an efficient algorithm which can find an
optimal pa. ition on a PMT? which, under the predefined F* and L and the assump-
tion that C is depth-first traversal, produces a minimal R?. Since this algorithm is
based on the assumption that C is the depth-first traversal, we call it DEPTHFIRST.

The data structures used in the DEPTHFIRST are as follows.

(i) (R, W, P): for every possible partition P ona PMT?, a triple is used,
where R contains R(P?") W contains w® (P"), and P contains P7".
(ii) Q": for a PM T a queue is used to contain triples (R, W, P)’s, and all

of them are sorted according to the increasing value of R.

(i) PCV ector”: for any node ¢* and all of its child nodes ¢*, ¢*2 , ...,
g'", the partition variables pxi , Pgia » «--, Ppom form a parent-child vector
(denoted as PC-Vector). Since every p,x; can only be 1 or 0, for a PC-
Vector with n partition variables, there are 2" possible instances. Every

instance is called an element of the PC-Vector.

127

(iv) Z V.Set®: for a PMT"", there is a set-variable to contain the average
number of history records 29" (H) and the average size of history records

v% of every node ¢* in the PMT?",
(v) for a PMT?, N is a variable to contain N.

(vi) for a PMT?, F9 is a set-variable to contain elements of F.

The following is the algorithm DEPTHFIRST.
Algorithm: DEPTHFIRST(PMT?", 2V Set?",Ne* F")
Function Description:
This will output a triple (R,W,P) such that P contains a P"" which makes the
R(P7)
contained in R a minima of all possible R9"’s.
BEGIN
Step 1:
IF ¢* has any children
THEN FOR every child ¢* of ¢ DO
DEPTHFIRST(PMT®", ZV Sets™; N*, F*)
ELSE computing (R,W,P) and insert it into the Q"
Step 2:
IF Vk; : (1/2)(2% 0% + 29 % 0%') > s
THEN from every Q9" take the first triple (R,W,P) and, based on
Theorem 7.3.5 to compute a new triple (R,W,P) by using the fetched
R’s and P’s

128

LAt A Rl

ELSE
Step 9:
FOR every element of the PC_Vector? DO
BEGIN
Cuse(i): FOR every px, =0 DO
take the first (R,W,P) from the Q9";
Case(ii): FOR every px; =1 DO
take every (R,W,P) in the Q" , one by one;
FOR all the combinations of the (R,W,P)’s fetched above DO
BEGIN
(1) Compute a new (R,W,P) for PMT?;
(2) Compare it with every (R,W,P) in the Qe
IF a comparison finds a pair of (R,W,P)’s satisfies Theorem 7.3.3
or Theorem 7.3.4
THEN insert or leave the (R,W,P) whose R and W are smaller into the Q7"
END;
END;
Step 4:
Sort the (R,W,P)’s in the Q" according to the increasing values of R’s and
output the Q""

END{DEPTHFIRST}.

129

Theorem 7.3.6:

The best time complexity of the DEPTHFIRST is O(n), where n is the number

of nodes in a PMT1.

Proof:

If every internal node has only child one node, we get a trivial case for the claim
of the theorem. We assume every internal node may have more than one child node.
In this general case, if for every pair of parent-child nodes the condition of Theorem
7.3.5 holds, then we only need go through step 2 of the algorithm for every subtree
rooted at the child node which results one computation for the (R,W,P) of every

node, so that there are totally n computations. That is, the best time complexity is
O(n).
Theorem 7.3.7:

The worst time complexity of the DEPTHFIRST is O(cn), wherec =1+ sP/B, s
is the page size, B is the fanout number of an internal node of the PMT".
Proof:

The worst case occurs when a PMTY is a balanced tree and every internal node
has the same fanout number. Let B be an integer constant to represent the fanout

number of an internal node in a PMTY?, n be the total number of nodes of the PMT?,

130

and h be the height of the PMT?. Then we have
n=(g*-1)/(B-1). (73)

Let T(n, B) represent the time spent in the DEPTHFIRST. Since there are 8 child
nodes fanned out from the root node ¢, each subtree rooted at one child node of the
g contains (n —1)/8 nodes. Due to the recursive property of the DEPTHFIRST, the
time spent in each subtree is T(n — 1/8,8). The time spent on Step 3, in the worst

case, is
B

” "~

(‘1') " (‘1’) =df, (74)

where o is the longest length of Q7" . According to Theorem 7.3.4, every Q™ contains

at most one (R,W,P) with a value of W greater or equal to page size s. Since all W’s
are integers, there can be at most s elements in each Q**. Thus @ < s. The time

spent on Step 4 is O(slog s). Therefore, we have

T(n,f) = B+T(n-1/8,)+s" +0(slogs)

= B+T(n- 1/8%8) + ﬂ*sﬁ+sﬁ+0(ﬂ*slogs)

< B aT(n—1/p, B)+ 8%+ + O(B*?slogs)
= A1 x(n-1)/p"" + 2% s8 + O(B" %slog s)

= (n—1)+p 2%+ O(f*2slogs)

= (n—1)+872[(f-1) xn+1] x s* + O(B**slog s)

131

< O((1+5"/B) »n)
Since both B and s are constants, Therefore, we have
T'(n,B) < O(en) (7.5)
where c= 1 + s#/8. That is, the theorem is proved.

7.5 ALGORITHM OF GLOBAL
OPTIMIZATION

In the last section, we have discussed that under the condition that the value of L
is given, by the DEPTHFIRST algorithm we can find the local optimal partition and
the local optimal R?. Since the local optimal partition is a function of L, to find a
global optimal partition we need to concern many different values of L. Conceptually,
the range for choosing L is (0, H], where H is thetotal timeinterval. If H is very large,
searching an appropriate L by going through all the possible points in (0, H] is too
time consuming. Through experiments that we carried out, we found that the local
optimal R? is a nonlinear function of L and the curve of the local optimal R? against
the L has only one minimum in the interval (0,H). That is, in the interval (0, H), the
local minimum is the global minimum. Based on this fact, to search an appropriate
value of L, we can apply any existing “line search” algorithms, e.g. Fibonacci Search
and Gold-Cutting Search [C+73,L+82] that are used in the numerical analysis to find
the minimum of a nonlinear function with one variable.

In the following, we present an algorithm to find the global optimal R? which is
based on the Gold-Cutting algorithm.

132

k]
:
3
3
¢
?
y
y

Algorithm: OPTIMIZATION(PMT", H, Ly, 6)

Function Description:

Based on the input PMT? with all necessary parameters, the length of total time
interval H, the starting value of L, miniL, and a predefined tolerance requirement §,
this algorithm will output an L and a P? such that R?(L, P?) is the optimal one.

Subprocedures:

(1) PARAMETERS(PMTY, L, H)

Function Description:

This will output a set of parameters such as N, F, and ZV-Set which

contains 2% (L) and v% for all ¢ € PMT".

