<

.

A 'COMPREHENS;VE SUPPORT SYSTEM °

FOR MICROCODE GENERATION

L%

N

ot . . .

. “. A, Thedis
in
The'Departmenb'

i . . of .
% - _.fomputer Science .

R
. [y
s .

.
\\\
.
D
'
»
L]
1
IS
N
- s
- . .-
X
Y
N v
’
’
v
»
.
.
'
-
.
’
"
[
“
[
, .
4
'
-
L]
‘
{
|
.
-
\
.
~

ABSTRACT- '

A COMPREHENSIVE .SUPPORT SYSTEM

\ . FOR MICROCODE’ GENERATION
v o : Juan Linares) .

’ 3

-

. ! v . : . N]
. This, thesis examines the prpcess . of microcode
. t)
v § . \ I3
production. A survey of current microprogramming technigues

is presented to identify specific{prleems. The problem of

. £
‘ ‘ microcode production is shown to nge sevetral interrelated

v componénts, - namely: machine. description, microprogram
) .f' '- [3 *) tf- - N) y
/ specification, microprogram verification,” and microcode
optimization.) .

v o, . -

o
. v Y

A comprehénsive solution to this problem 'is proposed

with the design of a Comprehensive micrbprogramming System

‘ o

: ‘ (CMPS). The system presents solutions to specific problenms
of microcode production while maintaining the relationships

. among the various phases of microcode production. -
v : . .

.

", The two main components of the system are.- the Hardware

L‘ . | Abstraction Language '(HAL) and the Alternative Based

; ' Microprogramming Language (ABMPL). HAL is used to describe
the microarchitecture of a Jcomputer and ABMPL is used to

specify the;microprbgrams. The features of both of this

languages are discussed extensively throughodf the thesis .
t

and some examples are provided. For both of this languages
prototype compilers have been implemented and S6Me practical

-

experiences have been carried out in the SEL32/75.

N

A

ACKNOWLEDGEMENTS

@

—e e — - - .

: I would like to express my sincerest thanks to my thesis

A}

e ey -

sppervisor Dr. Terrill Fancott, who enthusiastically guided

“+

IR S

me thfqugh tiis thesis. His numerous clérifiqations and

S ' ‘ ! .
suggestions have proven invaluable during the course of this
project.. I also would like to thank Dr.. I. Greenshields,

who as my ‘initial supérvisor 'stimulated my interest into

microprogramming, and outlined the general direction of this,

research. ¢

4 \

I also quld like to express my gratitude to Dr. W. -

Jaworski ‘for having taught nfe 'a new and fascinating way to

¢ PO |
.

create programs.’ His ideas, on pro%ram development ! ;

.) .
techniques have profoundly affected my ideas on software

* ~,

development. The concepts iﬁvolved in his''Alternative Based

b
- '

Language have contributed heavily ;owards'the development of
the microprogramming techniques preéented in thiﬁ:theSis.

AU .
My thanks also go to D. Hargreaves, M. Duarte, and G.
’ e A)

MSck,'whd at varieus times helped me with the implementation

of microprograms for th SEL32/75 here at « Caoncordia

University. I also would like to thank my employer LAGOVEN
S.A., of Caracas Venezuela, whode financial support of my"’
studies here at Concordia University made the completion of

~this thesis possible.

0y

-

I dedicate‘this thesis to my wife Lilian whose patience

- o, _
and moral support helped me through the completiaon of }t.

.
" . . L ,‘r‘ . 5 '

rs

‘e

" SIGNATURE PAGE

[]

.5~

TABLE "OF* CONTENTS .

49 e e e 0r s P e et e

ABSTRACT .ovetverneecioeioantanss

TABLE OF CONTENTS & 'evovseocnsens

/' ACKNOWELEDGEMENTS . vevvnnevuvenns

“ LIST OF FIGURES wueevvenrenooaeanss

o o8 s

* o a0 o

1) INTRODUCTION coee'evvenonanenoocncsse

® 00 s 0 0 0000 ne

.

s o000

* s e e e

.« s 000 .

....\.....2‘
Pereeess3

casenesad

" .2) A COMPRE‘HENSIVE'APPROACH TO MICROPROG P:MMING cee.a 11

.3) THE ORGANIZATION OF THIS “THESIS NI

2) CURRENT ASPECTS OF MICROPROGRAMMING

.1)

CONTROL STORAGE ORGANIZATION

MICROINSTRUCTION FORMAT:. ceeease

MICROINSTRUCTION SEQUENC ING .oevveee

ese s 300 8

e s s s
S

PROBLEMS ASS(;CIATED WITH MICROPROGRAMMING
1) MACHINE DEPENDENCE ...c0cececvecasasess
.2) LOW LEVEL SOFTWARE SUPPORT
.3) MICROCODE OPTIMIZATION:. '

J - - 3) DESCRIBING THE MICROARCHITECTURE

.1) COMPUTERS AND ABSTRACT DATA TYPES ..

2) THE. NOTATION . e e evemes’s aonennnsnoes
" .1) THE JUSTIFICATION FOR HAL

.2) THE SYNT.éX OF HAL

4) SAMPLE MACHINE DESCRIPTIONS

4.1) A DESCRIPTION OF THE,SEL32/75

® o800

« o000

v

4.2) THE AM298D8 FAMILY ..'ueceveeeoonromonnnns

v

5) THE PROCESS OF MICROPROGRAMMING ..ceesvevaonsns

1)

THE MICROPROGRAMM ING ENVIROMENT:...
<1) BECOMING ACQUAINTED WITH THE COMPUTER
.2) THE SPECIFICATION OF A-MICROPROGRAM ..

.3) THE OPERATION OF_&MPS cerea

P Y I

1y

..‘.....14
e enseealb
esscesslb
cereaan21
ceecess 2D
G ere..30
e eaees 32
R Ik §
eesseeeald

...l.:l-37‘

Wesesee39

PR § |
ceeee..43
ceer...46

...'.'066
O 14

eeseesaBl
-.on-c.neg'
e dieess 91
cesesaa95
ceseess99

r

Y

’

~t

. .
3 4

a -

v .2) PRACTICAL EXAMPLES

+6) THE FEASIBILITY OF 'CMPS
$

. .1) MACHINE DEPENDENCE

—e .

”
-l-.oo.o-o.--ao.s.n.n-..o-oo.nlll

......C.........I‘ll.......‘..!'l—zg

.-o---"o'on-.--o-.-100-1.‘-000121

¢

.2). HIGH LEVEL MICROPROGRAMMING .

" s ecssesogers

010000122

.3)
" . 4)

CONCLUSIONF S N

OPTIMIZATION OF MICROCODE ...

REFERENCES ...cucibieniniannennnennnns

APPENDIX A
APPENDIX B

APPENDIX C

THE_ GRAMMAR OF ABMPL

THE GRAMMAR OF HAL

1

PARTIAL DESCRIPTION OF SEL 32/75

F)

...I.I....‘.l.....‘l123

.)

ooobcooo-;.-oo-:-0..'124,

Q..l.'.'l'..l'nﬂo.o..l.27

.

APPENDIX D - SAMPLE MICROPROGRAMS
APPENDIX E - MICRQPROGRAM LOADER AND DRIVER
' ' . _ C B '
‘ . ’ '
: ,f ' K
o v ’
» {
l ' Y. A
T , ,
v
'
s 1
¢ [
" N\ \ - a ol

R ~ . |

3

. - LIST OF FIGURES ,

1.1 Wilkes' Matrix et eereeeeeinteesesenasentanaansennessd

. 8

1.2 Baer's Microproprogramming SyStemceeveepwssaasl3

'2.1 Array Organization, «.eeveeecerencesceansonnanasessaassl?

[8

2.2 Block Organizatiod ...ieeecerececccnen P £

2.37Split OrganizZation «.u.veeeessecesosesasesasesssnesassld

¢

, | . ~

2.4 Nanoprogramming ceveseteeeeesioeeseesssacavecacsnenssald
1 ™ ‘

2.5 The SEL.S Contrcl Storage ..l"'.Ol..-‘acoll..lllunoulzg
2.6 DIreCt CONELOL w2 eenveveeeeesesacdonsesaesanaonnnnenassd2

2.7 Residual CONEYO]l secueesesoeeerstosssssoorssconsssasssssll

© 2.8 Maxinal ENCOAANG weuereeessoteesmeonnnaseaesoemnensne.24

CF 2.9 Minimal Encoding»............u..;............:.......;25

PO

2,10 The SEL'S Microwordceeoeeeeccecsensseoscasaoanaaslb

) v 2011 The Serial;parallel Characteristics:.....28
2.12 Sequencing in the SEL:...L...:...%o....;hk....3”
2.13 Microprogramming Productiviky.....{...,.....g.....:;.31
4.1 The.SEL'S DAta SEIUCEULE e evreennnrennnesnsanessnnessb?
4,2 The Register File:.............68
. 4.3 Typical AM290@-based Architecture L REE R TP E R P PPP PR
) 4.4 AMéQﬂl Architecture,....,...........t......85
4,5.12-bit Cascaded 'AMD2941 ALU's ../......................84
4.6 AM2089 ArChiteCEULE. «evrennneesennsesssnsesanseessnss86
- 4.7 AM 2909 Microword Format;...................:83
. 5.1 Com;meh;nsive Microprogramming System'................94
5.2 Maximal tree.‘......,....:..........;..l,..;;.....;..113
5.3 &esting Tree:1.1..........L14
B . 5.4 Connected Graph,......;.......I.L::.........EIG'
o ‘ :
/ , K

.

- -

CHAPTER 1: INTKCDUCTION

¢

ﬂ ~
Contemporary microprogramming research within the

(%

academic community is princibal}y concerned with the design

and implementatioh of reliable systems foér the generation of

e

compact and ,correct microcode. Shriver & Lewis in a recent

\ »

paper on microprogramming stated this succintly as follows:

"contemporary microprogramming is concerned with firmware

-

engineering, i.e., the reliable implementation of correctly

functionizg/picroprogtams" [SHRIS81].

This interest has not yet, hpwever, yieldéd good tools

.

for the production of microcode. In some cases users have

.

been concerned with‘ applications of microprogramming, and
have disregarded the development process [SHRI81]. 1In other
éases researchers have attempted to borrow ideas from
software engineering to solve - problems in firmware

‘engineering which "are not ordinarily encountered in the

software domain" [DASGS80].

1.1) BRIEF HISTORICAL SURVEY OF MICROPROGRAMMING

Microprogramming was originaily proposed by M. V.
Wilkes in 1951 as a.systematic alternative-to the ad hoc
method of designing the control system of digital computers
prevalent at the time, Besides being a more structured
approach, it introduceé a large degree of flexibility in the
design, implemené&tion, and maintenance of the instruction

set of a computer [WILK69].

e

|
i
{
|
i
i
i
|
]

—

-—

-, By now Wilkes' matrix model, shown in figure 1.1, has

become a classic in computer science. In Fhis.model at each
clockApuls; matrix 'A' would”’ emit signals‘ﬂngecéing the
various gates in the CPU and matrix {&: would supply
fnformation to- determine the addregs of the next

k)

microinstruction. This scheme of logically dividino the

information in a microinstruction into functional
information (microgperations with the hardware) and -
sequencing information (addressing, tests, etc.) has

remained basically unchanged until now [MICK77].

o
Decoder oulput
Iine

Line 10 be
controlled
For esch a-bit contiguration, one of
the output hines will ba activated. Al B
B
a bits
T-.—i
Decoding
i - tree
L}
N 2" lines
e, A}
r—d
Sequancing
tnformation
———_— —
l I ' Control informalion ~

Data status information f

Fiqure 1.1 Wilkes' Matrix (from FLYNB@)

The next stage in the evolution of microprogramming was
determined by thef interest in microprogramming as a means of

designing a range of computers of differing power but with

o 10 {
/.
compatible instruction sets. 'The best example of this is
IBM's 360 series "in which all machines were 'at least
upward-compatible. In this series all but the 1largest -

computer then adnnounced (model 7¢) had microprogramming

based on ROM [STEV64].

[N

This contributed to the development of hardware)
‘emulation as';n important research topié. Tucker deéinéd an |
emulator as a packadé,that includes ‘special Hardware and a
complementary set of software routines [TUéKGS]. Emulation
does not therefore imp}y the implementation of an entire v
instruction set in ; microprogram. An emulation package is'
the result of a careful comparative analysis of the t%rget

and host architectures. Particular implementation decisions

are based on the study of the difficulties and advaktagés of

a software versus microprogrammed implementation. A machine

I

|

i
)
i

instruction may be microprogrammed if its software

implementation is too difficult, or too inefficient.
Another reason might be that a ,particalar instruction is
used so often as to be worth the effort of microprogramming
it. |

The latest phase in the evolution of microprograﬁm%hg is
qharacterized by the appearanée of user—microprogrémable
machines which provide'the tools to carry out research on
the various aspects of micfoprogramming.s Advances in
integration technology have Aled to .the appearance of

powerful microprocessors which have giveh great impulse to

v
\ n
o

Pl

11 o

e e

. .
LI

micropragramming, sifice these usually employ microprogrammed

L

tont:gi‘ units. Shriver & Lewis in a recent paper on
micrépéogramming"[SHRIBI],write: "thg LSI processor “forced
designers of multilevel interpreters to reevéluate
microbroqramm%hg. Instead of reducing .costs by simplifying
the Qgsign and increasing flexibility, microprogramming

became a way to increase the regularity of structure within

-

. an LSI chip".

To this day the goal of widespread user-microprogramming
has remained elusive due to the lack of appropriate firmware
tools.. Their development will - have profound effects on 'the

field of computer science.

T

1.2) A COMPREHENSIVE APPROACH TO MICROPROGRAMMING

¢

" The problem ‘of generating good microcode will not be
solved simply by the introduction of high level languages

and their compilers. This approach has been overemphasized

. in the current microprogramming literature to the point of

obscuring other issues in the problem of user

mié:oérogramming. The specifigation of microprograms in a
high-level notation should be a conseguence of oa
comprehensive solution to the overall problem of user
microprogramming. This solution must address’ the proSIems
of machine description, optimality of microcode, microcode

correctness,. and user convenience. Shriver & . Lewis, when

referring to the ‘ideal microprogramming tool, wrote: "work

a

‘incorpdrate low-level hos

structure of -the language used to specafy m1crnprograms "but

f s 12 | ™~ \\ -
e - | SN :

s

w'.towag§ this hypothetical’ miéroprogramming tool -has’ been

-

. thwarted by false starts and movement in tangential
N\ g ‘ . -
directions. One of the most obvious tangents has been the

°

4 .
invention of new languages for microprogramming. These

L .
languages often inoorporgte ideas borrowed from softwaig

-~ . » °
engineering. \Data abstraction 1is the most frequently

7 {

“borroyed idea. ;ﬁt their‘;b;st many high level languages’
-

acliine “features that we are

» -

attempting to hide by using & higﬂ level 1anguagé in the

first place" (SHRIS81].

" Microprograms gre very intimatelyj re}ated té the

micrearchitecture in which they operate. Microarchitecture
means all the hardware items which‘gén be' referred to or

operated on by a microprogram. Daégupta%defines it as " the

nature of the interface- visible t$¢ the microprogrammer" .

Y

jDASGéb]. Givén tlve above relationship any proposal to
- ’ '

' generate microcode .must be ‘- concerned noty only with the

L]

also with the microarchitecture in whi¢h these are executed.
;] . °

The ,central proposition of this thesis js the design of
a comgpehensivé microprogramming system which addresses . the
}

various aspeats of microcode generation, in particular those

v

related to microprogram specificatipn and microarchitecture

. -

description< Baer, when defln?ng a mlcroprogrammlng system

¥

‘wrltes- "the generatlon of a mlcroprogram (mxcfocode) is the

v ‘
result of a process which receives as input descriptions of

. ' - v
f D

g

A

’-

13
4 °
the #lgorithm to be executed and of. the hafdware resources

needed to perform and sequence the operations" [BAER84].
~ . . ” AR

-

' Baer 'propogspj the system of figure 1.2 and writes that -

" the automated translation of the mi.crc;engine

(microarcnitectﬁre) .description into templateé of

-~

microinstructions is.a problem which 1is ‘- far from being

<
+solved" [BAERS8@]." ’ : R
' |High-Level Lanquage Avchitectural Oescription '
Description of the of the target machine
algorithm) g -
' =
Q L}
) . Y
Templdtes of Symbolic Templates of
Microinstructions = | ~ Microinstruction Sets

i | '. L__,__} (___*_J .

Symbolic Microprogram |

4

- '

. Optimizations .
é - (register allocation, detection of
parallelism, scheduling of resources)

~.. R 4

1
o Microassembler ’ \

. L
N [Microprogram

¢ Figure 1.2 Bafr's Mg%roprogramming System (from BAER8#)
\ ‘ oD 4

1

The system proposed in this thesis has a structure

o
similar to Baer's but .addresses “the problem of machine

description -~ by introducing the concept of - hardware
. , . .) -)

-

Y

1} " . . égg’y
- - 4
T : Proof of Carreciness)

14 ¥ \\‘

- -

‘.

abstraction, analogous to the abstract' data type concept.

This abstraction constitutes a high-level language image of

all user accessible storage structurés,” and operations
o

available to the user. Microprograms will be specified in é_

@2

» \ .
high-level language which uses the operations and data items
specified in: the . hardware abstraction data type: ° The

logical structure of the 'lénguage is based ~on . the

N

!
e technique [JAWO8@] since it

Alternative Based Languag

s !

allows the abstrdction of machines and programs, and 1is

-’ . -
“therefore 'in line with the overall strategy of this work.
=4 - /
1.3) THE ORGANIZATION OF THIS THESIS o

¢ Chapter two of-this thesis examines the current state of
s . « s

4SS /

microprogramming technology, in both hardware and,.software‘
, aspects, and the problems chrrently associated with

microprogramming. RN

”,

Chapters three, four; and five gre used to develop the
central Sproposition of this thesis. Chapter three deals

with the description of compdtets in - 7”@ay which is

<ok
‘The

accessible and meaningful to application progrémmers.
concept of hardware abstraction is discussedkand a hardhare
abstraction language\~to describg a computé? is presented.

. In'chapter four a practical example is inen with the
dgscription of components'and oésratioqs in thé SEL 32/75. as .

°

hardware abstractions. >

- 2 v ' ¢

3

-~ for the SEL 32/75. . . Ton

comprehengive microprogramming system 1is presented in its,
. . LY

various/aspects. The generation of microcode ‘through an

£

alterpative™ based microprogramming language is discussed.

Finglly in chapter five some practical examples are

pfesented with microprograms {;plemented through the systém

7 s

It should be noted that the hardware *abstraction
S . o
language and the alternative based microprogramming language

+
.

are complementary components of the system. One has no

meaning without the other. In this thesis we have chosen to

' B

presEnt the hardware abstraction languag? first, "and then to

introduge tha alternative based mlcroprogfhmmlng langUage.

* a

¥
This order of presentation was chosen to ‘emphasize* the
e !

" hardware aspects of microcode generation. .

n. —

For those whose background is principally concerned with

software it might seem more appropiate to approach th two

>
(N »

system components in the reverse order. In such a case

chapter five may be read before going to chapters three and

'
. ' o

four. ‘ . Y
— . .) ‘
In chapter six the conclusions xof the study are

presented. The’feasibility of the system is discussed as
well as its ability to solve some of the problems currenfly

associated with microprogramming.
o

N

Fl ey

~., .* ‘CHAPTER 2: CURRENT ASBECTS OF MICROFROCRAMMING

L . . ¢
The aim of this chapter is to familiarize the reader

’*!._\,f‘

‘with the current status of microprogramming technoloby,in -

its various aspects. Mick defines a microprogrammedsmachine

<

- ' » . - » - N
as "one in which a sequence of microinstructions is used to
execute various commands required by the machine. If the
machine is a computer, each sequence of microinstructions

can be made to execute a machine instruction. All *of the-

- ~

litéle elemental tasks performed by the maéhine are called
T =]

microinstructions" [MICK77]. Microinstructions can be
further decomposed 1into microoperations which are hardware
based and are thé most bgimitive actions that can be

effected in thHe context of the microarchitecture.

. -

A

. The study of \microprdgramming hardware may be divided
into three main areas which are ?elated, but compkex enough
to deserve independent consideration. These are: control
storage organization, miéfoinstrucﬁion format 'and

« microinstruction sequencing.
t 5 ’

2.1) CONTROL STORAGE ORGANIZATION -

' Contrél storage r;fers to a ‘store from which
mjcroprogramé are executed. This does not imply that
‘control stgrage is distinct f:omtmgin memory, although.that
*is oﬁtén the case. Most microprogrammed computers storé
microprograms ‘iﬁ a smaller but faster memory, but there are

v

éom@ exceptions such as certain models of the IBM 360 sgriés

-

! ;v *
. .
Y = - . ' o
. . . e -
. . ,

and thé& Burroughs B1788 in which microprograms are executed
¢) i
from an area of main memory [DASG79].

-

o .

’

Dasgupta defires controllstorage as "a store in which
mipr;pr;gramé reside, and Whose organization and degign is
determined soleiy from the viewpoint of migrqprogramming"
[DASG79].. One of the* magor disadvantages of

microprogf%mming compared to hHardwired contfol, is the time

~involved in fetching microinstructions from control storage.

This factor <can be made 1insignificant by appropriate

4

implementations of control storage and . microinstruction
execution; hence the importance of control storage

organization.
t

*

. A) One micromsirucuion .
per word

>
b) Two mucronstructions T
s per word

[l
e

Y ‘

Control storage can be logically organized in several

' ways. The simplest Shd most common structure 1is the -

o / - N
ordinary memory array with one

icroinstruction per ‘w*d

{fig. 2.1a]l. A variation of this £ rm‘ﬁs to increase the

size of the . microword in order "to accommodate' two

18 ‘ :

n ' o . ‘
microinstructions. The advantage of this "is that Tfewer - -

M 4
' memory references are required since two microinstructions

>

can be aécessed‘simultineously (Eign 2.1b)." L ? ‘

L
-
. Q*&
A

Blocked =

o
Figure 2.2 Block Organization (from’RAUS88) - .

) : ‘ : .
Another form of organization is in blocks [fig. 2.2]. L

In this scheme:. there are two types of addresées, one of

1
13

microinstrdbtions in the same blgék as the current
microinstruction and ‘the other of addresses of other blocks.

_As a»reéult, addresses of micro;nstructions -in the same .

/ block are sﬁorter' than 1in a non—blocked‘gtructureg This
organizétion .is effiéient if £He microproéra& ‘can bp e
organized in branch—frée bloéks, each block processing a
certain specific machine insénuction. This is usu;rly not . o

an easy task, but with appropiate software it may be

- = achieved.

N

In Ehé split structure [fig. 2.3] we have two different
storage wunits with different word sizes. The unit with

shorter word length contains microinstructions which utilize

-

~

t : : : ' PR
. .) f a . - -, ,_3‘;;1

.

«®

-t

.

very few resoutces of initiate the execution of a

microinstruction-in the.other unit. The second storage unit -

I3
.

has many more bits per word and therefore can exercise more

g

control over machine resources. Thjis organization can be.

very efficient if most microinstructions executed are of the

‘short type or if many of them reference the Same long

microinstructions.

Spht

’
‘l Mdlﬁé‘ .

' Fiqure 2.3 Split Organization (from RAUS8@)"

v
1

In a two-level organization "the instructions in the

’

.lower level mémory unit interpret those in the wupper level

.
a

(fig. 2.4]. ‘This _ is called nanoprogramming ¢and is
conceptually similar to microprogramming, however- this
osganizatiop provides flexibility in . the design of
microinstructions as well as machine instructions. Mach%nes
with this organization are usually used for research into

microprogramming. This organization of control storage |is

used in the OM-1 machine from Nanodata Corporation.

,

’ Tv;o fevel

r

Interprets

- >

oes

Figure 2.4 Nanoprogramming (from RAUS8) ‘

~ ’ «

v
°
.

[

3

-29 . ~ -

] . .
For the purpose of this thesis, practical experiments
will be c¢arried out on the SEL32/75 computer available here
at Concordia University. The SEL is a 32-bit

user-microprogrammable computer oriented towards real _time
A *

épplications, but it can also ‘handle general * batch

- applications.- It s therefore ‘important to describe the-
. . Cew

particular microprogramming technologies which the SEL uses. .

\) - : 64 bit '\

0 = <
i . i
. o
| chom ‘|-
4K : : v
Les
. \ :
‘ bk - -

N

Figure 2.5 The SEL's Control Storage

P

The control storage: of the SEL 32/75 (fig. 2.5] is of
the single-word array type. It is organized as an array of
64-bit words, each word containing one microinstructiént
‘The firsé 4K words consist of..ROM which contains, among

other phinqs, the microprograms to interpret the basic

_instructidn set of the SEL 32/75. The rest of the contro}

@

’
o i A i A

21

Storage is used as a Writable. Control Stof%ge (WCS) which is
installed in increments of 2K upto 8K. The WCS is made up
of RAM and it is used for user-microprogramming. The WCS is

viewed as an extension of the ROM control storage and

therefore ‘there 1is continuity .in the range of addresses

[SEL1].
2.2) MICROINSTRUCTION FORMAT

A microinstruction is merely a string of -bits whose

meaning (use) is determined by the decoding Hardware. of
\

primary interest in the design of microinstructions 1is! the

- -

number of resources each microinstruction controls. In this

t

respect microinstructions are <classified as vertical or

.4‘{/ \ ‘
horizontal [RAUS8¢] although-these appellations refer to the

i

§
extremes«f a broad spectrum. .o '

Vertical microinstructions effect single operations fuch
as LOAD, STORE BRANCH etc. They often resemble machine

language instructions containing one or more operands.

Horizontal micrbinstrpctions,~in contrast, control many
résources %Eich may operate in parallel. A microinstruction
might control, for examp%e, the simultaneous and independent
operatién of the ALU, input and output to main memory,
conditional next address generation etc. Horizontal ~
mieroinstructions have the potential advantage of efficient

hardware utilization, but the optimization process 1is a

difficult task.

22 ~ ‘
\For both wvertical and horizontal formats, there %re

several ways to implement the executions of microoperations.

’

Each bit controls ore N
microoperation

Figure,Z.E Direct Control (ffom RAUS84)

-

. In DIRECT CONTROL, every bit in the microinstruction
;represents a microoperation and is cgnyerted into a control
signal which inmediately and directly ‘controls a certain
machine)rESéurce (fig 2.6]. In the extreme horizontal case

. there would be one bit for evéry microoperation possible’. in

.- the machine. This scnenge provides flexibility, but results.

’

in large microwo;ds and a waste of storage. It 1is of
. historical importance Yonly since it corresponds to Wilkesf

model and it is rarely‘'used. “

In RESIDUAL CONTROL a group of set up registers are used

to control resources [fig. 2.7). Each register controls a
ner B

particular resource and microinstructions may -then replace

or alter the wvalue 1in one or more registers. The set up

.
-

registers may be manipulated by a sequence of vertical
microinstructions, yet they simultaneously control several
resources as . do horizdntal microinstructions. 1In situations

where a certain resource performs the same operation

repeatedly this scheme can provide substantial éavings in

it o oz bl K

23
g
control storage use.
. » - ~
- Residual mueroinitructions
vt . .
A\
N
‘o o N
L P—
i) Mecromstruction
4 = e ot
! .

N Setup reqitery <o o | l i . I £ eew
Resources soe ' see

4

Figure 2.7 Residual Cortrol (from RAUSS8#)

[

In “MAXIMAL ENCODING each microinstruction is considered

to be a unique , state of a -microword. If there are n

possible states (microinstructions), then we can represent

each microinstruction with a code using log2(n) bits. _This

scheme is most effective in minimizing microword length, but

if the number of states (microinstructions) is large, a
‘significant decoding delay may be introduced ([fig. 2.8].
Furthermore this scheme lécks flexibility, because. the

‘addition of new microinstructions may result in hardware

.

24

modification. -

’ MICROWORD O o' olo

L

o! Lt o0

o! 1 : 1
1 L

il O] o

11 01 L

1110 '
i | [

MICROWORD 7 Ly L1 *
« " Y
. MIR

. r L
-

e / .DECODER \
1

Figure 2.8 Maximal Encoding (from DASG79)

~

% In MINIMAL ENCODING! microoperations on mutually
exclusive resources are.grouped into a sets represented by
. . fields within the microinstruction. 1Its simplest form Iis

. . ,calléd single 1level or direct encoding [fig. 2.%a]. ;n
two-level encoding t?e meaning of a field is made to depend

. ~on the value of a controi field within the ﬁicroinstruction

(fig. 2.9b]. This is sometimes referred to aé bit steering.

