t

N . A Major Techniéé1~ké£bft

N ., ‘ ' 7_‘
4-BIT-SLICE MICROPROCESSORS

IN COMPUTER FLIGHT SIMULATION e

Nicolas‘Frengbulekis

f
/

in

" The Faculty of Engineering

‘Presented in Partial Fulfillment of the Requirements
fbr the degree of Master of Engineering at
~~ Concordia University
A 1 .. Montreal, Quebec; Canada . .

[
a

March 1981

P

:) ‘Njéo1;§ Frangoulakis, 1981

~

ABSTRAET

o . 4-BIT-SLICE MICROPROCESSORS
| IN COMPUTER FLIGHT SIMULATION

o o . Nicolas Frangoulakis
\ . ' S) '
The objective of fhis maj;r technical report is tolexamine
the 4-Bit-S]ice‘Mjcroprocessors fn Computer F]igg; Simulation.. The
reﬁort is dividéd into five chapters. In'chapter one, the function of

computer simu}ation and emulation is-defined and the in-circuit-emula-

~ tion facility is analysed. Also, the real time operation and the in-
terfacé input/output system is studied. In chapter two, the architecture
of the 4-bit-slice microprocessors ig examined. In chapter three, the
main computer and emulator system prganization is dealt with in detail.
In chapter four, the emulator microprocessor diggﬁostics are- examined

~in respect to the interface input/output system. In the last chaﬁter.

T T TR il e g e AR 5 e, A ey SR PN VT € e,

¢
i the 4-bit-slice microprocessor is applied in the field of flight simu-

lation. Its units are 1ndiNidu511y analyzed as well as its functions. -

"% 4 [
. .

I . - ¢
1 ‘ . .
o)
yd ~ ~ ' . f
£ ’ . B
) .
.

. . . . e - P A . Py
T . AN R 48) T R, T,

" ACKNOWLEDGEMENTS
B \ Y
w, . | !)
1 would 1ike to express my gratzirde to Dr David Gibbons my N
adviser. for his support and guidancé throughout the writing of this

report I would also like to thank the Canadian Avionics Electron1cs .

' Ltd. for the practical and theoretlca] experience I have acquired during

the last two years in their employment. F1nal]y, I would like to acknow-

_ledge the help of my wife for the typing. and prooféeading of all the

material.

"o o

-

- Figure

Figure

J(

" Figure

<

Figure

/ffgure
Coe Figure

Figure

i ?(Figure

ngure

Figure

: | Figure
Figure
Figure
.,figure
F%éure
FiQure
Figure

o

B T

SRR o Y
o

O

‘i

10.
n.

12.:

13.
14.

15.

16.

17.

-
~—

v . \
. - LIST OF FIGURES L
; ", i
/ |
o ' .. page i
A Microprogrammable Bit-Sliced Micnocomputér_ e 9 ;
Block Diagram of Commercillay availaple |) ;
Bit-S1ice Microprocessor ‘Am2901 4—Bit'RA$U S S Rl '
(a) A Vertically partioned processing settion
* defining the RALUs and (b) the General Diagram . .
S T . Cheririreeaaas Cereeriiieeiae, 13
Basic C%ﬁfro] Structures imp]eménted in Microprograms: ’ -
(a) A the B, (b) if W then A else B; and (c) while Co .
Wdo A (where A and N represent Microprogram Modules) 15
The AM2909/2911 LSI Microprogram SEQUENCErt..eeeeee... 16 -
Micqopfocessor System Memory Organization R . .. 23 -
' ‘ 3 a '\ . 3 ‘_"
~ Timing Update Sequ nce for the Interface System ;
Input/Output Modulesccevvieinran.. R eeeas 27 i
. ' i
. Discrete Output *(D0) Validity Flow Chart gesases e 232, 7 ;
Discrete Input (DI) Validity Flow Chart:.e...... R 33
Analog Output' (AO) Accuracy Flow Chart P ereeereceiananen " 35
Analog Input (AI) Accuracy Flow Chart v eeereenne cernenn . s 36

Computer Flight-Simulator System Block Diagram. 37.

Microprocessor Computer,lnterfate System Block Diagram ;9
* v - ’

Microprocessor Modu]e'Block Diagram XEETIEET eeeeian .. 45

Memory Module Block Diagram tesassssaanaans veres v 50

Main Computer Controller (MCC) Module Block Diagram 53’

Simulator Interface Controller (SIC) Module Block ‘ .' ¢ :
Diagramcvveiiiiiiienieerennonans Meereaneeas ceecanas ceranes 56
. » .) ‘
B o Xk v o b
’ A re— ’.
iid .
) & ' .

.

2 g

TR ;gﬁ%gﬁwdzw

‘ ' 'S >
- . ’ A ’ . : . X
' : .. TABLE OF CONTENTS C
4 . . N
) ‘ o ’ \j‘ Page
~ INTRODUCTION ...oveeennnn... e periienen 1
1. COMPUTER SIMULATION AND EMULATION .. = . .. *:
Y A. 'Emulator Mlcroprocessor e iraeseenaaas 4
; B. COMPULEr STMUTALION vvesevreenneeressnneennneenn .5
" . .
s C. Computer Enulation Neeernteotntaansecnnas 5
- D. In-£1rcu1t Emu1at1on [T estsese w O
> E.. ReaPt1me 0PEration .eeeueeesecncennes eteereneens 6
F. Direct Memory'Access (DMA) -and Programmed
Input/Output (PIO) Transfers0 7.
G. Interface Input/Gutput (1/0) System el 8‘.
N : | ' s
II. 4-BIT-SLICE MICROPROCESSORS
A. Architecture of the 4 bit s11ce m1croproce§sors e 9
B. The Advanced Micro Dev1ce AMD2900 Microprocessor . 10
C.- Microprogrammability of the Bit-Sliceg
Microprocessor Verrssessassserersraes eesieaes 14.
D. The Advanced .Micro Devices 2909/2911
M. Microprogram SeqUenCereieieesiecineese 15
! ' X . '
IIT. MAIN COMPUTER/EMULATOR SYSTEM ORGANIZATION ' B
A. General Neereeeee ERRERTTRRTT PR P ceeeade 19
B. Memory Organizationcovvevniannns beveees 21
C., Interrupt =] oV 1 of -1 S R Zﬂ
", D.” Timing Sequence, for Main‘Computer-Emu]aiUr—I/O Cow
¢ 4 Interface . t it iiiiiiiiereneroncrnsncnnoccnnsas ,oo 26
. ' .
IV. - EMULATOR INTERFACE DIAGNOS}ICS
A. General;.: ceees eeeeaeens ... 28
) « B. General Transfer (GT) Errorcceeeeveecennonces 29
4

) |
N
. . " B
) C. Parity (P) EPror ...cceeiiininvenniiecnnnnnshoreenns
‘ ‘ D. Address Time Out (ATO) Error N
% *E, Data Time Out (DTO} EXroreeevicveaersdorsaness
% ‘ F: . Power Supply Stdtus (PSS) Errorc..c..e
o G. Discrete Output Validitycocveveninninnnen
K H. Discrete Input Validityciviiviiioniennnes
T .1, Analog Output ACCUTACY «.cneeerrivsernannscnossanases
‘ . J. Analog Input ACCUrACY .ivvvireenveiverevrennnnacnenes
) T , .
\ V. 4-BIT-SLIGE MICROPROCESSOR APPLICATION IN FLIGHT SIMULATION
L3 A < a
: { \g A, General ...i.i.iiiiiiiiiiiiiiiiiiiiii s
fe ' B. MiCroprocessor MOQUIEceveeeevevncnnnoneroncens
.} C. Memory MOUTE ..vevvvvnvrenrrnnennns cereeenenaea
l D. Main. Computer Controller (MCC) MBdule
‘S o | ‘ E. Simulator Interface Controller ’(SIC) Module
* | CONCLUSION b
g BIBLIOGRAPHY
. (
o ’ :
- |
, nl “'/,
R
¥ :
| v
4.
o . + ,
£ . | | T
i j o Vs . \
P
* '””"TfffrTT”' -

- o
I -

S INTRODUCTION . |

»

The burbose of this major technical réportﬁfs to examine the
application'of the 4-bit-slice microprocessors in computer flight simu-
lation. This application is 6qe qf the latest achievements inéthe evolu-
tion of microproceséor'interfacing technidues. In the beginning when
interfacing was not as complex and épeed and flexibility reduirements vere
not as necessary the interfacing methods were not, so gophisticated. Today,
howgver, and particularly in the area of computer f1ight,simu1ation, the

direction of evolution has lead towards the development of the third gene-

ration of microprocessors which provide an increased performance in speed

and flexibility. The developed-techniques range from 1nterfac{ng the N
Central Processing Unit (CPU) to the Random Access Memory (RAM),.Read | ’_;
Only Memory (ROM) and input/output devicés to complete Floppy Disk Intel-

ligent Interfacing. The interface begins at the wall socyet and ends

only at'the front panel pf the ‘most remote peripheial. As the tecﬁnoiogy iiad

§
~.improves the interface designer will evolveginto more of a programming

perﬁon. And it is at this point where. the hardware and the software areas
_interact -to form what is referred to as firmware. It is this firmware
applicatign in the 4-bit-slice microprocessors that is dealt with in this’

report. o :

In the commercial world, a number of Large Scale Integrated (LSI)

bipolar 4-bit-slice micreprocessors are availabe such as the Advanced Micro

T iy SR - “
:::::: Lol antanded
v ARCHEY ARSI -

iy

[e T
"

-4

Deyices AMD 2900 series, the Texas Instruments 755481, the Motorola 10800

A

‘and the RCA 4057, to name a few. 1In this report, however, the bipolar

4-bit-slice AMD 2900 series microprocessor is studied and treated as a
16-bit microprocessor for industrial computer emulation applications with

main emphasis in the field of computer flight simulation.

Simulation is the replacement of a real situation with a make-
believe setting. Here the responses‘of the simulator function .are very
close to rfality. However, the closer to reality the more expensive it
becomes. In flight s%mu]ation the makejBelieve setting is regresedted

by a plane cockpit. This make-believe plane cockpit has all of the "

" built-in cues of a real plane which responds to simuldting signals under

the control of the main computer via the interface system, The main
reason for building fQight simulators is the complete elimination of all
dangers involved during air crew training. Secondly, it is more economic
to train personnel since the t?aining cost only amounts to about 10% of
the cost of a real plané usage. It is, therefore, because of this econo-
_mic reason that there has been such a drastic increase in the application

Sof flight simulators throughout the world since 1975.

"Emulation is one of the applications of the bit-slice micro-
processors and in effect it is a means to perform some or all of the ins-
tructions of the main system processor. In emulation the bit-slice micro-
processor is used as a dedicated machine and performs tasks or routineé
on behalf of the main system computer, thus relieving the main processor

and increasing the overall speed and capabi?\%y of the system.
<

J

O R

”

. ‘ J‘ - Bit-slice microprocessors have their own architectural Central -
Procéssing Unit (CPU) philosophy. In contrast to the single chip Metal

.

Oxide Semiconductor (MOS) microprocessors, bﬁt-sl1ce’m1cr6p;olessors

utilize two separate chips for the processing and the control function. -,

This special'ﬁtructure of bit-slice microprocessors expands their functional
" capabilities by-making them user-microprogrammable-devices which are moré

suitable for specific design applications such as in computer flight simu-

-

a latian.

L

v N ¢
. ¥
. .
.J v
T . ‘ .