(2) DEPTHFIRST(PMT?, ZV-Set, F, N)

Function Description:

This will output a local optimal partition and local optimal R?.
Procedure Of OPTIMIZATION:

Local Variables: a, b, Ly, Lq, Ry, Ry;

BEGIN

a:=miniL; b:= H;

Lyi=a; Ly :=b;

FOR L, and L, DO

BEGIN

Call PARAMETERS;

Call DEPTHFIRST;

133

Assign the resulted R?’s to R; and R; respectively;
END
WHILE |L, — L,| > 6 DO
IF R, >R,
THEN
BEGIN
Li:=a+0.382%(b—a);a:= Ly;
Call PARAMETERS;
Call DEPTHFIRST and assign the result to R,
END
ELSE {xie,R; <R; %}
BEGIN
Ly:=a+0.618 % (b—a); b:= Ly;
Call PARAMETERS;
Call DEPTHFIRST and assign the result to Ry

END;

Output the L and P? of the R; which is the minimum between R, and Ry;

END{OPTIMIZATION}.

134

Chapter 8
EXPERIMENT RESULTS

8.1 INTRODUCTION

In the expression of average page access number (i.e. (6.10)), the parameters
are not independent of each other. Changing the values of parameters may have an
interactive, even a contradictory, influence on the reduction of average page access
number R?. For example, as the value of L gets greater, z’: ’s get greater which will
increase the average page access number, but f,f',’;’s get smaller which will reduce the
average page access number. To have a close view of how these parameters affect each
other and how they comprehensively affect R, we carried out a series of experiments.
The experiments can be divided into two groups according to whether the parameter
partition P? is fixed. Each group of experiments consists of a set of subgroups, each
of which to investigate one specific characteristic of the clustering scheme that we
proposed.

The parameters used in the experiments will be introduced in Section 8.2. In
Section 8.3 we will discuss the relationships between a fixed partition P? and other

parameters under the condition that L is a variable. Then, in Section 8.4, we will

-

consider the properties of the local optimal partition and the global optimal partition
and analyze the relationships among various parameters that influence the optimal
partitions. Last, in Section 8.5, we will present some suggestions for applying the

clustering scheme in practical applications based on the results of the experiments.

8.2 EXPERIMENT PARAMETERS

The parameters used in our experiments are listed in Table 8.1. They can be
divided into two categories. The first category consists of the parameters that appear
in (6.10). The second category consists of newly defined parameters which are mainly
related to various kinds of performance measurements.

In the experiments, we only consider the cases that the page size is larger enough
compared with the average size of history records in a node of a PMT?. A parameter
called the RP-ratio (i.e., the ratio between the average size of history records v% and
the page size s) is used. In the experiments, we assumed that all nodes in a PMT*
have the same RP-ratio and we only considered three different kinds of RP-ratios:
great, medium and small. Their definitions are listed in Table 8.2.

S fit] & fet is a parameter used to study the impact of relative frequencies of prim-
itive transitions. To demonstrate the relationship between the distribution of relative
frequencies of primitive transactions and the primary temporal queries, we roughly
classify primary temporal queries against a P MT" into six types: shallow-level short-

interval (SS), shallow-level long-interval (SL), deep-level short-interval (DS), deep-

136

NOTATION DEFINITION — |
P? a partition of a PMT? - T]
C clustering sequence
L length of reference time interval
H length of total time interval
s page size
29 (H) number of history records in a node ¢* during H
z% average number of history records in an hp of ¢*
v average history record size in an hp of ¢*
RP-ratio v% /3, ratio of average history record size to page size
N, number of clusters in a partition
> fa summation of all ,-"t:’s, where x =1,2
T fet summation of all fis
L fit 2 fer ratio of ¥ fir to X fer
MiniR the minima! R? under a given L
MaxminiR maximal miniR(1L)
MiniminiR minimal MiniR

MaxminiR/MiniminiR

ratio of MaxminiR to MiniminiR

0.03B range of L in which | MiniR - MiniminiR | < 0.03
Pope(L) the local optimal partition causing MiniR

Popt the global optimal partition causing MiniminiR
Popi-LBand range of L where Py (L) = P,y

Loyt the value of L where MiniminiR is found

Table 8.1: Parameters Used in Experiments

| Type of RP-ratio [DEFINITION |

Great "~ RP-ratio = 0.1
Medium RP-ratio = 0.01
Small RP-ratio = 0.001

Table 8.2: Three Types of RP-ratio:

137

[Type of PT | T fu/ T fet)

TL 0.01
DL 0.05
SL 0.21
TS 0.32
DS 0.66
S§ 1.00

Table 8.3: 3_ fit/ L fer’s of Six Types of PT’s

level long-interval (DL), traversal short-interval (TS), and traversal long-interval (TL).
Assume h represents the height of a PMT? and the root node is at the top level (i.e.,
the first level). Shallow-level primary temporal queries mainly access the nodes which
at the top [k/2] levels. Deep-level primary temporal queries access many nodes which
are distributed on the levels that are below the [h/2]-th level. Traversal primary tem-
poral queries access all nodes of the PMT1. It is an extreme case of the deep-level
primary temporal queries. If the time interval used in a primary temporal query is
less or equal to 0.05H, where H is the total time interval, we call it a short-interval.
Otherwise, we call it a long-interval. The concrete definition for the departure of the
short-interval and long interval depends on the applications. For each type of pri-
mary temporal queries defined above, we chosen one example. Their corresponding
T fit] X fu's are listed in Table 8.3.

As defined in Chapter 6, z""(H) represents the number of history records that
are stored in a node ¢* of 2 PMTY during the time period H. When the reference
time interval L is chosen, a PMT9 is decomposed into N hp-trees, so is 2 (H). Each

piece of z¢* (H) is denoted as z% and associated with one hp-tree. As a matter of fact,

138

Type of 29 (H) | DEFINITION l
Very great 2% (H) = 500
Great 2% (H) = 100
Medium 2% (H) = 50
Small 29 (H) =10

Table 8.4: Three Types of RP-ratios

| PARAMETER | RANGE OF VALUES |
P9 all possible partitions of a PMT?
C depth-first, breadth-first
L 0.01H — 1.0H
N, 1—21

Table 8.5: Value Ranges of Parameters

like v%, 2% is an important factor that determines the value of d:fl which directly
influences the average page access number. Although z“*(H) cannot be changed, 2%
can be adjusted by changing the value of L. In the experiments, we assumed that all
nodes in a PMT? have the same 29"(H), and four different kinds of z%*(H)’s were
considered. Their definitions are presented in Table 8.4.

The usage of the other newly defined parameters for the performance measurement
purpose will be further described when they are used. The value ranges of some other

parameters are listed in Table 8.5.

139

8.3

The purpose of our first group of experiments was to find the characteristics of a
fixed partition under the.condition that the reference time interval L is a variable. The
motivation behind this group of experiments is to answer the question: if we do not
change an existing partition, how do the changes of the other parameters influence the
average page access number. T.o see the effect of different parameters, the experiments
are further divided into three subgroups. In each subgroup, in addition to L, only

one parameter is a variable. The variable used in the subgroups are the RP-ratio, the

C = Depth-first L € [0.01H,1.0H]
Plisfixed 2(H)=100 ¥ fi/ S fo =0.66
RP-ratio = 0.001 RP-ratio = 0.01 RP-ratio = 0.1

0-7 L) L) T Ll L} LA Ll

R"I

0l r

0.0 - 1 L (1 L A 1 L d
62 04 06 0B 10 12 14 16 18 20

log,o L + 2
Figure 8.1: Effect of RP-ratio on a P?

