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ABSTRACT

The Application of
System Identification Techniques for Determining
Z-transfer Function Coefficients of Building Components

Hong Liang

This thesis describes an experimental procedure for
determining z-transfer function coefficients of building
envelope components. A frequency analysis approach based on

system identification techniques is presented.

The z-transfer function method is most commonly used to
calculate space thermal loads. There is a need to determine
the z-transfer function coefficients by experimental
methods. An application of system identification techniques
to determine z-transfer function coefficients of building
envelope components based on experimental data is

investigated.

The procedure consists of two steps: (1) transforming
experimental measurements to frequency domain using the Fast
Fourier Transform and determining the frequency response of
the transfer function; (2) applying multi-linear regression
techniques to fit the z~transfer function coefficients to

the frequency response.
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In the experimental work, tests were performed using
Binary Multi-Frequency Sequence signals as driving
functions. Temperature feedback control was used to achieve

the boundary conditions.

The frequency analysis approach to experimentally
determine the z-transfer function coefficients showed
acceptable results. The frequency response of the transfer
function 1/B, used in the z~transfer function method was
obtained from the experimental data on two different wall
samples and coefficients of z-transfer function were

determined.




ACKNOWLEDGEMENT

The author wishes to express her sincere gratitude to
her supervisor, Dr. F. Haghighat of the Centre for Building
Studies at Concordia University, and her co-supervisor, Mr.
D. M. Sander of the Institute for Research in Construction
at National Research Council Canada for their guidance,

invaluable advice, and support through out this study.

Appreciation must be mentioned to the Division of
Building Performance at National Research Council Canada for
the permission of performing experiments in their Thermal
Insulation Laboratory. Also thanks to Mr. R. G. Marchand for

his help during the experiments.

The author is indebted to her friends, A. Eames and his
wife, Karen, for their help and encouragement during times.
Thanks also goes to her friends, R. Y. Li and J. Withers for

their assistance.

The author wishes to dedicate this thesis to her
parents for their dearly 1love, patience and unfailing

support for the completion of her M.ENG. programme.




vi

TABLE OF CONTENTS

LIST OF TABLES ~~~~cmrcccrrcccmanceacrcccco—~

LIST OF FIGURES ~~-rewcccrccrrmeccca—ccac—————

NOMENCLATURE  ~cemcrmemm e cmcnmmm e e

Chapter 1
Chapter 2

Chapter 3

Chapter 4

Chapter 5

Introduction =—-r==e—ceoccmmcccaa——
Literature Review ====-cmeccccama-
Methods for modeling transient

heat conduction through walls ----
Lumped parameter RC net-work —----
Periodic heat flow ——==~==ecc——ce--
Theoretical solution of the heat
conduction differential equation
—— matrix expression ==—v~cmcca--
Frequency domain simulation ===---
Response factor and

z-transfer function methods --=----
System Identification =-—===~==ec---
System identification problems ---
The choice of model structure ==--
Parameter estimation e«——cecememaaaa
Estimation of coefficients

for transfer function 1/B ==vewe=-
Description of the test

samples —=--eercccmr e

Page

viii
ix

xi

18
19

20

22

25

28
34
34
39

41

50

51




Chapter 6
6.1

6.2

References

Appendix A,

The tests apparatus for

determination of 1/B ----ceccecmma=
Test procedure -~~=c—c-ccceccconax
Posults for sample 1 =-=~——c=c—m=-
Results for sample 2 —--cecccce~a-
Discussion of the results --=--—---
Conclusions =—-—-—=——cecmecemccccmc———-
sSummary e--==-—---ceccccrmmmmeec———-

Discussion and recommendations

for future work -------~-~-ce—-e--

B, C,

D

- T VD S - G- B R GEP WD G G ) G @ e W e e

52
55
56
59
61
80

80

81
86

93




Table

Table

Table

Table

Table

Table

Table

4.1

4.2

List of Tables

Non-periodic test signals -—--=—=-=-

Period test signals

Samples thermal properties - =—----

Z-transfer function

coefficients for sample 1 —=—=—=~-

Frequency response of
function for sample 1

Z-transfer function

z-transfer

coefficients for sample 2 =—-=~----

frequency response of z-transfer

function for sample 2

49

49

75

76

77

78

79




Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

List of Fiqures

Lumped parameter models

of a 8lab = cmccccccmc——————a-

Surface heat flow

with temperature -—==--ce-cecccaaa-

Schematic of test sample 2 <—=~~=-

Schematic of test

apparatus for 1/B =~=~=-=-——ece—ee--

Schematic of the guard heater -~~

Tests set-up for

determining 1/B  —-esmmmmmmeeaaoo

Anplitude of spectrum

of BMFS signal --——-—-==c—c—cc—meaoo

Thermocouple setting for 1/B ----

1/B input and output signals

for sample 1 --——--——ccmemmmnme——

Frequency response from

test data for sample 1 ---~==----

Frequency response of z-transfer

function for sample 1 =--====w=c=--
1/B input and output signals
for sample 2 =~=---reeemmcena—-

Frequency response from

test data for sample 2 ---==w=--

32

33

62

63

64

65

66

67

68

69

70

71

72




Figure

Figure

Figure

Figure

Frequency response of z-transfer

function for sample 2 =~=======-
Simulated load for

sample 2 ~-=-memem——ccon——eaoo-

Heat flow meter apparatus ————
Heat flow meter and temperature

control apparatus ==---——=—----

73

74

84

85




>

V]

v U W

o 0 O:,

®

moom o om O m Q
Moo=
o o

| -]
«@

=]

NOMENCLATURE

Transfer function of walls

Gain factor of frequency response function
Z-transfer function coefficients

Transfer function of walls

Z-transfer function coefficients

Amplitude of input function

Transfer function of walls

Specifi - heat of sample material, [J/kg K]
Transfer function of walls

Error between system output and mode. output
Frequency, [1l/sec]

Function of test signal

Transfer function

Guard heater

Guard heater

Guard heater

Transfer function

Thermal conductivity of sample, [W/m K]
Thickness, [m]

Number of coefficients in denominat.r of
transfer functions

Mean value of the noise

Number of coefficients in numerator of
transfer functions

Period, ([min.]



0

0 0 O

n

a o+ 3 A3 3

4 © m = g

R

L L B - B ~

Heat flow rate through inside surface of walls
Heat flow rate through outside surface of
walls

Model output

Measured output at time t

Predicted output at time t

Error function between system output and model
output

Temperature difference

Room air temperature

Outside air temperature

Time

Steady state U-value

Thermal response factor

Angular velocity, rad h™'

Phase of input signal, [°C]

Attenuation factor of frequency response

Time lag of frequency response

Time constant of system transfer function
Residue of transfer function

Sampling time interval

Phase factor

Phase angle of heat flow (output signal)

Phase angle of temperature (input signal)




CHAPTER 1
INTRODUCTION

The analysis of transient heat transfer through
building envelope components is important in
air-conditioning system design and energy simulation of a
building. Air-conditioning system design involves the
computation of peak design load at a specific hour of a
design day. Accordingly, the designer wants to know the peak
heat flow through the inside surface of a wall when the
sol-air temperature variation of the design day is imposed
on the outside surface of the wall. Building energy analysis
techniques include the space heating and/or cooling 1load
calculation, which is the basis for the air distribution
system simulation and the central plant (boiler/chiller)
simulation. The space thermal loads calculation contain the
determination of transient heat transfer through building

envelope components.

The calculation of space thermal loads depends greatly
on the amount of heat flow through a building’s exterior
walls. The amount of heat flow through a wall is a function
of climate, building construction, space temperature control
strategy, occupancy, and 1lighting wuse patterns. These
conditions are dynamic in nature. As a result, dynamic
thermal analysis of building envelope components is critical

in loads calculation.
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Analyzing the dynamic thermal behavior of building
envelope components involves both direct and inverse
problems. The direct problem consists of finding the
response to a specific input based on a given description of
the system. In contrast, in the much more difficult inverse
problem, the response of the system to a particular input is
known and we wish to find the system description which fits
the input/output relationship as closely as possible. The
inverse problem is a classical problem and is wusually known
as system identification. The question of how to obtain the
dynamic thermal response characteristics of building
envelope components from experimental measurements forms the

subject of this study.

In this thesis, a review of the methods used to
calculate the transient heat transfer through walls shows
the z-transfer function method to be in common use.
Consequently, modeling transient heat transfer through walls
by means of z-transfer functions and estimating the
parameters of the transfer functions by applying system
identification technique are described. Then, experimental
techniques and a discussion of the results are presented.
Finally, as a summary, a developed procedure to
experimentally determine the z-transfer function

coefficients for walls is presented.

The z-transfer function method is endorsed by American
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Society of Heating, Refrigerating and Air-cConditioning
Engineers (ASHRAE) and has been in common use to calculate
design thermal loads in buildings for the past 20 years in
North America. The major advantages of the :z-transfer
function method are that it is numerically efficient and
does not require that the heat transfer boundary conditions
be periodic. The use of the z-transfer function simplifies
the calculations of transient heat flow through composite
walls and roofs. No direct knowledge of material
thermophysical properties or heat fransfer mechanisms is
required. The effects of the actual heat transfer mechanisms
are implicitly modeled with a best fit linear approximation.
Also, the method overcomes the necessity to calculate
internal temperature distributions and provides a set of
coefficients for the structure that can be used to analyze

other input history without resolving the entire problen.

The z-transfer function coefficients are presently
obtained by means of calculations presupposing that the
thermal properties of the component materials are known. The
derivation of the z-transfer function coefficients is based
on the assumptions that the wall construction is made of
homogeneous materials and that the heat flow is
one-dimensional. In practice, however, the calculation of
z-transfer function coefficients by this method 1is not

adequate because: (1) the thermal properties of wall
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materials of existing buildings are often unknown, or the
installed materials are different from the properties
reported in the literature because of environmental
influences or material degradation with time; (2) the actual
wall may be composed of non-homogeneous materials; (3) the
wall may contain anomalies, such as framing members that act
as heat bridges through the insulation. Therefore, the
transfer function coefficients obtained from the calculation
methods may not accurately represent the thermal performance
of real walls or roofs. Experimental methods to determine

the z-transfer function coefficients are required.

