National Library
of Canada

Canadian Theses Service

i~

du Can

Ottawa, Canada
K1A ON4

NOTICE

The quality of this microformis heavily dependent upon the
quality of the original thesis submitted for microfilming.
Every effort has been made to etisure the highest quality of
reproduction possible.

If pages are missing, contact the university which granted
the degree.

Some pages may have indistinct print especially i the
original pages were typed with a poor typewritur ribbon or
if the university sent us an inferior photocopy.

Reprodustion in full orin part of this microformis governed
by the Canadian Copyright Act, R.S.C. 1970, ¢. C-30, and
subsequent amendments.

NL-339 (r.88/04) c

Biblloth:gue nationale
a

$avice des théses canadiennes

AVIS

La Cfualité de cette microforme dépend grandement de la
qualité de la thése soumise au microfilmage. Nous avons
tout fait pour assurer une qualité supérieure de reproduc-
tion.

S'il manque des pages, veauillez communiquer avec
l'université qui a conféré le grade.

La qualité d'impression de certaines pages peut laisser a
désirer, surtout si les pages originales ont été dactylogra-
phiées a l'aide d'un ruban usé ou si l'université nous a fait
parvenir une photocopie de qualité inférieure.

La reproduction, méme particlle, de cette microforme est

soumise & la Loi canadienne sur fe droit d'auteur, SRC
1970, c. C-30, et ses amendements subséquents.

. Canad2

A BANDWIDTH REDUCTION ALGORITHM FOR TREES

Chandra GowriSankaran

A Thesis
in
The Department
of

Computer Science

Presented in Partial Fulfillment of the Requirements
for the Degree of Master of Computer Science at
Concordia University
Montréal, Québec, Canada

August 1988

C) Chandra GowriSankaran, 1988

Permission has been granted
to ihe National Library of
Canada to microfilm this
thesis and to lend or sell
copies of the film.

The author (copyright owner)
has reserved other
publication rights, and
neither the thesis nor
extensive extracts from it
may be printed or otherwise
reproduced without his/her
written permission.

L'autorisation a été accordée
A la Bibliothéque nationale
du Canada de microfilmer
cette thidse et de priater ou
de vendre des exemplaires du
film.

L'auteur (titulaire du droit
d'auteur) se réserve les
autres droits de publication;
ni la theése ni de 1longs
extraits de celle-ci ne
doivent @tre imprimés ou
autrement reproduits sans son
autorisation écrite.

ISBN 0-315-51352-7

ABSTRACT
A Bandwidth Reduction Algorithm for Trees
Chandra GowriSankaran

The most successful bandwidth reduction algorithms for
graphs are level structure algorithms. However, the algo-
rithms currently in use are not very successful in reducing
bandwidths of trees since they do not exploit the special
characteristics of trees. This thesis studies a new band-
width reduction algorithm for trees, algorithm LST, proposed
by J. Opatrny and Z. Miller, which defines recursively a
level structure for trees. Empirical studies were conducted
to evaluate the performance (i.e. ability to reduce the width
of level structure generated) of this algorithm, in parti-
cular in comparison with the most successful bandwidth
reduction algorithm to date, the GPS algorithm. It is shown
that in almost all examples of trees studied, algorithm LST
produced level structures of smaller width than did GPS
algorithm. In addition, it is shown that for a tree on n
vertices with maximum degree d, algorithm LST will produce a
level structure in time 0(d*n3/2). Considerations necessary
in the implementation of the algorithm and alternative

versions of the original algorithm are discussed.

~iii-

ACKNOWLEDGEMENTS

I would like to thank Professor Jaroslav Opatrny
for suggesting the topic of this thesis, for being
always available for discussions, for his kind and
valuable help in preparing this thesis, for his under-
standing and his toleration of my many failures to meet

self-imposed deadlines.
I would also like to thank my family for their

support, patience, encouragement, understanding and

helpful participation in all my endeavours.

-iv_

TABLE OF CONTENTS

INTRODUCTION

CHAPTER 1. THE BANDWIDTH PROBLEM
1.1. The bandwidth of a graph
1.2. The NP-completeness of the bandwidth problem
1.3. Bandwidth reduction algorithms

CHAPTER 2. REVIEW OF BANDWIDTH REDUCTION ALGORITHMS
The level structure labelling

The Cuthill-McKee algorithm

The Gibbs-Poole-Stockmeyer algorithm
Probabilistic analysis of

level structure algorithms

A new bandwidth reduction algorithm for trees
Diameters in trees

NN VNN

(@]

i
=1
i

3. A NEW LEVEL STRUCTURE ALGORITHM FOR TREES
A new level structure algorithm for trees

A pseudo-code for algorithm LST

An example of application of LST

Time complexity of LST

Performance of LST

Modifications to LST

- N

0

o .
wNkH AU WM AUt WM AUl W

t
x

4. IMPLEMENTATION OF LST

Details of implementation.

The objective of the implementation

Data structures, types, variables and constants.
Procedures

Further considerations in the implementation.
Possible improvements in the implementation.

« e e

(e}
tnuung ¢¢>»¢-pa>§

2]
x

5. EMPIRICAL EVALUATION

The method of evaluation

The data

Observations and conclusions
Possible extensions of this work

- N

(8]
-

REFERENCES.

APPENDIX 1. Program listing.

-

INTRODUCTION

Informally, the bandwidth problem for graphs is to find
a labelling of vertices in the graph such that all the non-
zero entries in the adjacency matrix fal. within a band of
minimum width, the bandwidth, around the main diagonal.
Finding the bandwidth of sparse matrices of large size makes
possible efficient storage and fast operations on these
matrices. Graph bandwidths have also proved to be signifi-
cant in many fields of applications such as error correcting

codes and electrical networks.

The problem of deciding, given any graph G and any
integer k, whether the bandwidth of G is less than or equal
to k has been proved to be NP-complete [19]. Therefore there
has been an ongoing interest in proving theoretical results
about special cases of the problem as well as finding
time-efficient bandwidth reduction algorithms. The class of
level structure algorithms has been proved to be capable of
giving near optimum bandwidth in almost all cases. One of
the level structure bandwidth reduction algorithms, the GPS
algorithm, though very successful in some types of graphs, is
not suited for trees. A new bandwidth reduction algorithm
for trees, algorithm LST, was proposed by Opatrny and Miller
[18]. For trees, algorithm LST generates recursively 1level
structures of much smaller widths than those generated by
algorithm GPS.

Intro. -1-

In Chapter 1, we present the definition and a brief
history of the bandwidth problem. Chapter 2 describes two
existing level structure bandwidth reduction algorithms,
algorithm CUM and algorithm GPS. Known probabilistic results
on the capabilities of the level structure algorithms are

included.

Chapter 3 describes the new algorithm LST, its applica-
tion demonstrated with an example. The time complexity of
the algorithm is studied. An example where LST produces
arbitrarily poor approximation to bandwidth and an example
where LST produces near optimal or optimal bandwidth and far
outperforms GPS are given. With a view to study empirically
the level structure obtained, the author has implemented
algorithm LST as a Pascal program and applied it to 2 groups
of problems. Chapter 4 lists implementation considerations
and some details of implementation. Chapter 5 presents the
results and a comparative analysis of the results obtained by
applying two versions of the algorithm and the GPS algorithm

to 31 test problems.

In conclusion, we find that in almost all cases of
trees, algorithm LST produces level structures of much
smaller widths than those given by algorithm GPS. Therefore,
combined with a labelling algorithm, LST should prove to be a

better bandwidth reduction algorithm for trees than GPS.

Intro. ~-2-

The contribution of this thesis is a detailed implemen-
tation of the algorithm LST, proposal of alternative versions
of some parts of the algorithm, the comparative study of
different versions of the algorithm, including the empirical
study of the test problems, and the comparative study of the
algorithm and an existing algorithm, algorithm GPS, including
again the empirical results with the test problems. In
addition, a detailed analysis of the time complexity of LST
is presented including some minor results on diameters in

trees.

Intro. -3-

Ch.

CHAPTER 1
THE BANDWIDTH PROBLEM

l.1. THE BANDWIDTH OF A GRAPH

THE MATRIX BANDWIDTH: The bandwidth problem can be
stated in terms of matrices or graphs. The matrix bandwxith
problem seems to have been originated in the 1950's when
structural engineers first analysed steel frameworks by
computer manipulation of the matrices representing their
structure. This analysis involves the solution of large
systems of linear algebraic equations with sparse, symmetric
coefficient matrices. Fluid dynamics and network analysis
have also been among the many engineering fields included in
the application of sparse, symmetric matrices. In these
cases, methods based on Gaussian elimination are not too
efficient due to the presence of a large number of zero
elements in the matrices. In order to conserve computer
storage as well as computation time to solve such systems
efficiently, it was found necessary to devise a storage
saving scheme, which will allow fast operations on sparse

matrices.

One way of achieving this objective is to find, for a
given nXn matrix, an equivalent matrix in which all the
nonzero entries lay within a narrow band of width W around

4

the main diagonal. Hence the name bandwidth problem.
Clearly, such a matrix will reduce the storage requirement to
an nXW array down from the original nXn array; because, now
the matrix can be stored as a rectangular array of n rows and
W colums, storing only the W entries in each row which lie
within the band and ignoring all the zero entries outside the
band. With only minor modifications, aigorithms of the type
of Gaussian elimination could be easily adapted to this data
structure, thus minimizing time and storage ir appl.cation.
This rationale led to the formulation of the bandwidth

problem for matrices.

Thus, to find the bandwidth of a real symmetric matrix
M= (mj4) is to find a symmetric permutation M' = (m'i5)

of rows and columns of M so that the maximum value of
| i-3 |
taken over all nonzero m'j4 is a minimum.

THE GRAPH BANDWIDTH: The bandwidth problem for graphs,
meanwhile, originated independently at the Jet Propulsion
Laboratory at Pasadena in 1962: single errors in a 6-bit
picture code were represented by edge-differences in a
hypercube whose vertices were words of the code. At JPL,
L. H. Harper and A. W. Hales sought codes which minimized the
maximum absolute error and the average absolute error. Thus

were born the bandwidth and bandwidth sum problems for a

-5-

particular class of graphs, the cubes. Not long after -t 3,
R. R. Korfhage began work on the bandwidth problem for
general graphs (defiuned below) and F. Harary [14] publicized
the problem at a conference in Prague. Since many problems
of practical intccest are represented using graphs, the
bandwidth problem for graphs became significant tc many

fields of applications.
DEFINITIONS AND PROPERTIES

We refer to [1l] for basic terminology in graph theory.

Let G(V,E) be a graph with vertex set V and edge set E.
Assume |V| = n. A one-to-one mapping f from V to the set
{1,2,...,n} is called a labelling of G. The bandwidth of a
labelling £ of G, denoted Bf(G), is defined as

Bf(G) = max {|f(u)-f(v)| : (u,v) is in E }
and ti.e bandwidth of G, denoted B(G), is defined as
B(G) = min {Bf(G): f is a labelling of G }
A labelling f of G is called a bandwidth labelling if
Bf(G) = B(G)

Thus to find the bandwidth of a graph G, is to find a
labelling f of G such that Bf(G) is minimum.

Clearly, a graph G has bandwidth B(G) if and only 1if

there exists a symmetric permutation of the adjacency matrix

Ch. 1 -6-

Ch.

of G for which all the nonzero entries are contained within
B(G) diagonals above and below the main diagonal. On the
other hand, given a symmetric matrix M of order n, one can
construct a graph G on n vertices in which vertices i and j,
i¥j, are joined by an edge if and only if mj5,~0. Then M has
bandwidth B if and only if G has bandwidth B. Thus the two
bandwidth problems are equivalent and we will, from now on,
generally restrict ourselves to the bandwidth problem for

graphs.

A survey of the developments in the bandwidth problem

for graphs and matrices up until 1981 is found in [2].

1.2. THE NP-COMPLETENESS OF THE BANDWIDTH PROBLEM

The bandwidth problem restated: To determine the band-
width of a graph has turned out to be a nontrivial problem.
For a graph G on n vertices, there are n! labellings of G
and although an exhaustive search through all the labellings
wiil determine the bandwidth labelling of G, that obviously
is not a practical solution, particularly for graphs with
large n. There is no known algorithm which, for a given
graph, will find its bandwidth in time polynomially propor-
tional to the size of the graph. After the theory of in-
tractable functions [10], one can restate more formally the
bandwidth problem as consisting in deciding, for a given
graph G and a given positive integer k, whether G has a

7

Ch.

labelling whose bandwidth is less than or equal to k.
Obviously, given a graph G, a labelling f of G, and a posi-
tive integer k, one can verify in time which is polynomially
proportional to the size of G, whether B¢f(G) is less than or
equal to k. Therefore, one can see that there is a ncndeter-
ministic algorithm which solves the bandwidth problem in
polynomial time; the bandwidth problem belongs to the com-
plexity class NP. As a matter of fact, in 1976,
Papadimitriou [19] proved, in the following theorem, that the

problem belongs to the class of the hardes. problems in NP,

Theorem 1.1. (Papadimitriou) [19]: The bandwidth problem

is NP-complete.

This result implies that it is unlikely for us to find a
polynomial time algorithm to solv~> the bandwidth problem: an
algorithm which for a fixed polynomial p in two variables
will, for any positive integer n, any graph G on n vertices
and any positive integer k, determine in time p(n,k) whether

B(G) is less than or equal to k.

Indeed, much sharper theorems concerning the bandwidth
problem were proved following the above theorem. The problem
is proved to be NP-complete even when certain restrictions
are imposed on the graph G admitted as an instance of the
problem. Not only is the bandwidth problem NP-complete for
trz2es in general, but also for trees with maximum degree 3,
as proved in the following theorems.

8

Theorem 1.2 (Dewdney) [7]: The bandwidth problem for

trees is NP-complete.

Theorem 1.3 (Garey, Graham, Johnson and Knuth) [9]: The
bandwidth problem for trees with A(T)=3 is NP-complete.

It might be asked whether imposing restrictions on k
instead of on G results in an easier problem. Thus, for a
fixed k, the bandwidth-k problem consists in deciding, for
each graph G as input, whether B(G) is less than or equal to
k. For k = 1, Gibbs and Poole [1ll] as well as Fulkerson and
Gross [8] have found polynomial time solutions for the
bandwidth-1 problem. They have shown that the bandwidth of a
graph G is 1 if and only if G is a disjoint collection of

paths.

Theorem 1l.4: The bandwidth-1 problem has a linear-time

solution.

Garey et al. [9] were able to find a linear time
solution to determine whether or not the bandwidth of a graph

is less than or equal to 2.

Theoxem 1.5: (Garey et al.) [9] The bandwidth-2 problem

has a linear-time solution.

Garey et al. [9] conjectured that the bandwidth-k

problem was NP—-complete for some k greater than or equal to

9

Ch.

2. However, Saxe (20] proved in 1979 that for every fixed X

the bandwidth-k problem has a polynomial time solution.

Theorem 1.6 (Saxe) [20]: Let k be a positive integer.
Then there exists an algcrithm which solves the band-
width-k problem using time O(nk+l) and space O(nk*ly,

where n is the number of vertices in the graph.

Although theoretically a significant statement, Saxe's
theorem gives an algorithm which is rather inefficient in

view of its space and time requirements of o(nk+1ly,

1.3. BANDWIDTH REDUCTION ALGORITHMS

In view of the NP-completeness of the bandwidth problem
as stated in the preceeding section, one does not expect to
find an exact polynomial time solution to the general band-
width problem. On the other hand, by reducing as much as
possible the width b of the band around the main diagonal
wvhich contains all the nonzero entries in an adjacency matrix
of a graph, the tire efficiency of any computation on this
graph can be improved. Therefore, an alternative approach
to the bandwidth problem is to try to find a time-efficient
algorithm that gives a "good" approximation to the bandwidth
cf a graph rather than look for procedures to compute algo-
rithmically its exact walue. Such an algorithm will try to

relabel the graph with a view to reduce as much as possible

10

Ch.

the bandwidth of the labelling. An algorithm whose purpose
is to reduce b as much as possible will be called bandwidth
reduction algorithm. Such an algorithm is expected to
produce a good approximation to the bandwidth at best; it is
not guaranteed to produce always the exact bandwidth. In
most applications a small variation from the exact bandwidth
can be tolerated. Theoretically, it should be of interest to
reduce algorithmically as much as possible the band-size b of
the adjacency matrix of a given graph.