TS T " o "

2 -
- e
A

I3

>

I. COMPUTER SIMULATION AND EMULATION

& . - .
A. Emulator Microprocessor ° ’ . % . .-

The emulator microprocessor is a 16:oit.microcomputor and its:
design resides io the 4—pit—slice Advanced Mioro Devices AMQ 2900 Family.
Bﬁéislice microprocessors¢dhe manufactured with b{po]ar technology and
ére microprogrammable devices.- They provide a variety of digital systéh
architeétuﬁ?s wifh various word lengths and instruction.set capabilities,

and increased effective speeds.' Miérdprogrammability of the b1t7§1ice

: micooprocessors‘app]ies in computer emu]ation‘(flight simulation) where

it replaces hardwired condition with'soﬁtware (progrohs), very effectively.

The main disadvantage of bit-slice microprocessors is the system support

4 '

software that is required because of the sophisticatiom that the system

&5

operates on, since microinstructions are much more difficult to implement

' .

than macroinstruction (machine language) [1].

-

. \)
The emulator is studied here from a backgroqund point of view

in both hardware and software and the ;erm,firmﬁare will be applicable
@henever the abgve two areas-interact. The information in th1§ chapter
is based on the AMD 2900 Family Data Book and bit-slice microprocessof

research papers, which are listed in the bibliography at the end of the

L]
report. ‘ .

7

s

v

e |

BT M N AL

=

P A

[p

fe et

T .
N 6‘,

L3

-n

B. -Computer S'imulatio'r'\' T ' o : _

o

. .
[. Al . - . By

S1mulat10n is the~ functlona'l rep]acement of a hardware dev1ce

.by 3 program (software) The hardware and the softwar%m generate the /

same outputs in response ‘to’ the same inputs. The simulption performance

P

a0 . . :
(software), however, is much slower than the hardwar and this is duelto}

the fact that micﬁoinstructions require much -longer to be implemented than
hardwired ipstructions.

-

C. Computer.fm_ulafion) ' v

&

Emu]_aﬁlgn.is simulation perforiied in real time., Emulators will..

‘ simulate an operation much faster than the model's actual performance.

»

. . D)

For example, the'bit-s]ice»microprocessors will execute the instruction, '

set 'of the main processor (being emulated) at the same or even higher

speeds.. During the program development stage, ROM emulation is performed. ‘

by executing pr,ograms'out of the RAM, -as if they were stored in ROM. After -

the program in RAM. has 'beeh tested (debugged), it ,is piaced in a final ROM

or PROM. There-are several problems associated with this conversion. The -
-)

&
main two' problems are, the address conversion into the f1na1 ROM and synchro-

nization whenever a slow RAM is replaced by a final faster ROM [2]. i) S

.

) In emulation the microprocessor, is basically used for two major

func’tign"s First: to relieve the system's main processor by executing . | -

mstrument update routmes, function generation. routmes and other spema] : o

" e
functions. Secohd to provide the In-Circuit-Emulation testingkfﬁacihty

routine which executes the system diagnostics.(éhecks the microprocessor n

and the input/output Interface functions).
.) ‘ D

.
. - ' o

I3

v b by s e g
‘

D. In-Circuit-Emulation | E L

In-Circuit-Emulation is a‘facf]ity thét includes the system
‘diagnostios (also called debugging). In any system where real input/
output in real time myggt be teitedsegye‘haJor test1ng to be done is the
f

emulation of the microprocessor it Th}s is’ done by .the In-Circuit-

: - - .
K ‘Emylator.and this faci]ity_completely controls and tests the system

.

. - under development, from the console. By using this software emulator it f
is possible to stop the operation of the microprocessor, examine the
’ contents of.the reglster or change them, examine the busses, the memory -

contents and even exd%ute 1nput/outpg} 1nstruct1ons Breakpoints are also

provided by this facility which stop thé program 23tomatica]1y at part%-\
! cular microaddresses (memory. Tocatjons) during the execution of the pro-
A&Qram. If an error detection occurs at a breakpoint obviously it nae*
eaused by previous instructions and tracing is required to]ocete it. The
in-circuit-emulator has a very important diagnostic capabi]it?gfor both
software and hardware. It provides a checking tool for the compléte system,

¢ o®

:;' . that is to say the m1croprocessor and the. input/output interfacing system
N [3]. ‘

[N

.

E. Realtime Operation
The flight simulator system operates in a real time environment. -
) s K) »
~ This real ‘time operation is accomplished by operating 1n 2 number of time
/
frames which are oontfolled by the real t;%e clock.: This clock is norma]]y
run at a frequené& of 20 Hz g1v1ng a frame.t1me of 50 milliseconds. . Every

50 milliiepoﬁos a real time clock interrupt causes a chain of events to .

occur.

{
a. ‘§S§\up interface for input/output data exchange .
.b. R s1mu]ator System programs "
- .C. Set up 1nstructor s station, - updates, etc.
d. Run foreground mode operating systems o
e. Run background mode operating systems ’
{ ‘ . A, \J

A11‘of these events must occur within the time frahe. This gives rise
\\Nto one of the biggest prob]éms innf]ight.simujation which is‘running

' out of time.. If ihe time frahé is exeénded much beyond the 50 mi]]i-‘
seconﬂg, redlism is ther»lost. When reaiism is iost, the response of
the f]ighi,simulator elements (flight instruments, motion system, audio’
funétions etc.) is partially or completely lost. 6ne of the ways to
overcome this problem is to run the programs at different rages whi?h
means that not all thelprégrams are run every frame. The most important
programs (critical) for example, the flight progréﬁ, ghe motion program

are run every frame. Other programs which are less important are run

every other frame which mean¢ at half rate. 'Other programs are run every
e ;

fourth frape (1/4 rate), others every eighth frame and so on. So that over

* a cycle of 16 frames eyery program will have been run at*least once. The

most "important ones, of course, will have run 16 times. This 16 frame

[y

c&clé'is repeated continuously.

F. Direct Memory Access (DMA) and'Programméd Input/Output (PIO) Transfers
\ , ~

The computer interface unit of the flight simu]ator is a DMA
device and works on a cycle stealing basis. Once the 1nterface unit gains
control of the bus 1t’€;B access the main computer memory at h1gh speed

without the intervention of. the Qentra1‘Processing Unit (CPu).

1

- \ N

}
R o

P
™.

o KL A,

E
4
A

i+ P10 transfer is the initialization process requiring address
? and control word information to be transferred from the main'CPU to the
R3

. computer ipterface unit (microprocessor). Every DMA transfer, however,

requ}res a;PIO transfer to initidlize it.

G. .Interface Inggi/Outputl(I/O) gxstem

-

4

The interface I/O system is bas1ca1]y a vast digital to dig1ta1

L)

digital‘to analog and analog to digita1 converter. It accepts the digital
data from the main' computer via the microprocessor system/and converts it
to the appropr1ate signals for the‘?beratIOn of the flight simulator and

vice versa. The microprocessor is the master contro]ler of the interface

I/O system conta1n1ng the memory, the processors necessary to convert

the computer data format into interface format, address‘1nformat1on, error
checking dévices, and\controliers for communication with the 1/0 interface

,systeh chassis. The Interface I/0 System consists basically of the fol-
‘ } nY \ ‘ ' t

- lowing two bnits:

' a. Sub controllers’ .
b. 1/0 cards '

'The'sqbcontrollers are located in the I/O interface chassis and each
controls é number bf dedicated system 1/0 cards. Each subcohtro]ier has

- a unique address. The'I{O cards contain a number of input/output devices .

~ (words) which connect to components in the flight simulatof (cockpit).

- u‘
»

rd

A ..
e

Wy e e e S T N SR e ARV IOV N TR N []

. A : ’ ‘
e : IT. 4-BIT-SLICE MICROPROCESSORS : .
. \ i) > . .
! ~ ' ' ‘: ' v .
|) . : . : R
, R ‘ ' - “ I - \ .
A. Architecture of the 4-bit-§1ice microprdcessor
‘ i ' o : %
» The Central Processing Unit (CPU) of jfhe bit-slice microproces- .
sors is a multi-cthip imp]ementétion and is divided into two sections, the
CONTROL section and the, PROCESSING section as shown in Figure 1.
‘ v
, : - The control sectton consists of microprogram memory, a micro-
| . .
' program sequencer, selection logic and pipeline registers all of those
being imp]eménted on separate LSI chips. Thhe microprograxﬁ memory (ROM
. or PROM) contains the microinstructions.reduired for the control of the Lo s i
parallel opération of the RALU (Register Arithmetic Logic Unit) slices, ’
A ,) DATA 205 '
L))
in 10 : _ ADORESS BUS I il
L] __ | L
T B | e | o
|] || I Lo
. ¥ ¥ 0o :
- I'| microPROGRAM ! { Fl renmienas
. , : SEQUENCER H 'l
._‘ | : : < T > E |
\-:7 : BIT SUFED ey i {
, P N '
. : CoTho, | {20NTROL soue | stie | ste | sice : {
' SELECTION (RALU) 1 (RALL) ' (RALL) ¢ (RALL) i
; O S (O A I .
g 9 I~ . i > 4
| S'SNALS i / }
lowrmusecron _ - - _J Imocessmeseeron © J
BIT-SLICED MICROPROCESSOR '
"Figure 1. A Microprogrammable Bit-Sliced Microcomputer b

et e e — e TYTIUTLT T PRIV TS

in the processing section. The microprogram sequencer decodes the macro-
1nstruction§ or séquences the microinstructions and generates the next
microaddress. The se]gction logic accepts status flags and other control
signals and décodes them‘to féed the microﬁrogram sequencer. Thg pibe-

line registers are inserted between the microprogram memory-and the RALUs

to overlap the present‘ﬁicroinstruction'executioh with the fetching of

the next microinstruction and thus provide spaed improvement (Figure 1)

‘[4].

The proces;ing section carries out the arithmetic and logic 5
opera;ions and consists of_foun 4-bit-slice RALUs. Each RALﬁ contains
registers, one accumulator, one arithmetic 1oéﬁc unit and status flags.
.The slices opé?ate in parallel (cascaded) and fqg thus handle various
word lengths, such as 24, 32 and’even 48 bits, which are multiples of
the basic 4-bit slice.

3 - .)

During the coﬁtrq] operation, the microproéeséor fetches ma-
croins}rucion§ from the main system memoryl IThis fetching process is
accomplished under a READ microinstruction residing in the microprogram

memory. The microprogram sequencer in turn interprets the operation

code of the macroinstruction and executes it as a series of microin-

» structions. The OPERAND part of the macroinstruction is sent to RALU for

© the computations and riain memory address manipulation (Figure 1).[1].

B. The Advanced Microdevice AMD2900 Microprocessor '

‘The 4-bit-slice bipolar microprocessor is a cascadable element

N

5

» ' - .