Ob jectives

The objective of this research work was to develop an
experimental method to analyze the thermal dynamic
characteristics of existing walls and to determine the
z-transfer function coefficients for ©building envelope
components. To attain this goal, the application of system
identification techniques for finding the frequency response
of a wall from experimental data and fitting the model
parameters (z-transfer function coefficients) tc the

frequency response has been explored.




ScoEe

This thesis describes the results of the research work
in the following chapters. Chapter 2 reviews the literature
of calculation methods and field studies. In chapter 3,
methods for modeling the transient heat conduction through
walls are described. Chapter 4 ©presents the system
identification techniques used to determine the heat
transfer characteristics of building envelope components,
which involves the experimental work. Chapter 5 describes
the experiment to obtain the 1/B transfer function. Finally,

conclusions and recommendations are summarized in chapter 6.




CHAPTER 2
LITERATURE REVIEW

Existing methods for analyzing the transient thermal
behavior of building envelope components can be categorized
into three general classes: (1) lumped parameter methods;

(2) analytical methods:; and (2) transfer function methods.

The lumped parameter methods model a physical system as
a number of discrete elements or ‘lumps’. These can be
expressed by using Resistor-Capacitor (RC) circuits based on
the analog between thermal phenomenon and electricity. Then
numerical techniques may be used to obtain the solution.

Paschkis and Heislar“’, Klein et al.m, Lawson and

(3]

Mcguire'™, and Friedmann'*’

analyzed the transient response
of passive analog electric circuits. The results indicated
that many elements are required if an analog is to
accurately represent the response of a slab to a sudden
change in the driving function.

Stephenson and Mitalas'®

presented a method of
designing analog circuits to calculate one-dimensional heat
conduction through a homogeneous wall with a specified
accuracy, and compared the frequency response of several
electrical analog circuits with the theoretical frequency

response o©of a homogeneous slab. The results gave a

prescription for the selection of the simplest circuit which
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will achieve a specified accuracy over a specified frequency

range.

1 (71

Sonderegge::'[6 and Davies discussed the choice of
resistance and capaci‘“ance elements in modeling a
sinusoidally excited wall. Davies’s approach was to minimize
the sum of squares of the difference between the

corresponding elements in the frequency response matrix.

] )

Hammarsten'®’ used the results of Sonderegger'ﬁ and
discussed in detail the behavior of a lumped parameter model
in modeling a wall with an air film. The purpose of his work

was to model whole houses.

The lumped parameter method with the numerical solution
has the advantage that it can be used to solve nonlinear
system problems. But, it is often necessary to take a large
number of ‘lumps’ and at frequent intervals to avoid
numerically-induced oscillations in the solution. Also, the
complete internal temperature distribution must be computed
at cach time step. It is necessary to solve the complete
problem over again when the same structure is subjected to
another input time history. Thus, the numerical techniques

may be expensive and time consuming.

The analytical methods of solving the governing heat

conduction differential equation are treated in standard

)

heat conduction text books.'® By using the superposition
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principle, this approach is quite acceptable for regular
geometries such as homogeneous plane walls when the input
functions are relatively simple. If the boundary conditions
are represented as periodic functions, the building heat
transfer parameters, including convection coefficients, are
constant with time, and the radiant heat transfer is

linearized, the harmonic solution can be obtained. Mackey

101 (111 {12,13)

and Wright, Van Gorcunm, Muncey and Spencer,

f1a) [15] [16]

Gupta, Sonderegger, Maeda, and others have
contributed to the enhancement of analytical methods for
solving the heat conduction differential equations.

! presented a method which makes use of the

Pipes“7
matrix algebra technique and the analogy existing between
the thermal problem and the flow of electricity to analyze
heat conduction problems. This has been used as the

fundamental tool in modeling of heat flow through building

components.
Stephenson and Mitalas!® ' and Mitalas and
Stephenson“g] developed the thermal response factor method.

Thermal response factors are defined as the time series
output resulting from an dinput triangular pulse. The
response to any input can then be obtained by approximating
the input as a series of triangular pulses and applying the
superposition principle. The thermal response factors for a
homogeneous slab can be calculated by exact analysis given

the thermal properties and thickness of the slab and the




time interval. The formulae for calculating the response

factors for a homogeneous slab are giventzo'.

A computer program by Mitalas and Arseneaultw”
improved considerably the accuracy of the calculation of
response factors. The program is able to calculate the
response factor sets for any homogeneous multi-layer slab
provided that the heat flow is one-dimensional.

Kusudam]

<xtended the thermal response factor method
for multi-layer structures with various curvatures of finite
thickness and to semi-infinite systems.

(23}

Hittle provided a comprehensive mathematical

development of response factor theory. Also Hittle and

Bishoplz'”

developed an improved root-finding technique
which allows response factors to be calculated more
efficiently. This improvement eliminates the need for
searching fo.- roots and ensures that roots will not be

missed.

Considering that most existing models contain too many
parameters to be suitable for direct analysis, Sherman et

25
al.[ !

developed a simplified model of dynamic thermal
performance that allows the characteristics of a wall to be
quantified on the basis of measured surface temperatures and
flux. The model uses a set of Simplified Thermal Parameters

(STPs) to characterize the thermal performance of walls from
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an arbitrary temperature history. The STPs include the
steady-state conductance (U-value), the most important
parameter of any wall, and the time constant. Sherman found
a relationship between the reduced set of parameters and the
thermal response factors used in the thermal response factor
method. As a result, the response factors can be determined

from the STPs.

To determine the accurate results of heat flux for some
types of construction, a large number of response factors
are needed in using the thermal response factor method.

6
Peavy 2%

developed a method to reduce the number of terms.
By relating the heat flux and a set of modified response
factors in the conduction transfer functions, the amount of
computation was reduced.

Ceylan and Myers t27]

presented a method for obtaining
long-time solutions of heat conduction transients with
time-~dependent forcing functions. Their technique begins
with either a finite-difference or a finite-element model of
the heat-transfer problen, then approximates each
time~dependent input function by continuous,
piecewise-linear functions, each having the same uniform
time interval. Finally, the resulting generalized eigenvalue
problem is solved and the response coefficients are
obtained. The Ceylan and Myers method was develcped for both

one-dimensional and multi-dimensional heat conduction

problems. There are errcrs due to the spatial discretization
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of the structure and to the approximation of the
time-dependent inputs by continuous piecewise-linear
functions. Further, the costs of obtaining the response
coefficients from the solution of the eigenproblem is

relatively high.

As a final extension of thermal response factor

methods, Stephenson and Mitalas!®®

developed the z-transfer
function method. The basis of this method is that the output
value at any time can be determined from the input at that
time and the values of both the innut and output at previous
times. The z-transfer function coefficients can Dbe
calculated from +the thermal properties, thickness and
position of materials in the walls. The z~transfer function

requires fewer coefficients than the response factor method.

Therefore, it is very efficient in computation

Transfer functions have been used typically to model
walls and roofs for which the predominant heat transfer

(291 discussed the

mechanism is conduction. Mitalas
development and properties of the z-transfer function,
indicating that the most important characteristic of the
z-transfer function method as compared Wwith other
calculation methods is that the input and output are a
sequence of values equally spaced in time. Thus, the weather
records of outside air temperature and solar radiation,

which are given on an hourly basis, can be used as an input

with very little preprocessing.
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Stephenson and Ouyang[?'o' analyzed the accuracy of
z-transfer functions for walls using a sinusoidal function
as excitation in frequency domain, and indicated that the
precision of heat flux calculated using the 2z-transfer
function depends on how closely the frequency response of
the transfer function approximates the true frequency
response of the wall over the range of the driving
function’s frequencies. The effect of the time interval used
in the transfer function method and the effect of the number
of eigenvalues used to determine the transfer function
coefficients also were discussed. They indicated that if the
number of eigenvalues used in the calculation is greater

than 4, the extra terms have little effect on the accuracy.

ASHRAE has adopted the z-transfer function method to
calculate the transient heat conduction through building
envelope components. Z-transfer function coefficients for
179 different construction types are listed in the ASHRAE

39 Those were calculated using combined outdoor

Handbook.
air heat transfer coefficient, indoor air heat transfer
coefficient, and the material properties of roof or wall
constructions listed in the Handbook. Application of these
transfer function coefficients is limited to cases with
sol-air temperature values similarly calculated with the
combined outdoor heat transfer coefficient.

[28]

Stephenson and Mitalas presented methods for

calculating the coefficients of the z~-transfer functions for
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heat flow and temperature at any plane in a multi-layer

wall.

Based on the methods above, Mitalas anad Al\rlsenean.llt‘321

produced a computer program to calculate z-transfer

functions for walls and roofs.

It should be noted that the <calculation methods,
mentioned above, for derivation of z-transfer function
coefficients are in terms of physically defined thermal
properties of building component materials The method
recommended in the ASHRAE Handbook assumes that thz walls or
roofs are made of layers of homogeneous materials, and the
heat flow is one-dimensional. Unfortunately, the thermal
properties of existing wall or roof materials are often
unknown. Thus, the calculation methods are not adequate.
Also, the actual walls or roofs contain framing members
which act as heat bridges through the insulation resulting
in heat flow which is not one-dimensional. Conseqguently, the
transfer functinn coefficients in the ASHRAE Handbook of
Fundamentals may hot accurately represent the thermal
performance of real walls or roofs. As a result, improved
methods of obtaining transfer function coefficients are

required.

Many methods exist for transient analysis in the
engineering field. There is a basic distinction in the goals

of the different methods, which can be broadly categorized
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as direct or inverse problems. The direct problem consists
of finding the response to a specific input kased on a given
description of the system. For instance, the designer of a
building has the description of the building and he wants to
calculate its peak aad average thermal loads. In the inverse
problem, on the other hand, the response of a system to the
particular input is known but the system description, which
fits this input/output relationship as closely as possible,
is desired. The estimation of the transfer function
coefficients based on realistic performance measuremerts is
an er iential inverse problem. A building wall may be
considered as a black box, and then its characteristics,
expressed by the z-transfer function coefficients, can be
inferred from the temperature and heat flow data. Several
investigators have used system identification methods to
study the thermal behavior of walls.

331 attempted to fit a response

Pederson and Mouen
factor model to measred data as part of an ASHRAE research
project. They concluded that the direct procedure for
determining Thermal Response Factors is impractical because
of the extreme sensitivity of such procedures to
experimental error, and the 1likelihoed of error in a
transient heat transfer experiment. Consequently, they
applied system identification techniques by adjusting the
thermophysical properties of the chosen model rather than

adjust the thermal response factors directly. The material

thermophysical properties were estimated from the
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experimental data. All of the requisite properties of
response factors, such as the common ratio property and the

overall summation property, were retained.