In the next chapter, we review some well known bandwidth

reduction algorithms.

_ll...

CHAPTER 2

REVIEW OF BANDWIDTH REDUCTION ALGORITHMS

2.1. THE LEVEL STRUCTURE LABELLING

As seen in Chapter 1, the bandwidth problem is NP-
complete even for fairly simple families of graphs. There-
fore, bandwidth reduction algorithms have been used for
construction of a labelling whose bandwidth approximates the
bandwidth of a graph G. As of 1979, 49 bandwidth reduction
algorithms had been cited [2). A brief survey of bandwidth
reduction algorithms since 1965, is found in [2]. One of the
most successful bandwidth reduction algorithms was introduced
in 1969 by Cuthill and McKee [6]. This will be referred to
as algorithm CUM. This was the first time a heuristic
bandwidth reduction algorithm introduced the notion of a
"level structure labelling" (defined below) of a graph.
This algorithm was subsequently incorporated into NASTRAN.
The algorithm described by Gibbs, Poole and Stockmeyer in
1976 [12], is closely related to and an improvement over the
algorithm CUM. The Gibbs, Poole and Stockmeyer algorithm, to
be referred to as GPS algorithm, is often used in practice
and produces good approximations of bandwidths for certain
kinds of graphs, in particular for gridded rectangles and

Ch. 2 -12-

cylinders, as illustrated by the authors. Both GPS and CUM
algorithms are described in [12]. We need the following

terminology in order to describe these algorithms.
DEFINITIONS

Let G(V,E) be a connected graph. A Level Structure of
G, denoted by L(G) or L, is a partition of the vertex set
V(G) into sets N3, N3,, Nx, called levels, which

satisfy the following condition:

For 1 < i £ k , all vertices adjacent to vertices in Nj

are in Nj-3 U Njf U Nj4+1, where Ng = Nk4+1 = #.

In particular, if v is any vertex in V, the level
structure rooted at v, denoted by Ly(G) or Ly, is the level
structure for which

Ny = { u in V(G): d(u,v) = i-1 }.
The width of level structure L, denoted by w(L), is defined
as
max { [Nj| : 1 ¢i <k}

The depth of level structure L is k, the number of
levels in L.

Let L(G) be a level structure on G. Let f be a label-
ling of G which labels arbitrarily the vertices in V level by
level, in the sense that for 0<i<k, if u is in Nj and w is
in Nj4+3, then f(u)<f(w). Such a labelling will be called a

level structure labelling and a bandwidth reduction algo-

Ch. 2 -13-

rithm which labels G with such a labelling will be called a

level structure algorithm.
One can easily prove the following theorem.

Theorem 2.1l: Let f be a level structure labelling of a
graph G with level structure L, then

B(G) £ Bf(G) £ 2w(L) - 1.
Moreover, if L is a rooted level structure Ly(G), then

Bf(G) 2 w(Ly).

Both CUM and GPS are level structure algorithms. The
former uses a rooted level structure while the latter uses a

more general kind of level structure. A brief description of

these two algorithms follows.

2.2, THE CUTHILL-McKEE ALGORITHM

This algorithm works in two phases.
Phase I. Generating rooted level structures:

(1) For each vertex v of a suitably determined "low
degree", generate a rooted level structure Ly (G).

(2) From level structures generated in step(l) above,

consider only those with minimum width as input for phase II.

Phase II.A. Numbering (labelling)
For each one of these rooted level structures, label the

graph level by level using the following numbering algorithm.

Ch. 2 =14~

Step 1. Assign number 1 to the root. From this step on-
wards, use consecutive positive integers for numbering.
Step 2. For each successive level do the following

(i) First, number in increasing order of their degrees,
the vertices adjacent to the lowest number vertex in the
previous level, breaking ties arbitrarily.

(ii) Next, number in the same manner, the unnumbered
vertices adjacent to the next lowest number vertex in the
previous level.

(iii) Repeat (ii) until all the vertices in the current
level are numbered. Then apply the algorithm to the next

level.
Phase II.B. Choosing the labelling with minimum bandwidth:

The labelling algorithm of the phase 1I.A. produces at
most |V(G)| candidate labellings for the graph G. For each
such labelling f, compute the corresponding bandwidth Bg(G).

Select a labelling f for which Bf(G) is minimum.

The CUM algorithm proved to be superior to its prede-
cessors [5], [6], and was the most widely used algorithm

during the 1970's. Yet, it has a number of shortcomings:

1. Exhaustive search through several rooted structures is
necessary to find the ones with minimum width.
2. For each one of the level structures of minimum width, a

labelling is generated and its bandwidth is computed.

Ch. 2 -15-—

3. In view of theorem 2.1, the labelling generated can
never give a bandwidth smaller than the width of the rooted
level structure used. The actual bandwidth of the graph

could be considerably smaller.

2.3. THE GIBBS-POOLE~STOCKMEYER ALGORITHM

This algorithm largely removes from the CUM algorithm
the shortcomings listed above. The improvements are as
follows.

1. A root is selected after generating a relatively few
rooted level structures.

2. The graph is labelled only once and the bandwidth is
computed only once.

3. Combining two specific rooted level structures, a more
general kind of level structure is defined, which results in
a labelling whose bandwidth is, in general, closer to the

bandwidth of the graph.

The GPS algorithm consists of the following three phases
each one of which is described by the corresponding

algorithm. First, let us recall some definitions.

Definitions. Let G be a graph. Let d(x,y) denote the
distance between vertices x and v in G. Then the diameter D
of G is given by

D = max { d(x,y) | x, y are in G }

Ch. 2 -16-

sy o

Any (X,y)-path such that d(x,y)= D is called a diameter path

or simply a diameter of G.
Phase I. Finding a pseudo diameter

It was observed that an increase in the number of
levels in a level structure will in general decrease the
number of vertices in each level and thus, in general, result
in a level structure of reduced width. In this sense, it
would be ideal to generate level structures which are rooted
at the end vertices of a diameter of a graph. Straight-
forward computation of the shortest distance a2nd the shortest
path between all possible pairs of vertices in a graph G on n
vertices can be done in time O(n3). Certainly, this would
not be a time-efficient (nor space-efficient for that matter)
method to find a diameter in G. Therefore GPS algcrithm
finds the endpoints of a pseudo diameter, defined to be two
vertices which are nearly maximal distance apart. The pseudo
diameter produced by the first phase of the GPS algorithm is
close to a diameter on the average and for a large class of
graphs, including trees (see theorem 2.6), and the 19 graphs
used by the authors [12] for empirical analysis of the
algorithm, the pseudo diameter produced, in fact, connects
two vertices at maximum distance. Algorithm I below

describes the phase I.

ALGORITHM I. Finding endpoints of a pseudo-diameter.
Step 1. Select a vertex v of minimum degree.

Ch. 2 -17-

Step 2. Generate the rooted level structure Ly. Let Sy
be the set of vertices in the last level of Ly.

Step 3. For each u in Sy and in order of increasing
degree, generate Ly. As soon as a u is found such that
depth(Ly)>depth(Ly), replace v by u and return to step 2.

Step 4. If for all u in Sy, depth(Ly)=depth(Ly), select
a vertex u in Sy for which w(Ly) is minimum. Then v and u are

the end vertices of a pseudo diameter.
Phase II. Minimizing the level width

Phase I has generated Ly and Ly, where v and u are the
endpoints of a pseudo diameter. In phase II the two level
structures are combined into a new level structure whose
width is usually less than that of either of the original

ones, using the following algorithm.

ALGORITHM II. Minimizing level width.

A. Using the rooted level structures
Ly = {Ly,Lp,...,Lx} and Ly = (Mj3,M>,...,Mxl}

obtained from algorithm I, associate with each vertex w of G
the ordered pair (i,j), called the associated level pair,
where i is the index of the level in Ly that contains w, and
k+1-j is the index of the 1level in L,; that contains w. Note
that the pair (1,1) is associated with the vertex v, while

the pair (k,k) is associated with +the vertex u.

Ch. 2 -18-

B. Assign the vertices of G to levels in a new level

structure L = (N3, Nj,...,Nx} as follows.

1. (a) For each vertex w of G do the foilowing.
If the associated level pair of w is of the form
(1,i), then place vertex w in Nj; remove from the
graph vertex w and all edges incident at w.

(b) If V(G) = @, then STOP; otherwise go to step 2.

2. The graph G now consists of a set of one or more
disjoint connected components Cj,Cg3,....,Ct ordered

so that |v(cy)| > [v(cal > ... 2 |Vice)!.

The connected components Cqr 9= 1,2,...t, are now
processed in order of decreasing size. For each component
Cqg: elther the first index from the associated level pairs
(i,j) is used for all vertices w in Cq or the second index is
used for all w in Cq, whichever minimizes the width of the
resulting level structure 1, and the vertex w is assigned to
the corresponding level, i or 3§, in L, This is described

more precisely in the following.

For each connected component Cq, in order from C; to Ct,
do the following:

(a) Compute the vector (nj,ny,... ,nx) where njy = | Nil

(b) Compute the wvectors (hj,hp,....,hx) ang
(11.,12/,..../1x) wvhere hj = nj + (the number of vertices which

would be placed in Nj if the first element of the associated

Ch. 2 -19-

level pairs were used) and 14 = njy + (the number of
vertices which would be placed in Ni if the second element of
the associated level pairs were used).

Thus this step computes the k level widths of L result-
ing from addition of vertices in Cq using either choice of

the index.

(c) Find hg = max { hy : hj-nj§ > 0, 1 £ i

|~

k }

and lg =max { 1 : 13-n; > 0, 1 £ i < k}

(i) If hg < lg, place all the vertices of the
connected component in L in the levels indicated by the first
elements of the associated level pairs.

(ii) If hg > 1y, use the second element of the level
pairs to determine in L the levels of all the wvertices.

(iii) If hg = 1o, use the elements of the level pairs
which arise from the rooted level structure, L or Ly, of
smaller width. If the widths are equal, use the first
element.

Thus the step B.2. chooses, for each component, the
resulting level structure of minimum width.

The algorithm terminates when each vertex of G has been

assigned a level in the level structure L.

Phase III. Numbering

The third and the last basic algorithm employed by Gibbs
et al. uses the level structure L generated by the foregoing

algorithm and, like the CUM algorithm, assigns consecutive

Ch. 2 -20-

P

positive integers to the vertices of G level by level. A few
modificati ons to the CUM numbering algorithm were necessary,
however, since wunlike the rooted level structure of the CUM
algorithm, the level structure obtained here is of a more
general type. Moreover, with such a structure, it 2is
pcessille to introduce several operations which serve to
minimize level width. A basic version of the numbering

algorithm is included here for the sake of completeners.

ALGORITHM III. Numbering.

A. If the degree of u is less than the degree of v,
interchange u and v and reverse the level numbers of L by
setting Nj to Nx4j-j, for i =1,2,....,k.

B. Define numbering f: set f(v) = 1, set No = @.

For 1 = 1 to k carry out the following steps using
consecutive positive integers from 2 onwards for numbering.

(a) Find the w in Nj-31, if it exists, with the lowest
f-number over all numbered vertices in Nj-j adjacent to
unnumbered vertices in Nj. Number the vertices of Nj
adjacent to w in order of increasing degree.

{(b) Repeat step (a) until all vertices of Nj adjacent
to vertices in Nj-3] are numbered.

(c) Find the w in Nj, if it exists, with the lowest
f-number over all numbered vertices adjacent to at least one
unnumbered vertex in Nj. Number the as yet unnumbered
vertices of Nj adjacent to v in order of increasing degrec.

(d) Repeat step (c¢) until all the vertices of Nj

Ch. 2 -21-

adjacent to numbered vertices have been numbered.
(e) If any unnumbered vertices remain in Nj, number

the one with minimal degree and go to (c).

IMPLEMENTATION, COMPLEXITY and PERFORMANCE of GPS

The GPS algorithm has been implemented in FORTRAN as ACM
algorithm No.508 [4]. An improved FORTRAN version by Lewis
{16], [17], ACM algorithm No. 582 is claimed to run slightly

faster.

The worst case complexity of the GPS algorithm is in the
order of n2 where n is the number of vertices in the graph.
The bulk of the time is taken by the pseudo-diameter
algorithm. However, its average case complexity appears to
be considerably better than this. Based on a set of gridded
rectangles and cylinders, which have a close resemblance to
many engineering r~tructures, the algorithm had an vserage

time complexity of approximately o(nl-2y[2].

The performance analysis of the GPS algorithm was
provided through empirical studies [12], [13]. A set of 19
test matrices comprising of gridded rectangles and cylinders,
which now forms a standard benchmark for production algori-
thms, was used as a collection of "typical" instances of
graphs. On these matrices, the GPS algorithm consistently

outperformed the previously popular, "standard" CUM algori-

Ch. 2 -22-

thm giving a slightly better bandwidth on the average and
reducing the time to 12% to 14% of the time required by
Cuthill-McKee algorithm [2], [12), [13].

2.4. PROBABILISTIC ANALYSIS OF LEVEL STRUCTURE ALGORITHMS

Both CUM and GPS algcrithms have been empirically proved
to be far more successful in reducing bandwidth than any
algorithms preceding them [5], [13]. This conclusion is
theoretically justified by Turner [21]. Turner studies the
performance of heuristic bandwidth minimization algorithms on
random graphs. He notes that although the level structure
algorithms have proved quite successful in practice, it 1is
easy to construct examples where the performance of these
algorithms can be arbitrarily poor. Consequently, the worst
case analysis provides no insight to their practical success.
Moreover, one can design more efficient algorithms using
better understanding of their performance through probabi-
listic analysis. Turner shows that for an appropriate
propability distribution on the space of n-vertex graphs with
bandwidth less than or equal to k, suitably modified level
structure algorithms produce a good bandwidth approximation
for almost all graphs. The terminology in [21] is as

follows.

For fixed positive integers n and k and 0<{p<l, Turner
randomly generates an n-vertex graph G with B(G) k as

Ch. 2 -23~

follows. For each u and v, with 1 < u < v £ n, such that
|lu-v] < k, u and v are joined by an edge with probability p.
The vertices of the resulting graph are then randomly
renumbered. This experiment defines the probability distri-
bution C)n(k,p). A property is true for almost all G in
()n(k,p) if the probability that this property holds approa-
ches 1 as n—» o0 . A modified level structure is a modified
form of the rooted level structure of algorithm CUM. A
modified level algorithm is a numbering algorithm for the
modified level structure. A(G) denotes the bandwidth of the
numbering produced by algorithm A on graph G. The best
possible choice of the root is a vertex u such that the
(modified) level structure rooted at u gives a minimum value
of the maximum size of the union of two successive level
classes. In the following theorems the labelling algorithms

are assumed to make the best possible choice for the root.

Turner proves that the level algorithms perform quite

well on random graphs.

Theorem 2.2 [21]: Let A be any level algorithm. Let
e>0, 0<p«<1 be fixed, k<n, 1n n = o(k). Then for almost
all G in Qn(k,p), A(G) £ (3-e)(l+e)B(G).

Turner modifies the level structure suitably in order

to cbtain near optimal performance.
Theoxem 2.3 [21]: Let A be any modified 1level algo-

Ch. 2 -24-

rithm. Let e>0, 0<(p<l be fixed, k<n, ln n = o(k). Then
for almost all G in Qp(k,p), A(G) € 2(l+e)B(G).

Turner further describes a specific modified level algo-

rithm, denoted MLAl, and proves the following result.

Theorem 2.4 [21]: Let e>0, 0<p<1l be fixed, k < n/4,
l1n n = o(k). Then for almost all G in §Qn(k,p),
MLAL(G) < (1l+e)B(G).

2.5. A NEW BANDWIDTH REDUCTION ALGORITHM FOR TREES

Although very successful when applied to gridded rect-
angles and cylinders, the GPS algorithm performs very poorly
when applied to trees [18]. 1In view of Turner's result, it
seems probable that a suitably modified level structure
algorithm should be the solution to the problem of bandwidth
reduction of trees. Opatrny and Miller [18] propose a new
algorithm to compute a level structure of a tree, to be
referred to as algorithm LST. For trees, this algorithm
finds level structures of smaller widths than those produced
by the GPS algorithm thus giving better approximations to
their bandwidths.