- ! . L3
N 1y - . U Prp— - e
. (= ™ A e . f;}%&ﬁmﬁﬁbmm.-m - =
. ' ' e Voo LK LN R L .
'

U .

bad

~ '
3 = f v{
. . ‘ -
y ! N s J
| s & * o i
N J L M]
1 I ‘ +
;
U—u— |
sl 7]efs5l4fafz]sTo] . :
DESTINATION ALU ALY 0 @.1
CONTROL | FUNCTION | SOURCE o
MICROINSTRUCTION DECODE » :

Y o
. ° j’
¥ ~ |
«—>{RAM, RAMSHIFT * RAM, le—b : l —ﬁ—_ -
Q Qs 1>
CLOCK O-SHIFT
‘B’ DATA IN |
A" (READ)— .. —-{1 I l
A" ADRESS ce .
ADDRESS —7]. RAM ¢ - -
" 16 ADDRESSABLE REGISTERS REGISTER . o
) (R%%Igéggﬂ ‘B"ADDRESS .+ g Q ReGISTE -y
" DATA ' DATA —1cp a i
) ouT_ouT ,
-~ ' N 1
. . ' . . !
? DIRECT , HoaiC / ;
e DATA (N :
. 1 U [3
.) ,) A B & 0 , - s N
, . ALU DATA SOURCE , i
) . \ SELECTOR P
’ R s ’ .
. L . Cd
U ‘JJ - " P
,) S qg . -
. +CARRY IN C S o -‘ o
—’C\nl ! - z
\ . 8-FUNCTION ALU bt F5 {SIGN) it
— OVERFLOW {
P F = 0000 -
~ { : . ?
- ouTPUT A v : 8
ENABLE —1 OUTRUT DATA SELECTOR

- Uumouy ol . *

'F'igure 2. Block',diagram of cbmerciany available Lo
bit-sliced microprocessor AM2901 4-bit RALU (from .-
) Thé AM2900 Family Data Book p. 2-3)
E ' " - ’
, \ .
. ’ . . . ' ¢
4 ‘ ‘ i ' ., .] ‘
i 'W‘“"‘ iadiin B T 7, — - % '. ; v - ?}—“M‘w;wg‘wﬁm’«w sttt g --

¢ .

~ . o
\ . ~ -~
1

\ . ' ’
C\with a high operating speed. The fléxibility of this device allows ef- -

ficient émulation of a’variety of digital machines. The AM29Q1 '4-bit
ipolar microprocessor is shown in Figure 2. The device consists of a
1} . 5 .
' 16-wgrd by 4-bit two port RAM, a ﬁigh-speed ALU, and the associated ‘ f

shifting, decoding and multiplexing circuitry. The Instruction Register
1 , . N .
(IR) accepts a 9-bit micreinstruction word which organizea into three

N —

o groups of 3 bits each, the ALU SOURCE OPERANDS;:the ALU FUNCTION and the |

" ALU DESTINATION register. The microprocessor is cascadable with full K

’ * !
Ldok-Ahe?d-Carry (LAC) or RIPPLE Carry, and provides various status flags

/ -
outputs from the ALU [1]. D] ‘

A '
Whe processing section is a vertical partitioning of the CPU.

-

‘Such a partiéioning,‘slites the regjéters and the ALU into equal-length

and functionally equivalent parts, calied Register Arithmetic Logic Units
(RALU) or bit-gijéés (Figure 3). Each RALU handles 4 bits and can be
casséded to procéss a varieiy of 1endfhs; The arithmetic.operations and .
the sources and dé;tination°for the ALU"are the same for all slices. The
iqpﬁt data bus is dxyided into proper length sections (enter the slices),

and the output data %i recombined when existihg tﬁe‘S]ices. A RALU slice. i
contains and ALU, a mu\}iple word register file, a shifter, data 1/0 1inesf

J
control inputs and status bit outputs.’

A

a \ ¥ °
\ :) .
The arithmetic and logic operations“are‘perfprmed by the Arith-
metic Logic Unis (ALU), which constitutes the core of the processing section.
The ALU allows arithmetic and\logic operations at desired word lengths. It _ e,

‘also includes an internal accumulator and a shift matrix as well as internal

e n A e o

.

.

-

i

registers used as temporary s,tor'age for the function of multiplication-

L
7

-

A

?

_and ah extension register for double shift results. Additional features

of the ALU allow detection of overflow, zero, sign conditions "and Lopk-

-

] . “

!

% DATA N ,
‘s ‘ 1 ")
RALD | RALU ! RALU 1 RALU)
) A } L A - ’
. , .| REGISTERS ,
. ° n - i 1
CONTROL ' o ' H STATUS °
INPUTS — g : = uTPuTS
P | 1 N
P ! :
) I .
| |]
.] 1] ' R
(a) DATA OUT ’
x DATA IN H
(FROM (FROM ;
L L MEMORY) 1/0) ’
) " MULTIPLEXER g '
AND/OR
REGISTER ARRAY
OTHER : U
L2 —— .
SIGNALS ALY 5
' SHIFTER
. —~ "
.y T L “ TUS
CONTROL : REGISTER [] . STA
' INPUTS DECODER | : % = FuLe = QUTPUTS
' N
. L v x ‘
ADDRESS DATA R
: ouT, out N
. (TO MEMORY. .
U ooy, -
()
_ Figure 3. (a) A vertically partitioried processing section b ‘,ﬁ
- defining the RALUs and (h) General block diagram of a RALU S i

L]

Ahead=Carry (LAC) performance. A1l arithmetic and logic functions per-

. formed by the bit slices are dictated by the microprogram memory and the

microprdgram sequencer. The seqdkncer decodes the operation code of a
. Nz
macroinstruction fetched from the main memory and provides the microprogram

A J

memory with a new address from which the microinstructions of the new macro-

instruction will be fetched. Each microinstruction‘coming out of the micro-

¢ e i ok vt s Krms Ty o

program memory causes the appropfiate commands (control signals) to be sent

to the bit-sliced processing section :of the microprocessor [4].

PN

‘ . ’
C. Microprogrammability of the Bit-Slice Micrdprocessors

(1) Evo]utddn: Microprogrammidg evolved in four phases or
generations uﬁ;h the first phase starting in the early 1950's, when diode ,<:
matrix .technology was used for the microprogram memory. The second gene-
ration involved magnetic core memories and started in the late 1950's. ,
The third phase started in the lare 1960's when the bipolar monolithic - s
control memofies appeared. The fourth generation or current phase started
in 1974-75 when the pro;rammable Large Scale Integrated (LSI) devices
appeared. This new phase lead to the 4- b1t-s]1ced m1croprocessors with
parallel bit-slice operation'which allowed various word length 1mp1emen-

tation, higher $peeds and‘system design flexibility at relative inexpen- -éﬁ? .

[

sive rates. : v

.(2) Microprogram Sequencer:rThe purpose of the microprogram

sequencer is to present an address to the mlcroprogram memory so that a 1

N

‘microinstruction may be fetched and executed The next address logic

part of the sequencer determines the specific address source to be' loaded

~/

into the microprogram address register/counter. This feature of‘the next
address generation improves overall .system speed performance. To‘ensure‘

micropnda;;;;;E?ﬁity the microprogram sequencer (control section) should

be able to implement the basic control structures as shown in Figure 4.
'a

(a)‘l,* o Y (@)

Figure 4. Basic control structures implemented. in micro-
programs: (a) A then B, (b) if W then A else B, and (c)
‘while W do A (where A and B represent micropragram modules)

4

(3) Microprogram Memory: The microarogram memory of the bit-
slice microprocessor contains sequences and functions called microin-
structions. A single microprogram memory word (a microinstruction) may

be as much as 100 bits Tong while a microprogram may consist of 1000 words

" or more [5].

)

D. The Advanced Mi%ro Devices 290972911 Microprogram Sequencer

. . (1) The AMD Microsequencer: The.Advanced.Micro Devices
) \ N
2909/2911 bipolar microsequencers are used in high-speed microprocessor
applications. This is a 4-bit-slice device and is cascadable to allow

exteﬂsive addressiﬁg of microprogram words as shown in Figure 5. The

<
‘ »

15

device contains a four-input multiplexer used to select either the address
. !

register, direct inputs, microprogram counter, or file as the source of the
next microinstruction address. The multiplexer is controlled by S and S1
inputs. The address register consits of four D-fype edge triggered flip-

flops with a common clock enable. Tﬁe address register'is available at the

muitiplexer as a source for the.next microinstruction address. The direct

-

R (Am2909 ONLY)
- :'i] PUSH/POP_ FILE ENABLE
‘REGISTER | 4 ‘
ENABLE |
RE >-—:—-. REGISTER {@————a-#{ STACK POINTER
. ' DANDR | '’ :
" CONNECTED ! , ‘
ON AM2911/ 4 : :
ONLY ' /4 4x4 FILE -
DIRECT }) : :
INPUTS b, —< : .
D e
’ Y v v ¥
%y e 0 AR F PG} 1. MMICROPROGRAM C
MULTIPLEXER N TER -
S——a e SEoTER
Am2909 ,'bﬁ"‘“‘l LRAL 2 M 'y
ONLY 0R3>; - !
lORo———,———
LORe >—TJ—)
* /r
ZERD 4

NCREMENTE
-4

" ourpur ! -] . ‘
| CONTRQ} 3/ o
® | . S
' S " Y’ Y Y, Y, . cn . Cntl* :

F1gure 5. The AM2909/2911 LSI Micronrogram Sequencer° L ‘
(from the AM2900 Family Data Book p. 2-74) ' -

: N
p \
.

e P e s e < M Ao A < g m

PO,

s A AL o g s BT S

v« i o 5 o

M

Wm«m B A g BN

I3

input is a four-bit field of inputs to the multiplexer, and can be selected

as the next microinstruction address [4].

»

The microprogram counter is a 4-bit incrementer, basically, fol-

lowed by a 4-bit register. The inEremeqter has Carry-ini(cn)‘and Carry-out

(Cn+4) such that cascading to larger word lengths is easily applicable.

The 4 x 4 stock fi]e is also applied to the' multiplexer. Thejfi]e nrovides
return add;ess linkage when executing mjcrosubroutines. The file contains
a built-in Stack Pointer (SP) which always points to the 1ast’f11e word

written. This allows stack reference operation (looping) to be performed

- without a push or pop. The stack pointer_operates as an up/down counter

with separate PUSH/POP and file enable inputs. The stack poiﬁter Tinkage
is such that any combination of pushes, pops or stack references can be

‘achieved. One microinstruction subroutine can be performed and since the

' stack is 4 words deep, up to four microsubroutines can be NESTED. The ZERO

input is used to force the four outputs to the binary zero state. Each Y
output bit also has a separate OR input such that a conditional logic can
be forced at each Y output. This allows JUMPING to different microin-

structions or programmed conditions. To conclude, the AM2909/2911 micro-
N .
sequencer is a four-bit wide address controller intended for sequencing

through a series of microinstructions contained in a'ROM or PROM. The

AM2909/2911 can select an address, from any of the following four sources:’

a. A set of external direct inputs (D)

External da33,¥rom the R inputs, stored in an internal
register

c. A four-word'deep PUSH/POP stack

d. A program counter register which contains the last
' address plus one -

o,
.

BN

et o st S

N B T s

°
e . ¥
)

Each 6f the four outputs can be OR'éd with an external input for condi-

‘tional SKIP or BRANCH instructions.

The AMZ2909/2911 TeCE]VES the above 1nputs and specffies one
of the fo]]ow1ng outputs‘
A
a._'Increment
b. Conditional SKIP next instruction
c. Conditional BRANCH to a microsubroutine
) [Y
d. . PUSH/POP the register stack, and so on.

For further detailed information concérning microprogram
sequencers microprogram controllers, pr10r1ty interrupt Contro11ers
and other microprocessor system elements, reference may be made "to the
Advanced Micro Devices, The AM2900 Family Data Book [4].

