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ABSTRACT

A Comparative Study of Two Decoupling Procedures
in the Green's Function Treatment of the

Ising Ferromagnet

by

Leonard A, Murray

A technique for decoupling Green's function equations,
psed by Tomita and Tanaka to investigate raramagnetic
resonance line shapes, is examined in the Ising ferromagnet
limit via expansions at low and high temperatures, The
results obtained for the first two stages of decoupling
were found to be reasonable and compared favourably with
the results of the more exact and more complicated random

phase approximation of Tahir-Kheli.

The technique is found to be inconsistent in that
the Green's functions following from a thix>d-stage de-

coupling turn out to have complex energy pecles at low

temperatures and moreover the more exact third.-stage

random phase approximation does not have such poles.
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(i1)
ABSTRACT

A technique‘for decoupling Green's function
equations, used by Tomita and Tanaka to investigate para-
magnetic resonance line shapes, ig examined in the Ising
ferromagnet limit via expansions at low and high tempera-
_tures. The results obtained for the first two stages of
decoupling were found to be reaconable and compared
favourably with the resplts of the more exact and more

complicated random phase approximation of Tahir-Kheli.

The technique is found to be inconsistent in that
the Green's functions following from a third-stage
decoupling turn out to have complex energy poles at low
temperatures and moreover the more exact third-stage

random phase approximation does not have such poles.



1. INTRODUCTION

Recently, Frank! made a moment comparison between
two'procedures for decoupling the infinite hierarchy of
Green's function equations: a simpler procedure due to
Tomita and Tanaka® (called hereafter the TTA procedure) ,
and a more accurate but less tractable one due to Tahir-
Kheli3 (called hereafter the RPA procedure). The model,
chosen for simplicity, was that of the Ising paramagnet.
Tt was found that, as far as the first few moments are
concerned, for large effective number of nearest neighbours
2z the resulte differ only to order (1/2z2). This indicated
that the TTA would constitute a reasonable and reasonably
eimple approach that might be carried a stage further than

the more complicated RPA.

Some properties of the Ising ferromagnet, then, are

here calculated in the first few stages of the TTA and
compared with those calculated in the RPA3. It is found that
for first- and second-stage decoupling the TTA results are
indeed reasonable, For third-stage decoupling, however, they
are no longer reasonable at low temperatuwes; an inconsistency
arises due to the appearance of complex poles of the lowest-
order Green's function in complex energy space. Such poles.
are ruled out by the general theory (see e.g., Reference 23,

p. 325) and moreover such poles do not appear in the more



exact third-stage RPA. The indications are, then, that the
more general third-stage results of TTA must be regarded
with suspicion close to the Ising limit. It 1= also inter-
esting to note that a third-stage decoupling within a
epecified decoupling scheme may be a much more sensitive

test of that scheme than a second-stage decoupling.

Tn the following section, a brief history of the
development of the theory of ferromagnetiem, with special
emphasis on the Ising and Heisenberg models, is presented;
and the importance of the Ising model and the use of the
Green's function method as applied to ferromagnetiem are aleoc
mentioned. In Section 2, the Green's function approach is
described in detail. The RPA and TTA decoupling procedures
are introduced and applied to the Ising model of ferro-
magnetism in Section 4. The results of the first- and
second-stage RPA due to Tahir-Khe113 are presented in
Section 5. In Section 6, several results of the first-
and second-stage TTA are obtained and the third-stage TTA
je shown to be inconsistent. In Section 7, some impli-

cations of these findinge are discussed.



2. FERROMAGNETISM

Ferromagnetism is caused by the interaction of the
spins of certain electrons at the various atomic sites in a

L

crystal, An assembly conesisting of microscopic systems
which interact, under certain conditions, exhibits co-
operative phenomena., Statistical mechanics has shown that
co-operative phenomena have characteristic =ingularities in
their physical properties, In the case of a ferromagnetic,
the physical properties show discontinuities at a critical

temperature, Te, known as the Curle temperature or Curie point.

At T<Tg, spontaneous magnetization ies present and
the magnetization, M, tends to a non-zero value as the
external magnetic field ie reduced to zero. The magnetization
is a function of the temperature and reduces to zero at Tg.

At T>T,, there is no spontaneous magnetization, but the
ferromagnetic possesses a paramagnetic sueceptibility which
becomes infinite at Ts. The especific heat of a ferromagnetic

also shows a diecontinuity at T¢.

The first théoretical attempt to account for the
properties of a ferromagnetic was made by Weiss5 (1907), who
postulated the existence of a large "internal field". By
means of this hypothesgis, Welss was able to reproduce such
important phyeical properties of the ferromagnetic as: the

Curie temperature, spontaneous magnetization, and a magnetic



susceptibility proportional to 1/(T-Tp) above the Curie
temperature. However, the origin of this "internal field"
wae not clear and a statistical formulation in terms of atomiec
interactions was not possible.

Attempts at such a formulation were made by Ising6'
(1925%) and Heisenberg7 (1928). Their models will be con-
sidered in more detail in parts 2.1 and 2.2 of this paper,
respectively. Using gimplifying approximations (mathematical)
both models arrived at the same general results as the Weiss
theory. But thece mathematical approximations proved to be
inadequate when it came to a detailed comparison with

experiment.

Bragg and William38 (1934) introduced the concept
of long range order which ie essential to a clear understanding
of higher order transitions of which the Curie point of a
ferromagnetic is an example. Bethe9 (1935) showed how to
jntroduce a parameter in order to take into account short
range order, and hence laid the foundation far an improved

approximation to the Ising model.

Onsager1o (1944) solved exactly the Ising model for
the two-dimensional quadratic lattice. The form of the
epecific heat curve obtained by Onsager differed markedly
from both the experfmental curve and curves obtained by

various approximations. The differences between the Onsager



results and the experimental results were thought to be dus
either to the inadequacy of the Ising model as a represen-
tation of the interactions, or to the two~-dimensional nature

of the Onsager solution,

uUnfortunately the methods of Onsager and others for
an exact solution of the Ising model fail completely in three
dimensions, and thére has still been virtually no progress
with an exact solution to this problem. Theoretical re-
search has been largely confined to improving closed-form
approximations, and to deriving exact series expansions at
high and lou temperaturese. Most of the progress has taken
place in the second area, that is, with series‘expansionso
Tachniques11’12’13 have been developed to extend these
series,and predictions of critical properties of the model

can be made with considerable confidence.

Theoretical developments regarding the Heisenberg
model have proceeded more slouly. Serigs expansions arse
more difficult to derive and they therefors contain feuwer
terms. The spin wave picture introduced by E!loch“+ (1930)
proved to be very helpful at low temperatures as did the
spin wave interaction calculations of Dyson15 (1956), but
the formulae become invalid before the critical temperaturse

is reached.



2.1 Ising Model of Ferromagnetism

The ITsing model assumes a cemi-classical type of
interaction between the epins of certain electrons in the
atoms making up the crystal. The {nteraction between two
spins at sitec labeled by 1 and J 1is taken as proportional to
S%S?, the product of the z-componehts of the spins. The
sites in the crystal are taken to be rigidly fixed, assuming
that the vibrations of the crystal can elther be neglected,
or that they act independently of the spin configuration amd
that they. can therefore be considered separately.)+ Therefore,
in an external magnetic field H, the Hamiltonian may be
written, for a crystal of N atoms (or ions) each of total
epin S, as .

N N
=- g%gZ - mH ST s}
i 3 Lo

H = -

@

(2.9
where the summation is taken over all nearest-neighbour
pairs 1, J in the lattice, J is the interaction energy of
parallel epine and m is the total magnetic moment of the site.
The second term on the right-hand side of (2.1) arices because
of the Zeeman effect in'an external field. The Ising model
thefefore corresponds -to extreme anisotropy since there is
no interaction betweeh the x and y components of epin.

It is therefore postulated that only nearest-
neighbour lattice eites interact; that the energy is -J if

the nearest neighbours have parallel spins and +J if they
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have antiparallel spine. The zero of energy is conveniently
chosen to be the average of these two cases. J, which is a
measure of the coupling, must be determined from the physical
properties of the system. It is positlive for a ferromagnetic

system and negative for an antiferromagnetic system.

The original model considered by Ising was for
S = 4 and most theoretical work corresponds to this case.
But it has also been poséible,.using series expansions, td

efudy the effects of larger S's.'®

TIeing colved this model only in one dimension, and
this case showed no ferromagnetism; Peierls17 was the first
to show that two- or three-dimensional models would exhibit
ferromagnetism. But no one has as yet solved exactly
(a) the three-dimensional Ising model; (b) the two-dimensional
model in a magnetic field; (e¢) the two-dimensional model
with interactions between next-nearest neighbours as well as

nearest neighbours.
2.2 Heisenberg Model of Ferromagnetism

pirac'® had shown that the electronic spin and the
Pauli exclusion principle combine in such a way as to produce
between spins of two neighbouring electrons a poseible
coupling of the form
V=-J81 " S, (2.2)



.where Sq and Sp are the two neighbouring spins and J is

a function of the distance between the spins called the
exchange energy, OT exchange coupling. Heisenberg7 wae the
first to realize that if J was of positive sign it would
provide an explanation of ferromagnetism. The Hamiltonian
suggested by Heisenberg could then be written for a crystal
of N atome each of total spin S as '

¥ =-d = si-8 _mH S g
Ry T H i (2.3)

with the same notation as used in (2.1).