In phase I, by computing the pseudo-diameter of graph G,
the GPS algorithm tries to spread the vertices in V(G) in as
many levels as possible, which is a well justified heuristic

to minimize level widths in all cases. Algorithm LST also

Ch. 2 -25-

uses the concept of pseudo-diameter. As noted earlier, (and
proved later in theorem 2.6), in case of a tree the pseudo-
diameter is actually a diameter of the graph. We prove a
stronger statement in theorem 2.5 below.

Phase II of GPS cannot work very well with trees or one-
connected graphs. Let x be a vertex on a diameter D of a
tree G and let x be in level Njy. Let C be a connected
component of G-D, such that d(x,C) = 1. Let

r = max { d(x,y) : y in C }.

Then the phase II of GPS algorithm will place all vertices in

C either in Nj-3] UNj—2 U ... U Nj—yp,
or in Nj4+1 U Nj4+2 U ... U Nj4+r, instead of spreading
them in Nj-» U.......U Nj4p, thus allowing a more uniform

distribution of vertices in the level structure.
Algorithm LST remedies this situation by introducing a
recursive algorithm for computing level structure of a tree.

We will describe this algorithm in Chapter 3.

2.6. DIAMETERS IN TREES.

We close this chapter with the following results which

will be used in Chapter 3.

Theorem 2.5: Let T be a tree. Let v be any vertex in
T. Let u be any vertex in the last level of Ly,. Then
there is a diameter path starting at u.

Proof: Since T is a tree, there is exactly one path

Ch. 2 -26-

connecting any two vertices in T. Let P be the (u,v)-path.
Let x and y be vertices such that the (x,y)-path is a

diameter path D in T. Assume X ¥ u and y ¥ u, because
otherwise the theorem is verified. Now either D and P have
no common vertex (Figure 2.1 (a)), or D and P intersect at

exactly one vertex (Figure 2.1 (b)).

£ Guume

(a) (b)
Figure 2.1

In case D and P have no common vertex, there is a unique
vertex z on P which is closest to v. Let |(x,z)]| > |(y,2z)|*.
Clearly, |(v,z)+(z,y)| € |(v,u)|. This implies that the path
(u,v) + (v,z) + (z2,Xx) which starts at u is longer than D,
which leads to contradiction. We conclude that D and P must
have a common vertex.

Let b be the vertex common to D and P (Figure 2.1 (b));

*Notation : (x,y) denotes the path from x to y.
| (x,y)| denotes its edge length.

Ch. 2 =27~

b may be any vertex on P, including v, except u, because in
the latter case u will not be in the last level of Ly. Since
u is at a maximum distance from v,

| (b,uy| 2 maximum {|(b,x)|, [(b,y)|}.
Let [(b,x)| > |(b,y)|. Then (u,b) + (b,x) is a path starting
at u and |[(u,b) + (b,x)| > |(x,¥)].

An immediate consequence is the following corollary.

Corollary 2.5.1: Let T be a tree. Let v be any vertex
in E. Let u be any vertex in the last level of Ly. If
length (Ly) = length (Ly)

then (u,v) is a diameter path in T.

The following theorem is now obvious. It plays a

crucial role in many results in Chapter 3.

Theorem 2.6: Let T be a tree. Then the pseudo diameter

produced by phase I of algorithm GPS applied to T gives

a diameter path of T.

Ch. 2 -28-

CHAPTER 3
A NEW .(EVEL STRUCTURE ALGORITHM FOR TREES

3.1. A NEW LEVEL STRUCTURE ALGORITHM FOR TREES

As we remarked in Chapter 2, the GPS bandwidth reduction
algorithm, although very successful when applied to rectan-
gular grids and cylinders, performs poorly when applied to
trees. We also noted, in view of Turner's result, that the
general heuristic of level structure algorithms can be very
effectively used for the bandwidth reduction gsroblenm.
Therefore it would seem reasonable that in order to find
better bandwidth approximations for trees, we must define a
new, modified level struct.re for trees which exploits the
special properties of trees and thus results in smaller
width than the width given by the GPS algorithm. This is
exactly what is achieved by the algorithm LST, a new algo-
rithm to compute a level structure of a tree, proposed by

Opatrny and Miller [18].
First we need the following notations and terminology.

Let T be a tree and P = (p3,p32,...Pk) a diameter path in

T. A diameter level structure of T is the level structure
N = {Ll'LZ""’Lk }

Ch. 3 -29-

where for each i, 1<i<k, Lj = { pj }-

T-P is the graph obtained by deleting from T all the
vertices in P and all the edges incident on these vertices.

Any connected component of T-P will be called an off-
diameter subtree.

Let C be a subtree and x a vertex not in C. Then x is

adjacent to C if d(x,C) = 1.

Let us recall that the algorithm GPS computes, in
phase I, a pseudo-diameter of the graph G, thus trying to
spread the vertices in G in as many levels as possitle.
Algorithm LST also uses this well justified heuristic to
minimize level widths and computes a pseudo-diameter of the
input tree. As noted in theorem 2.6, a pseudo-diameter,

thus obtained, is in fact a diameter of the tree.

However, the phase II of GPS cannot work very well with
trees. Let x be a vertex on the diameter P of a tree T and
let x be in level Nj. Let C be a connected component of T-P,
which has a vertex z adjacent to x. Let

r = max { d(x,y) : y in C }.
Then the phase II of GPS algorithm will place all vertices in
C either in Nj-3, Nj-2, ... Nj—y, Oor in Nj43, Ni4+2, ... Ni4r.
However, since W is a tree, there is no vertex on P other
than x which is adjacent to C. It follows that as long as
the adjacent vertices of C are in the same or consecutive
levels, there is no constraint imposed on their levels other

Ch. 3 -30-

than that z must be in level i-1, or i, or i+l. Moreover, C
itself being a tree, must have its vertices spread out in
branches with non-adjacent endpoints. Both these considera-
tions allow us to "open up" the branches of the connected
component C and spread C through levels Nj_y,....... +Ni+r and
thus obtain a more uniform distribution of vertices in the

level structure.

Algorithm LST exploits these properties of trees and
introduces a recursive algorithm for computing level

structure of a tree as described below in three broad steps.

The three main steps in algorithm LST

Step 1. Given a tree T, compute a diameter path P of T.
Create the diameter level structure of P.

Step 2. For every connected component C of T-P, of size 3
or more do:
(a) Apply steps 1 and 2 of the algorithm recur-
sively and find a level structure of C.
(b) Merge the level structure of C into the
diameter level structure of P to obtain a level
structure of T.

Step 3. Finally, merge all the components of size less than
3 into the level structure in such a way that the
differences between the widths of consecutive

levels are as small as possible.

Ch. 3 -31-

An alternative version: Algorithm LST1.

The three main steps in algorithm LST as described above
treat “"small subtrees", that is subtrees of size 1 or ., in a
different manner than the rest of the subtrees, by postponing
processing them till the very end. An alternative approach
could be to treat all the subtrees exactly the same way
irrespective of their size, and merge them into the "parent"
diameter structure as and when they are encountered. This
can be achieved by replacing Step 2 and Step 3 above with
Step 2' as shown below. We will refer to this version as

algorithm LST1.
Algorithm LST1

Step 1. Given a tree T, compute a diameter path P of T.
Create the diameter level structure of P.
Step 2'. For every connected component C of T-P do
(A)YI. If the size of C is less than 3, create a diameter
level structure as follows:
(a) assign levels 1 and 2 to the vertices of C if
there are 2 vertices.
(b) if C has only 1 vertex, assign level 1 to it.
II. If size of C is 3 or more, apply the algorithm
recursively and find a level structure of C.
(B) Merge the level structure of C into the diameter

level structure of P.

Ch. 3 -32-

In the rest of this chapter, we generally refer to the

original version of algorithm LST unless otherwise stated.

3.2. A PSEUDO-CODE FOR ALGORITHM LST.

A pseudo-code for algorithm LST is given below. Some
explanation of terminology and notation used, as well as the
procedures used, is necessary before presenting the pseudo-

code for the main algorithm.

The reverse level structure LR: Let L = {Nj,Np,....Np}
be a level structure. Then the reverse of level structure L
is LR = {NRy,NR,y,....NR} where for all r, NR, = Nps1-r. 1In
other words,

LR = {Np,Np-1,...-N1}.

3.2.1 Procedure DIAMETER (T, P, m):

For a given tree T, this procedure computes the diameter
path P = { uj,up,..... Up } of length m. The algorithm used
is a modification of the standard algorithm to find a pseudo-
diameter of a general connected graph, the algorithm I in
the phase I of the GPS algorithm in 2.3. 1In case of a tree,
one can considerably simplify the algorithm by noting the
following:

(1) To find a vertex of minimum degree in a general
graph, one has to scan the degrees of all the vertices in the

Ch. 3 -33-

graph; whereas, in case of a tree one can choose tvhe first
scanned vertex of degree 1. Let this vertex be v. Then v
can be used to generate the first rooted level structure Ly
of the algorithm.

(2) Starting with the first rooted structure Ly, we
note that all vertices in the last level of Ly are of degree
l, and therefore there is no need to sort them by degree as
in GPS algorithm. In fact, it is sufficient to choose
arbitrarily any vertex u in this level class and generate
only one rooted level structure with u as the root. By
theorem 2.5, it follows that u is an endpoint of a diameter
path in T. Moreover, in view of the nature of the Step 2.A
of ¢1r algorithm LST in 3.1.(details to follow), there is no
need to choose that particular u from Ly for which Ly has the
minimum width. Thus the algorithm produces a diameter of T
with one endpoint at u, after generating at most three rooted
level structures: with roots at v, at u, and if d(u,v) is not
equal to the diameter of T, then at a third point w which is

in the last level of L,.
A pseudo-code for procedure DIAMETER (T,P,m).

Procedure DIAMETER (T,P,m);
{Computes a diameter path P={uj,us,...up} of T, of length m}
begin
find a vertex v of degree 1;

{find 2 vertices at maximum distance apart.}

Ch. 3 -34-

generate rooted level structure Ly ;
for every vertex x in T do
record levelv(x], the level of x in Ly;
repeat
pick a vertex u in the last level of Ly;
generate rooted level structure Ly;
for every vertex x in T do
record levelu[x], the level of x in Ly;
if length (Ly) > length (Ly)
then
replace v, Ly, length(Ly), array levelv with
u, Ty, length(Ly), array levelu resp.
until v not replaced with u;
m := length(Ly);
{Now there are two rooted level structures, Ly and Ly. both
of equal length. Next, find the diameter path from v feo wu.}
for each vertex x in T do
begin
if (levelv[x] = i) and (levelu[x] = m+l-i)
then set uj := Xx;
end;

end; {procedure DIAMETER}

3.2.2 Procedure MERGE (L,L',u,j):

Here L = {N>,Ng,....Ngp} and L' = {N'{,N'9,....N'p'}

Ch. 3 =35~

are two level structures. The vertex u is assigned a level k
in L', that is u is in N'g. j is an integer, 1<j<m. The
effect of this procedure is to assign to the vertices in L'
their level numbers in L in the following manner:

(1) u and all the vertices in N'y are assigned to the
level class Nj.

(2) For any integer «r, such that 1<k+r<m', all the
vertices in N'y4, are assigned to the level class Nj+r.

The resulting level structure L is said to be obtained
by merging level structure L' into level structure L.

Clearly, this will result in increased widths for some level

classes in L.

N1
N' —
Nj
Figure 3.1 . .
N'm' S
L .
Nm

Ch. 3 -36—

A pseudo-code for procedure MERGE(L,L',u,j):

procedure MERGE (L,L',u,j):
{Here L = (Nj,No,....Np} and L' = [N'3,N'2,....N'pp»} are
two level structures. The vertex u is in level k in L'. The
two structures are merged in such a way that the level of u
in L is j. The merged structure is stored as L.}
begin
k := index of the level of u in L';
for every level class N'j in L' do
begin
{find the index of the level in L for vertices in N'j}
t := j+i-k;
for every vertex x in N'j do
assign x to level t in L;
{N'; gets merged into N}
end;
update widths of level classes in L;
update width(L);
end; {(procedure MERGE }

3.2.3 Function WIDTHMRG (L,L',u,J)

This function computes the width of the level structure

produced by MERGE (L,L',u,j) without actually computing the

Ch. 3 -37-

merged level structure. Algorithm LST uses this width as a
criterion to choose the best possible merger out of a number

of feasible alternatives.
A pseudo-code for function WIDTHMRG (L,L',u,j)

Function widthmrg (L,L',u,3j):
{All the parameters are as in procedure MERGE.
Arrays widthl[1l..m] and widthl'[l..m'] store the widths of
the corresponding level classes of L and L' resp. We may
assume that these widths are previously computed and saved
whenever a level structure is generated newly or augmented by
a merge operation. width(L) and width(L') are also assumed to
be available }
begin
maxw := 0;
k := index of the level of u in L';
for i:= 1 to m' do
begin
{find t where N'j gets merged into N}
t := i+j-k;
w := widthl([t] + widthl'[i];
{find the width of the level class t after the implied
merger. At the same time, find the maximum of the .2sulting
class widths}
if (w > maxw) then maxw := w;

end;

Ch. 3 -38-

{ find maximum width of all levels in resulting L}
widthmrg := max (maxw, width(L));
end; {procedure widthmrg }

3.2.4 A pseudo-code for algorithm LST now follows [18]

Algorithm LEVEL_STRUCTURE (T,L,f)

{Computes recursively the level structure 7 of tree T. f is
a boolean variable which is true for T and false for a
subtree}

begin

{PART I :Compute a diameter path P = {uj,up,...up} of T}
DIAMETER (T, P, m);
for i:= 1 to m do
begin
{initialize the diameter level structure of P}
Nj := {ujl};
mark uj;

end;

Ch. 3 -39~

{PART II :Compute level structures for off-diameter subtrees
of size 3 or more and merge these structures into the
diameter level structure of P}
for i:= 2 to m-1 do
for every unmarked neighbor x of uj do
begin
delete the edge (uj, X);
generate the component C of T-P
containing x;
while |Vv(C)| > 3 do
byxyin
LEVEL_STRUCTURE (C,L',false);
for j := 1 to 3 do
{Compute the widths of the three merges of L and L'}
84 := WIDTHMRG (L,L',x, i+j-2);
for j := 4 to 6 do
{Compute the widths of the three merges of L and L'R}
sj := WIDTHMRG (L,L'R,x,i+5-3);
s := min [Sj : 1<j<6};
k :=min {j : s§ = s};
{determine the best merger rule: the one with minimum width
for merged structure; in case of a tie, choose the rule with
smallest index.} if k < 3 then
MERGE (L,L',x,i+k—2)
else MERGE (L,L'R, x,i+5-k);
end {while}

Ch. 3 -40-

{PART III: Complete the level structure of T by assigning

levels to all "small" subtrees,

part is not included in the recursive calls to process

of size 2 or 1, of T. This

subtrees of T.}

if f then
begin
for i := 1 to m do
while Nj contains a vertex adjacent
to an unmarked vertex x do
begin
find the unmarked component C
containing x;
place vertices in C in Ny-31, Nj, Nij41, so
that Nj—3, Nj, Nj+] are as even
as possible;
mark vertices in C;
end

end { algorithm LEVEL_STRUCTURE }

Ch. 3 ~-41-

3.3. AN EXAMPLE OF APPLICATION OF LST

The following example demonstrates the application of

algorithm LST.

Example 3.1: Application of algorithm LST

The steps in this demonstration follow the v~rsion LST1
of the algorithm. TLet T be the tree on 30 vertices illus-
trated in figure 3.2. The maximum degree in T is 5. Algo-

rithm LST works as follows.

Step 1l.1: Starting from vertex 1, and in the increasing
order of vertex number, vertices are scanned to find the
first vertex of degree 1. It is vertex 1ll1. The rooted level
structure Ljj is obtained as in Figure 3.3. It has depth 12
and width 6.

Step 1.2: There are 3 vertices in the twelfth level of Ljj.
The first one among these, vertex 29 is chosen and the rooted
level structure Lpg is generated as shown in Figure 3.4. The
depth of this level structure is 13 and its width is 5. Level

13 has exactly one vertex, vertex 27.

Step 1.3: Next the rooted level structure Ly7 is generated

(not shown). One can verify that this 1level structure also
has 13 levels. So vertex 29 is the start and vertex 27 is
the end of a diameter D of T. These three steps also

Ch. 3 -42-

illustrate the statement of Theorem 2.5.

