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y "ABSTRACT

hd The Analysis of the

Rikitake Two-Disc Dynaanoc System

,

' ¢

N Franco Carlacci (
i .

Few problems {n the area of mathematicat dynamics lend
themselves well to analytical study. Consequently, the
researcher 1is forced to adopt‘numerical techniques 1in order
50 acquire an understanding of the behaviour of these
systems., The computer has proved an-' indispensible ally in
generating numerical approximations to the actual physical
behavioﬁr\of the modeled system.

This thesis directs attention to a class of differential
equations endemic to Dynamo Theory. By méking use of

currently available mathematical techniques implemented ¥Via

both existing and newly created software we attempt to

.
A2

explore the dynamical behaviour of thesg equations known as
the Rikitake equations. Our analysis centers mainly on those
parameter regions in which the system undergoes transitions
from periodicity to chaos and vice-versa. In our final
analysis we postulate possible mechanisms which wmay be
responsible for these changes. The existence of a strange
attractor for certain parameter reglons is algo cons{dered

based on the results of the computer simulations.
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INTRODUCTION

g\ k) . ‘ o

From time immemorable, man has been trying to understand
the universe around him. His most versatile toolih‘ﬁ been and
continues to be the almost limitless conceptual power of
mathematics. Through mathematics he has 5een able to analyge
and simulate the dynamics of most pée;omena‘that take place
around him. The ra;her esoteric nature of this branch of
science has resulted in the myth that any existing ngtural
phenomena can by be precisely explained via the medium d?
mathematical research., However, mathematical research in the
last few decades has shown ‘that sometimes things are not -:as
simple as they may seemn.

The first inklings of a problem cropped up 1in the early
1900°s when Henr; Poincaré, the famous french‘mathématician,
attempted to prove the stability of the solar systen. In his ¢
pared down 3 body system, he»noticed‘that his results were
not orderly, in fact they appeared chaotic.

In 1956, a first attempt at éxpl%ining the chaotic be-
haviour took shape when topologist SteQén Smale formultated
his mathematical "h;rseshoe" [40]. His work was based o; the
works of N. Levison et al. and who in turn had based their
work on experimental-r?sults obtained by B. van der Pol in
1927. Smale’s horseshoe, as one mathematician put it, 1is the

mathematical analogue of a taffy-making machine. Just as a

taffy-making machine can pull aand stretch taffy, the




4

11

v

horseshoe can pull and stretch solutions in an unpredictable

fashion. This-was' an important contribution since a mechanism .

now ‘existed ~thfough which chaotic behaviogr- in dynamical
systems 'could be explained.

Further evidence jor4chaotic behaviour in other physical’
;ystems came in 1960 when' Edward Lorenz attempted to
‘"mathematically model the }arth’s atmosphere [28]. His éesults

demons;rateq that theoretically, supposedly simple equations
could have very subtle,complex and chaotic dynamics. The
-impact of his study was:. such that the”eqh;tions ﬁe'formulated
then now bear his name. . , .

In the last few years,. there has been an increasing

'

trend towards 'eiplaining and %nderstanding this form of

. chaotic behaviour. Part of the ré%pqﬁ31biliﬁy for initiating

tﬁ;s "trend cén be étcributéd to man’s latest in;ellectual'
amplification device, mainly theb computers This marvelqus
device -has put within wman’'s grésp the{.gbility to stud;
previously impossible ';rohléms. Problgms. é&ch as' modelling
"three dimégsional todels ”9f ,ait flow dynaqics around

v

a'frplanes are today being handled by these éalculating

colossuses. Ihe é%proach has been two-tiered. There are the

3

theoreticians, such as Smale, who have attempted explanations
. p !

based solely on the use of mathematical bonstructs; whereas,

the experimentalists have conscripted the use of computers in

order to ‘exercise their gimulations which are an extension of

\

these same mathematical models.

It is the object of this thesis to present and study a

i N ‘
2 ‘. . 2
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mathematical model which ~'describes, albeit crudely, a

probable mechanism ,résponsible for the earth’s magnetic

i
-

field. The conceptﬁél model and 1its aséociated mathematical
equat}ons are/} o%ﬁvhs the Rikitake gwo—disk dynamo system.
This model'/d;tés back before LorenZ’s modqi, having been
describad in’ a paper published in 1957 by Tsuneji
Rikitake f35). Tﬁe methods of study we.wil} use are diverse.

First we will describe several analytical studies as well as

-

reviewing other work that has proceeded the current study.

~

D) .
Furthermore, we will describe software which was developed to

aid in the numerical study of these equations. Many of the

algorithms used were based on previously defined mathematical
theories.

Chapter’l consists of background information necessary
to an undefstanding of the more theoretical sections of the
theéis. It contains several definitions of terms we will
encounter throughout the work. This chapter is not

mathematically complete, thus a fair bit of mathematical

1

sophistication is expected of the reader. WX

Chapter 2 'introduces many concepts extracted from Dynamo
Theory. This branch of the physical sciences concerns itself

with expléining and understanding the mechanism behind all

’

current-generating processes. 'This chapter also introduces
s

the Rikitake equations. The latter section serves as a

collection sof all analyqiéél results previously presented on

»

the Rikitake system. . ~
Chapter 3 introduces the theory and methods that underly

the core of our computer programs., Four methods used are :

%

~




z iv

\Poincaré sections, Liapounov exponents, Pober Spectral
Densities, and Lorenz maps each of which 1s presented as a
s
¥
brief, including a summary of how they are implemented.

Chapter &4 makes use of the techniques described 1in

v, . .
chapter three as the basis for an empirical study of the
. {

Rikitake system for a specific range of :the parameter values,
It also contains a description of the program configuration

which was set up to study the system.

W




CHAPTER 1

1

Basic Notions in the
Theory of y
Ordinary Differential Equations

Dynamical Systems o

"and Ergodic THeory

1.1 Differential Equations and Dynamical systemgs

The concept of a vector field, familiar to all studeats
of advanced calculus, plays a8 central role in defining what we
mean by. a system of differential equations. 1In fact,
dif}eréntial theory can show that the concept of a vector
field and that of a system of ordinary differential equations
are one and the same. In defining the vector field we will

avold any reference to tangent bundles and the like. Instead

we will make use of the definition found in Arnoldf{2].

Definition 1.1 ‘ . -

Let UCR"™ and suppose to every point uoau there 19§

associated a vector X(u,) originating from ugp. This defines a
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vector field X on U'specified by n differentiable functions

\

x:l:U-OR, i‘l,...,n.

The function X(u):U~R" isg C1 ( differentiable with
continuous derivative) and represents the velocity at the

point U The concept is 1ntuiiive1y simple. Imagine a fluid

0,
flowing in a space U. Now consider the velocity of the fluid
at a certain point u in that space U. ¥his velocity is given
by“the vector field X(u). Figure 1.1 fllustrates the concepf

of a vector field.

, N
/F—-——’

*

FIG. 1.4 A VECTOR FIELD X{u)

Now that we have the concept of vector field in hand, we

are ready to define what is meant by a differential equation.

1




Definition 1.2

Let UcR™ be an open set and let X be a vector field in

U. Then by the differential equation determined by the vector

ffela X 1s meant the equation

u'(t) = X(u(t)) 4 (1.1)
with u-u(tieU. '

The function u=u(t) 1s described as a vector-valued
function with the independent variable usually interpreted as
time. Equation (l.1) 1s referred to as a first order systenm
of ordinary differential equations. The térm ‘“first order’
reflects the order of the derivatives on the left-hand side
and 'ordina{&i is used to distinguish these equaéions from
partial differential equations. Observe that the vector field
X determines a unique differential equation. Since the
variable t does not explicitly appear in (1.1), the equation
1s said to be autonomous. The Rikitake system is an example
of such an ;utonomous system. This 1lack of explicitness on
the part of the independent variable introduces an element of
determinism in the system. That 1is the system has the sgame
solution regardless of tﬂe time at which the initial state is
observed. This is not true for non-autonomous systems.
Non-autonomous systems can also be stud&ed by converting them

to autonomous systems. A non-autonomous system of the form




w’(t) = X(u(t),t), (1.2)

can be put in autonomous form by substituting v(t)=t. The ngw

system, whose dimension now increases by one, is as follows:

°

| X(z(t)) = X(u.(t),V(t)l/; (1.3)
T
and -
2°(t) =fu’(t) (1.4)
\v"(t)

Equations of higher order can be reduced to a system of

4
«

first order differential by approprfate substitutions,

Consequently definition (1.2) encompasses many ordinary
dlfferentiél equations which may be of interest to us. We can
now move on to define the solution of.system (1.1) as well as

the flow associated with the vector field X(u).

3]

‘ pefinition 1.3

°

‘A solution of the system of differential equatidns .(l1.1)
1s a differentiable function $:1»U UcORn such that ; . -
¥
b (t) = X(§(t)) (1.5)
for all tel.

I3

e e . a0
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If we now make the assumption that the solution of (1.1)

has a value u, at t,, a<ty<b. Then b 18 said to satisfy the

initial condition

Q(to)-uo tgsR, ugel (1.6)

Y <

\ The fundamental local theorem of ordinary differential
v .
! equations guarantees that as long as X 1is C1 then given a

\

\point u. in U, there exists some a>) and a unique solution

0
W:(—a.ay.u satisfying the initial condition (l1.6). Thus we

will usually write the value of a solution ? at a time t ‘

satisfying (1.6) as §t(u0) where ¢t (ug) = ;.
0

Definition 1.4

By a local flow determined by the vector field X in a

neighborhood of u,eU, we mean a triple(I,U,,g) consisting of

0
some interval 1 = {teR:|t|<¢} of the real ¢t axis, a

neighborhood U0 of u, and a mapping g:IXUdﬂJsuch that

1

1) for fixed tel the mapping 'gt:Ud0 defined by

gt = g(t,u) 18 a diffeomorphism

2) for fixed u,eU, the mapping $:I+U defined by

§(t)\8(t.u6) 1s a solution of(l1.1) with 1initial

condiaion *(0) - uo.