[34] (35]

Astrom and Eykhoff

and Bekey reviewed and

discussed the use of the system identification techniques to

[36]

determine a system’s parameters. Crawford and Woods used

least squares techniques to fit parameters to a chosen
transfer function model in time domain. Fang and Grot'?"

derived thermal resistance values of building envelopes from

field data.

Seem and Hancock[:m

presented a technique for
characterizing the dynamic performance of a thermal storage
wall based on the data obtained from a series of temperature
and heat flux measurements. The coefficients of a transfer
function model were estimated dire~tly from data using
linear 1least squares regression. Also, a set of parameters
for characlerizing the steady-state performance were derived
from the transfer function coefficients.

Stephenson, Ouyang and Brown'™®’

developed an
experimental procedure to derive the transfer functions of
walls from hot-box test results. The procedure involves two
steps. Starting from a lumped parameter model of the
transfer function in s-domain, they determine the model

parameters, time constants and the associated residues, from

experimental measurements. Then, using the equivalence
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between the lumped parameter model and the ratio of
polynomials expression of the z~transfer function, they find
the z-transfer function coefficients in the denominator
polynomial of the expression. Next, they determine the
frequency response from experimental data and match this
frequency response to the response of the z-transfer
function at some specific frequencies in order to determine
the cCoefficients in the numerator of the z-transfer

function.

The experimental work involves using a guarded hot-box
wall testing facility to measure the air temperature at both
sides of a full scale test wall and measure the heat flux
into the room-side surface of the wall. The experiment is
conducted by using a ramp test signal to determine time
constants and by using sinuscidal signals to determine the

frequency response of the transfer function.

The experiments are a series of tests on a real wall
which contains framing members. The heat transfer through
the wall is not one-dimensional and the effects of heat
bridges is considered.

140l used system identification

Haghighat and Sander
techniques to determine the dynamic response of walls. In
their study, a wall was identified as a system with output
(the heat flux on the inside surface of the wall) and input

(the outside weather conditions) related by a transfer
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function. Experimental procedures were conducted using a
Binary Multi-Frequency Sequence (BMFS) as the input driving
function, and the coefficients of the z-transfer function
(1/B) for a single layer sample were obtained using both
frequency response analysis and least squares regression in
time domain.

1301 4 nvolves

The method used by Haghighat and Sander
measurement of wall dynamic performance and analysis of the
measurement data to determine the =z-transfer function
coefficients which does not require the thermal properties
of building component materials be known in advance. The
BMFS excitation function has the advantage that
multi-frequency response can be determined from one test.
This requires less precise control and does not take as much
time as test procedures which have to be repeated for each
individual frequency. The z-transfer function coefficients

are obtained using multi-linear regression to get the best

fit of frequency response at a large number of frequencies.




CHAPTER 3

METHODS FOR MODELING
TRANSIENT HEAT CONDUCTION THROUGH WALLS

The analysis of transient heat transfer through
building envelope components is important in
air-conditioning system design and energy simulation of the
building. In practice, the usual approach in
air-conditioning csystem design involves the computation of
peak design load at a specific hour of a design day.
Accordingly, the designer wants to know the peak heat flow
through the inside surface of a wall when design day sol-air
temperature variation is imposed on the outside surface of
the wall. Similarly, to estimate the energy requirements,
the detailed simulation performs energy balance calculations
hourly over an analysis period of a year. Therefore, the
heat flow through walls, typically for each hour of the
year, with outside surface temperatures determined by
weather and solar data is required. Further, since the
control characteristics of the air distribution system
interact on the space 1load, the energy simulation must
relate inside air temperature variations with changes in

heating/cooling supplied to the room.

The analysis of transient heat conduction through walls
is a major part of heat transfer study in buildings and it
is complicated. The Fourier heat conduction law and the

general heat-conduction differential equations provide the




19

foundation of this analysis. Methods of solving the
differential equations include the lumped parameter model
with numerical solution, the first-principles mocel with
harmonic solution, and the ‘black box’ model which |is

represented by the z-transfer function.

In this chapter, from the practical application and
theoretical calculation points of view, the modeling methods
used in the lumped parameter method and in the analytical
methods for harmonic solution are first reviewed. The
theoretical solutions of the z-transfer functions in the
transmission matrix are obtained. Then, the frequency domain
simulation in Fourier transform is described. Finally, the
modeling techniques applied in the z-transfer function

method are presented.

3.1 Lumped parameter RC net-wvork

The lumped parameter models use an analogy to electric
resistor—~capacitor circuits; the continuously distributed
thermal resistance and capacity of the wall material are
taken to be localized into a number of discrete units or
‘lumps’. The resulting electric circuit can then be solved
numerically. The larger the number of lumps taken, the more
nearly the results of computations on the lumped parameter
model approximate the computations of the continuously
distributed model. Examples of lumped parameter models for a

slab are given in Figure 3.1. The R and C represent the heat
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resistance and heat capacity of the slab material
respectively. Both space and time derivatives in the heat
conduction equation <can be approximated as finite
differences, and the numerical solution can be obtained. The
finite difference solution of a lumped parameter model is

shown in Appendix A.

By using 1lumped parameter models with numerical
methods, such as finite difference and finite element
techniques, the temperature distribution as well as heat
flows and other desired outputs can be determined. Also,
non-linear systems can be solved. However, it is often
necessary to take a larger number of ‘lumps’ and very small
time steps to avoid numerically-induced oscillations in the
solution. The complete internal temperature distribution
must be computed at each time step. Since, it is necessary
to solve the complete problem over again when the same
structure 1is subjected to another input time history,

numerical techniques may be expensive.

3.2 Periodic heat flow

Analytical methods, using the Fourier heat conduction
law as a starting point, solve the distributed model of the
heat conduction differential equation. If we consider a wall
as a thermal system and, ideally, that the change of outside
air temperature or solar radiation incident on the outside

surfaces of the wall are repeated over a period of 24 hours,
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then the transient heat conduction differential equations

can be solved in the periodic function form.

The principle of periodic heat conduction through a
wall is that: if the excitation function, say temperature

variation on one surface of the wall, is expressed by

T(t) =

n

bn cos[nwt+7n] (3.1)
1

ht~18

where, bn and 7n are the amplitude and phase of the input
function respectively, t is time, and w is angular velocity
(rad h*). For the given thermal properties of the wall
elements, the heat flow at point x of the wall and at time t

can be obtained from the expression:

Q(t) =Y (bngn) cos[nwt+(7n+wn)] (3.2)
n=1

where, gn and ¢ are called attenuation factor and time lag
of the frequency response respectively. snand ¢, can be

found by choosing the excitaticn function as:
T(t) = cos(wt) (3.3)

Where, b;=1 and 1n=0. Then, the frequency response Q(t)

against the input function is in the form of:

Q(t) = € cos(wt+yp). (3.4)
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The drawbacks of the harmonic analytical methods are
obvious. The outside excitations include sudden changes in
temperature which are not sinusoidal functions, and the
sol-air temperature variation does not repeat every day.
However, these methods have been used for design 1load

calculations.

3.3 Theoretical solution of the heat conduction

differential equation —— Matrix Expression

The theoretical solution of the heat conduction
differential equation can be derived starting from the basic
dynamic characteristics of constant parameter, linear, and

stable systems.

A system is known as constant parameter if all its
fundamental properties are invariant with respect to time. A
system is linear if the response characteristics of the
system are additive and homogeneous. A system is called
stable if every possible bounded input function produces a

bounded output.

In many engineering sciences 1linearization of a
physical problem has been successfully applied to simplify
the process. For engineering purposes, a building enclosure
can usually be considered as a constant parameter, linear

system.
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The dynamic characteristics of a constant parameter,
linear system can be described by a weighting function h(t),
which is defined as the output of the system at any time to
a unit impulse. The usefulness of the weighting function as
a description of the system is that the response of the
system to any excitation can be found from the convolution
principle. For example, if temperature variation excited to

a wall is T, the response, heat flow through the wall, can

be expressed as:

Q(s) = H(s) T(s) (3.5)

where, Q(s) and T(s) are Laplace transforms of the output
(response) and input (excitation) functions. H(s) 1is the
Laplace transform of the weighting function which describes

the thermal properties of the wall.

Because ve are interested in the temperature and heat
flow particularly at both surfaces of a wall, from the
convolution expression of surface heat flux with
temperatures, the matrix expression of the theoretical
solution of heat conduction differential equation for a wall

can be obtained as follows.

Given the temperature excitations which are
simultaneously imposed on both surfaces of a wall (see
Fig.3.2), T(1,t) and T(2,t), the heat flow at both surfaces

of the wall can be expressed in the convolution integral
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form. In converting these equations into Laplace transform,
and also applying the convolution integral property that the
convolution formula becomes a product in the imaginary

space, we have:

Q(1,s) = qu(l,S) T(1,s) + qu(lls) T(2,s)
(3.6)
Q(2,s) = qu(Z,S) T(1,s) + qu(z,s) T(2,s)
These can be rewritten in a matrix expression:
Q(1,s) _ qu(l,s) qu(lfs) T(1,s)
Q(2,s) qu(Z:S) qu(Z,S) T(2,s)
(3.7)

The square matrix is called a transfer matrix, in the sense
that it relates the temperature matrix to the heat flow
matrix. The elements, qu and qu, are called transfer
functions. The derivation of the transfer function is given

in Appendix B. urther, the matrix expression can be

rewritten as:

T(1,s) A(s) B(s) T(2,s)
= (3.8)
Q(1,s) C(s) D(s) Q(2,s)

The transfer functions A(s), B(s), C(s), and D(s) can

be derived (see appendix B).
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For a multi-layer wall, the transfer matrix of the
whole wall is the product of the transfer matrices of every

layer of the wall. For a two-layer wall, for example, we

have:

A B1 Az Bz -1
i Ci D1 Cz2 D2
- -
A1A2+-Bi1C2 A1B2+B1Dz A B
= = (3.9)
Ci1Az2+D1C2 C1B2+D1D2 C D
L. o

This expression can be rearranged to express surface

heat flows as responses and the surface temperatures =as

excitation:
D(s) - 1
o (s) | | TB(s) TB(s) | | T,(8)
Qz(s) 1 _ _A(s) Tz(s)
B(s) B(s)

(3.10)

3.4 Frequency domain simulation

The frequency response function is a special case of
the s-transfer function. The frequency response function may
replace the transfer function with no loss of information.
In addition, the Fourier transform effectively eliminates
one dimension from the problem. In the numerical application
of the Laplace Transform, a function or sequence in time
domain is transformed into a function or sequence

parameterized over the entire complex domain. If the real
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and imaginary axis were discretized into N points each, that
would mean it would be necessary to calculate and store N
words of complex data for a transformation. The Fourier
transform converts a time domain function into a new
function which is parameterized only over the imaginary
axis. In contrast to the Laplace transformation, only N

points need to be calculated and stored.