Figure 3.4 also lists for each vertex its associated
level pairs with reference to the structures Lg and Ljy7y
resp. From these we get the diameter path

D= (29,8,2,1,12,9,7,3,13,5,10,20,27).
Levels 1 to 13 are assigned to these vertices in order, to
obtain the diameter level structure LD for T. The depth of

LD is 13, each level in LD has width 1, and so the width of

LD is 1.

Ch. 3 -43-

Figure 3.3

44.

Ch.

Ch.

3)
4.2) (4,4) (4.2)
() © @
(an‘:, 5.1) ‘E;s ;
6.6) 6,4)
O\0
7.5 77 M5 (7.3)
(N® O,
(8.4) 8.4) 8.8) H88

ofoNogoNch

9,9)

10,10)

ez,(wz)
11,11)
12,12) Figure 3.4
(12,10)
13,13)
...4 5..

Step 2: Next, starting from level 2 in LD and going
downward, the off diameter subtrees adjacent to the vertices

on D are visited.

Step 2.1: The subtree Tj; with vertex set {15,18,23} of 3
vertices is adjacent to vertex 2 in level 3 on D. Applying
recursively Steps 1.1-1.3 to it, we get (23,15,18) as the
diameter path D3 for T;. Levels from 1 to 3 are assigned to
these vertices in order, giving the diameter level structure
LDl for T;. The depth of LDl is 3 and its width is 1. As a
matter of fact, all the diameter level structures will have

width 1 to start with.

Next, LDl is merged into LD. The 6 possible mergers are

considered as shown in Figure 3.5.

Since every one of the six merger rules will, if
applied, increase the width of LD to 2, the first rule is
chosen. The vertices 23, 15, 18 are assigned levels 1, 2, 3
resp. The widths of the first three levels in LD are
increased by the widths of the corresponding merged levels of

LD1l, in this case by 1 each.

Step 2.2: Next to be considered is the subtree T3
consisting of a single vertex 28, which is adjacent to
vertex 2 in the level 3 of D. Since in this demonstration,
we use the alternative step(2') in the description of the

algorithm and consider vertex 28 as forming a single-level

Ch. 3 -46-

"

diameter level structure LD2 of tree Tj. As in step 2.1
above, in order to merge ILDB2 into LD, vertex 28 must be
assigned to one of the three levels 2, 3, or 4 in LD, which-
ever increases the width of LD by a minimum. Since assigning
28 to either level 2 or 3 will increase the width of LD to 3,
whereas the choice of level 4 maintains this width at 2,
vertex 28 must be assigned level 4, by using merger rule 3.
The width of level 4 in LD is increased to 2. The width of

LD remains unchanged at 2.

Step 2.3: Subtree T3 is also adjacent to vertex 2 and
consists of exactly one vertex, 30. Working as in step 2.3,
vertex 30 is assigned to level 2 in LD. Here, merger rule 1
is used. The width of level 2 in LD as well as the width of

LD is increased to 3.

Step 2.4: Subtree T4 is adjacent to vertex 12 in level
5 in LD and has vertex set {24,4,17,19} of 4 elements. Its
diameter level structure LD4 assigns levels 1, 2, 3, 4 to
vertices 24, 4, 17, 19 resp. Merger rule 1 is used to assign
vertices 24, 4, 17, 19 to levels 3, 4, 5, 6 resp. in LD,
increasing their widths to 3, 3, 2, 2 resp. The width of LD

remains 3.

Ch. 3 —-47-

(29) (20)
(2)>(e) (8)
(1522 (23)—>/2)
(19)~>(1) (15)>(1)

(12) (18)>(12)

® ®

(25) (18)—>(20)
(18)>(s) (15)>(s)
(1522 (23)>(2)
(2)—>() (1)

(12) (12)

® ®

4 8

Figure 3.6

® OO E
- O-O--O-O-0-0--C

- ® OO G

4 9

Ch.

Step 2.5: Subtree Ty is adjacent to vertex 9 in level 6
in LD and has vertex set {26,25,6,14,16} of 5 elements. Its
diameter level structure LD5 assigns levels 1, 2, 3, 4, 5 to
vertices 26, 25, 6, 14, 16 resp. Since each one of the merge
rules 1 to 4 will increase the width of LD to 4 whereas
merger rules 5 and 6 will both keep this width unchanged,
merger rule 5 is used. It assigns vertices 16, 14, 6, 25, 26
to levels 5, 6, 7, 8, 9 resp. in LD, increasing their level

widths to 3,3,2,2,2 resp. The width of 1D remains 3.

Steps 2.6, 2.7, 2.8: The three remaining subtrees are
processed as above and vertices 22, 21, 11 are assigned

levels 7, 8, 10 resp. in LD. The width of LD remains 3.

The resulting level structure LD is the outcome of
algorithm LST. Figure 3.6 shows the transformed, stretched
out tree. Each horizontal 1line denotes one level class. 2
level structure labelling f can be shown to give bandwidth 4.

If algorithm GPS is applied to this tree, it creates a
level structure of width 4. Further application of the
labelling algorithm of GPS results in bandwidth 5. This

example appears as problem no. 3 in Table 1 in Chapter 5.

3.4 TIME COMPLEXITY OF LST

This discussion (. time complexity of LST is based on

the second version of the algorithm, algorithm LST1. It is

Ch. 3 -50-

not difficult to see that the time complexity function for
the additional step (3) in version 1 of LST will not surpass
the complexity function derived in this section.

et T be a tree on n vertices and let 4 be the maximum
degree in T. We assume that T is sparse, meaning that the
adjacency matrix of T is sparse. We assume that T is stored
in one of the typical compact forms used for storing sparse
graphs, the adjacency table, which is an n*d array organized
as follows. If the vertex k has degree r, then the kth row
of the adjacency table lists the r vertices adjacent to
vertex k, followed by d-r zeroes. Using the adjacency table
instead of the adjacency matrix results in a significant
reduction in the size of the input, which is a parameter in
the complexity function. Let us recall the two main steps in

algorithm LST.

Step 1: Find a dir—eter level structure L for T.

Step 2: For each off-diameter subtree T' of T do
(i) find a level structure L' of T' recursively and
(ii) merge L' into L.

thus making L a level structure for T.

First we determine the time required for the main steps
in the computation of a diameter of a tree on n vertices

with maximum degree d.

l. To find the degrees of all vertices will take O(d*n)
time. However, this step is executed only once for the main

Ch. 3 -51-

tree and not repeated when computing diameters of subtrees.

2. To find a vertex of degree 1 will require O(n) time.

3. To find a rooted level structure at a vertex v is
essentially breadth first search. Starting with the root,
vertices are entered in a queue in the order of their
distance from the root. Every entry in the adjacency table
is read exactly once to determine all the neighbors of a
vertex at the top of the queue and to make successive
additions to the queue. Time taken will be 0(d*n). This
will include time taken to record the level of each vertex,
as well as to find the width and the depth of the structure
generated.

4. By theorem 2.5, it is necessary to generate at most
3 rooted level structures to get a diameter path. Therefore
the time needed is still 0(d*n). Replacing one vertex and its
rooted level structure with another vertex and its rooted
level structure resp. will not cost more than O(n) time.

5. When the ends of a diameter path are found, to form
the associated level pairs for each vertex and to assign
levels to the vertices on the diameter path will cost only
O(n) time.

Thus we can state the following Lemma.

Lemma 3.1: et T be # tree on n vertices with maximum
degree d. Theu a diameter level structure L of T can be

found in tiIme 0O(d*n).

Ch. 3 -52-

Let T3, T3, ... Ty be the connected components of size
nj, n2, ... nr resp. of T-D. Note that T3, T2, ... Tr are

off-diameter subtrees of T. Clearly,
np +np+ ... +ny <n

Further, in each of these subtrees the maximum degree will be
at most d. Therefore, by lemma 3.1, the total time to

compute diameter level structures for all these k subtrees

will be
O(d*ny) + O(d*njy) + ... + O(d*ny)
= 0(d*ny + d*ny + ... +d*ny)
< 0(d*n).

We view this task of finding the r diameter level
structures as being on the second level of recursion. We may
conclude that the time required to compute all the diameter

level structures on the second level of recursion is at

most O(d*n). Now let D3, D3, ... , Dy be diameters in
Ty, T2, ... , Tr resp. as computed in the second level of
recursion. We next want to investigate the third level of

recursion, and to determine the time required to comput-: the
diameter level structures of all the subtrees of T;-Dj, plus
all the subtrees of Ty-D3, up to and including all the
subtrees of Ty~Dy. Using the same reasoning as above, we can

see that

for all i, 1<ilr, the time to compute the main diameter

Ch. 3 -53-

ST ST e T TTTROTCRATS AT R

structures of all the subtrees of T4-Dj will be O(d*nj).
Adding over all i, 1<£ilr, we see that
the total time to compute the diameter level structures

of all the subtrees on the third level of recursion is

O(d*n1) + O(d*ny) + ... + O(d*nyp)
= 0(d*nj + d*ng + ... +d*ny)
< 0(d*n).

Generalizing inductively, we can conclude that the time

recuired to compute all the diameter level structures on any

level of recursion is 0O(d*n). Adding the contributions to

execution time from all the levels of recursion gives us the

following result.

Lemma 3.2: Let T, n and 4 be as in lemma 3.1. Let k be
the maximum depth of recursion attained by algorithm LST
when applied to T. Then the time required to compute

all the diameter level structures is O(k*d*n).

Next we find a bound on the depth of recursion, k, used

in lemma 3.2. In the following discussion, S(P) denotes the

number of vertices in the path P. First we note the follow-

ing property of diameter paths in trees.

Ch.

RIS TR e

Lemma 3.3: Let D be a diameter path in a tree T. Let

T' be a connected component of T-D. Let D' be a

diameter path in T:. Then S(D)>S(D')+2.

Proof: Let vertices u on D and v on D' be such that
d{u,v) is minimum. (See Figure 3.7). Let P be the path in T
from u to v. Then IPI > 1, where absolute value denotes the

number of edges in P. Let u divide D into 2 paths A and A'

and let v divide D' into 2 paths B and B'. Let us assume |A]|
< |a'| and |B] < |B'|. B may be void. We claim that |B'| <
|A]. Because, if |B'| > |A|, then the path in T given by

A'+P+B' will be longer than D. Therefore A has at least one
more vertex than B'. It follows that D has at least 2 more

vertices than D'.

D
: T
:,‘ ¢
. ﬂ;
M roria,
Figure 3.7
Ch. 3 -55~

We can now state the following theorem.

Theorem 3.1: Let T be a tree on n vertices. Then in an
application of algorithm LST to T, the depth of recur-
sion cannot exceed v/r.

Proof: ©Let T; = T and let Dj be the diameter of T;

computed when algorithm LST is applied to T;. Let k be the

maximum depth of recursion. Then there is a sequence of
subtrees T=T;, T3, ..., Tk, and a sequence of corresponding
diameter paths D=Djy, D3, ..., Dk, such that for all i,
2<ik,

(1) Ty is a connected component of Tj-1-Dj-1.

(2) Algorithm LST computes Dj as a diameter path in Ty.

Since Dx has at least 1 vertex, by lemma 3.3 Dy-j has at
least 3 vertices, Applying lemma 3.3 to all the preceding

diameters in the sequence, we have
1+ 3+ ...+ (2k-1) £ S(Dx) + S(Dk-1) + ... + S(D1) < n

Adding the arithmetic sequence on the left, k2 < n, therefore

k <+/n.

Example 3.2: Consider the tree on 36 vertices in
Figure 3.7 (an inverted conifer). An appli-~ation of
algorithm LST may choose D; = (1,2,3,4,5,6,7,8,9,10,11) as
the diameter in the first recursive call. 1In this case the
remaining graph has only one connected component. Similarly,

if in every successive recursive call, LST chooses a hori-

Ch. 3 -56-

. H

[P

zontal line as the diameter path, the remaining graph is a
tree. The depth of recursion in this case will be 6, which
is precisely square root of 36. Any other choice cf diameter
at any stage of recursion, except the very last stage, will
reduce the depth of recursion, as can be easily verified.
Clearly, for any k, such a tree with k horizontal levels and

k2 vertices can result in recursive calls of depth k.

D4:
D5:

Deé:

Figure 3.8

Combining lemma 3.1 and theorem 3.1 gives the following

result.

Theorem 3.2: Let T be a tree on n vertices and let
A(T)=d. Then the time required for algorithm LST to
compute all the diameter level structures in T is

0(d*n3/2y,

Ch. 3 =57~

The merge operation : When a level structure L' is merged
into a level structure L, the following two steps are
executed.

Step (1): The vertices in L' are assigned new leel numbers.
Step (2): The widths of levels in L are modified with the

additions of the widths of the merged classes of L'.

First, let us compute the time required for step (1).
Note that since the depth of recursion cannot exceed Vn, a
vertex may be part of a merge operation at most 4/n times and
therefore may get relabelled at most 4n times. Therefore
this step in all the merge operations can be executed in
total time O(n*/n). Relabelling of vertices can be avoided
by opting for more book-keeping and labelling the vertices

only once, which in turn will reduce this time to O(n).

Next, we note that every level structure L' is merged
only once in some level structure L of bigger length. While
computing the widths of the augmented structure L, one may
ignore those levels in L which were not affected by the merge
operation. Then the number of levels modified in step (2)
above will be equal to the length of L'. Since the lengths of
all level structures generated during the application of the
algorithm LST cannot exceed n, the time for modifying all the
level widths during all the merge operations will be O(n).
Thus the execution of the two steps above together will cost

time 0(n3/2).

Ch. 3 -58-

We can now state the following theorem.

Theorem 3.3: Let T be a tree on n vertices and let
A(T)=d. Then the algorithm LST computes a level

structure of T in time 0(d*n3/2).

Proof: By theorem 3.1, the time to compute all the
diameter level structures is 0(d*n3/2). As seen above, the
time required to compute all the merge operations is
0(n3/2y, Therefore the total time required by algorithm LST

is O(d*n3/2y,

3.5. PERFORMANCE OF LST

In this section we evaluate by means of examples the

ability of algorithm LST to compute near optimum results.
Near optimum results:

It is easy to see that algorithm LST, when applied to some
simple trees, like spiders with legs of length greater than
1, will construct a level structure which can lead to a
bandwidth labelling. In this section we will show that
algorithm LST can be combined with & labelling algorithm to
obtain the bandwidth of a nontrivial family of trees for
which the performance of the GPS algorithm is particularly

poor.

Ch. 3 =59-

Examplc 3.3. Bandwidth labelling of a nontrivial family of

trees (Opatrny and Miller) [18]:

Let T7 and T, be as shown. For n > 3, define tree Tph recur-

sively as follows:

ra

r

T, T2

Figure 3.9

where for n > 3, Py is a path of length 2*(depth(Tp-3))+4.

Theorem 3.3: For every n > 1, algorithm LST constructs

a level structure of T of width ((n+1)/i].

Proof: We prove the theorem by induction on n.
Clearly, for n=1 and n=2 algorithm LST constructs a level
structure T} and Ty of width 1 and 2 resp.

Assume that for n < k algorithm LST creates a level
structure of T of width [kn+1)/i]. Consider now application

Ch. 3 -60-

of LST to Ty and let N be the level structure generated.
Clearly, the path consisting of six Py paths is the diameter
of Tx and algorithm LST will place one vertex of the path in
each level of N. Further, recursive application of algorithm
LST will ")roduce level structures N1, N2, N3, N4 for the four

copies of Tkx-2. By induction hypothesis,
width(Ni) < [}k—2+1)/51 - f}k—l)/i].

Since the length of Px is greater than 2*depth(Tk-2), by

merging N1, N2, N3, N4 into N, we obtain a level structure N

such that

Width (N) = 1 + max {width (Ni)] 1 < i < 4}
<1+ [(x-1)/2]- [(k+1)/2].

One can further construct a labelling f such that
Be(Tk) < width (N) = I—(k+1)/2T.

Since it can be proved [18] that B(Tk) 2> [(k+l)/21, it
follows that algorithm LST constructs optimum solutions for
the family of trees T,. Now for tree Tp-3, there exists i
such that there are 201/2 vertices at distance i from rp—».
Thus if algorithm GPS is applied to Tp, it will construct a
level structure of width greater than or equal to 21/2+1,
Thus while LST creates a level structure of T, with width
O(n), the level structure created by GPS has width 0(201/2)

which clearly demonstrates the advantage of algorithm LST

Ch. 3 -61-

over algorithm GPS for such a family of trees.

