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Abstract

A Blocking Model

and its Applications in Communication Networks

Han Hua Ma

Performance analysis of resource-sharing systems such as packet radio and circuit-
switching networks is particularly difficult, as contention introduces statistical depen-
dencies among the elements of the system. Much of the work in this area has focussed
on networks with simple topologies and symmetrically-loaded networks. In the more
general context of multihop packet radio networks, blocking and hidden-terminal in-
terference among tranceivers are prevalent. Blocking is a nondestructive interaction,
whereby a transmission is inhibited to resolve contention. On the other hand, hidden-
terminal interference is a destructive interaction, resulting in transmission collisions.
Some means of incorporating the topology of the network into a performance model
is required in order to properly characterize these interactions.

In this thesis, a model is described, extended and applied to determine throughput,
blocking and interference in broadcast networks and circuit-switched interconnection
networks. The notions of blocking and interference are formally described as rela-
tions on the set of links of a network. Symmetry of the blocking relation results in a
product-form Markov model for the dynamics of the system. A transmission interac-

tion model is given to systematically categorize all possible interactions for a class of
channel-access protocols. Nonpersistent CSMA, BTMA and Directional CSMA are
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modeled within this framework. In addition, two nonrealizable protocols, CFMA and
TCAP are introduced as capacity measures for networks with omnidirectional and di-

rectional transmission capabilities, respectively. A comprehensive comparative study
of CSMA, BTMA and D-CSMA is conducted for various networks, using CFMA and
TCAP to determine relative capacity utilizations.

The computational aspects of the morel are greatly simplified for special cases
such as symmetric loading, interference-free systems or regular networks. For these
cases, the model is developed further to obtain efficient recursive methods to compute
performance measures directly. These methods are then applied to study throughput
and blocking in a variety of circuit-switched interconnection networks, where central-
ized control precludes the need to deal with interference. This approach captures
a range of switch architectures and allows perturbation analysis and more general
asymmetric-loading situations to be handled.
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Chapter 1
INTRODUCTION

1.1 Communication Networks

Communication networks play a vital role in our present-day hign-tech society
with its growing dependency on information exchange. They can be used to carry
information between distant network stations, as demonstrated by public telephone
networks. On the other hand, they can be used to deliver information within a
local environment. Typical examples are Local Area Networks (LANs) and Private
Branch exchanges (PBXs). When hosws computers and terminals are involved in
data transmission and reception, communication networks are often referred to as
computer communication networks. The most important characteristic of a computer
commmunication network is that it can permit remote sites to use each other’s facilities,
hardware, software or data. Currently, as more and more advanced technologies
are being adopted into commmunication environments, applications in communication
networks increase very rapidly. In fact, each year, there are many new product lines
and services being developed and introduced into applications. At present time,
facsimile, electronic mail, and video service have been widely used in industries,
educational institutes, and government agencies. Therefore, it is not an overstatement
to say that communication networks have become an essential part of our modern
society.

Concerning communication network problems, one fundamental question often

posed is: how should a commumication network be designed for data transmission?




O communication network node

Network station

Figure 1.1: Interconnection via a communication network

One simple but very expensive solution is to directly connect every pair of devices
with a direct point-to-point commmunication link. A more feasible solution is to attach
the communication devices to a shared communication network. Figure 1.1 illustrates
this concept in a general way. We refer to the device wishing to communicate as a
station, and each station attaches to a network node. The set of nodes to which
station is attached is the boundary of the communication network, which is capable
of transferring data between pairs of attached stations.

Based on the architecture and techniques used to transfer data, communication
networks can be categorized as (1) Switched Communication Networks (Circuit-
Switched Networks and Packet-Switched Networks) and (2) Broadcast Commmuni-
cation Networks (Packet Radio Networks, Satellite Networks, and Local Networks).
A switched communication network consists of an interconnection of nodes, in which
data are transmitted from source to destination by being routed through che network
nodes. Data entering the network from a station are routed to their final destination
by being switched along the transmission path from node to node. In the case of
crcuit switching, a dedicated path from transmitter to receiver is first established,
then a strearmn of data from the transmitting station follows this path to its final



destination without stopping at the intermediate nodes. During the course of its
operations, three phases of actions take place, namely, (1) circuit establishment, (2)
data transfer, and (3) circuit disconnection. In broadcasting networks, each station

is attached to a transmitter/receiver that communicates over a medium shared by

other stations. In its simplest form (one hop transmission), a transmission from any
one station is broadcast to and received by all other stations. In this case, the trans-
mission facility is shared and only a certain stations can successfully transmit at a
time. This leads to the need for some mechanism for controlling access to the shared
medium.

The key questions in any medium access control technique can be abbreviated into
two simple words: ‘where” and “how” [Sta85]. “Where” refers to whether control is
exercised in a centralized orin a distributed fashion. In a centralized case, a controller
is designated who has the authority to grant access to the network. Astation wishing
to transmit must wait until it receives permission from the controller. Typically
examples are circuit switching networks. In a decentralized (distributed) network,
the stations collectively perform a medium access control function to dynamically
determine the order in which stations transmit. Packet switching networks and most
broadcasting networks are the often encountered applications of this scheme.

The second question “how” refers to how the channel access control technique
operates. It is constrained by network topology and determined by a trade off among
competing factors: cost, performance, and complexity. In general, access control tech-
niques can be categorized as being synchronous or asynchronous. With synchronous
techniques, a spedific capacity is dedicated to a connection. Circuit switching is a
typical application of this technique. Symchronous techniques are inappropriate to
handle bursty traffic. On the other hand, asychronous transmission techniques are
applied to handle this problem. With asychnronous technique, the capacity resources
are allocated in a dynamic fashion, more or less in response to immediate needs.

The asynchronous transmission schemes include Round-robin, Reservation, and
Contention. With Round-robin, each station in turn is provided with an opportunity

to transmit a message. It is efficient when many stations have data to transmit over



an extended period of time. However, when only a few stations have data to transmit
at any given time, it has low efficiency. In this case, reservation and contention tech-
niques perform much better. Usually, resveration is employed for stream traffic. On
the other hand, contention is applied for bursty traffic. Stream traffic is characterized
by lengthy and contimious transrmissions (i.e., voice communication, telemetry, and
bulk file transfer). Burst traffic is characterized by short sporadic transmissions (i.e.,
interactive terminal-host traffic). These techniques are of necessity distributed in
nature, they are effident under light to moderate load. However, under heavy load,
performance tends to degrade [Sta85).

1.2 Blocking and Interference in Communication
Networks

In computer commumication networks, we often observe the following character-

istics:

o Input traffic required to be transmitted in the network is often bursty. In this

situation, contention for the transmission medium is the access technique often

applied.

o Communication links are often simplex or half-duplex. That is, communication
is either unidirectional or a station can only transmit message to its neighboring

stations, or receive message destined to it, but not both at the same time.

o The transmitting station generally knows only limited amount of information
about the intended receiver or the intermediate nodes along its way to a final
destination.

o Distributed control techniques are often applied to the networks. Each station
collects its local information and decides what to do during the course of data

communication.

Based on the above observations, we define two terminologies to describe comrmm-

nication actions. They are transmission blocking and transmission interference. Both
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are closely relate to the media access protocols. Transmission blocking is defined to be
the event in which the transmission scheduled to take place is not allowed to actually
happen due to the fact that the other transmitting facilities involved in the course
of data communications are not available. This transmission blocking is the result
of the transmitter’s actions after it collects its local information and knows that this
scheduled transmission action would not be successful. Transmission blocking often

occurs in the following situations:

1. The transmission medium is occupied by the other entities of the system, so that
ascheduled transmission would not be able to access to the medium exclusively.

9. The transmitter detects the situation that the receiving station is unable to
accept the scheduled transmission. This could be the case when the receiver is

transmitting or receiving other data.

3. The transmitter is busy at the time of its scheduled transmission. This happens
when the transmitter is busy receiving data from or transmitting data to other

stations.

4, If the buffer capacity in the network is not very large, a transmission could also

be blocked whenever the receiver cannot store the incoming data in the buffer.

Therefore, blocking often occurs when the controller of the data transmission
detects the status of the system and withdraws its scheduled transmission. In this
case, the other parts of the system are not affected by this blocking. They can still
be involved in communication with other parts of the system.

On the other hand, transmission interference is defined as the event in which the
intended receiver of a transmission is receiving other transmissions and is, therefore,
incapable of responding. Thus, transmission collision is the result at the receiver.
Under this situation, it is up to the receiver to decide what to do next. Two collision
capabilities are considered: perfect capture and zero capture. With the perfect cap-
ture, the receiver will accept one transmission and abandon the other transmissions.
It is often the transmission which first reaches the receiver which is accepted. Unler



the zero capture scheme, all transmissions are abandoned at the receiver. In our
performance studies, we will assume the system with the scheme of perfect capture
only. Transmission Interference is a commonly-encountered phenomenon for commu-
nication systems with distributed control, where transmitters do not have complete
information concerning the state of neighboring nodes. It is highly dependent on the
traffic rate and it determines the saturation point of the system. For example, when
the system is operating under heavy-load conditions, transmission interference will
cause the system performance to deteriorate to the point where no transmission can
successfully pass through the channel.

1.3 Contents of the Thesis

The material in this thesis consists of four major parts, and they will be presented
in the following chapters:

In Chapter 2, we describe and formalize the blocking model for its applications
in broadcast networks. Basically, we provide some prerequisites for applying the
blocking model to communication networks. We study the reversibility condition for
element activation blockings, consequently, we establish the criterion for applicability
of the blocking model in communication network systems. In addition, we create the
Transmission Blrcking Graph (TBG) and the Reception Interference Graph (RIG)
to generally describe blocking and interference in the given network. With the infor-
mation that the TBG and the RIG provide, performance measures can be computed
in a systernatic way.

In Chapter 3, we elaborate the analytical results from the blocking model. First
of all, we study some computational techniques for performance measures. Based
on that, we develop a general iterative-estimation technique for networks of arbitrary
topologies. Secondly, we categorize the operation of different channel access protocols
by considering the possible interactions betvctai Lwo transmissions in the network.
Thus, the TBG and the RIG can be systematically generated. Two ideal protocols,
Collision-Free Multiple Access (CFMA) and Totoal Capacity Allocation Protocol
(TCAP), are created to provide relative channel capacity measurements for systems
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with ommidirectional transmission and directional transmission, respectively. Thirdly,
we consider interference-free systems. With these systems, the partition function
alone can be used to measure the performance of the system. Lastly, we establish

recursive relations for partition functions of some regular networks operating under
TCAP with uniform-normalized transmission rates.

In Chapter 4, we apply the blocking model to study the performance of some
packet radio networks. We consider the uniform link traffic and the uniform end-
to-end traffic cases, individually. Further, we compare the channel throughput for
networks operating in these two cases. The iterative-estimation method is employed
for performance measures.

In Chapter 5, we apply the blocking model to circuit switching networks in which
their operation can be characterized by TCAP. By using the recursive expressions
among partition functions for networks of regular topologies, we generate the per-
formance measures in recursive forms as well. Typically, we study the completely-
connected networks, the crossbar networks, and the recirculating shift network under
symmetric loading. Similarly, we study crossbar networks operating under skewed
loading where the input ports are partitioned into many different groups.

1.4 Major Contributions

The major contributions of this research work can be sumarized into the following

areas

1. The formalization of the blocking model to broadcast network applications is
established by the TBG and the RIG of the given system. With the TBG and

RIG generated, system performance measures can be determined.

2. The high flexibility of the blocking model is well demonstrated in the examples
by referring to nodes and to directed links as basic elements of the system with
omnidirectional transmission operations. Both approach can quantify the same

performance measures.

~l



. The transmission interactions model provides a systematic mean to describe
the operations of different channel access protocols. By using this model, the
TBG and the RIG can be generated for system performance studies.

. Two non-realizable channel access protocols, CFMA and TCAP, are created

to provide relative channel capacity measurements for systems with omnidi-
rectional transmission and directional transmission, respectively. By compar-
ing the operating protocol (i.e., CSMA, BTMA, or D-CSMA) with CFMA or
TCAP, the true channel capacity utilization of the system is revealed.

. Interference-free systems provide a direct, easily-used method to quantify sys-

tem performance measures.

. The generation of recursive expressions for system performance measures pro-

vide us with a simple method to analyse network systems of large size under
symmetric loading. This cervainly removes the limitation imposed on analyzing
networks of large size.

7. The general recursive expressions for performance measures of the crossbar

network under skewed loading provides us with a highly-efficient computaticnal
method to study network performance of these kinds.
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Chapter 2

A General Model of Blocking in a
Resource Sharing Environment

2.1 Introduction

In this chapter, we describe a blocking model for systems in which individual
elements contend to use a distributively-shared resource. The word “distributively”
refers to those situations where each element is allowed to use only certain portions
of the resource that are allocated to it. The model is quute general; it can be applied
to many systems that share a resource distributively. However, we are interested
in employing this model to the area of communication networks, particularly packet
radio networks (PRNs) and drcuit-switching networks (CSNs). Circuit switching
networks which use a centrally-shared resource are considered as special cases of the
distributed resource-sharing model.

The model described in this chapter was originally developed by Boorstyn, Ker-
shenbaum and Maglaris in [KB84], [BKM87] to study the throughput behavior of
nonpersistent carrier sense multiple access (CSMA) in multihop packet radio net-
works with perfectcapture capabilities. It was later extended by Tobagi and Brazio
[TB83] to include other protocols. The model has its mathematical foundations in
the theory of reversible Markov fields [Kel79] and special cases of the model are well
known in the theory of statistical thermodynamics [Yem83).

Brazio and Tobagj [BT84] investigated some theoretical aspects of the model.
They derived necessary and sufficient conditions for reversibility of the underlying




Markov process and considered throughput computation in zero capture. In describ-
ing this model, we establish necessary and sufficient conditions for reversibility in a
much simpler manner, using Kolmogorov’s criterion and some well-known notions in
graph theory. For reasons of tractability, we restrict our attention to the perfect-
capture case, when studying packet radio rciworks. However, the notion of capture
is not needed in our application of the model to switching networks.

For our purposes, we represent the topology of a communication network by
a graph G = (N, L), where N = {1,2,...,m} is a set of m nodes representing
the communication stations in the network and L = {l4,l,...,l,} is a set of n
directed links representing the possible physical data-commmunication channels in
the network. Figure 2.1 illustrates a 4-node chain, where N = {1,2,3,4} and
L ={l,h,l3,4,56} = {(1,2),(21),(2,3),(3,2),(3,4), (4,3)}. Figure 2.1 will be
repeatedly referred to in examples throughout this thesis.

o,

L0
q

Figure 2.1: The graphical representation of a 4-node chain network

In a similar way, a network topology can also be represented by its adjacency
matrix. Using the terminology of broadcast networks, we say that node j can hear
node ¢ if link (2, 7) € L. The adjacency or hearing matriz H = [hi;]mxm of the network
is the matrix whose elements are given by

hi = 1 if node j can hear node ¢;
771 0 otherwise.
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Each nonzero entry hi; in the hearing matrix corresponds to a directed link (%, 5)
in the network from node i to node j. We call node ¢ the source and node j the
destination of directed link (¢, 7). In broadcast media, a message initiated by a given
node will reach nodes other than its intended receiver, thus possibly colliding with
messages destinated to these nodes. We say the directed link is active whenever the
source node is transmitting a message intended for the destination node on that link,

and idle otherwise. For a given link /; € L, we denote its source node by s; and its
destination node by d;. Thus a directed link /; is the ordered pair (s;,d;).

In analyzing a communication network for the performance measures of interest
in this thesis, namely, throughput, blocking and interference, we need only consider
two states (active or idle) for the nodes or edges. For the purpose of generality,
we will use the term elements to refer to either nodes or directed links. Generally
speaking, activity on a directed link implies activity of the nodes assodiated with it.
For instance, given a directed link /; = (s;,d;), its activation signifies the fact that
node s; is transmitting while node d; may or may not be attempting to receive the

transmitted message.

2.2 A Markov Model of Blocking

Consider a set V = {1,2,---,n} of n elements, where at each instant of time ¢,
each element i € V can be in one of two states. We refer to the states of an element as
idle and active. Collectively, the elements of V' assume an n-dimensional binary state
called the system state. The system state may be represented by the subset S(t) C V
consisting of all active elements of V' at time ¢ or, equivalently, by an incidence vector
I(S(t)) = bi(t), ba(2),- - - , ba(t), where

bi(t) = { (1) if i € S(t) (element 7 is active at time t);
otherwise (element 7 is idle at time ).
For notational simplicity, we usually drop the dependency of S(t) on t by writing S
or biby - - - b, to describe the system state and assume it is understood that S is a
function of time.

At points in time governed by an independent Poisson process of rate J);, element

11



¢ € V attempts an activation. An interference structure in the form of a blocking
relation among the elements of V" determines whether element i can become active.
We say that element j € V' blocks element i € V if element i's activation attempts
are not permitted whenever element j is active. Blocked activation attempts are
discarded by the system. If element ¢ is active at the time of an attempt to activate
it, we assume the attempt is also blocked and, hence, the relation is reflexive. Then,
element ¢ may become active at time ¢ if and only if all elements which block ¢ are idle
at time ¢. Once activated, element : remains active for anindependent, exponentially-
distributed duration with mean 1/u; and then deactivates, returning to the idle state.
Under the assumptions stated so far, the system state S(t) is a continuous-time finite
Markov chain. The restriction to exponential active times can be relaxed in favor of
more general distributions. This will be discussed in Section 2.3.

We refer to the directed graph (V, E) of the blocking relation on V" as the blocking
graph of the system, where E is the set of edges {(¢, ) :%,7 € V, i blocks j}. Given
the blocking graph of the elements of V, we can generate the states and transitions
of this chain. To investigate further, we define the following sets:

1. B*(2) is the collection of all elements 7 € V — {1}, which are blocked by i, or
B*(i)={j:j€eV— {1}, jis blocked by ¢}.

Since element 7 blocks itself, the blocked set of i or the set of elements blocked
by element 7 is B(i) = B*(1) U {i}.

~

2. Inversely, the blocking set of 7 is the collection B(i) of all elements j € V which
block 7 from becoming active, or

B(i)={j:j €V, j blocks i}.

In general, B(i) # B(3).

3. The state S blocks element 7 € V if there exist some element : € S which blocks
J. 'Therefore, B(S) is the collection of all elements j € V, which are blocked by

state S, or

B(S)={j:j eV, S blocks j}.

12




Clearly,
B(S) = | B(i).

ics
4. U(S) = V — B(S) is the set of all elements j € V' — S which are not blocked
by state S.

The assertions and definitions that follow characterize the states of the system in
a constructive fashion, providing a means of generating them systematically.

Since deactivations are not blocked, if S C V is a state, then all elements in S can
deactivate in any sequence, leading to the idle state ¢. Hence, we have the following

asser*ion:
Assertion 2.1 ¢ is a state and @ is reachable from every state S.

On the other hand, activations are blocked according to the given blocking relation
and the current state of the system. Not every sequence of element activations is
petmitted.

Definition 2.1 A sequence (21,72, ,%m) of element uctivations, starting from state
¢, where1; € V, j =1,--.,m, is permissible if and only if i; is not blocked by state
{i1,32,%+ ytj-1}, ] =2,---,m. Note: No element is blocked by state ¢.

Asserticn 2.2 A non-empty subset S C V is a state if and only if there exists some

permissible sequence of activations of all and only the elements in S.

The sufficiency of this condition is obvious. That only the elements in .S need to
be activated can be established by noting that activation of an element not in S can
only block more elements froni becoming active. It never introduces new candidate
elements for activation. Any element not in S which is activated must be deactivated
prior to reaching S. Hence, only the elements in S need to be activated in reaching
S.

Definition 2.2 The state space §2 is the set of all subsets S C V satisfying Assertion
2.2 together with the empty set ¢.

13



In the remainder of this section, we clarify the definitions presented above by
demonstrating how the model may be applied to characterize the operational be-

haviour of a channel access protocol in a broadcast network, under certain assump-
tions. We consider the solution to this model and the calculation of performance
measures in subsequent sections.

Given is a multihop broadcast network with topclogy G = (N, L) and hearing
matrix H. Each communication link of the network is an element of the blocking
model, i.e., V = L. Messages are scheduled for transmission on link [; = (s;,d;) at
node s; according to a Poisson process of rate );. These scheduled transmissions may
be considered to include both newly-arrived messages and backlogged messages which
were previously transmitted unsuccessfully, as long as the rescheduling of backlogged
traffic is randomized in such a way as to render the total traffic offered Poisson in
character. Link /; is active whenever node s; is transmitting a message to node d;
and idle otherwise. A fundamental assumption required is that state-transitions are
made instantaneously, based on the state at the transition instants. Thus, we assume
that propagation delays over the links of the network are negligible, as propagation
delay would destroy the memoryless property of the process. Each message arrival on
link /; = (si,d;) is an activation attempt of /;. Depending on the state of the network
at the time and the channel access protocol in use, node s; will either accept the
activation attempt and activate I; or it will block the attempt, leaving the state of /;
unchanged. Further assumptions will be presented when we consider computation of
performance measures in Section 2.5.

To illustrate, we consider two common channel access protocols: (1): NP-CSMA
(Nonpersistent Carrier Sense Multiple Access) and (2): RI-BTMA (Receiver-Initiated
Busy tone Multiple Access). The operations of these two protocols are first explained
below:

NP-CSMA: Under NP-CSMA, transmission attempts on a link are blocked if its
source node is currently transmitting or senses carrier from any node it can
hear. Formally, link /; = (s;,d;) is blocked by {; = (s;,d;) whenever [, = (s,,d;)

is active and either hy;5; = 1 o1 5i = s;.
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RI-BTMA: The destination of a link emits a busy tone on a separate channel
whenever that link is active. Transmission attempts on a link are blocked when

its source node is currently transmitting or senses either carrier or busy tone
from any node it can hear. Formally, link J; = (s;,d;) is blocked by I; = (s5,d;)

if ; = (Sj,dj) is active and either hy;s, =1, hd,-s,- =1or s =s;.