Tn contrast to the Ising model, the Heisenberg
model correzponds to magnetic jsotropy. In effect the Ising
model ignores the off-dlagonal elemente of the epin operators
and considers only the componentes along some fixed direction -

usually the direction of the external magnetic field.

Calculations for the Heisenberg model being more
difficult than for the Ising model, exact resulte have been
obtained only for certain properties of the one-dimensional
chain. No discontinuities were found to aricse in one- or

two-dimensional models.

High temperature ceries expansiong are more reliable
ag S-»o, and for S = % are less reliable than those for the
Isinglmodel. Only qualitative information has been obtained
for the behaviour near the Curie point and the low temperature

benhaviour is much more complicated than that of the Ising model.



2.3 Importance of the Ising Model

Considering the facts that the spin interaction
used in the Ising model is a scelar one and that lattice
distances are fixed and do not depend upon spin orientation,
one would tend to question the importance and usefulness of
this model. However, the interest in the Ising model lies
in the fact that it is one of the simplest descriptions of a
system of interacting particleé while still having some sem-
blance of physical reality in it. The model forms an eXx-
cellent test for any new approximative method for dealing
with co-opsrative phenomenas 1f the new method cannot
handle the Ising model, it certainiy will not be able to

deal with more complicated cases.

Even though the Ising model is not consiaered a
realistic model of ferromagnetism, it is a very good model
for a binary substitutional alloy and an interesting model
of a gas, or liquid. Actually the Ising model can serve
in any system where the configuration approximates a lattice
on each site of which there is a binary choice with a certain

favoured relative configuration cf a paire.

Lastly, the spin % Ising model has served as a

useful representation of the ferromagnetic behaviour of

certain cobalt and rare earﬁh salts at low temperatures.ao
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2.4 Green's Functlions and Ferromagnetism

The various methods, that have been mentioned so
far, for evaluating various properties of a ferromagnetic
are valid only in each of their particular temperature range.
Tyablikov and Bogolyubov2h’25 were the first to show that
it is possible by using the Green's function method to develop
one approximate method to evaluate the properties of a
ferromagnetic which is valid 1n the whole temperatue range.

They had investigated the epin ¥+ Heisenberg model.

Much work has been done since in this area.
Izyumov and Yakovlev26 and Kawasahi and Mor127 attempted to
extend the Bogolyubov-Tyablikov theofy to higher spin-values.
Tahir-Kheli and ter Haar28 tackled the same problem by a |
better method and also diecugcsed the influence of higher-
order decoupling. Tahir-Khell developed a higher order
random phase approximation (RPA) and applied it in the first
two orders to the Heisenberg29 and Ising3 models of ferro-

magnetism.

In the following section, the Green's function
approach 1is described in detalls applicationé to ferro-

magnetism follow in later sections.



3. GREEN'S FUNCTIONS

11

The type of Green's functions employed in statis-

tical mechanics are the double-time temperature-dependent

21,22

Green's functions . There are three different basic kimis:

the causal, G,(t,t'); the retarded, Gp(t,t'); and the

advanced, G,(t,t'); respectively

Ge(t,t")

Gp(t,tt)

Ga(t,t")

]

<<A(t)|B(t')>>c =-‘1<TA(t)B(t')),
ADIECH PR CICRDRIC ,B(t'_)]> ,
<<A(t)|B(t')>> o = 1006 {ace), B >

where the averages <?’;> are'grand canonical ensemble

averagee defined by the relation

| <:.1> =

wvhere

Y-

-ph,
Tr(e T...)

Tr(efﬂﬁb

1/kB'r

(3.1ai
(3.1b)
(3.1¢)

(3.2)

(3.3)

with kB,Boltzmann's constanty T, absolute temperature; and

Hp =K -EN

(3.%)

where & 1s the time-indgpendent Hamiltonian operator of the

sys@em; N, the total number operator; and E is the chemical

potential. In our particular case, N will be a constant and

‘therefore will not enter in our calculations..

The A(t) and B(t') are time-dependent (Heicenberg)

operators which are connected with the time-independent

(Schrodinger) operatore through the relation

A(t) =

ej}{TtAe- i}'th ;

(3.5)
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where, throughout, a system of units is used such that

h=1.

The symbol T indicates a time-ordered product of
operators defined as follows: |
TA(E)B(E') = & (t-t)A(EIB(t') +7 O(t'-t)B(t')A(t), (3.6)
where &(t) is a step function defined by the equations: ‘
o(t) =1, t>0 3 6(t) =0, t <03 (3.7)
and 7 =1, (3.8)

[A,B] indicates the commutator or anti-commutator

of the operators A and B:
[A,B] = AB -7BA , 7= . ' (3.9)

The sign of?[ in equatione (3.6) and (3.9) is chosen
according to convenience, depending on the nature of the

particular problem.

Equatione (3.1) can be rewritten, using equations

(3.6) and (3.9), in the form

Gel(t,t?) = -ic?(t-t')(A(t)B(t')> - 176(t*-t) B(t’)A(t)}, (3.10a)
Gp(t,t!) = -18(t-t"f A(EIB(E") - 77 (Bt AL}, (3.10b)
Galt,t") = 18(t'-t)f <A(t)B(t')> -4<B(t')A(t)>.} , (3.10¢)

N = ., (3.104)

It =hould be noted that the Green's functione
(3.10a, b, ¢) are not defined for t = t' and also that
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Gp(t,t') =0 for t < t' and Ga(t,t') =0 for t > t'. It
can be shown that the Green's functione Ge(t,t'), Gr(t,t')
and Ga(t,t') depend on t and t' only through (t—t')zo.

3.1 Equations for the Green's Functions

Differentiating equations (3.10a, b, ¢) with respect
to t, the following is obtained for all three Green's functions:

i dG _ﬁi‘c_‘ﬂl <[A(£),B(t'~)fl> + <<1 Q-g-tﬂ‘l[B(t')» s (3.11)

where the subscripts on G and <§.;» have.been omitted. Using

the equétion of motion for the Heisenberg operators:

188 = (a,%] = ak- 2 o, (3.12)
and the relation
dégg;’t") = - 'dﬂ%:j)‘ = §(t-t') (3.13)

in equation (3.11), the equation of motion for the Green's
function G is obtained: '

190 = 565 (Qeor,aer )+ (lace Hed IB(_t')>>’ . (3w

The double-time Green's functions on the right hand
cide of (3.1#) are usuaally of higher order than the one on the
left-hand side of equation (3.14%).. One can construct equations
of the form (3.14%) for these higher order Green's functions
and thus obtain a coupled chain of equations for the Green's

functions. These equations would be exact, and thelr solution
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involves some type of approximation method to uncouple them
at some stage. In Section 4 of this paper two decoupling
schemes which have been used mainly in studying the proper-
ties of magnetic systems will be introduced as applied to

the Ising ferromagnet.

Tt is often convenient to work in the energy repre-
sentation of the Green's functions. Going over to the

Fourier components of the Green's functions, i.e., writing

G(t,t') = SY@B»E exp [-1E(t-t') d(t-t'), (3.15)

and using the representation
- _
1
st = 35 [ exp[-18(s-t') a (3.16)

for the §-function, one obtains from (3.14)

E((AIB»E = o= <[A,_B]> + <<[A,7i]iB>>E,. (3.17)

3.2 Correlation Funé'cions

Many quantities of physical interest can be derived
: -
from the correletion functions &'AB andeA which are defined

asgs follows:

Ty g (6,61 = (AIBENY | Fg, (6,81 = BsAE). (3.18)

These time correlation functions depend, as do the Green's
functions, only or t-t'; but, in contradistinction to the
Green's functions, they are defined for t = t' since they do

not contain the discontinuous factor &(t-t').
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Equations of motion can be obtained for the

correlation functions:

d’&BA = ' 1
a%p _ . :
1 AB - <[A(t) H(t) B(t )> ) (3.19b)

by differentiating (3.18) with respect to t taking into

consideration the equations of motion of the operators.