Another arrangement of two-level encoding is called format

shifting, where the value of a field depends on the machine

»

N

et cp T T T AT Sy
a

25 .

state -indicated by some status registers. /
Y
\ ’ Decode
N < . ”'m .
S Bis . 58us lietd
e e, e e e,
Field Al Feca . « B} ... |FeaAl FedB |Feac) ||
a) R 2 bty Abns o 2 bits Ibus 2 bits
Nt —r Sl N bt s et
g Decodin Deceding
1o 4 et A 9) o
Decoding
Decod 1
toft8 :.(Bmg) 1ot 16 —— net A
) 1 of 37 ~——l Becoding

B . net 8

Figure 2.9 Minimal Encoding (from RAUS84)

The most widely used scheme is a combination ©f the
various forms of minimal encoding. This the scheme used by

the SEL 32/75. The format of the microword for the SEL is

-shown in fiqure 2.16 . Certain fields such as the T field

are used as control fields to determine the mean‘pg (use) of

other fields such as the M, X and P fields. Other fields

such. as the '+' field do not depend on any other field for °

J .

the purpose of decoding.

2.3) MICROINSTRUCTION SEQUENCING)
: 3

The,microinstruction sequencing mechanism is a. great

>

source lof variability among microprogrammable machines,

A p
since - %hey .all have different and often inconvenient

baddressfng mechanism [PERS77]. Jones has studied the

v

possibility of implementing high-level structured control

constructs (REPLAT UNTIL, WHILE DO, etc.) wusing the

available sequencing mechanisms and has found these 1ackin§

-

POOR COPY UALITEE {NFERIEURE !

. cOPIE DE Q

s

26

..

e o e ¢ . g o o vy ———— | Wna =

1eWL04 PAOMOUD LY §,73S dYL OL°Z 24nbLd

N -
{] uuJevn, p -1
P B Soiswaaw A LT] ‘ -y ' Qadedt ‘ . A . —-.P- . . advin M] 4 g 4
On T ANLAvI A AL34 owom /n. Y xrwe
. oaxs o wehiv . ALOSs . . s » . - Ll .
¢ -
P N nue wOss0 outm ouona Mo | wvsemio | eveunus
. [} . 1O WuLeD . » o ‘ ") ° o a] [] i) [
Yiova oL SO W p il
o v o] vIwIse [ancwaism omos | of wwan] suoom - R oai® s -
3 AW - (LT - . -,
l!.-u :..Qu E-l—e.u »3’8» éa ° Qlll- .) Y N -
o ax
l s, v [omen | sgusrnen L L e v v see | woisooio | orowWe
! [E P LT
H . Avasuw i Lvad ' AmELlewn ' WY M ' nvasave . It . . -.!_l-.. . ol A%N ds . » » e 401907 . e "
) 7 w - * wrnoLe
! © s v v CAIN veains L L Nnw p_-ml(.- o| 0w, . R " sy Puow .
Ill ~
[U] " " e 1w AN o M oaq . o
i P u et [2 ¥ [(L FL} T ", ‘ v, i H f
w ‘m wuvl . 15308
R s 1504 Gromlixa < ¥ . N o - "o ine . Rdar ol .
. DA P2l SWTOL
. » . wom . v aTiengm s .
— e - Taaveon P et
. v wissa & e, 2asNreNY A » xnes N » -~ %o N T3e0mirn » sy N ALOWI IS N VNI .
< -
QYut/vus . OwOmtd s . . jy, - * 44 pOOn. I3 " ¢ « L ¢ - c L -] ‘ L 13,3] € a5 e ¢
s Otv . ABuaven . P Ty [T Cmnrw Tvm [
e | owotvmd o o e, g| MOwew, 1 t : ’ i Dt
7 ™ uxs VIS Onacns
v, o] Amewmr 4930, . . . Ba fwom | ow | twmw -]
X2V IaN: IO YW $I0VEL nu ~N LNO L8N 4
o « L .L ¢ . . . won o LA o on o
- Terowd 1 oNOwd 0015900 13080 000 x 7
AvoLIw A A5 X 2, " 1
R h P ' N s $i80 - sisns wrowones | sevona w1 M s
= WM | sawwn KVIVIIG ' » 245004
[1 N] _ - - 1
.ﬁa‘: ¢ saoon o ’ Lt lid . oI . I .
ot 03003 -4 1000 »-uICWO I ¥ [.. 1 NONO ¥ oon
¢ t (XY ConNim $40VIAYE n 1]] AVINIAD 4 []
L A [
- ‘ | [Mwmllﬂl wwnine v, ve—
1 i
™ . . [s oavy
I : — i of e o
» [3
Ve
3003 Lsirg - T w ey > LOw Yy N . reseT]
——— < T v I e, y vl
- 5 v gL {1 o ‘e oy
, T MM._M “ WSO) " w0 : R
.\ o0mxy o L v Yy eoome
— _ . L X st - [T, “
LTI S 4 ¥I0u0d? . it]Sa... ¢ |3) X, | Irree 2 4
v 17 A1) KWy Yo e
Vr- ﬂ HINVNE LTI ——swsorr—wt —are #]} Landed) sworv e Tens
s gromitze
o L te0 o e ve T TToias 1us p— I
Ll - ...Itklﬁ L : i 1} yverun i f |,
—_— -
s Le0Vi M14 L] [T ™ tovw T e 200300 i
— - s s] 3 lvivgrng ¢ si ewomn gfe "
NI ~ T 1] N
us Wi sNvEL S [aYIOT] —— AT " . avmt e
"] fltll . [} M yns s mivil R o] oy, g MV IS o
° diive A 00 1 b e
% Jovawoy oMow . < 5) v LYY, ", L) o | . sus,
r
' (3 :CLY. T Q0 Laws X &St ||||2|l:..||..ﬂ|ﬂ 1N -
. nd L & % T I T L - -:-P [¢ 17 . SN N Towrt, 5.:::. ¢
$4 10w0 v . IR ™ v v
L e — L « L - ae") ot o, svoy o, bt K AN
s XTUT . N s 50] Faei il
v . Mevee us e $1511 Q3N LX) SO aSiT— 1] tovare o 5, 2,] Tvemwn A% Lvaupag o | e grantiv) ¢
R . * ISR TY I N oon”
a2 HOMVEE Lin Y — [TI3TP U IOVGNH S _Quuux! . N n- . Iy . 4 . . . F. N N e .
P MYV AT TS SH0V0 X T OvIe Vg | NOUYMLIEX (333 Y] ey Youte® | panon] uswssvane
v sel safew v oo | o foe] cof | agf 5|} s exjic 3 I3 IR L » 1 Tn[a]wl ol w] ol alw] ool w]ie)w]sa] eice] te]ie] ts
{elw]eloTou]e]ala]x] == e TR A= s o] 1 =] 1] REOER OO
-t e -l - iy o Ve - " o . . Y. . iy ' P
L
. s »
o v . y
" -
- o 3 -
T g
?\[e
4 -
4 <
- % - -
. =
.
- -
@ - e - cas - R G e s s R T
~ Y g
a s a e
7, < ¢)
>

Y

incapability. She writes: "the microinstruction sequénéing
o -
capabilities +should) provide the pasic mechanism for
. ..

implementing various forms of program logic.w. Thus it is
important that the microinstruction sequencing capabilities
of the underlying ‘machine organization support the

- *

implementation of the basic constructs of the appropriate

program logic usirg context free (no embedded return

address) modules of microcode. Reviaw of the

"

microinstruction sequencing - capabilffies of several
contemporary microprogrammed machines has shown that these
sequencing’ capabilities generfally fail to support modular

implementation of the basic constructs ;¥ flowchartable
* lL

-

program logic™ ([JONE75].

-

Microinstructions are executed in a general

t

fefch-decode—execute sequence, but details of* actual

implementation can, vary greatly. Generally a microprogram

counter is used ‘to iqdidate the address of the next
microinstruction, and a certain field may be set aside
within the microword Eg%indicate’a branch address. Unlike
machine language prégramming,.the effects of the sequencing
sqbeme‘ate,not hiddeﬂ from' the microprogrammer and he must
cope with them. - T

In sequencing microinstructions there are two aspécts to
be éons&dered, oné is the fetch;exe;ute cycle of the
microinstructions themselves and the chgr is the, sequencing

»

of microoperations within each microinstruction. The first

. ,) .

aépect covers the ‘relationship between microdperations in
different Mmicroinstructions. The second covers the

. . . ’
relationship between microoperations) within the same

microinstruction. - . on

{3) Microinstruction

numbet N
- F ', E y v "
‘ SO SN .
BN N s—F._A.__E_._.J
- ! ' .
. 2 ! I——-F_L_.._..E_.__‘) L)
N
" Tme
(b} Micromtruction
rmumbes - -
,)
; , F t
F re1 h—-_F__A___E__'_I N)
£ 3)
, 162 — S -
' N - : ‘ « AY
' Time

?igure 2.11 Tﬁe Ser&ai—parallel «‘Characte;isticé (from
RAUSB@) ' S - . v
The first aspect is described by the serfal;parallel
_characteristics of the seqqencing scheme. In a »serial
implementaﬁion, fetching the next microinsﬁruction dées not
begin until the execution .of the’ current one terminates
[fig. 2.1;a]. In a barallel\implementation, the fetch of
the next microinstructiﬁn‘beginS'while the current' one is
beiné executed [fig. 2.11b]. " The advantage of the serial
appté%ch is simplicity of realization, as the hagdware does
not have to control fetching and execution simul;anéousiy\

,and no special problems arise in conditional branching. The

advantage of the parallel approach is the corresponding

—r—

e

ooy

S

29 . . -

saving of time. ' g /

The secohd aspect of sequencing 1is described by the

monophage—polyphase characteristics sof the sequencing
scheﬁe; These refer to the number of phases (minér“cycles
or subcycles) used to execute a microinstrucfioh; which
usually requires one major clock cycle. In a monophase
implementati&n the;e are no distinct control cycles and the
microinstruction is executed by a single simultaneods issue
of control signals. . Iq& a polyphase -implementation each
majér clock cycle comprises multiple subcycles and the
)
hardware generates control‘sighals at each subcycle. This
'approach is sometimes considered _a disquised form of
vertical microprogramming. The advantage of monophase
operation .are, simplicity of rgalization (no.spgcialghardware
needed) and speed (paréllel operations), however it can‘pnly
be used effectively in cases 'where there are no »data

[

conflicts among operations within a microinstruction. The

. advantage of polyphase _operation is ° that it allows

interaction among resources at the -expense of more

»
.

complicated hardware.

»

AN

The SEL 32/75 uses a microprogram coynter . to point to

the next'microinstruction.i‘This counter can be modified by

" the contents of certain fields within the microword, or by

, ' ;
the the contents of certain registers or status indicators.

Otherwise it 'is incremented by one by a special adder.

Microinstructions are executed in two cycles each of 15%

b}
t

\

‘. 3¢

1

nanoseconds. During the first sycle (CROM) the basic tests

“

and sequencing are accomplished. The second cyélg executes
all orders that .the microinstruction directs. Although ' the

microinstruction requires the full 300 nanoseconds to

.

execute, on? mic'r‘oins'truct.ion can be handled every 158
nanoseconds, the second microinstruction going through the

CROM cycle at the same time the first one is being executed

in the CREG cycle [fig. 2.12].

0 150 NS 300 NS 450 NS 600 NS 750 NS
TIMING l | ‘
T : : ; T y
. ! T I ! | !
¥ - |] ! 1 I
] [}] 1 1 I
. . ! |
CROM #1 CREG #1 ! I [
‘ e ! |] .
CROM #2 CREG #2 & !
. t 1
- : a I
CROM #3 CREG #3 :
b ') . - S SR S e
T ’ 1 CROM #4 : CREG #4 1
. » - e o ~;—r- - an o e
. Ee caom &s |
L SN |

:
-

4

/_Figure'ZI.lZ Sequencing in-the SEL (from SEL1)

2.4) PROBLFSMS ASSOCIATED WITH MICROPROGRAMMING
N . 4

N o .
The production of microcode is, usually a slow and

)
[

difficult process in which fam~iliari‘ty with the hardware and
o

efficiency of microcode are absolute requirements. The

‘a

ORI

" first is due . to the level (hardware) at ' which
e
microprogramming =~ is done and the second because-}”

A : *
microprograms constitute the base of tr’ge entire software

-

A

’

14

. " system of a 'computef. Chaptal writes: "microprogramming

- B

introduces .an “articulation between " the hardware. and

software" [CHAP75].

’

i
f -
-

Most conteﬁp;r;ry 'microprogramming is done by computer
ménufacgurers to implement the basic instruction ‘set of
theif. computers. In this environment, familiarity with the
architecture is a natural cons;duénCe of . the manuf;cfuring

process. - @ o '//

.t
5

More, ofteq than not the mdcfoprogrémmer has an’
elecpricalior,électronics engineering background rather than
~a }goméuter° science education, with solid experience in

digital logic. It is a profound knowledge of érchitectural'

components " and their organization that ﬁllow§ - the

- microprogrammer to make use of the parallelism inherent in

the architecture, thereby producing efficient microcode.

<)

Aids to Microprogramming instructions total time to
; per man-day produce 10000
. ' _ instructions

‘ . ‘(man-years)

“simulator ° o o2 18 years
microassemblers - 5-19 5-9 yeafs
and loaders T
vhigh level language 18-25 2-5 years

LYY

Figure 2.13 Microprogramming Productivity (from CHAP7S)

Chaptal has compiled the table of figure 2.13 to '

) . . . s
illustrate the low productivity of microprogrammers even

L4}

¥

when dorkfng with short 'microinstructions (16 bits)

(CHAP75) .. Since long microinstructions are more desirable
. o ’ . ‘ , ’
because of their potential for increased parallelism, it can
' N
be expected that the productivity'of microprogrammers will

diminish even further unless the obstacles to microprogram
product{on are ;emoved. ?hese obstacles Gary somewhat from
machiné to machine but they can be grouped into three main
problem—~areas: ‘'machine _. dependence, low level

microprogramming software and microcode optimization.

b

2.4.1) MACHINE DEPENDENCE ~ ,

" The problem of. machingf dependency of microprograms

originates from their position in the programming‘ hierarchy

b ' s .
of a computer, i.e., at the lowest level just above the
- s)

hardware. All other programming levels are implemented on a

f

"virtual interface. High level languages produce

intermediate code for, a virtual machine which 'is then
° \

separately transformed to machine language. Even assembler

language is implemented on a virtual machine, since it uses

a small subset of the hardware's storage resources and in
-~

some cases even virtual structures such 'as stacks (ex:

t

certain Burroughs machines). /Assemblers can also invoke
i p }

operations which are not directly, K implemented by the

hardware such as MOVE LONG instructfonskand in the case of

‘’stack machines the 'PUSH and POP operations.

~

s

SUR

compatiblle product line" [BABAS81l].

-

Microprograms, on the othén hand, are based on the
hardware of the particular machine. They can only reference
those structures which physically exist and can invoke only

those operations which actually may be executed by the

‘hardware. Dasgupta states the problem formally as: "the

fact that microprograms by definition create some desired
target architecture on a hachine—specific (host)

microarcﬁitecture" [DASCBO].

1)

The problem of machine dependence affects the

transportability of systems implemented through

3

microprogramming. Baba & Hagiwara write: "the desire for
machine independent microprogramming systems has come. from
the fact that microprogramming languages are not compatible

even between two adjacent models of the same architecturally
* A

o

s

Machine dependencer originates 1in three main areas of

microarchitectural variability [DASG80]:

1) The semantics of microoperations, which refers to the
B . ‘ °

various meanings that conceptually equal operations may take

in different machines. °) .

'2) The timing of microinstructions, which refers to the

seqdencing of microinstructions as well as vof the
microoperations within a microinstruction.
3) The data path structure, which refers to the data

transfer paths between hardware‘components.

% * . N

34

IS

N

2.4.2) LOW LEVEL SOFTWARE SUPPORT

The development of microprogramﬁing languages has lagged
behind that of macroprogramming languages. At a time when
the construction of compilers for “high level languages has

~

become a mere routine, in the field of microprogramming this

o '

is sgi;l céUsipg many problems [SINTS8@].

Most of- the softwa;e available for microprogramming
comes from the manufacturers iﬁ the form of microa§semblers.
These are very primitive in nature and are tot?lly machine
depéndent. Their use requires famiiiarity with the
microarchitgcture and leaves the wuser to deal on Bis owﬂ

with the timing constraints of the sequencing mechanism. In

the °"case of the SEL 32/75, the microassembler composes one

microinsttuction at a time by mapping particular character
%trings to bi; patterns in appropriate locations with}n the
microword [SELZ]. . It ’prevides pseudoinstructions and
facilities to <change the basic character strings to more
meaningful ones, ‘but no attempt whatsoever is made to

provide for global composition (me¥ging of contiguous

microinstructions) or to hide the effects ofthe sequen?}ng
' ,_~.:-'

-

mechanism.

* There have been several attempts to develop high level
microprogrammingslanguages, but they have only partially
succeeded. Some, 1like STRUM [PATT76], are successful in

producing efficient microcode but are totally machine

.
-
e et s,
G st a2

-~

criented and the microprograms are not transportable.

Others like SIMPL [RAMA74]. were oriented‘ towards the

implementation of a particular composition technique that

excluded certain control and data structures. Others 1like

EMPL [DEWI76]‘ tried to achieve machine independence by
making the lanquage extensible through the' implementation by
firmware of non-available hardware facilities, but this led
to inefficient microcode. Baba & 'Hagiwara developed a
machine 'indepeqdent microprogramming system [BABA81] that
included a machine description and a micropr_ogramming
language, but the 1level of detail is so deep that it

resembles a hardware description language and it is) beyond

the grasp of most application programmers.
2.4.3) MICROCODE OPTIMIZATION

The optimization of a microprogram is directed at

reducing its execution time to a minimum and possibly - its.

size as Vi(;ll. This process involves microcode compaction,
i.e., the minimization of the number of microoperations, and
conseq'uéntly of microinstruct-:,ions required to carry out a
certain task. | :I‘his is ‘usually an arduous process because oft
the re;_:ource" conflicts and data dependencies introduced by

the bi—directional flow of control in micfoprogramming.

The problem can be stated formally as follows: "given a
microprogram expressed as a sequence of microoperations,
these must be placed intoq microinstructions so that . the

¢ & :)

Y-

» -
-

execution time is minimized" ° [LAND8#)]. This topic has

I3

become a major ‘research topic because of "the almost

. ’

universal belief that only optimal microprograms are useful"
—— .

[DASG8@] and the pressure from the increasing number of

applications, for microprogramming.

*®

The .p'roblem is usually attacked by dividing the

microprogram into branch free blocks and then trying' to
achieve 1local compaction inL eac‘h - block. Once we have a
group of compacted blocks, then global optimization may 'bc;
_attempted. It. is this 1last st(;p which ‘has not been
,sati"sfactori}y solved. Shriver & Lewis write: ‘"Lar:dskov- et
al have shown that practical algorithms for the NP~hard
problem o? optimizing strgighg—l‘ihf segments of

microoperations are feasible, and give nearly optimal

results. Indeed microcode compaction can be considered - one

of the few solved preblems of microprogramming. Global,

optimization of microprograms is still a problem, however"

[SHRIB1].

‘ “~ . A Y

[S—

3

~e .

-

]
. - CHAPTER 3: DESCRIBING TEE MICROARCHITEL1JRE

We have already established the intimate r/elahionship

between ‘microprogramming and the, microarchitecture.
‘Familiarity with the microar;:hi.tectl.ure isjessent':uial for the
production of useful microcode. So far this familiarity has
remdined the domain of the hardware specialist and of a few

-

brave application programmers who have the will to expend

the time and effort necessary to acquire such familiarity.

i

Acquiring familiarity with a tomputer : is an arduous
process.' It involves, among other things, the reading of
countless technical manuals filled with hardware jarggn, a
trial-and—error approach | to microprogramming with the
consequent number of system crasheé, manual optifnization ;>f
microprograms, and plenty of time‘to do all of the above,
most of it 'wasted on trivial problems whose solution Iis
often found in a piece of information buried deep inside one

of the mgnuals.

The problem of familiarizing an application programmer
with a given machine is then a problem of transmitting

information about the machine. The information must be

easily accessible and must be meaningful in terms of

~concepts with which the programmer is already familiar.

Making the information accessible requires that it be
organized in a storage medium that allows the user access at

will and with user-defined search criteria. All of the

38

N
s

abox}g suggest a computer-accessed database as the- ideal

storage medium.

Barbacci proposes a similar idea with the creation of a

: : . o

global database to contain machine information to be used by
all types of computer §pplications: architecture evaluation,

-

simulation, automatic programming etc. This machine
database would be created by processing an ISPS (Instruction
Set Processor Specification) description of the machine

-

[BARB81] .

Providing meaningful. information requires the use of a
notation with which the programmer is already familijar,
i.e., concepts and constructs from the area of hig'h level
. lanquage programming. It must be noted howevér, that the
environment of microprogramming is so distinct from that of
high level programmring, that there are certain structur%s
and actions for which there are no appropriate language
. constructs. This éituation appears in two forms:

1) Stl'uctures’ andl actions that are so specific to
microprogramming that there éxre no langyage constructs to
describe them. For example, the sequencing of
microoperations, serially énd in parallel, can ’not .be

accurately described using the typical parallel programming

constructs COBEGIN and COEND.

2) Structures and actions that may be described with known ---

constructs, but the result is so complex as to make them

less comprehensible. For example the .-shifting of bits in a

———

> 39

b ey - hd

register may be described by a series of.data transfers

between the eleflents of an array. But then what |is

cohceptual}y one operation, becomes many. ¢

?
-

5
There 1is, therefore, a need for new language constructs

IR

_especially suited for the microprogramming erivironment.

These should, however, be kept to a minimum. and should not

require any .major ‘effort on the,part’ of the programnter Nto

.

understand them. ‘ -) .

3.1) COMPUTERS .-AND ABSTRACT DATA TYPES

- x

. The abstract data 'type is a doncept which permits a very

clear and precise definition of data _objects within a

v’

program. From the point of view of programming an abstract
data type is defined as [GILOBd]: "a homogeneous set of data
objects and a set of operations applicable o~n the objects of

2 A

the type". _ ..

A typical example of an abstract data type is a stack.

r

It has a well defined structure (width and depth) and

associated with it some well defined access.procedures which

act on the data structure (PUSH, POP etc.). Heidanen et al-

have wused this concept to ’describe a - rspecial-purpose

computer designed specifically towards the implementation of

-,

5 i) V‘
a programming hierarchy based on some primitive abstract

data types which are implemented througl';‘,nicrarogramming

[HEIN8E].

- 9

» A

¥

.-

v . N
-
L
- ¢ . rf" \
‘ «
K
’

The microengine of a computer can be described as having

-

a well defined data stfucfure; and a set of well péfiﬁed

opérations which act on the data structure, however it can
.] .

not be treated as an abstract data type because of the

following: .

i) The microarchitécture of. a computer 1is more 1like a
R ‘ '

col%ection of abstract data types. ' The data structure -

\

- can not be gonsidered a'single storage item but rather a
- 1 3,' " \

collection of storage ifem§, some of which may be"

»
s

° Q,.) v
of operations and often these subsets are not disjbinﬁ,
e X ! ’ . N -
i.e., a given opgiation can be peﬁformfd, on different
‘ P . . ’ : .
storage, items. B o .

ii) Abstract data types by definition provide a flexibility
’ ‘ > ' i . ' '

which is not found in - the context of the
microarchitecture. " Among the dccess procedures

associated with -an abstract data type thete are

o
)

procedures to creater and delete objecté\gf‘éhe type. In

the microérchite?tdfe's ‘environment there are no
s : -

oﬁeraiion§ ‘equivalent to such procgdures. . For example,
!) - . y Q .) -

if the microengine includes a.counter we may describe

o

its structure and the operations that can be performed

R ‘ R , L
on it,xgut we can not delete it oz/',. create‘ “additional
v . . . »

counters. We can only .use whatever.counters physically
. " n‘ i

.,exist in. the microengine. . : -
o
A - - i \ - /

connfected. Eachhisem isausually acted upon by a subset,

.

4

2

.

- .

-

N

S

RN

P

-~) Y SO RN V. Weoay

ez

L

-

. . ‘aithy
< N) ; i 3
" ‘ S : 41 ‘
. ’ ’ 3 l " - -
- b ’ -
I} ‘While the concept of "‘an abstract data type can not be
\ . applied strictly in the description of.the microarchitecture

4 i

» of a computer, it can be used as a guidé to provide a

description in the form of hardware abstractions of the
[- .

o

components of the microengine.
S 3.2) THE 'NOTAT@N: A HARBWARE ABSTRACTION LANGUAGE

The description of any structure or process requires the
’ . "existence of a coherent notation that i's understandable by

‘; those to whom we wish to communicate 'the description. In
M . h . L.
o \ sl » LN »
\ order Fo‘descrlbe a mlcrqprqgrammable computer, the’notatlon
o ,) ' Q
. * must meet the the following requirements:
; :

> 1) The machine must be described at the microarchitecture

) -) . ' ..

© level. There are several levels of abstraction in a
machine. These ramage from the purely functional ' level of

- the macroachitecture down to the level of the individual

E. : . gates. The notation;'must therefore' b; taidored to the
ie&uired level of abstraction. ' .
"2y TQe' use Q;f the nptati;n‘ nust yield a functional
'éescripéion of Eh: 'ﬁicroarchitectgfe. The structure of

K storage components. must be described with a few basic typéﬁ.‘

[,

The,semantics of‘oberations must be described using a few
. \, well defined primitive operators. Both the basic types and

\\ primitive operators must be easily understood by the

AR - -~
. . . ‘ i 4
prospective m1croprogrammef3) . o *

42

*

To meet the above requirements this thesis proposes a

Hardware Abstraction Language (HAL) for the functional

.

N

descfiption at the microarchitecture level, ©vf the
structures and operations physically occurring in the
. ’ #

. hardware.

s

N
L 4

The purpose of H%L is to Qescribe the midrparchifectq;e
“to thé‘prospectivg microprogrammer in the. form of a set oﬁ
well defined storage structures ang\f list of well deﬁined
operations on them. HAL is iqtended to be applicable to
description of a wide range of micrbarchitectures. However,

its design has been influenced by its applicétion to .the

SEL32/75 during the course of this research.
#

)

HAL 1is not an executable 1language, but a hardware

description 1language designed to yield a functional

describtion of the microaféhitecﬁure. This last point must
~ be émphasized, since the syntax of HAL is flexible enough to

allow the specifications of structures and operations for
bhipg‘a précess of code generation would seem very complex.
One must keep in mind; however, that the processing of a HAL
description will not generate coée, but a machine

<

information file. This file would be used by a microcode

generator, and by the prospective microprogrammer to get:

acquainted with the microarchitecture. It could possibly be

used by a microprogram verification (simulation) system.

n".—

43

£

Reg%rdlesé of the complexity of the structures and
operations déscribed usiﬁg HAL, ~one must remember that
Qhatevef i? described must airéady be implemented in the
hardware. ‘The oﬁjecti?e of HAL is to déscribe what
physically occurs in the hardware, and not to implement new

i) : J . : : :
structures and operations based on existing hardware items,

"as is the case with most H&gh level languages.

"3.2.1) THE JUSTIFICATION FOR HAL

‘The first and most important justification for HAL is
the need for a description of the microarchitecture. _The
problem then is to Jjustify the choice of a ©particular

notation to»satisfy this need.

' In '"choosing a particular notation we must take into

e ~
' 1 ;

account the following considerations:

1) The guiding strategy in describing the microarchitecture

1

is 'Ehe concept of hardware abstraction, 1i.e., the

-

microengine is to be described as having a set of well
defined storage structures with a set of well defined

operations on them:.

2) The purpose of the microengine description is to provide

information to the microprogrammer as well as to the

microcode generator.

Upon considering the choice of a Potation to - describe
v
the microarchitecture, one 1is inclined to use one of the

existing hardware description languages. These have,

¢/

44

-

"however, been found to be unsuitable due'to the following

reasons:

1)

2)

i
~ ?
i

Computers are described at several Tevels, none of which
- ! .
can . accommodate exactly the ' description of the

ricroengine. Baer describes the 'following levels

]

[Baer88]:. The global system (PMS), the processor

description (ISP), the register transfer level, and the

P

logical design and circuit 1level. The processor

degcription iLevel ‘encompasses the microengine
ziescription, but notations such as ISP are concerned
with proviaiag information for fhe\assembler programmer.
Bell & Newell state: \ﬁThg ISP descriptive system is
meant to provide a uniform wa§ of describing instruction
sets, that ié; of giQing'the information contained iﬁ a
programmers manualm [éELL?lI. fﬁe instruction set of a
computer is h&wever built upon the storage structures
and functional capabilities of the microengine, and
these ‘are more numerous and .wvaried than what the

assémbler‘programmer perceives.

Hardware vdescription lénguagés- are not‘ specifically
concerned with microprogramming and their scope goes
beyond the microengine. This usually creates an
unnecessary degree of detail. * The biggest defect of
thesé\ladguages is that they do not establish a 1link
between fﬁe’fdnctional descrfption of operations and the

y

microinstructions that implement those operatiogs.