\

4
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3) the group‘proéerty gt+s(u) = gt(gs(u)) holds for
all u,s,t such that the R.,H.S. is defined where for
every point Ueqo there exlsts a neighborhood U,
utUCUO and a number &>0 quh that the R.H.S.  is

.
" U.

defined for |[s{<§,ltl<& and all 4y

We pause here for a moment to comment on some yof the
more salient points Jin the definition, The flow 1s local

because we consider only an interval I and not the whole

space: R, Flows 1n which I=R are known as global flows the

function §(t) 1is usually called a trajectory, solution curve

or oFbit in the flow g. The group property (3) is a special
casg' of the Chapman-Kolmogorov law applied to the
time-independent flow g. This law 1is used to express
determinism in physical systems. Determinism in this context

means that given a certain 1Initial condition u_. and the flow

0

g the orbit originating from that point 1is completely
1

determined. Note that we usually speak of g 1itself being the

flow rather than the triple (I,Uo,g). By diffeomorphiam, we

mean a differentiable function with a differentiable inverse.

A homeomorphism, on the other hand, 1is simply a diffeo-

morphism in which the function and {ts 1Inverse are only

continuous.

The open set U plays such a central role in many of the
definitions presented so far that 1t has acquired a name. It

is referred to as the phase space or state space, and a point




e
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in it is called a phase point or state, In a physical system

the phase space 1s the set of all configurations that the

physical system can take. A rule telling us how these states

or configurations change is called a dynamical system.

A

Formally a dynamical system on the ‘space\Rn can.- be
dy y a

}

—

defined as a map §:6xR™R" such th%t for all ueR"™ and all

8,t6eG, (G is a topological group)

1) 8(s+t,u)= (s,5(t,u))

2) S(O,UO)-uo

It should be noted that & s a diffeomorphism. If

G-Z,the set. of all integers, we call & a discrete dynamical

system. Unless otherwise mentioned we will use G=R throughout
-
this thesis. A dynamical system can give rise to a vector

field X by defining:

X(u) = 6'(t,u)t_

v

0 uetl (1.7)
1

Thus X(u) represents a tafigent vector to the curve t»8(t,u)

2
[

at t=0, If we write the R.H.S. as u’(t), we recover our
original system (l1.1). Note that 1if global flows where
defined.ove; all of R™, we would refer to them as dynamical
systems. Some authors use the .words ’‘dynamical system’ and
‘flow’ synonymously,

Having conaidered' differential equations, and thelr

t
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agsoclated flow and dynamical systems, we now consider the
special types of solution that arise from equation (1.1).
The simplest solution to (1.1) is the one at which the vector

field vanishes. Such a solution is known as a steady state

solution or fixed point. It is often referred to as a fixed

polint because a trajectory originating at that point in the
phase sgpace will remain there for eternity.

Another type of solution is the periodic solution. ‘A
solution u(t) to (1.1) 1is said to be periodic if fqr all 1iez
1#0, u(t)=u(t+ip). The number p is sald to be the period of
the solution u., A study of these solutions is of fundamental

importance in the theory of ordinary differential equations.

1.2 Stability of solutions

An important <concept 1n the theory of differential
equations is the notion of stability of a solution. Since
mathematical models are only idealizations of real physical
systems, the solutions to the mathematical model may only be

approximations to the actual one. Consequently it is

necessary that we unders tand what happens to these’

approximate solutions. Two especlally important questions to

consider include the following : do the approximate solutions’

stay near the actual solution? do they approach the actual
solution or do they move away? These questions can be

answered by considering the stability of the actual solution.




Definftion 1.5 . ' -

A fixed point solution u of equation (l.1) is said to be
stable (in a Liapounov sense) if given €50, there exists a

8)0'(depend1ng only on €) such that for every u, for which

0
!

|uo—u|<6, the solution ¢ of (1.1) with initial condition

¢(0)'uo can be extended for all t>0 and satisfies the 1in-

equality I¢(t)-u0(c)|<e for all t>0n.

Though the definition may appear confusing at first, a

study of figure 1.2 will hopefully clear up any confusion.

Definition 1.6

A fixed point solution u is - -said to be asymptotically

stable if it meets the requirement that it be stable and that
l1im &(t) = u .See figure 1.3. If the solution 1s not stable

it is labelled wunstable.

Definition 1.7

Let u(t) be a nontrivial( p %0) periodic solution of

(1.1). We say that u(t) is asymptotically stable or a limit

-~

cycle if for every open set Ulcu with u(t)cUl, there 1s an

open set U2, u(t)cuzcul such thatg(t,Uz)-ulijuzg(t,u)cU1 for

all t>0 and

>

Tt T v




FIG. 1.2 LIAPOUNOV STABILITY

s ..

FIG. 1.3 ASYMPTOTICALLY STABLE SOLUTION

¢ :
lim d(g(t,v),u(t)) = 0 vel

Here d(x,u(t)) is the minimum distance from x to the solution

u(t). The above definitions can be generalized to sets other

"

A

,
3 o
(4 ‘ .

o
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than - steady-state 'solutions and ' periodic’ solutions by

"incorporating the following additional definitions.

v

Definition 1.8 . ‘

A set A 1s said to be positively invariant for system

) LS N 4
(1.1) if forucA, $(t) is defined and remains in A £3T t>0. A
set A in the domain U of (i.l) is said to be invariant if for
every u <A, §(t) is defined and in A for all teR.

P

Steady~-state and periodic solutioqﬁ form invariant sets with

o F, . ’

respect to g(t,u).

Definition 1.9

. for every neighborhood U1 of A, there ié,a neighborhood U

A p&éitively invariant se} A¢U 1is sald to be stable 1f

)

2
such that er2 implies g(t,x)aU1 for all t>0.

N

Definition 1,10

1

»

¢ 4

A positively invariant set AcU -is said to be #an.
attractor 1f there 1s a neighborhood U1 of A such that‘xtUl
implies §(t,x)eA as F>‘- If U1=U then A Is called a glo?ai
attractor,f If A is stable and an attractor then A 1is saild

to asymptotically stable. If A 1s both a global attraétor and

stable then A is said to be globally asymtotically stable.

-
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Some aut;hoxi.'ihl [18] » have ,imposed the condition that A

possess -a dense orbit in 'order for it to be called an

’ o
attractor. g&e set we refer to as an attractor is called an

attracting set by the¥e individuals. The term
‘strange attractor’ will be used to indicate an attractor
that is neither an asymptotically stable fixed point nor a

limit cycle.

1.3 Bifyrcations and bifurcation diagrams

.

4 .
In the study of most. non-linear’' systems we consider

systens which depend on one or mofé parameters,which have

some physdcal interpretatidh. For exaﬁpi€,in the Rikitake

13

system we will constder 2 free parameters o and K. K is.

related to the difference in angular velocities between the
two disk dinamd&, whereas the parameter @ ,is the ratio of.

. - .
stored mechanical energy to s!ored electromagnetic energy.
. ) )

The numerical 1analy§is of these pqrameter—dependent’

-

s'ystems of ordinary differential equations has expanded

tremendously in the last few yéars. Software such as AUTO
{11] have made the study - of such sysglms_ extremely'
stralghtforward and have alleviated ghe preréquisite that the
analyst have &n -extensive backéround "in mathematics.y The

’
basic purpose of this software 1is to exami%e the solutions of

the gystem as one or more parameters 1is varied. For certain

o

7
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specific values of the barameters » the 'solutions undergd a

dramatic change in their baslc structure.

\

Preparing a graph in which the abcissa represents the
parameter that is currently being varied and the ordinate is
some norm of the solution u(t) we will get what 1s known as a

bifurcation- diagram. In such a diagram, each paradeter and

its corresponding soluti&n norm form a point. Any point at

which the solution undefgoes structural changes 1is called a

'

bifurcation point because plctorially new brdnches eminate
- ‘ s

from it . The number of branches which originate from that
point depend on 'the properties, Eflcertain spaces- at the givén

o

point. One can easily conclude the importa;ce (of sech
diagrams 1n the global analysis of.- the solution space of
b.D.E. Such diagrams can fsummarize in 2 very compéct form the
globai dynamics\of a higkly complex system, "

v .

1.4 Stability of fixed point solution

r~

The definitions introduced in section 1.2 are

theoretical 1in nature and offer 1little pragmatic value 1in

"determining stabilities of a solution. This section will

, : 1
present well established criteria by which the stability .of

fixed point solutions can Dbe determined mechanically.
Although not "all of these can be implemented on a computer,

they seem more ugseful than mere technical definition.

Consider the system




u’ = X)‘(u) ucR?)\cR. ‘ (1.8)

[y

In this system the subécript A is the parameter that 1is beihg

changed. For simplicity we assume that only one parameter 1is

T ' *
varied, the others will remain fixed. Let u be a

steady-state solution of this system. Let us perturb this.

solution a 1little. That 1s , we <consider the function '

i(t)nu(t)-u* with U(O)-U*=€o. This function represents the
disltance between the steady state and some other soluti&n at
| (_,xfge t. Since we are given that the original distance or
, perturbation at time O "38‘€0, we would expect that this
function remain’ bounded or more strongly, that it approach u*
as t goes to 1?figity. Thesg would-cotresgﬂnd to the no;ions

» of stability and asymptotic stability, respectively.

Let us take the expression for §(t) and solve for u(t).
: .

I1f we plaée this eiprgssion for u(t) in (1.8) we get
. ) -

<

g (e)=x (& (t)+u™), L (1.9)

\

Further more using Taylor’s theorem on tﬁe R.H.S.; truncating
all but the linear terms while reﬁembering that X (;*)-0, we
get tha; ﬁ(t) approximately satisfies th; the following
differential equation:
O B
' HOER NI . (1.10)
. 2(0) = ﬁo, ' . .

\
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where X&(u*) = J 1s the jacobian of the vector field

>

N . .
evaluated at u . System (1.10) describes a system of lineaﬁ//

differential equations with constant coefficlients, it has as

,/\\ solution
- . () = eBF C L (1.11)
where efJ 1is the exponential of J [20]. Also by assuming that
all eigenvalues z:L of J are simple we can diagonalize etJ and
)

reduce (1.11) to a system of the form

gl(t) - ezlt(?