Poor Performance of LST:

A+ is the case with any heuristic algorithm, one can
find examples in which the performance of algorithm LST is
very poor. In some instances, a decision to chouse a merger
rule over another, with a view to keep to the minimum the
width of the resulting level structure, may prove to result
later in increased width. One can find examples of trees in
which the width of the level structure produced by algorithm
LST exceeds the bandwidth by arbitrarily large numbers. The
following theorem makes a general statement in this

direction.

Theorem 3.5: For every positive integer k > 3, there

exists a tree Gx such that B(Gx) = 3 and the width of

the level structure of Gx produced by algorithm LST is
k+1.

Proof: For each k > 3 one can construct a tree Gk as
shown in Figure 3.10. Gk is a caterpillar. The diameter
path in Gx is (u,v). The centre of the diameter is w. P(t)
denotes a path of length t. The legs from w towards u are
paths P(2), ..., p(2k—2y, p(2k-1ly, p(2K). The first one of
these, P(2), is at distance 2 from w. For t > 1 the part of
the diameter between legs P(2t) and P(2t*1l) is a path pP(2%t)
at the c.atre of which is a leg P(1l). The part of the
Ch. 3 -62-

P(2

p(2k-2 “ (@" ﬂ 2%2)
“)

%)
p(ak-1) R \ (1 \P(Zk'z) ¢(2k_2) p(1$,2"1

AP Y

’
/“\ ' ' Y, '~5\p2k+1

oy 2% \‘ \P(g'ﬂ) /P(2k-1) v \L)
&’(1) N y 9(1?\

N 4 "o

) 4

¢ /
3 ’
. 4

K
\‘zk) P2)/ Figure 3.10

diameter between the leg P(2K) and vertex u is a path P(2k+1)
on which there is a leg P(l) at distance 3*(2k‘1) from u.
The graph is symmetric about w and can be described similarly

between w and v. Clearly B(Gx) = 3.

Let us first consider the application of algorithm LST1
which processes all subtrees by the same recursive rule. Now
algorithm LST1l, after finding the diameter (u,v) and merging
the first leg P(l) closest to u, will merge the leg P(2K) by
turning it towards w to avoid creating at this point a level
structure of width 3. Similarly, after merging the second
small leg P(l), the leg P(Bk‘l) will be merged by turning it
towards w to avoid creating a level structure of width 4 at
this point. Thus all the legs of length greater than 1 are
turned towards w resulting in a level structure of width k+1.

Ch. 3 -63-

If on the other hand each one of these longer legs is turned
to the left towards u, and those between w and v towards
vertex v, then the resulting level structure has width 3. It
is not difficult to see that one can assign a numbering

following this level structure, which results in bandwidth 3.

Algorithm LST, which processes all small subtrees at the
end, will give a level structure of width 3 in this case.
However, by replacing all the P(l) s'btrees by P(3) one can
construct similar examples in which the performance of LST
can be shown to be arbitrarily poor.

We note that algorithm GPS will fare equally poorly in

this particular case.

3.6. Modifications to algorithm LST

The performance of algorithm LST can be improved in some
instances by applying a "level smoothing operation" after all
the vertices are assigned levels. By comparing widths of
three consecutive level classes, vertices can be reassigned
to neighboring level classes to further redistribute them as
uniformly as possible. This could reduce in some cases the

width of the level structure generated.

Ch. 3 -64-

CHAPTER FOUR

IMPLEMENTATION OF LST

4.1. DETAILS OF IMPLEMNENTATION.

We implemented algorithm LST in Turbo Pascal on IBM-PC.
Several versions of the algorithm were created to study
empirically the iafluence of various alternatives to some
parts of the alqorithm on the resulting level structure of
the graph. ncluded among them, in particular, are the

following.

(1) The original algorithm LST which merges all "small sub-
trees" right at the end.

(2) The alternative totally recursive algorithm LSTI1.

(3) Both LST and LST1 with final "level smoothing" operation

described in 3.6.

A listing of Program Level_structure, version 8.0, the
implementation of LST1 (which is (2) above) is included as

Appendix 1.

Ch. 4
-65-

4.2. THE OBJECTIVE OF THE IMPLEMENTAIION

The primary objective of this implementation of LST in
PASCAL language is to demonstrate that for trees the
algorithm generates a level structure of much smaller width
than doer any of the existing algorithms, in particular, the
GPS algorithm. As such, the implementation does not claim to
be the most efficient in execution time or storage space
requirement. This aspect of the implementation of LST will
be considered in our future work. Here, an attempt is made
to keep the implementation <clear and simple and the data

structure and the program layout is chosen accordingly.

Many alternative theoretical approaches have been tried
in some parts of the algorithm. For example:
(1) In computing a diameter, is it necessary to choose
u in Ly for which Ly has minimum width?
(2) In LST, how to merge a subtree when the vertex
adjacent to the parent diameter is not processed?
(3) Which one of the six mergcr rules should be chosen

in case of a tie in the maximum width of levels?

This has resulted in the implementation being modified
several times as the work on this +hesis progressed, as
opposed to being completely planned at the outset. We opted
for maintaining a satisfactory, working implementation rather
than make drastic changes each time. Besides, our main

Ch. 4
-66—

interest so far has been to compare the different heuristic
approach:s as to their effect on reducing level widths. We
have been running several versions of the algorithm with
alternative components for purposes of overall comparison and
to optimize a particular version was not considered necessary

at this point.

A secondary objective regarding efficient storage did
evolve during the work. 1In order to save a level structure
of a subtree, it is necessary to store the level of each
vertex, the vertices in each level and the width of each
level. Since linear arrays were chosen to represent level
structures, space requirement was seen to be potentially
excessive in case of a large number of vertices and a large
depth of recursion. At this point we guestioned whether it
is possible to implement the algorithm so that the space
requirement would be independent of the depth of recursion.
The answer was in the affirmative, and will be explained in

section 4.3.4.

The algorithm and the driver together constitute Program
Level_structure, which takes as input a tree and produces as

output a level structure.

4.3. Data structures, types, variables and constants.
A brief description of these is necessary to discuss the

implementation.

Ch. 4
-67-

4.3.1. Constants
Maxnodes is an upper bound on the number of vertices in
the tree. Maxdeg is an upper bound on the maximum degree in

the tree.

4.3.2. Types

number. Throughout the program, each one of a large
number of variables will hold an integer which stands for a
vertex in the tree. Therefore a subrange of integers,
between 0 and maxnodes, is taken as a basic unit of informa-
tion. The type of this subrange is numberxr.

vector. Another type of a basic storage unit. A one

dimensional array of type number and length maxnodes.
4.3.3. The Global Variables

Some variables are kept global to keep the parameter
list shorter in procedure calls. Since the algorithm and the
driver are parts of one PASCAL program, most of the proce-
dures work in the same environment. Therefore the graph,
the number of vertices, their degrees and the maximum degree,
which are all part of this environment, appear as global

variables.

Some output variables like arrays level and levelwidth
are parts of the environment shared by successive recursive
calls, each call accessing only some parts of these arrays.
These arrays are also kept as global variables.

Ch. 4
-68—

INPUT variables:

Input variables n and 4 hold the number of vertices in
the tree and maximum degree in the tree respectively.

graph is an input wvariable. The tree is represented by
an adjacency table in this implementation. This table is a
two dimensional array, graph, in which the number of rows is
equal to n and the number of columns is at least as large as
md. The kth row lists the vertices adjacent to vertex k, the
order in which they are listed being irrelevant. The nornzero
entries in each row are left justified and the rest of the
row is filled with zeroes.

grfdata is a text file which holds the input graph. The
first line in this file contains values of n and md. Lines 2
onwards give the adjacency table in the same format as

variable graph above.

OUTPUT variables:

lerel is of type vector. It outputs the level of each
vertex as assigned by algorithm LST.

depthv gives the number of levels in the level struc-
ture.

levwidth is of type vector. The first depthv locations
store the widths of the levels in the level structure

generated.

Ch. 4
-69—

4.3.4. Storage management in recursive calls

LST is a recursive algorithm as described in pseudocode.
Its implementation, however, is not completely recursive. It
is truly recursive only after the main diameter is computed.
Although LST extracts a diameter from the main tree as well
as from each one of the subtrees, the subtree processing
differs from the main tree processing in two ways.

(1) First, some of the outcome of the main tree process-

ing must be saved which is not the case for the

subtrees.

(2) More significantly, the subtrees are not available

in the same format as the main tree. This results in a

certain loss of recursive elegance.

The solution to the first problem is to save some of the
information in global variables when the main diameter
structure is computed. The second difficulty is overcome by
listing 11l the vertices in a subtree in a one dimensional
array grf before the subtree processing begins, and reading
the connections between vertices from the adjacency table

graph.
Intermediate Global Variables:

(1) Variables used to save information about the main
diameter.
deg is of type vector. stores the degree of each vertex

Ch. 4
-70-

in the main tree.

depthv, widthv, widev are variables of type number.
They hold the depth, the width and the size of the last
level class resp. of the main diameter level structure.
Initially, variables level and levwidth hold the level of a
vertex in this diameter level structure and the width of each
level class respectively. As each new subtree is processed
and its level structure is merged into the main level
structure, these arrays are modified and firally become part
of output as listed above.

nodesqv and templev are of type vector. Let v be the
starting vertex of the main diameter. Then nodesqv lists all
the vertices in the order of their distance from v and
templev[k] stores the level of vertex k in the rooted level

structure Ly.

(2) Many variables used in the processing of subtrees
are kept global to avoid a large list of parameters.

grf of type vector is one such variable. It is intro-
duced to list all the vertices of a subtree in consecutive
add.-esses, so that they can be easily used in a loop. The
adjacency table graph is used to read the neighbors of a
vertex. Thus the processing of a subtree is somcwhat

different from that of the main tree.

(3) In addition, the next section lists some global
variables used for storing the generated level structures

Ch. 4
-71-

efficiently.
Efficient Storage of lLevel Structures.

A diameter level structure of the tree or a subtree must
be stored until all its subtrees are processed. Obviously,
it would be impractical to save *his information locally in
each recursive call, because in that case storage requirement
will be of the order of the depth of recursion multiplied by
the maximum length of an array. Another problem is
representing the dynamically growing level structures each
having different length, width and lists of vertices which
must be merged to create new lists of vertices belonging to
the same level class. This creates a necessity to find a
suitable format for storing the diameter level structures
obtained in successive recursive calls and keeping track of
relations among them for the later merge operation. Dynamic
storage with pointer variables and linked 1lists were ruled

out as too time consuming,

Terminology. There is a natural partial order on the
set F of all the diameter level structures computed by
algorithm LST when applied to a tree T. We introduce
the following terminology in keeping with this partial
order. First note that for every diameter computed by
LST, there is the associated subtree of which it is the
diameter. If L and L' are in F with associated subtrees

S and S' resp., then we say that L is 1lower than L'

72

e S

(and L' is higher than L) if S is a subtree of S'. If S
is an off-diameter component of S' then we say that L'is
the parent diameter structure of L. If there is no L in
F lower than L' then we say that L' is a minimal
structure. The highest structure in F is the diameter
of T, which is the main diameter structure. When a
minimal diameter is computed, it is merged into its
parent structure and thus augments it. When all the
lower (possibly augmented) diameter structures are
merged into a diameter structure then that in turn gets
merged into its (possibly augmented) parent structure.
In this implementation every level structure encoun-
tered is seen as a diameter level structure, being
either in its initial diameter form or in its augmented
form after absorbing some lower structures. A vertex
goes from being part of a level structure to being part
of a higher level structure. At any time a vecrtex
belongs to at the most one level structure, the highest

one in which it has been assigned a level.

For any vertex, all the information regarding the struc-
ture to which it currently belongs is stored in global
variables and this information is updated whenever its
structure is merged into a higher one. This is done as
follows.

The array nodesqgv is used to list all the diameter level
structures. Initially, it lists the main diameter level

Ch. 4
-73~

structure. When a diameter of a subtree is computed, it is
listed in nodesqv starting at the next available location as
given by stnode. The array levwidth records the widths of
the level classes in parallel to nodesqv. The location
levwidth([j] gives the width of the level class indicated by
nodesqv{j]. When initially a vertex enters nodesqv[j] as
part of a diameter, levwidth[j] is equal to 1. The variables
stdiam, lendiam, pnter are global variables of type vector.
For any vertex k, stdiam[k] gives the location in array
nodesqv of the start of the diameter level structure to which
k currently belongs while lendiam[k] gives the number of
classes in this level structure. The array pnter is used to
link all the lower diameter structures merged into a struc-
ture L so that when L is merged into its parent diameter
structure, all the lower level structures also get merged
with L. The entries in array pnter run parallel to nodesqgv.
The location corresponding to the end of a diameter contains
the address of the beginning of the first diameter mexrged
into it. If no such merged diameter exists, then this
location contains 0. If one subtree T5 gets merged into a
diameter P after another subtree T; has been merged before,
then Ty will be linked to P through the last subtree of I3
linked to T3;. The array level gives the level of a vertex in

the level structure to which it currently belongs.

Ch. 4

4.4. Procedures.
In this section we briefly describe a few aspects of

some main procedures of LST.

Procedure getdata. This procedure obtains interactively
from the keyboard particulars about the input. Input is
either from a diskfile, in which case the file name is read
from the keyboard, or it may be a randomly generated tree. In
the latter case the number of vertices n, the maximum degree
md and a number p such that 0<{p<l are read from the keyboard.
Each vertex has md neighbors, each with probability p. For
generating a (connected) tree, p should be not too small. A

safe choice seems to be p such that (md)*p > 3.

Procedure gentree. Given n, md, and p as above this
procedure generates a rooted tree, vertex 1 being the root,
and writes the adjacency table in array graph. It also
computes as byproducts the length and the level widths of the
rooted level structure Lj and prints these. These values may

be later compared with the output of algorithm LST.

Procedure rooted_tree. Starting with a vertex v of
degree 1, this procedure generates a rooted level structure
Ly,. The level of each vertex in Ly is recorded in the array
tlevel. In addition, vertices are listed in the order of
their levels in nodesq. The procedure also computes the
width, depth and the size of the last level of this rooted
structure.

Ch. 4
-75~

Procedure diameter. As explained in chapter 3, starting
with a vertex v of degree 1, this procedure uses procedure
rooted_tree and returns in nodesqv a diameter path,
nodesqv[k] being the kth vertex on this diameter. When a
vertex becomes part of a diameter, it is called processed.
The variable v returns the starting vertex of the diameter,
and depthv returns the length of the diameter. On the first
call to this procedure, tlevelv will save levels of all the

vertices in Ly.

Procedure process_branches. After the main diameter
structure is computed, this procedure is called. It initia-
lizes the arrays stdiam, lendiam, pnter before going into the

recursive processing of subtrees.

Procedure process_subtree. Given a vertex, this
procedure findc the maximal subtree which consiste of only
non-processed vertices and which contains the given vertex.
The vertices in this subtree are entered in array grf.
Unlike in the case of the main tree, first the size of the
subtree is found. If the size is smaller than 3, then
procedure small_subtree is called to generate a level
structure of the tree. 1If the size is greater than or equal
to 3, then the global array tlevelv is used to find the
starting vertex which is farthest from the starting vertex of
the main diameter of T. After this the procedure diameter is
called and the recursive processing continues.

Ch. 4
-76-

Procedure merge levels. Given the vertex k on the
parent diameter structure of subtree T', and vertex nbr in T'
which is ad3jacent to k, this procedure merges the level
structure of T' into the parent structure. As explained in
3.2, six merger rules are investigated and the one resulting
in the minimum width structure is chosen. Arrays stdiam,
1ndiam are used to locate the level structures. Stdiam{k]
gives the starting location in nodesqgv of the diameter
structure of k. Length[k]}] gives its length. The array
levwidth is nused to find the current widths of its level
classes. Starting from levwidth[stdiam[k]] the next
1ndiam[k] locations in array levwidth give the widths cf
level classes ir this structure., Similarly the diameter
structure of vertex nbr is vretrieved. The widths in the
structure of k are updated to account for the increase in the
class sizes. The array level is updated by assigning new
levels to the vertices on the diameter path of T'. The array
pnter is used to trace all the lower structures merged into
this diameter path and their levels are updated as well.
Further, array pnter is used to link the starting location of
the diameter structure of nbr to the last location of the

diameter structure of k in array nodesqv.