‘ (2) The AMD Look Ahead Carry (LAC): A 16-bit microprocessor
is formed by interconnecting 4-bit slices (RALUs) to 5]1ow arithmetic

and 1ogica1 carries between chips (figure 3). These RALUs with the

aid of circuity such as Look Ahead Carry (LAC) generation and buffering
form the operator ﬁection of a microprocessor. The AM2902 LAC is a high-
speed, look-ahead carry generator-which accepts up to four pairs of/carry
propagate and carry geﬁerate signals and a carry input and provides anti-

scipated- carries across four groups of binary ALU's.” In this manner the

carry is sensed before the-actual operatlon (addition) is executed thus
sav1ng overall time performance.

18

——

!

A Generel

1. MAIN COMPUTER/EMULATOR SYSTEM ORGANIZATION™ . = ..

LY -) E

’

The main computer is a minicomputer system and can be either’

a}Digita1‘Equip€ent Corporation (DEC), a Texas Instruments {TI) 980

or any other mi

icomputer system available in the market. The‘maih]

compqter Performs all the calculations and .stores the results in its

-
\

membry. The-microprocessor }ystem then takes the outbut from the main-

computer and sends it to the interface 1/0 system wh1ch converts the‘

datd to: the appropriate signal levels. The flow of tbe 1nput data is ~

simply the reverse’ wh1ch means that s1gnals from the f11ght compartment
are converted to data by the 1/0 interface, the microprocessor takes -

this data and sends it to the ma;nfprocessor where it can beAprocebsed.

0y~

The microprocessor is designed and built as a 16-bit microcom- B

"

puter and.its functions are as follows: .

a

a. To control data transfers between the main computer
and the interface I1/0-system

b., To provide the function generation roat1ne
c. To prov1de the i%strument scaling rout1ne
“d. To perform bytes to bits conversion and vice versa
e. To perform the system diagnostics - , o

The data teansfer function is done by having a table of all inputs and

outputs stored in the micrep}ocessor memory. Whenever a change between

the table and interface inputs is detected, the new input is sent to the

} v

»

g

v
oo e s e
»

Wm— S IR N

main computer meﬁory and conversely for outputs. Eveéy’input ahd.output
corresponds ‘to an interface [/0 assignment, which is listed in the Cross-
Reference (XﬁEF) area of the main éomputer’memdny. In this area are stored R A
all those variables whiqh are used b§ mbre thaq one program. For example,) o1
the electrical program will store a 16 bit word in this area to show thé' | .
simulated bus power availability. Other programs will look ‘at the state
" of this word to deéermine its outputs to the system. ﬁhén the cross-refe-
rence is compiled special tables are created for the microprocessor rela-
ting the labels with the corresponding interface 1/0 assignments.. #hen
starting up the simulator, these tables are sent from the main computer

AN . . - . s de
system memoty to the microprocessor memory [6]. - ' ’

® Functipn Yeneration is merely two or three dimensional data -
interpolations, e appropr{agely used the original data must‘bé proces-
sed to a form ﬁsab]e by the microprocessor. ‘Once the necessary data file
havehbeeﬁ.produged they are loaded at startup-of. the simulator. In the

XREF there‘ére a;;as of mémo}y set aside for input to the microprocessor/ .
%ynction generation.programf\iThgopser‘program requests that the function |

géneration be done by setting a flag in the XREF. The microprocessor

detects this executes the routine and then resets the flag once the function

’ .

generation is comblete.
Co £

o
v

o ' N ’ G ’ LN
\\\‘%a ~ Instrument scq]ing involves the conversion of output data ‘in engi- . , -

~neering units to a form usable by the Y jnierface system (say between f

* and 1). This for a temperature indicator the program output could be 98?0

and the microprocessor will make the @brrect‘conver§ion to cause the dial

- memory at startup. I \;]

4

to receive a signal def]ect1ng it to 98°C on its scale. The user inputs

ca]1brat1on points form a f11e and are 19aded into ‘the microprocessor

it vl

Discrete outputs and inputs (i.e. lights and switches) are usually

14

stored as byteggin the main computer memory. However, ‘the interface:.needs

only one bit to identity an ON/OFF condition. ror this reason the micro-

processor converts all bytes from the main cbmputer to bits and vice versa

»

]
storing, transmitting and receiving.all discrete variables as bits to and
from the interface.1/0 system. The system diagnostics are performed by the

] .
microprocessor and are dealt with more extensively in Chapter IV.

B. Memory‘Organization

(1) Bdotstrap:'~The-m1croprocessor memory is organized as shown
in Figure 6. The top, of the memory block diagram is occupied by the PROM
which ranges from 0000 to O7FF. In this PROM reside the emu]ater system

Bootstrap and d1agnost1c routine. Whed“fhe system is switched on the mi-

croprocessor will automatically boot and then run its'memory diagnostics [2].

&

(2) Program Code: After the memory test is éuccessfu}]y done'
then the main system processor will load a buffer with the Program Code.
The Program Code is then transferred 1ntd 1he microprocessor memory w1th1n
the 32K RAM (occupies 8K) at am address location between 4040 and 6000
The Program éode 1oading into the m]croprocessdr memory is done by execu-
ting rhe LOAD CODE interrupt service*commaﬁd; The Prograd Code 1oeding

starts at location 4040 which is hardwired into the RAM. ‘The LOAD CODE

¢ ' . \]

'.command is a main computer interrupt and prov1des information. about the
* address where ‘the ma1n com/hter 1nformat1on resides a%d the size of ‘the
. buffer that contains that 1nformat1on (word count).
) ~) ¢ - . "\
..~(3) Load Data: After the Program Code has been loaded the
.data[nill be loaded into the microprocessor memory by éxecﬁting the
LOAD DATA main computer interrupt service. The data is loaded starting
at address mémory‘ﬁbcation 6000 into the 32K‘RAM and contains informa-
t1on about all the location of the simulator hardware. The LOAD DATA

) command prov1des information about where the 1nformat1dn resides (in the

! . _ main computer) and what is the length of the huffer (word count) that

- ‘ contains it. The data 1ocded contoins information about the discrete
: outouti, and 1nputs, analog outputs and inputs and synchro outputs and
inputs which correfpond'to the input/output Interface ;ystem.
'-\ (’
" (4) Load Map: F1na1]y the LOAD MAP command (main computer
interrupt) -complements the LOAD DATA command by providing 1nput/output
mapping information (where the 1nterface I/O are mapped). The LOAD.

MAP command when executed provides to the microprocessor three elements

‘ » 3 ’ ' v
v of information:

The key which provides the type: of 1/0 interface ass1gnments

b.. The starting point of the main computer buffer that contains
the 1/0 interface information

c. " The length of the main computer buffer that contains the I/0 :
interface’ 1nformat1on

After the LOAD MAP is complete all the information that the .emulator needs

- has:been pnovided'and 1t can start running. The START'command 1nforms‘the

v L ’

v 23
. ‘ N
microprocesior to start executing its main program routines at a parti-
cular location. A STOP command will stop,th program -running, while a
* CONTINUE command will continue the program from where it stopped [2].
‘ . Q :
S t o) -
0000
BOOTSTRAP :
: MEMORY DIAGNOSTIC | . (- PROM
| O7FF B
//// %A ' '
MEMORY GAP :
‘ iy . | 4000
HARD .
- 4040 . t ‘
~ WIRED LOAD MAP h 0 . 4
o — Stw—— — — — -—‘- -~ ‘ ‘
LOAD PROGRAM CODE \ 4
-(ABOUT.SK)
/
. 6000
' ol | 32
LOAD DATA
é ‘ d
< ‘ ') s
. : T BFFF !
1 RAM MEMORY EXPANSION 16K
| (UP TO 48K MAXIMUM) ' X
, - R— FFFF f
Figqre 6. Microprocessor System Memory Organization é,l
' . "*"*T’;}W} : -

¢. Interrupt Services

. (1) General Interrupts: The emulator test utility a]lowg_)
access and control of the Microprocéssor/Memory module by the main system-
processor. ‘Foﬁ gxample, to check if the microprocessor_is running Qe can
read a particular location in the microproqeséor memory. This reading

gives information about the microprocessor being idle or executing its

. main program. A HELP file is available with about 40 commands some of

which are:

RESET - This command is &‘hardware reset:to the microprocessor.
It enables the Microprocessor to execute its Power-On-Boot-Strap
Diagnostics, and waits for a command from the main processbr.

READ - This command reads the contents of the specified micro-
processor memory address and displays gtl The mi;robrocessor
memory js organized in two parts. The first several 2K words
(0000 to O7FF) are reserved for storing the ROM and the next
¢ 32K words ({000 to BFFF) are used for the RAM storage (code,
® data and mapping). ' ‘ -
WRITE - This.commaﬁd'writes specified value into the micro-

°

processor memory specified location. ' <’
1

LOAD CODE - This command loads the microprocessor main program .
from a specified file in the main-system computer.

.

LOAD DATA - This command loads the microbrocessor with data
tables that describe the interfacing iﬁput/output functipns
such as instrument scaling, function genérétion etc.

LOAD MAP - This command loads the }equired main computer

registers to enable the microprocessor to READ and WRITE to

a specified main computer memory location. There are usually -
» |

24

§. 25
& | | ~
i - a number of buffers loaded (mapped) into the m1croprocessor
{ from the main computer. Some of these buffers’ map
,% a, Discrete Inputs
3
b " b. Discrete Qutputs
¥
! \ c. Analog Inputs
; ~ d. Analog Outputs
e. Synchro Outputs
f. Word Inputs : .
g. .-Word Outputs - : o o
h. Random Number Generations
1. Special Fungsion Requests) po

Boot - This command reloads the microprocessor when it stops

: ‘ witﬁout having to shutdown and restart the whole procedure. . | |
;) The boot command simply executes consecutively the following .-
‘i commands ;
3 a. RESET -
-~ b. LOAD CODE " ’
c. . LOAD DATA
d. LOAD MAP ‘

Other commands ar? available in the HELPlfile such as START,,STOP, CONTINUE,
BLOCK READ, BLOCR\WRIIE, QuIT, EXIT, etc. These commands can be requested

in the m1croprocejsor test utility routine and al]ow access to the micro-

B L e W gy % M e @ s vm e

processor memory by the main system processor [6].

(2) Emulator Diagnostic Interrupts: The emulator diagnostic -

-

~interrupts concern the microprocessor internal operation and have nothiné‘

AT v MY & 4

to do with the main system processor interrupts' The CLOCK interrupt
resides in the microprocessor and executes a var1ety of functions. It

is composed of a programmab]e clock timer’which runs in multiples of 62.5°

S ip

L \

microSeconds, YEjCh is derived from-the basic clock frequency. -NBrmal]y
the clock runs in 5 millisecond intervals (62.5 x 80'= 5 ﬁsec), for the

purpose of servicing the following special requeSt functions (Figure 7):

-, L}
Function Generation Routines

a.
'ﬂp. Poppable Circuit Breaker Routine

c. Serial Navigational Routine

d. Record and Play Back Routine ' o
The clock a1so'ruﬁs in 25 mi]]isecoqu (every'fifth clock interrupt)
intervals for synchro instrument updating. This js a service routine of
ﬁiéh priority beéause synchro instruments tend'to step down if they are
not refreshed frequently. Another function (watchdog) is done by running
the clock in 100 millisecond intervals. The purpose of this function is
that whenever the simu]atof'is running the executive program (main computer)
i% incremeﬁting a ¢counter. This colnter is monitored_by the microprocessor
thch recognizes running or non-running simulator status. The emulator

-’
will reset itself if the main processor stops running.