1 | 2 - z,ty0

] | f‘ (t) ‘e 2 Ez
* —_ . * . (1012)

r gn(t) - e?ntig

Thus 1if Re(zi)< 0 , the vector-valued error function i (t)
will approach 0 as t»w, Thus we can now present the following

theorem.

»

Theorem 1.1 <

°

Let UcCR®™ be an open set. lethxﬁﬁ):U)R“ be ¢! and let

,X{u*)- 0. If all eigenvalueé of X%Sg*) are simple and have

¢ ..

Ll
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negative real part, then u* is asymptotically stable.
\

Certain conditions in this theorem can be relaxed such
as the requirement fo; simplicity. One may/ ask how {t is
possible that from knowledge about thé solutions of linear
system (1.10) we can infer conclusions about the solutions of
(1.8)? The answer to this can be found in the theorem of
Hartman and Grobman [23] which states that .1f the eigenvalues
of J are not zero or purgly imaginary, then there exists a
homeomorphiem h defined in some neighborhood U of u* in R"
taking solutions of (1.8) to those of (1.10). Sternberg (23]
has shown that h may even be extended to a diffeomorphism, if
certain conditions -are imposed on the eligenvalues of .the

jacobian, This derivation and theorem have their analogue in

discrete dynamical systems.

Let us consider a discrete dynamical systenm

)

. o= 6(u )= Glu,n) ‘ (1.13)

* ,
where G is some nonlinear function and u is some fixed point.
) *
of it 1.e. G(u )= u*. By performing the same steps as in the
- .
continuous case, we note that the stabllity of u depends on

3

the linear systém

*
%er - Aﬁn where A=G’(u ) 8(1.14)




. S -7 - ,
where in - A...Aﬁo. Thus we rewrite (1.14) as o /
n+1
| O B (115)
y .
’ We want that ;n+1>0 or equivalently that ||€n+lll, for some

norm, ‘g0 to zero as t>®, We can take norms of both sides in

(1.15) as follows

. . n+1l
\ ‘ . N 11 = 118" %000
‘. / < Ha™he,  el1g, 0 L
: L
Thus 1£ |JA||< 1, then the R.H.S. will go to O. ‘ ‘

Theorem 1.1 abeve <can actually be derived from the

concept of a Liapounov function. This concept introduced in

1892“by A.M. Liapounov in his doctoral thesis, generalizes
the fact that for an asymptotically stable fixed point
solution u*, there exists some norm ||e|| in R" such that
Ilu(t)—g*il decreases for golutions near u*. We can state the
theorem which summarizes Liapounov’s conclusions as follows:

~

Theorem 1.2

Let u*eU 'be a fixed point solution of (1.8) and let

L:W>R be a continuous function defined on a neighborhood WcU

*

§f u , differentiable on w—{u*}, such that

(a) L(u")=0 and L(u)>0 1f upu®

S~




- 18 -
(b) L‘<0 in W-{u*)

[
Then u, ig stable. Furthermore if

(¢) L‘C0 tn W-{u™}

* .
then u 1s asymptotically stable.

The function L 1s called a Liapounov function for u*, and 1s

a strict Liapounov function 1f it also satisfies the

condition set out in (c).

L}
The Liapounov method does not require one to solve the

differential equation consequently 1t 1is also known as

Liapounov’s Direct Method. Finding an appropriate function

however may require ingenuity. In some mechanical systems,
the energy function 1s used as a Liapounov funct®on. In this

thesis, both the eligenvalue method and Liapounov Direct

3

e

Mgthod, will be applied to the Rikitake system.

1.5 Stability of periodic solutions

The concept of stability of a periodic solution {is

.,

intimately connected to the concept of a Pointaré map. This

map is introduced in ‘the following theorem: ]

Theorem 1.3

Let g=g(t,u) be the flow associated with the vector

.
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——

“ ," \\ N
field X of (1.8). let §(t) = g(t,u,) be a nontrivial periodic
-

_.solution satisfying $(0) = ujy. Also, let Il be a hyperplane
orthogonal to &(t) at uotuoﬁﬁ (see figure 1.4). Then there
“gxists a unique ¢! real-valued function 7= 7(u) for small u

N ' such.that1(ua-'e and g(t,u)ell when t=7T(u) i.e.

g(r(u) .u)-X(uo) = 0

For small enough U0 the map .

Tig(r(u),u) = v u,vell ] | (1.16)

*

is a map from one neighborhood of U0 on [l into another and i& -

called the Poincaré map after Henri Poincaré.

glrtu),u)

“\~FIG. 1.4 POINCARE MAP

; . This map reduces the study of ‘the stability of a

3
4
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periodic solution -of a differential equation to that of
stability of a fixed point‘of a discréﬁe dynamical ;ystem.
From the previous diséussion, we know that a fixed Point so-
lution u* of a digcreteQAynamical systém ‘1s asymptotically
stable 1f~the elgenvalues of‘the jacobian evaluated at u*

u

have moduli(l, Vo

-

Theorem 1.4 ' : ‘ o

Let UCH™ be open-and X)‘(u):U>Rn be C1 and let} § be a
periodic solution with period p. If the linear map

&

RP>RP o (1.17)

Y

» . . g (t’uo)c-e:

3

¢ o “

’haé n-1 eigénvalues with moduli less than 1: thénvé(t) is

a

"asymptotically stable.

However one polnt in this definition requireé
¢ .
clarification, more specifically why are only n-1 eigenvalues.

needed? In order to answer the question a brief review’ of

Floquet theory[18],[20] is required.

satisfies the system

The matrix H(t,uo) = %ﬁ(t,u)

u-uo

. H’(t.uo) - M*H(t,uo)“ H(O,uq)u- 1 (1.18)

4

Th§ matrix M = Xi%(§(t)) is periodic with period P. One can

30
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showdthabusy&tem (1.18) has solution
»
Dt

e H(t,u ) = K(£)eP® where R(t) = R(Ce+p) © (1.19)

and D 1sva constant matrix., Lf t;e and X(0) = K(p) =1

H(g,uy) = 0P : (1.20)

" }
’

‘The eigenvalues of matrix H(e,uo) are called the

characteristic roots or Floquet multipliers of (t) and’'those

v

of D are called the characteristic exponents of ¢&(t). By-

using a lemma found in Hartman [20] we can show that a) the
chagacteristié roots of §(t) are eigenvalues of the map
8'(Q,u0) and that b) one of those multipliers is 1. Thus the
stability of the orbit §(t) depends on the remaining n-1

eigenvalues.

Computing the Poincaré map of a differential equation
analytically can generally be an 1impossible task. Some
aufhors however have painstakingly succeeded 1in computing
these numeriFally and coasequently have been able to extract
these multipliers. ngh interested reader is referred to
Doedel [11] for a description. of the numerical scheme.

4
1.6 Ergodic theory

Ergodic Theory differs from differentiable dynamics 1in

L4




the’ sense that Ergodic Theory 1s  concerned with
;ransformations acting on a certaln measuré space as opposed
to a sgmooth manifold for differentgifle‘ dynamics, In this
séqtion we will present what we feel are ;he most essential

elements needed for an understanding of terms used later on

in this thesis. For a more in-depth presentation, the reader

1s referred to Walters [42] or Brown [5}.

A proper introduction to Ergodic Theory requires that we
introduce the concept of g-algebras and measures. To do this
would lead to a long digression from our subj;cﬁ of interest.
Therefore for the sake of expedienqe, we hforgov an
introduction to measure theory and assume that Ehezrééde; is

aquainted with the aforementioned subjects.

An lmportant concept in Ergodic theory is the concept of

measure-preserving transformations. Before defining such a .

transformation, we make some preliminary definitions.

Definition 1.11

Let X be a nonempty set and let BY be a a—algebgh. Also
let M be a normalized measure on (X,B+). A function b:X»X is

measurable if Q_l(A)eB+ whenever A£B+.

A function that is measurable is ‘almost’ contipnuous,




ad

‘Definition .13

4 . v . i

Definition 1.12

“

A  measurable function ¢:X+X 1s- said to be a

‘measure-preserving transf@rmétion 1£ M($~1(A))=M(A) for all

Aen”. ¢ is an invertible méasdre-preserving rransformation if

’

1t is one-to-one and if &~ ! 1s also measurable.

'3

¢

Méasure-preserviqg transformations arise in' ‘the study  of

[

dynamical systems [37]. The next two définitionsu will

o

conclude our brief exquréion into Ergodic theo}y.
o \ ’ <

nei 4
1f 1im 1 g‘)'u(A 6 ¢7K(B)) = M(AIM(B) for each A,BeB’

o be ergodic.

" x

n
then | 1is said

When we' say that a dynamical system 1is ergodic we are

‘actually referring to the ergodicity of the

. .
méasure-preserving operator ¢. g

¢

Definition 1.14

1f 1lim M(ANQ"(B)) = M(AIM(B) for all A,BeBY then ¢ 1s

said to be strongly mixing. = . N
: - - . N

N
N\,

\

A good example to {illustrate the differences between ;h\\
ergodiec - versus a. strongly mixing process 1is given 1in \\
. . ‘ ’ /l
-

¥

ES

- — canimd e s s




-

- 24 -

y

Halmos[19]. Consider a mixture made of 90% gin and 107
vermouth. If the stirring protess 1is ergodic, then aftef a
sufficlent amount of stirring any region of the mixture will

contain on the averége 10%Z vermouth. If on the other hand the

4

process is a mixing one, any region of the mixture will
contain an amount of vermouth which becomes and remains close:

to 10%.

-

In this chapter, many 1deas were brodght to 1igh5. We
had to be quite-brief in dicussipg certain ideas, cutting out

many details. We hope that this haé not detracted the reader
v

from pursuing his reading. We now move on to chapter 2 1ip

-

which we introduce the Rikitake system.

4
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s ' CHAPTER 2

The
. " Rikitake Dynamo .