The correlation functions can be obtained-either‘
from a direct integration of equations (3.19) using the
necessary boundary conditions, or indirectly from an evalu-
ation of the Green's functions from equation (3.17). This
latter method is usually employed since it is easier to
eatisfy boundary conditions with thé use of the spectral

theorens.
3.3 Spectral Representation:

a) Spectral Representations for the Time Correlation Functione

Using (3.18) and (3.2),7FBA can be written in an

obvioue notation as

A -1 e BHm= il (t-t?)
Fgy (t,8") = (Tr e’ D) ﬁ (-,»\|e/3 T T. BW
P N )
If use is made of a representation for the matrix elements

such that ¢ ic diagonal, that 1is,
(”lﬁf['l/'} =SBy (3.21)
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then from (3.20) one obtains
W -1 |
ﬂFBA(t,t') = (Tr e‘ﬁh&) 5%; expljﬁE,—i(E’-gw)(t—t'ﬂ

1Bl 1Al (3.22)
If one lets J(w) be the Fourier transform of ¥p,, that is,

LY
Tipy (8,80 = | T expl-twt-t'] dw (3.23)

then
M 1 -fBE,
3@ = (Tr N FE GIBYD gialde B 8w-E,, + B .(3.29)

Similarly one obtaine for the Fourier integral of1FAB:

- g
‘EFAB(t,t') = S J(w)e'wexp[—iw(t-t')] de. (3.25)

- a0

Equations (3.23) and (3.25) are the required epectral repre-
sentations of the time correlation functions, and J(w) is

the spectral intensity of T§,(t,t').-

b) Spectral Revrecentatione for the Green's Functions

The Fourier transform of Gp(t,t') is Gp(E), where

1 R
Gy (E) = '2_1';[ Gp(t,t') exp[-1E(t-t') d(t-t"). (3.26)
-0
O(t) can be written in the form
t . .
8(t) = S ets(tyat’ €—0 (€>0)3 (3.27)
or, since - ’
1. (° |
S(t) = '2—-5S exp(-ixt)dx , . . (3.28)
-

in integral form

o0
o(t) = .i.if exp(-ixt) gy | (3.29)

L, X + 1€



17
 From (3.26), (3.10Db), (3.23) and (3.25), it ie found that

1

1 Q0
L g_wd(t—t‘) exp [1(E +ie) (t-t1)
SMJ(w) (eﬁw—‘q) exp[—iw(t-t'zdw ’

- b
) pw .
1 (e’ =-PDI(w)
-3 (R e (3.30)

Similarly, one obtains for the advanced Green's function

Gr(E)

1 (e -MDI(«) g
Ga(E) =-é_1"§ g‘--w—ie des. . (3.31)

From the theory of dispersion relations it can be
ehown that the function G(E) defined by the equation

oO

o = L f E DI gw, (3.32)

{8 an analytic function in the complex E-plane which is equal
to Gyp(E) everywhere in the upper half-plane (Im E>O0) and to
Go(E) (Im E<O) everywhere in the jower half-plane, and which
hae csingularities on the real axis. Therefore, if a cut ie
made along the real axis, the function
(Gr(E) Im E>O

G(E) =
(Ga(E) Im EXO

9 (3-33)

can be considered to be one analytic furction coneisting of
two branches, one defined in the upper, and the other in the

lower half-plane of complex values of E.

Therefore, from (3.33), (3.30) and (2.31),
G+ 16) - Glw - 16) = T )_(F I (E)
(s -1 ] ® e e

w- E + 1e w- E - je
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and if use i= made of the symbolic identity of complex
integration

lim 1 I
e—-+0xF1e - K* 1ws(x) , (3.35)

where P% indicates that in integrating we take the principal
part of the integral, then the following relation is obtained:

G(w + 1€) - G(w - 1€) = -1(e’” - 7)T(w). (3.36)

From (3.36), it is possible to write the correlation

functions in terms of the Green's functions, for example:

o0
Lrd =11 Glw+ 1€¢) - Glw - 1€)
Tty = 1im 1J wt s
expl-iw(t-t') dw. : (3.37)

For t' = t, equation (3.37) can be put into a more

convenient form-as
F,(0) = <BA>
© . Ao -1
= ](._1_!11..+ o (-2 Im)Ln <<A(t)|B(t)>> E=w+16[e —7Z] dw. (338)

3-”} Application to the Ising Model of Ferromagnetiem

For the I=ing model of spin S = %, and for arbitrary

range of interaction, the I=ing Hamiltonian (2.1) becomes
N z_z N 2
X =-% S J135iS7 - uHS S (3.39)
0y I A

wherg/u = magnetic moment per unit epin and where the
summation 1= now not restricted to only nearest-neighbour

paire 1,j in the lattice but 1= taken over all lattice =ites.
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The interaction potential, Jij’ depends on the separation

i - j, and 1= taken to be zero when 1 = J.

The eigenvalues of the operators S are either +3
or -3 (in Dirac unite). Thie restriction implies the well-

known relations:

sh? = p2=03 hH3=14, (3.40a)
where
+
Sy = sy ¢ isy . (3.40b)

Therefore, the usual spin commutation relations combine with

(3.40a) to yield the identities:

st sj+sysy=+ 3 5§65 =455 (3.141)

By using the equation of motion for the Green's
functions (3.14) and Fourier transforming with respect to
energy via (3.26) the equation of motion for the (n + 1)th-

order Green's function is obtained:

<§sf.1s§2,..sf-ns;|si>>E (E - )
S A
= 1%; <?1...fn%>
*=1; <<S?‘1 . .sf-ns‘;‘szlsi>>E' ; (3.142)

VA VA z
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Using (3.42), the first two exact Green's functions

are

(E -pH) <<SI |si>>E = @/mS4q +ST 1y <<s§‘s”{|si>> (3.43)
and .

(E - H) <<s§szls{>>E = (547/8m (2(ji> - $513 - )

+ % Iip <<s§s§fs; IS;>> B, (3.14%4)

where ¢ = <Si>, independent of 1 by translational symmetry.
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4, DECOUPLING PROCEDURES FOR ISING MODEL

Ae pointed out in the theory of Green's functions,
it is always necessary at some stage to make an approximation
in order to decouple the hierarchy of Green's function
equationg (3.17). In the case of the Ising model under
consideration, (3.39), this involves making some approxi-
mation to the (n + 2)th-order Green's function on the right-
hand side of the equation for fhe (n + 1)th-order Green's |

function (3.42).

Tahir-—Kheli3 (T-K) uced the random phase approxi-
mation (RPA) and worked out the detaile of the first-and
second-stage approximations as appliéd to the sy=tem with the
Hamiltonian of equation (3.39). Tomita and Tanaka® (TT) also
made use of an approximation (TTA) for the decoupling of the
hierérchy of Green's functions. TT, however, were inter-
ested in studying the paramagnetic resonance line shape
problem and used an anisotropic magne*ic Hamiltonlan

involving dipole-dipole interactions.

We are interested in the implications of applying
the TTA to the Ising model (3.39), and how they compare with
the results of T-K. Theee two approximations will now be

presented,



22
4.1 Random Phase Approximation .

The nth-order RPA is defined by Tahir—Kheli30 as

—1e(t-t'){6(n) <<3§1sf-2. . .sféns;(t')sz(t)>c -

5(n) GE 85,55 Sg(0sg(t) ] = 0 (. 1)
where @(t) is the step function defined in (3.7), <>c
denotes a cumulant average31’32, and 6(n) is a projection
operator such that it has zero elgenvalues whenever any two,
or more, of the (n + 1) spatial locations fq,...,fn and g

coincide; otherwise its eigenvalues are unity.

The semi-invariant thermal averages <>c may be
defined in terms of the usual thermal averages of products

of quantum mechanical operators Mj...Mp by the (inverse)

Gy = G v |
IR O OISR EON

@1M2...Mn> the sum of all possible

>re1ations

products of semi-invariants,
" each Mj being involved in only
one of the factors, and all the

M;'s being uced in each term. (%.2)

Approximation (4.1) actually expresses the Green's
' z Z z +, -
function 0(n) <%f18f2...8fn8gl8g§>E in terms of a certain
iinear combination of all the lower order Green's functions.

For example, by making use of (4,1), it can be shown that the
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firet and second RPA's respectively are

1 - sgf)«s Is >> E T O sgf)a—(é*,s >>E (4.3)

and
A Z o2 ot "™ I~
S sz sZ stls ™ o ————> O a-'<S s*s>>
<<flf29'|9>E2ndRPA 2) lg
Z ~tio~ + -
+a—<<sf sglsg>E+ Lo ¢ <<sg{sg>>E
2 172
_ 2 +]|c-
A<l -
where
Z 2 2 |
sZ s > -2 . (4.5)
< £, 75
We shall henceforth refer to Lf g as the system correlation
i72

function. It expresses the fluctuation of the s? operator from

its average value.

4.2 Tomita and Tanaka Approximation

The TTA involves defining a new Green's function of

the cumulant type (in an obvious notation) :
- _ z z 4y =
[2...n+] = [2...n+} g = [§f1...sfnsg|sg]E , (4.6)

in terme of the usual Green's functions

s VA + - .
(12.00n+l E <<Sf1 oaoSf!‘!Sg ISg>>E L} (""07)

as follows:
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(+1 = [+ ,
(14| = <1> [+| + [1+| y .
12+ = (12) [+i + (1) [2+] + <2> [1+| + [12+| ,
(12...nH = == @(r)> [o(n'r) +1, (+.8)

wﬁere 1 stands for Siz'1 etc.s it will be obvious just where
this notation is being used (sometimes, the notation will be
mixed). The 0{T) is a product of r S%'s, and 0{P"T) is 4
product of (n-r) S%'s such that o{T)oln-1) - o(n) _ 12...n,
and the symbol % means that r runs over all its physically
possible values, and for each of these values one adds
together terms corresponding to all possible ways of dividing
the n S%'s into'groups of r and n-r (and where permutations

of S% within each group are not counted as "different").