D. Timing Sequence for Main Computer-Emulator-1/0 Interface

The timing sequence for the update of'tﬁe simulator interface
system input/output modules is shown in Figure 7.. The time'for a complete
update is approximately 501m511iseconds and this will depend on the number
of input/output modules used in the interface 1/0 system. As soon as'the
updating sequence is compfeted the cycle will restart frop the discrete
inputs. The tihing sequence updates the following input/output intérface.

functions:7
. 4 1]

Vs .

)0

26

PUNPFVSIIURE PR

——— e

AR

Discrete Inputs (DI's) - are transferred from the interface
1/0 system to the main computer (via the microprocessor)

7]

u

b. Word Inputs (NI s) - are transferred from the interface I/0 J‘
'system to the main computer d1reftly (without being manipu-
lated, via the microprocessor)

c. Analog Inputs (AI's) - are tran ferred from the interface
I/0 system to the main computer/ (via the microprocessor)

d. Discrete Outputs (DO's) - are transferred from the main

- computer to the 1nterface I1/0 @ystem (v1a the micropro-
" cessor)

e. Analog Outputs (AO's) - are transferred from the main com- .
puter to the interface I/0 system (via the microprocessor)

f. Word Outputs (WO's) - are transferred from the main com-
puter to the interface I/0 system directly (without being
manipulated, via the microprocessor)

g. Syncwo Qutputs (SNOPS)- are tansferred from the main com-'
puter to the I/0 system (via’ the microprocessor)

i - 4

LY

e SNOPS UPDATED EVERY 25 M SECS i
Ny n s ————— —— — —— ———— - ~y =——*
S P .l e SR §
SPECIAL REQUEST EVERY 5 M SECS s . !
e
) Wl Al | w | M | wo [oen | swoes| SISTE
g}l 3y]sm L7193 S— L1 {1
‘ AR LV, . { 1A
Al RANDOM R
ot | w | o1 | oo wo Ineer| oo | ar | a0 | wo sNoPs | EnSteN
A0 GENER .
—— 1 — 0
M 0 1 ‘ v A\ [
\ \ HAIN
Wio| ot | oo | A | w Al SNOPS | COMPUTER
] - SYSTEH
50 M SECS APPROXIMATELY

Figure 7. Timing upadate sequence for the Interface System
Input/Output Modules

t

o . et s s prmieeta 4
N

IV. EMULATOR INTERFACE DIAGNOSTICS

. s
L} 1 v H
a

A. General

The Emulator Interface Diagnostics are exercised as an on-line

system diagnostic routine.also called the Interface System Status. This
routine is run by the microprocessor‘which checks perinica]]y the\inter->
face. system modules for address and data integrity. The errors are en- - .
coded into messages and sent to a buffer in the main computer where they
~are formatted and Togged. The most common 1ntgrface system status errors. -
are the Geneéa] Transfer (GT), Parity (P), Address Time Out (ATO), Data
Time O;t (pTO), Chassis Power Supply Status (CPSS) and Input Output (I/0)
moaule functional integrity error. _Each of the aBove Interface System -

Status errors correspond to a bit setting in a status register in the

Simulator Interface Controller (SIC) module. The %icroprocessor scans Jf;,a,/a ,
the status register periodically-and informs the m?in pfocessor about
the error being set. The main processor inturn, 1dgs the error and ,”
e . . ‘
‘ prints it on the computer system terminal [7]. The\fo]]oﬁing I/0 modules
\ " are checked by the on-line system diagnostic routine: 1
} a. Discrete output module validity .
b. Discrete input module validity
" ¢. Analog output module accuracy ' . - "‘
! d. o

Analog input module-accuracy
g The infprmation in this chapter has been de:\ved from my bersonalﬂ

'expérience in working in }he field. of computer system simulation.

1 A . 28, »

\ 1

(S R

» ! N
’ -~ . . wree
T ——— g T wh,, - [AR K At i
SRR R MR AR PRTA 1028 7 Y O et

: BRI ' , -) »
B. Ge#era] Transfer (GT) Error '

—

The general transfer error specifies that transfer of data through

either the Main Computer Interface Controller (MCIC) module or through the.

Simulator Interface Controller:(SIC) module is not successful. This is ﬁ.

general emulator error and the cause could be traced anywhere in the micro-

computer system. The general transfer errdr is a global error and therefore,
it cannot' be masked or bypassed since it causes the overall operation of the

o simulator system to stall. ’

C. Parity (P) Error

The parity error may occur on the address word or on the data
word and odd or even parity can be‘Zhecked. Parity érror arises when the
microprocessor reads data from the interface system input/output modules
or from the mémory module. Whenever infarmation is stored a par%ty bit

(the seventeenth) is also stored, and-when information is read back a

parity bit is also read and compared with the stored parity bit, as a 3
parity checking error. The parity error is a channel error which can be
bypassed and therefore allows the overall operation of the simulator system

to continue. |

D. Address Time Qut (ATO) Error s

The address time out er}or is set if an interface input/output
module does not respond to asserted address word by the microprocessor.
'The microprocessor waits for a few milliseconds for the address synchroni-

zation signal which is asserted by the interface. However, if the inter-

-

A

<

Y m——e T " " TS 3 - i -) g
. Lo {- o o s oen .W!‘;}M p Lo sy ,
e . . B L Ay ‘_';‘_‘_‘__(‘ L+

face response does not occur, the address time out flip-flop will be set

R

thus producing ‘an ATO error.

E. Data Time Out (DTO) Error

»
The data time out error is set if an interface input/output

module does not'respond to asserted data word by the microprocessor

after normal address word response- The m1croprocessor“haits for a few
Jmi}]i;econds for the data ;ynchronizafion‘which is asserted by the inter- %

face; and if_the interface response‘does nbt occur the déta time out

flip-flop will be set thus producing a DTO error.

F. Power Supply Status (PSS) Error

e et e e

The power supply status error occurs as a result of monitoring

the 5 Vdc 10gic, the +15 Vdc and the +24 Vdc of the interface input/output

- sy

P ' modules, whenever an overvoltage occurs. »The“power‘supply status routipe

i is exercised by setting -an addrgss word control bit and readfng back to

: the microprocessor the address word as no;mal dafa. Thus the microproces-
sor scans (reads) the address word and if a bit' is set an overvo]tage s1tu-

- ations is shown. The power supply status error hardware function 1s done

Trn

by the sub controller modules, which perform the bus interfacing function .

for each individual chassis while the software routine resides in the mi

_ croprocessor. [8].

»

G. Discrete‘gutpﬁt,Valid1ty

3

'Qn each discrete output (DO) module the output data is latched

b 1

(the voltage across the relay coil) by a second data latch. The data

is reaJ back to the microprocessor by issuing a Data Request (DR) command
after the appropriate addressing. . This command causes the 16 bits of data
in the‘second latch to be sent (serially) fo thelDTagnostic (DGN) module,
from which they are returned to the microprocessor (in parallel). If there
is no error on the discrete output module then the date received should cor-
respond exactly with the last output'data sent to the card. The flow chart

of the Discrete Output Validity is shown in Figure 8. .

H. Discrete Input Validity

The discrete input (DI) module is read back by the microproces- l

_sor in both normal and inverted moéarﬁ These two readings are enabled when

the mlcrOElocessor sets control bit of the address word appropriately.

The “two readings are compared via an exclusive "OR" and checked for all
ones (high). For correct discreet input validity the two reedings should
be separated by. a few microseconds not to allow any }eaf time setting which
would reselt Jn a fay]ty'erqor detection. The flow chart of the Discrete
Inpet Validity is shown in Figure 9.

1. Analog Output Accuracy

On each analog output (AO) module the output data is latched’
into. a holding regISter The output of this register goes through a D/A

converter to drive the output This output signal is monitored by 1ssu1ng”‘

the appropriate Interface input/output Bus address and a Data - Request (DR)

command. The analog voltage is then passed a1ong the chassis backplane

K

¢ ﬂ
| : . 32
[I) T I‘ , . ‘L},i
: “into S-ho1ding register by the Data Av§11ab1e (DA) signal from the Inter- . ‘& '
: face input/output Bus. The output of the holding register Qrives the out- :
put‘reiay through a Dar]ington pair. It is .this signal which is monitored
SET TYPE . o .) _: :
T0 DO 1° ' .
g R o . .
? 1 . - 1
{) : . 0
| a *
| REQUEST NEXT || - | - & I
' VALID DO «
i _ADDRESS o

l | % ‘ | ' | ' |
READ ' ‘ S)
INTERFACE . *

|
y ' . ‘
READ BACK \ YES . -

LAST 0/P?

Figure 8. Discregte Qutput- (DO) Validity Flow Chart

g

= e

SET TYPE 70 DI

!

REQUEST NEXT DI .ADDRESS

!

READ INTERFACE
- (NORMAL MODE)

v

READ INTERFACE
(INVERTED MODE)

N .
»
-
-
“
.
-
R «
.
5
.
.
L]
«
-
A .
<
v
- . .
.
.
3
°
. J

. READ INTERFACE
(NORMAL- MODE) -~

' Figure 9. Discrete Input (DI) Validity

L 2 . «

»

w o ow

R “J&WT oy I
R e
PROEAEN é}%%t_u M:-*a&u

‘k-‘ Fi

»
.
.
&
.
-~
. .
‘ o
.
o4
1
; ?
.
. -
a
.
« .
.
YES ‘
N,
LY
.
| YES -
) .
.
.
N) " .

Flaw Chart s

’
3

»

N A
%
(\ .) L

-

o~ ARl
N ,.mg.v:f, FATE

to the D1agnostic (DGN) module where it is'converted back to a 12-bit dis-
¢ crete value via an A/D converter Th1s value is read back to the m1cropro-
cessor and compared vnth the last output value. -Due to the limited slew ’

. rate of the analog outpit, the follow1ng check .is performed:-

o e A AT Ty T
o

The check fails only if the read back value, V., falls outside the l1m1ts

AOMINi. for, 10 consecutive samples where:

AOMIN = MIN (AOP; - LIM). i=d, i .
L . AOMAX; = MAX (AOP; #LIM) § =1, .1
; where AOPj represents one the output values.
2 if v, >A°’?5X1 ‘ or V < AOMIN,
' for every i=1, ...,-10 then the test fails, otherwise it is_passed.

|
One sample is taken on each iteration of the microprocessor program. The

sl A Erg

flow chart of the Analog 0utput Accuracy\gs shown in Figure 10.

'J. Analog Input Accuracy” . ‘

i i A o

" When a normal .analog input (AI)} channel is read the:analog input

specified by the Interface input/output Bus aodress is switched to the

Lm e st

‘Analqg -to-Digital Converter (ADC) module where it is converted to a d1gital
s1gnal and returned to the m1croprocessor When the analog input accuracy
chéck is exercised the microprocessor sets control bits of the address word

- " and forces an output data word to the Analog—to-Digital (A/D) converter

. module. This data word is latched by using the Data Available (DA) strobe

~ ‘hand is converted to an analog signal via a D/A converter. The "test" -

“

. value can then be read back via the Data ‘Request (DR) strobe. The output’

o

" test value 1s compared to the input value and if the ADC is outside a given

. ‘ tolerance an error is deégared aé shown 1in Flgure 11.[8].
—— T T T T T T
;%:; Aq‘yﬁ%{? LRSS et o e

L4
35
L 4
P d
N Qf (L
, SET TYPE TO AO
k v , :
~ GET NEXT AOP ADDRESS N : SRR |
READ INTERFACE V. = || E ’
»
OVERFLOW OR \ YES SKIP TEST
| NO DGN ?ﬁ?\ -
\ N \~
S ‘ AOMIN = MIN(AOMIN, AOPi-LIM)
. AOMAX = MAX(AOMAX, AOPi+LIM)
‘ : RESET (i=g)
AOMIN(ViAOMAX Row Som,
6, 7 . '
| d=i+

N SET UP RETRY RESET ERROR
AOMIN AOMAX

FOR THIS A0

= W . . , . .
Figure 10. Analog Output (A0) Accuracy Flow Chart.