Thus, the elements of the blocking model in each case are the links of the network
and the blocking relation is a function of the topology of the network. The following
examples clarify the definition of each protocol. In this context, we will refer to the
blocking graph as the Transmission Blocking Graph (TBG). In the TBG, a directed
edge from ; to l; signifies that transmissions on link /; blocks transmission attempts
on link [;.

Example 2.1 The TBG for the 4-node chain PRN of Figure 2.1 operating under
NP-CSMA is given in Figure 2.2.

1
(‘1 ~3 \)ls
D, ))

- O
1)) 14 lg

Figure 2.2: The TBG for the 4-node chain PRN operating under NP-CSMA

For this network G = (N, L), we have,
N=1{1,234}; L={h,b b1} =1{(12),(21),(23),3,2),(34),(43)}

Inspecting the TBG, the blocked set for each element [; € L is given below:

B(h) = {h,l2,15}; B(k) = {l1,12,13,14,15};
B(l3) = {h, b3, 13,14, 15}; B(ly) = {ly, 13,14, 5, 55}5
B(ls) = {12, 13,14,15, le}; B(ls) = {14,15,16}-

Note that B(l;) = B(l;) for all }; € L.
15



The state space is shown in Figure 2.3, and the state-transition diagram is given

in Figure 2.4.
The state space of the system is:

Q= {¢’ {ll}a {12}a{l3}’ {14}7 {IS}a {16}3 {11’14}7 {11115}’ {llvl6}! {12’ lﬁ}v {13716}}'

The blocked set for each state S € 2 is listed below:

B({h}) = {1, &, 5}; B({lz}) = {h, 12,15, s, Is};
B({I3}) = {llv l'h l3a 14’ 15}; B({I4}) = {121 l3a 141 151 16};
B({ls}) = {l2, 15, s, 5, I }; B({ls}) = {ls,15,16};
B({h,L}) = {li, 1,15, 1s,15,l6}; B({h,1s}) = {ly, bz, 13, s, 15, l6};
B({li,16}) = {l, b, 13, la, 15, 16}; B({lz,l6}) = {1, 15,13, Ls, 5, l6};
B({l3,ls}) = {1, lo, 13, 14,15, 6}
Correspondingly, the unblocked sets are listed as follows:
U({ll}) = {l4,15,1s}; ({lz}) = {ls},
U({lx}) = {ls}; U(
U({ls}) = {h}; U({ls}) = {l, 12, la};
U({l,4}) = ¢ U({h,ls}) = ¢
U({l,1s}) = & U({l2,16}) = ¢;
U({l3,1s}) = ¢

O
Example 2.2: The TBG for the 4-node chain PRN of Figure 2.1 operating under
RI-BTMA is given in Figure 2.5. The graphical representation of the state space is
shown in Figure 2.6, while the state-transition diagram is presented in Figure 2.7.
The blocked and blocking set are:

B(h) = {l,l, 13,14, 55}; Bz )= {h, b, i, L)
Bh) = by bkl Bla)= (o, oy oy o s, )
B(l) = {l1,l,13,l,15,1s}; ga) B(l3);

B(ly) = {h, b, 13,14, 15, 56 }; (j )= B(ls);

B(ls) = {l2, 13, 14,15, 1}; Bgs) {1, g, 13,14, 15, I6};
B(lg) = {l2, 13, 14,15, 1s}; B(ls)= {l3, 14, 1s,15}.

In this case, B(L;) #B(L) for ; = b, b, Is, ls.
The state space of the system is
Q={¢,{i}, (I}, {Is}, {la}, {Is}, {6}, {hs Jo}, {2, Is}°, {5, 11 }°).
16
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Figure 2.3: The state space for the 4-node chain PRN operating under NP-CSMA
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Figure 2.4: The state-transition diagram for the 4-node chain PRN operating under
NP-CSMA
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Figure 2.5: The ™G for the 4-node chain network operating under RI-BTMA

The notation {};,;}? is used to denote an ordered state of the system, it can arise

only if the activation of /; precedes the activation of ;. The blocked and unblocked
sets of the states are listed as follows:

B({h}) = {l,l2,13,14,5}; B({ls}) = {h, b2, 13,14, 15};
B({l3}) = {11112,l3vl4a l5a16}; B({l4}) = {llvl2vl3) 14115a 16}7
B({ls}) = {l2,13,14,15,}; B({ls}) = {b, 3,14, 15,16};

B({llalﬁ}) - {11,127131 l4115a 16}1 B({l2116}d) = {ll,l2al3al4115716};
B({ls,ll}d) = {h, b, 13,14, 15, 16}

U({h}) = {ls}; U({lW) = {l};
U({ls}) = ¢; U({lL}) =&

U({ls}) = {L}; U({le}) = {L};
U({l,16}) =¢; U({k,1s}%) = ¢

U({ls,h}?) = ¢.

{I2,16}? and {ls,];}¢ are the states for which the order of activation is relevant.
State {lz,/s}? is reached by the activation sequence (lz,lg) only. The activation se-
quence (I, l2) is not permissible since the activation of ls blocks the subsequent acti-
vation of l,. Similarly, state {Is,l;}¢ is reached only through the activation sequence
(ls,11). Note that in Fig 2.6, the states marked with a * on their state numbers are
the ordered states of the given system. The numbers assigned on the graph represent

the order of activations.
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Figure 2.6: The State Space for the 4-node chain PRN operating under RI-BTMA
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Figure 2.7: The state-transition diagram for the 4-node chain PRN operating under
RI-BTMA
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2.3 Reversibility Conditions and the Product-Form
Solution

In this section, necessary and sufficient conditions are given for reversibility of
the Markov process of Section 2.2 and the assocated product-form solution for the
equilibrium probabilities of the states is presented. The reader is referred to [BT84]
for the construction of the global balance equations of the model. We restrict our
investigation to reversible processes for the computational simplicity offered by a
product-form solution.

Time reversibility of a stochastic process is the property which renders its sam-
ple functions statistically indistinguishable from the sample functions of the process
running in reverse time. Stationarity is easily seen to be a necessary condition for
reversibility. For instance, if the mean of the process increases in forward time over
some interval then the mean of the process decreases in reverse time over the same
interval. Hence, sample functions from the forward and the reversed processes would
exhibit these behaviors, making them distinguishable with respect to the arrow of
time.

The reversibility conditions for a stationary continuous-time Markov chain are
characterized in terms of the state-transition rates and the steady-state distribution
with the detailed-balance equations[Kel79).

Theorem 2.1 A stationary continuous-time Markov chain is reversible if and only
if there ezist a collection of positive numbers {@Q(S), S € Q}, summing to unity, such
that

Q(S1)q(51,52) = Q(S2)g(S2, 51) (2.1)
for all 51,52 € , where ¢(S;,S;) is the transition rate from S; to S;. When such a

collection exists, it is the stationary probability distribution.

Equations (2.1) are called the detailed-balance equations of the reversible contin-

uous-time Markov chain. A necessary structural property of a reversible Markov
chain is apparent from the detailed-balance conditions. That is, since Q(S) is a
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strictly positive distribution, the transitions of a reversible process are symmetric
(g(S;,S;) > 0 if ¢(S;,S;) > 0). This property is intuitively obvious, since if the
process makes transitions from S; to S; but not from S; to S; then the reversed
process makes transitions from S; to S; but not from S; to Sj, distinguishing forward

and reversed transition sequences.

An equivalent necessary and sufficient condition for reversibility in terms of the

transition rates only is Kolmogorov’s condition.

Theorem 2.2 A stationary continuous-time Markov chain is reversible if and only

if for any finite sequence of states S1,S5y,...,51 € §, the transition rates satisfy:

4(S1,5:)q(S52,S3) .. q(S1, 1) = 9(51,5)q(Sh, Si-1) ---9(52, 51)  (22)

From Kolmogorov’s condition, it is clear that the reverse of every state-transition
sequence of a reversible Markov process is also a state-transition sequence of the
process. This is also an intuitive notion since the reverse of every state-transition
sequence of the process is a state-transition sequence of the reversed process. Note
that the reverse of cvery state-transition sequence is a transition sequence if and only
if the transitions are symmetric.

Suppose Sp,51,...,5 is any state-transition sequence of the process. Then, by
repeatedly applying Equation (2.1), it is easily seen that the steady-state probability
distribution for this Markov chain satisfies

_ L q(Sk-1,5%)
A =05 Lo, 50y @

Equation (2.3) is called the product-form solution of the system.

Theorem 2.3 A stationary continuous-time Markov process possesses the product-
form distribution for the steady-state probabilities given in Equation 2.3 if and only

if it is reversible.

Having stated the relevant theorems of reversibility, we now present necessary and
sufficient conditions for reversibility of the blocking model.
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Definition 2.3 An independent set of a graph G = (V, E) is a set of vertices of G

such that no pair of vertices in the set are connected by an edge of G.

Reversibility of the blocking model can be characterized in terms of the blocking
relation as follows:

Theorem 2.4 The Markov process associated with the blocking model is reversible if

and only if the states of the process are independent sets of the blocking graph.

Proof. Necessity: If a state S € Q is not an independent set of the blocking
graph then some element ¢ € S blocks some other element j € S. Hence, not all
of the |S]! activation sequences of S are permissible. However, since deactivations
are not blocked, all |S]! deactivation sequences of S are permissible, implying there
are state-transition sequences of the process whose reversals are not state-transition
sequences of the process. Thus, the process cannot be reversible.

Sufficiency: Consider an arbitrary sequence Sp,S;,---, S of state transitions of
the process leading from an arbitrary initial state Sp = S back to itself S5; = S.
Each transition (S}, Sj+1), 7 = 0,1,---,1 — 1 is either an activation, in which case
Sj+1 = S;U {i} for some ¢ € V — §j, or a deactivation, in which case Sj = S, — {¢}
for some i € S;. If (Sj, Sj+1) is an activation of element i then ¢(S}, Sj31) = A and
since S; = Sj41 — {¢} then ¢(Sj41,5;) = wi. On the other hand, if (J;,5,4+1) is a
deactivation of some element ¢ then (S}, S,+1) = i and since S, = S;4; U {7} is an
independent set then : is not blocked by Sj;1. Hence ¢(Sj+1,5;) = Ai. Let a; and
d; be the number of times element 1 € V is activated and deactivated, respectively,
in the sequence Sp,S;, --,S. Since S; = Sy, each element must be activated and
deactivated the same number of times, i.e., a; = 4, for all ¢ € V. Forming the
product of the transition rates in each direction, we have

-1 -1
4(S;, Sjv) = [ A pd = TTOw)® = ] a(Sj1, S5)-
JI=IO 7y +1+1 'g 'g JI=IO 1413 )
Hence, Kolmogorov's condition is satisfied; the process is reversible.

Theorem 2.5 The states of the process are independent sets of the blocking graph if

and only if the blocking relation is symmetric.
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Proof. Necessity: If there exists a pair of elements ,j € V such that i blocks
j but j does not block 7 then the activation sequence (7,7) is permissible and leads
from state ¢ to the state {i,} which is not an independent set.

Sufficiency: If j blocks i whenever i blocks j then ¢ and j cannot be active
simultaneously since one must be activated first and activation of either blocks the
other from becoming active. Thus, in each state S, there is no pair of elements that
block each other. Since two elements either block each other or neither blocks the
other then no element in S blocks another element of S. In other words, S is an
independent set.

Putting Theorems 2.4 and 2.5 together, we have

Theorem 2.6 The Markov process is reversible if and only if the blocking relation is

symmetric.

Theorem 2.6 means that a blocking system has a product-form solution if and

-~

only if B(z) = B(z) for all i € V.. Therefore, for the network of Examples 2.1 and 2.2,
the NP-CSMA protocol yields a product-form solution while the RI-BTMA protocol

does not.

Furthermore, for any state S in the reversible Markov chain, any order of activa-
tion of the elements in S allows S to be reached from the empty state ¢. Under this
situation, the state-transition diagram for state S is shown in Figure 2.8.

j € .
jes m i€ys)

Figure 2.8: A portion of the state-transition diagram for the reversible Markov chain
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The product-form solution takes the form

QAS) = Q¢ (r;p.) (24)

where p; = \;/pi and Q(¢) is the normalization constant, which is given by

(=) &

and equals the probability of finding all the elements idle. For convenience, we use the
symbol SP{X} to denote the sum of products over the set of states X. Further, we
follow the notation used in [BKM87], designating SP(A) as the sum of the products

over the set of independent subsets of A. Thus, in general, we write

SPX) = 3 (g p,-) , (2.6)
sP)= 3 (ie p;), @7)

where, in Equation 2.7, it is to be understood that S ranges over the set of indepen-
dent subsets of A, not the power set of A. With these two notations, we can write
Q(¢) = (SP{) =(SP(V))

In Section 2.2, we specified the state of the elements 1 € V' as being either active or
inactive, based on the assumption that both an element’s activation scheduling and
its active duration were memoryless (exponentially distributed). However, having es-
tablished a product-form solution for the equilibrium probabilities under a symmetric
blocking relation, the assumption that an element’s active duration is exponentially
distributed can be relaxed by the use of the method of stages, while keeping the
product-form solution for the steady-state probability distribution.

The method of stages, which was originally introduced by Erlang [Kle75] and
further developed by Cox [CM65], can approximate arbitrary service-length distri-
butions with a combination of exponential services. Boorstyn and Kershenbaum
[BKM87] have shown this to be true for the CSMA model. The proof for the general
case follows exactly the proof given in [BKM87]. Instead of using the network graph,
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we simply substitute the blocking graph. Hence, we mention here that the equilib-
rium results are insensitive to the form of the distribution of active durations. The
reader is referred to [BKMS87] for further details.

Many other extensions of the model are possible in light of these theorems. For
" instance, state-dependent transition rates can be incorporated while maintaining re-
versibility. A simple example would be to treat each element as a binary source.
The underlying model for the on-off sources has the same form as the Poisson source
model. Only the blocking and the throughput computations change. It is possible
to break the symmetry of the blocking relation and maintain a product form if we
introduce a blocking relation governing deactivations of elements. A multiset exten-
sion of the model is also possible, where a blocking relation is defined over a multiset
of elements instead of over a set of elements. Multiple copies of an element may
be active at the same time, but copies of elements which block each other may not.
These extensions will not be considered in this work. We mention them here only to
motivate further research. The approach taken in this thesis will be to examine the
structure of the blocking model more closely and exploit its computational simplicity
to develop efficient methods for computing throughput and blocking in packet radio
networks and circuit-switching networks.

2.4 Vector Representation of the State Probabil-
ity Distributions

As was described in Section 2.2, given blocking system with n elements represented
by the set V', we could represent the states S of the system by the incidence vector
I(S). Denoting the incidence vector of state S as I(S) = bjb; - - - by, the steady-state
distribution given in Equation (2.4) can be expressed as

Q(S) = Q(B)pt 052 ... . (2.8)

When p; = p for all i € V, as in a symmetric-loading or uniform-activation

situation, we have

Q(S) = Q(#)p2s" = Q(¢)p"r¥r-) = Q(¢)p,
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where W(b1b, - - - b,) is the weight of the state S defining the number of 1's in the
incidence vector I(S), or simply the number of elements in S.

Example 2.3. Given a reversible stochasticsystemof n elements, V = {1, 2,..-,n},
we consider the following different blocking situations, their state-transition diagrams
for n =3, and their steady-state probability distributions Q(S):

(a) No blocking (i.e., Figure 2.9).

(010) (011)
o
@ ’(110) j (1)
N >,
@ @ (000) ©01)

(
(600) (101)

(a) (b)

Figure 2.9: (a) The blocking graph and (b) the state-transition diagram of the no
blocking system.

In this case,
Q(S) =Q($)ptey - .. b,
where Q(¢) = (SP{Q})-}, =2V, and

Q' () =S§<v gm = '_g(l +pi)-
We have,

_ Iliespi _ [li=1 Pa - i 1
Q(S)"n.-ev(1+p.-)'m=1(1+p, H(1+pg> 11 i}) II (1= Qb))

1=l
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In this non-blocking situation, elements are independent of each other. For each
element i in the system, the probability of it becoming active is thus

QN =i

In the uniform activation case, p; = p, for alli € V, and
Q(S) = Q(@)p 1) = (9!,

with

Q- (4) =$;p|5| =,‘2:_.;(Z )p" =(1+p)"

Thus,
Q(S) = /(1 + p)™.

(b) Complete Blocking (i.e., Figure 2.10).

O(OIO)
N
O
(000) (001)
(100)
(@) (b)

Figure 2.10: (a) The blocking graph and (b) the state-transition diagram of the
complete blocking system.

In this case,

Q(S) =Q(d)dhpk ... o0,
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where Q(¢) = (SP{Q})-lv Q= {¢’ {1}’ {2}1 v ’{n}}$ thus Q—1(¢) =1+ 2?:1 Pi.
Then, Y
_ Ihesp  _ I p
Q=7 +Sievhi  1+Thp
When p; =p,1=1,2,...,n, we’have

QS) = Q(B)p2=Y = Q(¢)p7,
where @~1(¢) = 1 +np. Thus,

2 :
o ={ T o3I

14np

(c) Partial Blocking (i.e., Figure 2.11).

(010)
O, o
N
o o
@ ) o (101)

Figure 2.11: (a) The blocking graph and (b) the state-transition diagram of the
partial blocking system.

For the case illustrated in Figure 2.11, V = {1, 2,3}, we have
Q(S) = Q(d)et P2 %,
where Q(¢) = (SP{Q})~, Q= {4, {1}, {2}, {3}, (1,2}, {1, 3}}, thus,

QUP) =1+ p1+p +ps+p102 + o103 = (14 p1)(1 + p2 + p3).
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Note that {1} and {2,3} are independent blocking subsystems and that {2,3} is a
complete blocking subsystem. When p; = po = p3, we have,

Q(S) = Q(¢)p2=% = Q(¢)d,

where
@ (¢) =1+ 3p+20% =(1+ p)(1+2p).

2.5 Analysis of System Performance

The reversible stochastic model described in the previous section can provide
measures of throughput, blocking probability and interference probability. In this
section, we demonstrate how to quantify these measures of performance in terms of
the underlying model. The characterization of these quantities is general enough to
be applicable to a number of different systems which are subject to some form of
contention and interference.

Thus far, the model described in Section 2.2 uses a blocking relation, among oth-
erwise independent elements, to determine whether a scheduled element activation
can take place or not. Hence, blocking probabilities for the elements can be di-
rectly computed in terms of the equilibrium state probabilities. In order to quantify
throughput, we consider two cases: interference-free systems and systems susceptible
to interference. By an interference-free system, we mean one in which every ele-
ment activation is considered to be successful and contributes to its throughput. The
throughput of an element 7 in this interference-free model is then just its activation
rate @({z}). In an interference-susceptible system, an element activation may or may
not lead to a success. An active element can be interfered with during its active life
by another element (an interfering element) becoming active. Interference takes the
form of transmission collisions when modeling broadcast networks. In this case, the
throughput of an element is much more difficult to compute and further information
must be provided concerning the nature of the interference. In the following, we de-
scribe a simple model for interference and the associated throughput calculation and
state the underlying assumptions. Although the former model may be considered a
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special case of the latter, it is worth considering separately since the interference-free
case is computationally much simpler and it is applicable to a number of systems
where centralized control precludes interference among active elements, such as in
a switch. We will consider the application of these models to measure throughput
and blocking in packet radio networks and communication switches in the chapters
to follow.

Transmission collisions are an inherent problem in multihop broadcast networks
due to the distributed nature of the access protocol. Each node must operate its
transmitter based on limited knowledge of the state of the network. A transmission
from one node may interfere with a transmission from another node or they may
interfere with each other if, while trying to receive one transmission, a receiver hears
another (a collision). Depending on the capabilities of the nodes and on the topology
of the network, a receiver may be able to continue to correctly receive the first trans-
mission and reject the other as noise, provided the interfering power is not too great.
With channel sensing, a node can exercise precaution by blocking transmissions when
it is known that they may interfere with ongoing transmissions.

A simple and unified approach to account for this type of interference in the
stochastic model is to represent it as another relation on the elements. For example,
we may say that element i interferes with element j if element ¢ must be idle at
the time element j is activated and while element j is active, in order for element
j’s activity to be successful. Under different assumptions, we may say that element
¢ interferes with element 7 if element i must be idle at the time element j is acti-
vated, implying that element j can tolerate the subsequent activation of element .
The distinction between these definitions of interference has to do with the notion
of capture. By employing orthogonal codes, a transceiver may have the ability to
lock on to or capture the first transmission it hears and reject subsequently-initiated
transmissions as wide-band noise{Nel84]. The first definition of interference assumes
no such capability. It represents one extreme of the spectrum of capture capabili-
ties and it is referred to as the zero-capture assumption. The second definition of

interference assumes the receiver can successfully receive a transmission as long as
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all interferers are quiet at the instant the transmission is first heard by the receiver.
This is a sophisticated capability and represents the other extreme of the spectrum,
the perfect-capture assumption. In general, the capture capabilities of a receiver lie
somewhere between these extremes. For instance, a receiver may not be able to
reject a transmission if it is much closer, hence stronger, than the one’it is trying
to receive or if too many interfering transmissions occur while receiving one. The
assumption of perfect-capture is an optimistic one which yields a simple quantifica-
tion of throughput since the determination of success is made instantanecusly. We
will assume perfect capture for the computational simplicity it provides. Hence, our
results can be considered as upperbounds for typical capture capabilities.