CHARACTERISTICS OF A FIXED P?

T fu/ T fo and the 29'(H).

140

8.3.1 Effect of the RP-Ratio

Figure 8.1 demonstrates the effect of the RP-ratio on the performance of a given
partition P? under the condition that all the other parameters are fixed but the L is
a variable. Each R%L curve is associated with one kind of RP-ratio.

From Figure 8.1, we observe the following.

(1) The greater the RP-ratio, the greater the average page access number.

(2) The L,y (i.e. the value of L at which the MiniminiR is found) has a certain
relationship with the RP-ratio: the smaller the RP-ratio, the greater the
Lop:.

(3) When the RP-ratio is small, as L gets greater, the average page access
number curve first shows a steep reduction, then slows until it reaches the

L,pt, after which it shows a very slow increment.

(4) When the RP-ratio is medium, as L gets greater, the average page access
number curve first shows a fast reduction until it reaches the L,p, then it

shows a fast increment;

(5) When the RP-ratio is great, the average page access number curve first
shows a fast reduction until it reaches the L.y, then it shows a fast incre-

ment until it reaches the maximum, when it begins a very slow reduction.

Case(1) means that when all the other parameters are fixed, the average page
access number is determined by the RP-ratio. Under the condition that the other
parameters are fixed, changing the value of L has two functions: (i) changing the

141

number of history records in a node of an hp-iree, and (ii) changing the percentage
distribution between f,qt{ and fﬂ’; Case(2) means that if the RP-ratio is smaller,
more history records can be contained in a node of an hp-tree. Case(3) tells us that
under the conditions that all the other parameters are fixed, if the RP-ratio is small
the average page access number is not sensitive to the altered values of L in a quite
large range. However, a medium RP-ratio is quite sensitive to the changes of the
value of L (i.e., case(4)). Case(5) tells us that when the RP-ratio is great, if all the
other parameters are fixed, then changing the value of L will almost not influence the
average page access number. This is because after all the nodes of an hp-tree have
enough histo.y records, all d%'s may become equal or greater than one page size, so
that all 7% ’s become “1”. In this situation, increasing the value of L is to change only
the percentage distribution between f:’,’: and f,-q,;;, which has no big influence on the
average page access number when both the value of L and the RP-ratio are greater.

According to the observations above, we may conclude that a smaller RP-ratio or
a greater page size is preferred. This is because it allows us to avoid the sensitivity
to the changes of the value of L and to get fewer hp-trees. Also in this situation the

average page access number becomes smaller.
8.3.2 Effect of = fii/ T fet

To investigate the influence of the relative frequencies, a group of experiments
with different 3 fi/ & fer's was made, They are summarized by Figures 8.2, 8.3 and
8.4. Each of the figures reports the experiments with one kind of RP-ratio.

From these figures, we find that under a given partition, if the other parameter are

142

3
3
g

o e e b Ak 2w

C = Depth-first L e [0.01H,1.0H]
Piisfixed 29(H)=100 RP-ratio = 0.001
Zfit/z.fet =0.05 Zfit/z:fct =0.21 thtlzfct = 0.66

0.6

0.5

0.4 §

0.3

0.2

02 04 06 08 0 12 14 16 18 20
logyo L +2

Figure 8.2: Effect of © fit/ 3 fot on a P? - (1)

fixed, then the relationship between the average page access number and the value of
L ful T fet is a function of L. A greater value of the 5 f;; / . fet does not necessarily
mean a greater average page access number. Both Figure 8.2 and Figure 8.3 show
that when L is very smali, the greater ¥ fii/ T fe:, the greater average page access
number, but in a quite large range of L, this relationship does not hold.

The fact above can be explained as follows. When L is very small, the number
of history records is greatly réduced, e.g. if each node only contains one history
record, then all IT primitive transactions are IT2’s. This means that f;’:’s become
an important factor for the average page access number of every node g*. A greater
L ful T fer means a greater T fi;, that is, a greater Y f,?: When the value of L
become larger, the percentage distribution between a f:’: and a f,q,’: changes. The

143

C = Depth-first L € [0.01H,1.0H)]

P s fixed 2% (H) = 100 RP-ratio = 0.01

it/ Tfa=008 T fu/Tfea=021 T fu/T fer =0.66
—o— ——

—m
0!90 ¥ L) A Ll L ' L] ¥ ¥

)

8.75 t

0.60 4

Q
0.45 |

R’I

0.30 F

02 04 06 08 10 12 14 16 18 20
logo L +2

Figure 8.3: Effect of 3 fit/ 2 fee on a P? - (2)
k
T fi is getting smaller but it still has certain important influence on the average
k k
page access number. At this time, r,’s and ri%,’s also have very important influence

on the average page access number.
8.3.3 Effect of the %' (H)

A group of experiments was done to investigate the effect of z"*(H) on the average
page access number, assuming that the values for 2 (H) are the same for any node.
The results of the experiments are reported in Figure 8.5.

From Figure 8.5, we observe the following.

(1) No matter what the values of the z9*(H)’s, through changing L, we can
get the same minimal average page access number for a given partition P9

144

C o ATATE e A (e RN e S

C = Depth-first L € [0.01H,1.0H]
P9 isfixed z%°(H) =100 RP-ratio = 0.1
2 fi) T fee = 0.05 Zflt/zfet =0.21 qu/ 2 fer = 0.66

—— —— ——
0-90 L] L) L) R | L Ll T L]
075
060 } M

&

045 | T
030 } ' " e]
045 ;/n/”'//,n -
0.00 1 1) (] 1) A " A

62 04 06 08 10 (2 14 16 18 20
log;o L +2

Figure 8.4: Effect of 3° fi/ Y fo on a P? - (3)

(under the condition that all the other parameters are fixed).

(2) The greater the z?"(H), the smaller the value of the Lop:.

(8) For a given L, a greater 29" (H) may or may not imply a greater value of

the average page access number.

(4) When the z9"(H) is very small, as L gets greater, then the average page

access number gets smaller.

(5) When the z¢*(H) is getting greater but not too great, as L is gets greater,

the average page access number curve gets smaller at first, until the Lope

is reached, when it gets greater.

(6) When the 2" (H) is very great, the average page access number curve shows

145

C = Depth-first L €[0.01H,1.0H]
PZ is fixed RP-ratio = 0.001 T ful T feo =0.66
(H)Y=10 (H)=50 "(H)=100 z¥(H) =500

R

!l -

62 04 06 08 10 12 14 16 18 20
loglo L + 2

Figure 8.5: Effect of 29" (H) on a P?

146

several local minima.

Since the effect of the 29" (H) on the average page access number functions together
with the RP-ratio, we can change L to adjust 2%’s and get the same effect as by

changing the page size to adjust the RP-ratio.

8.4 CHARACTERISTICS OF THE OPTIMAL
PARTITION

The purpose of the second group of experiments was to investigate the characteris-
tics of optimal partitions. There are two kinds of optimal partitions: local optimal and
global optimal. A local optimal partition is the partition that can cause the minimal
average page access number compared with all possible partitions under the value
of L. A local optimal partition is denoted as Popi(L). The corresponding average
page access number is denoted as MiniR. The global optimal partition is the local
optimal partition of which the corresponding MiniR is the minimum of all possible
MiniR’s when L is variable. The global optimal partition is denoted as P,y The
corresponding MiniR is denoted as MiniminiR.