The frequency response of the transfer functions given
in the matrix expression of equation (3.10) can be obtained

simply by substituting jw for s:

D(jw) _ 1
Q, (jw) _ B(Jw) B(jw) T, (jw)
Q, (jw) 1 - _AQw) T (jw)
2 TB(30) B(j0) 2

(3.11)

Where, w is angular frequency: w=2nf.

As in the s-domain, the convolution integral of a
constant parameter, linear system in frequency domain can be

reduced to a simple algebraic expression:

Q(f) = H(f) T(f) (3.12)

Hence, the frequency response function of a system can be

derived from the Fourier transform of the input and the

output.
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The frequency response function is generally a complex
valued function which may be conveniently thought of in
terms of a magnitude and a phase angle. This can be done by

writing H(f) in complex polar notation as follows:
H(E) = |H(f)| eI?() (3.13)

The absolute value |H(f)| is called the system gain
factor and the associated phase angle ¢(f) is called the
system phase factor. The gain factor and the phase factor of
a frequency response function also can be given by drawing
the Bode plot which shows the magnitude and the phase lag
separately., If the input, T(t), is the difference in
temperature between inside and outside surface of a wall and
Qi(t) is the inside surface heat flux, the gain factor is
the wall’s impedance and the phase factor gives the time
delay between the temperature difference and the surface
heat flux. The system time constant can also be estimated

from the Bode plot.

If the output of one system described by Hi(f) is the
input to a second system Hz(f), and there is no loading, or
feedback, between the two systems, then the overall system
transfer function H(f) is the product of the two transfer

functions:

H(f) = H (f) H(£f) (3.14)
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which implies
|H(£)| = |H (£)]| |H,(£)] (3.15)

P(E) = 9 (£) + 9, (D)

This valuable property simplifies the calculation of the

transfer function for multi-layer walls.

It is important to note that the frequency response
function H(f) of & constant parameter, linear system is a
function of frequency only, and is not a function of either
time or the system excitation. If the system were
non-linear, H(f) would also be a function of the applied
input. If the parameters of the system were not constant,

H(f) would also be a function of time.

3.5 Response factor and z-transfer function methods

The analytical model and the matrix model discussed
above require that the temperature excitation be a periodic
function for which a Fourier transform can be easily
obtained, or a simple analytical function for which the
Laplace transform is known. However, the natural excitation,
such as outside air temperature and solar radiation, are not
periodic and vary in a quite random fashion. It is
necessary, therefore, to incorporate these natural random

processes into the analysis.




The temperatures and heat flows can be represented by a
series of values equally spaced in time. The response of the
wall to a unit pulse can be determined analytically and can
also be expressed as a time series. These are called thermal
response factors. If the input is considered to be a series
of pulses, then the output is the superposition of responses
to these pulses. This may be written in the form of a
convolution expression. For example, if T is the input
temperature time series and Y is the set of m response

factors, then the outpat heat flux at time t is:

Y T (3.16)

Q(t) = )] (t-1)

m
J=0
Note that the number of response factors, m, is usually a

fairly large number. As the result, a considerable amount of

computation is involved.

The z-transform is often used in the numerical control
in random process and is an advanced way in which the
convolution integral is represented. The temperatures and
heat flows can be expressed as time series. The basic
formula of the z-transform to relate the heat flux time
series to the temperature time series can be expressed by a
linear differential equation and it can be simplified into
an algebraic equation by applying the convolution property.
The z-transfer function which relates the heat flow (Q) to

the temperature (T) can be expressed as a ratio of two
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polynomials in z' (see Appendix C):

-1 -2 -n
a°+a1 2 +a2 Z +.o.F an Z

2

14+b 2z b z 2 4+...+ b z°"
1 2 n

(3.17)

where, the parameters a1 and bi are called z-transfer
function coefficients. The heat flow (output) at time t can
be determined from the temperature (input) at that time and
both the output and the input time histories:

Q

=Tta +Tt_1a1+'1‘ a + ... + 7T

a
t 0 t-2 2 t-n n

-(Q_b *Q_b, + ... +Q b}

(3.18)

The major advantages of the z-transfer function method
are that it does not require the heat conduction boundary
conditions be linear and periodic as is the case with the
lumped parameter method or analytical method. Additionally,
it is important to note that since the number of summations
of the products is much less than that used in the response
factor method, it is much more economical in terms of
computer memory space and running time, and it allows for a
more precise computation with a shorter convolution

(30] jndicated that, if the

operation. Stephenson and Ouyang
number of coefficients used for output history terms are

greater than 4, the extra terms have little effect on the
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accuracy. In use of the z-transfer function method, the real
problem then is how to obtain the z-transfer function
coefficients.

The z-transfer function coefficients are presently
obtained by means of calculations knowing the thermal
properties of wall materials in advance. The thermal
properties of existing walls or roofs, however, are often
unknown. As a result, the estimation of the =z-transfer
function coefficients in this case forms an essential
inverse problem. System identification techniques which can
be used to solve the inverse problem are described in the

next chapter.



Figure 3.1 Lumped p~zameter model of a slab




Figure 3.2. Surface Heat Flow With Temperature




CHAPTER 4
SYSTEM IDENTIFICATION

Methods described in chapter 3 can be applied if
physical properties of wall materials are known and the
geometry of the walls is simple, for example, a multilayer
slab. However, this is not the case in practice. Therefore,
the approach of 2btaining thermal response characteristics
of walls by experimental measurements needs to be explored.
System identification techniques are often combined with
experimental measurements to estimate parameters for

physical systems.

This chapter first presents the system identification
problem. Then, the selection of the form of a model to which
parameters are to be fitted is discussed. The system
identification methods for finding z-transfer function
coefficients, which were employed in the experimental work

of this study, are described in the last section.

4.1 System identification problems

System identification is the essential inverse problem:
given input and corresponding output of a system, find the
system description which fits the rela”ionship as closely as
possible. A system identification problem in general, as

[35])

proposed by Bekey ~°', can be divided into three parts: (1)

selection of the model form and determination of the unknown
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parameters; (2) selection of a criterion function; (3)
selection of an algorithm to adjust the parameters in such a
way that the difference between the model and system response
is minimized. The different identification schemes can be
classified according to the basic elements of the problem:
the type of signals used, the form of the model, and the

criterion for selecting parameters.

The class of signals:

There are two different types of input signals:
nonperiodic and periodic. Nonpericdic test signals in common
use include impulses of different shape and relatively short
duration, step functions, and ramp functions. Table 4.1 shows
some of these signals. A common form of process model, the
weighting function, can be obtained simply by using the
impulse nonperiodic signal as input to the system. The
impulse signal is actually the derivative of the step
functicon. A detailed description of step response testing has

been given by Rake.!'!

The ramp functions also can be used
to form an impulse function. For example, the triangle
pulses, which were used in the response factor method
described in chapter 3, can be expressed by the superposition
of three ramp functions. In the case of a nonperiodic input
signal the process starts in an equilibrium condition.

Following the transient stage, it then may either settle into

a new equilibrium, which can be equal to the initial one, or
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continue drifting out of the region of normal operation. In
which way the process will behave depends on both the

properties of the process and input signal.

Periodic signals in common use consist of sinusoidal
signals, binary monofrequent signals, and multi-frequency
signals. Table 4.2 shows some periodic signals. The
multi-frequency signals contain significant signal amplitudes
at more than one frequency. Periodic signals in general are
employed in processes which are running at steady state with
the output containing the same frequency (or frequencies) as
the input and all transients having subsided. Modern transfer
function analysis employs Fourier analysis of signal values
digitized at equidistant points in time. Signals can be
recorded and processed on a general purpose digital computer.
Multi-frequency input signals enable the response at a number
of frequencies to be determined from one test. Binary signals
have the advantage that only simple switching control

elements are needed to generate the signal.

The class of models:

The mcdels can be characterized as parametric or
nonparametric models. If the structure of the model is known
in advance, or at least can be assumed properly, the
identification is parametric identification. The parametric

models include algebraic equations, differential equations,




37

systems of differential equations (state egquations), and
transfer functions. For example, the z-transfer functions
used to determine the heat flow through walls, described in
chapter 2, are a parametric model. In the case of a
parametric model, the system identification consists of the
determination of parameters in the fixed structures. The
r-rametric identification methods imply the problem of order
agreement between the model and the process. Nonparametric
models are the response obtained directly or indirectly from
an experimental analysis of a physical system, such as a
frequency response represented by a Bode plot or a recorded
step-response of a system. The nonparametric model has the
advantage that it is not necessary to specify the order of
the process explicitly. A parametric model can be produced
from a nonparametric model by identification methods. The
data processing procedure used to experimentally determine
the z—-transfer function coefficients in this research work is
actually based on this theory. As will be described in
section 4.3, the z-transfer function, which is in the form of
a parametric model, is determined from the frequency response
functions obtained from experimental data which are

nonparametric models.

The criterion:

The selection of a criterion by means of which the

"goodness of fit" of the model to the actual system can be
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used to classify the identification method. The error between
the model and the process is the output-signal error. The
error criterion is to minimize some function of the error.
For example, given a thermal system (a wall), a function of
the error between the system output (heat flow through the
wall) and the chosen model output may be defined as:

P

s(,Q) = [ *(t) at (4.1)
0

where Q is heat flow through the wall which is the systen
output, Q_ is the model output, and e is the error; Q, Q-
and e are considered as functions defined on (0,P). In the
estimation of z-transfer function coefficients, the model
(z-transfer function) output is Q and the system output is @
measured from experiments. Using the least squares criterion
in this parametric system identification problem means
finding the coefficients of the z-transfer function (model)
to make the error function, S(Q, QJ, as small as possible.
The ‘equivalence’ criterion, in frequency domain analysis,
implies that +the selected model 1is equivalent to the
frequency response functions which are obtained from

experimental measurements of the process.