Having introduced the notion of an interference relation on the elements of the
model, we may now quantify the throughput. Further, we assume error-free reception
in the absence of a collision and that acknowledgements are instantaneous. Trans-
missions which are blocked or result in collision are thus known to the transmitter
and rescheduled. The blocking model does not incorporate the backlog of messages
at each node, for each link. Thus, it does not provide a significant quantification of
message delay beyond what can be expected of the no-buffering bound [BG87]. We
define p; = Ai/pi as the normalized scheduling rate for element ;. If we denote the
rate of successful activations of element ¢ as 7y, then r;/p; is the probability Ps(3)
that a scheduled activation of element i is successful. In general,

T _p, { element ¢ is not blocked at its scheduling point and }

Ps() = i it is not interfered with throughout its active duration.

In modeling a communication network, 7; and p; denote the success rate and
attempt rate, respectively, for transmissions on link ;. With zero capture capabilities,
we would write
scheduling point for transmission over link I; = (s;, d;) is not blocked
Pr ¢ at node s; and the transmission does not collide with another transmission .
while being received at d;.
In perfect capture, we may write

i _ppla transmussion attempt over link /; is not blocked
or interfered with at its scheduling point. '
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The TBG defines the possibility of blocking for each element ¢ at its scheduling
point. Similarly, let the Reception Interference Graph (RIG) define the collision rela-

tion on the elements, at the receiving end of a transmission. Then the corresponding

set of interference states is denoted as

Qr = {S : some element in S interferes with an other element in S}.

Referring back to Example 2.1 of the 4-node chain with the NP-CSMA protocol,
states {l),ls} and {l3,ls} are within the state space 2 of the system, yet the pair
of elements inside each of these two states interfere with each other respectively at
the receiving nodes 2 and 3. Therefore, {l1,14},{l3,16} € ;. Further, we use the
notation I(z) to represent the collection of all elements j which do not block :, but

interfere with 2,
I(3) = {j : j does not block 7, j interferes with 1}.

The information I(z) can be directly obtained from the RIG of the system. By
subtracting the interfering sets generated from the RIG from the state space {2,
generated from the TBG, we obtain a set of successful states 2s. These are the
states of the system that guarantee successful transmission, and thus contribute to
the throughput. Qs can be represented by the Successful Transmission. Graph (STG)
which is obtained by subtracting the RIG from the complement of TBG. In addition,
let

S(i) = {7 : j does not block or interfere with }.
and
Qs(i) ={S: S € Qs, S contains elements in S(z) only} .
Then, the probability that the element ¢ is active successfully is given by

Ti _ Q(S) = 2_seasti) Ljes Pi

Pi SEs(4) ZSEQ ILES Pj ’

o]
ri _ SP{Qs(2)}
7 = 5P (29)

34




It is also true that
i _ 2.scst) [lies 0

i Tsev Iljesps '
ni _ SP(S(9)
g SP(V) "’
Example 2.4(a): Referring back to Example 2.1 (NP-CSMA), the corresponding
TBG is shown in Figure 2.2, the RIG and the STG are shown in Figure 2.12.

therefore

(2.10)

Figure 2.12: (a) The RIG and (b) the STG for the system in Example 2.4(a)

From the RIG, the interference sets are:

QI = {{11114}’ {IZ)Ig}a {131 16}}a {151 ll}d}7
where the directional state {};,/;}¢ only exists when the activation of link /; precedes
the activation of link /;. We have

I(h) = {ls, s} I(ly) = ¢; I(l;) = {le};
I(ly) = {L}; I(l) = ¢; I(ls) = {l2, 5}.

Considering the STG, the set of the successful transmission states are:
Qs = {{h},{k}, {Is}, {la}, {Is}, {l6}, {h, b6}, {1, s}, {Is, 2} °}.
Thus,
S(h)={ls}; S(k)={lk}; S(k)=4¢
S(ly) = ¢ S(is)={h}; S(s) ={L},
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Qs(h)={s,{le}}; Os(L)={s, {k}};  Qs(la) =¢;

Qs(ls) = ¢; Os(ls) ={&, {h}}i  Qs(ls) ={4,{1}},
and
SP{Q} =SP(V) = 14+p+pa+ps+pi+ps+pe+ p1ps + p1ps + pros
+p2ps + paps.
We have
Po(l) = Ps@) = 2 = 2= 2 _(144)

Similarly, let £25(7) be the set of all states .S in 2 that contain at least one element
in B(3i). Any of these states will block the activation of element 1.

Qp(t) ={5:S € Q5 contains at least one element in B(z)}.
The probability that element : is blocked is

Pg(i) = Pr{element 1 is blocked}
=3 sens(i) £7(S)
— 2usenpd1ljes?
senllies? ’

 _ SP{Qs(1)} _ SP{Q5(i)}
Pe()==3piy - =—3PW) (211)

Lastly, let Qr(z) be the set of all states S € 2, where S ¢ Qp(i) and S contains
at least one element in I(z), then

or

Qr(i)={S: S5 € Q-0p(¢), S contains at least one element in I(i)} .
The probability that element i is interfered with can be expressed as:

Pi(2) = Pr{element ¢ is interfered with}
= Tsen (i) Fr(S)

_ 2.5enyti) Lljes Pi
- P |
seq lljes Pi
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or

SP(Qu(i)} _ SP{Rui)}
PO} = 8B (2.12)

Pr(3) =

In general, we have the following relations:

Thus

Pi(i) + Ps(?) + Ps(3) = 1; (2.13)

Q(3) +Qp(1) +Qs(2) =9,
SGE)UB(E)UI(E)=V.

i_S ((Z)) SP(V — B(i) - I(i))
s SP(V) SP(V) '

Example 2.4(b): Calculating (1) Pa(3), (2) F1(?)-

(1)

B(h) = {l,12,3}; B(ly) = {h, b, 13,ls,15}; B(ls) = B(l);
B(l4) = {12,13,14, Is,l6}; B(ls) = 3(14); B(ls) = {14,15, lg}.

Ps(1)

Pg(2)

Pp(4)

P3(6)

{{h}, {k}, {}, {h, L}, {l, 56}, {1, 6} {2, l6}, {1, e} };
{{h}, {&}, {l}, (L}, {Is}, {h, s}, {l, 15}, {la, l6}, {12, 16}, {1, l6}};
{{L}, {la}, {La}, {Is}, {l6}, {hn, s}, {la, s}, {la, le}, {12, l6}, {4as ls} )5
{{l}, {Is}, {l6}, {hn, ls}, {11, s}, {11, l6}, {2, I6}, {1, U6} },

QB(I:;) = QB(lz); QB(ls) = 93(14)

1
= W(Pl'l'm + p3 + p1ps + p1ps + P1ps + P2ps + P3Ps);

1
= S—P(T/S(”‘ + p2 + ps + ps + ps + prpa + P15 + Prps
+ p2ps + P3ps);
1
= -g-pm(pz + p3 + ps + ps + ps + p1pa + 195 + pr1ps
+ p2ps + paps);
1
W-)(m + ps + ps + p1pa + P15 + P16 + P2ps + P3p6);
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Pp(3) = Ps(2); Pp(5) = Pp(4).

(2)
(h) ={{la}, {6} Qulk)=¢ () = {{ls}};
() = {{h}}; Ulls) =¢; Qulle) = {{l2, la}}.
Pi(1) = zpmy(ea+ps); Pr(2)=0; Pr(3) = 5%y
Pi4) = shivy P()=0;  Pi(6) = sphrylon+9)

a

Example 2.4(c) In communication network systems, transmissions over each
channel are directly related to transmission and reception opertions in its corre-
sponding node pair. Thus, the original system state-transition diagram refering to
link activations of the 4-node chain network operating under CSMA, which was shown
in Figure 2.4, can be redrawn, as shown in Figure 2.13, to describe the system nodal
operations. Hwelet ry =rm=rn=r=rs=rs =7, pp = p3 = ps = ps, ;1 = pe,
and denote the normalized scheduling transmission rate at each node ¢ as p;, then,
PL = P1, Py = P2+ p3, P3 = ps + ps, Py = ps, and

SP(V') =14 py +py +p3 + o4 + p1p3 + 015 + 024

This SP(-) can be obtained by directly considering nodes as active elements of
the system. Thus, in this case, we can measure the system performances by refering
to either transmission operations over the channels or broadcasting operations at the
stations.

By letting py = pj, py = p3, we have p, = py(2 + py), and r = Q()(m (1 +py))
with

Q) = (SP(V')) ™ = (1+6p, + 707 +207) "
Further, we have

Ps(1) Pg(4)' = Pp(1) = Pa(4) = Q(#)n1(3 + 6p; +2p);
Pp(2) = Pg(2)+ Ps(6) = Q(¢)p:(5 +To1 + 2p7);
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) = Pa(3)+Ps(5) = Q(d)p1(5+ Tpy +207),
P(1) = P(4) =F(l) =P(4) =Q#)m(2+p);
)
)

Pi(2) + PA(8) = Q(®)py;
" = Pi3)+Pi(5) = Q(¢)nr-

Figure 2.13: The revised state-transition diagram of Example 2.4
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Chapter 3

Computational Techniques and
Special Cases

3.1 Introduction

The mathematical model presented in Chapter 2 is quite general. In applying
the model to analyze a packet radio network, the elements can represent the nodes
(communication stations) or the directed links (communication channels) of the given
network, and both approaches can quantify similar performance measures. Some of
the assumptions in the model may be relaxed, as mentioned in Section 2.3 of Chapter
2, thus extending the range of applicability of the model. On the other hand, more
restrictive assumptions can be made, introducing some very special cases of blocking
systems. In this chapter, we will investigate some of these possibilities. First, we
discuss some computational aspects of the model which provides the motivation for

considering special cases.

3.2 Computational Techniques

The computation of performance measures becomes complicated as the number of
elements in the system increases. These difficulties can be alleviated to some degree
by using special techniques applicable to the blocking model.




3.2.1 Computation of SP(A)

As presented in Equations (2.10) and (2.14), the element-activation success prob-
ability Ps(i) = ri/pi can, in general, be expressed as a ratio of sum-of-products
expressions of the form SP(A4)/SP(V), where

SP(A) = ;'e pi;

SP(V) S;,'gpe,

with ACV and V = {1,2,...,n} is the set of all elements in the system.

A straightforward algorithm to evaluate SP(A) is to generate all independent
subsets of A. In the worst case, all 2!4l subsets of A would be generated and this
approach is thus exponentially hard. However, we can apply some properties of
the SP(-) function to streamline the computation for large networks. Kershenbaum
and Boorstyn [KB84] developed an algorithm for computing the sum of products
expressions which they called the SP algorithm. The technique is based on the

theorem below.

Theorem 3.1 (a) If two subsets of elements X and Y are isolated from each other,
then
SP(XUY)=SP(X)SP(Y) (3.1)

(b) For any element i in the set X, it is true that
SP(X)=SP(X-1i)+pSP(X-B(z) ielX, (3.2)

where B(2) is the set of elements blocked by ¢, or equivalently the set of elements

blocking .

The proof of this theorem is given in Appendix A.

In Kershenbaum and Boorstyn’s studies, they considered networks with omnidi-
rectional transceivers. With omnidirectional tranceivers, a node with carrier sensing
capabilities detects carrier if any of its neighbors are transmitting a message. Thus,

for this special case, the elements of the model are the nodes of the network and the
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blocking set B(%) for node ¢ is simply its set of neighbors NV;. The network graph and
the blocking graph are one in the same; the blocking relation is the hearing relation.
Hence, the CSMA model is reversible if and only if the hearing relation is symmetric,
i.e,, hij = hji. In general, however, the blockirg relation is a relation on the link
set of the network, derived from the hearing relation and the protocol. In this more
general setting, the SP algorithm is simply applied to the blocking graph rather than
the network graph. Qur approach will be to systematically categorize all possible
blocking and interference relations among the links of a given network in order to
construct these relations for a given protocol. We taen apply the SP algorithm with
the relations.

By applying Equation (3.2) repeatedly to an arbitrary subset C of set V, expand-
ing over (s possible subsets S, S C C, it can be shown that

SP(V)=SP(V - C) + ;:{Hies pSP(V - C~ B(S))}, (3.3)

where B(S) denotes the set of blocked elements of state S (which includes all elements
in S). Finally, if C'is a cut of the blocking graph, i.e., a set of elements which when
removed decomposes the neswork into two isolated subsets X and Y, then for all
independent sets S C C,

SP(V - C - B(S)) = SP(X - B(S))SP(Y - B(S)),
and
SP(V - C) =SP(X)SP(Y).

Example 3.1. Consider the blocking graph of Figure 3.1, where V' = {1, 2, 3,4,
5,6,7,8,9,10,11}. By choosing C = {5,6,7}, the graph is decomposed into three
subsets X, Y and C, with X = {1,2,3,4}, Y = {8,9,10,11} being isolated from
each other.

By repeatedly applying Equation (3.2), we have,

SP(V) = SP(1,2,3,4,5,6,7,8,9,10,11)
= SP(1,2,3,4,6,7,8,9,10,11) + psSP(1,4,7,10,11)
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Figure 3.1: Decomposition of the blocking graph

= SP(1,2,3,4,7, 8 9,10,11) + pSP(1,2,3,7,9, 10,11)
+p55'P(1,4,1 , )+p5p75P(1 11)
SP(1,2,3,4,8,9,10,11) + p1SP(1,2,8,11)

+psSP 1,2, 9 10,11) + pspr SP(1,2,11)
+psSP(1,4,10, )+p5p7SP(1,11)
SP(1,2,3,4)SP(8,9,10,11) + ps.SP(1,4)SP(10,11)
+p6SP(1,2,3)SF(9,10,11) + pr.SP(1,2)SP(8,11)
+0507SP(1)SP(11) + psprSP(1,2)SP(11)

This result can be directly obtained by the application of Equation (3.3). Thus
by applying these simplifications, we evaluate the sum-of-products for subsets of at
most 4 elements instead of the original 11 elements.

The SP algorithm is based on the observation that the SP(-) expression for a set
containing n mutually independent elements, can be written as

SP(V) = H(l +p3). (34)

=1

If this expression is expanded directly into a sum-of-products form, it would contain 2"
terms. However, only n additions and (n— 1) multiplications are required to evaluate
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Equation (3.4). In a similar fashion, SP(X) can be evaluated by grouping together
commpon subexpressions and using the distribution of multiplication over addition to
reduce vne number of arithmetic operations. Equation (3.2) is the starting point.

By using this recursive method, the expansion of SP(X) can generate up to 21Xl
terms, but fewer terms will be generated in general, since X — B(z) will quickly become
¢ and terminate the recursion. Furthermore, a dramatic reduction in the mumber of
generated terms is possible, if we recognize sets D which have already appeared and,
consequently, for which SP(D) is already known. Under this situation, the SP(D)
value is substituted directly without recursive expansion required.

Example 3.2 Refering back to the 4-node chain PRN of Figure 2.1 with CSMA
protocol, and with six directed link elements, V = {l},h,13,1,15,ls}, its TBG is
given in Figure 2.2 while its recursive expansion is depicted in the tree diagram of
Figure 3.2.

Figure 3.2: Recursive expansion of SP(V) for the 4-node chain PRN operating under
CSMA




Table 3.1: Iterative calculation for the 4-node chain PRN under CSMA protocol

Row Set(X) SP(X-B@) SP(X—i) m SP(X)
1 {h, &g, 13,14, 15,16} {la, 15,16} {loyl3,l4, 15,16} m -
2 {ls, 15,15} ¢ {Is,1s} ps -
3 ¢ - - po 1
4 {ls, 16} ¢ {l6} Ps -
5 {ls} ¢ ¢ Ps -
6 {l, 13,15, 15,06}  {l6} {Is)14,15,163  p2 -
7 {l3,14,15,15} {1} {ls, 15,16} P -
8 {h} o) ¢ g -

The nodes in this tree diagram are the result of applying Equation (3.2). For
example,

SP({h, b, 13, ls,15,l6}) = pSP({ly, 12,13, 14, 15,16} — B(h))
+ SP({lh,k, 3, 44,15} — {h})
= pISP({l4,15,ls}) +SP({I2,I3114, 15}})

where B(l;) = {l1, 13, 3}.

For the sake of simplicity, in each case, SP(X) is expanded on the lowest-numbered
element in set X. Further, an asterisk marked on a node of the tree diagram signifies
that the terms corresponding to the node have already been generated and, thus,
need not be expanded. In total, we have seven distinct nodes in this figure. Table 3.1
is constructed to store all the relevant information. The order of entries in this table
follows the traversal order of the tree in Figure 3.2. The entries in the SP(X — B(?))
and SP(X — 1) fields are obtained from the subordinate branches of the given node
X. The SP(X) value is generated by starting at the leafs of the tree with SP(¢) =1
and working back towards the root, combining subordinate nodes of internal nodes
according to Equation (3.2).

We generate the SP(-) expression for subsets introduced in the SP(V') expansion.
However, these subsets are not all that is needed. On the other hand, For performance
measures, we not only require SP(V) but also SP(V — B(i) — I(z)) for all . Subsets
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not generated in this tree are introduced by expanding the sets V — B(:) — I(i), for
1 € V, for the required numerators. Here, we include SP(V ~ (B(ls) U I(ls))) =
SP({l,}), which is the entry in row 8.

3.2.2 The iterative-estimation algorithm

The iterative-estimation calculating method for per-link throughput calculation
of a given communication network can be directly developed from Equation (2.14),

formall
ormally N ppy = SPV=BO=I6) _ oy 65)
PR SP(V) \P) -

where 7 = (p1,02...0a). Therefore, given an expected successful transmission rate
75, the tra.:'mission scheduling rate Bp; can be iteratively estimated by using

A = prmy (36)
with
SP&V - B(i) - I(1))

SP*N(V) '

where (¥ is the value of 7 after the k** iteration and SP*)(.) is the corresponding
SP(-) value for the estimated G** values. According to this expression, the g; values
can be iteratively computed for their new estimates given their current estimates. It
is reported [BK80] that if the system can support the given r;, then the iteration will
converge to a fixed point if we start with p; = r,. Otherwise, it will diverge. It is
clear that p; > r;.

To obtain the maximum throughput a link /; can support, we assume an initial

F(®) =

value for r; and apply the iterative-estimation method to determine the required
attempt rates. If the iteration diverges (and it does so quickly) then r; is too high,
the link will not support that much throughput. Otherwise, the iteration converges
to a set of attempt rates that will yield the desired success rate r;. If r; is too high,
we reduce its value and try again. If r; is too low, we increase its value and try
again. In this way, we may proceed in a binary search (or one using iterpolation)
for the maxdmum throughput supported by each link of the network. The blocking
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probability Pg(i) and interference probability P(z) of every element ¢ can be obtained
from the generated p values, as given by Equations (2.11) and (2.12), respectively.

3.3 The Channel Access Protocols

In this section, we consider some channel access protocols used in packet radio
networks. PRNs operating under these protocols satisfy the reversibility condition
of the blocking model. As the result, we can employ the computational-techniques
developed from the blocking model to measure their system performance.

3.3.1 The transmission interactions model

It is desired to provide a modeling framework which is general enough to describe a
number of channel access protocols yet sufficiently restricted to maintain reversibility
of the underlying Markov chain. To this end, we use the links of a network graph G
with a symmetric hearing matrix H = [h;;] as the elements of the blocking system.
The blocking and interference relations on the links are determined by taking the
topology of G and the access protocol into consideration. At the outset, we consider
distributed protocols in which a transmission may influence another transmission only
if they are topologically near one another. Specifically, a transmission may interact
with (block or interfere with) another transmission only if they involve a common
node or neighboring nodes. Transmissions not involving the same node or neighbors
are considered to be too distant from one another to influence each other in any way.
However, the blocking model does not preclude such interactions from consideration.

Let e;; = (¢,7) and ey, = (u, v) denote links of G connecting node ¢ to node j and
node u to node v, respectively. Under the limited range-of-influence assumption men-
tioned above, there are a total of eight topological situations in which a transmission
on link ey, may block or interfere with a transmission on link e;;. Figure 3.3 organizes
these eight possible cases into four classes with two levels within each class. Level
L1 consists of transmission pairs which may directly interact by involving a common
node, i.e., either both transmissions originate at the same source or the destination of

one is the source of the other or they have the same destination. Level L2 describes
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Figure 3.3: Possibility of transmission interactions in a symmetric hearing situation

transmission pairs which may interact indirectly via neighboring nodes. In the class
context, transmission interactions are described by relating a transmission on ey, to
transmitting node i and receiving node j of a transmission on e;;. In class C1, ¢;; is
effected by e, through the sources ¢ and u; either ¢ = u or u is a neighbor of i. In
class C2, e,; is effected by e, by coupling between the source : and the destination
v; either ¢ = v or v is a neighbor of :. Similarly, class C3 describes interactions where
coupling is between the source u and destination j; either j = u or u is a neighbor of
J. Finally, class C4 describes interactions that may occur through the destinations j
and v; either j = v or j and v are neighbors.

Thus, all transmission interactions are systematically categorized. This categories
provide a general framework within which different channel access protocols may be
described by identifying possible blocking and interference relations for each. We
point out that interaction case C4(L2) is not encountered in applying the model in
this thesis, because this situation does not correspond to any blocking or interference
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relation in the systems we consider. However, we include it here for completeness. [B
As was mentioned in Section 2.3, under the blocking model, every pair of ele-
ments in the blocking relation must be symmetrically related in order to [Bgenerate

a product-form solution. In this transmission-interactions model, the basic interac-

tions we consider are those in which transmissions on e;; are effected by transmissions
on ey,. To satisfy reversibility, the blocking relation must include the reverse inter-
actions. The reverse of each interaction is one of the given cases. For example, case
C1 (L1) is its own reverse; ¢;; and e,, exchange roles. On the other hand, the reverse
of interaction case C2(L1) is C3(L1). Thus, C2(L1) and C3(L1) form a pair of re-
versible interactions. If one is included, the other must also be included to maintain
reversibility. Each of the following sets describes an interaction case and its reverse:
{C1(L1)}; {C2(L1), C3(L1)}; {C4 (L1)}; {CL(L2)}; {C2(L2), C3(L2)}; {C4(L2)}. A
set containing a single case is an interaction whose reverse has the same topology. For
a set containing a pair of cases, the reverse of one interaction case has the topology
of the other.