Several other parameters are used in the experiments. MaxminiR/MiniminiR is
used to measure the effect of the value of L. The greater the MaxminiR/MiniminiR,
the more important is the choice of L. 0.03B is used to measure the sensitivity of
MiniminiR on the changes of L. If the 0.03B is greater, the MiniminiR is less sensitive

to the changes of L. P,,;-LBand is used to measure the sensitivity of the P, on the

147

changes of L. If the P,,-LBandis greater, the Py, is less sensitive to the changes of
L. N, is used to measure the average number of nodes in a cluster of a partition.
The second group of experiments was further divided into five subgroups. The first
subgroup investigated the characteristics of MiniR. The second subgroup observed the
characteristics of MiniminiR. The third subgroup studied the comprehensive effects of
the changes of RP-ratio, z9" (H), and relative frequencies of various types of primitive
transactions on the MaxminiR/MiniminiR and 0.03B. The fourth subgroup unveiled
the characteristics of the optimal partition P, under the changes of RP-ratio, z°*(H)s
and relative frequencies of various types of primitive transactions. The fifth subgroup
compared the paging performances when the clustering sequence is depth-first traver-
sal with that when the clustering sequence is breadth-first traversal. The results of

these experiments are as follows.

8.4.1 Characteristics of MiniR

If we fix the other parameters such as ¥ fit/ & fet, RP-ratio and 29" (H), and treat
the MiniR as a function of L, we can draw a nonlinear curve. Figure 8.6 shows the
effect of changing the RP-ratio on the MiniR-L curve. Figure 8.7 shows how the
changing ¥ fit/ T f.: influences the MiniR-L curve under the condition that RP-ratio
and z9"(H) are fixed. Figure 8.8 shows the influence of changing the 29" (H) on the
MiniR-L curve.

From Figure 8.6, we observe that, when 29" (H) and 3 fi/ L fer are fixed, the

following facts hold.

148

C = Depth-first L € [0.01H,1.0H]
P9is variable z(H)=50 I fi/ S feo =021
RP-ratio = 0.001 RP-ratio = 0.01 RP-ratio = 0.1

0.90

0.75

0.60

0.45

MiniR

0.30

015

o
. ‘__H____A/A'_T
i P 1 L

02 04 06 08 10 12 14 16 18 20
logyo L + 2

0.00

Figure 8.6: Effect of RP-ratio on MiniR

(1) For all kinds of RP-ratios, except at the two ends of the L, the MiniR-L

curve shows only one minimum.
(2) A greater RP-ratio means a greater average page access number.

(8) A greater RP-ratio also means a smaller L,y.

From Figure 8.7, we observe that, when the z¢"(H) and RP-ratio are fixed, the

following phenomena occur.

(4) For all kind of T f;:/ T fu, except at the two ends of the L, the MiniR-L

curve shows only one minimum.

(5) The effect of ¥ f;y/ 3 f.. on MiniR is a function of L.

149

C = Depth-first L € [0.01H,1.0H]
P?is variable 29°(H) =50 RP-ratio = 0.0l
Tfa/ Tfa=005 T fu/Tfa=021 I fie/L fer =066

— —— —
0'7 v LS L] L] ¥ L] L] 1 Al

0!6 "

S |

04 }

MiniR

0-3 9

0.2

0.1

02 04 06 08 10 12 14 16 18 2o
log;o L +2
Figure 8.7: Effect of ¥ fit/ T fer on MiniR

(8) A greater 3 fie/ L fe: means a greater Lop:.

From Figure 8.8, where the RP-ratio and }° fit] I fer are fixed, we have the fol-

lowing findings.

(7) For all kinds of 2" (H)’s, except at the two ends of the L, the MiniR-L
curve shows only one minimum.

(8) For all kinds of 2¢"(H)’s, MiniminiR remains the same.

(9) A greater 29" (H) means a smaller L.

(10) A greater 2¢" (H) means a fast increment when L> Lop.

150

C = Depth-first L € [0.01H,1.0H]

P? is variable RP-ratio = 0.01 T fil TS =021
2(H)=10 =z(H)=5 2z*(H)=100 2% (H) =500
e —a— —r— -——

1.0

08 |

0l6 [

MiniR

004

0.2 ¢

0.0

log,o L + 2
Figure 8.8: Effect of 29"(H) on MiniR

Based on cases(1),(4) and (7), we conclude that, in any cases, except at two ends
of L, the MiniR-L curve has only one minimum. This finding has been used to design

the algorithm OPTIMIZATION in Chapter 7.

8.4.2 Characteristics of MiniminiR

The results of the experiments to observe the characteristics of MiniminiR under
the changes of related parameters are presented in Figure 8.9 and Figure 8.10. Fig-

ure 8.9 summarizes the comprehensive influence of changing the RP-ratio and the

Y fit/ T fo on MiniminiR.

In Figure 8.9, the ¥ fiu/ T fu's of the six types of primitive transactions have

T TR AT TR AR

been sorted to form an increasing order based on their values. From Figure 8.9, we

f can find the following:

151

(1) For each fixed T fit/ T fu, as the RP-ratio gets greater, the MiniminiR

gets greater as well.

(2) If the RP-ratio is very small, as the 3 fii/ L fet gets greater, the MiniminiR

get greater as well.

(3) If the RP-ratio is not too small, a greater 3° fii/ L fer may not mean a

greater MiniminiR.

In Figure 8.9, the 29"(H) is fixed. For each fixed z9"(H), the observations above
are similar. However, if we fix the & fir/ ¥ fer and allow the RP-ratio and z"(H) to
change, then we get the picture shown in Figure 8.10. This is an interesting result in
that if the RP-ratio and the 3 fii/ T fet are fixed, then the MiniminiR is independent
of the changes of 29" (H). This implies that if we only change the number of history
records stored in a private object base, assuming that the sizes of history records are
not changed and the way the user uses the object base is not varied, then we can
expect the same MiniminiR by a suitable clustering. As a matter of fact, the reason
for this is very simple, i.e., we can change the z% through changing L to get the same
value for two MiniR’s which have different values of L. For example, assume that we
have 29" (H,) = 50 and 2% (H,) =500, Hy/H, = 5, that all the other parameters are
the same. If we can have a MiniR which corresponds to z9'(H;) and L = L, then
under the condition L= L;/20 we can find a MiniR which is equal to the previous

one for the case of 29" (H,) .

152

C = Depth-first

i

AL 22 R e

jidt £l

TR, 30N TN A & e A
>R Y RO R

ORIOR N YR

DA

AR W AR

i i " i

e
(]

n
Y

0.0 !

Q n o (1}
L1 - - o

€+ Yrutunuryy ©'3oj

001 0.1

RP-ratio

0.008

niR

inimi

Effect of RP-ratio and 3 fie/ Y. fee on M

Figure 8.9

RP-ratio = 0.1

= 0.66
= 0.01

Lz fitl T fer
RP-ratio

C = Depth-first
RP-ratio = 0.001

3.0
e
2

£+ Yluuiuiy 'S0

Effect of 29" (H) and on MiniminiR

Figure 8.10

153

8.4.3 Effect of Changing L

MaxminiR/MiniminiR and 0.03B are the parameters used to measure the effect of
changing L. While MaxminiR/MiniminiR shows an abstract picture of the effect on
the MiniminiR of changing L, 0.03B presents a close view of this effect. The influence
of the RP-ratio, z""(H), and ¥ fit/ T fer on these two parameters are summarized by
Figures 8.11, 8.12, 8.13 and 8.14.