Dembinski & Budkowski s;ate: "the specific feature of

1 1

~

-,

PINUSORSR—. Sl 4

v
h

o e w memen T
.

3).

‘4

HAL

1)

microprcgramming is the direct link between a functiohal
specification . of hardware units and microprogram

JETR

ins;rugtions. A microprogram designerimust be aware not
6nly of how to express his algorithm}c solution of -a
partlcular problem, - but he also has to [take] ~care of’
the hardware realization of hlS algorlthm [DEMB?@].

The level of detail shown through hardware description

languages is\ dsually Heyond the grasp of most

.application programmers. Even in cases where the

language is concerned with microprogramming as in the

MPG system [BABA81], the objective -is to provide

information for the microprogram compiler “and not for

the prospective microprogrammer,,-\/.\\‘MﬁB, ’ .

The sequencing of microoperations can not be adequately
described by the timing primitives of existing
languages. Sint writes [SINT81]; 'In most languages,
one can only distinguisb seqﬁential anhd parallel
execution of operations. For a descrip}ion language
that ..., describes microoperations as ihdivi;iblg units

this 1is insufficient, since their execution can overlap

without being fully parallel', : a

Given the unsuitability of existing hardware notation,
was designed with the following objectives in mind:
To describe the storage ' structures and functional

capabilities of the microarchitecture in a form which

application programmers could understand with minimal

effort and ~at the same time be able to provide
ipformation to the microprogram generator. .

'2) To ' establish a direct 1link between the functional
description of operations and the ﬁ}croinstructions that
implement those opétations.) : - e

3) -To be - able to create- a machine information file by
processi%g the HAL desc}iption of the microarchitecture.

This file 1is to be used both by the microprogrammer t;
get écquainted with the microarchitecture Pnd by the

microprogram generator to transform a microprogram

specification. into microcode.

3.2.2) THE SYNTAX OF HAL

-

Freeman describes modern computers as having three types

- e e A AN —— St

.of circuits: "storage, data transfer-and manipula;ioﬂ, and
control. Storage‘éircuits are able to hold information over -
time. Data transfer and manipulation are the guts of-a
computer and provide the information procéssing power of a
ncomputer; The essential third ingredient of a modern -
s;ored—program computer, the contro; circuitry, provides the
ability to evoke ‘the operations of other circuits ;n many
different sequences (i.e., diffe(ent p;ogramsL" {FREE7S5].
It is along the lines proposed by Freeman that HAL describes

. the microarchitecture. Since our purpose is tb describe the

physical «circuitry through abstractions, we shall refer to

Freeman's three types of circuits as: the> data . structure,

the functional operations, and the control structure.

’

HAL ‘fs a language used to produce an abstractioh of a
machine by listing its storage items, its functional
operations and 1its control operations. It is éimilar to
:Pascal in the description of the data structure and in the

basic functional statements. HAL was designed with the

i

description of the SEL 32/75 in mind, but it is flexible

. \ . ,
enough to accommodate other machines and it could be. easily

~

extended. In BNF we write:

" <{machine> ::= MACHINE <identifier>;

<{machine description>
- END.

" <machine descfipﬁion? ::= <data structure>

<functional operations>
<control structure>

The data structure includes the description of the data
types used as well as of the storage items available to the
microprogrammer. The abstractions of existing storage items

is done by using certain basic types to build more complex

2’

types. In BNF we haver————.
<data structure> ::= ¢data types> <storage> -

<data types> ::= TYPE <types> !
<empty> .

<types> ::= <typeSdeclarationd>;j !
<{type declz::fion); <types>

<type declaration> :: identifier>= <type>

<type> ::= STACK(<positive constant>] OF <type> !
SEQ (<constant>..<constant>) OF <bit type) !
ARRAY [<index type>] OF <type> | ,
TUPLE <field 1list> END !
<simple type>

<bit type> ::= BIT | ZERO ! ONE

- 48

<index type> ::= <simple type)> !}
’ <simple type>,<index type>

:= <identifiers declaration> ! e

<identifiers declaration>;<field list> A

<field 1list>

<identifiers declaration>,::=-<idenqi£ier list>: <type>

‘

<identifier list> ::= <identifier> ! /
<identifier>,<identifier list>
<simple type> ::= <identifier> !

‘<bit type> ! B
<{constant>..<constant>

The basic types used by HAL are BIT, 2ERO, and ONE.
'

'*\Thbse are defined as:

TYPE BIT= @..1; T . T .
ZERO= @..8;) . , :
ONE= 1..1;

(
-

These basic types accept the usual arithmetic operations

L ¢

stands for

+,-,%,/ as well as the boolean operations OR, ANDlXOR ,NOT. A,

value of l stands for true and a value of
false. Types ZERO and ONE are required because storage
items sometimes have certain fields permanently set to 1 or

@. An item of type ZERO is always false and one of type ONE

is always true.

The type SEQ is used fo describe strings or seQuencgs of
bits. It is similar to the packed array of 1 dimension in
Pascal, but with .the difference that one can operate on
individual bits as well as on the whole.item. Bit labelling

is established through a range of indices denoted by

constants. The range of bit indices need not go from 15w to

o

49

1

B high, it may go from high to 1low if it refYects the

v

manufacturer's convention. The most typical .example of a
sequence structure is a register. Consider for example the

following description of an X register in the CYBER:

TYPE XREG= SEQ (59..0) OF BIT;

in this case we chose 59..0 because it corresponds to CDC's

convention of bit labelling. Whatever the choice, one must

_be consjistent in order to have clarity. Allowing the use of

high-low as well as low-h;}h ranges seems to complicate
implementation, but one must remember that HAL is not an
executable language but a descriptive language from which no

— «IL‘
execdtabLs code will be gene?ated.

The type STACK refers to .éhe usual last-in-first-out
structure with its ;ssociated PUSH and POP operations, In
some‘machines such items are part of the hardware. The
SEL32/75, for example, has a hardwére stack.which it uses to

store return addresses during lsubprogram processing. The

"type STACK 1is not meant . to describe stacks which may be

IpérceiVed at the assembler lévg;;:but which do not exist in

the hardware. The positivé constant associated with the
{ypé STACK indicates the depth of the stack. For example in
the SEL théne: is the JSTACK which can be described as

/ ,

followsé

STORE JSTACK: STACK[4] OF SEQ (0..12) OF BIT;

7

50

°

The type TUPLE is a structure which consists of a number
of components or fields. It is similar . to the Pascal

RECORD, except that it has no variant part. An example

‘would be the éescription of a floating point register type:

TYPE FPREG= TUPLE - e ?
. SIGN: BIT;) £
EXPONENT: SEQ (l..11) OF BIT; e
v COEFFICIENT: SEQ (12..59) OF BIT

If there is a register X of type FPREG then ong can refer to

one of its components, say EXPONENT, by coding X.EXPONENT.

The storage part of the data structure‘ describes the
storage items .available in the microarchitecture. Every
item described in this sectioﬁ must be based on the
hardware,” either the whole item or in case of a TUPLE its

components. This allows for the logical grouping in a TUPLE

of items which exist in the hardware but which are not

bhysically grouped. In BNF the storage débcription is
defined as follows:

{storage> ::= STORE <stora§e items><

Estorage items> ::= .
<identifiers declaration>; ! ‘ X
<identifiers-declaration>; <storage items>

An example of storage declaration could be;
TYPE REG: SEQ (31..0) OF BIT; o
' STORE Rﬁ,Ri,RZ,R3: REG; ‘
STATﬁS: TUPLE
ALUPOS ,ALUZERO,OVFLOW: BIT;

PROGGTR: SEQ (l12..8) OF BIT;
KEY: SEQ (2..8) OF BIT

R

)

51

END;

The item STATUS may not necessarily exist as a whole in the
hardware, but one may group several separate hardware items

to establish a logical -grouping.

The functional qperations refer to the capabilities of

1

the machine in data transfer and manipulation. The
objectives of this section are: .
1) To establish the set of operations which the

microprogrammer may invoke in the specification of a

microprogram. .

2) To | establish the possible con;equenceé of each
operation.

3) To establish a Jirect link between the abstract °
Adescription of the operations and the actual microword

that carries out those operations.

The functional capabilities of the machine are described

as a list of operations. In BNF we have:

\ . .
<functional operations> ::= OPERATION <operation list>
Coperation list> ::= <operation> !

<operation>; <operation list>

<operaéion> L
EXP: <explicit operations> <underlying operations>

<éxplicit'operations> ::= <statement> !
<compound statement> -

<compound statement> ::= COCYCLE <statement list> END
i

¢statement list> ::= :

{statement> !

{statement><{sequence operator> <{statement list>

oy

<sequence operator> ::= , | ; \

Explicit operatioms are those that can be invoked directly
by the microprogrammer. The opéfations are decribed using
statements which correspond t¢ abstract descriptions of the

physical actions occurring in the(hardware. The compound

-

statement 1is wused to describe the occurrence of multiple

. "

operations within a single| major <clock cycle. It 1is
\

.understood that each microinstruction takes one major clock
cycle to !be processed. Th originator of the . COCYCLE
construct is S. Dasgupta (see\DA;GBﬂ). It is used heré
because ft best describes the pgrallelism of the
microengine. Sequence operators are‘provided to indicate
serial (;) or parallel- (,) rea}ization of operations. 1In é
polyphasic machine, actions ta*en during different subc?cles
are separated by semicolons. Actions occurring during the

t

same cycle or subcycle are sepafated by commas.

a

Underlying operations descrfpe the operations that occur
as a consequencg;of the explicit operations invoked. They

also describe the micgoinstruﬁtion' used to realize the

-

explicit operations. 1In BNF we hévg:

<underlying operations> ::=
IMP: <implicit operations> MIW: <microword> !
MIW: <microword>

<implicit operations> :
<implicit operationd> !
<implicit operation>; <implicit operations> . -

<implicit operation> ::= <statement> |
<compound |statement>

r

VO T RIS R e TS N

.

. .
2 ’ . 53 .

!
° " B N [

» . .
. @

Implicit operations wusually describe data transfers or

storage settings which result from the execution of the
explicit operations, but which can not be dinectly invoked

by the microprogrammer. The setting of condition codes

after an arithmetic operation 'is a typical example of

implicit operations. Implicit operations may be specified

as a list of sequential operations because some explicit
operations may take more than one major clock cycle to

complete. For example in the SEL32/75 writfng to a general

- register is initiated 1in one cycle and completed in the

‘next.

o4

&
>

——

Explicii operations are linked to a microinstruction by
the description of a microword in the form of a string of

bits. Each bit is described as having a fixed %Flue (6,1),
' o -
a variable value (letter), or as not being used (~). 1In BNF

‘

we have:

3

<microword> ::= '<bit string>'

<bit string> ::= <bit description> !
' <bit description><bit string> /

T

<bit description> ::=¢ 1’1 1 - | <lettér>

The microword descrfiption must be such that if processed by

the microenqine the storage items involved would be affected

‘

in the way deécribed by the explicit - and implicit

'

operations.

»

Statements in HAL are Pascal-like except for the

introduction of' concatenation operators and some new

. ‘ s ¥, -
< \ . .

keywords.- :In BNF we have: , ‘ T
<statement> ::= <simple statement> ! : . .
. <conditiénal statement>) - . B

»

’

-“<simple statement> ::=

START <variable céncatenation>:= <expression> !) |
. <variable concaternation>:= <expres&ion> ! o , :
. , NULL:= <expression> ! , .] 4)3)
W <{predefined procedure call> i
A C ’<$onditiona1"statement> ::= ON <expression> DQ (<actions>) §
, _ ‘ i -
- ' <actiont> ::= <simple statement> ! / .) f
“ o) . - +<simple statement>,<actions> . - ;
N .) o R »
5 The keyword START is used to fndicate that there is not a
. . ‘ : \ . ;
T A . definite completion time associated with this operation, - ,
.) . -) ~ ‘!
. i.e., the microprogfammer _may ‘invoke the operation but he 1
A ‘. ’ ‘s')_ N . . by ; :
) - can nét expect it to complete within a fixed predetermined ‘i
) . :

time. Operétiohs which are completely jnternal to the

n

MTicroengine always complete .in fixed time, however in cases ‘ |

. i k §
when the micreengine has to' communicdate with external ' i

‘o‘ . devices,. the time elabsed{ unzil completion may vary

depending on how busy the external device is. An example of
this situation occurs during main memory access Rn which the ¢

ﬁg'elapéed* time varies according to the traffic in the memory

-\

H
5
. . [T
. - ‘/?ﬂs .. . 4 d
* 1 s ' .o)
+ N 7 .

" " The keyword NULL indicates that the result of the

[
-

. ' - expressjon~ is not to be transmibted\anywhere. Usually the -

. . 4 =
* spurpose of such oper#kions is to test the value of the .
H .
. ’ .
i ?) . expression, the result of the test beimg determined by the
' \ - implicit operations. V‘_ S
| a Y 3 s ’ : . ' - [p , ‘“
o 1 . . - . "\
T . //‘°r
. ' . \ | .
’f! ——

hd S
[.~
-\
[
t
b -
. A
[
.
.
b
s
-
¥ ~
»
*

-

'

‘,i,“ -
s

Rredefined procedures‘wili be:useq to describe certain
operations whigh . are specific to the microengine and which

are ndt easily expressed in high-level notation., These will

Ll

be described in detail later.

o

The semantics of conditional statements are that if the

&

%
. expression 1is evaluated as true, then the operations

N 4 o -
specified as actions will be carried OGE? Conditional

statements .allow conditional interaction among resources .in

a polyphasic machine.: ,

)
N +

Varlable concatenatlon descrlﬁes the grouping of storage

items for the putpose of rece1v1ng or prov1d1ng information.

i
ﬂ%e operatlons are 51m11ar to fhose of strlng concatenatidn
[N . . ‘

in.string-orienxea languages. In BNF we have: .

<variable concatenation> ::=
{variable reference> ! _
<variable .reference>&<{variable concatenation>

<variable reference> ::= <variable> -} ‘
: <variable) (<bit index>) ' .

<bit index> ::= <expre551on> !
<expre551on>u.<expre551on> . .
) ' - 7
<variable> ::= <identifier><specifiers> ‘
<specifiers>‘::= <Specifier><5pecifiers> !
) « <empty> '
»

<specifier> ::= ,<identifierX> ! o
‘ [<expression,list>] . Vo \

rd o
Kexpression list> ::= <expression¥ ! -
{expression>, <express1on list> Ty

- . \

) .
>
& . R L .

“The bit index allows partial access ™o a storage item, i.e}f

to some of i*s bits only, while the specifiers allow access,

56/

~

- to specific components of a structured item, both ARRAY and

A &
TUPLE types. (

~

¥

. . .
Expressions in HAL are similar to Pascal except for the .

. -
_inclusion . of some new operators, such as XOR which are

‘commonly availéble at the microprogramming level. In BNF we -

.
|

have:

<expression> ::=
<simple expre951on> ! .
"<simple expre551on> <re1at10na1 op> <51mp1e express1on>

<relational op sr= 4 1 = 1 < 1> 1 K=" >= . (

Ksimple expression> T
<51gn><term> !
<sign><term> <add op> <51mp1er expresslon>

<simpler expression> ::=

v i

<{term> !
{term> <add- op> <51mpler expre551on> - i
. <sign> ft= + ! - . o . : .
) o RN . N . "
<add op> ::= OR ! XOR | + I - , . Vo, : . ,

‘<term> ::= <factor> ! : ’ - .

<factor> <mult1ply op> <termd

<multiply @p> '::= AND | % 1 /) - PR
. . o . »
<factor> ::= <concatenation> !
<predefined function reference> 1! .
(<expression>) !) L}
NOT <factor>.
Predefined functions serve the same purpose as predefined
procedures and will be discussed laﬁer. Concatenations are ?
[N , ‘ . .
éimi}ar to wvariable conc?tenations except that they allow
the introduction of, constants or 1literals in the ’
concatenated item. In BNF we' have: (
. - . Al ’

~
<concatenation> ::= <element> ! '
[A : ' R ‘

-~

57

<e1gment>&<concaténation>

<element> ::= <positive constant> !
<variable reference> !
<literal indicator>

<literal indicator> ::= $<letter> v .

Literal indicatgrs are used to indicate the position within

a concatenation of a modifiable literal. These. allow the

introduction of constants by the microprogrammer in an

i

.operation as: -

operation.. As an example, let us consider the description
of register operations in. a machine. Since registers
- 0 E,

usually have the same characteristics, it is not unusual to

treat them as an array. Consider a machine with 8 general

registers (@-7). and a shift register. They could be -

described as follows:

STORE GREG: ‘ARRAY [@..7] OF SEQ (31..8) OF BIT;
SREG: SEQ (31..8) OF BIT;

? .
A typical operétion in such a machine would be the transfer

of @ata from a general register to the shift register.

Using a 1literal indicator,- we could describe a genefﬁi\

A bod

EXP: SREG:= GREG[S$R]
IMP: “.....c00.n.e -
MIw: 'IOQOIQI‘...RRR..ll.ll....\';

*The letter R would occupy the field within' ‘the microword

which determines the bounds of tHie value whicA can be used.

Ay

When the microprogrammer codes a microprogram he would then

£y

specify the the particular register by coding:

SREG:= GREG[$R6]

L]

58

The microco generator updates the microword with the value

required, 6 in this case.
- '

’ 4

v

§5“-The control structuqe section is used to describe the -

timing of tests and the control operatiqns which can be
: .
performed, in the machine. In BNF we have:

<cont;;ﬁmstrudture> 1=
-~ <tests description> <control operations>

<tests description> TEST <test list>

}
<test list> ::= <test)>; ! ‘
{test)>; <test list>

Ltest> ::= <expression> <timing operator> <time>
<timing operator> ::= AT ! AFTER

<time> ::= <sign> <phase>

<phase> ::= <positive integer> !
- <{positive integer>.<phased:

The tests description establishes the testable conditions in
the machine as described by an expression, and the timing
constraints on the testing of ghose conditions. The keyword

AT indicates that the condition |is available for testing

only during the given cy&le or subcycle, and not\before or

after. The keyword AFTER indicates that the condition is
available for tésting, and remains so, after the given cycle'

has ekpiredf These timing constraints usually originate {in

the scheme used to-sequence microinstructions.,

An example would help to illustrate the description of

testable conditions. It is understood that conditions are

‘set duriné,the curréhﬁ clogk eycle, i.e., cycle 0. Cdnsider

* ~
+

N
\

Al

et

59 . B
two étorage items ALUZ and COUNTZ. The first éne is set to
1 if the result of an ALQ oéeration is zero, otherwise it is
set to zero. COUNTZ/is set to 1 if the value of a counter
becomes zero, otherwise it is set to éero.' Assume there is
no pipelining of microinstructions, 1i.e., there 1is no

overlapping " of the cycle times of contiguous

constraints, a’

.

microinstructions. Under these timing
descript:ionG of these tests is as follows:

TEST ALUZ = 1 AT +1; . :
‘COUNTZ = 1 AFTER 0;

w

- '

The use of the keyword AT with ALUZ indicates that the'ALU}s’
bits can only be tested in the cycle iﬁmediately‘ following
that in which they were set. 1In both of the above cases one
cycle {cycle 0) has to elapse before the condition can be
tested, but the first condition can be tested only during
the second cycle, while the second condltlonfgan be tested

anytlme beginring with the second cycle,

5

The control operations section describes the-ability of
the machine to perform condition dependent non-sequential

processing. The purpose of control operatidns is to be able

to choose an address other than the next sequential address -

from which to fetch the next microinstruction. The
operations are described using very primitive control
constructs which exﬁ;é§s the different types of program flow \

modification. In BNF we have: : .

" <control operations> ::= CONTROL <control 1list>

'

60

<control list> ::= <¢control operation>; ! .
<control operation>; <control Tilst>

<control operation> ::=

EXP: <control description> <underly1ng operatlons>

<control descr1pt10n> HES -
<condition> <control operator> <concatenation>

' s
<condition> ::= ON <expression? !
<empty>

<control operator> ::= GOTO ! GOSUB ! RETURN-
]

The éontrol} operatﬁ;s deter&ine‘the kind of branching that
. may occur. They all have the ability to interrupt
5equential processing but e&ch’has different implications,
fhe operator GOTO achieves a simple branch at the same
process level. Tﬁe operator GOSUB is used to branch down to
3 lower process level, 1i-e, a subprogram, implying that
provisions are made t0~eventua11ytreturn éo the same level.
These provisions usually include éaving the state of the
machine for future restoration. The RETURN operator is used
to branch wup to a h}gher process .level, implying a
restoration of the o;iginal staté 'of €he‘machine. The
implications of any pf Ehese‘opefators will be described in

the underlying operations.

>

\

The concatenat1on in the control operation prov1des the

_ source of the branch address, This may be indicated by a

constant, a storage item, & literal indicator, or a
combination of them. The specification of a storage item

indicate that its contents provide the branch address.

\
~ -

61

The predefined procedures and functions mewstioned before

.

are used to describe operations which are very specific to

the microarchitecture and can not be easily described«in!

terms of simpler operations. Different machines may include

such operations and the notation (HAL), can be extended by

- considering them as primitive operations. Typical of these

operations are shift operations on registers, push and pop
operations on stacks, and a 'select' operation to perform
partial transfers of the result of an expression. These are

described in detafl below.
”~

Shift operations on registers may be described as a

series of steps moving the bits ofa sequence in a cezzsﬁn
- S /

direction a certain number of time’s. Such a description,

however, would make the shift operation less comprehensible,

It is therefore better to consider the shift operation as a.

primitive and to define clearly its semantics.

Shift operations may appear in either procedure or
function form. It is understood that functions have a value
associated with them and are used within expressions, while
procedures do not and may be used independently. [WIRT73].
In both forms the information required is the same: the
direction of the shift (right, left), the amount of shift,

the fill bits, and the item to be shifted.

In procedu;e form, the shift operation will be

designated‘by SHIFTC to indicate a shift of the content of

/

62 .) ' -
the storage item involved. 1In thi:\;grm the storage item is
affected permanently and'may acquire a different value. In
function form the the shift operatioszill be designated by
SHIFTV to indicate a shift of the value of the storage item

involved. In this form the contents of the shifted item

itself is not affected. ,

PUSH and POP are the usual stack operations. PqSH
effects a transfér from a étofage item onto a stack, ana‘POP
transfers a data &tem from a stack inFo a storage item. The
SELECT operation is used to choose a string‘Pf bits from the
result of an expression. Foxr example the ALU of a machine
Qlwayé handles the full word width, but sometimes one can
load through the ALU an item whose width 1is 1less than a
word . In. this <case we must use the SELECT function to

describe which bits of the ALU's output are to be

transferred.

The syntax for these predefined procedures and functions

is as follows: , \\\
<predefined-brocedure call> ::=
SHIFTC (<shift parameters>) !

PUSH (<storage id>,<stack id>) !

POP (<stack id>,<storage id>)

<{stack id>» ::= <variable concatenation>
<storage id> ::= <variable concatenation>

<predefined function' reference> ::=
SHIFTV(<shift parameters>) !

SELECT(<bit index>,<expression>)

<shift parameters> ::=) ‘
<direction>,<quantity>,<fill bits>,<shift item>

63

{direction> ::= RIGHT ! LEFT
<quantity> ::= <{concatenation>
<fill bits> ::= <concatenation)

¢shift item> ::= <variable concatenation>

The 'syntax of the shift operations is flexible enough to
describe any kind of shifts, as shown by the following
examples:

EXP: SHIFTC (RIGHT,IR(9..12),9,GREG[SR]

IMP: cevececccscsacsasoscncanses . .

MIW: '.........RRR.....itaaat '

[N

The above example describes the shifting of a general
register to the right by a quantity indicated by $its 9-12
of the instruction register, using @ as the filllbit. This
is a 1logical shift since the fill bit is zero. If the fill
bit were tﬂe high order bit then it would be an arithmetic
shift, while if it were the low order bit then it would be a
circular shift.

EXP: SHIFTC(RIGHT,1,MDR(0) ,MAR&MDR)

IMP: ceveveaccesoccesccscnnaaans

MIW: ¥ iiieeeeecnoocsanncsssoscancnsnnasns'y ™

The above example describes a double-right-circular shift of
) .
the memory address register concatenated with the memory

data register. The shift quantity is 1 and the fill bit is

the low order bit of the MDR.

The definition of the syntax of HAL would not be

o

complete without the definition of its most basic elements,

7

64

such as identifiers and constants. In BNF we have:

<identifier)> ::= <letter><characters>

= <character><characters>
<empty>

<characters> :

-<character> ::= (letter> ! <digit>
{constant> ::= <sign><{positive constant>

<positive constant> ::= <decimal> !
X'<hex number>' !
0'<octal number>' !

B'<binary number>’. .
}<decima1> si= <digit> ! .
\ <digit><decimal>
<digit> ::=
p1r11r2!r3:1r4rv5161:t71819 v

The letters referred to above are the letters of the English
alphabet. Numeric constants are considered a convenient

representation of binary numbers. The complete grammar of

HAL is listed in appendix B. .

1

The syntax of HAL is flexible enough as to allow a great
variety of storage structures and operations. However this
does not mean that they actually occur in a given machine.
In fact most structures and .éperations‘ found in real
machines are rather simple compared with the kind that HAL
could describe. Thé objective of HAL is to facilitate a
meaningful description of structures and operations as ' they
are observed to occur in a given machine. A deBcription is
meaningful if (1) it is able to communicate ‘architectural
infqrmation to the prospective microprégrammer, and (2) at

the same time <c¢an provide information to the microcode

N

\

65

generation process.

HAL 1is meant to. be used by a 'qualified person to
diicribe a real machine. Familiarity with the
microarchitecture, the operations, the sequencing mechanism,

and the microword format are absolute 'requirements to

produce a.heaningful machine description.’ Someone from the

manufacturing environment 'is 1ideally suited for _this

purpose, although at a given installation someone may be

"designated to get acquainteé with the microarchitecture and

then . produce its HAL description. Prospective
microprdgrammers would then refer to this description in

order to microprogram.

-~

CHAPTER 4: SAMPLE MACHINE DESCRIPTIONS

In this chapter I shall illustrate the application of
- E -

HAL by describing various items in twe sample
microarchitectures. Given the flexibility of.HAL, there ﬁay
exist a question of style, that is two different persons may
produce different abstractions of the same hardware item.
In order to minimize the gffects of style we must stay as
close as ;ossible to the 1idea behind the design of a
particula; hardware item. Usually this information 1is

provided by the physical structure and the uses of the ‘item.

The sample microarchitetiures to be déscribed~ are the
SéL32/75 and ﬁhe AM2900. The emphasis will be on the
SEL32/75 since ‘it will be useé"for practical experi;nces.
The AM2900 is discussed brigfly due to its importaﬁce in

H

architecture research.
4.1) A DESCRIPTION OF THE SEL32/75

The data structure of the SEL 32/75 ié shown in figure
4.1. In the following pages I 'shall describe the most
relevant items and produce aBstractions for each. The
information, d; each item is brovided by the manufacturer in

the Writable Control Storage (WCS) User's Manual.

The ALU is a two—inpdt, 32-bit Arithmetic and Logical
Function unit. It can generate 15 Arithmetic and Logical

Functions for two inputs. These functions are shown in the

A

L%

% | ’ w) - ..

aanionuals eieqg s,73S YL L'y d4nbig

¢

e

B} , . . . - - - i vz _E o3

s owg *

’ . o 47 I
. . ‘ - , L) ssawagv som (it
2
4 ER IR — - }
]

FRILILFe)

TINVE VIS It W

s
Y
~ ",

Y . v - . — ° - i \
s -7 - o tmaid33 e . H H _
. . _ srwes wive 1 1 w2 7)
N .
R) L] ﬁ] e T-auh A\'I—
001 u N80
. >.._.u«u) K SSIN0OV
. /
Ny - T”. W”H”H_ . DA -
- ’ . XNWV n o :
] ' d ’ - ss3vaov
‘ sub eexe [ﬂﬁ.. S10 ouxee
,) - : R LF : o H” |
7]
z . 2 : ININMC . 1I_| L ywn | /]
wivQ $Om R 3 sNees ssavoay 7
WININYIL @Lﬁ ' AH petwadd So j Totsand b
vivo _ OA
viva $om om J .) - — \ .
. {¥74 1 A § | dvms s wiont 2 .
—{ vaisivaw U s
: nigono B] _r\ | * &= \
301A10 s » |
_U 00D3vs 0 0 it 50 X \rZ h
. . ' ' I]Ill_ |J\ UV
. . . . WDeT
) 493104
- SNivis ICOI] Awow3In
AININOIXI -

L] ° " .
¢ g . ta

, o P | < il |
NDIS

- onv t . . .Hz.ll
sOM3Z

’ D(Mﬂ.nwwwﬂmom c._os..gax xowa [] 000 ¢ 1INV IVINIS of —I e
¢ . LT4INS MM .
JVeRaTVRSS. . _ = u [=<2

$180 {1IAIY LNNNIINI

0l

«

¥

-

67

ks e sk a e on e o i ~

»

& o -

'+ field

determine the arithmetic and logical operators wused in

o

of the -microword

format (figq.