Using the information provided in Figure 3.3, we will characterize the transmis-
sion interactions for different channel access protocols. We consider two common
protocols for networks with omnidirectional line-of-sight transceivers: Carrier-Sense
Multiple Access (CSMA) and conservative Busy-Tone Multiple Access (BTMA), both
of the nonpersistent variety. In addition, we introduce a nonrealizable protocol which
we dub Collision-Free Multiple Access (CFMA) and which provides an upperbound
on the achievable throughput capacity for any nonpersistent protocol operating in
a network with omnidirectional transceivers. CFMA is nonrealizable in the sense
that it requires information which is generally unavailable to a node operating in a
distributed environment. We also apply the model to line-of-sight networks with di-
rectional transmission capabilities. For these networks, we study Directional-CSMA
(D-CSMA) and a nonrealizable protocol which we call the Total Capacity Alloca-
tion Protocol (TCAP). TCAP is nonrealizable as a distributed protocol for the same
reasons cited for CFMA. It is used to provide an upperbound on the throughput
capacity of any nonpersistent protocol operating in a network with directional trans-
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mission capabilities. CFMA and TCAP are considered to measure the capacity of
the network for omnidirectional and directional transmission networks, respectively.
The operation of each protocol is described below:

CSMA Under CSMA, transmission attempts on a link are blocked if its source node
is currently transmitting or senses carrier from any node it can hear. In this
case, transmissions are omnidirectional. The transmission from a node will be
heard by all its neighbors. Therefore, all of its neighbors’ transmission attempts
will be blocked.

D-CSMA For D-CSMA, transmission attempts on a link are blocked if its source
node is currently transmitting or senses carrter from its destination node. Un-
like CSMA, transmissions in D-CSMA are directional, blocking and interfer-
ence may happen only when transmission interactions are directly invioved.
D-CSMA offers higher throughput values than that of CSMA.

BTMA For the conservative scheme of BTMA, the transmissions are omnidirec-
tional and collision free. A busy tomne is broadcasted by all neighbors of the
transmitting node. Transmission attempts on a link will be blocked when its

source node is currently transmitting or a busy tone is heared.

CFMA CFMA is a nonrealizable ideal protocol for networks with omnidirectional
transinission capability. The transmitter is assumed to know whether its trans-
mission will collide with an ongoing one or whether an ongoing transmission
will collide with it. A transmission attempt is blocked in either case. CFMA
provides an upper bound on the throughput for systems operating with omni-

directional transcetvers.

TCAP TCAP is a nonrealizable ideal protocol for network with directional-transmission
capability. The transmitter is assumed to know whether the intended receiver
is busy, either transmitting or receiving. A transmission attempt on a link is
blocked when either the source node or the destination node is currently in-
volved in another transmission action. TCAP provides an upper bound on the

throughput for systems operating with directional transceivers.
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Based on these descriptions, we can define the blocking and interference sets of
each link e;;, for each channel access protocol, in a systematic way. This representa-

tion is shown in Figure 3.4. These definitions are presented below. The numbers in
the set descriptions correspond to the cases depicted in Figure 3.4.

CSMA:
B(e"i) = {euv:(1)i=u’(2)i=v’(3)j=u1(5) h.i =1},
I(e;;) = {ew : (4) 1 =v,(7) huj =1}
D-CSMA.:
B(e"i) = {e“v:(1)i=ua(2)i=vs(3)j=u},
I(ei;) = {ew:(4)j=v}.
BTMA:
w: VNi=u,(2)i=v, 3)j=y 4)j=v,
B(eu) = { €5g by = ]E 26) h.,.-=£].),3(7) hu1(=){ }’
I(e;) = &
CFMA:
w: (Di=u, (2)i=v(3)1=u,4) 5=,
Blei;) = {e EG; '=1(,27 h,,,'-—(-%J b ) }’
I{ei) = ¢.
TCAP:

B(e"j) = {euv : (1) i =u7(2) 1=, (3).7 =u?(4)j=v}’
I(e;) = ¢

With these blocking and interference sets provided for each protocol, the TBG
and the RIG for the 4-node chain PRN of Figure 2.1 can be generated as depicted
in Figure 3.5. Based on the transmission interaction model of Figure 3.4 and its
application in Figure 3.5, we have the following observations:
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(2) i=v (3) j=u

lTu v u v: :u/i‘v :

(5) h; =1 6) h,=1 ) h, =1

Figure 3.4: Blocking and interference for: (a) CSMA, (b) D-CSMA, (c) BTMA, (d)
CFMA, (e) TCAP
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T EERe™ TN s

(1) i=u (2) i=v 3) j=u @) j=v

Figure 3.4: (Continued) Blocking and interference for: (a) CSMA, (b) D-CSMA, (c)
BTMA, (d) CFMA, (e) TCAP
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e BTMA, CFMA, and TCAP are collision-free as they are characterized by

I(ei;) = ¢. On the other hand, CSMA and D-CSMA are interference-susceptible
since I(e;;) # . These results can be verified by observing the RIG of each
protacol in Figure 3.5.

o All transmissions interactions of a directional-transmission system (with D-

CSMA or TCAP) belong to the first level of Figure 3.3. In other words, the
transmission operations are determined completely by direct interactions.

¢ For an omnidirectional-communication system (with CSMA, or BTMA, or CFMA),

some transmission interactions are indirect while others are direct.

e For an omnidirectional-transmission system, CSMA underprotects the system

since it causes some interference at the receiver; on the other hand, the protocol
BTMA overprotects the system since it eliminates the interferences by the ex-
penses of inhibiting some successful transmissions; CFMA ideally protects the
system since it eliminates the interference problem without the cost of inhibit-
ing any successful transmission. Similarly, for the systems with directional-
transmission, D-CSMA underprotects the system while CFMA ideally protects
the system.

Systems using TCAP have directional-transmission capability and they are
interference-free. TCAP can be thought of as as directional-BTMA or interference-
free D-CSMA.

Any pair of elements in a reversible transmission-interaction set must be simul-
taneousely present in the blocking model, as they are reflected in the TBG of
the system. However, symmetry is not required for the interference relation, as
is apparent from the RIG. The CSMA protocol demonstrates this in Figure 3.5.

Example 2.5(a). For the 4-node chain PRN of Figure 2.1, the rules for generating
the blocking and interference sets of each channel access protocol result in the TBG
and the RIG shown in Figure 3.5.



(1) CSMA

(2) D-CSMA
L E l ! L :
A\ 5
(@]
1 ~1 1
2 TBG? 6
(3) BTMA

Olz 014 O ls
RIG
1 1 I
o' o’ o’
O [2 O 14 O 16
RIG
(5) TCAP
g 3 ks L L !
O O- ok
lz Vl4 16 O 12 O 14 O 16
TBG RIG

Figure 3.5: The TBG and the RIG for different channel access protocols
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(2)

With element set V = {l], 12, 13,14,15, ls}, we have
CSMA.

B(h) = {h,la,la}; B(l) = {h,l, 13, L4, s}
g 3) = {l, 13,13, 14, 15}; B(ly) = {l2,3,4, s, 1s};
I

(

{!

(Is) = {l,15,1a, 15, 16}; B(ls) = {la,s,16}.
(1

1) = {l,5}; I(l) = ¢; I(h) = {l};
I(l) = {h}; I(ls) = &; I(ls) = {&, h}.

SP(V) = 1+4py + p3+ p3 + ps + ps + ps + p1pa + p19s + 0106 + P2p6 + Paps.

n_(1+s), rz _(+ps) 31:_1_.
o SPV)’ =SPVY SP(V)
e _ 1 7‘5 1+, 16 _14p
ps  SP(V)’ ~SP(V)' ps SP(V)
1
Pp(1) = W(Pl + p2 + p3 + p1Pa + 15 + prps + P2ps + P3ps);
1
Pp(2) = SP(V) =577 (P + P2+ p3 +ps + ps + pros + p1Ps + prps + paps
+ paps);
1
Pp(4) = SP(V )(Pz +p3+ps+ps+ ps+p1ps + 105 +p1ps + p2ps
+93P6)1
1
Pg(6) = gﬁ(-‘-,-)(m + ps + ps + p1Pa + p1os + p1ps + P26 + P3ps),

Ps(3) = Ps(2), Py(5) = P(4),
and
P(1)= T'Vj(/h +ps); P(2)=0; P1(3) = zpmy{pe);
Pr(4) = zpmy (); Pi(5)=0; Pi(6) = zpmy(p2 + )
(b) D-CSMA:

B(ll) ={h,b,};

B(l4) = {121 l31 147 157 16};

I(h) ={L};
I(ly) ={L};

(12) - {ll’ l2’l3’l4}7
(15) - l3,l4’l5a16}v

B(l) = {l, b, 13,14, 15};
B(ls) = {ls, 15,1}
I(l) ={ls};

I(ls) = {13}



SP(V) =1+ py +p2+ ps+pa + ps + ps + p1pa +p1ps + pi1ps + p2ps + P2p6 + Paps.

-% =
-;4‘» =
Pp(1)
Pg(2)
Pg(3)
Pg(4)
Pg(5)

Pg(6)

(c) BTMA.

={ll’12al3,l4115}; B(IQ)
B(l4) = M

B(h)

315:(\75(1 +pst+ps); Z2=zpm(ltes+pm) 5=
TRV

Yy
B =zpy(l+m+m) 2 =zpm(l+pt+ee).

+ +
SP(V) === (01 + p2 + p3 + pr1ps + p1ps + p1pe + p2P5 + P2P8 psps)

=5 +
SP(V) (p1 + p2 + ps + pa + prpa + p1ps + prps + P25 + P2p6
+mm%
+ p1ps + prps + Prps +

SP(V)(P1+P2 + p3 + ps + ps + p1p4 + p1P5 + P1Ps + P2P5
+ paps + p3ps);

1

= s + 104 + P15 + P16 +
SP(V)(pz+Pa+p4+ps+po P1P4 + P1ps + p1ps + P2ps
+ p2p6 + p3ps);

1
—_— + 06 + 2104 + P15 + prps + p2ps +
SP(V)(p3 + pg + ps + ps + P1Pa + P1Ps + P1Ps T P25 T P26
+ p3ps);

1
W(m + ps + ps + p1ps + P15 + P1P6 + p2ps + Paps + Paps)-

Pr(1) =§’1V)(P4) Pr(2)=0; Py(3) ='.#|[—5(P6)§
Pi(4)= SPJ‘W(PI), Pi(5)=0; P1(6) = zpwy (0s)-

v B(l) =V;
|4

B(IS) =V -B(IG) = {12, l:h 14’ 15, 16}7

and I(l;) = ¢, forall i € V.

SP(V) = 1+Px+m+p3+p4+ps+ps+pxps
oo (14 ps) . (1+P1)
m — SP(V)’ ps ~ SP(V)’
L S R G G
P B P3 P4—P5—5P(V)

Py(l) = SPI(V)(px+pz+pa+p4+ps+p1ps),




o

1
Pp(6) = 3?(—177(”2 +ps + ps + ps + ps + prps);
Ps(2) = Py(3)= FPs(4) = P5(5)
1
= ___-SP(V)(pl + 02 + p3 + pa + ps + ps + p1p6),
and
P(i)=0, forallieV.
(d) CFMA.
B(ll) = {11, 12,13,147 15}1 B(’?) = {[1’ I2a l3a 14’ 16}1 B(l3) = V;
B(l) =V, B(ls) = {h,,l,15,l6}; B(ls) = {l2, 3,14, s, 15},

and I(l)) = ¢, for alli € V.

SP(V)= 1+p1+p2 + o3+ ps + ps + ps + pr1p6 + P2ps.

™ (1+p5)‘ To (1 +p5) T3 1

7 SP(V)' p SPV)' p SP(V)
T4 1 s _ 1+p2. T5_1+p1

— . —
———— ————————— ——

o SP(VY'  ps SP(V)' g SP(V)

o
P
p—
S’
il
'H

(p1 + p2 + p3 + pa + ps + prp6 + p2p5);

o
—~
()
~—
]

(p1 + p2 + p3 + pa + ps + ps + p1ps + paps);

&
~
D
S
i

'l—‘

(p1 + p3 + pa + ps + ps + p1ps + p2ps);

>
~—~
=)
S’
i

-

(p2 + p3 + ps + ps + ps + prps + P205),

Ppg(2) = Pg(1) Pg(4) = Pg(3),

and
P(:1)=0 forallieV.
(e) TCAP.
B(ll) = {11,12,13,14}; B(lz) = {11,[2,13,14}; B(ls) =V,
3(14) =V, B(ls) = {13,14,15,16}; B(Is) = {3, l, b5, 06},
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and I(l;)=¢, forali € V.

SP(V) =1+py +pm+ p3 +ps+ ps +ps + prps + p1ps + p2p5 + p2s.

no_ 1a_(+ptos) m_Ta_ 1
pm pr SPV) ps ps  SP(V)
Ts _ _1'3=1+p1+p2
Ps 61 SP(V) -

Pg(1) = 3‘73'("73(/’1 +p2 + p3+ pa + p1ps + pips + P25 + P2pe);

1
Ps(3) = -§,T1,—)(m+pz + ps + pa + ps + pe +,Ps + p1os + paps -+ pape);

Pg(5)

g‘P-l(‘V-)(Ps +ps + ps + ps + p1ps + pips + paps + P2p6);
Pg(2) = Ps(l);  Ps(4) =Ps(3); Ps(6)=Pg(5),

and

P(:)=0 forallieV.

3.3.2 Relative measurements of channel capacity utiliza-
tions

Channel capadty utilizations can be obtained for each practical protocol (i.e.,
CSMA, D-CSMA and BTMA) by wing CFMA and TCAP as channel capacity mea-
sures for omnidirectional and directional transmission networks, respectively. We
define the utilization of a link’s capacity as the ratio of the maximum thrBough-
put value achievable under a given protocol to the corresponding throughput value
achieved in the same network under CFMA or TCAP, for the same transmission
attempt rate. Since CFMA and TCAP generate the maximum possible throughput
values, these relative measurements give the percentage of each link’s total capacity
thay can be utilized with the given channel access protocol in an omnidirectional or
a directional transmission environment, respectively. We refer to these as the rela-
tive channel capacity measurement for omnidirectional transmission (RCCMOT) and
the relative channel capacity measurement for directional transmission (RCCMDT),
respectively. Note that D-CSMA is a protocol for directional transmission systems.
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D-CSMA should, therefore, be measured relative to TCAP only. However, commu-
nication networks with the omnidirectional transmission protocols (i.e., CSMA and
BTMA) can be measured relative to either CFMA or TCAP. TCAP measures the
total capacity of the network since it achieves as many successful transmissions as
the topology of the network will support.

In general, given a system with channel access protocol X, we define

() = Wﬁﬁ(’,—) (37
1) = k) 3.9)

r$eA @)’
respectively, as the RCCMOT and the RCCMDT measurements for directed link /;,
where r(X) (1) is the maximum throughput value over link I, for channel access proto-

col X, and r&FMA(L;) and r1C4P(1;) are the throughput values over link | evaluated,
respectively, for CFMA and TCAP at the attempt rate p; where r(X) (1) is achieved.

3.4 Partition Functions of Blocking Systems

In Section 2.3 of Chapter 2, we concluded that the steady-state probability distri-
bution of the reversible stochastic blocking system with n elements V' = {1, 2,..-,n}
is

A9 =) [[pi = Q) ez - o,

where b(S) = by b, - by is the bit pattern of the state S, and Q—(¢) = SP(V) is
called the partition function of the given system. The partition function will also be
denoted as 5(G, P) signifying that it is a function of the topology of the network G and
the scheduling-rate vector 5, where 3= (1,02, - - , pn). B(G,p) describes the depen-
dencies among the elements of the systern and it is defined by the network topology
and the channel access protocol. 3(G,7) is completely described by the TBG, more
specifically, by blocking interactions at the transmitting end of transmissions only.
It is independent of the interference at the receiving end, which is described by the

RIG. Spedal considerations can be placed upon (3(G,p) and they will be presented
in the following subsections.

60




3.4.1 The partition function of an interference-free system

For a communication system operating under an interference-free protocol, I (3) =
¢, for all i € V. In this case, Equation (2.14) is modified as

‘e ey _ SP(V = B(3))
% = P(B(i) isidle) = SPV)

With an interference-free communication system, transmissions never experience in-

terference at the receivers and hence, ever~ transmission is successful. Thus, trans-
mission attempts result in successful transmissions if and only if they are not blocked
by the protocol in effect at the transmitters. As usual, the states of the system are
the independent sets of the blocking graph. The interference probability is zero over
each channel. In general, for each element i in the system, the state space implied by
the partition function SP(V') can be separated into two parts: (1) states containing
elements j € B(z) block element i; and (2) states contain only elements j € V' — B(7)
do not effect element i's activation, allowing 7 to be successful. Thus, we write

. _ SP(V)= SP(V - Bli)
Ps(t) = SEY) :
Pi(z) = 0.

In addition, given a partition function SP(V) of a general communication system
(which is not necessarily interference-free), we observe the following result:

Theorem 3.2 The partition function SP(V') of the blocking model satifies

SP(V))
Opi

The proof of this Theorem is given in Appendix B.

Therefore, for the interference-free system, the probability of successful transmis-
sion over link /; can be expressed as the probability of successful transmission over
link ¢ can be expressed as

Ti _ din(SP(V)) _ 1 O(SP(V)) _N @_
pi s  SP(V) 0pi ~ D(G)
while its blocking probability can be written as
SP(V)- SP(V - B(1)) _ D(U);N (G
SP(V) - DG) '’
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where N(G) and D(G) are respectively, the numerator and denominator polynomials
in the expression for ;/p;.

Typical interference-free systems are communication networks with BTMA, CFMA,
or TCAP. However, common networks such as a complete network and a ring network

are also interference-free systems under CSMA or D-CSMA, for the given assump-
tions of the model.

Example 2.5(b) (continuation of Ex.2.5(a)) |
(a) CSMA. ‘
By letting o1 = p1 = p2 = ps = pe, P2 = p3 = pa, We have

B(B) = SP(V) =1+ 44, +2p2 + 26152 + 352

Let f‘l =T =T =Ts=T¢
have g3 = p1(1+p1). Then

=é‘%§)é‘l,f*2=r3=r4 ﬁ() Whenr =7 =7, we
< Ai(1+5)

Bp) °’
with 3(p) = 1+ 6p; + 73 + 243, Further,
. 1 1
Pg(1) = Pg(1) = Pg(6) = == (2p1 + p2 + 302 +2p1p2) = == (3p1 +65% + 2
8(1) 8(1) = Pp(6) ﬂ@)( p1 + P2 +3067 +26152) ﬂ(..)( p1 A1);

51)

PB(2) Pp(2) = Pg(3) = Pp(4) = Pp(5) =

1 ﬂ(-'
= m@ﬁl +70} + 24}).
Q) = PV = Fi(6) = 57550+ o) =252,
PO = RO)=PO=0
B@®) = B(0)= P =L
(b) D-CSMA.

By letting p1 = p1 = p2 = ps = ps, and g2 = p3 = py, We get
B() = SP(V) =1+4p + 252 +2p1/7 +443.

62



Let# =1 =1 =r5=rs-ﬂ-(‘1,r('*-'3)mandr2—r3 =1y = ﬂ(ﬁ). Whenr =7, =7y,
we have g2 = p1(1 +2p1). Then

Al +2p4)
"~ BG)

with 8(p) =1+65; +10p +4p§ In addition, we have

Ps(1) = Ps(1) = Ps(6) = ﬂ(. (2p1 +p2 + 451 + 261/0) = ﬂ(, (351 +84% + 441);

Pp(2) = Pp(2) = Pp(5) = ﬂ(-)(2pl +20 + 201p2 +4p}) = ﬁ(’ (4p1 +105% +44});

ISB(3) = Pg(3)= Pp(4) = 13(1 (361 +2p2 + 2152 +447) = ﬁ(-x (561 +10p2 + 443)-

(c) BTMA.
By letting 5y =p1 =ps, f2 =p2 = p3 = ps =ps, We obtain

B() =SP(V)=1 +2%; + 42 + 2.

& =45 (n(B(B))) = G5 Py(1) = 55 (b1 +4p2 +i})
% =%3%;(ln(ﬂ(px))) = 'g_(lzj; PB(“) 35 )(2P1 +4062 +P2)
Let 7 = 7 = 7, we get py = p1(1 +/1) and B(p) =1+ 64y +5p3. Therefore,
__All+5h) .
—_—_1+6ﬁ1+5ﬁ%’ Tmaz = T|p—c0 = 0.2.
; _ 5o +561
PB(l) - PB(l) PB(G) 1+6Pl+5P2’
B™ = 8(2)=Pa(3)=Pa(d) = Pa(s) = —LE 2P

1+6p + 50
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(d) CFMA.
By letting 51 =p1 =, = ps =ps, p2=p3 = ps, We have

B@) =SP(V) =1+ 4p, + 25, + 252

& =12 (Inf(p)) = “7’*;‘,3‘-2 Py(1) = g(3p1 + 22 + 26%)
2 = 1:2-(n6(3)) = 75 Py(2) = T(4px +262 +24%).

Let r = 7 = 7, we get /= p1(1+51) and B(p) =1+ 65, +453. Thus,

__o{l+p) _ _
= Th6h 445 T = Tlae =025

. 5p1 +4p2
Py(1) = Pp(1)=Fp(2)=Ps(5)= Pa(6) = 1 +'p'épl ﬁﬁ%‘

- 661 + 45+
B(2) = Ps@3)=F 3(4)=1+péﬁ: +pi/3?'