From Figure 8.11, we have the following observations

(1) MaxminiR/MiniminiR is very sensitive to the changes of I fi/ - fer.

(2) MaxminiR/MiniminiR is very sensitive to the changes of RP-ratio.
From Figure 8.12, we observe that

(8) Forafixed ¥ fit/ ¥ fet, MaxminiR/MiniminiR is not sensitiveto the changes

in 29" (H), especially when the RP-ratio is small.
From Figure 8.13, we can find the following:

(4) 0.03B is very sensitive to the changes of 3° fil T fer:
(5) 0.03B is very sensitive to the changes of RP-ratio.
(6) For all kinds of T fit/ &= fur, as the RP-ratio gets greater, 0.03B gets smaller.

(7) For all kinds of T fit/ T fur, as the RP-ratio gets greater, 0.03B gets closer

to the lower values of L.

From Figure 8.14, we observe the following:

154

- ol

C = Depth-first 29*(H) =100 [

=
892
2
-y

(%]
Za5
(%)

(%]

160
140 ¢ -
e
.E 120
£
‘E 100 b
E 80 } ¥
= 7
= Z
B o 7.
.E 6.0 f
[490 | vz
L 2 N
=4 ;: \
20 7.
)
0.0 ‘
0.001 a0l 0.l
RP-ratio

Figure 8.11: Effect of RP-ratio and ¥ fi/ L fe: on MaxminiR/MiniminiR

(8) When ¥ fu/ T fe is fixed, for every kind of RP-ratio, the location of 0.03B

is very sensitive to the changes of 29" (H).

These observations imply that whenever any changes occur in the RP-ratio, z""(H),
and /or the user access pattern, if we still want to get the MiniminiR, then we need to

readjust the value of L, i.e., we need to redistribute the history records into hp-trees.

8.44 Characteristics of P,y

The characteristics of the global optimal partition P,,; were also investigated in
our experiments. N; and P,,-LBand are two parameters defined to measure the
effects on F,,; when the RP-ratio, z"'(H),and ¥ fi¢/ ¥ fer change. The results of the

experiments are summarized in Figures 8.15, 8.16, 8.17 and 8.18.

155

C = Depth-first Y fit] T fou = 0.66
RP-ratio = 0.001 RP-ratio = 0.01 RP-ratio = 0.1
B

7.0
& 6o} ’é
c . Y %
' % / 2
o So r ? g é
£ g 7 7
= 40t 7 g %
~ / % Z
e * 2 7
- / ? 7 i
g 3¢ ﬁ 7 i
= I/ 7b g
£ 20} HE i
g ° i i 1
2 z < f B
1wt P /
AR 7
of:c: ol
0.0 Fé Tes “liie

Figure 8.12: Effect of z9"(H) and on MaxminiR/MiniminiR

From Figure 8.15, if the 2% (H) is fixed, we can find the following:

(1) The change of P,y is dependent on the 3° fi/ 2 fet-

(2) When the RP-ratio is not very great, then for all kinds of ¥ fit/ ¥ fet, the

P, does not changed as the RP-ratio gets greater.

(8) When the RP-ratio is very great, then for all kinds of ©° fie/ I fer, the Popt

changes as the RP-ratio gets greater.
From Figure 8.16, we have the following observations:

(4) Under the condition that the RP-ratio and 29" (H) are fixed, changing

3 fil X fo may cause Py to change.

(5) Under the condition that RP-ratio and T fi/ L fer are fixed, changing

156

S TR R T ey

log, 0.0373 + 4

log,0.033 + 4

3.0

28

26

2.4

2.2

20

1.8

C = Depth-first

2% (H) = 100

s

¢

DN

AN
EHH

W71

0.8

0.001

001 0.1
RP-ratio

Figure 8.13: Effect of RP-ratio and ¥ f;;/ ¥ f.: on 0.03B

C = Depth-first
RP-ratio = 0.001

So

4.0

30t

2o

10

00 !

“
%

2 fit/ T fer = 0.66
RP-ratio = 0.01 RP-ratio = 0.1

N
RN

AN Ny

100

2 (H)

Figure 8.14: Effect of 2%" (H) and on L of MiniminiR

157

29" (H) does not cause P,y to change.

From Figure 8.17, under the condition that the z¢ (H) is fixed, we observe the

following:

(6) For all kinds of 3 fit/ T fet, as the RP-ratio gets greater, the P,,-LBand

gets smaller and close to the lower values of L.

(7) If the RP-ratio is not great, then the P-LBand is not very sensitive to

the changes of & fit/ 2 fet.

From Figure 8.18, we have the following observations:

(8) Under the condition that the RP-ratio and 29" (H) are fixed, the P,,-LBand

is not sensitive to the changes of ¥ fit/ L. fer-

(9) Under the condition that the RP-ratio and 3_ fi]/ T Jet are fixed, as the

29" (H) gets greater, the P,,-LBand gets smaller.

8.4.5 Effect of the Clustering Sequence

In addition to the experiments with depth-first traversal clustering sequence, we
also made a series of experiments with breadth-first traversal clustering sequence.
After comparing the results of the experiments, we find that in all aspects, two kinds
of clustering sequences have similar characteristics. The most interesting finding is
that in all the experiments that we made, if all the other parameters are the same,

then the MiniminiR in the case of depth-first traversal is always smaller or equal to the

158

[2]
(2]

Az
cum
A
a8
20

o
o)

P (H) =

C = Depth-first

0.01 0.1

RP-ratio

0.001

Effect of RP-ratio and ¥ fit/ > fe: on N, of P,

Figure 8.15

S00

100

b5 \.\\n 273 "wu 7 2257 A
= « PR R
n d . ‘
&] T
P 1] AR
P
NS
B e Do

Lo o .

o o .

i RSN

° ' SRR

phe]

<

0

=

MM RTINS

r v IR

G

~=

-~

& i 1

a « B A

& :
I o
O TSNS
o 1
o -] o o o o
8 ~ d < @& a 2 3§

“od fo °N

10

29" (Il
Effect of 29" (H) and on N, of P,y

Figure 8.16

159

v v v r p—
(%]
Lz A
m-u//.././w RSN
s
[
[)
D
i
7~
T
S
e
[74]
-
&
o =]
ey
ey
0
A
I
(@)
9 8 8 8 =2 = 2 =
do y 01
g+ pung7-14 ®'do|

0.1

a0t
RP-ratio

0001

Effect of RP-ratioand ¥ fu/ 3 fe on P,,-LBand

Figure 8.17

e
3775
rum
2=
AN
21

0.01

RP-ratio

Depth-first

C =

N

ARV R TR TR R RN

'

=
>

" P -
n o [2 o n
n o~ -~ ~ a

—

g+ pungy-1y 9o

-]
<

800

100

-1

10

29" (H)
Effect of 2" (H) and on Pyy-LBand

Figure 8.18

160

* o = Lon IS DS oSS
2% (H) =100 0 I 5 E

0035

0030 F

0025

0020

0o

0010

0005 }

7|
Z
2

7
7l
%

0000

0.001 0,01
RP-ratio

Figure 8.19: Effect of RP-ratio and ¥ fix/ ¥ fer on MiniminiRy,q - MiniminiRg.p

MiniminiR in the case of breadth-first traversal. Some of results of these experiments

are reported in Figure 8.19 and Figure 8.20.