P

2.10) and they
S

désc?ﬁbing oberations in the SEL. The inputs to the ALU are

e sglected by two multiplexeré\(A—mux, B~mux). The output, of

the ALU

A

may or may not be specified.

ALU results are used for testing purposes only.

et

N

The Literal generator

o -
Insertion
“*
word.

s

-

in one of the.

The position of the constant and the

-

(LIT)

£ill, bits

REGISTER BANK 0

. '
Figuré 4.2 The Register File/

L]

W

. - —32 Bla o —32 B{TS—:
. ;
N\ r0 GPR O
¢ 1 GPR 1
". ¢ 2 GPR 2
e
3 GPR 3
4 “GPR 4
‘ 5 GPR 5 -
r"
6 GPR 6
7 GPR 7
.
4 8 FIXED\MASK FOR PC)
9] FIXED MASK STATUS/CC
3
: : . 10
v ’ 'g’ v 11)
' het 12 A-LEVEL
s 13 ’ FY
, « 14
. 15 . TRACE REGISTER FIXED-ALL ZEROS
REGNO

REGISTER BANK 1

i

If not spesified the
\

forms an 8-bit 'constant for

\

four bytes composing the 32-bit

for

the three remaining byées is , determined by the microcode. -

[N

e

'

Phe General Register File,is a 32x32-bit multiport file

LY AN
memory. Each register in the file is directly addressable
for read ofr write operations. The file is organized into

N

twénbahks of" 16 registers each bs shown in figure 4.2.
Y ! .
The Memory Address Register (MAR) is a‘p24—bit register
used to hold the address for addressing Main Memory or an
I/0 brocessor. The MAR may also be wused ~as a temporary

register and when coupled with the N-counter (NCTR, 8 bits),

will form a 32(bit temporary regfster.

The Prod?am Countef register (PC) is a 22-bit binary
("‘ "

counter containing an abbreviated address of the most recent

instruction fetch from memory. The PC supplies bits 8-29 to

the MAR for instruction fetches. The PC is incremented

automatically 'by the hardware when ™ an instruction ig

a

fetched.-

The N-counter register (NCTR) is an 8-bit binary up/down
counter used as an iteration counter for repetitive

operations such as shift, multiply, dividai etc.

The Shift Register (S) is a 32-bit temporary register

which can be Used for temporary storage or as a shift
]

réegister. The content of the S register can be shifted in’

f LY

place, or may be made aVailS%l\ in shifted form through the

A-mux. This last operation do®s not affect the content of

¥

the S register itself. " The S register can be. coupled with

th T or DI registers for doubleword shifts. In these cases

O - R

T e

~F

i

the S register always contains the most significant part of

the word. The types of shift available are: shift 1 bit,
right or left, in an arithmetic, logical or circular fashion

and shift 4 bits (nibble) right or left.

The - Temporary register (T) 1is 32-bit multipurpose
register used to hold data to be written to the General
«fegister File or transmitted to main memory or to an I/0

processor. It also functions as a shift register for right

or left nibble (four bits) shifts.

The data input (DI) register is a 32 bit multipurpose
register used to receive operands from Main Memory or data
- A
and status from I/0 pi?cessors. It can also be used for bit
\ \

'

shifts (right, leftﬁ\jrithmetic, logical, circular) and may

be coupled with the S\register for doubleword shifts. s

t Y

The Instruction Decode Register (I@) is a 32-bit

]
-

"registeifwhich contains the current machine /ﬁnstruction
’,J“ -) ’ Y -
‘being #xecuted. The I8 rqgister is able to perform_halfword

" shifts to accommodate halfword machine instructions.

, - \
The 1Instruction Pipeline Register (Il) is 32-bit
register ’which receibes machine instructions from main

memory. The Il register -contains the - next - machine
N o ’ '
instructions to be executed.

3

The Local Store (SCRATCHPAD) is a 256x32-bit RAM storage

’ ’
array for fast access data storage.’ It usually contains,

N °

-

ﬁ

o s s R o o et

- 71

operating system tables and information.

v
*

. Given the above information, a description of the data

w

structure could‘be as follows. We would first establish the

basic types: |

MACHINE SEL3275; .{

TYPE WORD= SEQ(#..31) OF BIT; , " :
MWORD= SEQT14..47) OF BIT; ' -

REGISTER= SEQ(#..31) OF BIT; 3
REGBANK= ARRAY[P..15] OF REGISTER

¢ - : .
the type WORD describes the basic computer word used on most -

. , .
data paths throughout the microengine. The type MWORD

 describes the microword used for the control sto}age. The

*

type REGBANK describes a bank of registers used in the |
~general registers file. Once we have esﬁablished the basfc

types we can then proceed toxéescfibe the storage resources

in the SEL as follows:
STORE S, T, 1@, Il, DI: REGISTER .
LIT, NONR: SEQ (#..7) OF BIT; : o .

PC: SEQ (9..21) OF BIT;
MPC: SEQ

'SCRATCH: ARRAY [@..255] OF WORD;
REGFILE: ARRAY [@..1] OF REGBANK;
MAIN: ARRAY [#..262143] OF WORD;
MAR: SEQ (@..23) OF BIT;

' CSTORAGE: TUPLE ¢
, CROM: ARRAY ([@..4095] OF MWORD; ~

‘ WCS: ARRAY [4096..61433 OF MWORD
o END' ' .

JSTACK: STACK [4] OF SEQ (6..12) OF BIT;

The ~ MPC declared above is the microprogram counter used for

AY

’,
'

sequencing microinstructions. It is a rather complex

‘hardware item which uses a multiplexer to choose from among

several sources the next address, but it can be tteated as a
13-bit register for all practical purposes. The JSTACK is a
hardware stack used for storing return addresses during
microroroutine calls. Its debth limits the level of hégting
of microroutines. MAIN describes the main memory (Mp)
available 1in the SEL 32/75. CSTORAGE(describes the control
memory used to “hold microprograms. It is fepresented ‘as a
tuple containing two contiguous arrays. The first one is
the Control Read Only Memory cgntaining\ microcode provided
by the manufacturer, which is availgblq for read and execute
operations oniy; The second array is the Writable Control

Storage wused to hold user microprograms. It is available

for. read, write and execute operations.

Besides the above structured storage items .the SEL
offers a variety of ‘ﬁcalar storage items used mos{ly for
Eesting purposes. They are flip-flops which can be set

A

directly or indirectly by the microprogrammer -through

.appropriate microinstructions. I shall describe below some

of the most relevanté

ALUZ, NALUZ, ALUNEG, ALU47Z: BIT;

ALUSIGN: BIT;

BIBUSY: BIT; . : ' ‘
HIREG: BIT; ’ : o]

ALUZf NALUZ,- and ALUNEG are set to 1'if the result of an ALU

operation’'was zero, non-zero and .negative respectively.

| -

\

%

ALU47Z is set to 1 if bits 4 and 7 of the result of an ALU
operation were zero. ALUSIGN is used to save the value of -
the sign bit (bit @) of thé result during an ALU operation.
ALUSIGN can be set directly by the Am;croprogrammér in
cohtra;f to the other ALU bits which are set agtomatically

by the hardware during ALU operations. BIBUSY is used to

"indicate outstanding transactionls in the I/é,bus. It is set

to 1 automatically by the hardware when a bus transaction is

initiated, such as a memory read, and set 'to @ by the bus

) .

-interface upon completion“of the transaction. HIREG is used

to select one of the two regi§ter banks avatlable in the
general register‘filé.l A value of @ selects the lower bank
aﬁd a value of 1:selects the upper bank. HIREG can be set
by the microprograhmer at will eithér permanently or for the

A '

duration of 1 major clock cycle. ;

In the\above declarations, we established the structure

of several storage.items 1in+ the SEL, but there was no

indication ‘as to the kinds of operations which can be
!

‘performed on those items. I shall now proceed to describe

various operations involving the 1items described above.

Some items are involved in functional operations while
\ .) \

others are involved in control operations. The functional

operations follow first: E

OPERATION . :) -

EXP: .COCYCLE o ‘
DI:= REGFILE [HIREG] [$R],
ALUSIGN: = REGFILE [HIREG] {$R] (@)

“

74 .

", END
" 'IMP: COCYCLE R
ON REGFILE(HIRBG][SR] = @ DO (ALUZ:=1,NALUZ:=0,ALUNEG:=8),
- ON REGFILE [HIREG] [$R] < @ DO (ALUZ:=@,NALUZ:=1,ALUNEG:=1),
>

OMJREGFILE (HIREG] {$R] > @ DO (ALUZ:=@,NALUZ:=1,ALUNEG:=0)
END ’
MIW; \'mmmmmmmem o lﬂﬁﬂﬂﬂﬂﬂllﬂﬂﬂﬁlﬂﬂlG————RRRR ———————— '

The above operation describes a tgansfer of a register in

“the bank indicated by HIREG to. the DI register,
simultaneously saving the.sign bit. The ALU bits are set as
‘indicated by’ the implicit operations. The microword

-described if processed by the microengine will achieve " the

desired Tesults.

EXP: NULL:= S. , -
IMP: COCYCLE ') S
ON S = ¢ DO (ALUZ:=1,NALUZ:=0,ALUNEG:=0),
ON S < @ DO (ALUZ:=@,NALUZ:=1,ALUNEG:=1),
ON S > ¢ .DO (ALUZ:=@,NALUZ:=1,ALUNEG:=0)
END N
MIW: '"=tmmmmeoeem POF-—-1110P0@FF—————— e e ':

The above operation is used to set a test of the contents of

register S. The NULL operands indicate that there is not

transfer of data. It 1is assumed that subsequent control
b T

operations w111 test the ALU bits.

| EXP: COCYCLE o -

LIT:= $L, ' : .
NULL:= X' ﬂﬂﬂﬂﬂﬂ &LIT AND DI |,
END - , o
IMP: COCYCLE » .

ON X'@900P0'sLIT AND DI = 2 DO, {ALUZ:=], NALUZ.—E ALUNEG:=8) ,
ON X'@@@@@P'sLIT AND DI < @ DO (ALUZ : =0 ,NALUZ : =1 ,ALUNEG:=1),
ON X'#90000'&LIT AND DI > @ DO (ALUZ:=8,NALUZ:= l,ALUNEGé=Z)
END -
MiW: e —---=01101111016090~--88010-~--LLLLLLLL---=";

The above operation is used to test a binary string against

‘the contents” of" registgr DI.- The use of the literal
. . " h : !

Mt e L P - C e

75

generator (LIT) provides for a wide range of strings.

EXP: COCYCLE

) LIT:=" §L,
“NCTR:= SELECT(9..7,LIT&X'080000"')
END
IMP: GOCYCLE
ON LIT&X'00@000' = @ DO (ALUZ:=1,NALUZ%=0,ALUNEG:=0),
* ON LIT&X'00600090' < @ DO (ALUZ:=0,NALUZ:*1,ALUNEG:=1),
" ON LIT&X'0@@006' > 8 DO (ALUZ:=@,NALUZ:=1,ALUNEG:=0)
END . \
MIW: '-———-->—--080---11101100---000610----LLLLLLLL——--";

The above operation sets the counter to a binary walue using
bits #-7 of the word defined by "LIT&X'@@0006'". The SELECT
defines the bits gated fromfthe output of the ALU (28-7),

while the expression defines a 32-bit word consisting

Of one byte generated by the literal generator (LIT),

— N

and 3 bytes defined as @'s.

EXP: NCTR:= NCTR - 1 - A
MIW: '8@8@---@ll-—--—---—————mm——— e '

EXP: T:= DI .
IMP: COCYCLE

ON DI = ¢ DO.(ALUZ:=1,NALUZ:=0f,ALUNEG:=0), ~
@ DO (ALUZ:=P,NALUZ:=1,ALUNEG:=1), £

ON DI < i
ON:‘DI > @ DO (ALUZ:=98,NALUZ:=1,ALUNEG:=0) ’
END - ' . '
MIW: '-————mmm—m e 61100001111 -———-=-=——-=—=—————————- '

EXP: T:= REGFILE[HIREG][S$R] -1 N
IMP: COCYCLE .
ON REGFILE[HIREG]([$R] - 1 = @ DO (ALUZ:=1,NALUZ:=@,ALUNEG:=0),
ON REGFILE[HIREG][SR] - 1 < # DO (ALUZ:=@,NALUZ:=1,ALUNEG:=1), -
ON REGFILE[HIREG][$R] - 1 > @ DO (ALUZ:=9,NALUZ:=1,ALUNEG:=0) '
END’ .
MIW: '0000-—-——- 100~---0100111100@-—-————=- RRRR-—=— -t

EXP: COCYCLE

LIT:= $L, ’ \
T:= X'FFFFFF'&LIT + T
END :

IMP: COCYCLE]
ON X'FFFFFF'&LIT + T =
ON X'FFFFFF'&LIT + T <

H]

@ DO (ALUZ:=1,NALUZ:=@,ADUNEG:=0),
@ DO (ALUZ:=0,NALUZ:=1,ALUNEG:=1),

1

-

76

ON X'FFFFFF'&LIT + T > @ DO (ALUZ:=8,NALUZ:=1,ALUNEG:=0)

END
\ l MIW: '=—m——mmmm 11109008p111111-~=—-~====~-LLLLLLLL-==-"';

-

The above four operations describe transfers involving the T

register. The intent behind the last one is to substract a
right-justified 8-bit quantity from the T register by wusing
2's complement‘represantation, This, for example, the only
way to decrement the T reqgister, since the microengine does
not provide a direct facility to do this. For example if we
“let LIT:= X'FF' we wouf&f’substracf 1 since the 2's
complement of 1 is X'FFFFFFFF' in a 32-bit word. This is
the kind of operét}on wﬁich sﬂows that fami;iarity with the

microarchitecture is an absolute requirement if one is to do
meaningful microprogramming.

EXP: S:= @ .
MIW: "GPP B8P ————m——mm e e e e

EXP: S:= S + T

IMP: COCYCLE
@ DO (ALUZ:=1,NALUZ:=0,ALUNEG:=8},

ON S + T =
ON S + T < @ DO (ALUZ:=0,NALUZ:=1,ALUNEG:=1),
ON S + T > 8 DO (ALUZ:=8,NALUZ:=1,ALUNEG:=0)
. END .
MIW: '=——meem 0800000011000] ~——~——~——mmm— e '
EXP: S:= S~ T '
. IMP: COCYCLE
~ ON S - T =.8 DO (ALUZ:=1,NALUZ:=P,ALUNEG:=08),
v ON S - T <0 DO (ALUZ:=8,NALUZ:=1,ALUNEG:=1),
) ON S -T > @ DO (ALUZ:=8,NALUZ:=1,ALUNEG:=0)
END ; ’
MIW: '~m——mm———— PA00PB1PLARAl ~———m e ';

The above operations describe the setting of register S
‘through various expressions. Notice that in S:= @ there is
no ALU involvement since this 1is achieved by a hardware

clear operation.

o b ik

IRALons it b v

S o b s s e

77 = o

EXP: SHIFTC (RIGHT,1,DI(31),S&DI)

MIW: '@80f--———--——"—~———m————— geagl-——---—-——- 106 ——--="'; -
The above operation causes a doublewo right-circular shift
on registers S and DI concatenated. ¢

EXP: REGFILE [HIREG] [$R]:= DI
IMP: COCYCLE

T:= DI,

ON DI = ¢ DO (ALUZ:=1,NALUZ:=0,ALUNEG:=0),
ON DI < ¢ DO (ALUZ:=8,NALUZ:=1,ALUNEG:=1),
>

ON DI g DO (ALUZ:=@,NALUZ:=1,ALUNEG:=0)
END;
REGFILE [HIREG] [SR]:= T .
MIW: ‘e 01100001008 ——————————- RRRR-—=~=———— ',

EXP: REGFILE [HIREG] [$R]:= REGFILE[HIREG]($R] + 1
IMP: COCYCLE
T:= REGFILE [HIREG][S$R]) + 1,

~——— ——-— ON_REGFILE [HIREG] [$SR] + 1 = @ DO (ALUZ:=1,NALUZ:=0,ALUNEG:=0),
ON REGFILE {HIREG][SR] + 1 < @ DO (ALUZ:=0,NALUZ:=1,ALUNEG =1y, —
ON.REGFILE [HIREG] [$SR] + 1 > @ DO (ALUZ:=g,NALUZ:=1,ALUNEG:=0)
END;
REGFILE [HIREG]) [SR]:= T
MIW: 'emmmem— 100---011019000-—-———==————~=~ RRRR-=~=—==- ‘s

EXP: REGFILE [HIREG][$R]:= S
IMP: COCYCLE
. T:= S5,
ON S = § DO (ALUZ:=1,NALUZ:=0,ALUNEG:=9),
ON S < ¢ DO (ALUZ:=@,NALUZ:=1,ALUNEG:=1),
ON S > 8 DO (ALUZ:=@,NALUZ:=1,ALUNEG:=0) '
END; ‘
' REGFILE [HIREG] ($R]:= T
MIW: '——emeoe—m— 000---11101000-~————-—————- RRRR~=w==m - 's

The operations above write to a register in the file, notice
that they require two major clock cycles to complete. 1In
the first one data is transferred to register T and the ALU

bits are set, in the second cycle data is finally

transferred from register T to the register gp the file,

The timing constraints of testable conditions in.the SEL

‘are described as follows, using the syntax introduced in

78 -

chapter three:

TEST ALUSIGN AFTER +1;
ALUZ AT +2;
NALUZ AT +2
ALUNEG AT +2
NCTR = @ AFTER +1
BIBUSY AFTER +1

-

. The above description dete}mines that ALUZ, ALUNEG, NALUZ
can be tested for thé value set in the previous second
microinstruction ' and only in that particular
microinstruction, while the others can be testea for a value
set at least in the previous second microinstruction. These
tim;ng constraints .originate in the fact that the SEL uses
pipelining in the processing of microinstructions, i.e., the

clock cycles of contigquous microinstructions overlap.

Some control operations in the SEL are described below.
Many of them are conceptually the same except for

differences in the range of addresses which they can reach:

\

CONTROL

EXP: GOTO $A
IMP: COCYCLE

MPC:= MPC +'1,

‘MPC(9..12):= $A - ~

END ' . o
MIW: '@PB@1BBE———————m o mm o e e AAAA';

EXP: GOTO S$A ’ .
IMP: COCYCLE

MPC:= MPC + 1, .
END , -
MIW: '000@1@01-———m—m—m e e AAAAAAAA';

EXP: GOTO $A

IMP: COCYCLE
MPC:= MPC + 1,
MPC(l..12):= $A

79

END ~
MIW: '"BOBPL1@———mmmm e e e e Moo AAAAAAAAAAAA';

EXP: GOTO $A

IMP: COCYCLE
MPC:= MPC + 1,
MPC:= SA

END
MIW: '000P111—mom—mmm e ———=- ARAAAAAAAARAA ' ;

Notice that the above instructions are conceptually the
same, i.e., an ‘unconditional branch, but they have different
addressing ranges. Addresses are formed by the microcode
generator by incrementing the microprogram counter by 1 and
sourcing the 1low order bits from the micqoword. The four
operations above address respectively within a 16~location
absolute range, a 256-location absolute range, a

4996-location absolute range, and a 8192-location absolute

range.

"There are certain things about the SEL which should not
be included in the HAL description. These, relate ‘to the
conventions used in microprogramming>and to arbitrary values
permanently contained in certain storage items. An example
of the first 1is the status of the microengine tipon entry
into a user microprogram. Aﬁong other things the
conventions indicate that the HIREG bit is set to @
indicating access to the lower bank of the register file.‘
All items can\be manipulated at will, but some, such as t;e

program counter (PC) must be restored upon exit from the

user microprogram.

89 ‘ N

Another example of conventions is the 1location of
program status words. These come ‘in two modes: program
status -word (PS5W) mode and program status doubléword (PSDW)
mode. For these two consecutive words in the scratch. file
(SCRATCH) have been reserved. The particuiar mode being
used can be determined by inspecting the first word. u The

formats of the two modes can be des¢ribed using HAL notation

’

as follows:

TYPE PSW= TUPLE -

PRIV: BIT;
CCODES: SEQ (l..4) OF BIT;
EA,BIT6:- BIT;
BIT7T012: SEQ (7..12) OF ZERO;
PC: SEQ (13..29) OF BIT; “
C: BIT; - , o

., BIT31: ZERO

END;

PSDW= TUPLE .. [)
.WORD1: TUPLE
PRIV: BIT;
CCODES: SEQ (1..4) OF BIT;.
EXT,RHW,AEXP, PSD,MAP: BIT; !

PCOUNTER: SEQ (lﬂ..29) OF BIT; e

NR, BLK: BIT -
END; o, . .
WORD2: TUPLE : ‘ \\.
. ° GRAN: SEQ (32..33) OF BIT- 0 N

BPIX: SEQ (34..45) OF BIT;

BIT46: ZERO;

RET: BIT;

EXTINTFLAG: SEQ (48..49) OP BIT; . v

CPIX: Sﬁ? (50..61) OF BIT;
BIT627063: SEQ (62..63) OF ZERO
END .

- ®

END;

\‘ N

Since there is not a separate hardware item to contain

statQs infofmation, one can not include the above items in'

‘the HAL description of the SEL.

3

S

7

v

¥

& An example of arbitrary values contained " in a storage
g”‘ e . # ") .

“item 1is register 15 of the upper bank in ‘the registérafile.

This register is permanently set to zero and even though the

.

:
-

microengine will prjcess a write operation.to it, no actual ’

data transfer occurs.

"

The intent of this chapter has been to the demonétrate
the ability ‘of HAL to describe existing sforage, structures
and eFations in a réal machine. A comblete description of
the {EEL32/7S would require qoﬁsiderably more space, given
that the SEL is a rather complex ﬁaéhine, The partial

=

description used to code sample microprograms in this thesis

¢
;

is shown in appendix C.

<« &}

4.2) THE AM2969 FAMILY) -

~ v -

The AM29¢0 family consists of a series of LSI building

blocks designed for: use in microprogrammed computers and

_controllers. Each device is designed to be expandable and

. t3
* sufficiently flexible to be suitable for emulation of many

o ~

existing machines. v , .

LI

o
s

Figure 4.3 illustrates a typical system architecture.

L

There are two sides’ to the system. At the left is the

control circuitry and on the right is the data manipulation

\

circuitry. At the center of the system is the pipeline,

register which contaifs the micro&nﬁtruction currently being

-

executed. Each microinstruction contains not only bits to

.. .
control the data hardware, but akso bits to- define the

i

. *

-
i
——
9
LY
-
-
-
’
el
S
Y

-location

3

<

W ’ .

in PROM of the next microinstrucefon ®to be

executed. The I field indicgtés to'the sequencer the source

of

sequencer the conditions under which the I

the

next -address.

W

Thef’CC field 1indicates to .+the

X

field applies.

% Figure 4.3 Typical

J

AM2900

.
. - N -4 Py
The BA field provides a branch address if necessary. el
- ~
.) / N # \
ar P ~ .
Ay
» ' P
»
FTAOM DAY A BUS e *
. . [}
- 1 1
fOINSTAW TON
A NrCISTEm
)
¥ é
aov an ’k‘l' m ? !
oreLa ! A
ADDR(4S ;
SDURCES -
o S
s, -
CONTROL Y l LS
11234100 SEOUENCER 't 0G 4
OR Am 1ty "or I”ko“':s" sarus
ALGIsTL A
v es e fres c v o~ 2
1
! [} T
a——
= -
1 FADM DATA VUS
. 4
' .o Ter ' DATa .
. \ LITT T .
@ ce A)
¥ICNGIRQCE AN < m J L
mEmOaY —— N
(] "A .
WADwW,; b cr 4 Ca. H
2% 10 du WOROY 4 PPELINE é', N nea
M
R S—— PSP
, L
. N ¢. 3
. v s-0 +
- -
.V Microinstruction currently being executed 7
N TOOTHEA t00Ata Bt
2 Sequencag control lines select source of sYene . v we \n:_‘-;':;l:-mx
CUNNT f * *
nExXt MIOFoIntruction addreis e o EMABLES ON ;
3 Naxt microinstruction addrest MAN N ORI 0 ! !
4 Next mocroinsiruction
S Stetus bits from current microimsteuction bt B
6 Status bits fromdast microinstruction
.
- Iy v . » k)
» ' ! -

System (from BELLS82) .

The centerpiece of. the data manipula&ion hardware is

AM2991 array. This is constructed using one

4-bit

slice microprocessors.

or moée AM29¢1

/
/
The device as shown in figure

Ve

Y

3 s

4.4 consist of a 16-word by 4-bit RAM, a high gpeed ALU, a
I ¢ »
. shift register, and the associited decoding and multipleexing

cascadaPle . with full

-

'circuifry. The microprocessor |is
, lookahead or with ripple carry, has three—state‘guvputs, and
. 1] . .

provides various sfatus flags from the ALU.

’
v ' I
i e = -
: 1 o .
' " l‘ !‘ :D‘;:‘:' ” .n‘::::t:: ulmn: _—l; ° *
- H m:‘:‘-::u :j v aouin A . ncr..mu |
. J ot D:' m -
. =il [ﬁ———L—— ‘
- & , T
‘ - . * -
I U ™~
‘”’ w-v--—-Lt. ’ ° ' L-——: —
R N v ot tom iy ::‘:-o- / * g
3 - ’ . i . ::o:yuu- . M v
.] L’ J ' K
| o , I g S)
- N o ‘ N [| /
b ‘ Figure 4.4 AM2961 Architecture (from BELLB2)
[J ® To describe an AM2901 array the approach should be the
N description of theMend result &f the.array, and not of the
v ’ A
individual components. For example the array of three:

, #

AM29¢1 microprocessors hown in figure 4.5 yields a data
N L8

‘ [y

rpath 12-bit wide. The RAM

% 1l6=-word b%, 12-bit, and the dqhift Jegister Q can now be

—~—

considered as a 12gbit register. & . | A

1
"
’ . g/’ . ’ b ¥ -
! -

file "can then be treated as:

4

¥

84

The basic tybe would be described as follows:

'"TYPE WORD = SEQ (ll..8) OF BIT;

The éporage items would be described as shown below:

% »
STORE RAMFILE: ARRAY (8..15] OF WORD;

Q: WORD ; - .
L%

The status bits of the ALU can be described as follows:
ALUZ,ALUSIGN,OVRF,COUT: BIT; -

LALUZ is set to 1 if the reéﬁlt of the 'ALU operation is zero.
‘ALUSIGN contains the most significant 'bit of the ALU's

,result. OVRF is set to 1 if an overflow results from the

JALU's operation. COUT represents the carry-out from the

1 ., \
Auf's operation,
l ‘ N
! 4 > S ,
o4y O4y ’ LN
. -
9! 1) U ‘
. - - !
L 3 i %10 —— % ° % %o e 9 % e a (—ap e
. IAM.ID g RAM, lAI, - RAM, IAM, IAM. ILM’ '—-—IA““IIO
- w

CARRY N ——q C, il [<, el Cass [Aniat Crsg pm— 1t

QYR p— -~ OYR Jo OVR pmrirene ¥

. & (Y . L3 o s b——n

51 v -0 F 1 v r<o T 5t v fo H
} Yo.3 —] * Y4y L 1 Ye.u l ::;, R
: —AWA—0 Veo

ouTruT -
CONTAOL
4 Lo

Figure 4.5 Cascaded AM?9al's (from BELL82)

. .. - Some typical operations in the AM2901 ‘ire shown below:

EXP: RAMFILE ($B]:= RAMFILE ($A] + RAMFILE({$B]
IMP: COCYCLE ‘
’ ON RAMFILE [SA] + RAMFILE($B] = @ DO Lz:= 1), '
ALUSIGN:= SELECT(11,RAMFILE [SA] + RAMFILE($B]),
ON RAMFILE [$A] + RAMFILE (§B]) > 4095-DO (OVRF:= 1)
\ END v

*
et s sl et e S e

85 v

MW: '----B010-811-001-0POANARBBBB-~—"';
EXP: Q:= RAMFILE [$A]
IMP: COCYCLE \ :
ON RAMFILE ($A] = # DO (ALUZ:=1},
~ .ALUSIGN:= RAMFILE([SA] (11l)
. END .
MW: "~-———0010-000-100~811AAAA———————— ',

The first of the above two operations describes the addition
!

of 1 word in the RAM file to another. The second operation
*

is a straight transfer of a word in the RAM file to the Q

register.
K . ' . . ‘
The ?m2901 is capable of performing shift operations

througt the control of the .ALU's destination. Shown below
" . <
is a double arithmetic shift:

EXP: COCYCLE

RAMFILE ($B]:= SHIFTV(RIGHT,1,ALUSIGN,RAMFILE([$B]),
SHIFTC (RIGHT, 1, RAMFILE [$B] () ,Q) .
. END : : %
IMP: COQYCLE . '

- ON'RAMFILE([S$B] = # DO (ALUZ:=1), |

ALUSIGN: = RAMFILE[$B] (11) .