(e) TCAP.
By letting py = p1 = p2 == ps = ps;, and p2 = p3 = p,, we have

B(p)=SP(V) =1 +4p, + 2p, + 442

2 =155 (n8(3)) = ‘“) : Pp(1) = 3k (261 + 262 +44Y);
2 =335 (nB()) = 555 Py(2) = 55 )(4/)1 +2p2 +44%).
Let 7 =7, = 7, we get o = p1(1+261) and B(p) =1 +6p; + 853 Therefore,
— ﬁl(l + 2ﬁ1) — . —_N9
1765 187 6 850" Tmaz = T|p—co = 0.25.
Pg(l) = Pg(1)= Pg(2) = Pp(5) = Py(6) = M
1 +6P1 +8pf’

661 + 843

Py(2) = Pg(3)= Pp(4)= T765 787



p3
(b)

Figure 3.6: Effects of channel access protocol on throughput: (a) Throughput versus
p1, (b) Throughput versus p,
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The throughput comparisons of the given 4-node chain PRN with different channel

access protocols are presented in Figure 3.6.

The RCCMOT and the RCCMDT over links /; and I; of this 4-node chain PRN
are shown in Table 3.2 and Table 3.3, respectively. In this 4-node chain network,
T¥(1,) = TE(U;) for all protocols, whereas T5¥(l) = T4%X)(l5) for D-CSMA and
BTMA, and T4X(l3) > T80(4;) for CSMA.

Table 3.2: The RCCMOT and the RCCMDT for link /; of the 4-node chain PRN

Protocol (X) | pi ro(t) | re () [y M (R) | V() | T2 ()
[CSMA 0.7070] 0.1277 | 0.1667 | 0.1847 0.7661 | 0.6014
D-CSMA__ [0.7072 | 0.1464 | - 01847 |- 0.7926
BTMA o |02 0.25 0.25 080 | 080

Table 3.3: The RCCMOT and the RCCMDT for link I3 of the 4-node chain PRN

Protocol (X) | 03 rX () | PV () [ rhe (1) | TV (1) | Ta ()
CSMA 1.2068 [ 0.1277 | 0.1667 0.17%4 0.7661 |0.7364
D-CSMA 1.7067 | 0.1464 | - 0.1847 - 0.7926
BTMA =~ 0.2 0.25 0.25 0.80 0.80

3.4.2 The partition function for systems with uniform nor-
malized activation rates

For a given system with uniform normalized activation rates, we have p; = p for
al ¢ € V, where V = {1,2,...,n} is the set of n elements in the system. Then for
any state S € (, the steady-state probability distribution is

Q(S) = Q(¢)A*. (3.9)

The partition function is,
G,p) = "= I = S P(G, k),
B(G,p) = (Q(4)) 5);/) Z: (G, k)p
6

6



where P(G, k) is the number of distinct independent subsets of V' having k ele-
ments. Under this uniform situation, every element behaves identically. Then, for an

interference-free system,
r _ 18Inf(p) _ N(p).
Fa n ( )ap N(_) D(p)’ (3.10)
- U=

where n is the total number of elements, and Pb is the blocking probability for every
element in the system.

3.5 The Partition Functions for Systems with
TCAP

As demonstrated in Subsection 3.4.1, a communication system is collision-free for
BTMA, CFMA, or TCAP. In this section, our attention is focussed on TCAP for its
special relation to network topology.

Based on the rules to generate the TBG for TCAP, a scheduled transmission
over directed link /; from source s; to destination d;, is blocked by the activation of
any directed link originating from, or destined to, node s; or d;. Therefore, given a
directed network G, a given link will be blocked by its adjacent links. Using this rule,
the partition function is directly obtained from the network. For TCAP, the partition
function assumes a special form, which is related to the matching polynomial. The
matching polynomial [GG81], [Far79], [God79] has been studied in graph theory.
It occurs in various forms, none of which is exactly the form we require. In the
following, we borrow some of the results known in the literature and reshape them
for our problem. The proofs of these properties are presented in the appendices for
completness. In this context, we refer to our form of the matching polynomial as the
matching function c(G) of the matching network G. G is defined as an undirected
graph which has the same topological connection as the directed graph G.
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3.5.1 The matching function of the matching network

In order to obtain some computational results that o(G) can provide to 8(G),
we first need to describe the matching function a(G) of the matching network G,
then, we establish the relations between (G) and the partition function 3(G, p) of
the directed network G. For simplicity of analysis, we assume uniform normalized
activation scheduling rate 5 over each edge in G.

Definition 3.1 Two edges (i,5) and (u,v) of an undirected graph G' are indepen-
dent if they have no node in common, i.e., i #4, t #v, ) Fu, and j #v.

Definition 3.2 A matching of an undirected graph G is a set of pairuise indepen-
dent edges of G.

By a matching network, we mean a system in which interference takes place only
for adjacent (non-independent) edges.

Definition 3.3 Let G be an matching network of n. vertices and P(G, k) be the num-
ber of ways in which one can select k independent edges in G, k= 172,...,|n/2],
where P(é, 0) S| for all G. Then the matching function a(é) of the graph G is

given by /
- ~ Al
(@) =a(Gi)= Y P(GHF. 312
k=0

Let e be an edge incident to the vertices v and w. Among the P(G,k) selections
of k independent edges, there are P(G - e, k) selections which do not contain ¢ and
P(G-v — w,k ~ 1) selections which contain e. Thus,

P(G,k) =P(G - ¢,k) + PG~ v-w,k - 1). (3.13)
From this property, it {5 easy to establish the following,
Theorem 3.3 The matching function of the matching graph G satisfies

oG, 5) =G -e,p) + oG —v - w, ). (3.14)
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The proof of Theorem 3.2 is given in Appendix C. Note the similarity of Equation
(3.14) to Equation (3.2). Equation (3.14) simply expresses the recursion of Equation
(3.2) in terms of edge and node deletions in G, when the elements of the blocking
model happen to be the edges of G and the blocking relation 1s the dependent-edge
relation on the edges of G. In this model, the independent sets of the blocking graph
are the matchings of the graph G.

Corollary 3.1 Let the vertez v be adjacent to the vertices wy, wy,...,wy. Let further
H=G- v, then ]
oG, p) = ol H,p) +5)_olH - wj, p). (3.15)

J=1

The proof of this Corollary is given in Appendix D.
Theorem 3.4 For two matching networks G1 and G2, it is true that
a(G1U G2,5) = o(G1, 5)a( G2, j). (3.16)
This theorem is just the application of Equation (3.1). Its proof is omitted.

3.5.2 Relationship between partiv.on functions and match-
ing functions

The matching function a(G, j) of the given network G refers to sets of possible
successful activations of edges in the system. In order to use the partition function to
analyze the communication network with the directed graph G, we need to establish
a general relation between (G, §) and 8(G, p). A communication network operating
with simplex data links, such as a switch, can be represented by a directed graph G in
which every pair of nodes is connected by a single directed link. In this case, an edge
in G corresponds to a directed link in G. Therefore, 3(G, p) = (G, 5). However, for
a communication system operating with half-duplex data links, an edge connecting
a parr of nodes in the network represents two possible transmissions, one in each
direction. In other words, activation of an edge in the matching network represents
the activation of one of the two directed links corresponding to this edge. In this
case, j = 2p, and (G, p) = a(G, §)\ =z
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Therefore, for a network G operating with simplex data links, we have,

B(G,p) = P(G—-e,p)+pB(G—v-w,p); (3.17)
d
ﬁ(Gap) = :H(Ha P) +P Zﬂ(H - whp)v (318)
J=1
B(GLUG2,p) = B(GL,p)B(G2,p). (3.19)

Similarly, for a network G operating with half-duplex data links, the relations
between its partition functions are

B(G,p) = B(G—ep)+208(G—v—-w,p); (3.20)

d
B(G,p) = B(H,p}+2p ‘_/_;H(H - wj, p), (3.21)
B(G1U G2,p) = B(GL,p)B(G2,p). (3.22)

Example 3.7. Consider a circuit-switching 3-cube network H operating with half-
duplex data links. Assuming its transmissions are one-hop only, then its performance
can be measured by relating to the partition functions.

For the development of its throughput expression, we refer to Figure 3.7. Let
H, be obtained from H by removing 2 adjacent nodes. Then given a normalized
attemnpted transmission rate of p;; from node ¢ to node j, the successful-transrission
rate can be expressed as

rij = pijPrlno blocking at i and j] = p;; P(¢, J) = pij Q(S).
SCHa

Under symmetric loading, 7; =7, and p;; = p. Therefore, the per-link through-

put is
r=p Y Q(S)=pB"1(H,p) Y A,
5;2 3;2

where B(H, p) = Ysc g p'1. Since (Hz, p) = Lsca, o, the per-link throughput is
— ﬁ(H2’p)
"TPBH 0
Since there are 24 directed links in H, the network throughput is = 24 - . Similarly,
by using Equation (3.10), we also have
r= ﬂb%ﬁ(H,p)
24 ((H,p)
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Figure 3.7: Decomposition of the hypercube H

Therefore, we can write 5
=LY
According to Equations (3.21) and (3.22), we obtain

B(Ha,p) = B(CHs,p)+20(28(CHy,p) + B(CHy U CHy, p));
B(CHs,p) = 1+8p+120%
A(CHy,p) = 1+6p+49%
B(CH;UCHy,p) = B(CH,,p)B(CHs,p) = (1+20)(1+2p) = 1+4p +4p%;
B(Hy, p) 1+ 14p +44p% + 240°,

where CH, is the chain network with n nodes. Let H; be obtained from H by deleting
one node, then

B(H,p) = B(H,p)+6p0(Hy,p);
A(Hy,p) = B(H-1%p) +4pB(H - 1" - 2°, p)
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where L, is the Loop with n nodes. Since 8(Ly,p) = 1+ 8p +8¢* and 3(CHs, p) =
1+ 4p, then

B(Hy,p) = 1+ 18p+ 840" +88p%
B(H,p) = 1+24p+1680"+352p° + 144p*.
Therefore,

_ BH0) _ P 26(H,p) p+ 14p% +44p° + 24p*
=PAHp) ~ 24 BH,p) 1+ 24p+ 1680 + 3520 + 144p"

and
Ph= 10p + 1240 + 328p% + 144p*
T 14 24p 4 168p2 + 3520°% + 144p*”
So, "max = limp—.., 7 = £. The performance measures are demonstrated in Figure

3.8.

3.5.3 The partition functions of some regular graphs

Regular graphs or graphs with symmetric topologies lead to simplifications in the
sum-of-products expression for (G, p) and hence to recursions or even closed forms.
Jn: this section, we generate recursive expressions for partition functions of networks
with regular tupologies. Specifically, we consider the partition function for the path
network P,, the cycle network C,,, the completely-connected network X,, the crossbar
switching network K, m, and the recirculating shift network RS,, respectively.

The results are directly presented here. Their detailed developments are given in
Appendix E. We assume unidirectional transmissions in the networks P, Cp, Kom
and RS, and bidirectional transmissions in the network Kn.

(a) Cycle network C, and path network F,.
A cycle network is a directed network. For every node in the network, there are
two directed links associated with it: one originates from it and the other terminates
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Figure 3.8: Performance measures of the hypercube network: (a) Throughput, (b)
Blocking probability
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Figure 3.9: Some typical regular graphs
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at destinated to it. Figure 3.9(a) shows the 5-node cycle Cs. The path network results
from the cycle network when one directed link is removed from it. Figure 3.9(b) is
the 4-node path P;.

The partition functions of a cycle network C;, and a path network P, satisfy the
following relations:

B(Cn,p) = B(Pa,p) + pB(Pa2p), (3.23)
B(Crip) = B(Pa-1,p) +208(Fa-2,p), (3-24)
B(Fa,p) = B(Pu-1,p) + pB(Fn-2,p), (3.25)
B(Cnsp) = 20(FPa,p) — B(Pa-1,p), (3.26)
B(Fasp) = 7 : o (B(Chs1,0) +20B(Chs p)) » (3.27)
B(Cn,p) = B(Cu-1,p) +pB(Cr-2,p), (3.28)
with
B(P,p)=1; B(P,p) =1+p,
B(Cr,p) =1; B(Ca,p) =1+ 2p.

(b) Complete Graph K.

The complete network K, is formed by connecting each possible pair of the nodes
in the given node set NV of the graph G = (N, L). Figure 3.9(c) shows K.

By applying Equation (3.21), we have

B(Ka,p) = B(Kn-1,p) +2(n - 1)pB(Kn-2,p); (3.29)
(n-4)/2 &
B(Kn,p) = [1+2(n - 1)p|B(Ka-2,p) + ; [1(n~ 25)(20)* B(Kn-2-2¢, );

B(Knrp) = [1+2(2n = 3)plB(Kn-,p) — 4n —2)(n ~ 3)p*B(Ksrp);  (3.30)

(n-2)/2 &k
BKn,p) = BKa-1,0)+ Y. [(n— 25+ 1)(20)* B(Ea-1-2x, p);

k=1 ;=1

B(Enrp) = [142(n = 1)plB(Kn-1,0) — 4n = D(n - 2)p*B(Kaz,0),  (33D)
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with (K1, p) =1, [(Kz,p)=1+2p.

| (c) Bipartite Graph K, ,
In this type of graph, the node set is divided into two parts: n input nodes and
m output nodes. The graph is formed by connecting each input node to each output
node. Figure 3.9(d) is the graph K 4.
By applying Equation (3.18) to the K, graph, we have

,B(Kn.m’p) = g ( 'J,;n ) '(;%ﬁpk;

BIKamp) = B(Knm-1,0) +npB(Kn-1,m-1,p); (3.32)
m-1
ﬁ(kn,mv P) = (n f‘m)'pm + ;0 (_;?__!'lc_)'!pkﬁ(}{n—k.m-k-lap);

m

B(Bomp) = (14191t 0) + 3o 0= (= DL 06K )
& m—k)”

ﬁ(I(n,rmp) = [1 + (m +n - 1)P]ﬂ(lcv.-l,m—l’ p)
- (n = 1)(m - 1)0*B(Kn-2,m-2,p); (3.33)

ﬂ(}-{n.rm P) = (1 + np)ﬂ(Kn,m-lap) - n(m - l)pzﬂ(I{n—l,m-%pL (334)

with B(Kag,p) = 1, B(Kn1,p) = 1 +np.

(d) Recirculating shift network RS,

The structure of a recirculating shift network RS, is lik= the bipartite graph K, 5,
however, K, has n links connecting each input port to all output ports while each
input port of RS, is connected to only two output ports. If we remove one edge from
RS,, we obtain the retwork R, which is required in deriving the recursive expression
for computing the RS, network throughput. Figure 3.9(e) and Figure 3.9(f) show
the network RS, and the network Ry, respectively.
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By applying Equations (3.18) and (3.19), we have

ﬁ(RSmP) = (1+2p),3(RS_1,p) Pzﬂ( RS,-2,p); (335)
B(Ra,p) = (1+2p)8(Ra-1,p) — P*B(Rn-2, ), (3.36)
for n > 3, given
B(RS1,p) = 1l+p; B(R,p) = 1+p;
B(RSy,p) = 1+4p+2p% B(Rz,p) = 1+3p+p?
B(RSs,p) = 1+6p+90%+2p°, B(Rs,p) = 1+45p+6p%+p.

In addition, the following expressions can be generated:

B(R5n,p) = (1+3p)B(RS,-1,p +Z( ~1)'p'(1 +4p)B(RSn-1-:, P);

1=1

B(RSn,p) = B(Rn,p)+ pB(Ra-1,p); (3.37)
B(Rup) = T8RS A) ~ Top RS,
B(Rasp) = T3 B(RSun,p)+ 7L RS (339)



Chapter 4

Applications of the Blocking
Model in Packet Radio Networks

In Chapters 2 and 3, we described and extended the blocking model for communi-
cation network systems. This model defines a pair of relations in which information
concerning blocking and interference are represented. We can carry out performance
studies for many network systems with the computational techniques developed for
this model. In this chapter, we will apply the model to study the performance of
packet radio networks (PRNs).

4.1 Some Basic Considerations

In applying the blocking model to a communication network with topology G =
(N, L), it is preferable to refer to directed links /; € L rather than nodes j € NV as the
basic elements of the system since this allows us to solve some problems that would
otherwise be precluded. For example:

(1) For communication networks with directional-transmission characteristics,
such as a network using D-CSMA, transmission operations can only be described
by activations of directed links in the network graph.

(2) In employing this blocking model to a multihop broadcast network with
virtual-circuits, where many channels may co-exist in each data link, we assign a
weight w(l;) to each directed link ; of G to designate the number of channels within
that link. It is usually true that the weights of directed links originating at the same




node are different. In this case, performance can be measured much easily when we
consider directed links as basic elements.

With transmission interactions among the directed links /; in a PRN governed
by the TBG and the RIG, we measure the performance of networks for each of the
following channel access protocols: CSMA, BTMA, D-CSMA, CFMA and TCAP. In
applying this blocking model to a PRN with arbitrary topology, the computational
techniques explained in Chapter 3 are directly applied. However, efficient imple-

mentation of these techniques requires appropriate data structures and programming
procedures. Considering this, we integrate the procedures for computing performance
measures with some additional algorithms, so that performance studies can be sys-
tematically carried out for any system which can be described with the blocking
model.

4.2 Additional Algorithms Required for Perfor-
mance Measures

Basically, we include the following two preprocessing algorthms to calculate per-
formance measures for a variety of PRNs: (1) Generation of the TBG and the RIG,
and (2) calculation of the link weights. These are explained in the following subsec-
tions.

4.2.1 Generation of the TBG and the RIG
As was presented in Subsection 3.3.1, there are, four classes of interactions that

e;; can have with e,,, namely,

1. G (ei; is effected by ey, through the sources 7 and u):
o (L;) The sources of e;; and e, are the same (i = u),

¢ (L;) u is a neighbor of i (h,; =1).

2. G, (ej is effected by ey, by coupling between the source ¢ and the destination

v):



o (L1) The source of ¢;; is the destination of ey, (i = v),
o (L) v is a neighbor of ¢ (h,; =1).

3. C; (e;; is effected by ey, by coupling between the destination ; and the source
u): :
o (L) The destination of e;; is the source of e, (j = u),
o (L) u is a neighbor of j (h,; =1).
4. Cy (e;; is effected by ey, through the destinations j and v):

o (L1) The destinations of e;; and ey, are the same (v = j),
o (L) j is a neighbor of j (h,; =1).

Therefore, by identifying all these interactions between ¢;; and e, for each pro-
tocol, we can construct the corresponding TBG and RIG. Note that the numbers C,
and Lj, 1 =1,2,3,4, j = 1,2, in the equations represent, respectively, the class and
the level of the transmission interaction in the model.

e For CSMA:
e
Bles) = {ew: gioa):jmu [
5.(Ci(La)) : hui =1
4(Cy(Ly)) : j =
Ie) = { 7§03§ng§ =1 }
e For D-CSMA:

Bleij) = eu: 2(C2(L1)):i%v };

{ UCi(Ly)) :4
ACs(Lh)) : J

I(eij) = {ew : HCy(L1)): j=v}.
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BRI, e T

¢ For CFMA:

{ YC (L)) :i=u )
A

Bles) = few: gGyL):j=v |

G(Cz(lq)) thy=1

| NG(L) =1 |

I(e;) = 0.
e For TCAP:
iehis:
Bley) = Jew: 3CyL)):j=u [
4Cy(Ly)):j=v
I(e;) = 0.

Therefore, the blocking set B(e;;) and interference set I(e;;) for every link e;;
in the system can be systematically generated. The state space of the system can
be generated by using Equation (3.2). By applying the computational-technique in
Subsection 3.2.2, the throughput over each directed link /; can then be calculated.
The blocking probability Pg(z) and the interference probability P;(z) are obtained by
direct applications of Equation (2.11) and Equation (2.12), respectively.
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4.2.2 Generating a routing for the network

In a muitihop communication network operating virtual-circuits, routing has to
be established for transmissions from each station to the other stations. We consider
static routing, where the transmissions between pairs of stations follow pre-establisied
paths. Further, we assume each virtual circuit is routed along a single path (a shortest
path) connecting the end nodes. Thus, each directed link /; in the network may carry
traffic for more than one virtual circuit. The number of channels w(};) using link /; is
called the weight of directed link /; and it depends cn how traffic is routed through
the network.

To explain this concept further, we once again refer to the 4-node chain PRN of
Figure 2.1. Let gyj, 2 # j, be the required successful-transmission rate from node i to
node j. The traffic matriz R = [o;;] gives the required throughput for each possible
channel in the network. For the four node network,

0 01,2 013 O14
R=|021 0 023 024
031 032 0 034
041 012 0s3 0
To simplify, we assume uniform end-to-end traffic requirements, where the re-
quired successful-transmission rates between all pairs of stations are equal, 0;; = o
for all 7,5 € N. The R matrix has the form

0 o
R=UO

o o
g g

S Q9 Q
S Q9 Q Q9

In order to achieve an equal successful-transmission rate ¢ over each channel, th~
successful transmission rate over each link /; will have to be r, = w(l;)o. Note: Links
which carry no trafhc have w(l,) =0, and, hence r; = p; = 0 for all such links. They
are not considered as elements of the model but they must be used to determine
possible interactions between links which carry nonzero traffic.

In order to calculate the link weights, we need to find transmission paths between
every pair of nodes in the network G. Floyd’s algorithm [ST81] provides a solution
to this problem. We briefly explain it here.
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Let d;; denote the length of directed link e;; in graph G, and D = [d;;] denote the
m x 'm matrix of directed lengths in G. As a simple approximation, we will use the
hop count as a measure of path distance. Thus

1 je NBR();
dij = {

0 j=z;
oo j#1iand j & NBR(:),
where NBR(?) is the set of neighbors of :.