8.5 SOME SUGGESTIONS

A user applies the clustering scheme in two cases: to create a private object
base or to reorganize a private object base. The experiments provided clearer ideas
about how the various kinds of related parameters affect the average page access
number. Although the algorithms presented are efficient from the theoretical point of
view, based on the results of our experiments more time can be saved under certain
situations . The following are some suggestions about how to apply the clustering

scheme efficiently in both cases above.

161

. TL BL St YS DS SS
RP-ratio = 100 0 i
0035
a
Q)
£ 0.030 8 2 R
K= i
g o003 i i
‘g NG i
oo N EH N
X N & RN 3
S o020 NE \
N N
I 0015 | g g
S NE NE
S o00 N B N
E NE NE
‘E o005 f NE N
0000 | N B H ‘b\. B

2" (H)
Figure 8.20: Effect of 2" (H) and on MiniminiRyyq - MiniminiRg.,

8.5.1 Creating a Private Object Base

When a private object base is created for the first time, in order to apply the clus-
tering scheme, some parameters such as H, z"k(H), RP-ratio and relative frequencies
must be known in advance, and some parameters such as C, s, P? and L need to be
chosen by the user and the algorithms.

Since the results of the experiments have shown that the average page access
number under C= depth-first traversal is better than that under C = breadth-first
traversal, we can fix our choice of C on the depth-first traversal.

The principle for choosing s is to choose as large an s as possible. This is because
a larger s can cause a smaller RP-ratio. Form the experiments, when RP-ratio is

small, we find that

e The P,,-LBand is large and in most cases all the partition variables in Py
have a value “1” (see Figures 8.15, 8.16, 8.17 and 8.18);

162

e The choice of P, is independent of the changes of relative frequencies of prim-

itive transaction (see Figure 8.15 and Figure 8.17);

e For a given partition, the average page reference is not sensitive to the changes

of the value of L around the L, (see Figure 8.2).

Therefore, when the RP-ratio is small, we can assume the P,y is that consists of
all “1” ’s. Then only the value of L need to be changed to find a MiniR under this
partition. When the MiniR is found, at that L, call DEPTHFIRST to check whether
the partition is still optimal.

In the experiments, regardless of the other parameters, under the condition that

the z¢"(H) is not too large, we observed the following:

o If the RP-ratio is not too great, when L is variable in (0, H), an average page
access number curve shows only one minimum, i.e., the MiniR is the MiniminiR,,

except at the two ends of the L (see Figures 8.1, 8.2 and 8.3).

o If the RP-ration is great, when L is variable in (0, H), an average page access
number curve shows only one minimum and one maximum. Still, the MiniR is
the MiniminiR, except at the two ends of the L (see Figures 8.1, 8.6, 8.7 and

8.8).

These facts imply that in certain conditions, we may choose very few values of L. This
means we can save many invocations to the DEPTHFIRST. To utilize this advantage,
if the H is too long such that 29" (H) is too large, we can decompose the H into several
pieces to maintain the z9"(H) in an appropriate value.

163

8.5.2 Reorganizing a Private Object Base

A user may need to reorganize a private object base due to some parameters being
changed. Based on the experiment results, under many situations, we need not totally
destroy the existing private object base.

If the RP-ratio of the data during a given period H is widely varied, i.e., in
different intervals the RP-ratios may be very different, then we should treat these
intervals individually. For the intervals in which the RP-ratio is small, we can treat
it as a stable part. When the user access pattern changes, the stable part need not
to be reorganized.

When the length of period H increases or decreases, the 29" (H) may change cor-
respondingly. From the experiments, when the RP-ratio and user access pattern are

fixed, we have the following observations:

¢ P, and MiniminiR are independent with the changes of 2" (H) (see Figure 8.9

and Figure 8.15).
o The greater the z9°(H), the smaller the Loyt (see Figure 8.8).

Therefore, under the condition that the RP-ratio and user access pattern are fixed,
the effect of z¢* (H) on the average page access number can be adjusted by changing
L,p: which is equivalent to changing the number of hp-trees. This allows us to suggest
that if a user only wants to change the H and keep the previous access pattern, then
only the RP-ratio needs to be checked. If the user wants to increase the H and hold

the RP-ratio almost unchanged in the new time interval, then the existing part of

164

the corresponding private object base can be maintained as it was. The same P,y

— n’*'ﬂé‘

and L, can be used to cluster the newly added history records into a set of new +

~L

hp-trees. If the user wants H to be decreased, then ihe corresponding hp-trees are
removed. The rest of the hp-trees do not need any changes.

In practical applications, users may change their access patterns. The effect of
changing the access pattern on the average page access number can be viewed from

the following aspects:

o When the RP-ratio is not great, a change in user access pattern does not affect
the P, However, the L, and MaxminiR/MiniminiR vary greatly (see Figures

8.11, 8.12, 8.13 and 8.15).

e When the RP-ratio is great, the P,, needs to change. However, the Lp’s
of different access patterns are very close. Also the MaxminiR/MiniminiR’s

of different access patterns greatly decrease their differences (see Figures 8.11,

8.12, 8.13, 8.14, 8.15 and 8.16).

e When the RP-ratio is great, for a given partition, different user access pattern

changes do not affect the value of the L, (see Figure 8.4".

Based on these facts, we suggest that if a user does not often change the access
pattern and the RP-ratio is great, then when the user access pattern temporally
changes, it may not be necessary to reorganize the private object base because the

performance may aot greatly decrease.

165

Chapter 9

CONCLUSIONS AND FUTURE
DIRECTIONS

The applicability of the object model to a large number of applications requires the
ability to model general temporal relationships between objects. Traditional object
models lack temporal modeling constructs. They can only capture specific case of
object evolution, e.g. versioning. The work in this dissertation represents an effort
to overcome the deficiency in the aspect of the traditional object mndels.

A dynamic state machine model was developed to capture general temporal re-
lationships between objects. In the dynamic state machine model, the whole life of
an entity in the real world (called a temporal object) was modeled by a multitype
composite machine consisting of a set of primary machines, each of which modeled
a partial history of the tempor:1 object when it was associated with an environment
that was described by a type-version. Dynamic multityping, dynamic reference, and
dynamic extension mechanisms support basic necessities of modeling changes in ob-
jects. Behavior-orientation style was adopted. The history of an object was captured

by event sequence. The behavior constraints were an important construct of temporal

e T TR

S Ve A

|

modeling. Three time notions, i.e., commit time, effective time and observation time,
permitted us to capture different time semantics needed in databases.

By extending the linear temporal logic developed by Z. Manna and A. Pnueli to
contain the temporal operators of past time, a dynamic state logic (DSL) and its proof
system were developed. By using the dynamic state machines as the models of this
logic language, behavior constraints on temporal objects can be specified naturally
and precisely. The proof system of the DSL made it possible for us to search a
proof or derive the given requirements or the expected properties from the behavior
constraints defined in type-versions. A set of algorithms were presented, which could
efficiently check whether a TOODB satisfies behavior constraints specified by the
certain class of temporal formulas of DSL.