The nth-stage of approximation consists in letting

[12...n#] = O,

Applying the TTA (4.8) to the spin Green's functions,
we obtain for the first two TTA's respectively

<<9§1Sglsé>>E 5T & <<Sg ls'é>>E , (%.9)
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<<Sf1sf23g\ >>E 2nd TTA <S%1SE|SE>>E
+ o <<szsg|s >> * Lf1f2<<3g|S >>
i 2<< | g>> (4.10)

Comparing (4.9) and (4.10) with the expressions

(+.4) and (4+.5), it 1s seen that the decoupling procedure

of T-K is exactly equivalent, for unequal indices, to that

of TT.
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5. THE RPA FOR THE ISING MODEL

The following will be a summary of the main results

obtained by T-K3. The detailed calculations will be omitted,
as those presented for the TTA in Section 6 of this paper

will be sufficient to show how T-K obtained hie re=ults.

The notation used in the remaining parts of this

paper follow very closely the notation used by T-K3.

5.1 The First RPA

As was seen in expression'(h.B), the first RPA

consiste in completely ignoring correlations between

spatially separated spins.

Making use of equation (3.38) with (4.3), first-

stage decoupling gives

Leg = (3 - ¢ )Bgr - (5.1)

For the single spin Green's function, (4.3) yilelds
*t1a” -1 |
Qelse) ;=7 (5.2)

where
e=E '/‘H —C"J(O) ’ (503)

and J(0) =%¢ Jgr. Here, use was made of the Fourier trans-

form notation J(K) (for K = 0) given by
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J(K) ""Zj Jy3 oxp {i K e gi-j!] . (5.4)

Applying the spectral theor.:, that is, equation
(3.38), to (5.2) yields the system magnetizetion:

2 o = tanh g?:’(u)], (5.5)

£ (0) = #H +a-3(0). (5;6)

where

In the limig/;H-—>+0, the system is found to be
spontansously magnetized as long as T<Tg e The Curie temper-

ature is found to be

T¢ = %gl y (507)

where kB is Bolizmann's constant,

For T>TC, the system is paramagnetic with suscepti-
bility X :

X = _'J;L“_ . (5.8)

1. Te/r

At tsmpsratdres much lower than Tp, the system is
nearly fully alignqd and the magnetization in the limit of
zero magnetic field is

- =1-exp]-p300)/2] (1 +€), (5.9)

where €<<! and tends to zero exponentially as T—> 0,



28
5.2 The Second RPA

The approximation (4.4) yields for the s=ingle spin

Green's function

Gelsde =7 ﬁ"f}f&% ’ (5.10)

where
E(¥) =E(O0) T &, (5.11a)
E(0) =muH +a-J(o)(Z‘-;-1-), (5.11b)
£2- %2 =%, e Te.oTr00lrq1, =V (5.11¢)
x =6¢J(0)/z , | (5.11d)
A ==pJpglrg » | | (5.11e)

and where z = the number of nearest neighbours of any indi-
vidual epin. 1In deriving (5.9) use was made of the following
reduction resulting from the nearest-neighbour approximation

(see Appendix I): n
ERCIRLIP LS (5.12)

The second RPA result for the system magnetization
is

1= 50 53] +[A__-;7ﬂ] [e+) - 3¢-] (5.132)

where
+ e
3(3) = coth > .]. (5.13b)
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For T >Ts and in the limi?/uH->+ 0, Tahir-Kheli

reporte:

X = A1+ (B/3T0) + (B4 2520y {25 1)]

s B -5 - Klroph , o am
where a = 0, for sc-and bcec lattices and 1s equal to +1 for
fce lattice. The results for the specific heat, Cy, were

also computed:

Cy =[,é§£91]2(m5>[ + —g/ﬁz%'l] + of/a") . (5.19)

- For T<<Tc and for H—->+ 0,
o~ = 3 - exp[-/égégl]/‘- P exp /ﬁJ(O)ié—ll](1 +€), (5.16)

where € is exponentially vanishing as/3—>°°.

The Curile temperature was found to obey the relation:
J(O
kpTc = [‘é—l Y (5.17a)

where
0.875 for sc (simple cubic)
y = {0.898 for bece (body-centered cubic) o, (5.17Db)

0.908 for fec (face-centered cubic)

Third order RPA was not investigated by T-K. An
analysie of the results of the first two orders of the RPA
will be made below when a comparison of RPA resulte are made

with those obtained by means of the TTA.
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6. THE TTA FOR ISING MODEL

The general equation of motion for the higher order
cumulant Green's functions under the system with Hamiltonian
(3.39) is= obtained by using (3.17) and the equation arrived at
is

Z o2 A I
e[sf1sf2"'sfnsilsl] = Tryfo...fpl,l +szij{

<f1f2...fn:]> [s1s3]

(n + 1) terms

r

] B .
+ <f1f3..;.fnj> s?zsils]] + all combinations
———7C " — '

n terms 2 ternms

r -
+ {840y -.Tnd) _sfzs§3s*{|sl] + all combinations
v c N’

(n-1) terms 3 terms

. -
+ ..o + _<fjj>c[8§28f~3...sf-nsilsl] + all combinations
~

2 terms n terms
zZ 2 2 2 4+, - .
[sf1sf2. . .anSjSi|31]} , (6.12)
where

Tf1f2...fni,1 (511/2“'){2<f1f2...fni> Sf1i<f2f3...fnj>
+,sf21<f'1f3...fni>c + Le0 + sfni<f1f2...fn;1i>c]
+ [Sfﬂsfzi(f_,’ﬂ;...fhi)c + all combinations]
+ [83, 1sf218f3i-<ﬁ+f5...fn1>c + all combinations]
+ ce. * [5f11$f31...5fn1<f21>c + all combinations]

- sf1isf2io¢~8fni (% ‘r)} 9 (6.1b)
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and where e is defined by equation (5.3).

Using equations (6.1a,b) the first three exact

Green's function equations are
e[salsy] = /m +=pTsglssglse] (6.2)
e[Sf1S-é| S'é] = 1/(2%) t2Lf1g - (¥ -c-)Sf1g]
4+, -
+2p, T elr 2 [selsel
7 =
+Zp It [s§1sf:2sg[sg] , (6.3)
e[s§1sf-zsgls;] = 1/(2m | 2<f1f2g>c + 8¢,gltog
+ 8 0le,g - SrigSeog( - )
) +, =
+ g1‘3'11‘-‘3g{<f1f2f3>c [selsel
<+ -
+ Legfy [szsglsg]

- +) -
+ Loty [sf-1s;|sg] + [s§1s§23f-3sglsg]} (6.14)

It ie worth noting here that the nth-stage of the

TTA which consiste in neglecting the cumulant Green®s function
[z 2z z +l -] . & < 1
[$f1Sf2...anSg Sgj implies letting f1f2-°-fné>c equal zero

(see Appendix II).
6.1 The Firet TTA

The first-stage TTA consists in neglecting the term
zZ +) -
:EfJfg[Snglsg] on the right-hand side of equation (6.2),
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giving

elsplsgl = =/, 4 (6.5)

which is exactly equivalent to the first RPA (5.2).

Applying epectral relation (3.38) to (6.5), the
system magnetization obtained is (see Appendix IIT)

26 = ta_nhLLE-%Q)'] . (6.6)

From (6.6) it is seen that for u«H = 0 and J(0)<O0,
the only solution is & = O. For/cH = 0 and J(0)>0, there
exists in addition to the &= 0 solution, a non-vanishing
eolution ror/g J(0) >4, (This upper limit occurs because of
the inequality tanh x € x.) This nontrivial solution is
clearly the correct one, eince J(0)> 0O is the ferromagnetic

coupling and at T = O, the correct solution must be ¢ = 14,

Applying (3.38) again, this time to the relation

(4.7) (1st-TTA), the correlation function is obtained:
Lrg = <S§SZ> -at= ng(‘b' -0) . (6.7)

The correlation function obtained using the 1lst-TTA differs
from that obtained by using the 1st-RPA (5.1)3; besides (6.7)
does not give the expected result, for if £ = g, then Lfg
miet equal (4 -a-2) since (S§)2 = $(3.40a). This will be
taken care of by insisting that the spectral theorem (3.38)

be used only for unequal indices and that the identity:
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ng = i’ '6"29 (6083-)
be used for equal indices. Then, the following is obtained:
Leg = g3 - o). (6.8b)

In effect, all that has been done is that Lgy has been nor-
malized such that (6.8a) is satisfied (see (3.40a)).

Equations (5.1), (5.9), (6.6) and (6.8) are identi-
cal to the molecular field theory resulte and agree to order
(1/z)0 with the correct results as shown by the diagrammatic
high density expansion resulte of Brout19’33 and Horwitz
and Callén3h.

At T = Tg, 1t takes but an infinitesimal H to

establish a finite magnetization3?,d s hence

(_Q_a_’ - o (6.9)
apH JxH=0 -
/‘ /‘T=TC

Using relation (6.9) as a definition for Tc, and
substituting for ¢ from (6.6), the following Curie temperature

is obtained:
-T¢ = J(0)/Mkg. (6.10)

In the limit as/uH-—+ + 0, the system is spontan-
eoucsly magnetizesd as lorg as T<Tg. As the temperature
approaches Tg, the magnetization disappears, ac is eacsily

eeen from the solution of equation (6.6).
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Above Tg, the system is paramagnetic with zero-

field susceptibility,

__de _ B/
X—d/tH T 17-T/T ? (6.11)

obtained by differentiating (6.6) implicitly with respect to
H and then putting C'ﬁ/*H = 0.