Starting with the matrix D(® = D, Floyd's algorithm constructs a sequence
D D@ ... DM of mxm matrices so that the entry dg") in D(™) gives the distance
from node 7 to node j in G. The matrix D® = [dff)] is constructed from the matrix
D*-1) =[d~V] according to the following rule:

k . Ak=1) fk- k=
dgj) =Tmn{d§j ) iy l)+d$cj 0y,

If we let pg-‘) denote a path of minimum length among all the directed ¢ to j paths
which pass through nodes from the set {1,2,:--,k} only, then

for0< k<n, dg‘) is equal to the length of pg-‘).

The weight of a directed link is generated by counting the number of paths us-
ing the link. Not only do we need to know the shortest distance between every
pair of nodes in the network, we also require a path which has this length so that
the weight of each directed link in the network can be determined. As a result, in
addition to constructing the sequence D©®, DV, ... D{™) we construct another se-
quence Z©®), ZW,... | Zm) of matrices such that the entry 2}’ of Z*) gives the node
immediately following node 7 in p{}). Starting with Z(®), where

(.9)={ j ifdi#oeo;

gl 0 ifdj=00,
Z®) = [2{9] can be obtained from Z¢*-V = [245"Y] according to the following rule:
Let

M = min{d{§™,d§™ +di570}, (4.)
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ST AR e

then
(k=1 if Af = g6V,
W | @ - EM=dm 4.2
& {z,(,%-‘) if M < D). (42)

Therefore, if M = d$~", then

length of pg-‘) = length of p,(f‘l),

k k-

On the other hand, if M < dg-“l), then

(k) — (k-1)

k-
Di;” = Dik (=1

concatenated with p.” ",

and

k k-
2.(,') = Z.(k b,

The shortest i to j path is given by the sequence 7,115, - - - yip,J of nodes: z; =
z,(J'-”), 19 =z§3), i3 = z,(;?), «oryand, J = z,(;?).

Example 4.1 Given the 4-node chain PRN of Figure 2.1, Floyd’s algorithm gen-
erates the z; entries given in Table 4.1. By following the entries in the matrix from
any row 1, for any column j, we construct the shortest path selected by the algorithm
from node ¢ to node j. For instance, messages from node 1 to node 4 follow the
path (1,2),(2,3),(3,4). The order of node activations is (1,2,3). Table 4.2 gives
the order of directed-link activations for each source-destination pair, as well as the
weight w(l;} of each link /; in the network.

The throughput that a link /; must support for uniform end-to-end traffic is simply
ri = w(l;)o. Note that the corresponding network under uniform link traffic can be
considered as the special case with w(l;) =1 for all /; € L. We consider both of these

cases in our analysis.

4.3 Performance Analysis

In this section, we analyze the performance of different PRN systems by employ-
ing the iterative-estimation algorithm presented in Chapter 3. The analysis will be
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Table 4.1: Nodal activations in constructing the shortest paths for the 4-node chain

1 2 3 4
1(-12]2]2
211]-13}3
312}12]-1]4
4{3]3]3]-

Table 4.2: Generating the routing for the 4-node chain network

Transmission from | Activation sequence of links /; in the network

node i to node j

1 - 2 11

1 - 3 11 - 13

1 - 4 11 — l3 - 15

2 = 1 12

2 —- 3 13

2 —- 4 l3 — 15

3 = 1 ly — ly

3 = 2 l4

3 g 4 ls

4 — 1 12 — l4 — ls

4 — 2 l4 — 16

4 - 3 ls
w(h)) =3 wlh)=3 wlh)=4 wlly)=4 wils)=3 wll)=3
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carried out by focussing on two directed links in the communication network under in-
vestigation. It should be noted that performance measurement information for every
directed link in the network is simmltaneously generated. Therefore, we can study the
system performance in many different directions or levels of detail by appropriately

referring to the generated information.

4.3.1 Comparing the system performance for different chan-
nel access protocols

In this section, we study the performance of different channel access protocols.
Typically, we consider the 4-node chain PRN which was shown in Figure 2.1, oper-
ating under: (1) CSMA; (2) D-CSMA; (3) BTMA; (4) CFMA; and (5) TCAP. In
this section, links !; and /; are chosen to examine the performance of the network
and the performance over link /3 will be plotted in the figures. Further, we study the
performance for this network with virtual-circuits carrying uniform end-to-end traffic
and under uniform link traffic.

'The channel throughputs for this 4-node chain PRN operating under different
channel access protocols are shown in Figure 4.1. For the network with virtual-
circuit operation, the successful transmission rate over link /; is obtained by scaling
its channel throughput value with the associated weight w(l,). Figure 4.2 shows the
throughputs over !, and 5.

Notice Figure 4.1(a) represents only the increasing portion of curves in Figure
3.7(b). The decreasing region of the curves has been truncated. This is a limitation
of the iterative-estimation method used for throughput calculation, since convergence
to a fixed point is guaranteed only in the stable operating region.

Table 4.3 presents the maximmum throughputs of this 4-node chain with other
associated measures.

The relative throughput measurements of tte network with CSMA, D-CSMA
and BTMA, with the respect to that of CFMA and TCAP are demonstrated in
Figures 4.3(a), 4.4(a), and 4.5(a) respectively. These figures show comparison results
for the 4-node chain network. The RCCMOT and the RCCMDT for data, link I3 of
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this network are shown in Table 4.4.

The channel throughput comparsions for both traffic cases under CSMA, D-CSMA
and BTMA can also be observed from Figures 4.3(a), 4.4(a) and 4.5(a). Blocking
probabilities are given in Figures 4.3(b), 4.4(b) and 4.5(b). Interference probabilities
are shown in Figure 4.6. Of course, only the curves corresponding to the interference-
susceptible protocols CSMA and D-CSMA have non-zero interference probability
values.
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Table 4.3: Maximum throughput of the 4-node chain PRN

Protocol | Wht Tmaz P Pg(1)  Pg(3) Pr(l)  Pi3)
CSMA NW 0.1277 0.7081 1.2094 0.6171 0.8196 0.2025 0.0748
E w 0.0373 0.922 2.337 0.6806 0.8815 0.1980 0.0546
% D-CSMA NW 0.1464 0.7057 1.7018 0.6460 0.8532 0.1464 0.0607
| w 0.042Y 0.634 1.915 0.6330 0.8567 0.1680 0.0556
BTMA NW 0.2 118.2 14089 0.9983 1.0 00 00
W 0.0560 3.500 21.00 0.9520 0.9893 0.0 0.0
CFMA NwW 0.25 185.1 34410 0.9998 1.0 0.0 0.0
Al 0.0700 20.51 588.00 0.9898 0.9995 0.0 0.0
TCAP NwW 0.25 130.7 344252 0.9981 1.0 0.0 0.0
w 0.0700 10.50 307.86 0.9800 0.9991 0.0 0.0

Table 4.4: The RCCMOT and the RCCMDT for /3 of the 4-node chain PRN

protocol | Wht { p3 S (13) rf,fF MA (1) rgc,u’ W) | TV () | 0 (1)
CSMA | NW | 1.2094 | 0.1277 | 0.1668 0.1734 0.7655 | 0.7364
CSMA | W_|2.337 [0.0373 [0.0532 0.055 0.7011 [ 0.6782
D-CSMA | NW [1.7018 [ 0.1464 | - 0.1847 - 0.7926
D-CSMA|W [1015 [0.042 |- 0.0537 - 0.7821
[BTMA | NW [ 34410 [0.20 [ 0.25 0.25 0.3 0.8

BTMA [W [21 0.056__ | 0.070 0.070 0.8 0.8
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Figure 4.6: Interference Probability for the 4-node chain operating under diffcrent
protocols

The blocking probability and interference probability presented in these figures
describe the attempted and the actual transmissions over the data link I3 of the given
system. They are determined by Qp(3), £2/(3) and Q as given by Equations (2.11)
and (2.12). Since in the uniform end-to-end traffic applications, the original relation
between any two attempt rates p; and p; for the uniform link traffic application have
been scaled by the ratio w(l;)/w(l;), the p; values over those heavily-loaded links
ly € L need to be scaled up, while in those lightly-loaded links /; € L must be scaled
down to meet the necessary uniform end-to-end traffic requirements.

In general, the blocking probability over each data link /; is proportional to the
transmission-attempt rates over directed links /, belonging to states in Qp(:). The
interference probability over link ;, on the other hand, is an increasing function of
the attempt rate p; only when p; is relatively small. It decreases after pPi passes a cer-
tain value. The relation presented in Equation (2.13) holds in general. Transmission
blocking only disables scheduled transmissions, it does not effect other transmissions
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taking place in the network. Interfzrence, on the other hand, damages transmissions
in the system. As more and more transmissions over link I; € I(z) take place, the
chance of any of the transmissions over link /, being damaged also increases. These
damaged transmissions block or interfere with other scheduled or actual transmis-
sions. Thus, the system eventually reaches the point where almost all attempted
transmissions are blocked or result in collision, beyond which the throughput of the
system deteriorates.

4.3.2 Performance measures of some PRNs of different topolo-
gies

In this subsection, we conduct a similar study to that in Subsection 4.3.1 for
different PRNs. We are interested in the effects of topology on performance. Specifi-
cally, given networks of different topologies, we will analyse their performance under
CSMA with respect to TCAP. The RCCMDT measurements will also be considered.
Note that simar studies can be carried out for other channel access protocols (i.€.,
BTMA, D-CSMA).

The networks to be studied are shown in Figure 4.7. These networks are selected
to represent some of the frequently encountered local area networks. For each com-
munication network considered in this section, we marked the numbers 1 and 2 with
an arrow on it to represent the two directed links being focussed on (see Figure 4.8).
The directed link marked with * is the one for which performance is plotted in the
figures. As in the last section, the performance studies will be undertaken for the
uniform end-to-end and uniform link traffic cases.

For some networks, there are multiple paths with the same nuinber of hops be-
tween two nodes. For example, in the hypercube network G2, there are 6 possible
shortest paths of 3-hops from node 1 to node 8. .n these cases, application of Floyd’s
algorithm to calculate the routing produces a severe imbalance in the utilization of
link capacities; many links are not utilized at all, while others are heavily loaded. 4.
was implied by its decision making rule in Equations (4.1) and (4.2), Floyd’s algo-
rithm is biased to choose a path connecting nodes with small index numbers. For
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Figure 4.7: Typical network topologies
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example, in selecting the path from node 1 to node 8 in network G2, it will choose
the path (1, 2, 3, 8) rather than *he path (1, 6, 7, 8). When we consider the fact
that path (1, 2, 7) rather than path (1, 6, 7), and path (1, 2, 3) rather than path (1,
4, 3) have been similarly chosen, we see the links (1, 2) and (2, 3) belong to many
paths, whereas the links (1, 6) and (6, 7) do not. Similar problems can be observed
for networks G1 and G3. In order to equalize link capacity utilization, some kind of
modification to Floyd’s algorithm is required to remove its bias.

One of the modifications we have tried is to add a small value € to a directed
link to stretch its length once it has been included in a path. A selected link is
considered to be a little longer than an unselected link. It thus has a lower priority
of being selected again. This method alleviates the problem to some degree, but it
still does not solve the problem completely. The routing decisions are made based on
the path selection information provided in the last iteration only, it does not consider
path selection information generated during the same iteration. Consequently, it
responses too slowly to the change of weights in the links. What is required in a good
routing is a set of, preferably edge-disjoint, paths between each pair of nodes, along
which the end-to-end traffic can be allocated, so as to efficiently utilize the global
capacity of the network. The general solution to this routing problem is to select sets
of candidate paths for each virtual circuit and formmlate an optimization problem.
A flow-deviation approach [Hay84] can be used to solve this problem, but we do not
pursue this further.

However, for any network with only one shortest path between each pair of sta-
tions, such as the networks of G4, G5, G6, and G7, there is no problem. We will
consider networks G4, G5, G6, and G7 under uniform end-to-end and uniform link
traffic, whereas for networks G1, G2, and G3, we consider uniform link traffic only.

The weights for G4 are w(l;) = 7, for all I; € L, whereas, the weights for G5, G6,
and G7 are shown in Table 4.5, 4.6, and 4.7, respectively. Note that based on the
fact that w(e;;) = w(eji), the weights w(e;;), for 7 > j, are not presented in these
tables.

The performance measures of networks G1, G2, G3 under uniform link traffic are



Table 4.5: Assignment of weights to Network G5

t glwle;)lle g|wles)fle g w(ei;)
15 4 j 6 8

2 519 5 j 25 6 9 (9

3 59 6 719 6 10]9

Table 4.6: Assxgnment of weights to network G6

1 g wlei) | wieg) ¢ g | wlei;)
1 2]16 2 10 07 7 8 |11
1 3[16 3 4 |27 |7 9 |11
1 7|27 4 5 [11 10 1111
2 3|16 4 6 |11 10 1211

Table 4.7: Assignment of weights to network G7

(4 jw(e,]) ] w(e.,) 17 | wleij)
1 2]25 3 6[7 79 |7
1 3[24 4 5|1 7 107
2 724 4 6|1 8 9 |1
3 4|7 5 6|1 8 101
3 5|7 7 817 9 101
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shown in Figure 4.8, Figure 4.9, and Figure 4.10, respectively. For these networks,
their throughput values with respect to that of TCAP are compared, as well as their
blocking probabilities and interference probabilities. Their channel capacities and
related measures are presented in Table 4.8.

Similarly, the performance measures of networks G4, G5, G6, and G7 are shown
in Figure 4.11, Figure 4.12, Figure 4.13, and Figure 4.14, respectively. For these
networks, throughput values with respect to that of TCAP are compared for both
traffic situations. Blocking probability and interference probability are also compared
for these cases.

Consider the 8node star network G4. Because of its symmetric topology, the
weights are evenly distributed among all links in the network. The analysis is identical
for the uniform end-to-end and uniform link traffic cases, with the exception that the
throughput value in the channel is scaled down by w(li) = 7 times. The per-link
successful transmission rate remains unchanged.

The channel capacities and other related measures of these networks are presented
in Table 4.9. From this table, it can be seen that a heavily-loaded data link does
not necessarily introduce more blocking and interference, or become saturated more
easily than a less heavily-loaded data link. For example, consider the network G6,
where w(e3) > w(ey,7). Under TCAP, data link e;; has larger blocking probability
and can become saturated more easily than link e; 7, even though e;,3 carries less
traffic.

The RCCMDT measurements of these networks are presented in Table 4.10.
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Table 4.8: Performance for different PRNs under uniform link traffic

Graph | Protocol Tmaz P11 P2 Pp(1) Pp(2) Pi(1)  Pr(2)
Gl TCAP 0.1520 8.229 9.708 0.9815 0.9843 0.0 0.0
CSMA 0.0398 0.305 0.242 0.7027 0.7027 0.1668 0.1328
G2 TCAP 0.1660 146.51 146.51 0.9989 0.9989 0.0 0.0
CSMA 0.0330 0.157 0.157 0.6045 0.6045 0.1853 0.1853
G3 TCAP 0.1240 38.91 0.661 0.9968 0.8124 0.0 0.0
CSMA 0.0368 0.263 0.136 0.7734 0.6086 0.0876 0.1208
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Table 4.9: System performance for different network topologies

Graph Protocol Tmas n  m Pg(1) Pp(2) Fr(1)  Pr(2)
TcAP W) 0.0710 11.77 117 0.9940 0.9940 0.0 00
Gt 0.0102 51.43 5143 0.9986  0.9986 0.0 00
SMA 0.0406 0.163  0.163 0.7513 0.3843 0.0 0367
(W) 0.0058 0.163 0.163 0.7505 0.3840 00 0366
TCAP _ (NW)| _ 0.0060 2.400 4848 0.9600 0.9980 0.0 00
(W) 0.0076 0.940 22.23 0.9272 0.9915 0.0 00
Gs oA (YW 00440 0.173  0.328 0.3687 0.7459 | 0377 0120
(W) 0.0036 0.099 0.399 0.3271 0.6715 0.344 0.103
“(RW} 0.1520 34.28  13.66 0.9956  0.9889 0.0 00
Ge TCAP  (w) 0.0083 338.41 3217 0.9996  0.9930 0.0 00
csMA  (NW)[ 00554 0.588 0493 0.8488  0.8488 0.057 0.0388
(W) 0.0029 0.465 0.565 0.8363 0.8363 0.064 0.025
TCAP (W) 0.1240 0.367 23.10 06622 0.9946 0.0 00
- (W) 0.0091 10.99  6.464 0.9793 _ 0.9661 0.0 00
GMA (W[ o052 0.304 0315 0.7353  0.7353 0.093 020
(W) 0.0043 1.043 0772 0.8158 0.8158 0.081 0.0505
Table 4.10: The RCCMDT for different networks
Graph | Wht | i | p; | r0.(6) | =5 7 (&) | TEO()
Gl NW 1] G.305] 0.0398 | 0.087 0.4575
G2 NW {1]0.157] 0.033 0.0672 0.4911
G3 NW [1]0.263] 0.0368 | 0.0731 0.5034
G4 NW 2] 0.163| 0.0406 | 0.050 0.8120
G4 W 12]0.163| 0.0058 | 0.0071 0.8169
G5 NW 1210.328] 0.044 | 0.0573 0.7679
G5 W 12]0.399]| 0.0036 | 0.00439 0.8200
G6 NW | 1]0.588] 0.055¢ | 0.1012 0.5474
G6 W4 1] 0.465| 0.0029 | 0.0052 0.5577
G7 NW [2]0.815| 0.0522 | 0.1036 0.504
G7 \%\% 2| 0.772 | 0.0043 | 0.00665 0.6466
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Chapter 5

Applications of the Blocking
Model in Circuit Switching
Networks

5.1 Introduction

As discussed in Chapter 3, the operation of a drcuit switching network can be
described with TCAP.

In a switch, there are no transmission collisions at the receivers, every unblocked
transmission becomes successful. Furthermore, the system ultilizes the maxinmm
resources that can be offered by the given network.

As in the PRNs cases, the throughput and blocking in CSNs can be obtained by
using the iterative-estimation method. This method is limited by its complexity to
moderate size networks. The reason is that this method proceeds by first constructing
the state space of the system, which consumes a lot of memory and many CPU cycles.
In general, we cannot employ this calculating method to study the performance of
networks of large size.

However, in analyzing the performance of a circuit-switching network, we realize
the advantages offered by using the recursive properties of partition functions, as given
in Equations (3.17) to (3.22). For some networks with regular topologies, the partition
functions can be expressed in terms of partition functions of smaller networks of the



same topology. In Subsection 3.5.3, we have demonstrated the recursive results of
partition functions for a completely-connected network, a crossbar switching network,
and a recirculating shift network. The recursive relations among partition functions
can be used to derive expressions for performance measures. In this chapter, we
examine these possibilities.

This chapter consists of two parts. In the first part, we will study the performance
for some CSNs of regular topology under symmetrical loading. In the second part,
we will study the performance for some switches under skewed loading conditions.

5.2 Performance Measures for Networks Under
Symmetric Loading

In this section, we will analyze three regular network systems with symmetric
loading. These networks are: (1) the completely-connected network, (2) the cross-
bar switching network, and (3) a recirculating shift network. We will analyze their
performance individually in the following subsections.

For any circuit switching-network G, every unblocked scheduled transmission be-
comes successful. If we denote the scheduled transmission rate over any link e;; as

Py, and the successful-transmission rate over this link as r;;, we have

Tij = piz Pr[no blocking at node ¢ and node j] = p;; P, 7). (5.1)
Under symmetric traffic load, if we let (G, p) denote the successful-transmission rate
over any link e;; of network G, we then have p;; = p, ri; = (G, p) and

(G, ..
i) ; 2) - PG, 5. (5:2)
In addition, we also denote the throughput of the overall system as S(QG, p). It is the

summation of all per-link throughputs of the network. Thus, if the network contains
| directed links, we have, S(G,p) =1- (G, p).
5.2.1 Analysis of completely connected networks K,

Consider a completely-connected switching network X, with input-output ports.
For this network, K,_; is obtained from I, by removing the input node ¢ and output

108



node j. The successful transmission rate over link e;; is
Tij = Pij Q(S).
SQ n-2
Under symmetric loading, we have

r(Ka,p) =p B (K, )P = pB~ (K, p) P,
SCKnp-2 SCKn-2

where (K, p) = sck, P! Further, since 8(Kn-2,p) = Tscka-q #°, then
Ka-2,p)
K , ,B( n-2y P 5.
EnP) =P G} (53)
By using Equation (3.10), we get the overall throughput of the system
%8(Kx, )
B(Kn,p) ’

%8(¥n, )
K, p) = P . 9p _ Ly
) = 2021 T )
By relating this expression with Equation (5.3), we have
1 0
B(Ka-2,p) = mg;ﬁ(f(mp)-
From Equations (5.3) and (3.11), the throughput and blocking probability for this

interference-free network system are,
T(I(nap) — IB(I(n—% P) .

S(Kn,p) =n(n -1, - r(Kn,p) =

then

p ﬂ%f "”;) ,ﬂ(K )
_ n P) — n=2P
Pb(Ku,p) = B, p) '

Using Equation (3.30), the partition function for the divected-links-activation model
of the completely-connected network K, can be expressed as,

B(Ka, p) = [1+2(2n = 3)]8(Kn-2, p) - 4(n = 2)(n — 3)p*B(Kn-1, p).