The determination of parameter values of a mathematical
model from correctly measured input and output signals is
made considerably more difficult in the presence of

disturbances acting on the process and hence on the output
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signals. Therefore, identification methods should be able to
eliminate the influence of disturbance components. For the
case of a low-fregquency thermal system the simple computation
of regression is sufficient. In this study, multi-linear
regression techniques have been used tc determine z-transfer

function coefficients from the experimental measurements.
4.2 The choice of model structure

The choice of model structure is basic to the
formulation of identification problems, and will greatly
influence the character of the identification problems. Most
estimation schemes contain the assumption of linearity in the
parameters. Therefore, it pays to try to find transforms of

the variables to obtain such a linearity if it is possible.

The form of the z-transfer functions as derived in

chapter 3 can be expressed as a ratio of two polynomials:

azl +az'l+az?+ ... +az"
1 2 n

H(z) =

1+bhz'4bz2z%4+... +b 2"
1 2 m

(4.2)

Where, a and bl are z-transfer function coefficients which
are undetermined parameters. The estimation of these

coefficients is a linear identification problem. To obtain
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the z-transfer function coefficients a linear regression

procedure has been used in this research work.

A lumped parameter RC model expressed as a transfer

function is:

o
H(s) = Z _— (4.3)

1 +Ts
Jj=1 J

where, T = RC, R and C are the parameters of the transfer
function and o is the residue. This representation of the
system to dynamic behavior is linear, but, the model is
non-linear in parameters R and C. The estimation of the
parameters R and C can be carried out by finding the
eigenvalues or the roots at poles of the transfer function.
However, the root finding methods are not the 1linear

regression procedure.

In frequency domain analysis, a frequency response can

be cbtained directly or indirectly from experimental analysis

0

of a physical system. It can be shown in a Bode plot. This
response, represented by the gain factor and the phase
factor, is a nonparametric model. As mentioned above, the
nonparametric model has the advantage that it is not
necessary to specify the order of the process explicitly and

it can be used to produce a parametric model with linearity.
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Therefore, in this research work, an indirect awvenue 1is
explored to estimate the z-transfer function coefficients

from the non-parametric frequency response function.

4.3 Parameter estimation

The most commonly used parameter estimation method is
the least squares identification method. The theory of the
least sgquares method was developed by Gauss: "if the
astronomical observations and other quantities on which the
computation of orbits is based were absolutely correct, the
elements also, whether deduced from three or four
observations would be strictly accurate and, therefore, if
other observations were used, they might be confirmed but not
corrected. But since all our measurements and observations
are nothing more than approximations to the truth, the same
must be true of al’l calculations resting upon them, and the
highest aim of all computations concerning real phenomena
must ke to approximate, as nearly as practicable to the
truth. But this can accomplished in no other way than by a
suitable combination of more observations than the number
absolutely requisite for the determination of the unknown
quantities." “The most probable wvalue of the unknown
quantities will be that in which the sum of the squares of
the differences between the actually observed and the
computed values multiplied by the numbers that measure the

degree of precision is a minimum."™ That is, the sum of
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squares function:

(4.4)

where, Q and étare measured value and predicted value at
time t respectively. A detailed discussion of the least

squares method is presented by Rake. !

The correlation technique usually is used to determine
the weighting function with the generated random signalsﬁ‘m
The comparison of the least squares method and the

correlation technique is described by Astrom and Eykhoff.[351

The least squares method is commonly used to estimate
the parameters of the dynamic constant parameter system which
is of the linear generalized form. For models which are in

the form of the regression model:

n m

Q(t) = E: ai T(t~iA) - }: bx Q(t-1A) + N(t)
1=0 1=1
(4.5)

and assuming the mean value of the noise, N(t), is equal to
zero, and that the input signal is mutually independent of
the noise, the estimation of parameters of the regression

model in the sense of least squares is unbiased.
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Since the z-transfer function used to calculate heat
flow through walls is in the regression form, the time domain
regression can be used directly to determine the z-transfer
function coefficients from experimental measurements. By
knowing the temperature and heat flow histories and assuming
both the temperature and heat flow are zero at t=0, the load

calculation equation can be written in a matrix form:

T(1) o eee 0 O 0 0 .'ao‘ 2(1)]

T(2) T(1) ... 0 -Q(1) 0 VI I EW Q(2)

T(3) T(2) ... 0 =Q(2) -Q(1) 0 . Q(3)

. . an .

. . b, o .

. . b, .

T(k) T(k-1)...T(K-n) -Q(k-1) -Q(k-2) -Q(k-m) me P(k)_l
(4.6)

where, Q(k) and T(k) are heat flux and temperature values at
time t=kA, A is the time interval for calculation. a, and b‘
are the desired z~transfer function coefficients. Solving the
matrix employing the multi-linear regression techniques the
crefficients can be obtained. For statistical and
probabilistic considerations the number of equations Kk needs
to be much larger than the number (n+m) of parameters to be

estimated.

-
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In the lumped parameter models with the parameters R and
C, if the parameters can be determined, for example, by
determining the eigenvalues and residues, then the z-transfer
function coefficients can be obtained by converting the
lumped parameter model to the =z-transfer function. An
experimental procedure using these steps is developed by

Stephenson et. a1, 3!

Frequency analysis also can be used to estimate the
parameters in a parametric model. In contrast with the model
of equation (4.2), which is a constant parameter expression
of a linear system, the estimation of the z-transfer function
coefficients can be carried out by applying the least squares
method. The procedure is in two steps: first, find a
nonparametric model which is the frequency response function
from experimental measurements, and then fit the coefficients

of the assumed parametric model to the frequency response.

One of the techniques for treatment of periodic
processes is by calculating a periodogram, which essentially
is a graph of the variance associated with all the

frequencies us~d in the analysis.

The main drawback of the periodogram is the large number
of frequencies and the resulting poor sampling properties
(the estimator 1is not consistent). Suitable averaging

processes in spectral analysis can be used to overcome this
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drawback. The "Blackmen-Tukey" method computes the spectral
density function via a Fourier transform of the
autocorrelation function'®. The averaging is performed in
the time domain followed by a smoothing procedure in

1

frequency domain. Hammarsten'®’ has used this method in his

work.

Alternatively, the "direct Fourier transform" method is
based on a finite-range Fast Fourier Transform (FFT) and an
averaging of the resulting periodogram. The spectral density
functions are determined from the Fast Fourier Transforms of
the input and output functions of time. The averaging can be
achieved on the corresponding period. Then, the magnitude of
the spectral density functicn, which 1is known as the
amplitude spectral, gives the gain factor. And, the phase
angle of the spectral density functions, known as the phase

spectral, gives the phase factor.

Baseu on the theory that a parametric model can be
determined from a nonparametric model, an analytical
expression for a spectral density function can be obtained by

fitting the data with an assumed frequency domain expression.

The parameter values for a single-input, single-output,
constant parameter, linear system can be determined by using
the frequency response function identification method. The

most common way of obtaining the fregquency response function,

o
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H(w), is from sinusoidal inputs. That is, if input is:

T(t) sin(wt) (4.7)

the output will be:

Q(t) = £ sin(wt + ¢) (4.8)

and the frequency response function can be obtained at each
frequency. If the experiment is repeated for a large number
of different frequencies, a system Bode diagram is obtained.
The amplitude and phase curves on this diagram constitute a

nonparametric model.

In this study, the Fast Fourier Transform (FFT) method
has been wused to obtain the frequency responses from
experimental measurements. As mentioned above, the first step
is performing the FFT on the input and output signals of test
data. The averaging is obtained by dividing the input and
output signals by the number of data points in a period. Then
the frequency response function H 1is determined from the
equation:

Q(f)

H(f) = —— (4.11)
T(f)

Where, Q and T are the heat flux (system output signal) and

temperature difference (system input signal) respectively.
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The gain factor, Aq, and the phase factor, &, were then

determined from:

Aq = |H(£) | (4.12)
and =% -9 (4.13)

where, Qo and @T are phase angle of the output signal and the
input signal of the system. After normalizing the gain factor
by dividing by the steady state U-value, the normalized gain
factor Ag and the ® were drawn on the Bode plots. Therefore,

the desired nonparametric model for each test data was

obtained.

To obtain the z-transfer function coefficients,
multi-linear regression technigques have been used. The

z-transfer function derived in chapter 3 is in the form:

az’l+azl'+az?®+ ... +az"
0 1 4 n
H(z) =

1+bzl'+bz%+... +bz
1 2 m

(4.14)

where, a and b are the coefficients. z' is an operator
representing a time delay = iA, and A is the time sampling
interval for calculation. Since z=eAs, the equation (4.14)

can be expressed in Laplace notation:

-




aOe0 + aie'As+ aae'2A5+ cee + a,ne'"As
H(s) = Z
1+be B8, pe 28, | 4 pemis
1 2 »
(4.15)
Substituting jw = s, the transfer function beconmes:
ao+a1e'JwA+a2e'szA+. . .ta o inwh
H(w) = -l -J2wA : -jmWA
l+be +b_e +...tb e
1 2 m
(4.16)

This 1is the frequency domain expression of the
z-transfer function. Because the frequency response is a
complex function, it can be written in two parts: real
component and imaginary component. For each frequency two
equations can be written, one for the real part and one for
the imaginary part. An additional equation can be written for
the steady state gain. Therefore, for N frequencies, 2N+1
equations can be obtained. Rewriting these equations in
matrix form and performing the multi-linear regression
computation, the z-transfer function coefficients were

obtained.

The frequency response functions were determined based
on the experimental measurements which are presented in the

following chapters.




Table 4.1 Non-periodic test signals
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CHAPTER B
ESTIMATION OF COEFFICIENTS FOR TRANSFER FUNCTION 1/B

f31) recommends the

The ASHRAE Handbook of Fundamentals
use of z-transfer function techniques for prediction of the
rate of heat flow through exterior walls. In this techniques
the z-transforms of the heat flux at the inside surface of

the wall, Q the room air temperature, T, and the

1’

temperature of the outside surface, Tz, are related by:

Q(z) = &L T (2) - 75y T,(2)

(5.1)

where 1/B is the transfer function that relates the heat flow
at the inside surface to the temperature at the outside
surface, and D/B is the transfer function that relates the
heat flow at the inside surface to the room air temperature.
This chapter presents an experimental procedure for
determining coefficients of transfer function 1/B. This
transfer function is the most important transfer function

given in the transfer matrix of equation (3.10).