Among the implementation issues such as memory management, concurrency con-
trol, constraints maintenance, and recovery, we concentrated on the memory man-
agement. A paged virtual memory management system of a TOODB was developed,
which consists ~f a two-level storage on the secondary storage and a scheme for clus-
tering temporal objects. Unlike most existing design methodology, our design of
memory management also concerned possible user access patterns rather than only
the features of data organization. An analysis model is developed for the purpose
of finding the optimal design. Based on the analyses, a set of efficient algorithms
to optimize related parameters were designed. By changing the values of the related
parameters of the analysis model, a series of experiments was carried out, describing

the experimental results is helpful in understanding the characteristics of temporal

167

clustering. Based on the experiments results, suggestions were made for efficiently
applying the temporal clustering in practical applications.

Future research will mainly have at least four directions:

o Working on other implementation issues, e.g. transaction management, high-

level data management etc.

o Prototyping our data model and algorithms in real world object-oriented DBMS

products.

o Extending the DSL with additional inference rules or efficient decision proce-

dures.

¢ Studying an appropriate way to merge the object-oriented database and the

deductive database.

168

Bibliography

[At&5]

[BKS85]

[BKKKS7]

[B+87]

[BKKMSZ86]

Atwood, T. M., “An Object-oriented DBMS for Design Support Ap-
plications ", Proc. IEEE COMPINT’85, Montreal, Canada, October

1985, pp. 299-307

Batory, E. and Kim, W., “ Modeling Concepts for VLSI CAD objects”,

ACM Trans. on Database Systems 10 (1985), pp. 322-346.

Banerjee, J., Kim, W., Kim, H. J., and Korth H.F., * Sementics and
Implementation of Schema Evolution in Object-Oriented Databases”,

Proc. ACM SIGMOD Conference, (1987), pp. 311-322.

Banerjee, J. et al, “ Data Model Issues for Object-Oriented Applica-
tions”, ACM Transactions on Office Information Systems, Vol. 5, No.1,

January 1987, pp. 3-26.

Bobrow, D.G., Kahn, K., Kiczalas, G., Masinter, L., Stefik, M. and
Zdybel, F., “Common-LOOPS: Merging Lisp and Object-oriented Pro-
gramming”, Proc. ACM OOPSLA’86, Portland, OR, Sept.1986, pp.

17-29

169

[CDRSS89]

[CK89]

[CM84]

[Co87)

[C+73]

[CWe3)

[Dis6]

Carey, M. J., DeWitt, D. J., Richardson,J. E. and Shekita, E.J., “Stor-
age Management for Objects in EXODUS”, in Object-Oriented Con-
cepts, Database, and Applications, edited by Won Kim and Frederick

H. Lochovsky, ACM Press, 1989, pp. 341-369.

Chang, E. E. and Katz, R. H., “Exploiting Inheritance and Structure

Semantics for Effective Clustering and Buffering in an Object-Oriented

DBMS", Proc. of ACM SIGMOD’89, pp. 348-357.

Copeland, G. and Maier, D., “Making Smalltalk a Database System”,
Proc. of the ACM SIGMOD Intl. Conf. on Management of Data,

(1984), pp. 316-325.

Cox, B., Object-Oriented Programming: An Evolutionary Approach,

Addison-Wesley, Reading, MA, 1987
Cohen, A. M. et al, Numerical Analysis, McGRAW-HILL, 1973.

Clifford, J. and Warren, D.S., “Formal Semantics for Time in
Databases”, ACM Trans. on Database Systems, 8(2) (1983), pp. 214-

254.

Dittrich, R. K, “Object-Oriented Database Systems: The Notion and
the Issues”, Proc. of the Intl. Workshop on object-Oriented Database

Systems, (1986), pp. 2-6.

170

[EE87]

[EW90]

[F-+87]

[F+89]

[GR83]

[Go90]

[GOQS8Y)]

Ege, A. and Ellis, C. A., “Design and Implementation of GORDION,
an Object Base Management System”, Proc. of IEEE 1987 Interna-

tional Conference on Data Engineering, 1987 pp. 226-234.

Elmasri, R. and Wuu, G.T.J., “The Time Index: An Access Tructure

For Temporal Data”, to appear in the Proc. of VLDB’90.

Fishman, D. H. et al, “Iris: An Object-Oriented Database Manage-
ment System”, ACM Transactions on Office Information Systems 5(1),

January 1987.

Fishman, D. H. et al, “Overview of the Iris DBMS”, in Object-Oriented
Concepts, Databases, and Applications ACM Press, New York, N.Y.,

1989.

Goldberg, A. and Robson, D., Smalltalk-80: The Language and its

Implementation Addison Wesley, Reading, MA, 1983

Gopinath,B., private communication, 1990.

Goyal, P., Okada, M., Qu, Y. Z. and Sadri, F., “Temporal Object-
Oriented Database: (I) Data Model and Formalism”, Proc. of Ad-
vanced Database System Symposium’89 Kyoto, Japan, Dec. 1989,

pp.121-128

171

[HZ87)

[KCs8s]

[KCBs6)

{Lag6]

[LHSS)

(L-+82]

[Me88)

Hornick, M.F. and Zdonik, S. B., “A Shared, Segmented Memory Sys-
tem for an Object-Oriented Database”, ACM Transactions on Office

Information Systems, Vol. 5, No.1, January 1987, pp. 70-95.

Kim, W. and Chou H. T., “Versions of Schema for Object-Oriented

Databases”, Proc. of the 14th VLDB Conference, (1988), pp. 148-159.

Katz, R., Chang, E. and Bhateja, R., “Version Modeling Concepts for
Computer-Aided Design databases”, Proc. ACM SIGMOD Conference

on Management of Data (1986) pp. 379-386.

Landis, G. S., “Design Evolution and History in an Object-Oriented
CAD/CAM Database”, Proc. IEEE Computer Society Compcon

Spring’86 pp. 297-303.

Liu, L. and Horowitz, E. , “Object Database Support for a Software
Project Management Environment”,Proc. ACM SIGSOFT/SIGPLAN
Software Engineering Symposium on Practical Software Development

Environments (1988) pp. 85-96.

Li, W.Z. et al Operation Research, Chinghua University Press, PRC,

1982.

Meyer, B., Object-oriented Software Construction, Prentice-Hall In-

ternational (U.K.), 1988

172

[MPS83)

[MSPS86]

[PPT8S

[Pr85)

[PS87]

[SA86]

[Sn86]

Manna, Z. and Pnueli, A., “Verification of Concurrent Programs: A
Temporal Proof System”, in Foundations of Computer Science IV Dis-
tributed System: Part 2, Semantics and Logic (Bakker, J.W. and

Leeuwen, J.V. eds) Mathematics Centrurn, Amsterdam, 1983

Maier,D., Stein,J. and Purdy,A., “Development of an Object-Oriented

DB”, Technical ReportCS/E-86-005, April, 1986

Penedo, M. H., Ploedereder, E. and Thomas, I., “Object w..nage-
ment Issues for Software Engineering Environments - Workshop Re-
port”,Proc. ACM SIGSOFT/SIGPLAN Software Engineering Sympo-
sium on Practical Software Development Environments (1988) pp. 226-

234.