END _ /
MW: '————$$1011111611-911~———-BBBB———-";

v

The timing of tests in the AM2901 would be described as
. - '

shown below: *

TEST ALUSIGN AT +1;
ALUZ AT +1;
OVRF AT +1;
COUT AT +1;

The .sequencing hardware of figure 4.3 s usually

(o

constructed with AM2999's or AM2911's sequencers. ngure
« ‘

[

4.6 shows the architecture of an AM2909 sequencer. This

] '/ . :/', | e

4

r ‘v///\ 86
‘ .

component can select an address from four possible sources:

A

. a set of external direct inputs (D); externai data frqm the
R inputs, stored 1in ans internal register;\a 4~-word deep
push/pop stack; a program counter - register,“ usually
containing the last address plus one. Sevéral AM29689's can
be interconnected to produge‘ a larger‘ address - width énd -

allow a-larger address range. o

i

Figure 4.6 AM2909 Architecture (from BELL82)] f”/

&

Some of the control operations of which the AM2960 is .

capable are shown below:

EXP: ON ALUZ GOTO BREG

IMP: COCYCLE ,

' ON ALUZ DO (PIPEREG:= PROM[BREG), MPC:= BREG + 1),
ON NOT ALUZ DO (PIPEREG:= PROM(MPC], MPC:= MPC + 1)
END « : .

MW: '=—=m@BBf——m——m——m—mm——m—m o e '

v

¢

EXP: GOSUB $A
IMP: COCYCLE . »
a PIPEREG: = PROM[$A],

]
i

PUSH (MPC,ASTACK) , o

MPC:= $A + 1 -
END ~ S P r .
MW: "AAAAGLAL —mrmm e e e e
J N . N . | o
the first of the two above operations describes a

—

conditional® branch to the address contained in the branch

register. The second describes an unconditional jahp to a

subroutine. PROM refers to programmable ROM where

microprograms are stored. PIPEREG referes to the pipeline

register where microinstructions are decoded. ASTACK refers.

to hardware stacf available in thekAM2909. ‘ MPC refers to

the microprogram counter. ’

. 4 -

The microword format for the AM2988 systems is shown in

‘figure 4.7. This is the basic format for a 4-bit slice.
The —addrgss field of this format is subject to expansion if
a larger address range is desired. '

L

AN A
L W : . -

88

o

pR e

o~ Swvu L0 | oo Swvy Corvi - pivaly
"} wvuets ®Wefave | Twvue00 SO twve
%9« to Spvus-Cavy | fo-0p Covise vy {7
; - .
Ko Swvue-s | Coe0 Cnvie-o ouz [2 }
cadll +«HNMOCG AL YU s uTDIN NINVIE | B
’ WAQ I UMD IN HONVUE 14]
B C4 uunsDIvNvIS | €1
- . 0 4 UMD ONVWE | L
! V3 J100¢ONY SO0 ONY | 1
1oy ¢ o o ’ e ¢ R i ¢ :.:::hooels...ﬂeh .!
sAN- [] - [[[] se]ls| 0cne mesz |0 6+ 841404CNVS00TIONI]| #
- - [EF R RITY S
svy s v Q v s 9e-tra . BNILAOKENS WOMJ- MMM | §
Svw » v ° s 3] o-co setis | v IIUNCUSNS 0L ovr | ¥
- 99 4 51 30N0OWANS OL oW | ¥
sAN t] [} 3] oy € (S msar avw iONve | €
srwninca | ¢
s-v d ° ° & M b 4 wnsowonvus | 1
.- ' . v ' . DNTLON N €944 WIBIOINHONVIE | &
seu . Y v . s o4 . NOLLINNA 3000
4 [[] A avol
N
f .
0M1NCD
122138 IOWLNOD SS3W0aV NOILINISO
o -* -v- nv 31 sownos [woiwmiisio |27 zo:n-ﬂz»!.n v s
: NOLLINIA3G N
toltalog|talaftafovitv|Bv|EviCi vl [| to[8 [Ounm|]| ® |ixaw] 0] td]a] T |[ous]tun]ive|Cia 1.
el ool el o]ofonfaafes o]w]osfoafasfor]os Jocfoe|aecfjceeive]oc]joejeeioeia]o]i :u»-i.-.:
NOILYOOT
th m, n " N L] tn ;n Wy
. 133138
) t . 0 .] ¢
. . ¢ XIw 8 v

) a , _ . uoniuy2(] PjRl{ AdowiN wesBoidonyA] ° ﬁ.
r 1 - - S201A2(] O] P2URAPY/ .

e W 4w aE.

-

CHAPTER 5: THE PROCESS OF MICROPROGRAMMING

In chapters three and four we were concerned with
describing a mictoprogrammaﬁle computer in terms which an
application programmer could easily understand. At no‘point
was a reference made to a possible practical application.
Since this is the goal of any progfgmminq system, tools must
be provided to aid in the generation of good microcode. The
notation used to specify a microprogram is referred to as a
microprogram specification language and it is the main
subject of this chapter.. ‘

In order to illustrate the process of microprogramming,
I would 1like to draw an analogy between a calculator and a
microprog;ammable computer. Consider a programmer who has a
certain algor;thm to implement. . If he were to use a
calculator, . he would first become acquainted ' with the
calculator, 1its storage stiycture, the operations it can
perform and the buttons that carry these oﬁt. He would then
proceed to select some storage items for his data and to
establish the necessary séquence of operationg to obtain the
desired results. Operations are 1invoked by pressing
buttons. The order and the circumstances under which
opérations are invoked are determined by the programmer

himself as the algorithm proceeds.

There are some similarities between the operation of a

calculator and that of a microprogrammed computer.

Microinstructions are directly executable since they carry

E

out :physical acﬁ}ons without using any intermediate code.

The microengine can therefore be treated \as a hardware

interpreter. Microinstructions are similar to the buttons
~

of‘f qalculator in the sense tﬁat when presented to ‘the

microengine certain actions are performed, just as when a

‘ button is pressed in the calculator. Horizontal

microinstructions are capable of multiple operations but

this is just a difference in implementation. The buttons in

a calculator would correspond more exactly to the extreme

vertical format of a microinstruction in which oniy one
operation _ is performed. The storage structure of a
microprogrammed computer is considerably more complex than
‘tha£ of a calculator but this again is a difference in

imphementation.
©

|

| There are, of course, some major conceptual differences

i

betLeen a calculator and a microprogrammed computer, the

mosL important being the fact that a calculator has no
control circuits that the programmef ‘can use. ‘ In the
calculator control is exercised by the programmer himself
when he decides which button to press next. Another.major
difference is that one can not store a"program .in a
calculator while a microprogfammed computer has a control
storage available to store microinstructions and the

necessary circuitry to sequence them [1].

.)
1 Programmable calculators are: considered hand-held
computers and not calculators in _the strict sense

[pow

91

Microprogramming can then be considered as the process

of operating a microprogrammed computer. A microprogram is

a discrete set of operations acting oﬁ a discrete set of

' storage resources which are executed under specific

circumstances and in a particular order.

A programmer considering the implementation of an
algorithm as a microprogram would proceed in a,‘s’imilar
manner as if he were to use a calculator. He would get
acquainted with the nmicroarchitecture, its storage
structure, and the operat”ions which can be performed. ~He
would then select 50mer Storage | items for his data and

determine the necessary operations to .achieve the desired
results. Besides functional operations, the programmer also
considers control operations to establish the circumstances

"and the order in which the operations are to be carried out.

5.1) THE MICROPROGRAMMING ENVIRONMENT

"

In order to -produce useful microcode, an institution
having a user-microprogrammable computer must establish an
environment that is conducive to good microprogramming
practices. The prospective microprogrammér must be made
aware that he will deal with the computer at a lower, more
detailed level. The potential for greatﬁ accomplishments or

disastrous failures is very great, since at the

because théy~ offer program memory and control
instructions, although in a somewhat primitive form.

-

=\

92 C

microprogramming level all the resources of the computer- are

visible and availab}e 'for use.

In order to provide this environment I have proposed a
Comprehensivé MicroProgramming System (CMPS) which deals
with the various agﬁects of the microprogramming process,
namely:

1) Familiarization with the microarchit;cture.

2) microprogram specification. .

3) microprogram correctness. .

4) microcode generation.

5) Control storége ménagement.

The experimental work of this thesis has been
concentrated in phases 1,2, and 4 of the above list. The

elements of the system are described below.

Familiarization with theﬁmiéroarchitecturg means getting

acquainted with the computer at the microprogramming level,

its resources and capabilities.

Microngram specification is a detailed description of ‘

the objec ves of the microprogram and of the requirgménts
to achieve themj ‘The requirements Gsually include a
description of the storage resources needed and of the
operations to be performed. This phase of the \process

requires. the existence of a notation or language to specify

the microprogram [DAVISBO].

'

&

N, . . ., e e ma o b S Pt B R s, ¢

93 .
Microprogram correctness determination involves
' verification, testing and debugging. Davidson & Shriver

1

describe these as follows [DAVI88]: "by verificatipn we mean
\the attempt to prove the absence of errors from the program
. <

or microprogram. By testing we mean the attempt to discover N
errors in the code or microcode, and the measurement of how

well the specifications of th? problem have been met. By
debugging we mean the 1location and correction of known

errors in the code or microcode".

¢ »
[4

Microcode generation involves the processing of «a

-

microprogram spe?ification in order to produce a sequence of
"executable Ticrowbrds. This process involves the
composition of microoperations into single microinstructions
to fully utilize the concﬁrrency of tﬂe machine and optimize
the microcode. j

///

Control storage manigement refers to the administration
of the memory space used to hoid microprograms. There are
various aspects to this tésk, such as space allocation,
microcode loading and 1location, and 1long tér@ secondary)
storage of microcode. The management of control storage may{/p‘ T
become more complex as the. technology improves to allow’
dynamic microcode relocation and virtual control storage,

Guha has already described a dynamic microprogramming system.
[GUHA77]. | In any installation having a N
user-microﬁtogrammable computer it is appropriate. to .

designate a Writeable Control Storage (WCS) administrator to

4

94

b

allocate space,: to maintain and orovide upto date

information, and to avoid duplication of microcode.

i} .
HAL - i

Description

JL ' * implemented

*
MIF i
Generator . . o .
\.
* » | Query ’ .
HIF Handler

é—_> User

>
¥ *
° Microcode (ABMPL *
Generator < Microprogram
: Specification /
N ' Microprogram
Microco“ Verification 6“@
. * .
Library Microcode o N ‘
: v o N
~ H
\ | Microcode . |Report
<[Loader .
» - . {
w
K * . [o
WCS
¢ R
\ I‘ ' PR

\

A c
: 1 ,
Figure S.1 Comprehensive '"Micropg_ogranming System -

.
. ,]
. -
o ‘ N -
“ s
.
i
.

" 95

- . v "
ot

An ovegview of CMPS is shewn in figure 5.1. Tihe

k'

=]
fundamental components are

Jl

o

An overview of CMPS .is shown in figure 5.1. The

v

fuhdagental components are- the Machine Information File -

)

(MIF) and the microprogram generator. This design addresses-

/
the various phases of the microprogrdmming process. The MIF

is generated from a HAL description of the

microarchitecture. A user learns about the” machine by

2

querying the MIF. The user codes a microprogram using a

v

high—levél notation (hete ABMPL). This specification is
B ¢

then processed by the micrézode generator to -produce code

which .cah then be loaded into WCS or stored in a library for

later use.
-

5.1.1) GETTING ACQUAINTED WITH THE COMPUTER

4

-~

The Machine Information File is the centerpiece of CMPS.

It is used by °‘the various phases of.thefmicroprogramming_

process and in particular by the microprogrammer to

familiarize himself with the microarchitecture.

f
/

The Y MIF is generated by processing the HAL desezyiption

of the machine.* This is accomplished by subjecting the HAL

descriptibn to a compilation process. The compiler verifies

all the storage references and parses all the constructs to-

' ' [¥ i
certify that they'a}e syntactically correct. This compiier
/

will not yield execg@qble code, but it qenﬁratéé»k%cords f?;

the MIF. | ' & o

-4

-

— A . R "
- o« T & .
2 : - . .
N - ~ -
‘ 9% "
.. .
~. " ~ "
T ‘ ~
— -~ - .
— . : N S~ -
. - . . \\ .y
I "The “MIF Should ﬂe“organ1zed as a database to™provide
—~—— - i . - .)) .) N
K fast.and- corivenient access to machine informatlop. The

S g -

structure of the MIF - should resemble tHaE, of the HAL
/ ot A - ' ~

v : L8 - . .
\§ desqglptxon, thatyiis; it could be organized -in . four major
. - ~— - ‘ N ER

~

segments:’ data structure, functional -operations, tests, and
control operations.

~.

v~ The data structure ssegment would be nothing que than
BN T , . »)

the 1symbol table used by‘ the compiler. The functionad
. e ,
‘ operations could Re parsed into records with a code to

indicate the type of operation and another, code to”identify

the parﬁicuiar operation. Each record would caontain

.o -

explicit as well as implicit information, the microword
. - A . : o4
- associated with the operation,- and any4neces§3£y information

to resolve the use of literals at microcode generation time.
. »

el

The overriding consideration in the organization of the

¥

MIF must be the fast and convenient- access to the

i

. . .
; " information.. Tﬁ% prospective

the MIF through a query‘progr§m which will treated it as a

+
A

read-only file. The huery program must be very-ﬁiexible to
[[~

/

accommodate general ' or specific ‘user-defined search

) . criteria. . -
” . * i . ‘ ’

© - * v ‘) ‘

e A typical oper;tion on the MIF would be a query to

' disblay the data structure of the machine,. Attention can

: . i \
then bé focused on a particular item, and fugther queries

may be uséd té.display the operations which can'be perfofmed

. ‘ \

. v N
microprogrammer will accgé§u

i

'.{‘

oy

’
-

on this item. - / . ’ v
o B ' _' - - . !

.
~ ‘e

Davidson & ' Shriver [DAVIBZ] describe a similar

4

microprogram support sisteh used fot educational purposes at

.

the university of Soythwestern _Louisiana. + This .system .

<

\1ncludes a mlcroprogram s1mulator which has HELP facilities

s

to display documentatlon about the resources of the machlne.'

In CMRS the fac111t1es to document machine resources are

separated from ariy - other 'cdmponent in the systenm.

Documentation in' CMPS will be done through the use of a

s

© .~ query program on the Machine Informat1on Flle.

-

. , o, {
For the purpose of this thesis a small compiler has been
} ’ _ t

constructed. It processes a HAL description and yields. a-

o

sequential file of ordered records which is used by éﬁe
microcode generator. 'Each record is Ldentified by a code
havine two components, one//is the record type indicatiné
whether it represents a storage - item, e functiohal
operation, “"a test or a control operetion. The other
component is d numeric code which uniquely identifies the
record, this code is generated from character striﬁqs used

’ ~

in the HAL description of the item.

The format of the records varies accordlng to type. In

a

the case of. functional or oontrol operatlons the records

contain the microword and any necessary information to

resolve the wuse of literals at microcode'generation*time.

Test records contain the necessary information to establish

A ‘ ‘ - ST

- Beem most'appropriateﬂ

v

98 - - s

-). .

“the order of testing at microcode generation time.

[y

The full implementation of the MIF as a'd;tabase is a

. project complex enougﬁ\to deserve a, separate undertaking.

Since the HAL description of a machine establishes.implicit

relationships between stdrage items and the obperations which

t- N - N ., .
can be performed on them, a relational implementation would

!
..

-

. B
v)

Richard & Lewis [RICHB8@] describe a microinstruction as .

3

"a_ " unique set of microoperations, and each microoperation as

a QUiﬁtdple <OP;I,O,F,P> where OP= function (+,=.%, etc.),
I=- input data set, 0= output data set, F= microword field

and é=vclppk ;haéé. VIn‘ r cage the F componenta ié not
requiged since the complete. microword is givén and . the

s . .
_mapping of ;esodrces ﬁo the microword is’ implicit. This
T;pproéch could be used in organizing the ?IF. , We wo;;d then

have a set of microinstyructions which consist of a uniquée

3

set of microoperations, whibch in turn are composed of
various sets of reSources. The necessary information can pe

_gathered from the HAL description of the machiné.
. N {A ?

\

The intention here has been to show the feasibilit& and

usefulness of such a file in a microprogramming support

system. The field of computer science has developed very

powerful tools for the management of information, and

/

nothing is more appropriate than to use such tools to manage
/ : .

~

/ . 4

. 3 . ;
information about computers.//

/

R “ /
LY R 7

i

¢

)

‘<”ff\\\;\\ 99 S N a

- .5.1.2) THE SPECIFICATION OF A‘MICROPROGRAM ‘ o

14 . B
*‘w Once the programmer "has determined the storage and .

operational needs of his algorithm he needs a notation to

¢

describe under what circumstances and in what ‘ocder‘-ﬁhe
. operations he selected are’ going to be performed on the

gtorage items he is using. For this purpose <4 have designed

N . .
a microprogram specificafion 1language called Alternative

. Based Microprogramm@ng’Danguage (ABMPL) which specifies a
. o

. micrppiogram by deécribing an abstract machine (a subset of {
. <

the microengine) and an abstract program.

N w

ABMPL is modelled after the 'ABL (Alternative Based

Language) programﬁing methodology [JAWO081] which treats a

g

‘program as a set of requirements of the " form: "when a

‘certain situation arises, perform an associated function".

Such a requirement is called an alternative, the certain y

- . "

situation a predicate(s) and the associated function as a

,sequénce of actions.
v ’ .
Berg & Franta have described ‘the 1life cycle of a

~

firmwaré engineering system as having the following stages

‘
'

[BERGS82] : ‘ : o . -

0 @ :
REQUIREMENTS ENGINEERING: identifies the major 'functighal
N i - - .) ‘. o
requirements and attributes of the system. {g

NON-PROCEDURAL DESIGN: formalizes the M&gmc{ional‘
requirements and the attributes given by requirements
engineering; the result is a functional specification and a

-

i\

- "
/
et it i o s i e At Wb . M e

USSP

- / v . - :
- . ~ ! : ’ ’ lggﬁ . N . =
-~ - K - .)
property specification.

; PROCEDURAL DESIGN: uses the specification to produce

blueprints fér_grograms‘ﬁo bé:implemmented.

1 . C v
» IMPLEMENTATION: ° generates programs that . embody * -the

blueprinﬁs_proﬁided By brocedural design.

. . . ‘ : '
INTEGRATION: coordinates programs so that assemblage results .

¢ ~

in an entire program .system.

~

OPERATION: executes the program systéﬁ such_thét its effects
can be observed. .) ’ . o .

VERIFICATION: demonstrates the verisimilitude of procedural
desién, implementation, ‘- integration, and operation with
o system specification. .

* A -

,DOCUMENTATION: describes the results of.all stages of the

life cycle. >

. . 4
MAINTENANCE: preserves the 6peratipna1 status of the system

including extensions, corrections, modifications, etc..

-
~ ' N

The above stages are represented in the wvarious
componehts of ~CMPS. Procedural design, implementation and

integration are found in the microcode generator 'which uses

i the HAL description of the machine as contaiﬁeérzgughg MIF.

Documentation and - maintenance involve both the
microprogrammer \and the ' WCS administfator. ABMPL is !
concerned with requirements engineering and, ta a certaip‘ \
extent, with non-procedural design, and ft is in these two

areas where Berg & Franta state that wvery 1little progress

has been made [BERGS8#].

. - -

H) ’ M . f

.The choice of an ABL-~type notation suchH as ABMPL, as . i
opposed to a strictly procedural specification .such as
existing high-level microprogramming languages 1like EMPL

[DEW1T76], was ‘made bésqg on the following consideragiohé:) !

1) ABL is a programming technique that supporté :separatio i
of the evaluation of data -(control .operations) from the]
modificatioh of data’ (functiconal operations) [JAWOS81]. This j

is an 1important characteristic, %ince Dasgupta has shown

that .the sequencing mechanism -is a great source of

! .

variability [DASGBG], and also Jones‘has shown that existing
microprograﬁmgble computer§, do not support the .
implementation of high-level control const{ucts [JONE75]
which would be réquired 'in a sfrictly ‘ procedural
specification. UsiAg ABMPL, a Programmer is able ¢to
conéentnate on the functional Esﬁects “of his 'microproéram o
and to ‘expresé‘control in very simple abs&ract terms. The)
microcode generator processes the abstract control

specification . and implements actual control wusing the y i

-

control operations described _in the MIF. This provides a

-

degree of machine indepepdence since the programmer.does not

s e

need to be aware of the sequencing mechanism of a particular
. -

machine. -
2) The ABL programmiﬁg technique establishes a sequence of

actions associated -with each élﬁerpative. These sequences

are branch-free ségments of code which donstitute the basis

of any wptimization "process, [LAND8@#]. Furthermore, this

technique -allows the use of sequencing operatofs (',

e
-~ .

of wverification by simulation since it establishes the

D d , 4 ¢
Ve ,) . 192° . 4 v
N . ¢ « ’
.

parallel execution,..'}f serial execution) to permiﬁ ,or
inhibit the optimization process. In this way the

) -

microprogrammer aids the optimization process, an idea
¢ ‘\' . . ! c .

t

sqppégted ‘by ,paggupta through the use of REGION blocks to
inhibit optimization [DASGBE], ang by ﬁalik\&,Lewis 'through'
féhe dsé of‘ proérémﬁer provided, look-ahead }Qfd?mégién'for
the generation of m&crocode [MALI?78]. -

3) Since ABL imposes a well defined structure on a program,:-

il .
0y

the informétiqn ~provided can be Jery’ eaéily,stored and

manipulated to produce very soﬁhféticaﬁed display' formats .

i}

{JAWO081].. These - not only. provide an. excellent

?

documentation, but can be used " to analyze respurce usage

(data flow) and instruction sequgncés Zfon manual

-

r . : :
optimization). The task of maintenace is simplified since
. 3 (vl - .

it is very easy to determine the- effect of a modification on

a program. 4 e

4) An ABL specification lends itself very well tora process

-

storage ‘ﬁgg@é;‘and behavior of a' ‘program. An ABL .
specification determines _an abstract . machine by defining

o
storage items (variableg), a set of possible actions

(instruction set), and a " set of relevant predicates

(testable "conditions). An abstract program is also -

‘

- 1 . a ‘ . “*
established to determine the order and the circumstances-

under which the actions are to be.executed. The problem “is

then to simulate the abstract machine on a real MAEﬁine, and
3 - T : . \

~

~—— r
to run the abstract program to see its results. A process

[y
»

i

L . * \

i

- c ' 183

.
.
- B
DY & ° . ’t‘ L ~

-

of interpretation seems the most suitable solution and

-~ e !

indeed thi's has been the route taken by Jaworski and’

-

ﬂinterbérger~{JAw0811.

7

5) The structure of an ABMPL microprogram spe01f1cation is

in line w1th the overall strategy of thlS the51s, i.e.,, to
S

use abstractlons, of , existing entities in order to preduce’

microprograms. In defining an abstract “machine, the

v

microprogrammer”is able to deal with a simpler machine which

is a subset of the real machine. 1In specifying an ahstract

2 L
4 ’

pregram, the‘microprogrammér establishes the behavior of the

microprogram without any tgfefence to the. machine dependent

. * , . ' 7 .
sequencing mechanism. - T .
' - LY . . s

&

ABMPL defines a microprogram as an abstract machine and

-

‘an abstract progrém. The general frame of an ABMPL éroqram

~

is shown belowf' . . z

MPROGRAM «cvveef(oncnnase); {*heading*)
STORE’'; (‘*Store *)
“SYN : treee=esees (*synonyms¥*)

.
[
cseveTeoeanyg

’ -
+

MPROCEDURE ...uvuaes; (*microprocedbire*)

" ISET | ' . " (*operations*)- g

1) sses s s edecey

‘_ 2) ssesemsessyg *

Y

PREDICATES (*testable conditions*)
1) .!.I:‘...I; '
2) -ooooot-’;v . ’ ?
, PROGRAM ; ',(*abst'pfoéram*) . ~
CLUSTER 1 ~ . . .

1) eeveneaee o

CLUSTER 2

[P .

e e s

1) se b ewess - Voo

2) soe @ @& W, N ’ -
. s . .
END.

)

The complet;e grammar of ABMPL is given in appendix A,

but I will discuss bélow|the,most important aspects. In BNF

»

<

we have: , ' L '

<microprogram> ::= MPROGRAM <identifier (<base address><parm>);
<machine> ’ . ~

[. T—

"~ {program> .
END. N @

the",.fbase address must be provided to indicate wh'ere the
microcode is to be 1loaded. The WCS admixv'xistrator . .will
inform "~ the microérogr‘a‘tﬁmer of the memory space gvailapledn
wCS: Lparm> is useé to document the use of a mit¢roprogram

as a su?pr;)gram. This palramc‘et'exrs.r listu is used onl'y for
'ing:'o°rmation p;urposes. At the ?icroprogralpming level - there:
is no formal para}n'eter passing b/ecauée the overhead is
prohiﬁitive [DEWI76]. The abstract machine describes | the
resources used in the microp;ogram, ‘*storage items,
oée‘rations and the ;:estable conditions. 1In describ“ing“ tbé

a

abstract machine the microprogrammer determines a smaller

machine which is imbedded in the real machine. In- BNF we
~ » N "
have:

<machjne>- ::= {storage>
{synonyms> . S)
<microprocedures> I o
<instruction set> - ~
<predicates> '

.

L3

<storage> represents a list of the storage items being used.

The items listed must exist in ‘the MIF. Synonyms are a

. . ¢

- &y

o

S

.

185

1

facility used to rename existing storage items for user

¢

- "convenience. Properly used synonyms imay provide ‘a certain

[y

.degree of . portability for microprograms. For example
" e

o

consider the use of the § reéister of the SEL32/75 in
) , e) .
shifting operations, the S register and its synonym could be,

-

, . (.
declared as follows:

STORE S; | 4 . C,

SYN SHIFREG = 5; . .
then we woﬂTA/ se SHIFREG fhstead of S throughout the
microp{ogram. _ If one transpPrts this microprogram to
another computer then oﬁe.w0u1d‘1ook for a éégister with
characteristics simiiar to those of the S register, declare
the new rggister as storage and define SHIFREG as its

4

synonym. = In this way the rest of the microprogram is not

~affeéted.

1

Microprocedures in ABMPL fill the same function as in

any other language, they can be of two types: internal and
external. Internal microprocedures are defined within the

microprégram and will form part of the generated microcode,

-3
[

their structure is similar to that of a miéroprogram;_
Extéénal microprocedures are assumeq to exist.separately and
their addregs is provided for brénching “purposes. This
facility helps avoid‘éuplication of microcode since the WCS
administrator wuld mantain a list “of commonly used
micropiocedures. In BNF we have:

<micr6proceddre> 1= MPROCEDURE <1dentifier><parameters>,

<m1croprocedure block>
\

’

4

e s e e =

106 _ :

4
- . . END;
Y A - ,
<microprocedure block> ::= <machine> <procédure> !
‘) <EXT. <pase address>. P

/

14

’ ’

The instruction . set desgribes the operations of which,
the abstract machine is capable. Any operation listed ' here
muét‘ be syntactically correct and exist in the MIF. 1In BNF
Qe_have : . , . s

<instruction set)> ::= ISET <instruction list> !
' <empty>

! . <instruction> ::= . , -
<i code>) <valid operation> <implicit assignment>

. .
. e

the instruction code ‘is a mnemonic usedﬂ for .Eeferraq
’phrposes "in the abstract programs or brocedures.\
<valid operation> has a syntax similar to the explicit
operations in HAL and it must describe an operation existing
in the MIF. <implicit assignment> is uséd to document the
i . .

fact that some storage items are implicitly affected by thié
operation and that such items are relevant for testing
purposes. Malik & Lewis suppo;t this idea when they discuss_
the implicit setting of flags during ALU operations'
[MALIT78]. The way in, which the §ﬁokage items are affected
. s

.is described in the implicit operations associated with the

explicit operation being used.

The predicates describe the lIist of testable conditions
o *which are relevant for this microprogrém. In BNF we have:
.<pfedicates> ::= PREDICATES <predicate list>

<predicate> ::= (predicate code>) <expression)>

’

.)) . A}
the predicate. code is a mnemonic used for referral purposes

in the abstract programs’ or "procedures. The expression
/ -

» -

describes a testable condition and must exist int the MIF. -
[?