The experimental procedure to obtain z-transfer function
coefficients consists of determining the frequency response
function from experimental measurements, and then fitting the

z-transfer function coefficients to the frequency response.
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Tests were performed at the Thermal Insulation Laboratory of

the Institute for Research in Construction, National Research

Council cCanada.

In section 5.1 the two samples measured in the tests are
described. In section 5.2 the test apparatus and the
measurement methods are described. Section 5.3 describes the
test procedure. Then, the data analysis procedure and the
results for sample 1 are given in section 5.4 and the results
for sample 2 are given in section 5.5. Finally, the results

are discussed in section 5.6.

5.1 Description of the test samples

Two samples were tested in this research work. Sample 1
was a single layer of rubber material for which the thermal
characteristics are similar to gypsum wallboard. The nominal
dimensions of the rubber slab are 0.012m thick by 0.556m wide
by 0.558m high and the weight is 4.78 kg. Sample 2 was
composed of two layers, the rubber slab plus polystyrene
insulation board as shown in Fig.5.1. The nominal dimensions
of the polystyrene board are 0.037m thick by 0.61m wide by
0.607m high and the weight is 0.29 kg. The thermal properties
of the rubber and polystyrene board were measured in the

laboratory and are given in Table 5.1.
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5.2 The test apparatus for determination of 1/B

The definition of transfer function 1/B is:

_— = 1 (5.2)

where, T=T-1T

To derive transfer function 1/B, the test apparatus
should satisfy the following conditions: (1) be able to
maintain the temperature 'I'1 constant; (2) vary the

temperature Tz; (3) measure the heat flux Ql.

To meet the test requirements above, the test apparatus
was set up as shown in Fig.5.2. Three electric heaters were
used. Heater H was controlled to maintain temperature T, to
be constant. Two cold plates, through which 1liquid at
constant temperature was circulated, served as the sink for
the heat from the heaters. Heater Haa and heater Hab were
switched on and off, with the input signal, to produce a

varying temperature T}. The two samples are assumed to have

the same thermal properties and dimensions.

Using this symmetrical configuration, the heat flux Q
can be determined from the measurement of the power supplied
to the heater H. Each of the three electric heaters consists

of a metered area surrounded by a guard area, as shown in
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Fig. 5.3. The temperature of the guard area was maintained at
the same temperature as the metered area to reduce errors due
to edge losses. Since the system is symmetrical, half of heat
flow will be transferred to each side of the systen.
Considering the heater is made wvery thin and ignoring its
thermal capacitance, and assuming the samples on the two
sides of the system are the same, the heat flux Q on the
surface is: Q;=Power/(2*Area), where Area is the metered area

of heater Hl, and Power is the power supplied to metered area

of heater H1

The control, instrumentation, and data acquisition
system are shown in Fig.5.4. Two DC power supply devices,
each connected to a separate analog temperature controller,
were used to drive the metered area and the guard area of
heater Hz' The power supplied to the heaters Hz,a and Hz.b
were equal. The metered area of heaters H&a and Hab were

driven in series by one AC power supply device, the guard

area of heaters H2 and sz were supplied in series by

,a
another AC power supply device. The temperature controllers
function to c¢ontrol the heater H, to maintain constant
temperature, Tl. In order to measure the power supplied to
the metered area of heater H1, voltage and current were

measured. A 0.01 Q shunt resistor and a 500:1 voltage divider

were used to measure the current and the voltage.

A computerized data acquisition system (SAFE) was used

to collect data. An IBM-PC computer was connected as a
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terminal to serve as an operator interface and to record data
on magnetic disk for later processing. An on-line control
program was written in SAFE BASIC to manage the data
acquisition, recording, and to control the relays supplying

power to heaters H2 and H&b. T'he heaters H&a and Hz’b

8

were turned on and off wusing a Binary Multi-Frequency

Sequence (BMFS) signal obtained from the equation:

G(t) = cos(wt)-cos(2wt)+cos (4wt)

~-cos (8mt)+cos (16wt) ~cos (32wt) +cos (64wt)

(5.3)

where, w = 2n/P, P = period of the sequence.

Heaters H2 and HZb were turned on when G(t)z0 and,

off when G(t)<0. Fig. 5.5 shows the resulting signal, and the
amplitude of the frequency spectrum of the signal. As shown,
the BMFS signal has significant amplitude at several

frequencies.

Thermocouples were used to measure the temperatures at

different positions on the surfaces of the samples. 14 type-T
thermocouples were used to monitor temperatures. The
arrangement of the thermocouples is shown in Fig.5.6. 1In
order to reduce local heating effects the thermocouples were
placed on copper pads attached to the heaters. The

temperature difference between the two sides of each sample
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were determined from the average of the thermocouple readings
on each side. Two additional thermocouples, one on the guard
area and one on the metered area, were connected to the

controllers to maintain a constant temperature on heater H‘.

Using type-T thermocouples to measure temperatures on
the surfaces of test samples, the data acquisition system
recorded the measurements with a temperature range of 400°c,
The 12 bit analog to digital converter used in this system
gives a resolution of 0.098°c. The shunt resistor was
measured on a range of 0-10mv and the voltage divider
measurement range was 0-100mv. The current and voltage
measurements have a resolution of 0.24 mA and 0.012 Volts

respectively.
5.3 Test procedure

To check out the experimental system, a test was first
performed under the steady state condition, namely, running
the test without the BMFS as input to the heaters Haa and
Hab' The steady-state U-value was obtained.

Tests were then performed on sample 1 and sample 2. The
heater cycling period and the data sampling time interval
were entered and, the system started running under the
control of the on-line program. The system’s operation was as
follows. The BMFS control signal was generated and applied to

a digital output which, through a solid state relay (see
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Fig.5.4), turned the heaters Haa and Hab on and off. The
temperature fluctuation of T2 was created. The guard area of
the heater H1 was maintained at the same temperature as the
metered area to prevent edge losses. The power supplied to
the metered area of the heater H was measured by monitoring
the current and the voltage. The voltage, current, and
thermocouple readings were recorded automatically by SAFE.
Data was displayed on the IBM screen, and stored on a disk

file.

For sample 1, one test was performed by entering the

{401

test parameters as used in the previous study. Results

agreed well with the previous study.

Tests for sample 2 were performed under the same
conditions as for the sample 1. To investigate the higher
frequency responses, several tests were conducted by changing
parameters of the heater cycling period. Tests results for
sample 1 and for sample 2 and the data analyzing procedure

are described in the following sections.
5.4 Results for sample 1

After running S5 <cycles, a period of the test
measurements was chosen for data analysis. The temperature
difference, T = Tl-Tz, between the two surfaces of the sample
is the system input signal. The temperature T, was calculated

by averaging the values of the temperature readings from the
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thermocouples which were placed on the metered area of the
heater Hl. The temperature T2 is the averages value of the
temperatures from the thermocouples placed on the metered
area of heaters HLa and HLb.
flow Q ., was calcula“md from the power supplied to the

The system output signal, heat

metered area of the heater H1 as described in section 5.2.

The input and output signals are as shown in the Fig.5.7.

The first step of data analysis procedure was performing
Fourier analysis to get the frequency response function. This
was achieved by performing Fast Fourier Transform (FFT)
computation on the output and the input signals described
above. The transfer function H was then determined from the
equation:

1 Q, (£)

H(f) = —grgy =

T (f)
(5.4)

To reduce the effe.t of noise, only frequencies at which
the input driving function (the temperature difference) had a
reasonably large amplitude were ccnsidered. The resulting
frequency response of transfer function 1/B, after
normalizing the gain factor divided by the steady state
U-value, is shown in the Bode plots of Fig.5.8. The gain
factor and the phase factor are shown with the theoretical
curves of the frequency response function 1/B shown for

comparison. The theoretical calculation of frequency response
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is given in Appendix B.

The second step of the data analysis procedure is the
determination of the z~transfer function coefficients. A
multi-linear regression computation was performed *+~ fit
z-transfer function coefficients to the frequency response
data obtained above. For each chosen frequency two equations
(the real component and the imaginary component of the
transfer function) were written, plus one equation for the
steady state condition (see Appendix D). Then, by employing
the regression techniques, the z-transfer function
coefficients were obtained. The frequency response of the

fitted z-transfer function was also calculated.

The z-transfer function coefficients were determined for
a different number of terms in the numerator and denominator.
Table 5.2 gives the z-transfer function coefficients for
sample 1. Higher order for the transfer function than those
shown in Table 5.2 resulted in unstable simulation. Table 5.3
gives the frequency response of two fitted =z-transfer
functions (coefficients of n=3, m=2 and n=3, m=1 are given in
Table 5.2) for sample 1, which gave a good fit, compared with
the measured frejuency response determined from the Fourier
analysis. The gain factors and phase factors of the frequency
responses of the fitted =z-transfer function (n=3, m=2)
compared with the measured response are also shown on the

Bode plot in Fig.5.9.




59

5.5 Results for sample 2

To investigate the responses of the transfer function
1/B at higher frequencies several tests were performed for
sample 2 by changing the input parameter of the heater
cycling period. After running each test for more than 5
cycles, a period of the experimental measurements was chosen
for data analysis. As for sample 1, the temperature Tz, on

the heaters Hz and sz was calculated by averaging the

temperature readings on the metered area of these heaters and
the temperature T1 was the average value of the temperature
readings from the metered area of the heater H:' Then, the
system input signal was the temperature difference T = T,-T,.
The system output signal (heat flow) was obtained from the
power supplied to the metered area of heater H1 as described

in section 5.2. The input and the output signals are as shown

in Fig.5.10.

Fourier analysis procedures were conducted as described
previously. The gain factor was again normalized to the

steady state U-value.

The gain factors and the rhase factors of three tests
results are shown on the Bode plot in Fig.5.11. The
theoretical curve was calculated from the equation given in

Appendix B and is shown for comparison.

The same fitting procedures as used for sample 1 were
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applied to determine the z-transfer function coefficients for

sample 2.