O Ty

« IO R0 R WP RPIAGA T o e ;.
- s
N s
b - . * . ’
-, N
i)
i
¥
b

-

_ ENTRY

SET TYPE TO AL

¥

GET NEXT AIP ADDRESS .

- ISSUE
AUTO NULL
FOR i=1

SAME ADC.
AS LAST TIME

-

SN

TEST
CHASSIS

ADDRESS

. GET TEST VALUEi FOR 6>P

"

TESTING

ERROR

.
¥

* COMPLETE
i=i+l
¥
OUTPUT TEST VALUE,
¥
- READBACK TEST VALUE,
YES /. NO
AABS | OUT-IN|)LINY

" Figure 11. Analog IMpt (AI) Accuracy Flow Chart

N

[3 .

" The microprocessor systemhis actually a.computer Interface Unit (CIU)

V. 4-BIT-SLICE MICROPROCESSOR APPLICATION IN FLIGHT SIMULATION

A. General

l

[l

" This emulator is a 16-bit microprocessor syste}n used in f'l"ight.
simutator applications (Figur& 12) in conjunction with the main processor
which is a minicomputer system. The microproéeséor controls and processes
the data flow. between the computer sysfem anﬂ the flight simulator compart-
ment. In addition it relieves the main computer by executi’ng function gene-

N ' N 4
ration, special requests and diagnostic reuPines [2].-

MCC BUS : 1. yreuws . 170 CABLTS

~ M qzbmcnopnocsssoaqzb INTERFACE <]::::1>F LIGHT
COMPUTER SYSTEM SYSTEM 1/0 (S:(l)::l’}ks.TrasNT
N .
. P ey .
I ']
VAN mee sus il A EBUS o finreneace |
COMPUTER £ MICROPROCESSOR BU , SYSTEM 140
| |
l [+) l r—
|
| MICRO-
| PROCESSOR| | MEMORY I -
. L ’

Figure 12. cOmput& Flight Simulator System Block Diagram

-

. that handles the communication between the main computer and the Input/

“~
Output Interface System [2]. The microprocessor contains four modules - s
which handle two distinct functions. .-The first is the contrdlling function

exercised by the microprocessqr module in conjunction with the memory module,

*‘] va—-—-—o v—-o—d s "Wa'
{ﬂm . i 3
1o —ws-o(B o

b

"l‘

- provides the ‘input/output strobes needed fior the- interfacing function that ;//

38

The second is the 1nterfaC1ng function' done by the Main Computer Contro11er

(MCC) and the Simulator Interface Controller (SIC) as shown in Figure]2. W,

. - 4
B. Microprocessor Module

’

The m1croprocessor module is the heart of the emulator system
1ncorporat1ng all the contro]. computat1on, processing and dec1s1on mak1ng
capabilities. The mi roprocessor effectively performs the arithmetic and

logic operations™as well as controls the address and data busses. It also

. the Main Computer Interface Contrb]]er‘(MCC) and the Simulator Interf;Ee
Cpntrb]]er (SiC) modules perform as shown in Figure 13. The microprocessor

fetches instructions (macroinstructions) from the memory module via the " '

microprocessor bus which 4s an internal bus. Each instruction consists
of several microinﬁtructiohs which are executed in sequence. A11 micro-
1nstruct1ons are microcoded, and each one consists of 48 control signals
conta1ned (stored) in the 48-bit pipellne register [8] The M1croproces-
.sor consists of the following units:
a. Computer Control Unit (CCU)
b. Arithmetic Logic Unit (ALU) \
c.. Program Control Unit (PCU) .
‘ Bus Source/Destination Contro] (8C)
Input/Output Control (IOC) ,
f. Interrupt Control (INTC) " '
The microprocessor is a Central Processing Unit (CPU) multi-chip jmp]e-
mentation. The CPU is divided into two major sections, the Computer Control

Unit (CCU) and the Processing Unit, each with distinct multi-functional -

! .
kY

N

weaberg yoojg wajsAg asejuaju] .U.mu:asou 40553004d0UD LY €L o4anbL4

{NTV) LIN WOHINOD IILBHLINY
(N33} LINA WYINUD ¥ILNANOD

[P I S e L

BOSSINYA0YIIH

P . ’ - .
- ‘ - ANONIH)
. “¥300930/4300003 ALIYVd -
. : : T0UINOD HSIUATY ANOMIM
. 0ULK0D I0ULHOD X207
AN AV . -
. pr s .
W0HLINGD o
- HOYd)
o N =
N ') Y, \\ T .
qor) 91 . J .
i Jxmm.—gu P
UMD | 4 ¥3LSISTU CHOM IndLnd :
i)) ¥31S193¥ QHOM LNdNI
° HINIL WANILNI SY33SNVEL 071 G N WILSAS
: ’ uuhmww»w.ﬁHuV ¥21SI93¥ SNLVLS ¥I1I0HLNGD i) » V08 [——p| 3
0/1 / ¥ILS1938 LNdNI JIS 91 . a1 W3LSI9TY LNdNI M SNE J0M Niw 4. -
. sng 3/1 - Y31ST93¥ INAINO JIS x ¥31SI93Y 1AdINQ IM
HI1SI93Y SSIYAAY J1S S | 2 H31S193Y SSIVGAV HNILHVLS
: - g 33 m SHISNVEL UaW -
F 3 Sh a S N
" lwn
31§} ¥30ULNOD s |P 39) ¥37041NOD
) (a1s) ERCAEN 3 : 8 5 (WILNAI0D NIVH
¥OLYIIS
- . * {DINI) WBLNOD LANYYIINI - v
. . - (201) T0UINDD NdINOZLNANT
- «NOTLVK1ISIU, (28) 32MN0S SN b .

. . . 0YINOD . (13d) LINN TOUINOD HVYDON4

[P

T
e B

T
5

St

s

LRI

Py
N
e A

£
S

"

operation. Additionally the Input/Output Control (f6c) and the Interrupt
Control (INTC) which are controlled by the microprocessor can be treated

as separate functional sections (Figure]3). The microprocessor module
operates on a 16-bit address bus and a 16;bit data bus. The program routine,
once fetched from the ﬁemory module is fed tcfthe computer control unit
which instructs the arithmetic logic unit how to process the data. The

computer control unit alsé drives the input/output control unit which»;;jf)

Tects the source and the destination of the data transfer. [3].

{ Compuf%r Control Unit (CCU) - (Figure 14) ' ‘ \\ {

The computer control unit consists of the following units:
| (1) Pipeline Register (P/L):” The pipeline register is a 48-bit
parallel output data register. The Pegister.content controls the input/ -

output data selection from the main computer controller and the simulator

interface controller modules as well ag the interrupt mode of,cqmmunication.
The pipeline register data also drives the program control unit (PCU), the
\ " Shift Control (SC) and the Carry-In-Control (CIN). It also contrbls the
Microsequencer Counter, the Condition Code Multipiexer (CCM), the Source

K3

(SR), the Function (FN) and the Destination (DS) modifier.
' L.

(2) Instruction Register (IR): The instruction register is a

16-bit pgta reg%ster 103 d by fhe memory module. The eight most signifi-
cant bits, which are f ddj%'the PROM map, are Operating Codes (OP-CODES),
for the CCU. The eight least significant bits are two 4-bit ALU register
designatioﬁs'whi?h are multiplexed by thé A, B, modifier, under the control,

of pipeline register output signals.

4

: .
. - i 8 e e e TR A STUv N b Dl

i i . —-—

. (3) PROM Map:' The Prom Map is addressed by 8-bit instruction
register operating code, and enabled by the microsequencer. The addressed
memory location contains an 8-bit word that sets the stack pointer in the

microsequencer to the appropriate location.

(4) Condition Code Multiplexer (CCM): The condition code mul- L. ’ .-

tip}exér multiplexes the.arithmetic ldﬁic unit output flags from the ' .

program status register to modify the counting steps of the microsequencer:
The multiplexing function-is controlled by P/L register output Condition

Code (CC) and True/False (T/F).

~

(5) Microsequencer: The microsequencér initialize§ the P/L

b register in the initial start up procedure. After the startup, the micro-
\ E « sequencer stach‘bbinter location is determined by the PROM map output.
Having set the stack pointer, the micrbsequencer counts a sequence of:

% numbers which corresponds 'to- memory lﬁcation in the PROM micromemory. At

each count, a memory location in the PROM memory is addressed, and the

P/L register reads and stores the contents of the addressed location. The </<
microsequencer count is modified by the condition code multiplexer and P/L
‘register 6utput'Next Address Control (FAC). The mddificatién‘is performed
during the execution of the Erogrammed.routine. When the PROM map is dis-:
abled for read‘operation the microsequencer stack pointer can af;o be sét.

by the P/L register output Jump Address'(JA).

(6) PROM Micromemory: The PROM micromemory contains the fol-

Towing microprocessor routines: ,‘

-]
0 N -
' v

-

T T TS R, TR T 7

'“i"ﬁ"“‘!;“

F i regvr e o i sy

flags. The loading of ‘the register is regulated by the input/output qsit.

a. Arithmetic functions

b. Logic functions ‘

c. Prégram control (looping, jumping, branching)

d. Memory read/write functions ‘ ‘
\\ e. Input/output -interfacing functions

f. Internal ALU register control .)

g. P/L register data flow

(7) Program Status Register (PSR) The program status register "

is a 4-bit data register that stores the cond1t1on of the four ALU output

(8)§QProgr€m Control Unit (PCU): The program control unit steps

the ALU through the program instructions and sequences all RAM and PROM

address in the memory/clock module. The PCU consists of a sequence (counter)

which is set and driven by the P/L register.

Processing Unit - (Figure 14)

The processing unit consists of the folliowing units:

(1) Data Register: The processing unit data register stores 1

'ls-pit input from the data bus. The data register is clocked by P/L re-

gister output signal. The output of the data register can go either to
the ALU or to a 4 to 16 decoder or to a 16 to 4 encoder,

(2) 4‘to 16 Degoder: The 4 Least S1gn1ficant Bits (LSB) of
the data register can be used as a condit1on code- for the CCU. Because
of Z however, the 4 LSB can also go to a 4 to 16 decoder to be used to

build a mask and to set, reset or compare a specific bit in‘an ALU regjster.

» . ! ~ + 4
I Peterrrae v m)
YT Y T D e T T T S NN R SR S e — i perion -y o

. used during the operation cycle.

e ¥ W oy e

-

(3) 16 to 4 Encoder: The output of the encoder is a 4 bit J

hexadecimal number (0-F) that indicates the first most significant zero

-

bit in the word located in the data(register.

\

(4)' A-B Modifier: The A-B modifier is controlled by P/L‘regis-A

ter output to multiplex two 4-bit inputs from the CCU instruction register.:

The multiplexed output specifies the sélection of two internal ALU registers
[.

- (5) Source“(SR), Function (FN), De;tinat%on (DS), Modifier:
The SR, FN, DS modifier multiplexes P/L register output signals to.produce
control bits uséd for the éperation of the ALU unit.