For temperatures much less than T¢ and in the 1limit
of zero magnetic field, the system magnetization can be
solved for by writing tanhLBE(O)/é] in (6.6) in terms of
exponentials and approximating ¢ in the exponentials by 4.
Thereforé, one obtains

26 = tanh EZO ’

_ e /A3(0)/2
T e AI(0)72
- 2e7A5(0)/2 4 o(e7AT(0))

1
=} - ofT0)/2 % 0Oy | (6.12)

'
—|s

The paramagnetic susceptibility (6.11) and the low
temperature magnetization (6.12) are the same ac those of the
first RPA (5.8) and (5.9). These expancions {6.11) or (5.8)
and (6.12) or (5.9) agree with the eiact results to the first
two terms. Disagreement with the exact results, however,

appears immediately in the next order terms as indicated.

As Tahir-Kheli3o pointe out, the above solution is
internally inconsistent. Even though in the 1limit of
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vanishing fields the system magnetization dicappears as
T-»Tc from below, and the paramagnetic susceptibility
diverges as T-—Ty from above, the correlation function Lfg
doesn't show the existence of the phase transition. The
range of Lfg is expected to grow inordinately as the Curile
point is approached becauce the spin fluctuations will become
exceedingly large. But (6.8), or (5.1), shows no fluctua- '
tions at any temperature. As T-K points out though, for the
case z =, the result is exact since in "... this case the
correlation does not manifest any dominant change in ite
range with the changing of the system temperature for the
reason that the infinite range of the interaction stablilizes
the fluctuations".3o In other words, the variation of the
particular spin in question doesn't ﬁave much effect on the
spin contributing to the field on it, since this second
spin is locked in place by (z-1) other spins, where z is
interpreted as the number of spins in the range of inter-

action.

The case of z = is the case of the molecular
field theory approximation (MFA)33’36. Therefore, both the
first RPA and the first TTA give the same results and in
the limit as z-> o¢ are jdentical with those of the MFA.
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The second stage TTA consists in neglecting the

z z +, -
term fE:Jng[Sf1Sf2Sg,Sg] on the right-hand side of
2

equation (6.3), giving:

elst,sglsg] = v2mlane g - 3 -6)8e ]

: + -
+ :1?:; Ifoglfyfo [selse] -

(6.13)

z 4+ -
Solving for [Sf1Sg|Sg] from (6.13) and substituting

it in the left-hand e=ide of (6.2), the following equation for

the eingle spin Green's function is obtained:

I IER T LS. O

.where
B =F) * o
2 _
g= = pz,:ngpJgijp

A =%.'JfgLfg .

Equation (6.14) differs from the similar result of

(6.14)

(6.15)
(6.16)

(6.17)

second

RPA (5.10) in that 4, ﬁ(t), and ﬁ(o),have replaced the more

complicated £, E(¥), and E(0O) respectively.

The use of relation (3.38) on equation (6.

14) leads

to the following expression for the system magnetization

(see Appendix IV for derivation) :
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e = [+ -2 () - 03] [ +n) « 7, (6.18)

where

n(«x) = [eﬁﬁ(“)- 1]"1;°<.=+,-,0. (6.19)

Equation (6.18) constitutes the second TTA result
for the system magnetization. Like the result obtained by
the second RPA (5.13) 1t is. a transcendental relation, but
jt 1is a 1ittle simpler than the result of second RPA since
@ replaces the more complicatedf§ . Its solution requires
the computation of A and @ which in turn require the
knowledée of the correlation function Lf1f2.

According to the second—ﬁtage TTA (4.6),
[sf,5g 15z = ((sf-1s;|s;)>E - r({sgls;))E . (6.20)

z +, -
Substituting for [Sf1SglSg] from (6.20) into (6.13), one

obtaine

Ksiisglsz)) - (sglsg) = (7edi/cam)
rrig - (3 - )8yl + (1703 Trogleyro ((sglé@)E . (6.21)

By applying relation (3.38) to both sides of (6.21), a

relation for the correlation function is obtained:

Lr,g coth 98ﬁ(0)/2) = (¥ -¢)(n(0) + 1)8p,¢

+ fﬁ%&f [2n(0) - n(+) - n(-)}
)

+ Mg [n(-) - n(+] (6.22)
G )
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where

Af;g :%2szglnf1f2 . (6.23)

Using the Fourier transform of Jij (5.4), and the

following inverse lattice Fourier transform of Ljj:
Lyj = 1/NZ LK) expl 1K- (4=} , (6.24)

where X is a wave number in the firet Brillouin zone of the
reciprocal lattice of N eites, equation (6.22) can be
written as
L(X) coth ysﬁ(o)/z) = (¥ -6)(n(0) + 1)
+ M%-Lzlm [2n(0) - n(‘+) - n(-)]

+ LUOLEIE [n(-) - n(+)] . (6.25)

Use was made of the easily-established property (a consequence

of translational eymmetry):

= exp [ 1K~ (i=1)] = N83y . (6.26)

Equations (6.18) and (6.22) or (6.25) are a coupled
transcendental set of equations. Their gelf-consistent
solution determines both the magnetization, ¢, and the

correlation, Lij, OT L(X).

It should also be noted here that the second TTA
expression for the correlation is a good deal simpler than

that obtained for second RPA.
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The set of equations (6.18) and (6.25) cannot be
solved analytically at general temperatures; their s=olution
muet be computed numerically (this is also true of the much
simpler results obtained by first—stage RPA or TTA). But,
as T-K pointed cut in his solution3, in certain ranges of
temperature rapidly convergent iteration procedures can be
used which give the results in terms of sultable series

expansions.

a) High Temperature Solution

The high temperature region will be investigated
first. In thies range the magnetization is much smaller than
unity as long aS/uH<KkT. In the limit of high temperatures
and vanishing field, one obtains from (6.19):

n(%) = [e.cfﬁ" 1]_1= 0C=+’-. (6027)

Therefore, equation (6.18) yields

24 _ 1
g " n(#) - nl-) °

tanh (86/2) . (6.28)

24
B uH=0; T2Ic
Similarly equation (6.25) gives

L(K) =%+i%ﬁmﬁ. (6.29)

SH=03 T2Tg
Therefore, in the 1limit of vanishing field and T= Tq,
LK) = #[1 - J®)V(T) -1 (6.30a)
where
V(T) = A/82 . (6.30b)
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Equations (6.30) are in essentially the same form
as the result obtained by T—K37. The differences between the
two expressions are that equation (6.30a) contains @ instead
of T-K's (5.11b) and that equation (6.30a) is not normalized.
The normalized L(X) from equation (6.30a) would be .

- 1 Y 1 -1 |
L&) = [1 TRV ][TI‘Z:1 - J(_Q)V(T)] y (6.31)

Equation (6.31) would then give EK: L(K) = N/%, which is the

expected answer (see Appendix V).

The high-temperature susceptibility can be solved
for by making use of the thermbdynamic relation (see Appendix

V1)
L(X) =X/ (6.32)
L "]um K=0 £ - 3

and by making use of series expansions since for high temper-

ature/B ie =mall.

Using (6.28) 1in (6.30b), it can be easily shown that

V= pMm - p30208 + 0082 L (6.33)
From equations (6.17), (5.%) and (6.24), it is seen that
A= _1/N%J(T_()L(§) . (6.34%)

Expanding L(K) from (5.31) in terme of V, which is small,
and substituting intoc (6.34) gives

3 ) [+ vI@ + v23(K) + v333(x) + o(s™]
4= 5“‘%% T+ VI(2) + V252(Q) * V3I3(9) ¥ 0(g"] (6.35)
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Equation (6.35) can be simplified using the following

relations (see Appendix VII):

%?J(K) =0, ' (6.36a)
%r?(g) = N%(0)/z , | | (6.36b)
£§J3(K) - {O for sc and bhece | : (6.36¢)
K N33(0) /36 for fee ' )

%JL*(K) = n*o)b/z3 | (6.364)

where b = 15 (se)3 = 27 (bee)s = 45 (fee). Therefore,
equation (6.35) becomes
A= 3v32(0)/z + $ l’-g-g-g-@l,a + 3 V3JZ Ab 4+ o™y,  (6.37)

where a = O for s¢c and bee lattices and is equal to +1 for

fce lattice and thus,
02 = A - 3 32O | 4 W3O a+%"’2~"”°b+oy3). (6.38)
v z 36 Z

Substituting for @2 from (6.38) into (6.33) gives

V=4 -,gg(iégll) + 093“) . | (6.39)
Now, from (6.32) and from employing the expansion for V(6.39)
in the series expansion for L(X), the susceptibility is ’
obtained:

7(=/8[L(5)] lim K=0
=/ég {1 + VI(K) + V252(K) + v333(X) + o(s™) }
’lim K=0
-4

%[1 + VI(Q) + v232(g) + v353(9)]+ o(/e”)

1+ s0lg - g - ()0 (@) o - op)
) ER - (€ 0e o
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X-=-A {1 +£ 3(0) %)2 32(0) —"—;1]

. (,g)“,ﬁ(o) [1 - w/B2)- as36] + 0(p%) . (6.140)

The above recsult agrees with the exact one to

order/33 but thg/sh?term is only approximately correct.

Comparing with (5.14), the second TTA gives the
same result for high-temperature, zero-field susceptibility
as the second RPA of T-K*.