The z-transfer function ccefficients for sample 2 were
determined for different number of terms in the numerator and
denominator, as given in Table 5.4. Higher order than those
shown resulted in unstable simulation. The frequency response
of the two fitted z~-transfer functions for sample 2, compared
with the measured frequency response from the Fourier
analysis, are given in Table 5.5. The coefficients used are
given in Table 5.4 (n=3, m=2 and n=2, m=2). The gain factors
and phase factors of the frequency responses of the two
fitted z-transfer function, compared with the measured

response, are also shown in Fig.5.12.

A simulated load calculation was performed using the
coefficients (n=2, m=1) obtained above for sample 2. The
measured temperature difference history values are the input.
The heat flux was calculated from the load calculation

equation:
n m

Ql(t) = Z a, T(t-ia) - z bl Ql(t—iA) (5.5)

i=0 i=1

Where, A is the sampling time interval of the z-transform.

The simulated heat flow and the measured heat flux from
the calculation above are shown in Fig.5.13. The average

relative errors between the simulated heat flows and the
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measured heat flux, corresponding to the coefficients used,

are also given in Table 5.4.

5.6 Discussion of the results

As shown in Fig.5.11, the frequency responses for
transfer function 1/B of sample 2, which were determined from
three tests with different input parameters, are similar and
they agree fairly well with the theoretical curves in the low
frequency range. However, the test gain factors and the phase
factors are both slightly higher than the theoretical curve
as the frequencies increase. The comparison of the gain
factors on the Bode plot for sample 2 and for sampie 1 also
shows that the time constant for the sample 1 is shorter than
that for sample 2, which is due to the effect of the

additional layer of insulation material.

Fig.5.12 shows two of the fitted frequency response
compared with the corresponding measured fraquency response.
The agreement between the fitted frequency response and the
measured frequency response for z-transfer function 1/B of
sample 2 1is good even if the number of terms of the
temperature history and the heat flux history values are less

than 4.

From Fig.5.13 and Table 5.4, the agreement between the
simulated heat flux with the measured heat flux is

acceptable.
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CHAPTER ©
CONCLUSION

6.1 Summary

The objective for this thesis was to develop an
experimental procedure to analyze the thermal dynamic
characteristics of existing building walls and to determine
the z-transfer function coefficients for the building
envelope components. System identification technigues in
frequency domain analysis were applied to attain this goal.
An experimental approach to determining z-transfer function
coefficients from frequency domain analysis, using BMFS as
test input signal, was investigated. This procedure consists
of the following steps: (1) establish experiment to get
measurements of wall performance; (2) analyze the
experimental data to determine the frequency response of
transfer functions; (3) employ multi-linear regression
techniques to fit the z-transfer function coefficients to the

frequency response obtained in step 2.

Test were carried out in the laboratory for two
small-scale samples: one a single homogeneous layer, the

other a two-layer slab.

A review of the 1literature of modeling methods and
system identifijcation techniques used to determine the heat

transfer characteristics of building walls was carried out.
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The test results show that the frequency analysis
approach, based on Fourier analysis using BMFS signals, is an
acceptable method to determine the thermal characteristics of
building envelope components. The Bode plots of the measured
frequency response of transfer function 1/B agree with the
corresponding exact curves from theoretical calculations.
Multi-linear regression techniques used to fit the z-transfer
function <coefficients for transfer function 1/B gave

satisfactory results.

In conclusion the experimental procedure described is
suitable to estimate the coefficients of z-transfer function

1/B.

6.2 Discussion and recommendations for future vork

This research raised some questions about the z-transfer
functions (see equation 3.10) for estimating heat transfer in
walls in time domain. The regression procedure can produce
coefficients which are a very good fit to the frequency
response, but result in instability when applied in a time
domain simulation. It appears that perhaps more constraints
are needed in the fitting procedure. For example, the
coefficients obtained from the theoretical calculation based
on known material properties tend to have all positive signs
in the numerator and alternating minus and plus signs in the
denominator. However in this study, some coefficients were

found to be negative in the numerator (these are included in
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this thesis). Future work could address this problem of how

to assure stability in the z-transfer functions.

The test apparatus, as described in chapter 5, the
symmetrical configuration was chosen to satisfy the test
requirements. For example, to find the frequency response for
transfer function 1/B the test must maintain the temperature
T, to be constant while measuring Q. The use of a Heat Flow
Meter (HFM) apparatus would present problems. First, the
frequency response of the heat flow meters available is not
fast enough to give accurate readings at the higher
frequencies used in the test. Secondly, in the simple HFY
configuration as shown in Fig.6.1, the temperature T, would
not be maintained constant. Since the HFM transducer is
constructed with thermal resistance, a temperature diffe.ence
(Tx_Tc) exists between the two surfaces of the transducer
which is proportional to Q- Consequently, the temperature T,
would vary with the temperature T2 fluctuation, even though

the cold plate was kept constant.

The method of measuring heat flux employed in this
thesis, by measuring power input to the controlled heaters,
also has disadvantages. It is difficult to achieve the
precise control required, and the power reading tends to be
"noisy" due to the control action. Also, the symmetrical

apparatus does not lend itself to field measurements.

Another recommendation for future work i to develop a
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test methodology which is more suitable for in-situ tests.
Newer heat flow meter technology is producing devices with
better frequency response. Methods may be used to calibrate
the heat flow metex *@%!, non~-symmetrical configuration
for consideration, as shown in Fig.6.2, is to use a heater
and controller to maintain temperature T, constant while
measuring Q, with a heat flow meter. Providing that

temperature T2 is higher than Tx' this would meet the test

requirements.

The experimental procedure described in this thesis is
still based on the assumption that heat flow through walls is
one-dimensional. Since there are heat bridges in a real wall,
non one-dimensional heat transfer should be considered. One
way could be to use a buffer to measure air temperature so
that the non one-dimensional heat flow from inside air,

wm‘ Another

through a wall, to the outside air is considered
method may be tec place a thin insulation slab on the surfaces
of the wall to simulate inside and outside film coefficients.
Thus the surfaces of the simulated air films would be at

uniform temperature even though the heat flow through the

wall is non one-dimensional.

The +third subject for future study may be the
application of system identification techniques to
investigate thermal response characteristics of other
components and systems including the room thermal response in

buildings.
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Figure 6.1. Heat Flow Meter (HFM) Apparatus
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Figure 6.2. Heat Flow Meter and Temperature Control Apparatus
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APPENDIX A
THE NUMERICAL SOLUTION METHOD

Numerical solution methods are based on the Finite
Difference Technique. The finite difference equations can be
derived by applying the principle of conservation of energy.
There are two methods in finite difference methods: explicit
method and implicit method. To solve the problem using
finite difference methods, the general heat conduction
differential equation can be converted to the following

form:
Explicit equation (see Fig.A.1l), for internal nodes 1 and 2:
™o p |t (2 -2y T
2 o P 1
' ep |t rt (2 -2) T
- 1 1 P 2

For outside surface:

T:ﬂ=2p[ T+ . ot - - N +1 PR >T§]
o AX a AX
For inside surface:
T: = T?ﬂ = constant
where, P = _a 8t

(ax)?
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In the explicit method it is important to note that a
negative coefficient of the ‘present’ temperature of
internal nodes must be avoided by appropriate selection of
AX and At, so that a violation of thermodynamic principles
will not occur and the stability of numerical solutions of

the grneral heat conduction partial deferential equation is

ensured.

Implicit equation, for internal nodes 1 and 2:

t _ 1 t+1 tet t+1
T1_P [(2+T) 'I‘l —T2 —To ]

t 1 L+l t+1 t+1
TZ—P [(2+—f‘—) ’I’2 —Tl —-'I’1 ]

at outside surface:

at inside surface:

'I‘l =T = Tl = constant

Such an implicit formulation is stable regardless of the
value of the time increment, At, that is chosen, but one has
to solve the equations for all nodes simultaneously after

setting up equations for the internal and the boundary

nodes.
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.
* outside inside
|
|
|
|
Tm ‘L To J; T | “TZ Ti
|
|
.Y
N A JAX {AX A#Ax

Figure A.l




APPENDIX B
MATRIX EXPRESSION OF SURFACE TEMPERATURE AND HEAT FLOW

The behavior of transient heat conduction through walls
and roofs is a basic heat transfer problem. The heat flow
through a unit area of a flat, homogeneous wall secticn can

be expressed by the Fourier equation:

_ aTr
q——K-——a;(-— (B.l)

Namely, the heat Ilow rate g in x-direction is directly
proportional to the temperature gradient, —%%—. The
temperature variation can be modeled by the general equation

for unsteady state heat conduction in one-dimension, given

in the following partial differential equation:

i SR (8.2)
at 17).4
where, o = _TEKE—’ is the thermal diffusivity.

The solution of equation (B.2) is always calculated for
temperature T as a function of X and t with values

appropriate to the particular conditions.

The Laplace Transform solution of the differential
equation of the unsteady state heat conduction (equation

B.2) can be derived as following:
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Making L{T(x,t)} = T(x,s)
The equation (B.2) becomes:
aar(x [}
o 2’ = s T(x,s)
ox

Under conditions: T(0,s) = 0 and T(1l,s) = f(s) the solution

of the equation (B.2) can be obtained:

sinh(x vV s/a )

T(x,s) = f(s) = f(s) HTl(x,s)

sinh(l v s/a )

(B.3)

sinh(x v s/a )

and Hn(x,s) = (B.4)

sinh(l Vv s/a )

where, }Ej(x,s) is the Laplace transform of the impulse
response of the temperature at x against the surface
temperature excitation at x=1 and 1is called transfer

function.

In the space thermal 1oads calculation we are
interested in the temperature and heat flow particularly at
both surfaces of a wall. From the convolution expression of
surface heat flux with temperatures, the matrix expression
of surface temperature and heat flux for single layer and

for multi-layer walls can be developed as follows:
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When temperature excitations are given on both surfaces
of a wall (x=0 and x=1) in the expression T(0,t) and T(1l,t)
simultaneously, the heat flow at both surfaces can be

expressed in the convolution integral form:

I

g (0,t) Iowqo(o,r) T(0,t-t) dr + Iowq!(o,t) T(1, t-T) dt

q(i,t) = Iq»qo(l,r) T(0,t-t) 4AtT + J“oql(l,t) T(1, t-t) dT
0

(B.5)

where, 0 and ¢, are impulse response (weighting function)
of heat flow against the temperature excitation (at x=0 and

x=1) given in the form of Dirac’s delta function.