(6) Arithmetic Logic Unit (ALU): The ALU consists of four

4-bit slice processors that function in a parallel mode. It is clocked
by the memory module and operates on 16-bit input data from the data
register, The ALU functions and operations are controlled by the fol-
lowing units:[1]:

N

A-B modifier ‘ . .
Carry-In Control (CIN) ' v //f
Shift Control . . ‘

SR; FN, DS modifier

Program Control Unit (PCU)

. Pipeline Register (P/L) ' ’ \

s a’d g op

The data read from memory is loaded into the data regisfer. Thg output
of data register can go to a 16-to-4 ENCODER, a 4-to-16 DECODER or to

R : .S ..
the ALU. The output of the ALU (Y) can be put on the data bus. The

»

-, .o —
. ER T a e T T - TEL 3 LTI W
N R C T N NIRRT
e A T ha e %Y R Bt
5 .

/

operation performed by'the ALY depends on 9 signals coming from the pipe-
line (SR, FN, DS). The ALU result produces 4 flags (Z, V, N, C)} (Zero,
Overflow, Negative, Carry), which can be loaded into the Program Status

Register (PSR). ’ |

(7) 'shift Control and Carry Control (CRC): The shift control
determines what will be the new bit (LSB or MSB) during a shift operétion,
fhe shifted out bit will be the carry (C) bit into the PSR. The "carry

. in" of thg least significant slice comes from the Carry In Control (CIN),I
fhe other “Farry in" comes from a Look Ahead Carry (LAC). The ALU has 16
internal registers. The source register address (A) and the destination
. register address (B) come from the A-B modifier in order that, under the

pipe]iﬁe register control, A and B can be any of RS, RD from the instruction
/ .

register or X1, X2 from the pipeline.’

Input/Output Control (I0C) Unit - (Figure 14) ‘

This unit controls which input(ouépu; registers in the simulator
interface controller or in the main computer controller will be‘the source/
destination to the mic}oprocessor data‘bus: During an input{éutput in-

i struction, one strobe will be issue& depending on the~outpuf/input control
é ’ ‘ and the } least significant bits of the OP-CODE. The destinafion of the

microprocessor data bus is controlled by 5 dedicated P/L bits. Any, none

-

or all of them can be set to indicate the loading of data into the desi-

| gﬁated register.

2

44

911

‘ . VISTTN
N MIN3d14
p———] .
L —
. — |
| S S .] woovol o - N .
. TR 3 norivei1s3a [7 . -
s — . . i ._......n.~ - sm . S
¥3141004 , |- :
Mtwvd | oy 7 Swes [e %) . :
* * . _ | . % = ” 22W0s %) :
_ ~\ 27 L2 _l € sid | ® - -
9 ') = T : : -
- - . 3 .
_ 2 21 Eramn K R Rl i) - o
o ul o . 0800 TN -
] <1 =4 ¢ LamSa3iN]
w{e - W
L_ . w1 JOS h_
re 2 N =1
| __| oumad)
¢ e S o 7 .
e G
P, 1041807 o : i
J_ € t 14148 o -)
! 1 o N
"
| 0% e —A * * 9 ut * -
! A_ viva g A ouw ")/ :
_ 3 0-61 v | PGS | I " i . T L0
|~ 3009 HIMINDISOIIW :
s St e Wwoodd [NOI L10%03 - ’ ’
BN Th) g 2 = X :
b . " MU TS Yy v . v IN s o)} W .ﬂ o ¥
o 'Y 8 : Aty (24 - =
a H3 - WAL * K.
: —l xﬁ o d/0 .
. H ———— e e s — e — —— ‘
9 1 .
uf - T\ waLatom 3ty 3 of P ”n Aovie)
- ;) 0 Miwve _
R : = x| _lII *
v (85 _ . orx ' _ » * —)
: 1—ef 201 1a132003-00 }e-01 - _ 218 sng 4/1
4200230 PETILE ¥30003 I ¢ —_— . .
A+ sroi-y vivo y-or-91 [+ Esy] i ho—e I sng I %,
R
IE 5P I} . _ i .
st st 1 a1 or <na vive 91 [m T
- - - LY
- - h. ..,.;
S ! A,

. p) .
s .
P K [
.
.) , 46 , .
t ’ N ‘
v € .
. . .
. .
- L]
.

Interrupt Control (INTC) Unit - (Figure 18) "

This unit handles the micro-control of interrupts. Th{s is
done by théuP/L control bits Jump Address {JA), Interrupt Control (IC) , .
which tontro] the status of the interrupt control register. The Enable .
Interrupt (EI)umacroinstrUCtion allows all the interrupts to interrupt A
_ the micropfdcessor. This interrupt, howe&ercborigjnates in the simulatore '
interface controller status register and whenever it is enégled ;ahses
the coqeuter coﬁtrel unit to jump into- the interrupt sér?iée routine at

A . the next instruction fetch [8]. = -

[A .
¢
$ w0
i «
i / .
l D

i C. Memory Module - ') '
. A ! L9
1 . N o

The memory module contains a phase timing cyclé generator and

PROM (Programmab1§ Read Only Memory) and RAM (Random Access Memory) compo- ‘.
B nents which supplement the operation of the microprocessor module.. The .

PROM memary sfores the microppoceﬁsor system routines and functioﬁs, The
+ - RAM menory 1is used by the miéroprocessor for temporary data sgoragerand

retrieval. The Memoryamogu]e contains the following uﬁits:

g . a. Programmable Read Only Memory (PROM)
i -b. Random Access Memory (RAM) T . '
P c. Clock ' : ~ . o

d. Clock Control
, , e. Memory Refresh Control | ’
5 , "~ f. Parity Encoder/Decoder X }‘~

1 . A

. \ .
The memory module functions are controlled by microprocessor output control

signals, Memory Write (Md) and Memory Read (Mﬁ-). These two signals are .

, ' processed'by the memory control logic to generate a multi-phase timing

B]

s i TSNP -

e tents during RAM addressing.

., o X
Memory Address Register . N

n‘oyple which will determine a read.or write operation, and genérate multi-

‘plexihg signals that control the addresseing of RAM components.. In either

. read or write operations, aolﬁ-bit'address from the address bus is stored

in the'memory address regieter. The eleven least significant bits of the

. % I . .
input address are memory locations. The remaining five bits determine

RAM or PROM od&@éﬂg‘:

N]

Data is transferred 1nto and out of the memory module via a 16-bit
b1-d1rect1ona1 data bus. The tr1state data buffer, which is controlled by

the memory contro] logic, routes the flow of data between the data bus and

the memory module. The memory modu]e block diagram of operation is shown in

.Figure 15v[3]2 'The control ;igna1s involved io the operation of the memory

module are;

a} Memory Reao‘(MRL) Indicates a ao function

b. Memory Write (M) Allows the RA ry to store data

c. Row Address (RAS) Indicates row address1ng of RAM memory
rl' d. Column Address Strobe (CASS) Indicate&%ﬁAM column address1ng

e. Refresh Address (RFADRS) and Column Address (CADRS) Multi-

plexe input address for the memory address register to.ge- -
nerate a 7-bit address

f. Refresh Row Address (RFRAS) Refreshes the Ram memory con-

~

Cﬁook and Clock Control = - | ' 7
R ' ° S

1he clock,is a multiphase free running ciock used to control

¢

the opetation'of the memory and the microprooessor module.r \

Vo L

The memory address register 1s clocked by the memory’ contro]

logic to store a’ 16 bit address from the address bus. The three most

L

P \\ o, R ‘

e

. A S ‘
significant bits specigy PROM mempk}”hddressing and feed into the PROM

P lam i Al

memory block decoder. The next two significant bits indicate RAM memory

-
.

' addressing and feed into the RAM memory block decoder. The eleven least

! ~ significant add ;ss bits comprise the actual RAM or PROM address location.

“

Tristate Control Buffer B

G

v

Through the tristate buffer, the RAM memory block q coder controls
the loading and column éddressing of RAM memory components. ‘Input. signal
CAS indicates RAM column addressing, and input signal WRITE indicates ;hé

1oadin§ of input data from the tristate data buffer'inpo the RAM meﬁbry.

RAM Memory Multiplexer

Through the RAM memg;y multiplexer, memory control logic output -
signals RFADRS and CADRS multiplex the 14 least significant bits from the

memory address register. The multiplexer generates a 7-bit output which

L]

address the RAM memory components.

\ \ ‘ '.. . V
Tristate Data Buffer v

N

- The tristate data buffer controls the routine of data to .the

IS .
data bus during read/write operations. During a read command from the

microprocessor module, memory control Togic output ‘MR- allows the -tristate

* data buffer to route data from the PROM or RAM memory to the data bus. ,

In a write commandtfrom the microprocessor modu]e,‘output‘signa] MR-«

enables the tristate data buffer to route 16-b1t31ﬁput from the data bus

o to the RAM memory. , . : v ¥y
o . . >

LN
.

o]

e e S e

;a9

QPRDM Memory : ‘ z .\
» . !

The PROM memory is preprogrammed with the microprocessor ppera-

-
- .

".ting procedure§ and subroutines. The memory locations are addressed by

the 17 least s1gn1ficant b1ts in the memory address register. The PROM

is enabled from a read function by the PROM memory—block decoder and- fge -
memory contro] logic. The memory contents, during a read command, are
loaded on the data bus through the tristate data puffér. . i

)

RAM Memory

" The RAM memory stores input data, from the 16-bit data bus; which -
can be retrieved by the microprocessor module during the exeéu;ion of
suByoutines. The data‘is tfan;ferred bétwéen the RAM memory and the
,data bus through the tristate control buffer. The RAM memory is addressed
in two stages. A row of RAM-components is addressed by the RAM memory
multiplexer when the RAS- signaT is active. After row address1ng, output
signal CAS- enables a column of RAM components to be addressed by the RAM
memory multiplexer. Data is loaded into the RAM by a WRITE command after

the comple%ion of address1ng | X ° :

Memory'Read, Write and Refresh Operations

This subsystem is controlled by Memory Read (MR-) and Memory -
Nrite_(MM) microprocessor signals®and three functions can be activated.

" Memory Read occurs when MR- is abtive (MW inactive) and can be RAM or’

PROM read operation depenf}pg on the memory block address,dggoder (se- o 3>

lection). Memory Write occurs when Md is active (MR- 1nactivg) and
deals with the RAM mémory. -The third function is the Read/Refresh (Read o

Py

13
B
R I

" e T o A A A TSP DA I rSe e
. 4,
= | -0
wn . r -
. ~ .
. ueabelq %0019 a|npoy A4owdy ‘G| aunbry
b 1\ -
;- A vamnes |, Svuy . .
‘) KNIg
N s v -
¥IXTWAILIM 315193y - ‘
AYOWIW Wudi v . SSIuacY y: .
4 - . vk y 9t - AYOWIW or - Snd
1“ g A2 . e SS3y0av -
S¥OV3 Suavu ' ¥30030 wgoozefl, - - Q .
- [50078 A¥OW3W || 420718 Avowew | {11 - W
, W HOY¥d
AU W
i o 1 4 «
— A A) -
AYOWIH WO¥d
A I P Tz
I / ¥344n8 .
7 7 L4 ya
91 VivVa je
_..I] 71 £ - A5 VISIYL | "ot
: ﬂ L . IINCOH DM WOUd
- - u: R ~
- « ’ -ava T\
TN _434dng 3ILTUN ® * w
-3 T041NOD v L.
3AVISTUL : A uawn.._
- 8_2 Pt —
Svd SWYH—~+——1 you3aW - M
SVY Y~ :)
SHIY) ———dl -
-~) ~——erd
‘) ‘. : 3In0oW ,
« = H0SSII0UJOUIIN FHL WOYI .
o ' l)
: N
R S S PaT T AR et et S T - m— c| T e A e e s = TR Tm e s T A iy

cn o gy m e = e T \ 5+
.

et el e e s e e N

b .