Thus,

r(Kmp) _ B(Kn-2,p)
p [1+2(2n - 3)p]ﬂ(1{n—2iv p) = 4(n - 2)(n - 3)p*B([Kn-4, )

[1+2(2n - 3)p] - [4(n - 2)(n— 3)p|Gge=1a ﬁ(Kn..z,p)
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As the result, we have,

P .
"Kab) = T B dr - Y D (Ra) (5.5)

2(2n—3)p — 4(n - 2)(n — 3)pr(Kn_2,p)

b ny = ’ .
PiEwp) = 1 o= o= dn- 2= prKnp) OO
with,
Kap) = o ) = i
Ph(K,p) = £ Pb(Ks,p) = 135

The throvehput for these completely-connected networks of various sizes are
shown in Figure 5.1(a) while the blocking probability of the system is shown in Fig-
ure 5.1(b). It is seen that as the number of nodes in the network increases, the block-
ing probability of the system increases and the throughput of the system decreases
correspondingly. When the n value is modestly large, (i.e.,120), the throughput
of the system is approximately zero, and the blocking probability approaches unity
immediately. T!is can be explained by the following observations: For a complete
graph K, each transmission over a directed link e;; in the network can be blocked by
2(n — 1) transmissions (including the transmission currently using the link e;;) at the
transmittion node 7 and 2(n — 2) transmissions at the receiving node 7. Therefore,
each transuissic: in the network can be blocked by 2(2n — 3) transmissions in the
network. Consequently, as the number of nodes n increases, the number of transmis-
sions possibly blocking che considered transmission increase as well. Therefore, when
the number of nodes in the network is large, the chance that a scheduled transmis-
sion is blocked will be high, and the successful-transmissicn rate of the system will
be small.

5.2.2 Analysis of the crossbar switching network Knm

The topological representation of the crossbar switch network with n input ports
and m output ports is the bipartite graph K, ». The graph resulting from removing
the input node 7 and the output node j from K mis Kq_1m-1. We have

i=pi . Q)

SCKn-1,m-1
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Figure 5.1: Performance for the K, networks of different sizes: (a) Throughput, (b)
Blocking probability.
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Under symmetric loading, we have

(Kamp)=p Y. B Knm,p)p® =pB 7 (Kom,p) ,; o,
SCKn-1,m-1

SgKn—l.m-l

where G(Kam, p) = 225C Kn,m p'°. Further, since 8(Kn-1,m-1,0) = 2SC Kn—t.m-1 P,
then

(s ) = pﬁ‘g};::j;y’). (5.7)

From Equation (3.10), the overall throughpui of the system can be expressed as

BQEIB(Kn,ma P)
IB(I{n,vm ,0) .

)
, _p Fp'ﬂ(l(n,m’ P)
T(I‘ﬂ.m, P) - n-m ﬂ(Kn,m,P) '
By relating this expression to Equation (5.7), we obtain

. 1 0
B(Ka-1,m-1,p) = nom. 5; (Ka, ).

S(Knms p) = (n-m)  7(Kym, p) =

BThen
(5.8)

Equations (5.7) and (3.11) lead to
T(Kﬂ.map) —_ B(I(n-l.m—lap).

L 5 )
- I(n,map — B(K, —~1,m~1,P
Pb(K,.,m, p) = B Fomp) .

Since

:B(Kﬂ.m’ p) = [1 + (m+n - l)p]ﬂ(I{n—l.M—l’p) - (n - 1)(m - l)pzﬂ(Kn—Zm—Z’P)’

then,
r - pﬂ(I{n-—l,m-h P)
Famp) = TXmTn-DAAR Sme1o8) (0 D= PR e
T H+(man-Dg-(n-1)m- 1) b=t
Therefore,
r = p 5
L e o gy gy i g -y )
Pb(I(n,m,P) — (m+n - 1),0 - (n - 1)(m- l)pr(lfﬂ—lym-hp) (510)

T 1+(m+n-1p—(n—1)(m-Dpr(Ka-rm1,p)’
112



T AR AVER IR T UL A0 ST TR TR

with
r(Eanp) = T r(Kazp) = ﬁ;
Pb(Knp,0) = 3% Pb(Ka2,p) = p3EEE.

For the crossbar switching network X, m, the numbers n and m have a direct effect
on performance. Basically, there are m directed links connected to any input ports
and n directed links connected to any output port of the switch. For a scheduled
transmission over any link I;, there are (/) other transmissions that can block it
at the input port, and (n — 1) other transmissions that can block it at the output
port. Therefore, as the numbers m and n increase, the probability of blocking for
a transmission over link /;, Pg(i), will increase correspondingly. This causes the
per-link throughput to decrease accordingly. Figure 5.2 demonstrates these results.

If we let n = m, we obtain the switch I, 5, in which the number of input ports
equals the number of output ports. In this case,

r(Knnip) = £ . ;o (s
1+ (2n—1)p - (n = 1)*pr(Ka-1n-1,9)

— (2’)2 - 1)p — (n_ l)zpr(I{n—l,n—l,p)
Po(Homp) = TG0 Dp- (n = DPr(Rncin-1,0) (412)

Figure 5.3 presents the performance of the I, , switches.

With these recursive relations at hand, we can further develop some general re-
cursive expressions to observe the effects on performance of varying number of the
output ports while the number of input ports is fixed. A similar study can be under-
taken by varying the number of input ports while the number of output ports remains
unchanged. By observing the effects of these switch size variations, we can obtain the
optimal operating parameters for these expander and concentrator networks. In the
following, we develop recursive expressions for the performance measures. A Based
on Equation (5.7), we have

T(I{n,mi P) _ ﬂ(I< -lcm—l’p)
p BKamip)

and )
T(Rn.m-l,p) _ ﬂ(I(n-—l,m—% P)

P ﬂ(I{n,m—lap) .
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Since
,B(I{n,mvp) = ﬁ(I{n,m—la P) + np,B(K —l,m-hp)v

then
B(Ka-1,m-1,p) = 1 1— ,B(Kn,m_l,P))

B(Knm, p) np B(Knm,p) )

T 1/ AEame1,0)
1/ n,m-1, P

T(I{n,ﬂhp) — n (1 ﬁ(Kn,m, p) ) . (513)

Similarly, since
ﬂ(I{n,m,P) = (1 "'np)ﬁ(l{n,m-l)p) - n(m - 1)p2:8(1(n-1,m-27p)a

we have

BEamip)  1+np O BB p)
Substituting this expression into Equacion (5.13) leads to

B n-1,m-2,p)

(Ko s 0) =;1; [1 - l-i-—ln;; (1 +n(m - )t )] , (5.14)

ﬁ(I<n,m—lap) _ 1 (1 +n(m_ 1) 2,3(1{ —1,m-27p)) _

Also, since
IB(Kn,Tmp) = (1 + np):B(I{n,m—l’ P) - n(m 1)p2;6(K -1,m-2, p)s

then

,B(-Kn—l,m-Zap) — ,B(Icn-l.m-% P)
ﬂ(I{n,map) (1 + np):@(l{n,m-—l,p) - n(m - 1)pzﬂ(1{n—l,m-2,P)
— T(I(n,m—lv P)
(1 +np) — n(m ~ 1)p*r(Knm-1,p)

Substituting this expression into Equation (5.14), we obtain
1 1 (1 n(m = 1)p’r(Knm-1,p) )]

T(Kn,m,p) = E 1- 1+np p(l +np) - n(m - l)pz'l”(Kn,m-l, p)

_ 11 1
=~ <1 (1 +np) - n(m— l)pr(Kn,m—hP)> .

Finally, we have
_ (1= (m-Dr(Kam-1,0)) |
rfamp) = (1+np) - n(m — 1)pr(Knm-1,p)’ (513)
Ph{Knmyp) = o={m=blnp = UrlKom-1,0) (5.16)

~ (1+np) - n(m - Dpr(Kom-1,0)’
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with

r(Kn1,0) = e r(faz,p) = ﬁ%
Po(Inn,p) = 1 Pb(Knz,p) = Tttt

With these recursive relations, we study the performance behavior of the networks
Ks4m, where the number of input ports is fixed at 64 while the number of outputs
port varies. Their performances are shown in Figure 5.4 and Figure 5.5, respectively,
for m < 64 and m > 64. In this case, every scheduled transmission over link e;,
can be blocked by m transmissions &t the input port (including the transmission
currently using link e;; and up to 63 other transmissions de-tined to the same output
port j. All together, it can be blocked by (63 + m) possible transmissions in the
switch. Therefore, as the number of output ports increases, the blocking probability
increases, and the per-link throughput decreases accordingly. In addition, due to
the high blocking probability introduced, the throughput of the switch with a large
number of output ports will reach saturation relatively fast. This can be observed
from Figure 5.4 and Figure 5.5.

Similarly, we can apply the equations

ﬁ(I{n,m, p) = ,B(I(n-l,mvp) + mpﬁ(lfn—l,m—hp);
B(Kam,p) = [14+mp|B(Kn1,m,p) — m(n — 1)p*B(Kn—2,m-1,p),

repeatedly to generate the relations between the throughput for switches of fixed
output-port size with changing input-port sizes. In this case, we have

(Ko p) = Pl = (n = 1)r(HKa-1,m, )]

AT mp) =l = Dpr( s p) (317)
mp — (n = 1)(1rp — V)r(Ko-1,m, p)
Pb( K, m, = > ) 9.18
(Knm: ) (1+mp) —m(n — 1)or(Ks-1,m, p) (518)
with
r(Kim,p) = T.;fme; r(Komp) = 1+2p[7r:;€:(—n12-{)1)p;2
Po(Kim,p) = T2; Po(Kym,p) = ‘Pplletmin-le

If we let m = 64, the system performance will be the same as in the case Kgym.
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5.2.3 Analysis of recirculating shift networks RS,

For a recirculating shift network RS;, if we assign R, as the network generated
from RS, by removing one link from it, then we have the successful-transmission rate
over a directed link e;; connecting an input port : and an output port 7 as,

rij =pij ) QS).

ScR,

Under symmetric loading, we have

(B =p 3 B RSwpPT =08 (BSp) T A
Sc SCRay

where ,B(RSmP) = > SCRSa Plsl- Since ﬂ(Rn-l,P) = Engn—l Plsl, then

T(R‘Sm ,0) — ,B(Rn—lsp)
P B(RS.,p)" (5.19)

The overall throughput of the system is

§ = (2n) - r(RSn,p) = ZOESmP)

B(RSna,p)
So,
2 B(RS,,
(RS, p) = QZ——agf : = ) (5.20)
and 5
B(Racs, ) =5 5B )
By substituting the equations
B(RSa, p) = (1+2p)B(RSa-1,p) — p*B(RSn-2,p)
and
into Equation (5.19), we have
T(Rsn,p) IB(R‘R—h ) - 1 IB(-RSn-laP)
p B(BS,,p) — 1+4p (1+ B(RS, p) ) (5.21)
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Further, since
B(RSs, p) = (1 + 2p)B(RSn-1,p) — p*B(RSn-2,p),

e e B(RSw, ) B(RSy-2,0)
ny P 2 -2, 0
= (14+2p) - - 5.22
BESnr,p) ) P B(RS, 1, p) 6:22)
From Equation (5.21)
- 14 p2 ﬂ(RSn—Z)p)
(RSn1P) = T T 20 f(RSsr. ).
Rearranging this expression as
2 B(RSn-2,0) _ -
P B RS ) (1+4p)r(RSn-1,0) — P,
and substituting it into Equation (5.22) yields
B(RSx, p)
= = (14 3p) — (1 +4p)r(RSn-1,p)-
,B(Rsn—l,p) ( p) ( p)’l‘( 1 P)
Substituting this into Equation (5.21) leads to
. NP p
r(RS0) =137, (1 tiFm - +4p)r(RS,._1,p)> '
Therefore,
- P(l — 7"(}zsln--l’p)) . 9
(B p) = (1+3p) — (1 +4p)r(RSn-1,0)’ (5-23)
_ p(3 — 4r(RSp_1,p))
PURSmP) = (53— T+ 49 (BSwis ) 529
it
e r(RS; )=__B(_1__ﬂ2_. Pb(RS; )=M
P = T ¥ 4p+20% P = T 4p+ 207

The performance for recirculating shift networks RS, of different sizes is shown
in Figure 5.6.

In an RS, network, every transmission over a link from input port 7 can be blocked
by two transmissions at the input port and one transmission at the output port.
Under this situation, the size of the network also has some effects on the activation of
links. As the network size increases, the probability of the transmission being blocked
by other transmissions also increases slightly, and the per-link throughput decreases
with the increasing network size accordingly. However, the throughput will approach
1 independent of the size of the switch.
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5.3 Analysis of Switches Under Asymmetric Load-
ing Conditions

As we have demonstrated, the partition functions for networks with regular topol-
ogy and symmetric message arrival rates can provide us with convenient recursive
expressions to calculate the performance for large networks. However, for systems
with asymmetric message arrival rates, the analysis becomes complicated. In general,
the iterative-estimation method can be used to perform this task. However, recur-
sive forms for the performance measures can be derived for asymmetrically-loaded
switches if the load imbalance is localized to a single port or a group of ports. Such
perturbations from symmetric loading can be handled easily with the blocking model.
We will examine some of the possibilities in this section. The technique we employed
is based on Eqguations (3.17) and (3.18).

The set of input ports {I;, 1, -, I} of a K, m switch is assumed to be parti-
tioned into NV port groups. Each group may be allocated to serve a particular traffic
type. The ports within each group are assumed to be uniformly loaded but differ-
ent port groups may have different loads. Let p; denote the number of input ports
in group ¢ and let p; denote the load on any link originating at an input port be-
longing to group i. Then "X, p; = n and the partition function of the switch is
denoted by Bp, py,pn (Knyms P15 02, -+, pn). Further, 5 . (Kam,p1,02," -+, pN)-
and P¥, . . (Knm,p1,p2, -, pn) are the per-link throughput and blocking prob-
ability over any link belonging to group i, respectively.

We consider several situations separately.

5.3.1 Perturbing the load at a single input port on the
symmetrically-loaded crossbar K,

Consider a crossbar switch IS, ,, with n input ports {Iy, I3, -, I} and m output
ports {Oy,0,,--+,0,}. We assume n — 1 input ports are symmetrically-loaded with
load p; and the remaining port carries a load of p2. By using Equations (3.17) and
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(3.18), we derive the following recursive expressions for the partition function:

(I{n,ma Pl) = :B(I( -1,m, Pl) + mplﬁ(I{ -1,m=-19 Pl); (52’5)
ﬂn-l I(I( ,ms Pl P2 ) = ﬁ(l{ -1,m, Pl) + mPZ:B(I{ -1,m-1, Pl); (5'26)
ﬂn-—l I(I{n my P12 ) = ﬂ(I{n.rmpl) +m(p2 - pl)IB(I{n—l,m—l)pl); (527)
Ba-1,1(Knm p1,02) = Br-21(Kn-1,m, 01,02)
+ mp1 Pn-2,1(Kne1,m-1, P1,02)- (5.28)
Then,
"'72;_1,1 (Kn,rm P2, p2) — ,B(I{n- l,m-l,pl)
P2 Bn-1,1(Kam, p1, P2)
_ B(Ka-1m-1,01)
B(Knm, p1) +mp2 — p1)B(Kn-1,m-1,01)
Therefore,
7‘?;—1,1 (Kn,m’pl’/h) = T(Kn,ma Pl) .
P2 pr +m{pz — p1)r(Kom, p1)

Similarly, we define

7'};-1,1 (I(n,ma P1, P‘Z) — .Bn—2.l (Kn-l,m-la PhP2)
0 Pr-1,1(Knm, p1,02)

Combining Equations (3.33) and (5.27) leads to

ﬂn-l,l(Kn,m,Pl,Pz) =
(1+mp; + (n = 1)p1)A(Kn=1,m-1,21) — (7 = 1)(m — 1)p3B(Kon-,m—2, p1).

Thus,

7'71;_1,1 (I{n,ma P1, P2)
4|

B(Kn-1,m-1,1) + (m = 1)(p2 — p1)B(Kn-3,m-2, 1)

[1 +mpa + (n - 1)p]B(Ka-1yme1, 1) — (n — 1)(m — 1)AAB(Kn-2,m-2,01)
p1+ (m—1)(p2 - p1)r(Knct,m-1,p1)

Al +mp +(n =] = (n - 1)(m = 1)pir(Ka-1,m-1,p1)

il
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Therefore,

rvlz—l,l (I(n,ma P1, PZ)
= p1 +(m —1)(p2 — p)r(Kn1m-1, p1) .
pi[l+mpz +(n— D)o = (n = 1)(m = Dpfr(Kn-r,m-1,01)’

(5.29)

P b}z—l,l(Kn,maPhM)
_ almp+@-1)p] - (m = Dln = Dot + (o2 = pllr(Kn-rm=1,01)
ol +mp + (n=-1p) - (n = 1)(m— 1)pr(Kn_1m-1,01)

5.30)

and
K, )
11 (K1, 02) = oarKnms - 5.31
-1 (Koms 1, £2) p1+m(p2 = p1)T(Iam, p1)’ (5.31)
- p1) = (K,
Pb?l-],l(I{n,ﬂhpl’M) - p1+[m(p2 pl) ]7'( ' Pl), (5.32)

pr+mip = p1)r(Knm, 1)
with 7(Kn1, 01) = 1

Using these expressions, we study the switch K m for links originating from ports
in group 1 and group 2. We fix p; and allow p; to change. The throughput and
blocking probability for the X2 network are shown in Figure 5.7 and Figure 5.3,
respectively. Figure 5.7(a) and Figure 5.8(a) presents performance results for a link
in group 1, while Figure 5.7(b) and Figure 5.8(b) show performance results for a link
in group 2. The ratio of blocking probabilities over links with py and p, transmission
attempt rates is shown in Figure 5.9.

To describe the performance of this kind of switch network, we first make the
following observations: (1) The activation of a link in group 1 can be blocked by m
links originated from the same input port and (n — 1) links destinated to the same
output port(where n — 2 links helong to group 1 and another link belongs group 2).
Hence, it can be blocked by (m +n — 2) group 1 links and one group 2 link. (2) The
activation of a group 2 link is blocked by m group 2 links at its input port and (n—1)
group 1 links at the output port.

For a K 5 network, which is depicted in Figure 5.10, the blocking of a transmission
over link {; (or /) can be caused by two transmissions over links from I3 (1 and b),

and one transmission from I, (3 or l4). We observe that the blocking occurring at the
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Figure 5.7: Throughput Analysis of a K3 network: (a) for links in group 1, (b) for
links in group 2.
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Figure 5.9: Comparision of blocking probability over links in group 1 and group 2 of
a K3, network.

input port has a more pronounced effect on system performance than that happening
at the output port. Scheduled transmissions over any two links originating from the
samme input port block each other. The scheduled transmission over I; will be blocked
at the input port I if either /; or I, is active. The blocking of transmissions over [
at the output port O can be caused by transmissions over {3 only, and transmission

over I3 is only possible when , is idle.

Figure 5.10: INustration of a X2 network
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Therefore, when p; is large, it will cause Pb (K, m, p1, p2) to reach 1 almost in-
stantaneously no matter what the p; value is. However when p, is small, p; will
have a strong influence over Pb (K, m, 1, p2). Basically, Pb!(K, m, p1,0:) increases
with increasing p,, but it will never reach unity. Pb* (K, m,p1,p2) heavily depends
on pz, but it is relatively independent of p;. It approaches unity when po is large.
Correspondingly, r'(Kn m,p1,p2) is a decreasing function of p,. However, it is in-
sensitive to po when p; is large. This is because as p; increases, there will be more
unblocked transmissions over group 2 links which cause more blocking for transmis-
sions over oup 1 links. However, when p, is large enough, only a constant portion of
attempted transmissions are not blocked, and thus block a certain number of trans-
missions from group 1 links. Furthermore, (K5, m, p1,02) is an increasing function
of p2, but a decreasing function of p;. This is because the increment of p; causes
more blocking at its output port, whereas an increment in p, increases its scheduled
transmission rate, which can introduce more successful transmissions. Lastly, if we
compare Pb'(F pm,p,p2) and Pb*(Kym,p1,p2) as presented in Figure 5.9, we see
that when p; < py, links from I; will have larger scheduled transmission rates than
links from Iz, thus, transmissions over {; (or /2) have more chance of being blocked
than the transmissions over I3 or /3. Thus, Pb!(F, m, p1, p2) 2 PV (Kam, p1,2).- On
the other hand, when py > p;, PbY(Kym, p1,02) < P (Iam, p1, 02)-

Similar studies are undertaken to observe the size effect of this kind of network,
where two different situations are investigated: (1) py = 10, (2) p; = 0.2. Un-
der these two cases, the system performance behaviors are very much the same,
therefore, we do not include every result for case (2). Figure 5.11, 5.12, and
5.13 shows, respectively, the throughput, blocking probability, and the blocking
probability ratio Pb'(I, m,p1, p2)/PY*(Kam, p1,p2), for the case p; = 10. Since
PH (K m, p1, P2) is proportional to (m + n — 2)p; + p; and PV*(I m, 1, p2) is pro-
portional to (n — 1)p; + mp,, as the switch size increases, both Pb (K, m, p1,02)
and Pb?( Ky m, p1, p2) increase correspondingly. This causes their respective through-
puts to decrease. Since p; is fixed, the increment in p, only causes more blocking

at the output ports. Thus, Pb!(K, m,01,p0:2) is an increasing function of p, while
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1 (Kom, 1, p2) is a decreasing function of p,. However, as p; increases, the chances
of this attempted transmission being blocked also increases. On the other hand, it
introduces more successful transmissions over group 2 links. Figure 5.11 and Fig-
ure 5.12 demonstrate these results.