Abstract programs and procedures are defined as a ‘lisé
of clusters. The position of a cluster in‘the list is
irrelevant except for the first cluster which is considered

the entry point of the program. - Each cluster in turn is a

set of alternatives.' The alternativée consists of a set of’

predicates guarding an associated 1list of actions. In

addition, each alternative includes information to indicate

/

which cluster, if any, should be considered next. In BNF we

[

have:

-

<program> ::= PROGRAM <cluster list>
<cluster> ::= CLUSTER <cluster code> <alternative list>
<alternative)> ::= <alternative coded>) <abstract statement>

<abstract statement> ::=
<abstract conds> <abstract actions> <abstract control>

<abstract conditions> ::= ON <predicate references> |
- . <empty>

<abstract actions> ::= DO <instruction references> !
' <empty>

<abstract control> ::= GO <cluster code> ! .
RETURN

Predicate references are a list of conditions which must be

A

. l A 3 »
met 1in order to execute the associated actiens. The '+' or

'-' signs in front of a predicate code are used to indicate
g v .

if the candition must be true or false. Instruction

3

" _ 167 ' N z

N

[

© 1e8
4 -

referéncgs are a f&st of instruction codes separéted by a
‘sequéncingmbperator,to permit parallel execution (',') or to
force serial eiecution’(';'). TheJREfURN keyword « indicates
a ‘halt in the eiecution of the program or procedure and a
return to the level above érom which it wés called. This
'refleets tﬁe struétﬁre in which microprograms are called by
a supervisor microprogram which handles the geheral

¢

fetch-decode—-exegute cycle of machine instructions.

A mibroprogram described using ABMPL can be considered’
as an abstract microp;ogram. Giloi et al [GILO8Q] offer a
definitioh of an ‘abstract microprogram which is cons}stent
with the goals of ABMPL: "an abstract microprogram .is an,
opérational specification. of a machine operatign
(instruction) perférmed on certain objects of the machiﬁe".
Furthermore , they state that the langugge used to write
. 4

abstract microprograms must “feature data abstraction,

ope;ation abstraction, and control abstraction.

ABMPL offers all three of the above features. In

particular, Giloi et al's definitign of operation

o

abstraction is very consistent with that. of ABMPL. By

operation abstraction they mean that "the language must
contain al comprehensive set of elementary operations which
are primiti?e and axiomatic in the sense th;t, (1) there
Qill 'exis£ a functional unit in the ﬁardﬁare for its

execution and, (2) the operation's behavior is pre-defined,

together with the representation of the objects the

: S 109 h :
1‘3‘ = ’v,'. />\ ’ \ b
o ' ‘ - ' : Nt o v
v * * ’
operation may be applied to". : ' .
\‘ «

oo ki A .

For control®abstraction Giloi, et al suggest the use of

2

high—-leve éonftructs'such asaWHILE-DO, REPEAT-UNTIL, etc.,

since thdy are concernéd with, a strictly procedura

specification of microprograms. It must remembered,

-

however, that such cofitrol constructs have been shéwn
5 . .

(4
* ‘i = L
difficult to ‘implement in thé;;icroarchitecture. ABMPL also

A -

offers control abstraction but in' a simpafr form through the

specification of next tluster information.

5.1.3) .THE OPERATION OF CMPS ;0
>+t. . . o

3 =~
.
‘. *

CMPS. is to be operated as a software aid to

A d ~

microprogramming. The WCS administrator would be in charge’

l . %

of . the maintenance of . the system. Jdeally the HAL

-

description ,of the maghine should be done by the'
manufacturer, but given time and resoufces this Fask could
be performed locally. .\,

A} .~ ‘/'

4

"Initially the programmer will outline his microprogram,
3 -4 . "

-and ¥ then «contact the WCS admiﬁistrator for information on

the access to CMPS. The programmer will then proceed to

©

.

work with CMPS. The steps are- listed below:

1) »Analysisn of .the Microarchitecture. In this step the
~

.

programmer accesses the MIF to" identify the resources

required by his program.’ The grogrammér selects storage

items, functional operations, and festable ~conditions

LY

) [} v

according, to the requirements of his algorithms. ‘In efiiﬁf

r 1l

-

A

110 ' B
4 ‘-

the progr%mmer constructs a machine suitable for the

4 ‘ ‘ X . . N '

implementation of his program. The MIF provides information
A O ¢ N - R

on the structure of storpge items, and on the semantics * and

P

side effects of functional operations. Familiarity with the

]
* syntax of HAL is required ' to understand the information
. » .

\J

proviged in thé MIF. _

2) The Specification of the Microprogram. In this‘étep the
programmer formafizeé the outline - of his program.’ &he
programmer uses ABMPL to déclare the ;Bstract machine, and
to spécify ‘the abstract ﬁrod}am. The / progrémmer must
consylt the WCS administrator to determine 'the loadgng
address for the microcode. |

3)‘Microppog§am verificatibn., In this step the programmer

v

simulates the execution of the microprogram to observe its

» effects on the abstract machine. The abstrhct program shall

‘

ot b

be interpreted on a cycle—b§;cycle basis.' After each cycle

the statu%‘of the apstract machine is displayed to observe

the * effects oﬁ-particulér microinstructions. If necessary

' -

the programmer may return to steps 1 or 2 to respecify the

microprogram.

,4) Microcode Generation. In this step the microprogram is

compiled to generate microcode. The microcode generator
optimizes the microcode. The code generated may be loaded

into control s?orage,igr saved in a library for later use.

. \) o . '
5) Microprogram Operation. In this step the microcode {is

loaded, if necessary, 7nto the Writeable Control Storage and

v

invoked from the machine instructiqn level. The results of

H

o ¢ ©oo 111 N

the microprogram can now be observed under real conditions.

" [

\

5.2) PRACTICAL EXAMPLES S, o

\

L

.
. . M -

' * E:
For .the purpose 'of\ this thesis I have constructed a

- small compiler to generate

microcode for the SEL. The task

\ . r

of this compiler is to ‘compose a sequential microprogram
N \

. \, ‘ -
according to its ABMPL spegifdcation. The objective of this .

.compiler 1is different from the HAL compiler. The ABMPL
¢ compiler seeks' to generate microcode, ‘while the HAL compiler
N . A . <4 , . °

generates information for CMPS. The ABMPL compiler depends
, : . i \

6 .
on the Machine ' Information File for the ‘proﬂﬁction of

,microcode. "The HAL Gompiler,'on the other hand, generétes
Ty 2, . ' . Ve
the MIF. ‘ . ot

4 The microcode generator has two main“subtasks:. '

1

1) It processes the instruction set of an abstract machine
"and consults the-machine informationNgile (MIF) to get the
amicrowords c%rresponding to each instruction. At the . same

time it resolves the use of literals in any instruction. -

-4

2) It\processes the predicate set of an agstrac; machine andg‘\

o

consults the MIF to determine the testing priority of each

predicate. Each cluster‘ip abstract program is processed to -

establish a sequential testing procedure and its associated

actions. In this phase, mergﬁng of microwords is attempted

"if the sequencing operators alfow it. Also the use of real

-

addresses in control operations is resolved.

4 ¢

Y

112

N

)

-
2

* The sequential predicate testing procedures are

constructed using binary‘'decision trees so that a given test

is performed no more than once.

¥

.The construction of the decision tree proceeds as

follows: // -t

s

1) all the information in a cluster 'is processed to

determine the set of predicates relevant to the. cluster.

These predicates are then ordered in descending testing
¢t

priority in a linked list.

L)

2) a maximal decision tree 1is built using the relevant

predicate list. Thelhighep the priority of- a test the

closer it is to the root of the pre@.f, -

3) the predicdates relevant to each alternative are also

“ordered in descehdfﬁg testing priority in a linked list.

. \

4) the predicate "list for each alternative is 1‘compared_
against the list of relevant prédicates kom the cluster. 1If

"within a given alternative's list an intermediate |test: is

missing, it- is inserted with an '*' quélifier to/i;dicate

«that bofk true and false results of the £est are valid and.

that the decision tree shodld reflect that fact.

5) the -maximal tree is then pruned by using the predicate

list of each alternative as an assertion applied to the

tPee. Any node of the tree not affected by any assertion is

then discarded.

.Each®node of the tree is interpreted as a test .of .a

condition which is either true or false. Each node has

h]

~

P

pointers associated lhith true. and false results. The
) ! ¢
pointers may point to a further test, or in the case of }eaf

t

‘nodes to a list of actions within an alternative. - -
\ A

R -

0

An example would help to illustrate. €onsider the

! ’ follbwing microprogram segments:

PREDICATES ‘
1) ALUZ; ' .)
: 2) ALUSIGN; S R ‘ AN \
. L
\ T
. CLUSTER 2 .
1) ON 1 DO 9 RETURN. C , .

2) ON 2 RETURN.
— 3) ON -1,-2 DO 2 GO 3.
.o » e .

-
y ”

ALUZ was declared in the MIF as "ALUZ AT +2" and ALUSIGN as’ -

\
A

"ALUSIGN AFTER +1", therefore the test ALUZ has priority

over ALUSIGN. The list of relevant predicates for this _ 3

R . . ’]
- cluster is ordered”as follows:

F S L @ . ' .
) 1=> 2-> nil

and "the maximal, tree. is constructed as shown in Eigure 5.2
. t . v . [. .

. ' - \ ’ ALUZ false | true

. » : , '1
‘ 9 ’ f, ? ’
ALUSIGN | falseq| true " ALUSIGN | false| true| .
. * nil = nil - nil é&l T
é{ .

v * ’ S
figure 5.2 Maximal Tree

-

\ - : :
\Pfof each alternative the predicates are ordered as follows: .

b -

e 4 e Ter e at oo .

.

L 4

1) +1-
2) +2-
3)¢=1-

114
> hil
> nil
> =-2-> nil

the above list are compared against the clusteg's prédicate

list andithe result is as follows:

1) +1-
2) *1-
3) -1-

-

> nil
> +2-> nil
> =2-> nil

5

applying thes% assertions to’ the maxima; tree and including

the associated .actions we now have the tree of figure 5.3.

aLUZ |

\;/
1// .

2

falsel true

l

ALUSIGN

false

true

1

R

figure 5.3 Testing Tree.

) ’ e

alternative 3

e

\

alternative 2

a

-alternative 1

« by tra&%rsing.thé tree infix left-son-first and consulting

N

Is

?n

n+l
n+2
n+3
‘n+4
n+5

sequential code:

ON ALUZ GOTO "n+4

ON ALUSIGN RETURN JSTACK

instruction 2

GOTO address cluster 3

instruction 9
RETURN JSTACK

LY

-

the MIF at each node, we are able to génerate the following

>

*

&

115

f - J
Tl

in turn is also a node, which amoné' other things has

t
s

associated a list of predicages‘ and actions. Since.' the
: . . & ‘ ! '
decision tree 1is :linked. with the 4dctions of particéﬁar

alternatives it is possible for the compiler' to look-ahead

Ak
A

for the purposes of optimization. . ' o
” § ‘
It must be pointed out that the predicates 4f each

M 8
alternative within a cluster are . expected to occur

exclusively and to be qén—contradictory of each other,
}

otherwise the compiler would not generate code and the

~ o

microprogrammer must respecify ng cluster. In the case of_'
conflicts in the testing - priorities the. compiler will

\ o o
attempt to resolve them, and ‘if 'not possible them the

microprogrammer must respecify.

3
s

A positive consequence of the structure that ﬂABMPL

imposes on a microprogram is that abstract programs can be
conveniently stored. The information provided ’in the,

abstract program can provide complete look-ahead during the

~
o

optimization process. ;

The microcode generator constructs a binary ,tree for

each cluster in the program using the information provided

1

in the alternatives. The leaf nodes of the tree point to a

n

sequence of actions to be executed, including the selection
of the next cluster to be processed: With each cluster

, -
represented as a "binary tree with connections to other

©

clusters, an abstract’ program can be considered a connected

i

"y

LN

e e me————

S bt i At i oo

[

.

Cluster 1

‘'

clJSLgIIZ‘

DO 1°'GO 2.

EE USRI |

1146

¥
faLusion] false| true]
o® ¢ 4 s® e i
DO, 2 GO 3. "RETURN
\
'
e 20 e
|
N
t

cluster 3

A
*

'

cluster,4‘

cluster 5

ALUZ | false] true |
' Do 4;3 GO 4 RETURN
|
i._.-l
| g mmE sr mmn e S vt ot ot ——a® m mowe w—t wan —
2] ,
I ALUZATEa}sel trgEJ
DO 5 GO 5‘ ! DO 7 GO. ===
| ,
.)
i
[atuz [faise | true |
Y
DO 7; & RETURN

cluster 6

Q

[ALUZ | false | true]
]

¢

L]
13

\
RETURN |

s

DO 4;3 GO 4——

!
|

!
|
1
l
!
!
!

o
[= — — S S wnp tnd - _J

' -
y .
L 4

|ALUZ | false | true}

moe o e b

¢, 0 v g .ot

-V
. BO 7 RETURN

. ° 4
Y .
DO. & RETURN

Fiqure g 4 Connecteq Graph'

l
J

]
|

e o gve v o s o e o

e sow gem

-

o117 ' .

P
graph whose nodes are binary trees [fig. 5.4]:

CMPS provides local compaction through the use of

sequencing operators to separate actions within an

alternative. Graphs such’ as that of figure ’5.4 could

provide the basis for global optimization. In this graph

there are three types of pointers, a solid line indicates a’

pointer to a node within the decdision tree, a dotted line
%ndicates a pointer to an élternat;ve, and a dashed line
indicates a pointer to another cluster.a Dotted lines appear
.only in the leaf nogeélof the tree. Dashed lines represedt
the connections between the nodes of the draph representing

N

the microprogram. . . ‘ !

In order " to show: the feasibildty. 'of CMPS two

microprograms have been fully implemented for the SEL32/75.

The microprograms are shown in .appendix D. For these

-

microprograms a partial description of the SEL was coded
using HAL, and then it was processed by the HAL compiler to
~ - :

dgenerate an MIF. The micrgprograms were compiled and the

‘microcode generated was loaded and executed in the WCS of
m ‘
the SEL32/75. Upon execution both programs produced correct

results.

As an example of the use of ABMPL I include here a

microprogram designed to implement a machine instruction

.

typical of many computers:) .

MPROGRAM LOADREG (4209);
* .- . g

[xs)

e o o # | b TR
.

FYOE

’ ' o 118

THIS PROGRAMS EFFECTS THE MACHINE INSTBECTION 'LOAD WORD'
IN THE SEL INSTRUCTION SET.- THE FORMAT “OF THIS INSTRUCTION
IS AS FOLLOWS:

BITS 8-5: OPCODE B'iglgll’

BITS 6-8: REGISTER TO BE LOADED

BITS 9-18: INDEX REGISTER

BIT 11: INDIRECT ADDRESSING

BITS 12-31: ADDRESS OF WORD

ASSEMBLER CODING: LW REGISTER, WORD ADDRESS

*) :
STORE MAR, (*MEMORY ADDRESS REGISTER*»
DI, : (*MEMORY DATA REGISTER¥)
MAIN, (*MAIN MEMORY*)-
HIREG, . (*REG ‘BANK SELECT*) .
g, .o (*INSTR DECODE REG*) \
. REGFILE, (*REG FILE *) .
INDIR, : (*INDIRECTION BIT*)
BIBUSY; (* BUS TRANSBBIT*) ‘ .

ISET : :

" 1) MAR(5..23):= SELECT(13..31, Iﬂ+REGFILE[HIR G][I8(9..10)]) <INDIR .
2) START DI:= MATIN[MAR] <BIBUSY> : o) ,
3) REGFILE [HIREG)[I@(6..8)]: \ "

4) MAR{5..23):= SELECT(13..31 DI+REGFILEEHIREG][DI(9..IE)]),

PREDICATES

1) BYBUSY; . . : ‘

2) INDIR; ’ :

PROGRAM
* CLUSTER 1 .
1) DO 1;2 GO 2. (*READ MAIN*) .
CLUSTER 2 : ‘)
1) ON 1 GO 2. (*READ PENDING*) .
;2) ‘ON -1,-2 DO 3 RETURN. (*NO INDIRECTION*)
3).0M -1,2 DO 4;2 GO 3. (*INDIRECT READ*)
CLUSTER 3
1) 'ON 1 GO ‘3. p (*READ PENDING*)
2) ON -1 DO 3 RETURN. (*LOAD REG, QUIT¥)
END. .

The above example illustrates the 1mp1ementat10n of one
partlcular machlne 1nstruction. The stgategy to implement
the 'instruction set of a comp;ter depends on how the.
operation codes are decoded. In the case of the SELI2/75 a

Programmable Logic Array (PLA) is used to indicate the

starting address of the microprogram that implemgnts the

-t

119

1 1 t':) ' ! .
instruction. In this case the instruction set. is

1

implemented as a series of indibiduai, but interrelated;

microprograms. Another implementationh would leave the
responsability of obtaining the starting addresses’ to the

-
microprogrammer.. In this case the instruction set would be

implemented as one long microprogram with a set of entry
points corresponding ,to the different instructions. The

microprogram would have a common segment to determine the

particular entry point of an iﬁstEuction.

The first implementation seems to be the most common, it
is used in the SEL and in the AM2904. Once the native

instruction set has been microprogrammed and entry addresses

F]

.selected, then the PLA would be coded accordingly.

-
L3
s/

v

2

e

CHAPTER 6: THE'FEASIBIPITY OF CMPS

The purpose of this thesis has been to design a
microprogramming system that addresses the various aspects
of microcode production. The end result of ’this research
has been the design of a Comprehensive Microp}ogramming
System (CMPS). Of special importance in the désign of CMPS

have been the Hérdware AbstracFion Language (HAL), and the

Alternative Based MicroProgramming Language (ABMPL) .

o

Prototype versions ¢F these have been implemented and tested
e S . . ,

l'v -
succesfully. -

Using HAL the microarchitecture can be described in a
élear, and systemagic manner. ‘A clear description is the
basis for an effective communication of‘machine information
to the progpective microprogrammer. HAL defines a diregct
link between the functional description of operations and

the microwords that implement them. It 1is this direct

-

. connection that 'allows the‘misrocode generator to produce

efficient microcode. Therefore, HAL not only describes the

machine to the microprogrammer, but also to the microcode

generator.

. The approach taken in the design of the micropr;gram
specification language provideq multiple benefits. ABMPL
imposes a wéll _defined structure on microprograms. The
microprogrammer ?eals with an abstract machine, which is
simpler than the ‘real machine. Local gompactioﬁ' of

¢

‘!

121
|
microcode is gﬁided By the microprogrammer ﬁhrough the use
of sequencing operators. The microprdg}ammer is isolited
from the intricacies of the sequencing mechanism of Ithe
particular machine. .,The structuring of the abstract

programs into clusters of alternatives Vprovides the basis

a
for a global optimization process.

The implementation of the various. components of CMPS has
been shown to be feasible. The principal merit of CMPS s

not 1in its 1individual components, but rather in the fact

~
3

that several apparently unrelated ideas and cdncepts have

.been’ brought together to deal with the problems of microcode

’

production.

*. CMPS addresses the problems 'most commonly associated
with. microprogramming, namely: Machine dependence,

high-level microprogramming, and microcode optimization.

<

6.1) MACHINE DEPENDENCE.

’

-

With respect to the problem of the machine specificity

_of microprograms CMPS does not attempt to producé

microprograms which”“are universally portable, although the
s;nonym facility of the microcode generator provides limited
portability.’ Instead the intention has been to make Ehe
systém portable, i.e., to have the ability to imblement CMPS

in a wide range of machines. Once the system 1is installed

in a particular machine the microprogramming process can'

proceed.

122

o : ‘) /
The Hardware Abstraction Language (HAL) used by CMPS is

flexible enough to describe a. wide range. of |

microarchitectures. Any unusual operation in a particular
machine can be 1included by extending the language with
~additional prgdefined procedures and functions. This
approach implies that the- data containéd in the’Machine
Information'File {MIF) 1is machine ;pecific although _the

language used to generate the MIF is machine independent.

No practical solution to the problem ‘of machine
deptndence has been found so far. Dasgupta duripg the
’ discussioﬁ‘ of his paper on microprogramming language design
[DASGB@*] \stgtes that: "portability is a myth in the
Aicroprogramminq context.". Microprogramé are so intiﬁately

linked to the microarchitecture that the solution QP this

problem, if it exist, will come from future developmemts in

the field of architecture design and implementation..

Microprogramming software <c¢an not show génerality if the

architectures for which it is intended do not display the

«

same degree of generality. \ -

6. 2)\HIGH-LEEIEL MICROPROGRAMMING P -

The maﬂ%> characteristic of high-level fanguages is the

4

use of abstractions in programming. In the specification of

microprograms a programmer working with - CMPS uses
abstractions produced with HAL to refer to storage items and

operations. The only limitation is that the set of

<

&n

(L3N

5

‘e

- ' - - , 123

3
-

abstractions is finite and is determined by ‘the

characteristics of the hardware. ' - ¢ g

Allowing unlimited abstraction woulﬁfadd overhead to the

- .

microcode generated. Since there could be more abstract

8 &' Lo

objects than hardware objects, extra code would be required
to manage the binding of abstract objects to hardware

objects.

LN Ll
€ 1 .

Another form of abstraction offered by CMPS is found in~

the specificatgg@“of microprograms. These are .structured as

a pair <abstract machine, abstract program>. The abstract

"machine iS a subset of the real machine. This structuring

allows the :prpgrémmer to deal with a conceptually simpler

. . -

machine. . ’ C .

¢ . L
.

6.3) MICROCODE OPTIMIZATION. .

'’

t
7

o - . a : .
It is in- the area of optimization where CMPS shows its

greatést promise., The Alternaqive Based Microprogramming

Language (ABMPL) prov1ded in CMPS forces the . specification

. of well structured programs. The 1nformat;on proviged in an,

4
abstract program can be stored in a convenient s§fucture to

provide complete look ahead durlng ‘an optlvlzat1on process.

’r

<

4 .
The midrocode generator can construct a graph such as

thqt'shown in figure 5.4. Such a graph provides the basis

for a global . optimization ‘process. Local optimization-

o

havjng;béép achieved through the sequencing operators of

[E——

124, . Y

ABMPL.™ ' The objective 6f an optimization process shouldibe

\ to minimize the number of nodes in the graph. This could be

achieved - by attempting to combjne ‘some of the trees in the

graph. This'précess could draw from the ample experience

,Jﬂv‘ there is in the manipulation of trees.

6.4) CONCLUSTONS N
co R Y

During the «course of this research the Most important

S)
~ lesson that has been learned is that the production of good.

microcode is not a one-dimensional problem., Microcode
& . - '
production is the wultimate objective in a hierarchy' of

. \
interrelated problems, such as micr;:Ychitecture

r

correctness, and microcode optimization.
In contemporary microprogramming research too . much
1 ,’ . v
£
emphasis has been placed'on the introduction of high-level
languages to (generate microcode. High-1level

[

‘ I
‘microprogramming, should.be a_ consequence, not the major

objective, af a comprehensive solytion to the production of
. ! N M -
. microcode.

- ~
a
o

At the .same-timé little emphasis has . been placed in

communicating architecture - information to the ~

“
’

microprogrammer. Once it 1is ©possible to provide a
~ R :

programmer with a grésp' of the limits and abilities of a
machiné, then attention can Be focused on the tools that

will allow him to microprogram. .This coriclusion ‘is

.

> _ \ , o

description, high-level microprogramming, ‘mic}oprogram .

125

&

supported by Richter, who in the conclusion of his paper on

microcode generation [RICH80] states: "the research for the

development of complex language tools %or microprogramming
N I‘\

has to oconcetrate on the well-structured modelling of the

N

description of the resources and primitives at the lower
. ;

- level of potential target architectures".

'A_ solution to the problems of microcode producéiqn must
be compréhensive in the sense that it addresses the warious
aspects of the ‘microprogramming process. The

microprograpming system ‘proposed in this thesis has

véttemp%ed to do . just that, by designing a .set .of.

interrelated and mutually compiementing components. Richter

supports this approach when he states [RICH8#): "finally it

’ ' . ¢ . !) »
seems necessary to consider microcode generation,

“optimization, and . testing as an integral task which has to

be supported with identical and mutually completing tools".

“ *

The most difficult problem °~ encountered in the

N

“~

4

preparation | of this thesis was the ©production of a
structured description. of the microachitecture. . The
hardware of computers often includes ad hoc features such as

specific purpose data paths and ‘'hardware assists (ex:

floa%ing point assist, page map assist). These features are

designed to enhance the performance of'thé machine, but they-

tend to be detrimental to the structure of the architecture.

v
%

LY 126 . s L ' '

»
)

The degree ldf structure in the hardware jpould‘improve .

. ‘as the use of structured.desién notations . (such as ISPS)

* [

becémes widespread, and components are standardized. This

o
’

will facilitate the description of microarchitectures and

should have a positive effect on microprogramminé software”.

\ b /
-

/ ; . . ‘ :
The Hardware Abstraction Language included in CMPS could

be used’ to design a computer,. In this caée a HAL ‘

description of the machine would be coded accoraing to the
~ architectural goals. Later “on,#the necessary hardware would
be assembled to satisfy the HAL specifications. This would

N . 1

‘be the reverse of the process *we have followed in ;his
- ‘~ ; .

thesis. Using, AM2908's components to build' the target

: - . . .

. 3 .8 B , 5 H -

architecture such an approach could become a reality.

1
' e

.- . [TS . . s '

N . . . ' . . o

&

BABASl . The: MPG

- , '
" BELLB2 xCompute}s Structures: Principles ' and Examples,

“

.
i 3
N

‘ . ' REFERENCES

3

' EvaluatiT? Kit User's:Manual. .

System: A Machine 1Independent Efficient
Microprogram Generator, T. Baba & . H. Hagiwara,
IEEE Transactionson Computers, June 1981.

BAERS® Computer Systems Architecture, Jean-Loup Baer,
‘Computer Science Press, The control Unit and
Microprogramming, p. 328 o i

BARB8l1 Instruction Set Processor Specification (ISPS): The
Notation and its . Application, M. Barbacci, IEEE
Transactions on Computers, January 1981 -

.

" BELL71 Computers Structures: Readlngs and Examples, c.' G.
© . Bell & A, Newell, the isp notation, Mcgraw-Hill

. 1971, .
Siewiorek/Bell/Newell,,chapter 13, Mcgraw-Hill 1982,

BERGB0 F1rmware Englneerlng Remarks and. Strategy, H.K.
Berg &. W.R. Franta, IFIP Conference on Firmware,

Microprogramming ° and Restructurable Hardware,

North—Holland Editors l98ﬂ, QA 76.6 I1189.

CHAP?S V. Chaptal, Problems of Microprogram Production,
“Infotec ‘State of the Art Report on Microprogramming
and '~ Systems. Architecture, report #23, 1975, QA 76 6
M5 . N :)

4

DASG8# Computing Surveys, Sept. 806, Some Aspects of High

/ Level Mioroprogramming,”s. Dasgupta

DASG80* Mlcroprogrammlng Language Design, S. Dasgupta, IFIP
/ Conf. - Oonr Firmware, Microprogramming &

v - Restructurable Hardware, May 1986 North Holland, QA

\ .
BN 76 1189. - ‘

DASG79 Computing Surveys, march 1979, Thé Organization of
. Microprogram Stores, S. Dasgupta ’

' ' |

DAVI8# Firmware Engineering:. An Extensive Update,” S..

i Davidson & B. Shriver, ;FIP Conference on Firmware,

‘Microprograming and Restructurable Hatdware,
North-Holland 1980, QA 76.6 1189. b |

{
~

. : |
DEWI?G Extensibility: A New Approach for’ Designing
- Microprogramming Languages, D. Dewitt, Proceedings
9th Microprogramming Workshop, SIGMICRO September

b - Co . \

AMD1- Advanced Microdevices, Am29¢0 Learning * and

re
e o W by~ e .

FREE75

o FLYN 80

- GILOS8¢®

P »
GUHA 7?7

.

v

“

Lo

oL JAWO81

*
v »e
[B

JONE 75

LANDB#

¢

MICK77

1Y

PATT76

| PERSY7
. N

" RAMA74

- HEIN8O

‘Programming

MALI 78

128

1976 o S -

Software Systems Princib;es, Micreprogramming, P.

Freeman, SRA 1975 g . .

Interpretatlon Mlchgrogramming, and the Control of

a Computer, oJe nn, Introduction to Computer

Architecture, \RA'l980, 76.9.A73157.

‘ :

FIT - Firmware Specification, Implementation,
. Validation, W. K. GILQ}\ P. Behr & R. Gueth

Firmware, Microprogramming ' . and Restructurable

Hardware<, Proccedings IFIP Working Conf rence, North
Holland, QA 76.8 1189 1980. y

in a Time - Sharing
*Proceedings 10th Micro

Dynamic Microprograming
Enviroment, R. K. GuhaJ
Workshop, SIGMICRO 1977.

A Data. Abstraction Language Based on
Microprdgramming, R. _ Kurki-suonio & J. Heinanesu,
Proceedings 13th Microprogramming WOrkshop, SIGMICRO
.1988 , "
. PN : DA
Controlled Program Design by Use of the ABL
Concept, W.M. Jaworski & H.
Hinterberger, Applied Informatics July 1981.