The specific heat at constant. volume, Cy, can be

easily computed from

Cv = Qa(%‘fl . (6.41)

For high temperature and vanishing field (6.41) yields
(see Appendix VIII)

or = oma (42 "1 + () (542
. 0&{({@) (;62)(1_; _ %r)] + 093’5) . (6.42)

* px using second RPA seems to have arrived at exactly the

same result (see (5.14)) except that his/éh-term contains the
factor [1 - 7/(32) - a/36] instead of [t - %/(3e) - a/36].

The 77(3zjwterm js due to what is an obvioue error in his
expansion for V(T); the/63—term should be -533/(MSZX1[J2(0)/(MZ)]
whereas T-K has -gﬁa/(h8z)](J2(0)/Z]. .
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Once again the above expression agrees with the exact
result13 to orde;/?3 and thefgh-term is again only approx-
imately correct. T-K obtained exactly the eame result for

Cv to ordef/93,(see (5.15)).

Therefore, for the high-temperature range, the
resulte of the second TTA, as well as those of the second
RPA, are equivalent to the diagrammatic, high density

expansion37 results computed to order (1/z).

b) Low Temperature Solution (TKTe)

For the low temperature region rapidly convergent
series expansions are again made use of. In the absence of
a magnetic field }RH=0) and for T<XT,, expansions are made
in powers of exp (;ﬂU(O)/Z) (the powers are not always

integral, the factor (1/z) appearing in s=ome instances).

Once again the solution must be obtained self-

consistently through the coupled relations (6.18) and (6.25).

As 8+ <0, then n(0)=»0, n(+)->0 and n(;)—>0 if @
is small compared toe=J(0) (which is the case); therefore,
as a firet approximation for very low temperatures relation
(6.18) ylelds = % and relation (6.25) yields L(X) = 0,

which are the expected results.
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As a next approximation, ¢~ 1t assumed to be % and

again @ is neglected with respect to J(0)/2. This yields

n(0) = ¢ + 0(c?)
n(+) = ¢ + 0(c? , (6.143)
n(-) = e + 0(c?) ’
where
c = exp'[jﬂJ(O)/2] . (6.44)

Substituting (6.43) into relation (6.18), the following is
obtained for the system magnetization:

e = (1 - 2¢) + 0(c?) , (6.45)
and (6.29) again gives L(X) = O(C?).

Proceeding in this ménner, successive terms in the
geries expansions for ¢ and L(K) are obtained. The result
(6.45) agrees with the exact result of the low temperature
11,12,13,39,40

‘series expangions to the order given The next

step is to approximate ¢~ by #(1 - 2c) and proceed to find
¢to higher order terms in ¢ ueging (6.18) and (6.25). The
followihg‘results are obtained (see Appendix IX):

V =pc +0(c? , (6.46a)
a = 3200) g2 + o(3) | (6.46b)

g2 120) ¢ 4+ 0(e2) (6.146c)

272 '
=% - ¢+ 02[1 - B3(0) -ﬂ%ﬂ} o(c3) . (6.46d)
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The results (6.’+6) are essentially the same as those
obtained by T-K except of cource for @ which is different
from T-K's ® . Another important difference occurs in

equation (6.464).

For the second RPA, T-K obtained, for low temperature
and vanishing magnetic field, relation (5.16) for the system
magnetization. If one solves for ¢~ using second RPA, paying

clocse attention to the orders, then one finds

. ! Z—

=3 - exp[—/&uzgl] - 2 exp[-/BJ(O)'(—gll]
+ (2 +1) expL-g1(0)] + 0<exp[- B,é%ﬂl]) . (6.47)

T-XK did not carry out his calculation to the order treated
~above, though it was well within the limits of capability.
Tanaka, Katsumori and Toshima39, by means of low-temperature
diagrammatic series expansions, obtained (6.%7) plus other

terms to higher orders. The interesting point here is that
if one expande exp [-/gJ(O) (z-1)/z] according to:

v 3 ] , (6.18)

and then substitutes (6.48) into (6.47) one obtains (6.464d)
exactly to the order indicated.

When z e»c0, one should obtain the MFA result which

for the magnetization is
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= aJ (0
a = % tanh[/i—fé—;}. (6.49)
By expanding (6.49) and whenever exp [7&rJ(Oi] appears using

exp[-A¢7(0)] exp{-fJ(O)['% - e"ﬂém]
exp [—/HJ(O) /2] {1 +/8J(b) exp [ —,&T(O)k]}
+ 0 (exp (443(0)3/2)) ,
the following is obtained for the magnetization:
@ =13 - exp[-£7000/2) + i -B3(0)) exp[-87(0)]
+ 0 ((exp (£3(0)3/2)). . (6.50)

]

b}

Relation (6.50) is exactly the result obtained by
second TTA (6.46d) as z =+<e©, The second RPA result (5.16)
given by T-K it inconsistent as 2 =+ ®® but if the term (2 + 1)
exp[-£J(0)] is included then along with the second TTA it
. 11,12,13,39,#0
agrees with the exact results obtained for/g

fixed (however large) and for z sufficiently large to order

(1/z).

The appearance of the third term on the right-hand
side of (5.16) or (6.47) does not occur in the second TTA
because the roots of the Green's function (6.14) (denominator)

do not contain zny (2 - 1) factor.

0f course, the second TTA 1s an improvement over the
first TTA (6.12) just as the second RPA is an improvement
over first RPA.
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c) Solution Near Curie Point

| Finally, the regionAin the immediate viecinity of
the Curie temperature will now be considered. 1In this
region, in the absence of the external field H, the system
magnetization vanicshes and simultaneously the,spatial
- range of the correlation Lgf becomes macroscopically long.
In other words, L(X) becomes 1arge'as K—~+0. From equation .
(6.31) 1t is seen that for this to be true: |

V(T) = V(Tp) = [7(0)] . (6.51)

Now in the 1limit #H = 0, T = To and ¢ = 0, equation (6.31)
can be written as

LK) = +[F(-19 (6.52)

1
1 - (0’

where

1 700) - 3| " |

Using (6.52) and (6.30b), the following can be chown:

A(Te) 1/N5.I.{'C J(X)L(K) ,

P J(X)
3 |F(-1) 1/N2) =
! | ] X - [50)] T

= 3 [F(-1y] T L@ IEK) * I(O) - 3(0)
N ¥r0) -3k

S HObCT T I F [ g - 1]
l,ggl[F(—n] Mre-1 - 1]

3
g(TC) - [A(TC)] ,

(6.54)

“»e

V(Tc),
[aro] o), | |
[rcoy/2] [F(J)] -* [F(-1) - 1] . (6.55)
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Therefore, substituting (6.54) and (6.55) into (6.28) a

relation for the Curie temperature is obtained:
¥ ¥
(1@ \ (e - \¥] - [reD - 1] . (6.56)
tanh[\ukBTC F(-T) F(-T) ?

The solution of (6.56) is

kotc = |22y | (6.572)

0.875 for
0.898 for bece . (6.57b)
0.908 for fce

where

2
Q

y

Therefore, by using the normalized L(X) (6.31) of
second TTA, exactly the same result is obtained as that of
second RPA (5.17) near the Curie point.

T-K3 has a table comparing the values of y obtained
by the second RPA with those obtained using high—temperature

19,33,34 and by using the Pade

diagrammatic series expansions
approximant method20 (high-temperature ceries extrapolation
scheme). He found that the second RPA result for the Curie
temperature was about 10% higher than the Pade estimate and
the estimates of references 19, 33 and 34 were about 10%

too low.

The Curie temperature obtained in (6.57) and (5.17)
was computed on the assumption that the range of the correlation,

in the absence of ah applied field, becomes infinite as T
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approacheg Ty from above. This is thermodynamicaliy
equivalent to the fact that the zero field susceptibility
diverges at the Curie point. But as Englerthg points.out _
there is no "guarantee that the Curie .point obtained by the
divergence of the long-range order (or in the specific heat)

~coincides with the infinity of the susceptibility”.

It should be noted that in the solution of the Ising
model in the TTA the nearest-neighbour approximation was "

not made use of up to ﬁhe point of s=olution.