The blocking probability ratio Pb' (K, 1, p2)/ PP (¥ n, p1, p2) is shown in Fig-
ure 5.13 and Figure 5.14 for p; = 10 and p; = 0.2, respectively. We observe that
the point po = p; provides the boundary for the behavior of the relative blocking
probabilities. More specifically, when py < p1, PbYKnn, p1,02) = PP (Kan,1,02),
when p; > p1, PO (Ko, p1,02) < PO*(Kun,p1, p2). Furthermore, we observe that as
the switch size increases, this blocking probability becomes insensitive to the trans-
mission attempt rate over group 2 links, and the blocking probability over both group
1 and group 2 links becomes closer.

5.3.2 Performance measures for switches with arbitrary
number of input-port groups

In this subsection, we intend to develop a general recursive formula for perfor-
mance measures of a switch with an arbitrary number of input-port groups. We will
develop expressions for some basic cases first.

(a) Switches partitioned in two input-port groups

In this case, p; and p, are any two positive integer numbers satisfying py +p; = n.
By applying Equation (3.18) on the group 1 input ports of the switch, we have

,Bm ,m(I{n,ma Py p2) = ﬁm -1, (I\’n-l,m, P1, Pz) + mpl,Bm—l.pz (I{n—l,m-l,pl’m)' (5°33)

Therefore, we can write

Toy2{Fnms £1, £2) = Bor-15 (Kno1m-1, 01, 02) — 1
& bomKnmiprp2)  mpy 4 eyl

Furthermore, by sing Equation (3.18) on one of its output ports, we have

ﬂm-l.m(Kn-l.m,PlaPZ) = :Bm-l.pz(I(n-l.m-hplvm)
+ (Pl - 1)p118p1-2,p2 (Kn-z,m—l,Pl,P?)
+ Pzpzﬂm-l.pz-l(Kn—z,m-l 1 P1,y P’z)-
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Figure 5.11: The throughput of the switch with p; = 10: (a) for links in group 1 and
(b) for links in group 2, for various values of n.
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Hence,

r}lh P2 (I{:lo.m:r P1, p2) — (534)
1

1
Bp1~2.po(Kn2,m—1.01.02) Bpy—1.p2-1(Kn_2m-1,01.m)
1 +mpl + (pl - l)pl pl—:,pg n—:.m—:yz:'z +p2p2 ﬁpl-l-l,n IJEn—I:n-lslPlpvlmms
Further, applying Equation (3.18) on group 1 and group 2 input ports, respectively,
yields

Bor -1 (Kne1m-1,01,0) = By-2,,(Kn-2,m-1,p1, p2)

+(m — 1)p18p -2p0 (K-2m-2, 1, £2);
Bor 1. (Kn-1m-1,01,02) = Bor-1,p2-1{Kn—2,m-1, P1, p2)

+(m — 1)p2Bp 121 (Kn-2,m~2,p1, P2).

Finally, substituting these expressions back to Equation (5.34), and letting

S2(pl,l) = [1 - (m— l)r;I-l,pz(I( -l,m—l,Pl,pZ)];
52(?1,2) = [1 - (m_ l)rgl_l,m(}-\.n—l,m—lvplap2)11

we obtain

r;1 22 (I{n,ma P1, p2) =

A
1 : (5.35)
14+ mp; +(p1 - )p1.52(p1, 1) + p2p2.S2(p1,2)
Similarly, by using the same method of development, and letting
Sg(pg,l) = [1 - (m— l)T'Il,I’m_l(I\,n-l,m—l7pl)p2)];
Sg(pg,z) = [1 - (m— l)Tgl,m_l(If;;—l.m—l,PlaPZ)]a
we have
_r;’m(l{n,maplym) -
P2
- (5.36)

1+mpy +p1o15(p2, 1) +(p2 — 1)02S2(ps,2)
(b) Switches partitioned into three input-port groups.
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For the switches with three group of input ports, py + p2 + ps = n, Following the
same method, we can generate similar results. Let
Ss(p1,1) = [1=(m—1)rg _1pyps(Kn-1,m-1)];
S3(p1,2) = (1= (m— 1)} g ps (Knerm-1)];
S3(p1,3) = [1=(m—1)r) _1pps(FKnc1m-1)];
S3(p2,1) = [1=(m—1)rp 10 (En-rm-1);
S3(p2,2) = [1=(m—=1)r}, 51 ps(Knorm-1)l;
S3(p2,3) = [1=(m=1)rp, gy gy (Knor,m-1)];
Si(p3,1) = [1-(m— 1Dy 4 g1 (Kooim-1)];
S3(p3,2) = [1-(m— 1)} pps-1(HKn-rm-1)];
S3(p3,3) = [1-(m=1)r} 5 o 1(FKnormai)]-

We have,
r1171.p2.pa(1(ﬂ.1n1pl,P2’p3) —
P1
! : (5.37)
1+mpy + (71 — 1)p1S3(p1, 1) + p2p2S3(p1, 2) + P3paSa(pr, 3) '
%.m.m(lfn,myplvmapil) —
2]
1 v (5.38)
1+mpz +p101S3(p2, 1) + (P2 — 1)253(p2, 2) + P3paSa(p2, 3)
%,m.m(l(n,mv P1, P2, ,03) =
P3
1 (5.39)

1 +mps +p1p1S3(ps3, 1) + p2p2S3(ps, 2) + (ps — 1)p3S3(ps, 3)°
(c) Switches with N input-port groups.
Similarly, for switches partitioned in N input-port groups, p1 +p2+--+,pn =10,
the same kind of development leads to the following results:
Defining the quantities Sy(p;,7), 1 <¢,7 < N, as

SN(pl'aj) = [1 - (m - 1)7‘}]11,172,---,;1.—l.~--.pN(I{ -1,m-1,01,02,"** vpn)]1
135



then

T;;I‘Pz oooo PN(I{ﬂ,m’plvp?)"'ij) -
Pi

1
1+mpi + 375 _ q PipiSn(pi,J) +(pi — DpiS(piyd)’
J#1
To demonstrate, a switch K g with three input-port groups is considered. In this

(5.40)

switch, p; =3, p; =3, p3 =2, and we let p, = 0.4, p; = 1.0, while p3 changes. The
performance of this switch is shown in Figure 5.15. In Figure 5.15(a), we present
its throughput for links in groups 1, 2, and 3, respectively. Similarly, Figure 5.15(b)
shows blocking probabilities for links in each group. It is interesting to see that
the curve r3;,(KGs,m,02,p) intersects with the curves 73 32(Ks3, p1,p2,p3) and
733,2(Ks8, o1, 2, p3), respectively at the operating point p3 = 0.4 and p3 =1.0. How-
ever, the curve Pb3 3 5(Ks s, 1, 02, p3) intersects with the curves Pb} 3 5(Ks g, p1, P2, 03)
at point p3 = 0.4 also, but it does not intersect with the curve P 5 2(Ks8, 1, P2, 3)
at the point p3 = 1.0. The main emphasis of this example is to demonstrate the fact
that we can use the developed technique to study switches under asymmetric loading.
A detailed performance analysis of the switch is omitted.
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Fig:ure 5.15: Performance measurements for a switch with three different message
arrival rate values: (a) Throughput, (b) Blocking Probability.
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Chapter 6
CONCLUSION

In this thesis, a blocking model is described and formalized for its applications
in broadcast networks Under this model, the transmission and reception operations
have been generally described by he TBG and the RIG. Therefore, system perfor-
mance studies are basically processed by using information from the TBG and the
RIG.

"The blocking model can be extended or specialized for different applications. Typ-
ical extention is the relaxation of the service duration distribution so that it is not
neccessary to be memoryless. On the other hand, the collision-free systems have been
studied separately with the result that a much simplified procedure of obtaining its
performance measures is possible.

The blocking model can be applied to the PRNs by using the iterative-estimation
method. This computational method can be used in many different situations. How-
ever, it provides only the operating region of the throughput curve. Another disad-
vantage is that it consumes a large amount of memory and many CPU cycles. It
is unable to deal with the networks of large size. However, for CSNs with regular
topologies, the system performance can be calculated recursively. Therefore, the net-
work size limitation imposed on the procedure, such as the case in PRNs, is less
severe.

Extentions from this thesis are possible, we briefly introduce some of those possi-
bilities.

e In this thesis, we consider the network systems with simplex data link or half-



duplex data link. We can extent the transmission interaction model to deal
with duplex data link operations. Under this case, the TBG and the RIG are
generated according to the given system. The iterative-estimation method can

still be directly applied for system performance measures.

The recursive relations between partition functions are not only held for CSNs
but also for PRNs with some regular topologies. For example, for the Cycle
network with unidirectional transmission, which is the graphical model of the
packet radio networek operating under D-CSMA, the partition function for this
system is exactly the same as that of the TCAP, The recursive relation in
its partition function, as well as in its throughput expression can be similarly
generated.

In Section 5.3, we analyzed the switches under asymmetric loading conditions.
In that particular case, we partitioned the message arrival rates in the input
ports of the switch into N groups, and we calculated the system performance
measures recursively. Similarly, under some special applications, we can parti-
tion the message arrival rates at the output ports into IV groups, and we use the

same technique of development to recursively measure the system performance.
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Appendix A
Proof of Theorem 3.1

Proof. (a) Based on the SP(-) definition, we write

SP(X) = Yscx(Iliespi)
SP(Y) = Yscy(Iliespi)
SP(XUY) = Yscxur([Tiespi)

For any two isolated subsets X and Y as depicted in the blocking graph of Fig-
ure A.1, it is true that

(SSX)uU(SCY)=SC (XUuY).

Thus, we have
Yscxuy ([lies pi) = Esgx(nies pi) + ZSQY(IL'ES pi) + Z: [lies pi-
g
S¢Y

Similarly,
SCc(XuY),Sg X,SZY — S=SxUSy,SxCX,SycY.

Hence

Tsexuy(llies /i) = Tscx([liespi) + Tscy (Thes pi) + sé;{ s,% ‘eﬁgf" [1#:
Sy#¢

= Tscx(liesp) + Tscy(Tlespi) + > > [Liesy pi

SxGCX Sy QY iedSy
Sx#¢ Sy #¢

= Tscxl[Ties o) + Tscy(Iies pi)
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Xvy

Figure A.1: Graph representation of two isolated sets

+( 3 Thiesx P Y Thiesy 1)
TX

e Sz
= Yscx([lies i) + Tscy([lies £i)
+( Z [Lies pi)( Z Ilies pi)
= Yscx(Ilies pi)Tscy (Ties i)
= SP(X)SP(Y).

(b) Equation (3.2) can be justified by the observation that each independent
subset of X either contains element ¢ and non of i's blocking neighbors or it does not
contain element ;. The elements containing 7 form p;SP(X - B(¢)) while the terms not
containing i form SP(X —i). Given anelement iinanset X, X ={1,2,...,3,...,n},
we denote B*(i) as the set of blocking for element 7 excluding element i. Since ¢ blocks
itself, then B(i) = B*(i) U {:} is the blocked set of element . Consider a general
blocking graph as depicted in Figure A.2. For a state S C X, we have:

if S C X — B(i), then, Su {7} C X
if i€ S, then SC X - B();
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Figure A.2: Graph representation for the blocking set of element ¢

ifig S, then S C X - {i}.
Therefore,

Tscx([Ties pi) = Tscx-iy(Tlies £i) + pi(Tscx- ey (Ties £i)),

or

SP(A) = SP(X — {i}) +mSP(X - B()).  qed.
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Appendix B

Proof of Theorem 3.2

Proof: We observe the fact that the SP(V) expression can be separated into two
components: (1) terms contain p; and, (2) terms not containing p;. The elements p,,
j # 4 in the terms containing p; must belong to the unblocked set V' — B(z). Thus,
we can write
PV = Y ([[e)+ X
SCV-B(i) J€ SgV JE
Differentiating with respect to p;, we obtain
0

3, 5P(V) = S ([[p)) =SP(V-B(). ged.
i SCV=B() j€

145




Appendix C
Proof of Theorem 3.3

Proof: Using P(G,k) = P(G-e,k) +P(G—v-w, k- 1), we have

- (/2] -
oGh) = 3 PGRF

ln/2) - -
= ;(P(G— e, k) + P((G=v—w, k- 1))
=0
/2 | lnf2l
= ; P(G" eak‘)ﬁk"}'ﬁ ; P(G—v—w,k— l)ﬁ*—l,

where P(0,-1)£0. So

- - o ln=p2 L
a(G,P)=a(G-e,P)+P Z P(G—v—w,])p’,

7=0

or

o(G,p) =G -e,p) + (G —v—w,j). qed
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Appendix D
Proof of Corollary 3.1

Proof: By applying Equation (C.1) to network G repeately, we have

aoG) = oG-e)+po(G—v—w)
= a(@—el—eg)+ﬁa(é—el-v—wz)+ﬁa(é-v—wl)
= oG- e —e) + oG — v —wy) + po(G — v~ wy)

-~ d -
a(G’—e1—eg—---—ed)+p'z:a(G—v-wj)

=1

- d -
= oG-v)+5)_oG-v—w)
=

Therefore, ]
aG) = o(H) + ﬁZa(H -w;). ged. (D.1)

=
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Appendix E

The Partition Functions of Some
Regular Networks

The partition functions of some regular networks will be analyzed individually in the
following sections.

E.1 The partition functions of cycle networks and
path networks

Given a cycle network C;, and a path network P, of n nodes, we have
BP,p)=1%  B(P,p)=1+p;
B(Ch,p) =1; B(C2,p) =14 2p.
By applying Equation (3.17) to C;, we obtain the basic relationship
B(Car p) = B(Fa, p) + pB(Pa-2,p)- (E1)
Similarly, by applying Equation (3.18) to C,, we get
B(Cn,p) = B{Pr-1, p) + 20B(Pa-2, p)- (E.2)

Also, applying Equation (3.17) to the end node of P,, we express P, in terms of P -1

and P,_, as

ﬂ(PmP) = ,B(Pn-la P) +p:B(Pn-2, P)- (E3)
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Multiplying Equation (E.3) by 2, and subtracting it from Equation (E.2), we have
B(Cr,p) = 2B(Fa, p) = B(Fa-1,P)- (E.4)
From Equation (E.2), we obtain
B(Cus1,p) = B(Pa, p) + 208(Pa-1, p)- (E.5)
If we multiply by 2p on each side of Equation (E.4),
2pB(Cn, p) = 4pB(Pa, p) = 2pB(Ba-1,p).
and combine this expression with Equation (E.5), then
B(Pesf) = T (B(Coss )+ 208(Cr ). (E0)
Finally, using Equation (E.4),
PB(Ca-1,p) = 20B8(Pa-1,p) — pB(Pa-2,p).

and subtracting from Equation (E.5), we express the partition function of a cycle
network on n nodes in terms of the partition functions of cycle networks on n — 1
and n — 2 nodes, respectively, namely

B(Cn,p) = B(Ca-1,p) + pB(Ca-2, p). (E.7)

E.2 The Partition functions of completely con-
nected networks

Let us momentarily drop the explict notational dependency of §(K,, p) on p by writ-
ing simply G(X,). In applying Equation (3.21) to a completely-connected network
K., we have

BUEn) = B(Ene) +2(n — 1)pB(Knz). (ES8)
Thus, we have B(K;) =1, (I3) =1+ 2p.
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Recursively applying Equation (E.8) yields

BKs) = B(Knoy)+2(n — 1)pB(Kn-a)

(14 2(n — 1)p]B(Kn-z) + 2(n — 2) pB(Kn-3)

[1+ 2(n — 1)p]B(Kn-2) +2(n = 2)pB(Kn-s) +4(n — 2)(n — 4)p* B(Ka—s)
[1+2(n — 1)p|B(Kn-z) +2(n — 2)pB(Ka-1) + 4n — 2)(n — 4)p*B(Kn-s)
+8(n — 2)(n — 4)(n - 6)0°B(Ka-1).

In general, we have

(n-4)/2 &k

BUE) =L+ 20— VAR + 3 [[(n=29)CAB(Fove). (B9
Similarly,
(n-8)/2
B(Kova) =[1+2n ~ DB + 3 I:l‘" 2 2)(20 B(Knmse

B(K,) = [1+2(n—-1)p|A(Ka-2) +2(n — 2)pB(Kn-1)
(n-4)/2 &k

+ Z ”n-2' 20)¥B(Kn—2-2k)-
; 11( 7)(20)* A(Kn-2-2x)
Let I=k-1,p=j-1 Then

B(K:) = [142(n—1)p|B(Kn-2) +2(n — 2)pB(Kn-4)
(n—6)/2 1

+ Z_; pll(n ~ 2 = 20)(2p) ' B( K- a2

[1+42(n — 1)p}3(Ka2) +2(n — 2)pB(Kn-s)
(n-6)/2 1

+2n-2)p 3 [Jn-2- 2p)(2p) B(Kn-s-21)
=1 p=I

1

= [1+2(n- 1)g]B(K-2) +2(n — 2)pB(K-4)
+2(n - 2)p[B(Kn-2) — 2(1+ (n ~ 3)p)B(Ka-4))-

Therefore, the partition function for X, is expressed in terms of that for K,_, and

Kn-4 as

BUK) = [1+2(2n — 3)p|B(Ka-2) = 4(n — 2)(n — 3)0*B(Kn-s)- (E.10)
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By the same method of development, we obtain the alternative form
(n-2)/2 &k

B(Kn) = B(Kn-1)+ ; [1(n =25 + 1)(20)* B(Kn-1-2); (E.11)

=1

B(K) = [1+2(n— Dplf(Kn-1) - 4ln = Dn - 0p*B(Knmo).  (E12)

E.3 The Partition functions of crossbar switching
networks

Dropping the explicit dependency of B(Xum,p) on p by writing 8(Ky,) and
applying Equation (3.18), we have

ﬂ(-Kn,O) =1, ﬁ(I(n.l) =14np;

B(Kn2) = B(Kay)+1pB(XKn-1,1)
= 1+2np+n(n-1)p%
B(Kan3) = B(Knz)+npB(Kn-1,2)

= 14+3np+3n(n—-1)p* +n(n— 1)(n- 2)p°
3. /3 n!

- 2(H e

B(Kns) = B(Kas)+npB(Ka-1,3)
= 1+4np+6n(n - 1)p* +4n(n — 1)(n - 2)p°
+n(n - 1)(n - 2)(n - 3)p*

In general, _ |
BlEm) = ( m ) e (E13)
By using the relation, ( Z") = ( m’; 1 ) + ( 1’;n——11 ), we obtain
B(Enm) = ﬁ(K,. met) + B -t O; (E.14)

B(Kam) = (n— m)'p +; k)'p FB(Eamkmk1)-
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Applying Equation (3.18) directly on the network K, leads to

m

B(Knm) = (1+np)8(Kn-1,m-1)+ ;%_‘_—lgip“-“ﬂ(ffn_k,m-k);
B(Kam) = [1+(m+n— 1)oB(Ka_1,m-1)

= (n - 1)(m - 1)P*B(Kn-2,m-2); (E.15)
B(Hnm) = (1+np)B(IG,m-1) — n(m— 1)p*B(K-1m-2)- (E.16)

E.4 The partition functions of recirculating shift
networks

By applying Equation (3.18) to recirculating nevworks RS, of different sizes, we
have

B(RS1, p) 1+p;

B(RSz,p) = 1+4p+2p%

B(RS3,p) = (1+3p)B(RSz, p) - p(1 -+ 4p)B(RS,, p)
= 1+46p+90% +2p%;

P(RSs,p) = (1+3p)B(RSs,p) - p(1 +4p)B(RS:, p) + p*(1 + 4p)B(RSy, p)
= (1+3p)B(RS3, p) — p(1 +4p)B(RS,, p) + p*(1 + 4p)B(RS1, p)
= (1+2p)B(RSs,p) — p*B(RS:, p);

B(RSs,p) = (1+3p)B(RSy, p) — p(1 +4p)B(RSs, p) + p*(1 + 4p)B(RS, p)

- P*(1 +40)B(RS}, p)

= (1+2p)B(RS, p) — p*B(RS;,p).

Thus, in general,

n-2

B(RSa,p) = (1+3p)B(RSn-1,p) + ‘_,_“,l(—l)‘p‘(l +4p)B(RSp-1-4,p),  (E.17)
with n > 3, and
B(RSa, p) = (1 + 2p)B(RSn-1,p) — p*B(RSs-2,p), (E.18)
with n > 4.
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If we define R, as the network generated from RS, by removing one edge from
it, then

B(RSn,p) = B(Rn,p) +pB(Rn-1,p);

B(Ra,p) = P(RSn,p)— pB(Rn-1,p);

B(Rn-1,p) = PB(RSa-1,p)— pB(Ru-2,p);

B(Rn,p) = ( RSn, p) = pB(RSn-1, p) + p*B(Ru-2,0)

= Z;( 1)./),3( n-np)
Since
B(RSmp) = (1+30)B(RSn-1,p) +( 1+4p)'§ (~1) 0" BRSn-1-1,0),

if we let

n-2

J = Y (~ 1 #BRS -1 ),

1=1

and k =1+ 1, we have

n-1
J = ;(—1 k_lpk—lﬂ(RSu—k,p)
1 n-l

Z:( ~1)*p*B(RSn-x,p

Thus,

n-1

B(Ra,p) = B(RSn,p) — pB(RSn-1,p)+ Y (~1)'0'B(RSn—s, p)

1=2

B(RSn,p) — pB(RSn-1,p) — pJ.

Further, from Equation (E.17),

J= T4 (RS, p) = (1 +3p)B(RSs-1, p)].
Therefore, we have
B(Rup) = T2 BB p) = T RS 1), (19
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with n > 2, where

B(Ri,p) = 1l+4p; B(Rz,p) = 1+3p+p%
B(Rs,p) = 1+5p+6p0%+p°.
Substituting Equation (E.18) to Equation (E.19) leads to
BUEnsp) = TP RSws1,)+ 7L (RS0 (E20)

If we apply Equation (3.18) to the R, networks of different sizes, we also generate

B(Bn, p) = (1+ 2p)B(Ra-1,p) — p*B(Rn=2,p)- (E21)
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