Ch. 4

4.5. FURTHER CONSIDERATIONS IN IMPLEMENTATION.

4.5.1 Priority in the choice of merger rule.

Procedure merge_levels presented some interesting possi-
bilities. If the merger of two level structures using the
six feasible merger rules is studied, and if more rules than
one result in the minimum width for the merged level struc-
ture, which rule should be used? Procedure min widch_index
takes the six level structure widths and returns the index
with the minimum width. As the standard algorithm for
finding minimum of an array goes, in case of a tie, the
fmuller index will be chosen. For the level structure this
means that whan all the widths are equal, rule 1 will be
chosen. Rule 1 tries to push the subtree towards the
lower-numbered level classes on the parent diametevr. What if
we change the algorithm for finding the minimum, and choose
the higher index in case of a tie? Or what if we first
randomly permute the six numbers before finding their
minimum, which is same as applying the algorithm to find the
minimum with permutation applied to the six indices of the
array? Will such choices reduce the level structure width?
These approaches were tried on some data and the conclusion
reached was that the first method chosen generally results in
lowest structure width. Since the vertices on the diameter
are scanned from lowest to highest level numbers for process-
ing subtrees adjacent to them, the heuristic of trying to

Ch. 4
-78-

push subtrees as much as posisible in the low index levels

seems to be the best course orf action.
4.5.2. LST vs. LSTl.

The two versions of the algorithm were studied on many
sample data. The widths obtained were comparable in all
cases. If at all, algorithm LST posed some problems both in

implementation and the results obtained.

(l) Increased width in LST. If there are many "small
subtrees", i.e. of size 1 or 2, near the start of the
diameter, and if processing of these subt ees is postponed
till the end, as is done in LST, then the lower levels in the
structure may continue to be of small width. That may result
in some subtrees being assigned to the lower levels by using
merger rule 1 rather than to higher levels. This can result
in an intermediate structure in which levels with low indices
have more width than levels with high indices. When finally
the small subtrees near the lower levels are processed, they
must be assigned to these lower levels. In this case,the

resulting leve. structure may have very large width.

(2) Problem in merging in LST. Let k be a vertex on a dia-
meter P and let nbr, a vertex adjacent to k, be the root of a
off-diameter subtree T;. While processing the subtree T,
nbr may not be processed because it may be part cof a "small
subtree". 1In this cuse nbr will have no level assigned to it

Ch. 4
-79—~

when T; is to be merged into P. This difficulty is overcome
in the version 9.0 of the implementation by writing a
procedure process_root. This procedure makes sure that the
root of a subtree, as nbr above, is processed before its
level structure is to be merged into the parent structure.
The distance between such an unprocessed root and the set of
processed vertices in the subtree is at most 2. Thus it is
possible to process the root without too much computation and

without processing all the other small subtrees.

(3) Additional procedures in LST. When all subtrees except
the small subtrees have been processed, every small subtree
is adjacent to exactly one processed vertex, to whose level
all the vertices in the subtree are temporarily assigned.
Then starting from the lowest level class, vertices are moved
one level up or down, if necessary, to make class widths as
even as possible. Additional book-keeping is needed to make
sure that two adjacent vertices in "small subtrees" do not

get assigned to two non-consecutive levels in this process.

4.6. POSSIBLE IMPROVEMENTS IN TFE IMPLEMENTATION.

As mentioned at the beginning of this chapter, there is
scope to improve this implementation. Among possible
modifications are:

(1) The range of array indices used in subtree process-
ing can be shortened to the size of the subtree by making

Ch. 4
-80-

some minor changes and making all references to a vertex
through indirect address calculation via variable grf.

(2) To find the width of the resulting merged structure
as well as to update the widths of the resulting structure it
is sufficient to work with only as many classes as there are
in the smaller of the two structures.

(3) Most important of all, a level of a vertex need not
be changed every time its current level structure gets merged
into a parent level structure. It is possible to store,
along with each diameter level structure, the merger rule as
well as the connecting vertices used in the merge operation
and not actually execute the merge operation. This way, a
level will be assigned to every vertex only once. As seen in
theorem 3.1, there may be as many as 4¥n diameter merges in a

tree on n vertices.

Ch. 4
-81-

CHAPTER FIVE

EMPIRICAL EVALUATION

5.1. THE METHOD OF EVALUATION.

The performance of any heuristic algorithm must be
evaluated empirically. In this chapter, by performance of
algorithm LST we mean its ability to minimize the width of a
level structure produced. The empirical study of time
efficiency of the algorithm is not within the scope of this
work. The results obtained by applying the algorithm to some

examples (data) can be studied in two ways.

(1) If the theoretical value of the bandwidth of a tree is
known, as is the case with binary trees, stars, caterpillars
and some other graphs, one can compare the results obtained
with the optimum results. 1In our case, since algorithm LST
computes only a level structure of a tree, to know how good
the level structure is we must either apply a known labelling
algorithm and compute the bandwidth for the level structure
Jenerated or we must resort to a theoretical statement which
relates the width of the level structure with the bandwidth
of a labelling. A theorem relating the width of a rooted
level structure with the bandwidth resulting from a labelling
algorithm is found in {[15]. However for a general level

Ch. 5 -82-

structure there is no known result of this nature except

theorem 2.1.

(2) In general, the exact bandwidth of a tree is not known.
As is the standard practice, one can evaluate the performance
of the algorithm by comparing the results with those obtained
by some well known algorithms. As we have seen in the
preceding chapters, algorithm GPS outperforms all known
bandwidth minimization algorithms. Therefore we evaluate the
performance of algorithm LST by using the same test data for
both algorithms LST and GPS and comparing the results
obtained. This method is also instructive in those cases
where the theoretical bandwidth of the graph may be known.
In this situation, one can study the relative performance of
the two algorithms as well as the closeness of the results to
the optimum value of the bandwidth. Here again we will
compare the widths of the level structures generated by the

wwo algorithms.

We include the two versions LST and LST1 of the algo-
rithm in this comparative study. Although the ACM algorithm
582 is the most time and space efficient version of algorithm
GPS, we opted for the simpler version, ACM algorithm 508,
which has the same mathematical properties. This was run on
the VAX 8500 system of Concordia University. Algorithm LST
and LST1 were run on an IBM-PC. The three algorithms LST,

LST1 and GPS are applied to all the problems in the data

Ch. 5 -83-

selected.

5.2. THE DATA

The ability of an algorithm to obtain near optimum solu-
tions must be judged by applying the algorithm to different
types of problems. Two groups of problems were chosen in the

comparative analysis of the three algorithms.

GROUP 1. Here we have a group of 16 problems, numbered 1 to
16, most of whom are chosen for some special fe=*ure. The
small size of many of the problems was very helpful in
analyzing the nature of the tree, the operation of the
algorithm and the intermediate level structures generated.

Some of the problems in this group are listed below.

No. 3. The tree in example 3.1.

No. 5. A rooted complete binary tree.

No. 6. A rooted binary tree.

No. 7. A tree where off-diameter subtrees are connected to

the main diameter by "small subtrees".
No. 8. Similar to No. 7. However there is only one off-
diameter subtree here.
No. 9. The tree in example 3.2.(A conifer)
No.1l0. The tree in example 3.3.(the optimum result example)
No.11l. The complete binary rooted tree on 63 vertices.

No.l1l2. A star.

Ch. 5 -84~

No.13. A tree with just one off diameter subtree and only a
unique choice of diameter.

No.1l4. A caterpillar.

No.15. A spider.

No.l6. A large tree with overlapping spider subtree.

The level widths obtained for these problems are tabulated in

Table 1.

Ch. 5 -85-

| Problem No. |[v(T)] (T) W(LST1) W(LST) W(GPS) B(GPS)

| 1 10 4 2 2 3 3
| 2 20 3 2 3 3 3
| 3 30 5 3 4 4 5
| 4 34 4 7 6 8 8
| 5 31 3 5 4 5 5
| 6 25 3 4 4 5 5
| 7 50 5 7 7 6 7
| 8 22 4 3 3 5 5
| 9 36 4 4 5 4 5
| 10 103 3 3 3 5 5
| 11 63 3 8 8 9 9
| 12 9 8 3 4 4 4
l 13 26 4 3 3 6 6
| 14 35 6 4 4 5 6
| 15 15 6 3 3 3 3
| 16 108 7 7 4 7 7

| Table 1.Comparison Of Level Widths in T By The Three Algorithms
|

| [V(T)|: Number of vertices in T. (T): Maximum degree in T
|W(LST1): Level width by LST1 W(LST): Level width by LST

|W(GPS): Level width by GPS B(GPS): bandwidth by GPS

Ch. 5 -86-

The complete leval structures prouuced by all the three
programs reveal the special logic of each algorithm and its

behaviour in these cases.

GROUP 2. The second group consisted of 15 problems. The
problems in this group are trees generated randomly by
procedure gentree. Given the number of vertices n, the
maximum degree d and the probability p of an edge in the
tree, this procedure generates a tree as follows. Starting
with vertex 1, at every vertex, 4 edges are created, each
with probability p. The endpoint of a new =2dge is assigned
the next vertex number. This process continues until n
vertices are created. Various values of n, d and p were
arbitrarily chosen to generate these 15 trees. Some problems
of large size were included in this group. Problem No. 31
and 32 are complete binary trees which are the exception to
the rule of random generation. All the chree algorithms were
applied to these 15 problems. Procedure gentree, which
generates each tree randomly starting with vertex 1 as the
root, also computes in each case, as byproducts, the rouoted
level structure Lj and level widths of Lj. The results are

tabulated in Table 2.

Ch. 5 -87-

- ——— . - . —— — ——— f— — f— — - i .- S —— i —— S — —— - ——— — — —— T — D " S S ——— > T i . S WD S i S, S s

No. |V(T)l A(T) p W(T) W(LSTl) W(LST) W(GPS) B(GPS)

21 25 4 0.60 9 4 4 4 4
22 25 4 0.70 12 5 4 5 6
23 45 4 0.60 20 6 6 7 7
24 30 5 0.50 17 5 6 6 7
25 50 3 0.65 11 5 5 7 7
26 50 7 0.35 25 8 9 10 10
27 40 3 0.80 15 4 5 5 6
28 40 5 0.50 23 7 7 7 8
29 50 5 0.45 23 5 6 10 10
30 40 6 0.40 18 5 5 7 8
31 127 3 1.00 64 15 13 17 17
32 255 3 1.00 128 24 24 33 33
33 200 4 0.45 59 14 14 18 18
34 300 5 0.40 54 26 29 29 35
35 200 4 0.40 36 12 11 13 17

e — - - —— —— Y ——— S i — e ——— T — o — s S —— — T T —— — T — — T T _—— i~ T T — — " —— —— . — T ——— f—

Table 2. Comparison Of Level Widths of Randomly Generated
Trees By The Three Algorithms.

p: probability of an edge D (T): maximum degree in T
W(T): Level width of Lj |v(T)|: No. of vertices in T
W(LST1): Level width by LST1 W(LST): Level width by LST
W(GPS): Level width by GPS B{GPS): bandwidth by GPS

Ch. 5 ~88-

3. OBSERVATIONS and CONCLUSIONS.

By studying the individual examples some observations
regarding the capabilities of the three algorithms can be
made. Based on these observations as well as on the proce-
dures and the theoretical basis of the algorithms certain

conclusions may be drawn.

1. From the two tables it is clear that LST1 almost
always produces level structures of smaller level width than
does GPS, and the difference is quite considerable in most
cases. The difference in the level widths of LST1 and GPS
may not look significant in small size problems however the
increase in the level widths from LST1 to GPS range between
13% to 66% in all but 2 cases in Table 1 and between 8% to
100% in all cases but one in Table 2. This fact alone is
very likely sufficient to conclude that algorithm LSTl is
superior to algorithm GPS for minimizing the bandwidth of a
tree. The widths produced by LST are comparable to those by
LST1 though in most cases slightly higher. These tables show

that algorithm LST1 has a slight edge over LST.

2. If the tree has one dominant off-diameter subtree as
in problem NO. 13, GPS seems to produce really poor results.
The level strnwcture width can be as much as double that of
LST1. This slould be expected since the recursive applica-

tion of I.ST first distributes the vertices of the subtree in

Ch. 5 -89-

as many levelcs as possibie whereas GPS uses the rooted level
structure for the subtree choosing the connecting vertex as
the root. Similar results should be expected if there are an
odd number of components of T-D rather than just one. GPS
has the same disadvantage when the nodes connecting these

components to the diameter are sufficiently far apart.

3. GPS tries to overcome this problem, whenever possi-
ble, by finding a diameter .:arting at the vertex with the
smallest width for its rooted level structure. This helps
reduce the width considerably as in No.9. When there is a
unique diameter, this strategy is useless as in problem no.

10 and 13.

4. If the tree is fairly regular and the density evenly
gpread, GPS and LST come quite close in their output as in
No.4 and No.1ll. The same tendency is also observed in the
second group of problems. Here a smaller value of p and
larger value of d indicate that there may be variation in the
degrees of vertices. In this case the GPS level width is as
much as double that of LST/LS5T1.

The relationshin ibetween the level structure width and
the concept of even distribution of density can be expressed
more clearly as follows. ILet T be a tree satisfying the
following two properties:

(1) the length of the diameter is "sufficiently" large

(2) there is a vertex x and a positive integer p such that

Ch. 5 -90-

Is| = |{ y | d(x,¥) = p }| is much larger than B(G)

then algorithm GPS cannot find a good level structure.

5. While assigning levels to a subtree connected to a
vertex x on the diagonal, GPS does not assign any vertex from
the subtree to the same level as x. This can prevent a
Fossibly even distribution of vertices, especially when there
are a large number of small subtrees. A good example is

Problem No. 1.

6. In Table 2, the width of the generated rooted
structure L3 is entered for the sake of comparison.
Obviously, one cauL.aot expect the width of Lj; to be close to
that of LST or GPS. The starting vertex is more likely to be
at the centre of the tree and its maximum level width will be
close to double the width of the GPS or LST structures, if

the tree is somewhat well balanced.

7. One can compare the results for the complete binary
tree with the (theoretical) bandwidth of a binary tree.
Chung [3] has proved that for a complete (rooted) binary tree
Tx with k levels

B(Ty) = | (2 k-1 -l)/(k-l;l.

Problems No. 5, 11, 31, 32 are complete binary trees with k
5, 6, 7, 8 levels (k) respectively. Chung's formula gives
their bandwidths as 4, 6, 11, 19 respectively. Our results
are not particularly close to the bandwidth, though they are
Ch. 5 -91-

clorer than GPS. The GPS results seem to be getting farther

from optimum value as the problem size gets larger.

8. One may ask whether a level structure of smaller
width necessarily results in smaller bandwidth after label-
ling? The answer to this question is no. All the three
algorithms find bandwidth level structure for problem No.15,
a spider,. In problem No.1l2, algorithm LST tries to spread
the vertices of a star in three levels of equal widths.
However, an application of the GPS numbering algorithm to
this will not result in a bandwidth labelling of the star.
For the same problem the GPS algorithm produces a level
structure of larger width, yet with GPS numbering this

results in a bandwidth labelling of the star.
9. Comparison between LST and LST1

(i) Problem no. 16 shows a smaller level width by LST
than by LST1. This is due the different order among the 6
merger rules used in the two versions. This shows that this
order is very important and can make a big difference.

(ii) No.28 gave an example of what can happen when a lot
of small trces are connected to one vertex on the diameter.
In this case that particular level class has a lot of
"remaining" vertices. They can only be distributed to the two
neighboring level classes. This can result in a lopsided
distribution of vertices, assuming that in +the first pass an
attempt was made to make the levels of uniform widths.

Ch. 5 -92-

(1ii) Only 6 out of 31 problems list a smaller width for
LST than LST1l. Two of these are binary trees. This result
seems to show that the additional processing to redistribute
the vertices in the second pass is not worthwhile. On the
other hand, smaller levelwidth does not necessarily imply
smaller bandwidth.

(iv) There are other problems in trying to redistribute

vertices. These are already explained in 4.5.2.