So far, then, we have confidence that the TTA is
not significantly worse than the RPA. However, as a general
ccheme, it is definitely not consistent. This will be

shown in the next section.
6.3 Third-Stage Decoupling

The set of first three exact cumulant Green's

function equations can be written as (see Eq. (6.1))

e Gg = Top + G1 (6.58a)
e Gy = T¢ + CoGp + Go , (6.58b)
e Gop = Tp + C3Gp + 2C2Gy + G3 (6.58c)

where ‘ '
co = [sglsg] (6.592)
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_ 2 Z tia—
Gn = 2= Jpr, ...Jgfn[sf1 ...sfnsglsg] R .
| (6.59b)

f1.‘of.‘n
n=1, 2y 3, eoc
Co = 37 Jgf1Jgf2Lf1f2 ’ (6.59¢)
f1,f2 .
C3= =X Jgf1Jgf2Jgf3(f1f2f3)c , (6.594)
Tq,f0,f3
To = Tg,g > (6.59%€)
Tn = f Z f Jf1goo.ang Tf1f2...fng’g o . (6.59f)
1,... n - .
In general, G3 is'decoupled as
G3 =XGo +¥Gy +8Gy (6.60)

where for most decouplings cc = O. Substituting. for G3 from
(6.60) into (6.58), the solution for Gp is obtained from the

equation -

2 + Ape + A3, (6.61)

(e-x1) (e-x2) (e-x3)Go = Aqe
where x1, XD, and x3 are the roots of the equation

e3 - 8e2 - e(3C, +¥) + (Co® - C3) =0 (6.62)
and where |

Ay = Tg, Ap = Ty - $Tg, and A3 = Tp - 5T - (2C2 +¥)Tp.(6.63)

The third-stage TTA involvee simply putting
+
[5%,5f,5¢55¢] = 0. Therefore, from (6.60), oc = ¥-9%=0
and equation (6.62) beccmes

e3 - 3Cpe - C3 =0 . (6.64)
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An equation of the form: y3 + py +q= 0, hag

three real rootsul*only if

4p3 + 27q2< 0 . (6.65)
This condition applied to (6.64) requires that C§ <:Hcg.
But at low temperature C, is small (see (A9.8))y and'it can
'be shown (see Appendix X) that C3 £ - JCp (at low
temperatureﬂ), therefore, c3<:hcg is not satisfied at low
temperatures and equation (6.64) does not have three real
" roots. However, according to the theory of Green's functione ’

the roots must all be real since the Green's function is

always analytic off the real axis (sce Reference 22, p 325).

Thus, the third-stage TTA i= inconsistent at low

temperatures,

The third-stage RPA of T-K involves putting
z z .z + ) -
{Sf1Sf28f3Sgl = 0 oniy when f4, fp, f3, and g are unequalf
When any two are equal, the equalities (for spin %) (see
Egs. (3.42) and (3.43)):
(6.663a)

4 9

(s%)?

+ ' ]
4Se , (6.66b)

zZ +
SfSf
are used to express [123+| in terms of lower-order cumumlant

Green's functions (essentially).

For third-stage RPA,'one obtains (see Appendix XI)
s: -—6rJ 9 ) (6067&)
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¥ = 321 - 126 -(6/2)Ca - (6.67b)
At low temperatures, ® # - 37 and ¥ - 2J2, and
C3¥ - JCp (see Appendix X). Therefore, equation (6.62)
becomes o .

e3 + 3Je2 + 2J2e'+2sé =0, (6.68)

Substituting e = y - J in (6.68) one obtains the reduced |
equation .
y3 - 552y + 433 + 263 =0, (6.69)
Equation (6.69) satisfies coﬁdifion (6.65) and, therefore,.
has three real roots; thus, the three roots of (6.68) are

real as required by the Green's function theory.

At high temperatures and vanishing field, 0= O and
C3-940 and a third-stage TTA solutioﬁ is fecasible and, |
of course, a third-stage RfA solution definitely exlsts. The
point, however, is that third-stage TTA is inconsistent |
(even if only at low temperatures) and that of the third-
stage RPA 1is noﬁ. The quecstion of which approkimation is a
"jittle worse" or é n1ittle better" does not enters; the

question of consistency does.

The reason why the work of Frank! did not indicate
tﬁis tremendous failu;e of the third-stage TTA is that he
was investigating paramagneticsm, whereby ¢ = 0 at any
temperature; i.e., J was never large enough to give a (

co-operative effect.
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7. CONCLUSIONS

The first TTA, like the first RPA, has been thown
to yileld the same results as the MFA. The second TTA was
a conciderable improvement over the first TTA.. Both at
high temperatures as well as at low tempefatures the results
of the second TTA agreed more accurately (to order 1/z) than
those of the first TTA with the exact low and high tempera-

ture series expansions.

In the immediate vicinity of the phase transition
the second TTA isg also an improvement over the molecular
field results. Unlike the first TTA, the longitudinal cor-
relation is shown to be non-zero even when the spins are

espatially separated.

Therefore, the first- and second-stage TTA have
been shown to give reasonable results for the Ising

ferromagnet which were as exact as the results obtained by

T-K for the first- and second-stage RPA but the calculations
| for the first- and second-stage TTA were shown to be simpler
(less tedious mathematics) than those involved in the first
two stages of the RPA.

For third-stage decoupling, however, the TTA

results were no longer reasonable at low femperatures; an
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inconsistency arose due to the_éppearance of complex poles
of the lowest-order Green's functiod in complex energy
space. Such poles are ruled éﬁt by the general theory of
Green's functions and moreover such poles did not appear

in the more exact third-cstage RPA.

Therefore, the more general third-stage results of

TTA must be regarded with sﬁspicion close to the Ieing limit.

Finally, it has been shown that a third-stage de-
coupling within a specified decoupling scheme may be a
much more sensitive test of that scheme than a second-stage

decoupling.
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Appendix I -

Proof of Equaﬁion (5.12)

It is required to prove equation (5.12), that is,
n n
E (Tgr) = zl:iz(gl] . (a1.1)

The nearest-neighbour approximation consiste in
letting Jgf equal to zero when sites f and g are not nearest
neighbours and equal to say J when f and g are nearecst

neighbours.

Therefore, if there exists z nearest neighbours,
then . v
ZEfJgf = 2zJ . (41.2)
Since XfJgf =J(0), then
J=340) (41.3)

Now using the nearest-neighbour apprroximation and

(A1.3), relation (A1.1) follows immediately.



56
Appendix II

4y - .
Proof of: [s§1sglsg]_z= 0 =><S§1S§> =0
C .

It will be shown for the case of n = 1, that

z z z 4y =
[§f1Sf2...anSgISéI equals zero implies that <f1f2...fng>c= O.

Using the obvious &implifying notation,
z 2 z + <] = +| - -
S£1Sf,.-+57,5¢|Sg| = [12...ne |e]| , (A2.1)

the implication of Eg*'gi] = 0 is considered.

From (%.7), [1g*] g:_] = 0 implies
«g+lg">> - a-<<g+|g;>> = 0., (A2.2)
Now, applying the spectral relation (3.38) to (A2.2) one
.obtains
E1e*) -c@e) = 0. - (42.3)
By using the commutations relations and <g‘g+> =% -¢g°, one '
obtains from (A2.3), if g ;ff1,

<jg> —‘r2 = Oa . (A2.h)
Therefore, from (4.2) it is seen (A2.4) implies
(e), = o. | (A2.5)

Following the same procedure the relation can be

proven for higher order Green's functions, that is, for

n= 2,3,.¢¢ [
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Appendix III .
Derivation of System Magnetization (1st-TTA)

Spectral relation (3.38) can be used on (6.5) to

obtain the system magnetization as follows:

Equation (6.5) can be rewfitten in the form

e sl = 5 = -ﬁ(o) ' (43-1)

* A -1
Apply lim (-2Im) S ees (e - 1) dw to both sides
€40 -

of equation (A3.1). The left-hand side of (A3.1) will give,

because of (3.38), ,
Gese) = Gs + 1) - 5g - (59 Y,

= (¥ -0~) . (43.2)
The right-hand side of (A3.1) will then give using identity
(3.3%

(@/m) (-2 (1) (PEO) - 1)1 = 2g(efE(O) _ 4571, (43.3)

Equating the right-hand sides of (A3.2) and (A3.3),

4 -0 = 2a‘(eﬁﬁ(o) - 1)"1,

20- = tanh [/Lﬁ—(zﬂl] y . (A3.4)

which is the result presented in equation (6.6).
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Appendix IV
Derivation of Equation (6.18)

Spectral relation (3.38) must be applied to both
sides of equation (6.14). Before (3.38) can be apﬁlied to
the right-hand side of (6.14), this right-hand side must be

re-arranged as follows:

1 _A+a(BE-F0O) -1 A+eg _ _A-9B },(Atm)
¥ TE - B(OIE - EC) 2¢W{E-ﬁ7+) E - B())

Applying (3.38) and identity (3.35) to the right-
hand side of (A4.1) yields

L ted) o4y - LD =) L (A%, 2)

The application of (3.38) and identity (3.35) to the left~-
hand side of (6.14%) yields |

(4 -¢) . (A4, 3)
Equating (A4.3) to (A4.2) and solving fore¢ , equation (6.18)
is obtained:

&= +-[Aa - aen] | ene e a0 i



59
Appendix V '

Normalization of the Correlation Function

From (6.24), . .
L(K) =3 Ly exp[-1K-(1=1)] . (A5.1)

Therefore,

Fum =L, =T expl-1K- (i-1)] ,

i

‘;_-:Lj_j(NSji) ’

NLsji

NGE -a2) . : (45.2)

Thus, the normalization requirement on the correlation

function is that it satisfy (45.2).

In the case of high temperatures (¢ - 0) and
vanishing field, the correlation funetion obtalned was
(6.30a,b)

L) =40 - s@ver] . (A5.3)
To normalize (A5.3) the following equation must be catisfied
(from équation A5.2): .
§I<1’L(_1g) = N4 . (A5.%)

If W iz the. normalization factor, then
% {%[1 - J(K)V(T)] ’1} W= N4,
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and therefore,

| o
1 1
W= BI% T - .J(g)V(T)] : . (45.5)

Then, the correct normalized L(K) for high temperatures and

vanishing field is
-1

= 1. .L_" 1 '
LK) [1 ff(_ngV(T)J[N % T (45.6)
which is the result stated in (6.31).