System

0

2.1 Definitions from Dynamo Theory ,

\

1

. Before describing the derivation, of the Rikitake -model

in section 2.2, we review some notions from dyname theory

(71. ’ . : ' _ L

A dynamo process 1s a mechanism by which a velocity or

vector rfield without eléctric currents gives rise to a
velocity field with elecéric currents. A device which makes
use of this process to'generate electric current is called a
denamo. Dynamo$ whose magnetic fields qreAgresént due to the

)

motion of an electrically conducting fluid are called

.

hémogeneous dynamos. Such dynamos are purportedly responsible

for the earth’s. magnetic field. An understanding of such
dynamos requires a study of‘a sys}em of partial differential
equation; "consisting of Maxwell’s equations‘anq hydrodynamic
equations. A complete solution to these magnetohydrodynamic

"is currently beyond reach, thus we stydy ‘mechanical dynamos

analogous to the homogeneous dynamo%. Such a dynamo' is a

’

f

-




%

0 - 26 - . \

dyndmo. . A homopolar dynamo. 1s oné .in which .a

conductor moves steadly in a constant magné;_i'c field and

shomopolar

ptoduces a wlirect current without the use,qf‘ a g:'ommutator.

The simplest example of a ‘homopol:ar dynamo 1s a disk with an

axle through its center. This device 1is set in,motio‘n in a

»

cons!‘:ant: magnetic field parallel to the axle. Curfen’t, can be

drawn from the disk”’s edge and the axle. If the currenﬁj: drawn

1

from these two sources is passed through a coil ‘and 1tself

'2.1)~, we say. that

] -

produc.es the magnetic fleld ( s'ee‘ figure

{
the dynamo 13 self-exciting.

¥
FIG. 2.1 HOMOPOLAR DYNAMO. FIGURE FROM BULLARD [61 |, |,

-

n
[y
-

The homo'polat‘- self-excited disk dynamo is alsdb kinown as

- the Bullard dynamo after Sir Edward Bullard who made ;:he

RS

. o
first stability ana“lysis of such dynamos in 1955.

4
-

.

Y o




e - 27 =

2.2 Derivation of the model /

In the Rikitake dynamo $ystem, we consider two
hombpolar disk dynamos. Taking the current from dynamo 1

(note that the znumbering of the dynamos 1is arbitrary), we

-

feed it 1inte a coil wrapped around dynamo 2 in the same
fashion as the Bullard dynamo. Current from dynamo 2 is fed

into a coil wrapped around dynamo !. This results in the
configuration shown in figure 2.2. Note, that each dynamo 18

-

spun by torques G, and G,, respect'ively.‘

-

13
¢

©

c&'&

G . D
. FIG. 2.2 TWD-DISC DYNAMO. FIGURE FROM RIKITAKE [351 '

* i .
T. Rikitake proposed such a ‘co"nfiguration in  1958. 1In

introducing this- model, he ~hope'é to correct some of the
deficiencies of the Bullard model. These deficienc‘ies include
the lack of current, reversal, that 1is the current'srinability
to reverse its direction of flow. To establish_a possible
relationship between the above configuration and the

v

homogeneous dynamo found in the -earth’s core, we might
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consider the 2 d‘ilskls"as 2- glant eddies in the earth’s core.

[

The torques might bYe equivalent to buoyancy forces .‘tdnrning‘

the eddies. Even with such analogues the model still remains

a crude approximation because of the lack of consideration
P .

for the Coriolis forces aund* the delays 1in current

transmission between the two eddies.

The equations that govern the currents 1, and‘l2 and

angular velocity 91 and 92 are given in their most general

form by the following:

L F o+ RpI) = M1, (2.1)
Coc By Y R = MLl o (e
Chy + Ky = Gy - f{lIlIZ (2.3) .
) C 0, + K,0, =

Gp =ML, o (2:4)

where L, and R, denote respectively the self-inductance and -

resistance in coil i; I, represent the current fHlowing

through the coils.{,C, and G are respectively the angular

.

velocity, ‘the moment of inertia , and driving torque of each

dynamo. The constants Ki are the damping constants. 2nM; is

the mutual i{nductance between the coil of dynamo 1 and the

disk of dynamo 2, and ZHMZ is the mutual inductance for the

reverse situation. ;

'3

This model 1is not the ‘one we consider. In our model we

will remove fricgion by setting KI'KZ'\O‘ as well as letting

f N
N\
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[

o

a

- ‘ Lo =29 -

‘thus cansider is the following: ' e
o et s,
; LIj 4RI, = Wa;1; o
] A S S R R
Cﬁz = G _erlLT .

&
* 2
v o

where L Is. the self-inductance and R is the- resistance.

~a&g9cgated:‘with each dynamo and its’

]

u
&

circultry;

.. ,Mf'MZ;QITCé’ G{!GZ’ LI'LZ anduRlaRi. Thus,”thé‘model~wgrwill

(2’:5)
v

(2.6)
(2.71)
(2.8)

“

is the‘v

W

~inductance between the two dynamos and C 1is the moment of’
A ’ , . . 3

——

inertia of each dynamo. Using £2.7) and (2.8), we cén“show

3

that the difference between the angular velocitieslll

andrii

is constant. The system has two s;eady-staée solutions

1

1 !
G¢)3 - +x 1 &\2
‘ I - iK(M)Z, I, = #K (M)z.
N , ~
| * 2[R -2 (R
8 =X (M)’ 2y = x (M)'
where the K is to be given later.
The equations (2.5) to (2.8) ' can
non~dimensional form by writing
' ' \
1
‘ c\3 G\ ¢ = «fL
I, - x(ﬁ)z, I, = y(n)z, ¢ Q(G

and

be

(2.9)

put in

(2.10)




<

.form

With

f
GL i - fGL 1
1" z(cu\2 a - Z(CM)?
these substitutions; the equations
X' = —px - zy .
y' = =py + (z=-a)x
. »

Z' - 1 - Xy.

The steady~state solutions now become

’

(x,y,2) = (+K,+k”"1 ux?)

];Z(f Stabiiiéy of fixed point.

-

(2:11)

take on the

(2.12)
< (2.13)
(2.14)

(2.15)

(2.16)

+ The stability of the fixed points N-(K,K'I,FKZ) and

R;(-K,-”fl,FKZ) " can be determined by the method of

eigenvélues. In the following presentation we will consider

tﬁe fixed point N bdut xhe.séme‘computétions may be applied to

R. If\we compute the Jacoblan of the R.H.S. of system (2.12)

to (2.14) and evaluate it at N, we get the matrix:

[
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. -p pK? k™!
R ) 2
Xu(N) - pKo-a  -p § - (2.17)
-K-l

[

Computing the =eigenvalues of thils matrix results in a

~charac&eristic'equation of the form:

(L% + k% + X (2p + Q) = 0. (2.18)

A

K1

This has roots

‘ - - - -2
, [ PRLIE T SEPEEIE XS R SR Y (2.19)
Since system (2.17) has 2 purely imaginary roots the
eigenvalue method fails. Two options are now avalilable to us.
One, we could take a higher order Taylor approximation to

system (1.9) but the system that results from such a

.truncation is no longer linear. The other option involves the

use of the Liapounov fumction. This approach is more viable

and it is the one used by Allan (1] to show that the points

N and R are both unstable for any value of the parameters
and K save when K=1 or m=0. In this section we will consider
some analytical results about the Rikitake system.

a

¢
i o e et k. omigrtansi [ I 2
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2.4 Analytical study of the Rikitake system

-

The Rikitake system does not, in general possess closed
form solutions; however, for certain parameter values the
analytical solutions are known. The values we have in mind
are K=1 and p=0, If we place these values in equations (2.12)

to (2.14) we have the following systen.

P X' = zy . (2.20)
y’ = zx . ' (2.21)
z’ = 1 - xy ‘ (2.22)

An interesting observation should be pointed out here.
If we consider those solutions for which x=y and perform the

substitution u=x=y we get the following system

u’ = zu : (2.23)

z’ = 1 - ul (2.24)

These equations are the equations that model the Bullard
dynamo. We will get back to these equations when we have

solved system (2.20) to (2.22).

A clue to solving equations (2.20) to (2.12) can be

found by examining the jacobian of the original gystem. One

can establish the following relationship involving J aund the

divergence of the vector field X which generates the Rikitake
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system. ' ) x
g% = J div X | (2.25)

[ 4

We .remind the reader that the divergence of a vector fileld X

made up of the cémponent functions xi 1-1,{..,n is equal to

L |

3X, X, )
div x = -a-;-; +S;; + ..le +Sa; s (2-26)

where the u, are the 80 called independent variables.

Computing  the divergence for the vector field which

determines the Rikitake system we get

div X = -2p : (2.27)

-Sustituting (2.27) into (2.25) results in the system
4 .
dJ '
EE_f —2ﬂq (2.28)

which results in a solution of the form

J = .Joe’zl*t i (2.29)
/
where JO represents the jécobian evaluated at some initial
point (xo,yo,zo). The importance of expression (2.29) 1ia seen
1f we consider the special case M =0 or K =1. Upon computing

the jacobian for the parameter values we get the relation

i

-~




x2 - y? = ceTlmt o (2.30)

.
where J represents the value of JO at‘fi- 0. The re&ation
P . .

provides the key to finding a closed form’ gsolution to

equations (2.20) to (2.22).

.Going back to the original problem, we substitute ‘the

value p= 0 1in (2.30) and obtain the result

(2.31)

We then apply the substitution x = C cosh p, y = C sinh p.

This substitution leads to the second order system:

dp dz
z ° 1 - C sinhp coshp - dt . (2.32)
The solution to this system 1s equal to
%zz = Bt + p =~ %cz cosh 2p (2.33)

This solution represents a family of closed curves which
| #

depend on B and encircle the point

(p,z) = (Jstan"t(2¢7%),0). (2.34)

y—




2.5 The Bullard dynamo

\

The Bullard dynamo, first_studied by Sir Edward Bullard
in 1955 is co&sidered in this section because of relation
(2.30). This relation 1implies that the solutio;s to the
Rikitake éystem asymptotically approach the planes x=y and
Xx=-y., The reader will remember from section 2.4 that X=y was
the substitution used to show that system (2.20) to (2.22)
was similar to the Bullard dynamo whose equations are found
at (2.23) and (2.24). The reader may have already noticed the
fact that m = 0 in expression (2.25) does not reduce it to
the aforementioned planes. We are aware of this discrepancy
and we defend ourselves. by stating that the argument’s
purpose 1is to. convince the reader that for sufficiently small
pand k=1 the behaviour of the Rikitake system may be predicted

by studying the solutions to the Bullard dynamo. The argument

may lack some rigor;however, we feel that it is sufficlent,

(X

The model for the Bullard dynamo 18 shown 1in figure

(2.1)

Equations (2.23),(2.24) have as solution

1 (2.35)

N f—
(¢}
[¢]
\¥4

Ex T4 %z - ln x =

For c = 1 the curves include the equilibrium points

(1,1,0),(-1,-1,0) and for periodic solutions for c¢> 1. From
R
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a

dynamo. “The“ variable X never changes sign,- that is, * the

current never reverses direction. The presence of periodic

o 4

solutioﬁs_ is evident. Périodic solutions for the Rikitake

the solution, we see the main deficiency of‘ the Bullard-

system have been numerically detected by other authors, but:

their method of detection has alwayg been indirect. No author

that - has made a claim to a periodic solution has ever put
Y

forward the actual orbit. They have-contented themselves with

providing indirect evidence. In later chapters, we will to

@

provide examples to illustrate some of their claims.