IN CONCLUSION, this empirical investigation shows that
algorithms LST and LST1l consistently generate level
structures of much smaller width than does algorithm GPS.
This fact seems to indicate that LST/LST1 will be more

successful in reducing bandwidths than algorithm GPS.

5.4. POSSIBLE EXTENSIONS OF THIS WORK

1. Compare bandwidths with GPS by combining existing label-
ling algorithms with LST.

. Find a labelling algorithm suitable for LST.

. Find a better estimate of the bandwidth of LST labelling.

Can bandwidth after LST be smaller than level width?

m e W N

. Write a time efficient version and evaluate the time effi-

ciency in comparison with GPS.

Ch. 5 -93-

10.

11.

Ref.

REFERENCES

Bondy J. A. and U. S. R. Murty. Gzraph Theory with Appli-
cations. The Macmillan Press Ltd. (1976).

Chinn P. 2., J. ChvAtalova, A.K. Dewdney and N. E. Gibbs.
"The bandwidth problem for graphs and matrices: a
survey". Journal of Graph Theory 6 (1982). pp. 223-

254,

. Chung F. R. K. "Some problems and results on labelings
of graphs". Bell Laboratories. Murray Hill, New
Jersey.

. Crane H. L. Jr., N. E. Gibbs, W. G. Poole Jr. and P. K.

Stockmeyer. "Algorithm 508. Matrix bandwidth and
profile reduction [FI]J". ACM transactions on
Mathematical Software 2, 4 (1976). pp. 375-377.

. Cuthill E. H., "Several Strategies for reducing the

bandwidth of matrices". sparse Matrices and Their
Applications. D. J. Rose and R. A. Willoughby,
Eds. Plenum Press. New York. (1972).

Cuthill E. and J. McKee. "Reducing the bandwidth of
sparse symmetric matrices". Proceedings of the
24th National Conference of ACM. (1969). pp. 157-
172.

Dewdney A. K. "Tree topology and the NP-completeness of
tree bandwidth". Department of Computer Science
Research Report #60, UWO. London. Ontario.
(Nov.1980).

Fulkerson D. R. and 0. A. Gross. "Incidence matrices and
interval graphs". Pacific Journal of Mathematics.
15(1965). pp. 835-855.

Garey M. R., R. L. Graham, D. S. Johnson and D. E. Knuth.
"Complexity results for bandwidth minimization".
SIAM Journal of Applied Mathematics. 34 (1978).
pp.477-495.

Garey M. R. and D. S. Johnson. Computers and Intracta-
bility: A Guide to the Theory of NP-Completeness.
W. H. Freeman and Co., San Fransisco. (1979).

Gibbs N. E. and W. G. Poole Jr. "Tridiagonalization by

permutations”. Communications of ACM. 20 (1974).
pp.20-24.

94

12.

13.

14.

1s.

16.

17.

18.

19.

20.

21.

Ref.

Gibbs N. E., W. G. Poole and P. K. Stockmeyer. "An
algorithm for reducing the bandwidth and profile of
a sparse matrix". SIAM Journal of Numerical
Analysis. 13 (1976). pp. 235-251.

Gibbs N. E., W. G. Poole and P. K. Stockmeyer. "A
comparison of several bandwidth and profile reduc-
tion algorithms". ACM Transactions on Mathematical
Software. 2, 4 (1976). pp. 322-330.

Harary F. Problem 16 in Theory of Graphs and its
applications. M. Fiedler, Ed. Czechoslovak Academy
of Science. Prague. (1967).

Hare E. D., W. R. Hare and S. T. Hedetniemi. "Another
upper bound for the bandwidth of trees".
Congressus Numerantium 50 (1985). pp. 77-83.

Lewis J. G. "Implementation of the Gibbs-Poole-
Stockmeyer and Gibbs-King algorithms". ACM
Transactions on the Mathematical Software. 8, 2
(1982). pp.180-189.

Lewis J. G. "Algorithm 582. The Gibbs-Poole-Stockmeyer
and Gibbs-King algorithms for reordering sparse
matrices". ACM Transactions on the Mathematical
Software. 8, 2 (1982). pp.190-194.

Opatrny J. and Z. Miller. "A bandwidth reduction
algorithm for trees". Presented at the 18th South-
eastern Conference on Combinatorics, Graph Theory
and Computing. Boca Raton. (1987).

Papadimitriou C. H. "The NP-completeness of the band-
width minimization problem". cComputing. 16 (1976).
pp. 263-270.

Saxe J. B. "Dynamic programming algorithms for recog-
nizing small-bandwidth graphs in polynomial time".
SIAM Journal on Algebraic and Discrete Methods. I
(1980). pp.363-369.

Turner J. "“Probabilistic Analysis of bandwidth minimi-

zation algorithms". Proceedings of the 15th ACM

Symposium on Theory of Computing. (1983). pp.467-
486.

-—==00000 0QoO0O-—--

95

APPENDIX 1
PROGRAM LISTING

program level_structure;

{ Author : Chandra GowriSankaran }

{This program generates a level structure of a tree.
maxnodes is maximum size of the vertex set.

maxdeg is maximum degree in the tree.

These two constants should be set to cover problem size.}

const maxnodes =320; maxdeg = 5;

type

var

number = 0 .. maxnodes;
vector = array [l..maxnodes] of number;
sixer = array [l..6] of number;

probnum, n{no. of vertices}, md{ max. deg.} :number;
stnode, v, depthv ,widthv, widev:number;
printout, subtree, testing : boolean;

graph: array[l..maxnodes, 1l..maxdeg] of number;
deg, level, templev, nodesqv, levwidth: vector;
grf, stdiam, lendiam, pnter,

nodeq, levsl, levwidsl:vector;
tempwids:vector; sixwids: sixer; {in merge}
processed : array [l..maxnodes] of boolean;
grfdata: text;

{$I gentree.pas)
{a procedure to generate a random tree}

procedure swap (var u,v:number);
{swaps two numbers}

var k

:number;

begin {swap}
k:=u; u:i=v; v:i=k;
end {[swap]}:

A.l

96

procedure getdata;

{asks for details of input. Input may be from a disk file.
The first line of the file gives the number of vertices and
maximum degree in the tree. The following lines correspond
to the adjacency table of the tree. Input may also be a
randomly generated tree from procedure gentree. The input is
read in global array graph, the adjacency table of the tree}

var nb,mb,gr :integer; p:real; printlevs, binary :boolean;
i,j:number; ans, ansl: string [3]; s:string[20];

begin {getdata)

writeln (' NOTE GRAPH SIZE ', maxnodes:4,' X', maxdeg:3);
WRITE (' GIVE PROBLEM NUMBER. '); READLN (probnum);
write (' GENERATE A RANDOM TREE ? Y/N '); readln (ans);
if upcase (ans) = #89 then

begin

{specifications for generating the tree. As a special case,
this procedure will generate a complete binary tree)}
write (' GIVE NUMBER OF VERTICES '); readln (n);
write (' GIVE MAXIMUM DEGREE : '); READLN (md);
WRITE(' GIVE PROBABILITY. REAL NUMBER :'); READLN (P);
binary := false;
write (' GENERATING A BINARY TREE ? Y/N ');
readln (ansl);

if upcase (ansl) = #89 then binary := true;

printlevs := false;

write(' printing levels required? Y/N '); readln(ans);
if (upcase(ans) = #89) then printlevs := true;

gentree (probnum, n,md,p, printlevs, binary);
{This procedure also writes the adjacency table on a
disk file}
end
else
begin
write (' GIVE DATA FILE NAME: ');READln (s);
assign (grfdata,s);
reset (grfdata);
read (grfdata,nb,mb);
n:=nb; md := mb;
for i:= 1 to n do
for j := 1 to md do
begin .ead (grfdata,gr);
graph[i,j] := gr; end;
end;
end {getdata}l;

procedure printdata;

{writes input on the screen. printing of the results is
optional}

var i,j: number; ans: string[10]; RANTREE:boolean;

begin {printdata}
printout := false;
write (' PRINTING REQUIRED ? Y/N '); READLN (ans);
if upcase(ans) =#89 then printout:= rue;
write (' IS IT RANDOMLY GENERATED TREE ? Y/N ');
READLN (ans);

if upcase(ans) =#89 then RANTREE:=true;
if rantree then writeln ('printing generated random tree')

else writeln(' printing data from diskfile. ');
writeln (' PROBLEM NUMBER', PROBNUM:4,' number of
vertices =',n:5 , ' maxdeg =', md :5);
for i:= 1 to n do
begin
write (i:5,"° ‘L 8124);

for j := 1 to md do IF graph[i,jl<>0
then write (graph([i,j]l: 4)

else write (' ':4);
if((MD <= 7) and (i mod 2 = 1))
then write (' ',#124#124) else writeln;
end;
writeln;

if printout then

BEGIN
write(' ADJUST PAPER ?'); REPEAT UNTIL keypressed;
{for the noncooperative printer}
writeln(lst, #13#10);

writeln(lst,' ':8, 'PROBLEM NUMBER ', PROBNUM :4,
#134#10,' ':8, ' VERSION 8.0: ', ' Economy of
storage.', #13#10 ,' ':8, ' smalltrees

processed recursively.'#13#10);

if rantree

then writeln (lst, ' ':8, ' Randomly generated tree');

writeln (lst, ' ':8, ' number of vertices =', n:5 , '
maxdeg=', md :5);

writeln (lst,' ':8, ' THE vertex ITS NHBRS. ');

for i:= 1 to n do

begin

if i mod 2 = 1 then write (1lst, ' ':8);
write (lst, i:4,' ',#124);

for j := 1 to md do

IF graphf[i,j]<>0 then write (lst, graph[i,j]:4)
else write(lst,' ':4);

if((md<= 7) and (i mod 2 = 1))

then write (1lst, ' ',#124#124)
else begin writeln (lst); if (i mod 2 =1) then
write (1lst,' ':8);end;

end;

writeln(lst);

END;
end {procedure printdata};

procedure initialize;

{ initializes arrays. levels of all vertices are set to 0.
the diameter structure of each vertex is initialized to zero
entries}

var k:number; ans:char;

begin {initialize}

testing:=false;

write (' TESTING ? Y/N '); readln(ans);

if upcase(ans) =#89 then testing:=true;

for k:= 1 to n do

begin level[k]:=0; pnter(k]:=0; processed (k]:= false;
stdiam[k] :=0; lendiam[k]:=0; end;

stnode:=0; [next available location in the lists of
diameters]}
end {initializel};

procedure find_deg;
{ finds degree of each vertex from the array graph. stores
it in array deg.}

var i,j, degree :number;
begin {find_deg}
for i := 1 to n do
begin

degree := 0;
for j := 1 tomd do
if (graphli, j]<>0) then degree:= degree +1;
degli] := degree;

end;
writeln (' The number Its degree');
for I := 1 ton do
begin write (I:10,deg{i]:10,' ', #124,' ');
if i mod 2 =0 then writeln;end;
writeln;

if testing then repeat until keypressed;
end {find_deg};

A.l -100-

function min_deg_node (start,fin :number):number;
{find a vertex of minimum degree from locations start to fin

of array deg}

var k, mdnode ,mindeg:number;
begin function {min_deg_node}
mindeg := md;
for k := start to fin do
begin
if deg[k] < mindeg then
begin mindeg := deg[k]; mdnode :=k; end
end;
min_deg_node := mdnode;
if testing then writeln (' Min. deg. node is

end (min_deg_ node};

A.l -101-

', mdnode:5);

CovaAE T TR S

procedure rooted_tree (v, num :number;

var width, depth, wide :number; var tlevel,nodesqg: vector);
{ drops a tree from v. finds mux. levelwidtk, depth and
size of the last class, wide, for the rooted level
structure. stores assigned levels in tlevel. nodesq lists
the vertices in the order of their levels. num is size of
the tree. On the first call num=n}

var k,w, nhbr, next, top, bottom, lev,count :number;

begin {rooted_tree}

for k:= 1 to n do

begin tlevel[k]:= O;nodesql[k]:=0; end;

top:= 1; bottom:= 1; width:= 1; aepth:= 1; count := 1;
nodesq[l]:= v; next:= 2; tlevel[v]:=1; lev:= 2;

if testing then begin writeln

(' Printing Levels of tree rooted at ',v:5);
write (' level of ', v:5, ' 1is ', lev-1:5, #124); end;

{enter nodes in a queue in order of their distance from v}
Tepeat
wide :=0; [set width of a new level class to 0 }
while top <= bottom do {limits for the preceding level }
begin
w:= nodesqg[top];
for k:= 1 to deg[w] do
begin
nhbr:=graph [w,k];
if (tlevel[nhbr] = 0) and (not processed[nhbr])

then
begin
tlevel [nhbr]:= lev; nodesq[next]:= nhbr;
next:=next+l;
wide:= wide+l;
if testing then
begin
write (' 1level of ', nhb:5, ' is ',
lev:5, #124);
count:= count+l;
if count mod 2 =0 then writeln; end;
end ;
end;
top := top+l;

end;
if wide > width then width :=wide;
{to find max class wiath}
top:= bottom+l; bottom:= next-1; lev:= lev+l;
{limits for next class}
until bottom = num; {all vertices se+n}

A.l -102-

depth := lev-1l; { number of levels}
{wide gives the width of the last level and n Jlesq
[num-wide] to nodesq{num] give all the nodes in
the last level.}
if testing then
begin writeln; repeat until keypressed; end;
end; {(rooted_tree]

procedure newver ‘(var v,widthv,depthv,widev:number;
var nodesqv,tlevelv : vector;
u,widthu,depthu,wideu:number; nodesqu,tlevelu:vector);

{replaces vertex v by vertex u, and Ly by Ly}
var i:number;

begin {newvert}

v:i=4;

widthv:=widthu;

depthv:=depthu;

widev:=wideu;

for i:= 1 to n do

begin
nodesqv([i):=nodesqul[i];
tlevelvii]:=tlevelul[li];

end;

end (newvert};

procedure diameter (var v, nmax, deptnv, widthv, widev:
number; var nodesqv, tlevelv, levwidth :vector;
subtree:boolean) ;

{starting with vertex v, finds the diameter of the tree.
next four procedures are within the scope of this procedure}

var i, u, w, index, depthu, depthw, widthu, widthw, wideu,
widew :number; nodesqu, nodesgw, tlevelu, tlevelw
:vector; switcned :boolean;

procedure assign_wtov;

{replaces the starting vertex v by w}

begin [assign_wtov]
switched :=true;
newvert(v,widthv,depthv,widev, nodesqv,tlevelv,
w,widthw,depthw,widew, nodesqw,tlevelw);

end {[assign_wtov};

A.l ~-103-

procedure min_width_vert;

{if width of the rooted structure of w is smaller than that
of u then replace u by w, replace the L; by Ly. Used to
choose a vertex of minimum width structure from the last
level of Ly}

begin {min_width_vert}
if widthw< widthu
then newvert(u,widthu,depthu, wideu,nodesqu,tlevelu,
w,widthw,depthw, widew,nodesqw,tlevelw);
index := index + 1;
end {min width_vertex};

procedure switchuv;

var i:number;
{swaps the structures of u and v}

begin (switchuv]}
if testing then writeln (' the switchuv was called’,
' print the two levels');
swap (u,v);
swap (depthu,depthv);
swap (widthu,widthv);
swap (wideu,widev);
for i:= 1 to n do
begin swap (tlevelu[i],tlevelv([i]);
swap (nodesqul[i],nodesqv[i]);
if testing then begin write(i:10, tlevelu[i]:10,
tlevelv[i]:10, #124);
if 1 mod 2 = 0 then writeln;end;
end;
if testing then repeat until keypressed;
end {switchuv};

procedure assign_levels (var nodesq:vector);

{ computes the associated level pairs for Ly and L,, and
locates vertices on the diameter. assigns levels to these.
enters the nodes on the diameter in nodesq in order of
levels. computes levelwidths. }

var i,k,q: number;
begin [assign_levels}
for i:= 1 to n do begin levwidth[i]:= 0; nodesq[i]:=0; end;

if testing then writeln {' from assign_levels', "M J,
v tlevelv = tlevelu level DY,