Instruction Seqhéncing in Microprogrammed~Computers,

Louise = H. Jones, Microprogramming by Sondak &
Mallach, QA 76.6 M48

Local Microcode Compaction Techniques, D. Landskov,
5. Dayidson, B. Shriver & P. Mallet, Computing

' Surveys September 198@ , .

Design Objectives for High—level Microprogramming
Languages, K. Malik &. T. Lewis, 1llth Micro-
Workshop, SIGMICRO December 78.

SIG Micro, june 77, Microprogramming for the
Hardware Enginneer, John R. MICK)
 Strum: Structured Microprogram Development System
for Correct Firmware, D. Patterson, IEEE
Transactions on Computers October 1976 .

. .
DeSign of 'a Microprogram Generator for -the Varian

V73, M. Persson, SIG Micro, december 1977

13
Horizontal

Language fof ‘
Tsuchiya,

Ramamoor thy &

A High Level

Microprogramming, C. M.

- IEEE Transactions on Computers August 1974
' . ®

£y

RAUS80

RICHB@

SEL1

SEL2

SHRIB1

SINT84 -

SINTB1

STEV64

TUCKES

WILK69

WIRT73

A}

2

Microprogrammlng. a ?Tp;orial and Survey of Recent

Developments, T. G. '~ Rausther & P, M. Adams, IEEE -

transactions on computers, january 1980

Ekten51ons for Mlcrocode Generatlon & Verification,
L‘I " Richter, , IFIP Conf. On Firmware,

Mlcroprogrammkng & Restructurable' Hardware, North

Holland May 1988, QA 76-1189. ‘.

’

SEL 32/75 WCS ﬁeference Manual

SEL 32/75 Microassembler nghnicalQManuaf

'

IEEE Transactions on’ Computers, July . 81,

~Introduction, T. Lewis & B. Shriver

A Survey of.High Level Microprogramming Languages,
Marleen .. 8int, . Proceedings 13th . Anual

. Microprogramming-wOrkshop, SIGMICRO December 19880

)

MIDL: a Mlcrolnstructlon Descriptlon Language, M.

sint, Prqcéeedlngs 14th Mlcroprogrammlng WOrkshop,‘

SIGMICRO Degemcber 81.

Bell & NeWéll Cbmbutér étructures, The Structure of
System 360 Part 11, P.‘ 664, W. .Y. Stevens

Cohmuriications ACM, december 65, Emulations of Large
Systéms, S. G.- Tucker .
. ’ ,
Computlng Surveys, SepE .69,.The Growth of Interest
.in Mlcroprogrammlng A ‘Literature Survey, M. '
Wilkes . . - ‘
3—' , .

N. = Wirth, Systematic Programmlng An Introductlon,
Procedures & Functlons, p. 93, Prentice-Hall -1973

1

-

L}

LY

L e rmarr e i

[

g

- <instruction set>

APPENDIX A - THE GRAMMAR OF ABMPL

’

the grammar of ABMPL follows:
<m1ctoprogram> s:=
MPROGRAM <identifier> (<base address><parm>),
<{machine>)
<{program>) '
END.

<parm> ::= ,{storage items> !
<empty>

¢<machine> ::= <sStorage>
<{synonyms>
<microprocedures>
<instruction set> .) e
<predicates>

<storage> ::= STORE <storage items);

<{storage items> ::= <valid identifier> ! »)
<vilia ident{§ier>, <storage items>

<synomyms> ::= SYN <synonym lis§>

. k3 N '
<synomym list> ::= <synonymd>; ! =% Y
<{synonym>; <synonym list>

<synonym3 ::= <valid identifier> = <identifier>

<micropr6cedures> ::= <microprocedure> <m1croprocedure
: <empty> ' .
7 ‘ B
<microprocedure> ::= MPROCEDURE <identifier><parameters>;
- : <m1cropfvcedure block>

END; "o |

{parameters> ::= (<{storage items>) !

) <empty> \

<mic}oprocedure bIock> at= <machine> <procedure> !
. EXT ase addgess>;

- <procedure> ::= P DURE <cluster\:list> ‘

SET <1nstruct10n list> ! b
Kempty>]

<instruction list> ::= <instructiony; !
- <instruct10n ,‘<Jnstruct10n llst>

<instruction>

<
_<i code>). <valid operation> <implicit assigments>

<implicit assignment> ::= '<'<sto}age items>'>'" 1 .
<{empty> ’
<predicates> ::= PREDICATES <predicate list> |
<empty>
<predicate list> ::= <predicate>;:ﬂ . ,
‘ {predicate>; <predicate list> ~

<predicate)> Dr= <p code>) <expression>

__ %program> ::= PROGRAM <cluster list>
- <cluster list> ::= <cluster> ! :
<cluster> <cluster list>

7 {cluster) ::= CLUSTER <c coded> <alternative list>

<alternative list> ::= <alternative>. ! ,
' <alternatived. <alternative list>

<alternative> ::= <alternative code>) <abs statement)

<abs statement> ::=

<abs condition> <abs actions> <abs control>

<abs condition®> ::= ON <predicate references> |
<empty> . o -

<abs 'actions> ::= DO <instruction sequence> !
) <empty> .
<abs control> ::='GO <c code> ! Co .
RETURN

. =
- = i

<predicate references> :
<predicate reference> !
<predicate reference>, <predicate references>

© Kpredicate reference> ::= <sign> <p code>

. <instruction Sequgncé> HER
<i code> ! .
<i code><seq op><instruction sequence>

<sign> ::= + | - ! <empty> -

<i code> ::= <characters>

= {characters>
A-2 .

(p code> :

I)

197

-

Kc code> ::= <(characters> ‘

<alternative code> ::= ~<cha'racters> T

<identifier> ::='<letter> <characters>

{characters)> ::= <character><characters> 1

<character>
<character> ::= <letter)>-!
‘ <digit>
<digit> ::=01 1 12 1 31 4!
51617 181! 9"
<letter> :2=A ! B! . C |I'D{ E! F
. JI!/ K!{L It M! N! O~
sl T!' U zvs‘_vnx,
v
. K
’ ..")
','.
' ’ A-.j

L8 SR e i -

-

]

161 HY I ¢
1 Q! R !
oz

-P
Y

.
B e L T T N DU

APPENDIX B - THE GRAMMAR OF HAL

, The grammar of the Hardware Abstraction ‘Language.

‘fbl}aus:
R

<machine) :i= MACHINE <identifier>;
‘ <machine description>
' END. ‘ ¢

<machine description> ::= <data structure>
<functid%a1‘operations>
<control structure>
. .

<data structure> ::= <data types> <storage¥

<data types> ::= TYPE <types> !
{empty>)

<types> ::= <type declaration>; ! e
' {type declarationd>; <types> v

" <type declara%ion> ::= <identifier>= <type>

<type> ::= STACK[<positive constant>]'OF <type> !

. SEQ (Kconstant>,.<constant>) OF <bit type> !
ARRAY [<index type>] OF <type> 1
TUPLE <field list> END !
{simple type>

‘ <bit type> ::= BIT | IERO | ONE
<index type> ::= <simple type> ! C - ’
{simple type>,<index type> ¢

<field 1list> ::= <identifiers declaration> !
. {identifiers deqlaratipn);(f&eld list>

t '
N

<identifiers declaration> ::= <identifier list>: <type>

<identifier list> ::= <identifier> " ‘
. <identifier>,<identifier list>
<simple type> s:= <identifier> *! . Lo
‘ , <bit type> ! -
{constant>,.<constant>

Y

'<storage> ::= STORE <s£orage items>

<storage items> ::=
<jdentifiers declaration>; !
<identifiers declaration>; <storage items>

“~ ’ . .

Cu

[P

o e e g e

et g b it o

r,

.

* <operation> ::=

¢

.

<functional operations> ::= OPERATION <operation list>

‘¢operation list> ::= <operation> ! / T

<operation>; <operation 1list>

s

EXP: <explicit operations> <underlying operations>

<explicit operations> ::= <statement> !
A <compound statement>

<compound statement> ::= COCYCLE <statement 1list> END =

4

‘¢statement list> ::= o
<{statement> !
<{statement><{sequence operator> <statement list>

4 t

{sequence operator> ::= , | ;
<underlying o6perations> ::= . :
IMP: <implicit operations> MIW: <microword> !
MIW: <microword> ‘ !

<implicit operations> : .
<implicit operation> ! L . .
<implicit operation>; <implicit operations>

<implicit operation> ::= <statement> v
. . . <{compound statement>

<microword> ::= '<bit string>.!

<bit strgpg> ::= <bit description> !
<bit description><bit string>

<bi’t description> ::= 06 t 1 | - | <letter>

' ¢statement> i:= <simple statement> |

<conditional statement>

<simple statement> ::=

START <variable concatenation>:= <expression> !
<variable concatenation>:= <expression> !
NULL:= <expression)> !

<predefined procedure call>

<conditional statement> ::= ON <expression> DO (<actions>)
<actionsd> ::= <simple statement> 1| °
<simple statement)>,<actions>
<variable concatenation> ::=
<variable reference)> !

N

£}

B~2

{variable reference>&<variable concatenation)>

<variable referenced> ::= <variable> !
{variable> (<bit index>)

<bit . index> ::= <éxpression> ! :
<expression>..<expredsion>

<variable> ::= <identifier><specifiers>

~ r f
{specifiers> ::= <specifier><{specifiers> |
{empty>

<{specifier> ::= .<identifier> 1}
[<expression list%]

<expression list> ::= <expression> !
o <expression>,<expression list>
. {expression> ::=
* <simple expression> !

<simple expression> <relational op> <simple expression> .

<relational op> ::= # I = 1 < 1 > | <= | »=

,<{simple expression> ::=
<{sign><term> !
‘Ksign><term> <add op> <simpler expression>

<{simpler expression> ::=
<term> I
<term> <add op> <simpler expression>

.<add 6p> ::= OR ! XOR | + | -

{term> ::='<{factor> !
: <factor> <multiply ap> <term>

<multiply op> ::= AND | *) /
4
< factor> ::= <concatenation>.! ‘
. <predefined function reference> ! '

(<expressiond>) |
NOT <factor>

-

<concatenation> ::= <element> !
<element>&<concatenation>

<element> ::= <positive constant> | /
<variable reference> |
' <literal indicator>

<11tgra1 indicator)> ::= $<letter>

B-3 ¢ .

e oty

Y

e]

———

L)

- ’ o i ‘:,—/
b - ., .
<control structure> ::= .
<tests’description> <dontrol operations>
<tests gescription> ::= TEST <test list> g
Ctest list> ::= <test>; | R o
Ctest>; <test list> | ‘
LY .
- {test> ::= <expre551on> <tim1ng operator) <time>"
v : . L.
Ktiming operator) ::= AT | AFTER ‘) et
<time> ::= <sign> <phase> ©) "

<phase> ::= <positive integer> § . .
<positive integer>.<phase>

L4

o ! -

¢, EErS

<control operations> ::= CONTROL <control. list>

<control- list> ::= <control operation>; ! '
. <control operationX; <control list)>

<control operation> ::=
EXP: <control description> <underlying operations) . .

A

<control description> ::=
<condition> <control operator) {concatenation>

~<condition> ::= ON' <expression> ' :
{empty> - o

<control operator> ::= GOTO ! GOSUB 1 RETURN e

AY

<predefined procedure call> ::= ‘ .
SHIFTC (<shift parameters>) !) o
PUSH (<storage id>,<stack id>) ! '
POP (<stack id>,<storage id>) Co

<stack id> ::= <variable concatenation>
<storage id> ::= <variable concatenation> ‘
<predefined function reference> 1i= ,
SHIPTV(<shift parameters>) ! e . .
SELECT((bit index> ,<expression>) C. <N

<shift parameters) se=
Xdirection), <quant1ty> <fill bits>, <shift }tem>'

<d1rect10n> HE R RIGHT ! LEFT

<quant}&y> : 9= <concatenation> ' . 0 ‘ , | L

’ <

B-hs .o

ek

,o?

[l

-

- <letter>

<f111.pits>'
<shift item>
<identi£ier>

<characters>

4 1

<characteér>

<constant> :

Q-
| M] \

rd ' 3
"

- »

:t= <concatenation)’

iz= Cvariable concatenation>

% s
::=-<1ette;><characters>
{
te= <character><qharaéters> [}
<empty>

1= <letter> '1Kdigit> g

«

= <s1gn><p051t1ve constanti

<posxt1ve constant> ::= <decimal> .

¢
! <decimal> ::

<hex number>.

1

<hex digit>

) o

c > xt<hex number>.? ,1

0'<octal number)' !

™

B <btnary number>"

= <digit> 1 . o
<dlg1t><deo1maii' . ‘

.
t

g-rl1 1t 213 1 4"

F5 18 1718719

R hex d1glt>-
ex d191t>§hex number>

<octal nhmber) ;:é <ocha1 &igit> Lo

<octal digit

_<binary number>

. ‘// . .
<binary digi

<octal digitd><octal number>'

»

> =@ 11128314151
HHES <b1nary digit> !

4:

t> 2= 0 1 1T,

S

e \., - -

<b1§ary dlglt)(blnarylnumber>

1

Vi Ry

L 3

i .)

L} (‘ v ‘

. . , " - -
» » . . . - -
APPENDIX C - PARTIAL DESCRIPTION OF SEL 32/75

! ~ 4 v : K

~ . The program that processes the HAL description of the
0 microarchitecture is ‘called the Machine Information File

) ¢

Generator.” This program was constructed using the recursive

e descend method of compilation. .,
L _ For the purpgsé of this thesis the MIF generator is
. B ? -

B}

exclusively concerned with the generation .of the information

required to .produce. microcode through ° .ABMPL. The |
descriptions of fdnctiopal operations, ‘Eests, and contr%ﬁ
- U

N '~{;QSQra§iqes are parsed to generate records.) X ,

P s 5 o . - Q

v -

. ~ For bath functional and control operations, .the

. ~ »

. characters:fn an explicit operation age hashed to produce a
- "

numeric code to be associated with its corresponding

. microword, Literal inf8rmation 1is also included in the-
. . . ° . _

record. . - .

. - . ?
' 'The characters in a test description-are also hashed to

’ - - ‘ .
prodyce a numeric code associated with a _priority number.
. M ' ¢ i ! -
' K, .
This priority is d%te:mined from the keywords 'AT' and

]
'

VAFTER', with 'AT"testg having the@pighest priority. : 7
" o -~ f ' ,.,4 . . r oo ‘
I8 v ' . A
C ¥ ,j/ The ?utput of, the HAL compiler is showm in the following
N - pagei. ‘ ‘ : - ‘
oo . /
o N IV . i
N ® .
. 1) .
{ i) '
ol ' .
[N \
k] - . J ‘ . ‘
. 1
) « "C~1 - \
] . . . +
. . . vt A

S e

PO T Y [—— 0000110000000 T ————~— —~TT11,

&..I.l U3H=
. T \ C : ana -
(0 =:93INNTY ‘I =:ZNTYN 'O =:ZNV)-00 O < CM$ICOINIHITFIII9IE NO .
) (1 =O3NATV ‘T = ZNIYN ‘O =:Z0Tv) 04 O > CH$ILOIMIHIFII IO NO -
-/ *(0.=:93NNW ‘0 =:ZNTYN ‘T =:ZNT¥) 0d O = Cus$ICOTWIHIITIIOIY_NO
. \ \ , 104200 dWI-
- o CoLe - , [H$10OIUTHIITIS0T4 =110 ‘dX3 -
X L. t, - - HYHU~———0T00T0000T 10000000 T —mmmmmmmme ﬁaﬁmzm ‘MIM o
- (0 =:93INATY ‘T =:ZNTIYN ‘0 =:ZNTY) 00 O < CH$ICOINIHIIILO3N NO -
(3 =:93N0T9 T = Z0TWN 0 =iZndv) OG-0 > [M$ICOIMIHIITIADIN NO .
(0 =i83NNTY O =iZNTUN ‘T =iZAT) 00 O = CN$ICOIMIHITIIAOTY NO' .
. : \ . 3T0A003_ *dM1 .
’) o : ™ .- codrusIC mmnz omm = NOISN IV ,
_ . : [H$ICOIHIHIT 14930 =14 -
. . | 3794200 dx3 . -
- : : o oy T NOILW¥3dO
] L _ /f\\\.,\ ' . 4 ‘. (118 9IUIH :)
. -, (1TH :ASNEIE -
- : (T8 INOISAIY -
. ; L R < ZLbOW (93NN ZOWN 2Ty
o \ 1118 40 (27 °°0) ©3S 40 CHINOVLS uxo<hmwr
_ , ,
) :) i . . raN3 S o
qQuOMW 40, [ELTT ° "96041 AVHNY : SOM . S
‘ .) - » QNOMW I0 [G60Y © "01 AVHHY WDHD O
e _ < - F7dNL FOVHOLSD

I -

-

mw> MDLYY3NIO 3114 NOILVWHOSNI 3INIHOVK

L4
)

o 'q¥0OM 4O ﬁm¢aﬂom.,0u AVHYY “ZNAM - '
MNVEOIN 40 [T °"01 AVHYVY 311493y .
’ ‘@40OM 40 nmmw ‘01 AVHYY Ioh<mom

‘L18 40 (21 °°'0) b3S omz
119 40 (12 0) b3S :2d
‘LI€ 40 (E2°°0) D38 YYW
LI dO0_(4°°Q) D3IS HLIIN'LITY
,‘H3LSI93y ‘IQ'TI‘0I‘L‘S mmn#m

o ‘NILSTOIY 40 [ST 0] AVHHY =YINVEOIH -
s . 4118-40 (1€ '0) D35S =y3.S5193y .
. .- (118 J0 (Lt '0) B35S =QHOMMW -
{118 40 (1€ "0) D3IS =QHOM 3dAl -

mnnmmqmm INIHOVKW

A -

~

‘¥ 'Ot 60 "68/£0/28 §4/2£73S_:1308YL £ T SON OLI ¥3FAD kmOI .
‘WILBAS OZHZZ<mODmmﬂmUHZ N>Hmzmxmmmzco >HHmmm>HZD VIQYOONOD ..

-~ .) 310A202 :dX3
£, e - - —HHYY e oooﬁﬂaﬁoo~01||ooﬁ|sur|tooomzmnzmz
. (0 =:93NNTVY ‘T =:ZNIYN ‘0 =:ZNTI¥Y) 00 0 < T — CH$ICOIMIHIIIA93H NO ‘
(1 =:93NNTY ‘T =:ZNIYN O =:ZNV) 00 0 > T - CHM$ICHIMIHIZTIAO3N NO
‘(0 =:03NNTW ‘0 =:ZNTYN ‘T.=:ZNW) 00 O = T — [N$ILOFHIHIZ IO NO
. . 3ID5A00D :dWl
. T — [H$ICOIWIHIINILOZY = 1 :dX3
. ‘L e -— ~ T 11100001 10~~ Sig IW
» (0 =:93NATY 'T =:ZATYN ‘0 =:ZNTT¥) O O < Id NO
- (1 =:93NNTIY ‘T =:ZAIWN ‘O =:ZAv) 68 O > 140 NO
. : (0 =:53NNIY ‘0 =:ZINTTYN ‘T =:ZN¥) O O = IAd NO
- K 310A200 dWI
) 10 =:1 :dX3
F— _ —————— ——110--—0000, :MIW
, T - MLION =:HIDN :dX3
1, — —— r|||4444444411|noﬂooounlooﬂﬂoﬂﬂu:||m0011|||ulnumzm“:Hz
- (1 =:93INNTVY ‘T =:ZOATOYN ‘O =:ZN¥) Od O > .000000.X%LIT NO
- (0 =:83NNTIWV 'T =:ZAIWN ‘0 =:ZNV) Od O < ., 000000, XRLIT1 NO
, . ‘(0 =:83NNTV ‘0 =:ZATWN ‘T =:ZN¥) 04 O = ., 000000, X2LIT NO
. : . , m;o>ummmumzH
¢
. - B (. oooooo xakHJ.u ‘0)123773S = :H¥L1ON A
o . e =:117 1
_ _ A 310A200 dX3 O
.) ¢ e wnwunw||||u|4444444J-u||oﬁoooausooooﬁoﬁqﬂHoﬁﬂolunnuunlumzmmzuz
X T A (0 =:93NNTWV ‘T =:ZNTWN ‘0O =:ZN7T¥) 0d O < Id ANV LITT%R.,000000,X NO
(T =:93NATV ‘T =:ZAYN ‘O =:ZNT¥W) 04 O > Id ANV LIT%, 000000, X NO
. (O =:93NNTY ‘0 =:ZNTWN ‘T =:ZNI¥) O O = 1Id ANV 11718, 000000. X NO
. oo . o i ~ JI2A20D :dWI
- o .) . anN3
. . , ‘ 1d any 1172, 000000, 10N .
T) . Xe= 111 :
- \ . : \ , . .370A000 :dx3
R , e - : ||oooooﬁﬁﬁnjnooounzlnnutnmmwnxmz
" .] (0 =:93INATW ‘T =:ZATYN ‘O =1ZNW) 00 O < S NO
. (7 =:83NNTV ‘T =:ZOAMYN ‘O =:ZNW) 00 O > S NO
(0 =:93NNTY ‘0 =:ZAYN ‘T =:ZNv¥) 00 O = S NG _
- - 310A200 :duWl
P . a S =7TINN :dX3 -
’ L¥r."0% 60 ‘68/L0/88 G64/8€73S :1398VL €1 SON 041 ¥38AD :1S0H

343A mohimwzmo wl_mm NOI LYWHOSINI MZHIUQZ TWILSAS ONIWWVHOOUDOUIIW JNISNIHIULWOO ALISUIAINN <~Q¢UUZQ;U

. . Fy

- ~
~ - A o v b ity o ey a ey e

- (0 =:9INNTW ‘1 =:ZNIYN ‘0 =:ZNTY) 0Q O < T + [HSICOINIHIITIAO3Y NO
- (1 =:93NNT¥ ‘1 =:ZNTIYN ‘O =:ZNI¥) 04 0 > I + L[H$ICHIMIHIFIII93Y NO
. (0 =:93INNTW_ ‘0 =:ZNTYN ‘T =:ZNW) <+ O = 1 + L[HSICHINIHIFTIION NO
. ‘T + [USILOIYIHIZIFOIY =:1 .
. 3704200 :dul
- T + C[H$ICOIUIHIINIH93Y = :CHSILOIYIHITNIH03Y *dX3I
_ 0 e e 00010000110 ‘MIW
_ - 1 nmaunammuxumJH&mmm
i h ‘. (O =93NNTIY ‘T =ZNTYN ‘O =:ZNIV)I-0ad O < I4d NO
, . , (I =:93NNIV ‘T =:ZNIYN ‘0 =:Zn¥) 0d O > Id NO
- (0 =:93NNTY 0 =iZNWN 'T =:ZMv) 04 O < 1d NO
o K . .) - . IIDAD0D dMWI
: S . © I@ = [y¥$1C9IUIHITNISO3Y :dX3
. . Lt —— 1001----110010000 —— 0000, MIW
- . \ (10%S (OIS ‘T ‘LHOIN¥) J13IHS :dX3
o B - -000T---~110010000 ——D000, MIW
, - ,] (10%S ‘0 ‘T ‘LHOIY)D14IHS :dX3
R PR - e 70007010000000-~-~==-===:_MIH
/ . _ . an3
(0 =:93NNTY ‘T =:IZATYN ‘0 =:ZNI¥) 0Q 0 < L ~ S NO -
‘(1 °'=:93NNTV ‘1 =:ZNIYN ‘0 =:ZN1¥) 00 O > L ~ S NO .
‘(0 =:93NNTY ‘0 =:ZATWN ‘T =:ZA1¥) 0 O = L ~ § NO
- : : U) ,312A000 dWI
S - . ‘ ‘ . , L= 8§18 tdX3y
N - o ——- \ nn4;-1u:u||nnﬂoooﬁﬁooooooooununnnuulmzwquz
. 6 .
(0 =:93INATY ‘I =IZATYN ‘O =:1ZN1I¥) 0d. 0 < L + S NO
(7 ZI53INNW ‘I = ZNTVN ‘0 =:2A1v) 663 6 S 1 + S NO
(0 =:93NNTY ‘0 =:ZNTYN ‘T =:ZNW) 0@ O = I + § NO
, : JIDA00D ‘dWl
S L+ 6§ =5 :dX3
) L L {c T ———— : 0000000, :MIH
o - ‘6 "TdX3
e i i B Vnﬂﬁﬂﬂﬂ«oooooﬁﬂﬂuunlnLchmzmuzﬂz‘
9INNTY (T =Z0TUN 10 =:Z0NTW) 00 0 < L+ LITR, ddddad. X NO
‘T =:ZNOYN ‘O =:ZN7¥) 00 0 > L + 1I7%,433343.X NO
=3 ‘0 =iZNTYN 1T =:Z07) 0Q 0 = 1 + 1178.33d33d, X NO
: ; 3704003 _:du1
L 4 LITA7443444, X =000 :
- ST e ,
‘LY OV 60 62/.0/28 GL/ZET3S. LIOWYL €I 'SON OLT MIEAD :LSOH

'5¥3A ° HOLVH3IN3O 314 ZDH._.,.\ZmDuZH ANIHIOVMW ‘W3LSAS OZHEZ.quDmmOmUHE AISNIHIYJWOD ALISHIAINN ¢HQmOOZOO

’ - - /) }?L,

deor e

‘. .319A002

, . ‘I
N\ ‘ ¥$ 0109 ZnIVY NO ‘dX3
, L YYYYYYYYYYYYY \ |r||ﬂﬁﬁoommw MIW
)) . _—) & : 19dM
. ! . ' Y+ umz,u“om:)
-~ s , I10A20D dWI
- \ . . . vs 0100 . :dX3 .
', : VYUYV OV — —— —-— ||o~ﬂoommw ‘MIW
' , . — : VS =:(2T "1)ddW
. i - - T+ JdW = :JdN
. - ' e - 3I9A20D duWl
. -) vY$ 0109 :dX3
‘, ~—YYYYYYUY -10T0000., :MIW
. - aN3
- ¥$ =:(21 " '¢)ddW
T+ Odil = :DdW
) \ - 3710A200 dWI’
‘ - - 9¥¢ 0L09 .mxm
’ e VIV ————— e - 0010000, “3~z
. : aN3
. ¥Y$ =:(2T ‘6)IdW
_) ‘I+ JdW = :ddW
3IDA20D mmzH,D
- ca 0loo ;mxm
)) ' ‘ Jomhzoo
i = - T+ ¥314¢ O = HIDN -
- 2+ 1V ZOIVN -
. 2+ 1Y ZNIV
Q .- 1+ ¥3Ld¥y NOISNY 1S3l
_ . Y MMY- 4 oooﬂoﬁﬁﬁnniooo llllllllll MIW
’ . nmaunommHIHNJH&wmm,
. h . (O =:83NATY ‘T =:ZNTYN ‘0 =:ZNWV) 00 O ¥ S NO
3 . AT =DINNIWY ‘T =ZNTYN ‘O =:Z01 W) 00 0 > S NO
- (0 =:93INNTY ‘O =:ZINTYN ‘T =:ZNW) 04 O umm zw
s N) ¢ = .
. , T : 3710A00D. :dWI
S = 'CY$ICOIYUIHIINILOIY :dX3
t, - \uummmmuuiunslnnooooooﬁoﬂﬁo 001 0000, :MIW
1 nmuunommeumJHuomm .
L3 - N ~ ’sz
. LYy OV 60 ‘b8/L0/E8 GL/EETZS L3D8VL E T SON 0L ¥N3E8AD »mo:‘
3834 HOLVYHINID 37714 NOILVWIOANI INIHOVW WILSAS ONIWWYHOIOHNLOHIIW IATSNIHINLWO)D >hHmmm>Hzn v IAQ¥OINDD

N

e

5

543A HOLVH3N3O 3114

v

! . (T + 2dW =:5dW) 00 NOSISNTIY 1ON NO

3 t(¥$ =:(ST T)0dW ‘T+2dW=:2dW) OQ NOISNIV NO
. 370A000 :idWI
. o //‘ v$ 0109 NOISNTY NO :dXJ
—YPYYIYYY ———— T 000 =— ————- ﬁoﬁﬁwomrm MIKW
: (1T + 2dW u/wmzv 0a NSISATY LON NO
(Vs = (BT "G)O0dW ‘1+2dW=2dW) 00 NOSISNTIY NO .
. . : 370A00D :dull
Vs okno 'NOISNTY NO :dX3
, VoY 1000-- oouﬁﬁomzmuzmz
(1 + DdiW = 12dW) 0d NOISNIY LON NO -
‘(Y$ = (2T "&)OdW ‘T+2dM=:2dW) 0OG NSISNIY NO)
L _ 3I0A00D dulI
¥$ 0109 NOISNTY NO :dX3
- 1000~ 1001100, :MIW.
§ X aN3
: (T + 2dW =:2dW) 00 NOISATY LON NO
. “((DdW 'MIOVLSM)dDd) 00 NO9ISNIV NO
3I0A000 dWI
WOVLSCH NYNL3Y¥ NOISNTVY NO :dX3
4’
YYYYYYYY YO Y —— fufncfrutuﬁﬁﬁﬁﬁomzw‘zmz
(T + OdW =:2dW) 0a ZNTV¥_LON NO O
. ‘(¥$ =:0dW) Od ZNIV NO &
o . 370A000 dWI ©
‘ - ‘¥$ 0L09 ZNTV.NO :dX3
A AAAeA AA A A Al - o"«ﬁ"omrw MIW
(1_+ _OdW = :3dW) 00 ZNTY_LON NO
‘(¥$ = (ST "T)IdW ‘T+ddW=:2dW) 04 ZNIY_NO

- : "FI2A00Y dUWI
! . ¥s 0109,ZNV NO -dX3

Lt Ot 60

zcmh<£m0uzm INIHOVK

A A A A A A - ﬁo-ﬁomzm“3mz
- (T + OdW =:2dW) DA ZNY LON NO
(Y$ =I(ET C)IdW'T+IdW=:2dW) Od ZN1I¥ NO°
! \ 7 312A00) tdul
¥$ 0109 InW- NO :dX3
PP ———— —_— O0ITIOT., ‘MIW
an3 -
(1 + OdW =:2dW) 00 ZNTY_1ON NO
"(¥$ =I(ET "6)QdW 'I+ddW=DdW) 0d ZN¥ NO
"62/.0/88 GL/ZET3S 1IOUYL £ T SON OL1 ¥3EAD ‘LEOH

thmvm ONIWWYHODUHOUIIW IAISNIHIUIWOD ALISHIAINN YIGUHOINOD

343A HOLVH3IN3O 3114

¢

<<<<¢<<¢uooﬂ - - |ﬁo~0«ombm
- (T + DdW =:0dW> Od O # ¥1ON NO
‘(Y$ = (2T "§)DdW ‘T+DdW=:DdW) Od O = HIIN NO

. - 3FDA000

-) . ¥$ 0100 0 = HLIN NO
YYYY————T00T—— - —————00I0100,
an3

. (1 + OdW =:0dW) 0d O # HLDN NO
(Y% =I(ZT +4)DdW ‘T+0d=2dW) 00 O = HIIN NO
- 310A002

- ¥$ 0100 O = ¥iON NO

VYOOV YYYYYYY - TT1TI00TL,

(1 + OdW =:2dW) 04 ZNIYN LON NO
‘(vs = :3dW) 0O ZOTIYN NO

L 0¢ ‘60 .