&




"CHAPTER 3

The Numerical Study

of the Rikitake System

The analysié pf the Rikitake system was perfo;ﬁed in
douﬁle—precisioﬁ mode on a VAX 11~780 and VAX 11-750. The
method used was a fifth-order Runge Kutta scheme outlined by
i.J. Nystrom [31]),and ;hich used a stepsize which ranged fron
0.01 to 0.00i. The analysis was doned using the following four
mache@atical tools ': the L;renz map, ;he Poihcare section,
the Power Spectral Deﬂé:ty(PDS), and the Liapounov exponents.

This chapter will describe each the these four methods.

3.1 The Lorenz Map

in 1955, Edward Lor;nz wrote his classic paper entitled
‘Deterministic nonrperiodic flow’, in which he 1ptroduced a
system of 3 ordinafy differential equations which we refer to
today as the Lorenz equations. In the study ofl these
equations, he formulated a one-dimensional map commonly known
as the Lorenz map. This map c;nside;s the abcissa to be xn,
the value of the n-th maximum of Ix], while the ordinate xn+l
is the value of the following maximum. Periodic solutions

have a map which consists of one or more fixed points;

chaotic solutions on the other hand generate the A-shaped map
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(figure 3.1). It 1is important to note that the definition

°

does not imply 'that the map can only be applied to “a

function called x. The map can be formed using any function

in the system.

.
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*FIG. 3.1 LORENZ MAP FOR CHAOTIC SOLUTION
K

©

In our analysis, we will look at both the x and z function. =

Th; x function is studied because we wish to reproduce

the results of Ito [21]. In his paper, he useg the Loreﬁz map

to ghow that the Rikitake System undergoeéla transition to
éﬁaos through a series of period-doubling bifurcations.

The z function 1is studied because of recent results

published by Barge[3]. She demonstr%tes the existence of

stable and unstable invariant manifolds for the z-axis., .




-

3.2 The Poincarée Section

The Poincaré .sgcpion is useful for examining the

1

geometric structure of the flow. The section is obtaired by

3

taking some 1local cross-section Z in R’ and noting the

]

instance at which the trajectory crosses the section with
negative velocity. The resulting two-diménsional',figure
(figure 3.2) is our Poincaré sectﬂ%nt The procedure described

- < - \
above closely parallels the concept of the- Poincaré map,

- e .

2\
hence the name.

- = /”—

*In figure (3.2), the cross-section I is a hypefpiane,

but this is not a requirement. What 1s necessary is that the

§

trajectory g(t,uo) be everywhere tranéverse to. X. This cam be

L

achieved by ensuring that X(u,r)s 7{1)#0 for all uel where,
. o

7(u) 18 a unit normal to £ at u.

-




3

If the Poincare section results in a fixed point, then

this co’rresponds to'a periodic orbit in the flow, whereas if

.,
~

the flow is defined on a invariant torus Cil,-, corresponding
% Poincare lsection wil];‘be an i,nvar"iant circle. The computation
of these‘ inwariant ;:ii'cles, analytically of#numerically is a
challenging ﬁ:oblém. Research along analytical {inesn can i)e
found in Iooss et al.(22],and for prdgress 1in numerical
computations the reader. 1is referre;d- to Chan[8], and

a- -

Kevrekidis et al.[25].

3.3 The Power; Spectral Density

V4
Before broaching the topic of Power Spectral Density

e

(P‘SD),' it 4is essentigl to review some definitions from
: y = N . » -
digital time sédries analysis and signal processing.

~

] A time history 4is simply the output of a measuring

ingtrument recotded on some medium and  a. signal - brdadly
. $ - “ o :
defined, is a carrier of information. The term time history_

‘'should not lead the reader into believi\n,g- that the output 1is

st ;ctl); some function of time, 1nstead the 1ndependent

Y "

variable can be anything the researcher desires. In this

L. ¢ .
thesis, since( we ”déaluwith ‘dimensi'onlgss equatidns, our *

~

independent variable v‘ﬂ]: be dimensionless time. \

T

+ The tilme +histories we .qonsi_der havé ‘three limitations

ca N ,’ . . . \
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°

imposed on them. fhey are as follows: ' S

1) recorded length of time history is finite

2) data are sampled .~

3) data are discrete. =

°©

a
.

The first restriction stems. from. the fact 'that a

researcher cannot record some signal for the whole range of
. .

the independent variable, hence he must at some point cease’

.

torecord and make &o with what he has.

The concept behind data sampling is to 1look t some

o

contirdfuous signal at specific instances and recording the

value of that signal at those instances., The result of this

saﬁpling is a sequence {xj) j=0,...,n=-1, rather than a

2

Continuous signal x(t) ,t,<t<t , .The coavention here 1s

that X9 = x(to), xn_l-x(tn_l) and xj-x(to + j(tn—ln‘ to)/n).

The value At = (Fn_l—td)/n is ?flled the sampling time. This

-

toplic will be further explorea after we’'ve defined the PSD.
The-last restriction 1s due to the use of a digital computér
for storing sampled data. This med{um requires that the datsas

be digitized to a finite precision.

Consider a continuous function x(t). The Power Spectral
) 7 .

Density Gx(f)-is such that’ : '
x .‘. - ) .
¥30E,8) ='fi6 (£)df 0Lfde » (3.1
; _ :

represents the’ power between’ frequencies f and g} An

appfoximdte expression for Gx is:

3

!




T

T,a -
¢ (f)=2 7321 l'[m x(yel¥tae|? £50  "(3.2)

To numerically compute the PSD, we use the following

algorithm,

.

STEP 1) Sample continuous signal x(t) with sampling time
At and saﬁple size n. This results in a time
h%gtor; {xj},

STEP 2) Using a Fast Fourier Transform, we compwute the

Fourier coefficients or frequency components.

1)

That is, we compute the values

"
1

X«

-12x3k/
k T 3=0%3¢ T

k=0,...,n-1 (3.3)

14

A ¢
STEP 3) The PSD is obtained from (3.3) as follows:

\

G, = 28t/nlx |2 k=0,..., n+1/2 ' (3.4)

Gk represents t%F power near k/nAt. Expression (3.3) 1is

called the discrete Fourier transform of the sequence ({Xx

& j}.
We can answer the question as to how well the sequence {xj}
represent the signal x(t) by considering in the}asymptotic

case (n going to infinity). The answer 1is given by the

following theorem known as the sampling theorem.

©




* Theorem 3.1 (Sampling Theorem)

Let x{t) be a function with PSD given by Gx(f) and let
G;(f)-o for £>B. Let'{xj} -w{j{» be a sequence resulting from
sampling x(t) with sample ;imé At{1/2B. Then x(t) can be ‘
reconstructed exactly from the 'sequence {x

: jte M .

The value B=1/2At 1is «called the folding frequency. -

Functions for which the PDS%idrops to zero after a critical

’

value B are salid to be band-limited. 1In practice .the 4 1
conditions og the‘theorem are not met; however, long time

histor&es and tﬂe'use of high-quality lowpass filters before
sampling ylelds satisfactory results. A lowpass filter is a
process which will les. pass all information on a frequency

(0,B) ahd-reject everything from (E,I/At)).

%

There are two problems inherent to the finiteness of
time histories. they are:
1) allasing

2) leakage.

The relationship between the Fourler transform F(w) of
the continuous signal x(t) and the discrete spectrum F(eiwc) '

of the sampled sequence xJ is given by

- : F(el¥t) = 1/T ) F(w + ku ) ©(3.5a)

Ke-a s N
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where v, o= 1/t is the sampling frequency. If wg < 2B then

the F will overlap with each other. This phenomenon of

overlapping is-known as aliasing. The consequence of which 1is
" that it becomes impossible to determine. from F(ei"”) the fprm
of F(w). We can reduce aliasing by choosing small At

however for signals that are not band-limited some aliasing , .

~will always be present no matter how small a Ot is chosen.

Leakage occurg when due to truncation, power which
should‘normally be concentrated at a point, 1s spread out
over a much broader range(Figure 3.3). . -

; .
’ .

POWER

A — >
hd PRENCENCY M

FIG. 3.3 POWER SMEARING DUE TO TRUNCATION
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This can- be controlled by the use of a window wVich is a

‘funbtion which 1is time-limited on the interval T avd of unic

A

energy. That is, %@
}
y(t)= y(e) 0<t<T (3.5)
0 otherwise
and
' [ 4
Ad A \ ’
fly(t)lzdt:-l © o (3.6)
-

In our estimation we use the Hamming window defined by

1
{

Y1 -{.54 + .46cos(krn) k=0,...,n-1 (3.7) .