A.l -104-

for i:~ 1 ton do
begin
k:= depthv+l—-tlevelu(i];
if tlevelv{i]=k
then
begin processed[i] :=true;
nodesq([tlevelv[i]] :=i;
level[i] :=tlevelv][i];
levwidth[tlevelv[i])]:= levwidth [tlevelv[i]] +1;
end ;
if testing then begin write (i:5, tlevelv[i]:5,
tlevelu[i]:5, level[i]:5,' ',#124, ' ');
if i mod 2 =0 then writeln; end;
end;

if testing then
begin writeln;
for i := 1 to n do
if nodesq[i]<>0 then writeln (' level', i:5,'vertex’',
nodesq[il}:5);
writeln; end;
end {assign_levels};

Begin {diameter}
rooted_tree(v,nmax,widthv,depthv,widev, tlevelv, nodesqv);
if testing then
begin writeln(' from diameter', ' v=',6v:4,
' width, depth, widev' , widthv:5,depthv:5,widev:5);
repeat until keypressed;
for i := 1 to nmax do
begin write ('testsudo',i:5, ' nodeq',6 nodesqv(i]l:5, '
tlevl', tlevelv[nodesqv([i]]:5,#124);
if i mod 2 =0 then writeln end;
writeln; repeat until keypressed;
end;
repeat
u:=0; widthu:= nmax; depthu:=0; wideu:=0;
switched:= false; index := nmax +1l-widev;

for I := 1 to nmax do
begin tlevelu[i] := 0; nodesqui]:= O0; end;

while (index<=nmax) and (not switched) do
begin
w:=nodesqv [index] ;
if testing then
writeln (' from psudo-diam',' w=', w:5);
rooted_tree(w,nmax, widthw,depthw, widew,tlevelw,
nodesqw) ;

A.l -105-

TS T T, e VD T

if testing then writeln(' from diameter', ‘'w=',6w:4,

'widthw,depthw,widew' ,widthw, depthw:5,widew:5);
if depthw > depthv

then assign_wtov
else min_width_vert;
end;
until not switched;
if testing *hen writeln (' beg.of diam.',v:5,

' end of diam.', u:d);
if widthu< widthv then

begin
switchuv;
if testing ther writeln (' beg.of diam.‘',v:5,

' end of diam.',u:5) end;
assign_levels (nodesqv);

if testing then repeat until keypressed;
End; {diameter)

procedure find_size (root :number; var size :number;

var graf:vector);
{finds size of the component containing vertex root. writes
the vertices in this component in array graf }

var k,p,next,nbr: number;
counted: array[l..maxnodes] of boolean;

begin {find_size}
size:=1;
for k:= 1 to n do
begin grafi{k]:=0; counted[k]:=false; end;
p:= root; next:=1; graf(l]:=root; counted{p] :=true;

repeat
for k := 1 to deg(p] do
begin
nbr:= graph[p,k]:
if (not processed[nbr]) and(not counted[nbr]) then
begin size := size +1; graf[size]:= nbr;
counted[nbr] :=true; end;
end;
next := next+l; p:= graf[next];
until p=0;
if testing then writeln (' subtree with root',root :5,
' has size', size:5);
if testing then repeat until keypressed;
end (find size};

A.l -106—

procedure find_starting verxrtex (num:number; var stv: number;
grf: vector);

{for a subtree finds a vertex farthest from the vertex

adjacent to the diameter of the parent structure}

var stlevel,j,k :number;

begin {find_starting vertex}
stv := 0; stlevel:=0;
for j := 1 to num do
k:= gri(jl;
if templevik]>stlevel then
begin stlevel:=templev(k]; stv:= k; end;
end {find_starting vertex);

function maximum (var num :vector; var low,high :number)
:number ;
{finds maximum of array num from low to high}

var Kk,big : number;

begin
big:=0;
for k:= low to high do
if big < num{k] then big:=numfk];
maximum:=big;
end;

function min_width_index (var wids:sixer): byte;
{from the array of 6 widths, finds the index with minimum
width}

var k,j,minimum:number; index:byte;

begin {min_width_index}
minimum:= maxnodes; index:=0;
if testing then writeln (' FROM MIN_WIDTH_INDEX ') :;
for k:=1 to 6 do
begin
if wids[kl1< minimum then
begin minimum:=wids(k] ;index:=k end;
if testing then
writeln(' k=',k:4, ' width[k]=',widS[k]:4);
end;
min_: w1dth index :=index;
end [mln width _index};

Al -107-

procedure merge_levels (i,nbr:number);
{merges level structure of nbr into level structure of i}

var k,j,t,y,newlev, ymax,start,lnbr,x,link:number;
s:byte; leader:boolean;

begin
if testing then
begin
writeln(' 1levels before merger Y, mTy o, 'k level

stdiam lendiam ',' pointer nodeqv levwidth ');
for k:= 1 to n do
writeln (k:4, level[k]:5, stdiam[k]:8, lendiam[k]:9,
nodesqv(k]}:9,levwidth[k]:9,pnter[(k]:9);
repeat until keypressed;
end;

{find the widths by the 6 merger rules}
for j:=~ 1 to 6 do
begin
if testlng then wrlteln (' tempwids ',' j=', j:4,"M"J,
k P tempwids[k]'),
for k:= 1 to lendiam[i] do
tempwids[k] :=levwidth{stdiam[i]-1+k] ;
t:=1;
for y:= 1 to lendiam[nbr] do
begin
k:= nodesqgv{stdiam{nbr]}-1+y];
if j<=3 then
newlev:= level[i]-level[nbr]+level[k]+j-2
else
newlev:= level[i]l+level[nbr]-level[k]+5-3;
tempwids[newlev] := tempwids[newlev]
+levwidth[stdiam[nbr]-1+y];
end;

sixwids[j]:= maximum(tempwids,t,lendiam{i]);

if testing then
begin for k:= 1 to lendiam[i] do
writeln (k:10, tempwids[k]:10);
repeat until keypressed;
end;
end;

{ for j:= 1 to 6 do
writeln (' sixwids[',j:2,']= ', sixwids[]j}:3);}
{choose the index with the minimum width }
s:= min_width_index (sixwids);

A.l ~-108-

if testing then begin
writeln (' merging levels of root', nbr:5,
' into levels of root', i:5);
writeln (' merger done by rule no. ',s:5); end;

{compute new level numbers of the vertices}
start:= stdiam[nbr]; ymax:= start+lendiam[nbr]-1;
lnbr:=level {nbr];
y:= start; leader:= true;
repeat
k:= nodesqv(y];
if s<(=3 then newlev:= level[i]-lnbr+level[k]+s—2
else newlev:= level[i]+lnbr-level[k]+5-s;
level[k] :=newlev;

{update level widths. set up reference to new level
structure for vertices in the merged level structure}
if leader then levwidth[stdiam[i}-l+newlev]:=

levwidth[stdiam{i]l-1+newlev]+levwidth(y]:
stdiam[k]:=stdiam{i]; lendiam[k]:=lendiam[i];
if testing then writeln(' y=', y:4, ' k=', k:4,
' levelk =', level[k]:4);
y:= pnter(y]; if y > ymax th=n leader:= false;
until y=0;
if testing then repeat until keypressed;

{procedure linking: links all the subtrees of
merged structure to the parent structure}

x:= stdiam[i]+lendiam([i]~-1;
link:=pnter(x] ;
while l1link <> 0 do

begin x:=1ink; link:=pnter(x]}; end;
pnter({x]:= start;

if testing then
begin
writeln(' 1levels after merger ');
for k:= 1 to n do
begin
if k mod 10 = 1 then writeln(' k level stdiam
lendiam', ‘'nodegv levwidth pointer ');
writeln (k:4, level{k]:5, stdiam[k]:8,lendiam[k]:9,
nodesqv{k]:9, levwidth[k]:9, pnter[k]:9);
if (k mod 10=0) or (k=n) then
repeat until keypressed;
end;
end;
end {(merge_levels};

A.l -109-

procedure small_subtree (rootl,sizel:number;

var depl :number);
{assign level structures to subtrees of size 2 or 1}
var k, j:number;

begin
if testing then writeln (' from sma}l subtree ', 'stnode=',
stnode:4, "M"J ' k, grf, level,
stdiam, lendiam, nodeq, levwidth');
depl:=sizel;

for k:= 1 to depl do

begin
j:= depl+l-k;
nodesqv [stnode+k]:=grf{j] ;level [grf[j]]:=k;
levwidth([stnode+k]:=1 ; stdiam{grf[j]]:=stnode+l;
lendiam[grf[j]]:=depl; processed[grf[j]]:=true;
if testing then writeln(k:4,grf[jl:5,1evel[grf[j]l]:6,
stdiam{grf{j}}:7, lendiam|[grf([jl]:7,
nodesqv [stnode+k]:6,
levwidth[stnode+k]:7) ;

end;

if depl=2 then pnter([stnode+l] := stnode+2;
if testing then repeat until keypressed;
stnode :=stnode+depl;
end;

A.l -110-

procedure process_subtree (rootl:number; var sizel,

depl :number; subtreel:boolean);
{recursive procedure to find a level structure of a subtree.
rootl is the node connecting the subtree to the parent
structure. sizel returns the size of the subtree, as given
by find_size. depl returns the length of the diameter of the
subtree as given by diameter. subtreel is true if the call
from a subtree,false if the call is from the main tree.}

var i,j,k,nbr,stv,widl,widel,size,dep,rtlevel:number;
begin

flnd size (rootl,sizel,grf);
if sizel<3 then small_ subtree (rootl,sizel, depl)
else
begin
find_starting_vertex (sizel,stv,grf);
diameter (stv, sizel, depl, widl, widel,
nodeq, 1evsl, levwidsl, true);
for j:= 1 to depl do
begin
{enter the diameter structure in the list of
diameters in array nodesqv. set up reference
arrays}
nodesqv [j+ stnode]:= nodeq[j];
pnter [j+ stnode]:=j+stnode+l;
levwidth [j+stnode] :=1;
stdiam[nodeq[j]]:=stnode+l; lendiam[nodeq(j]]:=depl;
end;
stnode := stnode+depl;
pnter{stnode] :=0;

for k:= 1 to depl do
{find all subtrees adjacent to vertices on the
diameter}
begin
i:= nodesqv[stdiam[nodeq(1]]-1+k] ;
for j:= 1 to deg[i] do
begin
nbr := graph[i,il;
if not processed[nbr] then
begin process_subtree (nbr, size,dep,true);
merge_. levels (i,nbr); end;
end;
end;

end;
end;

A.l =111~

procedure process_branches (depthv:number;

var nodeq: vector); .
{called from the main program. processes the subtrees of the
main diameter and merges its level structure into the main
level structure. nodeq holds the main diameter of length
depthv. }

var i,j,k,y,nbr,size,q,dep:number;

begin {process_branches}
for i := 1 to depthv do
begin stdiam[nodeq[i]]:=1;
lendiam[nodeq[i]] :=depthv; pnter[i]:=i+1l; end;
pnter[depthv] := 0;
stnode :=stnode +depthv;

for y:= 1 to depthv do
begin
i:= nodeqfyl;
for j:= 1 to deg[i] do
begin
nbr := graph(i,j];
if not processed[nbr] then
begin process_subtree (nbr, size,dep, false);
if testing then writeln (' nbr', nbr:5,
' size', size:5,
‘dep', dep:5);
merge_levels (i,nbr);
end;
end;
if testing then repeat until keypressed;
end;
end (process_branches};

procedure print_results (var depthv:number);

{prints the levels of all the vertices and all the level
widths

of the level structure generated}

var lev,i:number;

begin [print_results}

clrscr;
writeln (' THE LEVEL STRUCTURE : version 8.0');
writeln (' vertex. level');

for i := 1 to n do

begin write (1:14,level[i]:10);

if i mod 2 = 1 then write(' ', #124) else writeln;
end; writeln;

a.l -112-

REPEAT UNTIL KEYPRESSED;
writeln (' THE LEVEL_WIDTHS ');
for lev:= 1 to depthv do
writeln(' level',lev:5, 'level width ',
levwidth{[lev]:5);
repeat until keypressed;

if printout then
begin write (' ADJUST PAPER? '); REPEAT UNTIL KEYPRESSED ;

writeln (1lst, #13#10, ' ':8, ' THE LEVEL STRUCTURE ',
#13#10);
writeln (lst, ° vertex. level',' ':5,
! vertex. level');

for i:= 1 to n do
begin write(lst,i:10,level[i]:10);
if i mod 2 = 1 then write (lst,' ', #124)
else writeln(lst) end;

writeln(LST);

write (' ADJUST PAPER ? '); repeat until keypressed;
writeln (1st, ' ':8, ' THE LEVEL_WIDTHS ');

writeln (lst, ' ':8, ° 'y:
writeln(lst,' ':8, ' level', ' ':8,

level width');
for lev:= 1 to depthv do
writeln(lst, ' ':8, lev:5, ' ':14,
levwidth[lev]:5);
end;
end {print_results};

begin {program Level_ structure}
getdata;
printdata;
initialize;
find_deg;
v:= min_deg_node(l,n);
diameter (v,n, depthv,widthv, widev, nodesqv, templev,
levwidth, false);
.process_branches (depthv,nodesqgv);
print_results (depthv);
end {program level_structurel}.

a.l -113-

Procedure Gentree (probnum, n, m :number; p: real;
printlevs,binary:boolean);

{Generates a random tree on n vertices. max. degree is m.

prob. of each new branch is p. take mp>2 for a connected

tree. var. graph is an nXm array in the calling program}

var i,j,t,x,k,c0l,1,u,v :number;
lev:array [1l..maxnodes] of number;
s:string([10];

begin

{initialize}
for i:= 1 to n do
lev{i]l:= 0; {rooted level structure}
for i:= 1 to n do
for j:= 1 to m do
graphli,j)l:=0; {adjacency table}

t:=1; k:=0; 1l:=1; u:=1; lev [l]:= 1; v:=1;

{ t is no. of vertices in the graph so far. k is the
vertex getting branches. w = 0 or 1 indicates whether or not
first vertex. v is the current level in rooted structure. lev
gives width of each level. 1 and u give lower and upper
bounds for the vertices in the current level. }

while ((t<n) and (k < t)) do
begin
k:=k+1;
if ¥k = 1 then col:=1 else col := 2;
if (not binary and (k =1)) then r:=m else r:= m-1 ;
{first time m branches. later m-1 branches.
except when binary tree.}

repeat
r:=r - 1;
if (random <= p) then
begin

t:=t+1; {one more vertex}
graph [k,col] := t; {show connections]}
graph [t,1] := k;
col := col+l ;
end;
until ((r = 0) or (t = n));

if ((k = u) or (t = n))

then BEGIN v := v+1; levi{v]}:= t-u; u:= t; END;
end;

Al -114~-

writeln (' At the end ', 'vertices generated = ' , t:3,
' last vertex to get branches = ', k:3);
if (k>t) then writeln (' disconnected forest ? ')

else {print level widths }
begin
writeln (' THE LEVEL WIDTHS IN THE' ,
' GENERATED ROOTED LEVEL STRUCTURE');
for i :=1 to v do

writeln (' LEVEL = ', i:3, ' level width =',
lev[i]:3);
if printlevs then
begin

write(' ADJUST PAPER ? '); repeat until keypressed;
writeln (1lst, #13%#10);

writeln (lst, #13#10, ' ':8, 'PROBLEM NUMBER ‘',
PROBNUM:4) ;
writeln (lst, #13#10 , ' ':8, 'RANDOMLY GENERATED
TREE') ;
WRITELN (1lst, ' ':8, 'vertices ', n,
! max. deg.=', m:4, ' prob.=', p:4:2);
writeln (lst, #13#10, ' ':8, ' THE LEVEL WIDTHS IN

THE' , ' GENERATED ROOTED LEVEL STRUCTURE');
for i =1 to v do
writeln (lst, ' ':8, ' LEVEL = ', 1i:3,
! level width =', lev(i]:3);
WRITELN (1lst, #13#12);
end;
end;

{write the generated tree on a disk file to be used by GPS
and other versions of LST.}
{grfdata is global var. type text in the calling program}
write (' GIVE DATA OUTPUT FILE NAME.', #13#10,
' UPTO 6 CHARS. PLUS ENDING WITH .dat '); READLN (s);
assiuvn (grfdata, s);
rewrite (grfdata);
writelr (grfdata, n:5,m:5);
for i := 1 to n do
begin
for j :=1 tom do
write (grfdata, graph[i,jl:5);
writeln(grfdata);
end;
close (grfdata);
end {gentree};

A.l -115-