Proc. of the IFIP WG8.1 Working Conference on Technical and Formal
Aspects of Information Systems, Barcelona, Spain, April 1985, pp. 67-

76.

Penney, D. J. and Stein, J., “Class Modification in the GemStone

Object-Oriented DBMS ", OOPSLA 87 Proc. pp. 111-117.

Snodgrass, R. and Ahn, I., “Temporal Databases”, Computer 19(9)

(1986), pp. 35-42.

Snodgrass, R., “Research Concerning Time in Databases Projects

Summaries ", SIGMOD RECORD 15(4) (1986).

173

[St84] Stamos, J.W., “Static Grouping of Small Objects to Enhance Perfor-
mance of a Paged Virtual Memory”, ACM TOCS, Vol 2, No2, May

1984, pp. 155-180

[SZ86) Skarra, A. H. and Zdonik, S. B., “The Management of Changing Types

in an Object-Oriented Database”, OOPSLA’86 Proc. pp. 483-495.

[ZABCKMS86] Zaniolo, C., Ait-Kaci, H., Beach, D., Cammarata, S., Kerscherg, L.
and Maier, D., “Object-Oriented Database Systems and Knowledge

Systems”,in Expert Database Systems, (Kerschberg, L. ed., Benjamin

Cumming, (1986).

[2d86] Zdonik, S. B., “Version Management in an Object-Oriented Database™,

Proc. of IFIP 2.4 Workshop on Advanced Programming Environ-

ments’86

174

Appendix A

THEOREMS AND DERIVED
INFERENCE RULES OF DSL

Let w,w;,w,,... be any formulas unless otherwise specified.

Theorems For Past Time

(APTI)
(APT2)
(APT3)
(APT4)
(APT5)
(APT6)
(APT?)
(APTS)

(APT9)

Faw — Vo
Fo Bw— Vw

Fi Sw o ZZw

Fi Vw & VVw

i (V) o (~Zw)

Fa E(w = wa) = (Vuwy = Vw,)
Fa E(wi A w;) & (Zw;) A (Ew,)
Fa V(w V) & (Vw,) V (Vw,)

Fa (SEwn VEw:) = Z(w; V wy)

(APT10) F; V(wy Awg) = (Vwy A Vw,)

175

(APTI1)
(APTI12)
(APT13)
(APT14)
(APT15)
(APT16)
(APT17)
(APTI8)
(APT19)
(APT20)
(APT21)
(APT22)
(APT23)
(APT24)
(APT25)
(APT26)
(APT27)
(APT28)
(APT29)
(APT30)
(APT31)

(APT32)

Fz (Ew A Vwg) = V(wy Awg)

Fa ©(w Awy) & (Bw A Swy)

Fz © (w1 Vw,) & (Ow VOuw,)

Fz ©(w = wy) & (Bw; — Swy)

Fa ©(w; & w) & (Ow; & Owy)

Fo OSweZow

Fo ©Vw e Veow

bz EVEw & VEw

bz VEVW & EVw

Fi Sw o (wASZw)

Fz Vw & (wVOVw)

Fz (w A V-w) = V(wAS~w)

Fa (w)Sw & Vw

Fz 2wy A Vw, = w1 Sw;

Fa (w1 Sws)Sw, & (w1 Sws)

ka2 wy Swy « w1 S(wi1Sws)

Fi (Zw; A wpSws) — (wi A wz)S(wy A ws)
ki (Bw:)S(Bws) « O(wiSws)

b (wy A wySws) « (wiSws) A (w2Sws)
Fa wyS(w; V ws) « (wiSwz) V (w1 Sws)
Fa (Vwy Vwg) = [(owr)Sw2 V (~ws)Swn]

*‘;, wlS(wg A 'LU3) — (w,Swg) A (w15w3)

176

(APT33)
(APT34)
(APT35)
(APT36)
(APT37)
(APT38)
(APT39)
(APT40)
(APT41)
(APT42)
(APT43)
(APT44)
(APT45)
(APT46)
(APT47)

(APT48)

Fa (w1Sws V wSw3) — (w1 V w3)Sw;
bz (wy = wz)Swz — (wSw; — wSw;)
Fa wy Swy A (~wz)Swz — w;Sws

Fa w1 S(wz A wy) — (w,Sw;)Sw;

Fi (w1 Sw;y)Sw; — (wy V wy)Sws

Fa w1 S(w;Sws) — (w1 V wz)Swsy

Fi (Vv:6w) o o(Vv:w)

Fi (Bv:6w) « 6(Fv: w)

Fa (Vo: Zw) & E(Vv: w)

Fi (3v:Vw) & V(3v: w)

Fa(Fv:Zw) = Z(3v: w)

Fa V(Yo :w) = (Vv: V)

Fa (Yo @ w)S(Vo : wp) = (Vo @ wySwy)
Fa (3v: wiSwy) = (Fv: wy)S(3v : wy)
Fi E(w; V wz) « (w; V Zw,), where w; contains no local variables.

Fa V(wr A w;) « (w; A Vw,), where w; contains no local variables.

177

Drived Inference Rules

(APR1) © Insertion Rule

(APR2) V Insertion Rule

(APR3) == Rule

Fazw & w,

I';, Ewl > E‘U)2
(APR4) VV Rule

I‘,j w; & Uy

l‘ﬂ le > ng
(APR5) 66 Rule

Fow & w

Fa O w & Ow;
(APR6) Computational Induction Rule

I-,-,w—»ew

Faw—Sw

178

(APRT) Consequence Rules

(2) £ Q Rule

Faw — w,
|‘,-, Wy — Ewa

|"‘-‘ W3 — Wy

"‘-, w — EtO4

(b) V Q Rule
"'ﬂ wy; — Wy
F‘; Wy — Vwa
"'; W3 — Wy
Faw — Vuy
(c) © Q Rule

Faw — w;
}‘;‘ wy; — Qw;

",—, W3 — Wy

"‘"‘ w — Bw,

179

(APR8) Concatenation Rules

(a) = C Rule
",z w; ~ Ewg

"',-, Wy — Ews

ki wy = =w;
(b) V C Rule
Fz w; —= Vw,

"‘-‘ Wy — VtDa

}';, w — —sz
(APR9) Right Since Introduction Rule
l";, w; — Vw3

*‘ﬁ w; — [ID3 Vv (102 A ewl)]

l";, w; — (wz.S'wa)
(APR10) Left Since Introduction Rule

|-,-,[w3 Y (‘w2 A ew1)] — w,;

Fa (weSws) — wy
(APR11) SS Rule
l";, wy < Wy

|‘,§ W3 = Wy

Fi wSws & wSwy

180

(APR12) S Insertion Rule

l“; Wwa

|‘;, wISwg

(APR13) S Concatenation Rule

ki w — wySws

"';, w3 — wgSw4

l‘;‘ w — wgSw4

(APR14) Right After Introduction Rule

Fowy — ~waA(wp V Ow,)

f‘p w; — (‘sz‘w;;)

(APR15) Left After Introduction Rule

Faw — —~ws

Fa w A ~w, = Ow

l“" w, — (ngwa)

181