0 otherwise

-

The new time history{ 'ik} that we use in the PSD estimation

¥

i8 defined by

xk - xk*yk (o (3.8)

3.4 Liapounov Exponents

The wuse of Liapounow eiponen}s L1 i=1,2,3 1is an

important tool for _determining 1f the behavior of

trajectories in the Elqgki; ordered or chaotic. The Liapounov

L]
..

spectrum (LI,LZ,L3) afpapgive qualitative information about

v
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this behaviour and the invariant set under consideration. The

fractal dimension D; of this surface may be defined[32] as:

D, = a? + @t L), (3.9)

Te

/

where m0 1s the number of zero Liapounov exponents, nt 1s the

number of positive Liapounov exponents, and L

“and }
represent the average of the positive and negative Liapounov

exponeﬁts, respectively., The concept of fractal dimension is

important because not only does 1t characterize physical
¥
!
phenomena such as energy cascading and vortex—stretching in
\ fully-developed turbulence {15}, it also’ characterizes

chaotic flow and strange attractors in dissipative dynamical

systems[32].

o .
Consider equation (l1.1). This equation, with 1initial
condition u (0)7 ug has solution:
£
. u(t) = Ttuo, ‘ . (3.10)

L4
where T 1s a map describing the evolution of the. points.
Consider now the first variation equations of the trajectory.
These equations have the form:
i' = X’(u(t))ﬂ. (3.11)
]

The solution of these equations is

3




L) = U, ()%, (3.12)

where UO = U, (t) 1s the fundamental matrix and is the

0
initial variation at ¢t=Q.° It is known that the long-term

behaviour of the wvariation i(t) 1s determined by the
long-term behaviour of the fundamental matrix. In R3, this

behaviour is characterized by the following exponents:

o

k 1i -
L(e*up) = tiPdiog J1Auge lelle 117h 1m0,k (3,13)

for k=1,2,3. The symbols 1in (3.13) have the following

meaning: ekis a k-dimensional subspace in the tangent space

EO at ug, ANis a wedge product, and {ei} are a set of bases
for ek. The exponent defined by (3.13) represents an
expanding rate of the volume of a k-dimensional

parallelepiped 1in the tangent space EO and is called the

k-dimensional Liapounov exponent. The properties of these

Liapounov exponents are:

1) one~dimensional exponent L(el,uo) may take,at most,

% k-dimensional exponent L(ek,uo) may take at

%ﬁistinct values% we will refer to them as {Li}
P\ X

suppose that L12L22L3. .
2) T
moét (i) distinct values and each value is
coiﬁected with a sum of k distinect I-dimensional

]
; ex&bnents. Thus the k-dimensional exponents

<
)

| ! ,
' L(fﬁ'“o) k=1,2,3 may take. the following values:
§
\li
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L(el,uo) = one of'{Ll,LZ,L3)

o) = one of {(L,;+L,),(L;+L5),(Ly+L4)}

o
o~
m
[
o
~r
[

( L1+L2+L3) A

3) If a basis {ei} 1s chosen at random 1in the tangent
space, then the k-dimensfonal exponents converge to
the maximal value 1in the set of values that the
k-dimensional exponents can take on. Thus from
property (1) and (2), the values of ‘the
k-dimensional exponents will likely be:

L(el,u ) = L
0 1
Le?,up) = L)+l

3
Lle”,up) = L)+L,+L,

These éxponents generalize the concept of eligenvalues
governing the rate of linearized contraction and

expansion [18].

Many simpiifications can be made to facilitate the
numerical computation of these exponents. For example,
since we are working 1in R3 the wedge product of two
vectors‘results in the same vector as that generated by
the cross product. Thus for any given t, -we m;y write
[|U0(t)e1f\U0(t)e2|| - HUO(t)e1 X UO(F)GZ'l’ and in the

L1 .
case. of a triple wedge the following relation holds.

[}

- N e ¥ e e o e e sy
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»

(Uy(tYe AUG(E)e, AU (t)eq) =
DET(Ug()e,,Up(t)ey,Upltley)] (4.6

( note: for a given t »Uy(t)e; are column vectors)
Computing these k-dimensional exponents presents some
difficulties because the variation equations possess’
exponentially diverging solutions, hence causing
overflow on the computer. The numerical scheme which we
used to overcome this problem can be found 1in
Shimada[39]. POther methods to compute the Liap;unov

spectrum or 1its largest component can be found in

Froyland[l4] and Benettin et al.[4].

“\
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CHAPTER &

Software Description
~ and
Numerical Results '
for the

Rikitake System

The equations (2.12)-~(2.14) were studied for K = 2 with‘
G

S

p=0.01,1.0 and on the, intervals [0.49,0.56] and [2.2,3.2].

"These values were chosen based primarf{ly on previous work

i

done by Ito [21]. In his paper, Ito postulates that at p =
:Ol the Rikitake system should possess periodic solution; and
that these solution; should persist until.pH = ,49. At that
point in the parameter region [.49,.56], the system should
undergo period—daubling' and e;entually culminate 1n the
appearance of chaos. At the parameter value po= f.OO, we
obs;rve a case of fully developed chaos. 1In the- interval
between [2.2,372] th; system should move away from a chaotic
state and enter a state which is pseudo-periodic. Although
the precise mechanism 1is not mentioned we believe that 1t
consists of a sequence of '"period-halving". In this chapter
we will ﬁresent a description of the software configuration
that we have assembled to study this system and examine the

results that were .,derived for the Rikitake system and
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compared to published results.

[

1

4,1 Software Description

e

The beigenvalue method , which was discussed "back -in--—.
qhapger 1 is widelylused as a test ‘of thevsﬁabifity of a’
fixed point solution. More specifica}ly if we consider the
Keigenvalhes as a function of the p;rameter then the behaviour
of . these' functions . are critical iﬁ determining the
* bifurcation points. This.sehaviour is exploited in most of
.the bifurcation software available today. In the case of the
Rikitake system we have a special functional dependency; the ' ‘
sysgem possesses a pair of pureiy imiginary eigenvalues, the
real” part -i{s always zero. Consequently the. detection of
primary bifurcations (Hopf,steady-state) in such software 1is
negated. The software we developéd and used was created to
fiLl this parfichlar inadequacy. Although this software 1is
not as powerful nor as flexible as AUTO [11}, it does aliow
us to obtain results whigh_ would 1likely be wunattainable
otherwise. Figures 4.1 and A.2~illustrate the control flow
and the data flow for our software Fonfiguration;

The following constitutes a descriptive list of the main
. routines, their functions and the algorithms which they‘
implement. All programs were writtean 1in FORTiAN, more
specifically, we used VAX FORTRAN Version 3.5 running under

VMS on a VAX-750.
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—~— FOR0OS - : FOROO8 —=
1 —— 1 IVPLIA
| FOROS0 ~—FOR018
MAXX | | ik
- FOR00S
1 FORO50! ‘ -
MAXZ = ———P VT2D FFT
~
OR099
-
VTID MEAN
" FORO10—| - ~—FOROM
FOR00B— ~—FOR008 )
FOROOS__ | —_FOR008

| PLOTS !

FIC. 4.4 CONTROL FLOW FOR CONFIGURATION
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INPUT PARAMETERS

-

4

/—NPUA '

[
: v
POINCARE LIAPOUNOV SOLUTION CURVE
. TO
SECTION EXPONENTS | | INPUT PARAMETERS
- | N
. MAX - et
‘ MAXZ—-—"' )
L - - ~—FFT
co T LORENZ
vT2D- . © T MAP \ ~—MEAN
ol RESULTS ,
' FFT
VT1ID————, :
. : . RESULTS
o TXPLT .
FORMATTED  #¢=
‘ DATA
: Ie————TXPLT
OUTPUT
" DEVICE

FIG. 4.2 DATA FLOW FOR CONFIGURATION




< & MAXX : This f‘f}iﬂiJig/weil as its ‘sister routine MAXZ'are
e » . .. ' . '
/ »

. “
=

4 )

- ] ‘ ! '

TXPL? ' : This program in our configuration Js a modified
’ o & 1

v version of a graphics module originally written by

E.J. Dgedel for Tek;réﬁix'dévices. Although TXPLT

-

was orfginélly written to function as ,a graphics,

-

functions have been reworked to acgomodate grdphics
/ f , s

dqmmands issued to devices that use DEb's REGIS

graphics protocol,
\ ' ( .
. ,

IVPLIA : This prograh is the workhorse of the entirensystemi

‘it'implements the initial-value ‘solver, computation
of the Poincarg section as well as the method 'used
. - ‘ , ’ ]
to compute the Liapounov exponents. The results from

v

IVPLIA are channeled into two files: the firse ‘of

which- contains the solution for each given stegg;ée
« . ’ LN .8
and number of steps, whereas the second contains the

H

data. points for, the Polncaré section. This program

takes -as input the starting point the number of

iterationg and the steb'size. For the calculatfon of

’ 1

‘the Liaponouv spectrum the exponent, and the basis

. vectors. For the Poincaré map the equation. of tqé/

.

' L=
plane 1is deeded.

. 3

7

"used to~cqg§ute'Lbrenz~map from the given sélution,

o - . - .
. { .
\{i" They "both take _as {nput the complete ’'solution
. - - » ’ ' -
1] ; x
rJ 4 o5
w * @ ¢ ¢ 1 . -
4 : ‘ PN -
. L] . ' o
. L] >4

L processor .used 'to plot data from AUTO, its current °.

A

r




). : -SST.U' ) _~FLV_

.generated by IVPLIA. . ° S
o : \ ! ' )
e ) " . : . R )

o “ i

VTZD!VTID : These short routines act as preprocessors which
k
r'estructure data obtained from MAXX and IVPLIA to a

format acceptable to TXPLT. bt

‘ IVPFFT FFT MEAN : These three programs . constitute the Fast

Fourier Transform portion of our software. The first

of these,  IVPFFT is used “to sample the .solution; FFT
- . : - .

computes the Fast Fourier Transfopyy of the given
data and -MEAN averages out the compuf’e‘d spectra.

IVPFFT takes as input the sampl@e 1ength and sampling

w t

frequency as well' ' as a starting point. FFT takes as
v input the sample and applies an FFT transform on it.

" ' A v
The interval which ‘we wish to samplemis broken up
into a 'series of smaller sub-intervals. The t:w;

aforementioned routines ‘operate on each of ‘these
~su'b—intervals. HEAN's’ fur&ion is to. takée the

resulcing specrra and average them out. ?

'
¢ . .0 < !

> . s
- 3
. re

Superimposed oveg this configuration are a host of

.

smaller DCL command .routines which coordinate the .activation

of- these modules.