R
- -Y\,.u.—.‘_, o

. . otiereg g ey SRR T s 2 a————_ o e
"‘mﬁhﬁiﬁxh‘ﬁw G P | 0 O I B0 s
: ‘.:;j,nm. I o v\,:“f{.a,‘vgr\ I T e T

n

- ! I

fo]]owed by«Refresh) operation, which occurs vhen MW and MR- are both
active. Finally when MW and MR- are both inactive no memory operation

is performed at all [2].

® .

_‘D. Main Computef Controller (MCC) Module

. The main computer controller module performs bus interfacind
address and data buffering, address incrementing and decoding, transfer
error detection, and bus conﬁro]iing function#petween the main co@puter
bus and the micrdprocessor system as shown in Figure 16. When the mi-
croprocessor is\h@ady to process data from the main computer bus it -
§igna]s the main computer confroller module to store the input data in

/ the main computer controller input/output registers. The BUSY/READY

(signal initializes the memory module to provide the microprocessor with
a routine throuéh—the data bus. Whi]e'execﬁting the procedure, the mi-
croprocessor accessed the RAM and PROM'components of the memory module
through the address bus for processing and decision making. ’The‘final
data is'stored either in the §imu1atof.interface controller module
input/output‘registers or in thg memorss module RAM combonents fqr future
use. .The microprocessor selects a memory location (RAM or PROM)'in the
memory module via the address bus. All other data transfers, between
any two modules are channeled through the data bus. There are actuglly .
two types of transfers that’{he main computer controllBer module performs,
an-Proé;ssor Request (NPR) and Programmed Input/Outpdt-(PiO). During
‘fhe NPR transfers which are also called Direct Memory Access (DMA), the . ’

microprocessor is the bus master and the main computer memory'is the

slave, while dyring PIO transfers the main computer is the bus master
‘ ' LS

- . R . ’

4

51 .

G \

<

——

vt T e i A s e

- wrrme

el mreae e,

and the microprocessor is the slave [3]. The Main Computer Controller
Module contaﬁns the following units:
a. Starting address register
b. .Address decoder : , _ d
c. Qutput data register
d. Input data register ‘
e. Computer transfer controller
f. Interrupt controiler
Through'the address decoder and the majnacomputer address bus, the computer
system addresses the microproéessor to perform the intgrfaciﬁg roq;in@s.
Wheﬁ the microprocessor is addres;;d, fhe é&dress decoder generates a -
device)select (DEVSEL) signal which enables the main bus trahsfgr coniro]]er
(Figure 16). The Main Compdte; Controller (MCC) module processes input/
9u£gut control signals from_t?e microprocessor modulg and the maiq computer
bus. The main:computer copt%él]er module performs input/output register
selection, controls the a?cessing of the computer system memory for non-
processor use, controls the input/output data transfer, and enables the
interrupt controller for the interrupt mode of communication between the
microprocesso£ through the input register. When data is available, the
computer transfer controller uh{ch processes input/output control'signaTQ
from the main'computer bus and the micropfocessor mo§ul§f enabfes the
loading of data into the input register. The micﬂoprbcessor reads the
register contents through pﬁe data bus. |

51m11§r1y, data is tranferred from the microproqesso; to tﬁe
main computer controller bus. When data is available on the microﬁrgcés-

sor data bus, the microprocessor module writes the lﬁ;b{t data into
' y

53

i bt due s et P G S

N

i weuabeig ooy ainpol (JJW) 4o 1043u0) Lﬁ:asou uiey 9| sanbp4

. sng
ST S , yadiogy | SSIWAV
7 . SSIYAAY 7> .
. 91) ONILYVLS 91
2 / -
.
\ , sna
91 : ~ Viva
7 / ¥31S193y / .
o /- 7 INdNI 7
sng 3 91 ’ 91 .
R 71 , £) ,
.o 4 £
9 sna
: / VLva .
| - Foen |3
LhdL 91 : n
= - : m:m \UU: \ -
it LdNYILNT , . Tos
L Y3 TI04LNOD
1 ITI0ULNO .
04LNOD 0/1 e
H0SSII0YOUI TN 1dMY3INT RN ‘
. : N\ STVNSIS 104LNGD
LdNYYILNT SNg 90K
Ly y ¥ITIONNGD | - ’
— YIASNVUL] .
’y 91 ¥31NdWOI T ~ : .
. a Co N STYNSIS T0MINGD
. : o 1A] o JOVAIIANISNE W
S ¥300030 o /7 -
i SS3uaayY /,
sna .

st e

w

!

ke

- w i
o e S Ot LY, TSI PR S F

~.in Figure 17.

the output registers. The input/dutput control from the microprocessor
mgdu1e loads the output register with the:input data. .The combuter:system
accesses the output register’via the main computer controller bus and . .
reads its contents (data lines Dpg through D15). The output register is

‘enabled for accessing by the computer system through the computer transfer

" controller operating the computer system in the non-processor mode, the

[
microprocessor module accesses the computer system-memory through the
main computer controller mzdu]e data bus. The memory locations. are ad-
dressed by the microprocessor through the-main computer controller ad-

dress bus and the starting memor& address register.[6].

- 'Ev Simulator Interface Controller (SIC) Module

The simulator interface controller module performs bus inter-'
facing, address ‘and data buffering, address %ncrementing and decodirg,

transfer error detection, and bus tontro]]ipg function as it is shown

er the data from t%e'inter%ace bus has been processed

the resulting o ﬁt is stored either in the main computer controller

input/output FegifWers or in the memory module RAM elements.. The data

stored in the mainjcomputer contfo1]er registers can be accessed by‘the

main compufér sys and used in the simulation program. The Simulator

) :
Interface C&ntroll r Module contains the following units:

a. Addt§35 register L.

b., Outpyt register _

c E Input;register " o

d., Erroricontroller and status register .
e

. Interface transfer controller
- f. . Interyal timer

54

The Intgrface Transfer Controller processes input/oufpdt control signals .

from the interface bus and the microprocessor this‘enabling‘data transfers

between the interface bus data lines and the microprocessor data bus. The.

data flow is buffered through data registers and differential components
(Figure 17). When a device on the interface bus is addressed, output

data from the data bus is stored in the address register. The input/output

control Tines.from the microprocessor enable the differential transmitter '

to load the interface bus with the address through the Interface Trapffer |
“Controller. After addressing’is éomp1ete, the microprocessor loads the
oufput data régister with the data for the addressed device. The data is
loaded on the interface bus through tﬁe differential transmitter. Data
from the interface bus is réceived by the microprocessor through the
differential receiver and the input data régisteri The interface bus
\§npqt/output cdntro] signals, which are processed through thé Interface
Jransfer Controller, enable the inpﬁt data régister\and the differential
receiver to transfer.the data.l The error controller and stqtus‘register
mon%tor contrpl signals from the interface bus and status sign§1*from

the main computér controller module. ‘A ls;bit output wbﬁd, vhich is
processed by the microbnocessor“modu]e, determines the condition of the

P

data between the main computer controller bus and the interface bus [3].
The main errors detected by this process (General Transfer (GT) Error,

Parity (P) Error, Address Time Out (ATO) Error etc.) were examined in

Chapter IV.

' <

-INASG
- *=ONASY, ‘~L1¥AS
.-E.-E.-WE,_.

.

+

“weabeyrqg %oopg ALNpow (JIS) Lw——o.bcou 3%eja9jUl JojeinuLS

*

*L1 aunbry

. (3NaoN AYOKIN

{ONY ¥3LNIWOJ0UIIN WOUd

- . T0UINOD
L ¥ITIOULNOD . 9 : Yt
7 HIASNVHL ——F
- - 39V44IINT | .
i ;) 1 ;
. g :
J ' i YAUSIHIY
“ong 4/1 7 . | ¥3AI303Y e
€2 - 7 " qviin3¥3dala 10dNI m~
Vi i .
- " :
i 9T |¥31SI9IY
e VLVQ fe—rt-
wmdino} ot - .
. N | vamwswu 20 : L.
4 WIINI¥3Idd10] 4 e
’ viva
-NLY Y Y3USI9IN :
- *=JNASY . 91 91
: ¥3LS 193y o o .
SNLVIS ONY vl J. i al)
] ¥InouNod
SNIVIS 20w HONY3

29

CONCLUSION

In th1s report the computer flight simulator sytems were
‘examined and specwa]ly the microprocessor emulator unit. Part1cular
attention was paid to the structure of the microprocessor.-and to the
interaction.between the microprocessor and the input/output inter%ace
system as well as between the microprocessor and the main computer
system. In examining the interfacing techniques of the 4-bit-slice
microproqessors\we found that the emulator microprocessor’provides
the in-circuit-emulation facility as a complete system checking tool.
.~ The microprocessor system a}so provides increased speeds and f]exibi]-'
lity; and it is this property which makes the 4-bit- s]1ce m1croproces-
sor feas1b1e for computer flight simulation app11cat1ons

The 4-bit-slice microprocessors, ﬁowever, have a disadvantége
which is the system support software required in their applicatians.
This results in increasing costs since highly specié]izéd personnel hé&e
to be employed-to meet the skills required in their -application.

Finally, thg overall application of the 4-bit-slice micropro-
cessor in flight simu]atidn involves transfers of data which are solely’
processed under the éohtrol of the microprocessor. Addi%innh]‘y. relijef
. of the main computer system is achieved by the emulator which executgs
special functions on behalf of tﬁe'ma1n computer. The overall operation

therefore, is greatly affected by the'operation of the microprocessor

PR T P

since it must operate in a real time environment. This real time opera-

3 —_————

tion is accomplished by operating in a number of time frames and is con-

trolled by a reél time clock. Since a nhhbe} of events (programg} must

occur (run) within the time frame this might cause the -operation to,
o either run out of time or be very slow. These are the two critical .
. Timits ‘under which the operation of the emulator microprocessor must ' Co

function apd which also govern thé operation of the overall computer

. flight simulator system. 4 . ‘ .

© ©

— - o

a

g

* BIBLIOGRAPHY

A]exandridis N. A., "Bit-Sliced Microprocessors Architecture",
M1croprocessors and Microcomputers, IEEE Computer Soc1ety, California.

’ 1978 pp.69-92

Lesea, Austin and Rodnay Zaks, Microprocessor Interfac1ng Techniques,
Sybex Inc., United States, 1978

Artwick, Bruce A., Micropomputer Interfacing, Prentice-Hall Inc.,
New.Jersey, 1980. ’

The AM2900 Family Data Book, Advanced Micro~devices, Inc., Ca]ffornia,
1978. - . ' '

Powers, Michael V., and Jose H. Hernandez, "Microprogram Assemblers

for Bit-Slice Microprocessors", Microprocessors and Microcomouters,

IEEE Computer Society, California, 1978, pp. 186-198.
Minicomouter Interfacing, Editcd by Y. Parker, Miniconsult Ltd.,
London, 1975

Srini, _ Vason P., "Fault Diagnosis of Microprocessor Systems",
Microprocessors and Microcomputers, IEEE Computer Society, California

1978. PP. 286-291 .

d &

Leventhal, Lance A.,' Introduction to Microprocessors: Software,
Hardware Programming, Prentice-Hall, Inc., New Jérsey. 1978.

-