It should be pointed out that the "correct" way

of normalizing also leads to the same result as Equation

(A5.6).
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Appendix VI
Proof of Relation (6.32)

The partition function is

= tr[exp (7ﬂﬁﬂ ’ , | (46.1)

where in our case the system Hamiltonian 1s
# =y Fg %%l s . (46.2)

PR A S

Differentiating log Z with respect to/eydygives
_BUN 2z

d lo Z =1
?T?aﬁ%T_ > tr EZSi s
-& >
=No¢ , ' (A46.3)

and

dzlog Z -n9 c*.
2 2 dSﬂ/*H)

<z 1)) - Gy (h6.10

The susceptibility is defined as

- dNo‘ = dN ¢
The right-hand side of (A6.k4) can be rewritten as
;2; Ljj and, therefore, from (46.5),

i,]
X = /QZL“ ; (46.6)

=/6[L(5)] limk =0 " (r6.7)

This proof follows that given by Brout (see
Reference 19, p. 20).
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Solution of X J™(X) for n=1,2,3, and k4
: X
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According to the Fourier transform of Jij (5.4),

J(K) =§Jij exp[-1K(1-1)] .

Therefore, using the origin for sit.e i,
0K =X 3oy expl-ik-i] ,
X J YK
=%JojNS(_j) )
= NJgg »
=0,

where 8 (i) 1is zero if j # 0, and is equal to 1 if j =

o0 indicates the vector to the origin o.

Similarly,
EK:JZ(.K) =%JZJOJ exp [-15-_;1]%:.701 exp[+iK-1)

—_-%% J-OjJO-LEK:' exp[-1iK- (.1+l)} ’

=§5.'TYJQJJ°1NS(_1+_]:) ’

= Nz72 |

= M2(0) |

Z

3 )
ZTK) = N=S3 T.:7.qT.08(i + 1 + m)
X = i1, oj° ol om = " =/

-

Nazy3

NdJ3§O) ;

Z

(A7.1)

(A7.2)

o3

(47.3)

(A7 o)+)



63
where d = O(sc and bee); = W(fece).

The result (A7.%) is obtained by counting the
number of ways one can get back to the origin using only
three basics-vectors. For the éc and beec lattices, there are
no possible ways, but for the fcc lattice there are four ways

for each nearest-neighbour.

Following the same procedure,

K - Jy1,m,n :

Nbz J*

_ NI*(0)b , | (47.5)

23
where b = 15(se) s = 27(becec); = U45(fce). Use was made of
relation (5.12) in deriving (A7.3) and (A7.5).

Another method for deriving results (A7.3), (47.h4)
and (A7.5) involves using the definition of F(n) (see Eq.
(6.53)) and the results obtained for F(n) for the various

crystal structures (see Reference 43, Appendix A).

’
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Appendix VIII
Calculation for the Specific Heat Using Second TTA

For the ease of high temperature (TzTC) and
vanishing field }uﬂbo),

@)

1]

i,j .
= -3+ 7T, L
i3 15713 »

-¥NA . (A8.1)

From (6.37) and (6.39), an expression for a is

_11; J2 0) . (,é) |
. ((6)3(%81) (: 53+>+ o(/al*) . (48.2)

obtained:

Substituting for A from (A8.2) into (A8.1) and
then differentiating with respect to T yields

Cy __i_—ka)(,ﬂé-Ql) { = ‘%‘g/gégl
ng@l) (_ . _ + 0(55) , (48.3)

which is the required result (6. #2)
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Appendix -IX

Low Temperature Second TTA Solution

Using equation (6.25), the definition of A (6.17)
and @2 (€.16), and the relation (6.36a), the following

expression for A is obtained:

n = taonB0)/2) 0w [n-) - n(+] : (49.1)
where
D = tanh(sE(0)/2)[2n(0) - n(+) - n(-)} . (49.2)

For low temperature, vanishing magnetic field and

approximating ¢ by (¥ - ¢), it can be shown that

tanh[sE(0)/2] = 1 - 2¢ + 2¢2]1 -p30) + o(ed) , (A9.3a)
n(0) +1=1+c+c2ft +£3(0)] + 0(c3) , (A9.3b)

n(-) - n(+) = 2cer(o)°sinhy?¢+-2c29%ﬁJ(0)?
sinh 28 + 0(e3) , | (49.3¢)

n(-) + n(+) = 2cefJ(0)°cos§/3¢ + 2¢2e2£3(0)e
cosh 248 + 0(c3) . (49.34d)

In order to obtain an expression for 62, it is

necessary to rewrite (6.25) as

1(k) = (& —a)[n(0) + 1] tanh[sR(0) /2] (49.%)
2 1-8B ’

where

B = tanhpﬂém]{iégﬂpn(m - n(+) - n(-)]
+ L0e [n(-) - n(+>]} o | (29.5)
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From relations (A9.2) it is seen that B is at least of order
¢ and therefore B is small compared to 1; thus, (49.3) can
be written as . |
L(K) = (3 -¢)[n(0) + 1] tanhLBE(O)/2J[1 + B +B2+®.(c3)] -(A9.6)
Using relations (A9.2), | ) _
(3 - ) [n0) + 1) tannfpE(0)/2] = c[1 + ¢ + 21 48D
' + 0(c3ﬂ
x[t - 2¢ + 2¢2(1 g1 + 0(c3)
= c[1 -c+ (1 -/B_J)c2 + 0(c3)] s
= ¢ - c2 +0(ed) . (49.7)
Substituting (A9.6) into (A9.5) gives
LK) =[c - ¢2 + O(c3)][1 + O(C)] s
c +0(c?) . (49.8)

Now, ueing the definition of 32 (6.16), an expression for

32 1s obtained:-
6° = -;-I%ﬁ(gmp ,

fzigl ¢ +0(c?) . (49.9)

2 and ics therefore

Now, D in (A9.1) is of the order c
small éompared to 1, allowing (A9.1) to be rewritten as
tanh[BE(0) /2] 8 [n(-) - n(»]1 + 0(c)]

Tt - 2¢ + 2e2(1 ~23(0)) + 0(eD)] BH (1 - 2¢)
x [2ch3'¢ + B23dc +,63a53/3!) + o(c‘5/2)][1 + o<c2)] ’

qﬂ¢2 + 0(ed) ,

2
=E&ZJQZ] c2 + 0(ed) . (A9.10)

A
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Using (49.9) and (A9.10) in (6.18), the following
is obtained for the magnetization; |

21200y -
e =1%-c+c?(1 -47) SO 2 4 0edy (49.11)

The expansion for V is also obtained from (A9.9) and

(A9.10) and is
A

V‘—'¢2

= fe + 0(c2) . (A9.12)
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Appendix X
Proof of: C3 = - JCs ,

in Low—Temperafure Approximation (Third-Stage)

When the spectral relatioﬁ (3.38) is applied fo the
~third order Green's function equation (after third-stage
decoupling) and when uce is made of the low-temperature
approximation: n(ez) replaced by exp [755(0)/2]; ¢~ replaced
by %, then to this approximation we are left with

pA b A yA ‘- R
~(S£15¢,5¢), - Stqglfog - Brpglryg + (3 - )8, gBrog =

: . z z z
exp [-£3(0)/2] (2<Sf1sfzsg>c.+ 8roglfig + Sryglrog

' ‘ zZ 2z z .
Th?refore, cince <$f1Sf2Sg>E is equal to terms involving
& -functions only, then <$Z sZ Sz> = 0 unless at least two
Y f1 f2 g c ' =
indices are equal, to this order of approximation.

’

Using the result of (A10.1) then C3 can be rewritten as

€3 = = Irieleogdrae(Bryrp + 8ryey * Srorg = 25r1,80,55).
£15,55,f3

z Z 2
<Sf1sf28f3>c s | (A10.2)
which, if ¢ is approximated by %, yields

- 2
3E-3X Ir,gIfglf £, + 200, - (410.2)
£q,f2
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By going over to Fourier Transform Space and using the
well-known relationhs for spatially isotropic nearest-

neighbour interactipns (e.g. in lattices of cubic symmetry) :

1 3T I -A)FQ) = JK) 1 ZJ(A)f(A), (410.3)
N A J(0) N ‘

which follows whenever f£(A) = £(-)) and using also relation

(6.36b) one obtains from (410.2) _
C3 & - JCp | (410.3)

which is the desired result.
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Appendix XI
Third-Stage RPA

Third-stage RPA involves (following notation of (4.1)
and (4.7)) simply putting {ﬁ23+[ = O when f4, fo, f3 and g
are unequal, Using thie fact, Gj (cee (6.59b)) can be
written as |

Gy = 23  Jp,oTr ol¢
figvfogvlag
£1,f2,f3 157728773

(Sf1f2 + Sf1f3 M Sf2f3 - 28f1f28f1f3)

234 . (411.1)

By making use of (6.66a), one obtains from (A11.1)

2 .
G3 = fzf Jf1ng2g -60'[124-! - 6Lf1f2[1+l
1912

-2§J%1g(—% +669) 14l . (A11.2)
;

Going over to Fourier Transform Space and using relation

(A10.3), one obtains from (4A11.,2)
Gy = -667G, + [72¢1 - 126°) - 6/2 c)eyq (811.3)

from which equations (6.67a, b) follow.
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