5 3 )

-

’

3

Muger frieadly™ ‘enough to be used,.‘by the uninitiated user.
1 . B

@ * : . . .-
The implic@}:ion of this is that the user ’must be keenly aware

- ' . (

Currerdtly the system 1is Yot yet "highly 1integrated nor.

‘ . 4‘\(1

LS

4 <« .

w
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of - how these routines . interact. Very little automatic
pfocessing is done which is both good and bad: gooa, because
it allows for extreme flexibilfty; bad: because {ts audience

is very reéstricted. : i
L ,

¥

*
1

4.2 ?reliminagy results

’ R . u
y s,

The first parameter value for which thé Rikitake system
was 'studied was P = .01+ The results obtained "for the .
Poincare section"are 'di;played in figufe 4.3, and an
enlargement of tﬂe region foundfbetwgen x=3.83 and 3.84 1is
included in figure 4.4, Th; most obv;ous osservati;n 1¢ that
no fixed point or’periog}c point seems to' be present ih this
section; “If; éne were pfese#t it ‘wo;ld ;indicate that &,
periodic oﬂﬂt e;isted_in this pﬁase‘space. The Lorenz map in
figure 4.5 does ;ot exhibit any ‘of " ;he qharéctérigtic
features felated to chaos; however this 1is not sufficient

‘ : " T
evidence to draw any conclusions about the periodicity of the

-

system. A)cursor; analysis of the PDS shoué broad peaks which

typicaily indicate an absence of periodicity in the sampled
. 0 .
region: Th‘ Liapoupov spectrum to 3 decimal digfts is

’

(0.003,-0.003,-0.017) and is of the (+,-,-) type, indicating

-;ﬁhat Yhe system is sensitive to initial conditions. Thié;

P
. property has been observed by meny authors and was the
.

subject of Ruelle’s paper [37], The phrase he wused to

»

~ Ve
describe this phenomenon 1is that the systemn ." possesses
sensitive dependence on initial conditions ".
: ' , ’ ' -
? | - - ] .
< ' -
+ /_ €
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A plausible explanation that we offer for the apparent
observed periodicity rests on the interpretation of the value
of the largest expénent in the Liapounov spectrum. This
exponent {s a measure of the degree qf mixiné of the flow,

hence a small value for this exponent would imply that the

flow is mixing, albeit slowly. The flaw would thus maintain

its structure for a long time subsequently giving the
. ﬂ 0y . .
impression that perfodicity is present when indeed it is not,

By noting the fact that spectra of the (0,-,-) type imply
stable periodic solﬁtions and that the largest exponent finds
itsekf in the vicinity of zero also seems to lend credence to

"

the proposed mechanism. The absence of periodicity {s

consistent with results obtaiﬂed by Cook [101]. i

The nexturegion of the parameter space that welstudied
was the inferval [0.49,0.56]. As mentioned previously,
Ito [21] has reported the appearance of perioh—doubling
bifurcations in this parameter region, see fighﬁe'4.6. Ito’s
conelusions where based o; his observations of - the Lorenz
map. The results of my analysis of the Lorenz map are iess

b
conclusive (figures. 4.7,46.8,4.9,4.10) because although the

*map does indicate some kind of periodicity the‘pe%iods are
I

not thqoWe ob{atned by Ito.

- Evidence which supports I1to’s claim can be garnered from

the PSD. I¥f ,we examine the sequence of PSD ‘(figures
4.11,4.12,4.13,4,14), we can see strong vf{sual evidence for
the existence of Period—doubling.«As we proceed through the

F—parameter gspace , we can'observe that between each dominant
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peak, a new and smaller peak appéaté'in each period-doubling
region. At the 1imit of the parameter reglion p=.56, the PSD
has an especially interesting shape. It appears to be made up
of instrumentally sharp delta functions superimposed on a
brgad spectrum. Mathematically, délta functions should appear

as vertical 1lines but due to the finiteness of the time

i

series, leakage occurs and results in the smearing of power.

‘Farmer et al. [12] have observed that this property which is

characteristic of periodic solutions can also be possessed by

strange attractors. They have used the term ‘phase coherent’
to label any attractor with the aforementioned property.
Farmer also 1introduces the <concept of 1isochrons to help

eglein this behaviour, previously named “noisy periodicity’

by Lorenz [28]. The term probably originated from the

observation that the solution appears to be' a periodic

solutign which fails to cycle due to some computational
error. A more detailed and elaborate study of the system at
this parameter value might reveal the source of the

~

behaviour, .

I Mo Y2 by
0.49 | 0.000 4wp.028 -0.952
0.50 | 6.000 .007 ~0.993
0.51 | 0.000 -0.035 -0.985
0.52 | 0.000 -0.118 -0.922
0.53 | 0.002- , -0.505 -0.557
0.55 | 0.000 -0.039 -1.062
0.56 | 0.067 -0.000 ~1.053

Table 4.1 Liapounov exponents
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%’?able 4,1 summarizes the calculated Liapounov exponents

andﬁﬁheir ébrresponding P values. It is interesting to note

that for mwmost. H‘ valuess,the‘ (0,-,-) pattern 1s maintained,

i -

thereby ihdicating stable periodic mqtioh. The only exception
14

.to the pattern occurs at M=.53 where 1t 1s (+,-,~). 1In tﬁe

. next section we offer a possible  explanation for this

deviaﬁce. As expected at m=,56 chaos was observed. The latter
parameter value whoge invariant set ‘has .fractal .dimension .
i.Ol\r;s {mportant impliéatiéns to;thq.system and will be
dis;uzéss‘*ﬂ‘detail further on.

w{th the work of Feigenbaum [13], period—aoubling has

beqome synonomous with the fémbus limit 5n,'where

S 1 .o ‘ | ' (4.1)

Feigenbaunm has shown that " this limit bconvéfges to the

universal constant § = 4.669201609....
In our study we attempted to compare the results from
our period-doubling bifurcations obtained from the Rikitake

systen with ?eigenbaum’s number. Through extensive

b

computational trials we calculateﬁ f*np for u=0,1,2 which

to 2n+1

correspond to bifurcations from 2° period solutions.

These concerted attempts yielded 513 4.1 and we believe that
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further algorithmic refinement's would significantly reduce

&

the difference between these values. *

According to Tto,°a parameter value of pM= 1.00 shou'ld
and did result in a chaotic regime (figures 4.15,4.16,4.17),

the Lorenz map possesses the distinptive A.shape associated

with chaos. The PSD has a broad and dense spectrum expected

from chaotlc systems. From figure 4,17 we also notice a
i ' ' v
distinctive hooked feature 1n the Poincare section, Many

authors [40],(41] have pinpointed this feature as yet another

fundamental signature .associated with chaotic .dynamics.

Gemgrally- our results tend to coroborate these findings

because when we computed the Liapounov spectrum we obtained

TA

exponents whose values were (0.186,0.000,-1.814); Since they

are of the (+,0,-) type, they indicate chaos. >

The fractal dimension for this surface 1s 2.10 which is
closg to the value 2.06 associated with the Lorenz attractor.

+ °

This 1s not surprising since chaos 1in the ‘Rikitake system
belongs to the same class as Lhataof the Lorenz system [36].
This particular observation from amongst all the others'lead;.
us 'to infer that this attractiné set 154 acgually ‘an
attractor. Furthermoie fol{owing the'définitipns-set out by0
Ruellé and Takens [38] this attractor can also be labelled a

.

strange attractor and may be, responsiblé "for ghé chaotic

’s

behaviour indemic to this system.

- —_—— R - - —
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4.3 Further analysi‘s of Rikitake Systém

‘ A ' - ' \

”
. Y
L&)

. B L ~
.« In the previous section we studied’ the behaviour and
o ' ! h .
pogential mechanism by which the Rikitake system undergoes

ics 'tr:{nsitiop from periodicit} to chaos. In this section we

use 'the'~ tvechniques outlined e#Arlier 1in our at'tempt to

discover how the system moves out of chaos and enters a more

__orderly state. The null hypresis being that the system is .

. f

S

)

) .
expected to regaim periodicity by period halving Once

v -
again, basing. ourselves on results publi‘sh‘e‘d\ by I~to, ‘we
searche‘d for a r-—parameterﬂ region in which the 'sys-tem moves

. ‘ #
from chaos to or

t.bis requirement turn to be [2..2,3,.2]. Our preliminary

strategy was to move across this inter‘val in reasonably 1arge
» I

|
steps, hoping that this would reveal some be\aviour which

. t
* " would allow us to narrow down the 1nterv1}1 interest.

o
e " o

/ ‘The ‘resul ‘for the firgt pz{rameter value)-\=2 2 are-

' Ld ’ . M
shown in figures .18,4. 19 and 4 20. At this parameter MUe
. 3 A . "
the ™ system, exhibits the\:lassiq symptoms of chaos, the Lorenz

a . .
map is /\—shapedv. and the solution rappears" turbulent. The !

Poincare se(::tion ( figure ls.ZO}\ reveal"s the ‘absencewpf those

famous’ hooks. Although ‘the hooks may e:‘cist theii‘ presence: is

4
A

not immediately apparent ‘probadbly due to the fact .tha_t“the .

two lines appeay te merge thus giving the appearance‘.‘of a
" L) . 4 ) :

solid line. A plausible explanation for why ¢&his adpeparen.t
P T v A} . “ ',

fnerging occurs 1s offered in 'the fol}owing argument which is
! ; . '

)
3

4 . 9 - ’

" T

r~

|

|
Fi

\‘int‘er-val\ which seems .to satisfy ¢
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' based on'one used by Lorenz in his semindl wowk on the Lorenz
| . equations. ' [
L [y " . N N ‘ .
‘ F\;;/ The essence of Lorenz’s - argument can be summarized ‘as
ot ‘e ‘ .
2 Coe foflows, H coqsider the volume segment occupied by the
solution at a time t, we denote this by V(t)3 Now by
. s . v . - ( ;
' . . ponsiéering how. thi's volume. shrinks in a tdime At, we obtaln
- ‘ o ) rd
the following expression: = ¢
" o ¢ N '
® - B :
Vle+ar) =.e"2 M ty(ey (4.2)
L) F »
? .
In our integration t ~ 6 . Substituting ¢t andupzin:(A.Z)t
s ;wq gét that |
; . S ‘ | . . '
. v -
. ! .
. v(t+ar) = 3 X 107H v(e) (4.3)

¢ )

¢ N

.
:

\ \
A

@
+

.
..