In converting these equations into lLaplace Transform

and using the notions:

L{T(x,t)} = T(x,s) L{g(x,t)} = Q(x,s)

L{o,(x,t)} = H (x,8)  L{g  (x,t)} =H_ (x,8)

and also applying the convolution integral property that the
convolution formula becomes a product in the imaginary

space, we have:

Q(0,s) = H_(0,5) T(0,8) +H_, (0,5) T(L,s)

il

Q(1,s) qu(l,s) T(0,s) + qu(l,s) T(1l,s)

(B.6)
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These can be rewritten in matrix form:

Q(o,s) qu(O,S) qu (0,s) T(O,s)
Q(L,8) H (Ls) H (1,8 | |T(1,s)
(B.7)

The square matrix is called a transfer matrix, in sense that
it relates the temperature matrix to the heat flow matrix.
The four elements of the transfer matrix can be obtained

from equation (B.4):

K vVE—

Hy, (0,8) = - a (B.8)
sinh (1 ‘/: )
cosh (1 V—— )
Hy, (1,8) =-K\/§ a
sinh (1 V: )
(B.9)
cosh (1 v—=— )
Hyo(0,8) = K V. z a
sinh (1 »/i )
(B.10)
k /S
Hoo(li8) = (B.11)

a
sinh (1 v/: )




d
3
]
iy
:
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Further, the matrix expression can be rewritten as:

T(O,s) A(s) B(s) T(1l,s)
Q(O0,s) C(s) D(s) Q(1,s)
(B.12)
where,
H (1,s)
A(s) = - qu(l 57— = cosh (1 V—=—)
qo' ™’
(B.13)
N sirh (1 /2 )
B(s) = g1 ~
go K /s
a
(B.14)
qu(l,s)
C(s) = qu(o,s) - qu(l,s) qu(o,s)

i}

K v—— sinh (1 V =) (B.15)

H_ (o,s)
D(s) = ——}Tg%(—i—'g)—-= cosh (1 v z )

(B.16)

For a multi-layer wall, the transfer matrix of the whole
wall is to be expressed by the product of the transfer
matrices of every layer of the wall. For a two-layer wall,

for example, we have:



A1 Bi Az

Ci D1 Cz
-

A1A2+B1C2

C1A2+D1C2
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Bz

Dz

A1B2+B1D2

Ci1Bz2+D1D2

AI

CI

BI

DI

(B.17)
where,
A' = cosh 11 \/-—g— cosh 12 V—:—
1 2
K, V3
+ sinh 1 V-2~ sinh 1 V-2 2
1 a.1 2 az /s—
K
1 a
1
(B.18)

a
2

cosh 11 V. z sinh l2 v S
1

BI_

S

a
2

K
2

cosh 1_ V-5 sinh 1 v—S_
2" a, 1 a

K,V S

a,

b
T

(B.19)
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K1 \/—Z—1 sinh 11\/—2—1- cosh 12\/—§;

+ K, V—i’—z sinh 12\/-22 cosh 1V :1

(B.20)
D’ = cosh 11\/ : cosh 12\/ :
1 2
K, V—5—
+sinhl¢-—s—— sinhlx/s !
1 a 2 a, S
K V
2 a
2
(B.21)

The heat flow for the two-layer wall is given by:

A’ B’ T, |
- (B.22
c’ D’ Q

The expression of surface heat flows expressed as responses

—
O 3
o Q
—d
|

and the surface temperature as excitation for a wall is

given as:

D(s) 1
Qo = B(s) - TB(s) To
1 A(s)
Q B(s)  TB(s) T,

(B.23)
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From expression of A’, B’, D/, substitute s=jw and let:

So, we have:

XX

(B.24)

(B.25)

X1cosh(Y1) 51nh(Y2) + chosh(Ya) 51nh(Y1)

2

XX + X_ " tanh(Y_ ) tanh(Y)
172 2 1 2

Al
B’

X1 tanh(Yz) + X2 tanh(Yl)
D’ X X, + X12 tanh(Y ) tanh(Y,)
B

X1 tanh(Ya) + X2 tanh(Yl)




ApPenpix C
Z-TRANSFER FUNCTIONS

The z-transform of a function of time can be obtained
simply by sampling the function at regular time intervals.
If T(t) is the temperature input function and Q(t) is the
corresponding heat flow output function, the z-transforms of
T(t) and Q(t) can be related by a linear differential

equation and can be expressed as:

Q(z) = H(z) T(z) (€.1)

where,
Q(z)=z~-transform of heat flow on a surface of a wall
T(z)=z-transform of temperature on surface

H(z) = =-transform of the transfer function

The z-transfer function, H(z), can be expressed as a
ratio of two polynomials. For example, given a difference

equation:

* e = + L ]
yk+b1yk-l+b2yk-2+ +bek-P aouk+aluk-l +aJuk—J

(C.2)

Let the system input be chosen as uk = z“, and the output is

(e

then given by:
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(1) = o) ) - v

then,

H(Z) Z+bH(Z)2""+...+b H(2)Z"" = a z"+a 2" '+...+a 2"
(C.4)

Solving for H(Z), the transfer function can be expressed as:

-1 -2 -J
ata, z +a_ 2z +...+a 2
H(Z) = Q(z) _ 0 1 2 J

-1 ~2 -p
1+b1 2 +b2 zZ " 4...+ bp z

(€.5)

Where, parameters a: and b:i are called z-transfer function
coefficients which are characterized the properties of the
system. Therefore, if the z-transfer function coefficients

can be found, it follows that:

Qt = Ttao + THa1 + Tt_za2 + .. + Tt_JaJ

- (Q,b, +Q_ b * ... +Q b}

(C.6)

This expression means that the output at any time t can

be obtained by knowing the input and output histories.




ApPENDIX D
DERIVATION OF Z-TRANSFER FUNCTION
COEFFICIENTS FROM FREQUENCY RESPONSE DATA

The z-transfer function is given in the form:

- -2 -
a+a z'+a z° +...+a z"
1 2 n

H(Z) = ~1 -2 ~-m
1+b1z +bzz +...+ b 2z

(D.1)

. s -1
Where, a, and bi are z-transfer function coefficients. z

is an operator representing a time delay = iA. A is the

sampling time interval of the z-transform. Since z = eAs,

the eguation (D.1l) can be expressed in Laplace notation:

- -2 -nlAs
a e’ + a e As, ae bs, ..+ ae nd

H(s) = AS

1 +b1e' + bze'2A5+ ... + b e ™is

(D.2)

Substituting jw = s, the equation (D.2) becomes:

a +a.e W2 ...t
H(w) - o 1 2 i n
1 +b1e-JwA+b2e"2wA+. ..+b e

e-jzwA+ e-)nwA

-ijA—

(D.3)
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A

Substitute e“® = cos(wA) -jesin(wA), equation (D.3) become:

a +a [cos(wA)~-j sin(wA)])+a_[cos(2wA)=-] sin(2wh)]+...
H(w) = o 1 2

1+b1[cos(wA) -3 sin)wA) ]+b2[cos(2wA) -j sin(2wl)]+...

.. .+an[cos(nmA)-j sin(nwl) ]

. .+bm[cos(nwA)-j sin(nwd) ]

(D.4)

Because of the frequency response H is a complex function,
it can be written in two parts: real component, H, and

imaginary component, H1:

H(w) = Hn(w) + 3J Hx(w) (D.5)

Equating equation (D.4) and (D.5) yields:

HR(w) = ao-f-a1 cos(o.>A)+:;\2 cos (2wh) + ...-i*an cos (nwl)
-bl[HR(w) cos(wA)+HI(w) sin(wa)]- ...
-bm[HR(w) cos(mwA)+Hl(w) sin(mwl) )

(D.6)




H () = -a s.in(mt\)-a2 sin(2wA) - ceema sin(nwl)

+b1 [HR(w) sin(wA)-Hl(w) cos(wWA) )+ ...
+bln [Hn(“’) sin(mwA)-Hl(w) cos (mwl) )

(D.7)

An additional equation can be written for the steady state
gain. Therefore, for N frequencies, 2N+1 equations can be

obtained. Rewrite these equations in a matrix form:
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("o 'n

(o) ¥y

(*m) '
‘o) ®n
A.av _=

(‘o)%n

]

[ ("mz)s0o'y- ("mz)urs'ul

i "ozryurs'ur (Moz)soo'nl-

( (*me) soo'u- (“mz)ursiyl
[ ("mz)uts'i+ (“oz)soo’n]-
[ (Pmz)s00'it~ (Pmz) urs'u)
[ Coz)urs'ns (Pmz) soo'y) -
[ ﬂ.amvmoo_zaiaﬁcwmg_:
{(oz)urs'is (‘nz) soon]-

|

[ ("n)s0a'y~ ("myurs®u} -+ ("mz)uys-

(("oyurs'us ((mysoo’ul- c+c (Yme) soo

( (*m) soo'- (Sm) urs®y]
[ ("m)urs'h+ (*m)soo"y)- -
( (Cm)soo'n- (fmyursy) -
[ Co)urs'ns (Pm)soo’yl- -
[ A_avmoo_zL_avmeﬁ .
L nﬁsuca.m.:iﬁavuou.mzuu .

n

Anamv urs-
(*mz) soo
(‘mz)uts-
(*mz) soo
(‘mz)uys-
('mz) soo

1

.nav urs-
(*m) soo
A~3v urs-
(*m) soo
A_sv:wm..

A~3v S0D




Where, w, = O is the steady state condition at which

equation (D.3) reduces to:

a +a+ a+ ...+a

U = ] 1 2 n (D.S)
1+b + b+ I..+b
1 2 n

Where U is the steady state U-value. Equation (D.8) can be
given extra weight to ensure that the z-transfer function

has the correct steady state U-value.

Solving the matrix equation using multil inear
regression techniques, the coefficients, a,6 to a_ and b, to
bm, can be obtained. For statistical and probabilistic
considerations the number of frequencies N needs to be
larger than the number (n+m) of coefficients to be
determined. A complication may arise when phase lags of 180°
occur. Under this condition the regression may produce
negative values for a. This can be prevented by forcing a,

to 2zcro in Equation (D.6) and (D.8).