4
~&,
HR

Equation

?ap.idly® thus: resulting in a system Whose hooks are not

, 3,
‘apparent. - .

, -

4 .
“Progrgssing up the paragmeter space we find that the

I3

’r%sult; for p .= 2.4 1indicate: that the system 1s still

chaotic. Tiis chaotic behaviour continues to manifest itself
past m=2.6 (figures 4.21,4.22). FMnally atp= 2.8 we observe

¢

organized structure ( figure 4.23). The Liapounov spectrum at

x . ' 4 N .
(A.B)' reveals . that this volume shrinks quite

1

’ ' 1’ : . .
this - point” 1is (.001,-.007,-5.594), where the domirant .

exponent 1is small but non-zero. We noted this phenomenonm

2

earlier and we will, expand on it later. Yet
M 3 w e -
| - .
» Tl ~
L s B . ' >
L . ° N
. -
. N »
N N - [S— - - —— LN - L] - 0

< R

. that the system 1s no longer chaotic but™ tends towards * . .
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another interesting feature 1s that the Lorenz map possesses
two distinet islands which appear to be related to periodic/
phenomena. At M= 3.0 the system abruptly reenters a chaotic
state ( -figure 4.24 ). These results are consistent with
results obtained by }to in which hg finds that the system
does follow the "chaos,periodicity,chaos" pattern near this

v
region. At p=3.2 the system completes the expected cycle and
reenters a periodic regime. From this cursory analysis, we
conclude that the interval [2.6,3.2].15 the interval in which
a more detailed analysis can Se performed.

Our refined analysis scanned the interval (2.6,3.2]
witﬁ a step o? .1. Since results were already available‘for
p=2.6,2.8,3.0,3.2, we - ofly considered the  values
p=2.7,2.9,3.1. The first value p = 2.7 indicétes that xe are
still 4in a chaotfc state, while .at ol 2.9, the.rsystem
exhibits near-periodic behaviour (figure 4,25). Although the.
solution has a vestige of order in it, 1t 1is not periodi%
because the Liapounov exponents are ( .002,-.164,-5.64). In
fact 1t seems that most of the behaviour that we classify as
}eriodib is upon closer examination found to be non-periodic.
Though thel solutions do indicate some semblance of
periodicity we %o observe small deviations in successive
orbits. /This is enough to prevent the system from .being truly
periodig. Whether this is due to finiteness of the
Jntegragion scheme or structural instability inherent to the

system 1s difficult to say. A more accurate statement would

be : In most cases the system enters a more orderly

"

e I ——
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1

state characterized by nearly-periodic behaviour. The most

[y
.

dis?inguishing trait for this nearly-periodic phenoxena will
be the value of the dominant Liapounov exponent which 1is
small but non-zero.

To continue our analysis, the next value that we

considered is the value p = 3.1. At this value the Liapounov
N » @

exponents are (.001,-.024,-6.177), which again points to a

Y

more orderly system. All the .other tests also indicafe an

absence of chaos and the presence of pseudo-periodicity.

¥

Diagram 4.1 summariies the results listed above.

Diagram 4.1 Preliminary Results.

-
'

This diagram though fairly coarse does correlate with the
NS e

behaviour seen by Ito. Based on these findings we selected 2
smaller intervals for our finaljdetailéd analysis: interval
between 2.é and 2.9‘ and that between 3.0 and 3.2. The
rational underlining these selections 1s that for the first
region we wish merely to confffm that this is indeed'a region
of pe}iodicity and which 1is not interspersed with other
éhaocic phenomena. The second is examined because the systeé

undergoeé its, transition from chaos\bo (pseudo-)periodicity.

The latter is particular 1nteresging because 1t was here that




—7,7...@
we expected to verlfy our hypothesis that t%é mechanism for

this behaviour is indeed "period-halving".

At p=2.85, our system maintains its pseudo-periodicity.
This 1s reflected in the x-~z phase space diagram as well as
in the Lorenz map (figure 4.&6,&:27). For region 2 we
considered the values 3.03, 3.06,1 3.13 and 3.16. For the
parameter . values p =3.03 and 3.06 .we qygerve a definite

clearing {n the power spectra which manifests itself in a

v ¢

tighter trajectory. This is an obvious sign that the sygtemv
is undergoing some kind of yorganization. The x-z phase plane .
diagram indicates that the solution 1is tighcaniné up,

hopefully with the possibility of eventually taking on purely

periodic ehaviour. However the system 15 still 1largely '’
chaotic. Th dominant Liapoungv exponent 'is positive and
relatively large. .

Thqiparametgrs ;o= 3.13 and 3.16 indicate that chaos has
for the most part disappeared from the system. The largest
Liapounov exponent has a magnitude equal to .001'1nd1éat1ng
that pseudo-periodicity 1s now the dominant feature of the
systeg . This pseudo-periodicity persists, see table 4.2.
From this we postulate that the system approaches a purely
periodic region for value; of p >‘3.3. This statement stems
f"m other preliminary calculations for p=3.26,3.30 and 3.33,
tife Liapounov exponents for which are also included in table

4.2, €
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________ SO
chaos . 2.7 | . | .065 | -.003 | -5.461
2.8 | . | .001 | -.007 | -5.594
period. 2.85] .| .000 | -.012 | -5.688
2.9 1 . .| .002 | -.164 | -5.638
2.95/. | .113 |.-.002 | -6.010
chaos - 3.031 . | .068 | =.001 | -6.127
3.06] V1 .031 | S.003 | -6.148
3.1 | .| .001 ] -.024 | -6.178
f} 3.13] . | -.001 | -.045 | -6.214
noisy per. 3.16] . | ~.001 iﬁ-.r17 | -6.202
g 3.2 | L -.001 | -.632 | =5.767
3.23] . ] -.001 | -.165 | -6.294
period. : 3.26]| .1 .000 | .094 | -6.426
..-.._-_--___‘yl.__'____|-__' _______ | mmmmmmm e
113 .000

Table 4.2 Liapdunov exponents

The first column 13 a describtion of - the

4 'y

b;haviouf that the system exhibits at the-
current parameter value(s). The' second column
contains the ?arameter "values. ' The third
consists .of a small graph indiégting-ihe rise
and fall of the magnitude of the dominant
eigeﬂvalue.‘The last three are the Liapounov

. 1
exponents as per their usual order.
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Based on the graph from table 4.2 vwe were able to refine our

picture of the s&stem’s dynamic behaviour <in the parameter

interval. However, we were still unable to "detect the

- ' '

mechanism. Lboking ?t-fhe £able for péj2.95,3;11 we point .

out a curious observation. The dominant Liapounov exponent

’

seems to be reducing by a factor of onefhalf. Whether this is

related to the pﬁedhmenon.of "pef{oﬁ—%ﬁlviﬁg".or is just a
coincidence has yet to be explored,. ’ BN

' ' R i )
2 ) N

4,4 Conélusion -

~

L]

In this thesis we analysed the dynamics of the Rikitake

system concentrating most ¢f our efforts 1in :‘the regions

pe(.69,.56) and pe[2.2,3.2].° In the first regidn, we

1

concurred with Ito in the observation that the system.

undergoes 1its transitibn to chaos through a sequeﬁce of
period—doubling.\ We further postulated the previously
unobserved existence of a possible strange attractor in this

parameter region.

e

-~

In the latter parameter region, %e were able to show

that the éystem doeé move from chaos to perfiodicity, however

-

we were unable to hn@over any plausible mechanism by which it

might do so. Based ‘on our calculations and our observations

3

on the behaviour of the system in the first parameter region

~we conclude that it undergoes a transition to periodicicty

through "period-halving" inférspersed with instances of

so-called "pseudo-periodicity", ,

N . . -
yo Since most of our work was  numerical in nature, we
T L o

- £ .

lod

e — =]
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the potentiaL of\this éroﬁp of equations and numercus and - Lt
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i

o
' s

> .
» P

cahnot’positivelx"guarantee‘the validity of our observetipns.

.
s :

However, this'work can be used to coroborate analytical work *

\

that has been cogpleted, Recent work of this sort :is rare. We
are aware of a, work by Barge [3]. In this paper the authoru

nentions, #mong other things, - that a noncompaet strange
attactor exists in this system. This attractor is believed to .

-
W3

possess perstodic as well as non-peri@dic current reversal.

.

However, further .studies on this attractor have yet Ato be

pre'sented. ' L .

4.5 Direction for Future Research .

In ‘this thesfs we studied the Rikitake system for K=2"

2
o

and for varlous values of [ . This study has not .exhausted &

v

A

different avenuese remain to be explored. .One l&n%/of attack

*

‘would be to fix p and’ observe what happens to the system as K

increases. UndOubtedly some interesting results would appear ) \\
in .transitional regions as the system moved . from chaos to

order. ' B . ' ® :

‘f va

Another interesting proposal would be to remove some of |

the restrictions we: established when we .fifrst f8rmed our ‘

4 N -

lumped model. By generalizing the model we can enhance the

- v,

potential for a ‘more realisgic simulations. Some studies have

- . .
.

airead& progressed in that direction, Rikitake‘[35h, but not°ph \J

in ;he'context.that we would like.

Yet anotper variation that could‘\be adgpted and one -

1] B v

— ' . a . .
v
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which has already been been/%ursued by somq authors [33] is .
7/ : K
; - B

tﬂ generalize the model co morﬁ)thgm two dynamos. Preliminaty
- . - a f
results for 3 couple& dynamos, hate ' alread? turned up a host

\

.’of 1nterest1ng ‘yi¥urcation ph!lomqna., Lebowitz [27] has

v

presentedr-a generalization to N cbupled dynamos and ' a

. ‘ L)
bifurcation analysis of this generalization wmight prove

Although 1t would be too ambitious to

N

extremely 1nterest1n§.

state that in the limit such-a generalization might lead us

to the magnetohydrodihamic equations, the results of
At ‘
Y
genetalization would like%’Jlead to, a better understanding of
I .
the solutions of these same equations.

such a

- \ X . ’
-
~ . + =

»

A
]
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