NOILVWYOANI 3NTHOVKW zmhm>m INIWWYHOOHOUIIW IAISNIHIHAWOD ALISHIAINN VIAHOINOD

e s 24 i % B stbirmininy st L

)

3710A002
¥$ 010D ZNVYN NO
VYYYYYYY YOy —— - aunoﬁﬁooﬁmzm
: Aﬂ + OdW =:0dW) 0d ZNTIYN LON NO
(¥ =:(ZT "T)DdW ‘T+3dl=:2dl) DT ZNIYN NO
372A002
s 0LO09 ZATVN NO
YYYPYY Y ———— ——— ————————- 1010011,
: : ﬁ N
, sy 3diW =:2dW) 0d ZNTIYN LON NO
(Y$ = (21 m dil ‘T+0dW=:0dW) 0d ZNJYN _NO
_ 310A00D
v$ 0109 ZNTIYN NO.
. - rd
YYIY———— S A —— -00T0011,
- , . ON3
(T + OdW =:0dWI¥ 04 ZNIYN LON NO
(YS = ") 0dW ‘T+2dW=0dl) 0d ZNIYN NO
_ : 3710A00D
¥$ 0LOD ZNWYN NO
YYYYYYYYYYYYY000- ‘ = ﬁﬁﬁﬁmommm
(1 + OdW =:2dW) 0a N9ISNTY LON NO
‘(v$ =:0dW) 00 NOISNIVY NO
IT10A00D
. v$ 0109 NOISNY NO
VY YYYYYYYYYY 1000~ ~———— - -0111100.,
. . : anz

DN\NO\NQ mh\Nﬂme km0m<h €T SON OL1 H3EAD

aZm“

‘MIW

‘dWl
‘dX3

“MINW

‘dWI
dX3 -

IW

TdWI
‘dX3

MINW

‘diWl
-dX3

1
(&

CdWT
dX3

‘MIW

cdWl
-dX3

‘MIW

‘dWl
-dX3

MIW

:1S0H

N

!

.- - (1 + 2dW =:2dW)" 00 ZNY L1ON NO
" (Ddi" WIVISA) dDd) “0a ZRY NO
- : 3710A000 dWI
. , YOVLSS NHNL3Y ZNTV NO :dX3
~ . - - !
e ‘. LYY Y~ +-=--=1111110000, _:MIW
Ve =:2dW = |-
. /- “(AIVLSC ‘W) HSRd
J . v ‘T + OdW_=:ddW
C N I10A002 :duWl
- v$ anS0d :dx3
. £, PV Y YT ————— ﬁﬁﬁoﬂﬁooomzm“zur
, e - . (2T C 1) 9dN
. % . . .hxo¢hma "IdW YHSNAd
. _ ‘T F DdW =:dJW
: .. T1IAI0D (dWl
« - p : _ o . ¥$ aNS0Y :dX3
' :, YYYOYY Y —— ~IT110 . MIW
. J RS W
\ v$ = (21" '¢)ddW
.Axo¢km7.omzv:m:¢
< ‘ ‘T + OdW_= o
.- 31555085 :dl
' , v$ @NS0D. :dX3
. ‘, SRR - —— 1110010000, MIWS
‘ i a3 %)
. . - - V$ = (8T '6)IdW
©MDVASE TOdWIHENd
T+ DdW = :dIW
- - I10A000 dWI
g . v$ BNS09. :dX3
) f, YYYYYIYRYYYYY - «Hﬂﬁﬁﬂﬂ”omzu MIW
;) (T + OdW = om:v 0d "Z0Y 10N NO
“(V$ =:DdW ‘(MIVLIS, 'IdW)IHSAd ‘T+2dW=2dW) 0d zN1¥ NO

3T1DA00D :duWl
v$ NS00 ZNTY NO -dX3

- v

1007 uOOOﬁOMKNHZHI
(T + Jdil =:2dW) O O # HLION NO
~ ‘((JdW ‘MIVLSYdOd) 00 O = H¥ION NO
JIADA00D :-dUWI
. MOVLST N¥NL3Y¥ O = ¥ION NO :dX3
‘8 "Ov DO &T/L0/E8 SL72ET73AS_:130UYL € T SON 041 HIEAD - LSOH

.mw> HOLVY3INTO 3114 NOILVYWYHOINI wZHIo<z

‘HILSAS ONIWWYHOOUDOHIIW IAISNIHIULWOD ALISHIAINN ¢HQ¢DUZOO

o

(\\x
v
~ .

+

e

IS¥3A HOLVY3INIO 3714 NOILVWYOANI

.« -

— e -

1000000, :‘MIW

- " ‘ . T (0dW ‘MOYISF)dOd. (dWI-
o : WOV1S~ Nunisd :dx3

100110T. MIMW

) - a o an3

‘BY OV 60 ‘'&C/LO/CB S./ZETN3S_11IO0NVL £ T SON 041 M3HAD :LSOH

INIHIVK thm>m DONIWWVHOOHdOMOIW mbumZMIWmmZUU >hummw>HZD (unm002004

v ks

[STVEPRN PR PO PP

nnnnn ——==700T———— - 1000100 0 O .0
|u||a|uan|||:|o|<<¢<¢<<¢«ooﬁuun|||nnunuullnn‘nnnnanunununﬁoHoHoo 00 8
- r PP e e T OO0 T e e A 00I0I0O 0 0O ¢
- - - ~100Q0———~—— —_— 1001100 0 0 O
—— - -——100IT0T 0O O O
S =YY Y P YYY Y000 —~ - - TITII00 0 O ET §
uuuuuuuu - ~———r~—YYYYYYIYYYYY T 000 - ==mfemee===~0Q111100 O 0. 21 9
- —— YYYYYYYY———~T000 - - - --10I1100 0 0 8
llllllllllllllll YoYY—————————T1000—- --0011100 O O 1 4
lllllllllll —— e YRV —_—— - —— 17110011 © O E1 &
- P e e OTI00IT 0O O 21 9
|||||||||||||||| AR AL N A A L —— —— ——— I0I00TIT O O B
———————————— L L A ————— ———~==—00T1001T 0O O b
|||||||||||||||| PV Y P e e e JTTTITIIO] O O £1
——————— e PO e e —<->-11TTI0T O O - £}
nnnnnnnnnnnnnnnn YYo= QTTIIOT O O 2T
|||||||||||||||| YOOIy —— —_ - - ————m— e e~ TOT1T0T O O 8
- ————— Y —— ————————— 00TII0T 0 O ¥
||||| - ———— - - . 1000000 C O
— - RAAAAAAAAAAAA et ITITITO000 O O €71
————— VYOV YYYYYY - —_ —————————— TFIOTI0000 O O ct
A AAA DDAt ————— e ~-III1I0I0000 O O 8
- ——— A AAL e T110010000 O O v
————————— e VY Y Y e e e e ITT0000 00 El
—_ YYYYYYYIYYYY - ———————— -0TI0C000 0 0 21
llllllllllllllll YOYYYYYY - —— - - 1010000 O O 8
- ———YYYY - - — --~-——--0010000 0 0 ¢
3
—————————— e ==T117171731----01000-——001 101 1 | ==~D00—————~=——— 00 8
- - ————————— HYYY——--0T00 100001 10000000 T ———=—v——— ITIt oo ¢
———— e ~ e YUY Y Y — e 000000T0TT10-—~00T =~=—=— 0000 0 O v
llllllllllllllllllll 100T~——~—T 10010000 —-——0000 O 0
F——————— HHYY Q00TFTI100T0-——00T————n 0000 0 0 ¢
——————— —000T—=~—-110010000—~—~ ——0000 0 O
—_—— - - 1TTIT1---~01000-~-0000TOT T T 10T [Q=m——mmmmm— o0 8
lllllllllllllllll — - ———==110~=~0000 O 0
- ——— TNT- TTITTI00000T T I—————————~ 00
s - _ IT10 0000000 0 O
- - ~HHYY~——————=-00001 10000000 ———————ae ITIT 0 O
o ———————— =YY Y- ——— Q00T0000T JO————————————— 00
uuuuuuuuu ——— ——==YYYY-=——mm e 2=—000 101 [[=~=000~==——=—=m=x O 0
—_— — ~——10001010000000~————————~— 00
i —_—— -1000T 100000000 ———————~—— 0 0
- N ——————— —=====—000007T 11 000 00
e e e e e e e e e e e e ITTT10000T10 - 00

O
oot 0O

cNOBNTOMMIToO MM

VINO
TOMMIONM FOMMHMTT

01

adq

<

< g

<dq
NeY -

N
NI T W TO— OO0t RO

oM
STOAALTOA Ot Dt it

<
CCCLC

L 2 - I
€ <«
<q <<
N

- e gm—

i
-

e i o e S wy

an gt o

JpoT————— e e

APPENDIX D - SAMPLE MICROPROSGRAMS

-
'

~The program that processes ABMPL microprogram
specifications is called the Alternative Based Microcode
Gernerator. This program was constructed using the recursive

descend method of compilation.

N

" The compiler ruses a symbol table to ver{fy that items
are declared before théy are ' referenced. . The stateme 's
declared &n the instruction set are hashed and enterdd in

f
the.symbol table along with aﬁ identifier. and any lﬁtenal
information. At microcode generation time the hash code is
‘used to access the MIF to retrieve the corresponding
microword. Statements in the instruction set are not
checked for syntax,‘if a statement exist in the MIF, then it

must be syntactically correct.

4

The predicates declared are also hashed and entered into
the symbol table. The MIF is accessed using the hash code

to retrieve the corresponding testing priority.

L]
Cluster identifiers are entered into the symbol table

along with their starting address in the microcode. This is

i

done ' for branching and backpatching purposes during

microcode generation.

-~

Microprocedure identifiers are entered into the symbol
table along with their parameter list, This done to verify

actual parameters during procedure calls. No extra code |is

D-1

[4

- l -
1 N

used to handle parameters since the cost is prohibitive.
Parameter list are provided for information purposes only.

The output of the ABMPL compiler for two microprograms
follows. o £ .

2 }i . ,
Y
L]
BN
- C .
v -\ -

T U ST YL

uQ\ mDF<mmzw0 MQOOOmUHZ d3sveE 3IAILVNM3LOV

<

‘

(%

3

(#LJIHS WHLINYY FEROA*)

(%

(*

‘€696 "40 '6C/L0/28

2

(IaRs ‘(o)s "’ ﬁ.FIOHmvokquw.

n

-

o &

Z ¥3isns

2 09 T2 00 (3 \

T ¥31SN71D
© JYNA300ud
Mo = M1ON (
.

ZNYN (
§31v21d3

~._v|
R T N m,umm

T — H1ON =<¥dlD

Pl el
MtNngn

¢, OOOOOO XRLIT1*L° "0)YLD2373S l.mhoz

HQ aNVY LITR, OOOOOO~

Y3LNNDD)

(# ON3Z L1ON 17AS38 NI 1S3L)

TETIS =117
" JFTO0A20D (2
.ANDJ(ZV aN3
'=TINN
.uJO =:11I7
“FT0A00D (1
1381

‘ZNTIYN 3UOLS

ANV I 1dI LINKW L™

HILHIH

a

o

- ‘SUIOILIN
WHLIY¥0OTY S.H1D

S4/2E7135_ -130¥vL

7

UIIHAILINW - - 1a .4

14IHS-¥3qav S

d3aN9IS AdILINW _OL -

- SX01dW3 S3UNA3I08d 3HLE
oL Hn.wu>JmHhJDz,mmaowODzmt

(% LuYd INVOISAINOIS LSOW *)

H3IdILINW =)
ONYOITTdILTINK #)
(% ¥012313S_WNVE ¥ILSTOIH #)
(¥ 0O¥3IZ 17NS3H NIV 1STFL #)
(® £'Q SHYILSIOIY IVU3INTD *)

‘CATIAILIACSIY L NV 9 SHILSIHIM
ZH mkm¢m INVOILINOIS 1SVY3IT ANV _1SOW 3HL
. ONINYNLIY NOISSIO3Hd ITEN0A S3ISN AHYSSIIIN 41 ANV

7 H31SIO63Y dJO (LN3ILINOD 3HL S3¥VNDS WVHOONd JSIHL

H(P60Y)3UVYNBS t(m@ﬂm&t

£

T
‘WIALSAS OZsz¢moomm0moHZ INAISNIHIUWOD ALISHIAINN <HQKOUZOO

[

Lo L TS
I-Q®.

‘O3
. AR
‘I 4938 3¥0LS

SON 041 ¥3HAD °1SOH

-

P

L

v e

L L

N
ME L vy AT
o

T R A e,

1

»

. t T SR '
- v b
, N] V . i 3 .- 7
, , R | . -
§
» - ;. < . . W [4 - ¢ .
- . . i —] S
' o * . :
:) . - . i <. * . "aN3 - .
, ' i I (% ZE##2 =C_LINSIY *) ‘NMNL3Y 9 0d I~ NO (2
, : _ (% T-(ZE*#2) => LINSIY #) UNYRL3Y ¢ 0a_1 NGO (1 .
s . o . -2 ¥31snio
; - CL e) ’ 2 09 vErET 08 (1
. e I 8315070
.o L \ - WYH00Yd
- 2 IR - 20V (1
S - . . . <) S31¥01a3ud
o i) © R .- .) ‘10 = LLH$ICOIYIHITIILO3Y (9 -
" e)) ° Ty : : ‘1@ =:[9¥$ICHINIHIINIE9IY (6 =+
. : . . : . (<ZAY> S = Homﬁnmmﬁxum.:uomm (¢ 4
- L . S (L TR 'S)ATJILIINK (E
, : .) ‘10 =-1 (&
e : N ST e {9U$ILOTUIHITVIAO3Y = 10 (T
‘ .) . : 13s1
h\ - IS ' A ‘ : - T
;) o7 ,) (% ATAILTINW ‘%) ‘aN3
- R A N¥NLIY Z'NO (E s
; . (# v ,00,8 #) ' 09 1€ 0d T-'2- NO (& >
, . Ne" ;01,8 #) ET09 T:£7€79 0a T2~ NO_(T
i - c. C . N . v ¥31SN10 &
- : & .o o4 . - ‘NYNL3Y 2 NO (€. .
- . - : (% £10,8 #) ‘v 09 17es 0d 17720 NO (2 .
y . (3% CTT,E) '€ 09 14600 12~ NO (1 .
.) . , . v/ € ¥31SNY
- ~ - b .4 s -
- ‘ . (3 /0,8 #) & v 09 12 00 1- NO (2
. S (% (1,8 #) . E 09 149 0d T NO (¥ ,
.] b. 3 e. - L. 4 .)
.- u 2696 '60_. '68/40/28 GL/EETIS_139¥VL £ 1 SON OLI NIEAD - LSOH
. A mu»«mmzmo 30020831 amm<m IATLYNYILTY “WILSAS ONIWHYHOOHHOUOTW IAISNIHIHAKOD ALISH3AINND Eamooﬂ@o
P T . . .:. ' -) & e
h&i - [} I\ ! ' - 14 ‘\\\ .a " - N :
? 3 - . < . + - > . N - \H B .Mw
.. A R ©
-~ ; &. N . R \.r u) . . .] . u!\\n
N y - , - [@ . ‘ ! * \vr‘l”r -Mu(b

3

R

000000500080E020
000000.00080E020

1 0000900000000088

Q000000000000280
000000000040£000

-000000900090+ 004

00008000000000V0
00000 1Q0200ag100
0000060£T10000200
0000000000150000
00000500000002C

0006 00008000080
00000100200dd100
00000460E10000300
00000046000000022
0000Vv0000000008D
00008600000000V0
0000010Q200d8100
0000040E£10000200
00000046000000022
00005 0BOOO000080
00000100200a9100
O0000&L0ETO000200
0000000000 TE0000
000000460000000&2
00001 100000000V
0000H00000000080
-©000010020008100
0000050E 10000000
000000000014 0000
00008 100000000V0
00000100200a8g100
00000460E£10000000
0000£00000000082D
0000E00000000080
00000100200d8100
0000/ 41020230000

rzmmmmmwm J¢ZHUWQ¢xMI

,:.I\

a

-

(£

,<.A 4101, X) 221 SI Z(EOO&&GIUHE -d40 FZHO& >mF2m

||||| Hm e e 0110—-————=—=—=—=00010000110——=-=-1000000 omoﬁ\wimu¢
- - —————— 1110 — -00010000QJ 10———~—~— 1000000 A\nmoﬁ\xvnmne
- =0 VI0~——————————r——————— O0IT101 a~¢N°ﬁsXvN.\ﬂM¢
e —— e 00 10——~—~ - - 0010000 (.EE01.X)IEIY
||||||||||| 0110-~——=—=————=-00010¥ 1 I-——Q000————————=—— {, 2201, X)0E1¥
nnnnnnn ===t === =00000000~~—=———mm e m e m e —— [T T TO T QOO0 . IE01. X)621P
. e e e e I1110000110- @4, 0201.X)8C1t
nnnnnnnnnnnnnnnn A\N|||n|oﬁHonnuswrnntooooHﬁoooooooﬂn|||xn|1|a.ﬁﬂ (,3101.X)L21F
——————— T1010000————=——=rm——— e — 1010000 (.3101.X)921V
- —_—— ~10000000——~~01000~~~000010T 111011 0—————m—mmm (.4101.,X)821P
- m————— -1001-~--110010000 e 11Q---0000 (.DJI0I.X)b2iv
nnnnnnnnnnnnnnnnnnn —————— ---F00010T0000000—————=—~—= (, 8101, X)EZ1}
||||||||||||||| mrm === 100 I~ —m oo 1000100, (.VIOI.,X)E2It
ot €0) Lo S E 53 ———- ~-0010000 (.,4101,X)ICIb
——— - -100000 onllloﬁ000|||ooooﬁoﬂﬁaﬂoﬁﬁo ||||| ————=% A\mﬁoﬁ~xvouﬁw3
||||||||||||||||| -==1001=-===T10070000~~~======-=—~=~=—T]0-==0000 (,£101,X)&I1¥
ToITTTTTTTTTToi———————=—1001 - e e ———T000100 (.9101.X)B11 i -
||||| ——————————0101 - - - 0010011 (,GI0T.X)L1ITID
- ~11010000—- I01000Q (.P3101,X)91i¥
- r———— nﬁooooooonnnuoﬁ000|||ooooﬂo~ﬂﬁﬂoﬁﬁo nnnnnnnnnn (,EI0T. X)CIIY
- —— nﬁooﬂnlnwaﬁooﬁoooo |||||||||||| ——===110--=0000 (.2101.X)¥Ild
——————————— 1001 - - -—————=1000100 (., % 101.,X)EIIt
~—==--=1010 —pi =t e et e e 0010000 (.0101.X)SIlv
r——— — |ﬁooooooonlnnoﬂooouuiooooaoﬁﬂﬁﬂoﬂﬂo |||||||||| (,30031,.X)111d
- ~100¥——~—T1100T0000~——— == m—m— e 1310——-0000 (,300%1.X)011¥.
nnnnnnnnn et S mmmm====10001 100000000-—~~—==~—~ - {,300%,X) 601t
- —————————— e =100 = e e ——— 1000100 (, 2001, X)BOIY
- -==T000F000~—=———=~— -———————— 1010011 (., €9001.X)L01t
R T L Rt e Dt 0010000 (,Y001,X)F01v
- 1ﬁoooopbo:|suoﬂooonlnooooﬂonHHﬁoﬁﬁOInutnxlllt {, 5001, X)G01¢ -
- - ~1001--=-110010000- 0000 (.,8001.X)¥01d
- —— liuﬂoooﬁoﬁooooooonttlunnrln (,L001,X)EOQIY
~-I0101000~ ~I0T10000 (,9001,X)201¢
atulnljunlnllalnwlltﬂooo@ooosuxsoHooonuuooooﬁoﬁﬁﬁﬁoﬁﬁo |||||| —==" {,5001,X) 10V
e st S0 102 £ Ll G fele] Selolale LU Lttt —— 0000 (.,¥001.X)001¢
e 4 5 S - -00I00T1 (,EO0O01.X)&b0V '
- —===1 1007~ - 0010000 (,2001.,X)Bs60F
|ﬁooooooonnlnoﬂooonlnooooﬁoﬁHﬁﬂoﬁﬁo nnnnnnnnnn (., I00%.,X)L60Y
:nnuﬁﬁﬂoﬁﬁ"ﬁ~000|1;|oﬁooonunooﬂwoﬂ“lelooonlaooooooo {, 0001, X)260F
4 - NOILVYIN3S34d3y AYVNIE : qagy
‘SMOTI04 d31V¥3IN3D 3A050MIINW
“) B v
ot ‘7.:!2..\ ct.sw - - e > T Tm—— -
: N s \ : .

(% oz¢oH4 dILTNW GILNIWINIIA #) - E 09 2 00 - ‘T— NO~ (€

3ATLVOEN 40 JIVINOLOVA *) . ni3y z NO (2
(¥ 0 40 WVINDLOVE *) - NYNL3Y 6 OQ- T NO (T

\ , : , T : . -2 ¥HSN1D

) - : BT © . -z 0e.1.0a (I : ;
- , . ” T ¥3isN1d

S . | ﬁ . Wyuo0Nd

i \ o L : - . . INOISATV. (2
. ; S oo ‘ , : TN (T
‘ : - . 531V2IA3Nd

: co o xﬂ + nomuunommuxuwaHu@wm
S~ ©- KZIAW2.S
. : -) S e1a

J

,
.
.

L3

[{FE YO

‘
.

o,
oW
(o
~
bl
GBS
Wi
xex
<IN INOO
\

.
R T

) T . L (<ZNTIY> AN3
(# 1- L =:L %) 1 + FHJJ 444444, X =1
. . . (%, d4,X *) ‘GGEIs$=LI]

. . mJu>ooo

: C , o (420> T ~ [PUSILOZUIHIZNIIOR =11

) . , S <KZNIV> and
- : -) (0) [FUSILISUIHIINI 403 = “NOISNIV
. ‘CPU$ILOIUIHIINILOIY =:1d

RTINS

lalaY
N

T S , : 3719A200 (1 -
. \ A : . = 13sr¥9 ’
L\ . ; N A B . B ..P) i ! o Z%
L. - ' '960% 1X3

cy =l - . A ,
- o .) ‘ (LIASIATHILINN FUNAID0HIW

) o AV.km¢A\PZ<UHmHZO~m L1SOW) _—

. ; S ¥IIAILINW) ‘1 _
. (% QNVIITdILINW #) : : .
: ‘ (* OFUIH T dNONO dOTd~dITd #) offiH e
. , (A ONTOoas T s o SZATY . 4
o - L - (% (TI¥ 40 NOIS 3IAVS %) | ‘NOISNIVY N
S - (% HOLYMINZIO IYNILIT) 117 i
cee ‘o e - (% £'9 03Y TVHINIO *) ‘3714534 "3u01S
‘ 'ATEAILITdSTIY £ ANV 9 SHILSIOSH NI SLyvd- :
o INVOISINOIS 1Sv31 OGNV 1SOW IHL ONINYALIN ‘NOISSID3INd .
) ‘ : 378N00_S3ISN AYYSSIIIN 41 ANV 9 NILSIDIN VHINTD 40 .
. L , . INFINOD 3HL 50 WWINDLoVH 3HI S3IAMKOD WvdoOdd SIHL -
. \ - g : v o - - ((GETH)IWINOLIVA :<mocmmz
_ 2°60 01 68/L0/88 GCL/ZET3AS ‘LIONVYL €T SON OZI H3IGAD :1SOH
iA HOLVHINIO 3A050¥IIMW d3sve m>HH¢zm HY ' “WALSAS ONIWWVHOONJONIIW IATSNIHIUAWOD ALISHIAINA ¥IGHOINGD y
“~ . s ; .) . ‘
. . - -
~ - ~ N . . - - 1J/....;0). -
. ' - . ‘ >

4

{4

- - .) (% Amm** =<
’ T . (% T- Amm**mvlv

s © T (% NHNLIY ‘LTINWdOLS ‘(2E#*E)=
C (% ¥DIAR LINW TFIO0UL 1-(CExx2) =

. T (% 1uvd Fz<oHquon.»
T . (% LIND Ol 1HVIS ‘0O = QNV

. . <., (% GNYIITHILTNW IN3W3NO3a
: (% 1 4

) - ° *

‘12 °60 Ow - ‘6T/LO/E8B

?

b3

3 1

IVINOLIVE #)
IPIHOLDVS »)

< 19Na0Y¥d #)
> 15NA0Hd *)
={n) xom:o
2ITdILTNW *)
ILTINW *
I 0ho¢u *.

W
ad
é
Add
0 w

—- . -

gL/2€738. ©139¥vL

e

-] ”nauv

‘NMNLIY £ 00 I- NO (2
‘N¥NL3¥ 9 00 T NO (T

9 ¥318N1)

‘NYNL3Y 8! O T— NO (&

b 4

R
‘? 09 £ 001 NO (T

00 €% 00 T NO (1
S H¥315Nn71D

09 € 0d T- NO (2
v y3isny

r 09 £ 00 1- NO (2

>

1
m0h<mwzm0 3d0J0UOTH Qmm<m INTLIVYNYILTV -W3LSAS GZHZZ<m00mmOmUH£ N>Hmzm1mmm200 ALISHIAINN VIAHOINOD

‘NYNLIY T NO (3 -
£ d31sn

mOZ 041 MIEAD -1SOH

’

000000900080£0E0
00000020008300&0
0000400000000088
0000200000000080
00000440004€E o
0000000000000240
000000/.00080E0E0
0000002000830000
0000v00000000088
. 0000d00000000080
000000900Q830000
00004000000Q0080
0000000000030000
© 0000500000000088
0000E£00000000080
00020440004E8E00
000000000280
0000000000000
000007000820 E0
0000300000000080
00000020004+ 0200
0000000Z2000000ZE

s .

06000000
M 00000070219

0080
004

OOQOOOOOMMOONQ‘

¥ IYWIOIAYX3IH

. et -
R (/LEOT,X)GETY SI WYHOOHUJIONIIW
- QI10 ——=~—=0001000071 10——=———— 1000000
- =~=0TI0~—m— e aPOTO0T T T———000~-—— 1000000
TTILT —~ - - OCITID1
OTQ0—<—m - : 0010000
lllll 333322481 - ITTITI00000TI T ——m—~mee
—_—— - 00000000 — ——— e JITIO0I0000
1110 - 000100001 10—————— 1000000 .

nnnnnnnnnnnnnnn 0110 <-—~——0001011 I--~000 .
llllllllllllllll 0107Y = -~ ; 00111071
- TOT e ———— -0010000

- =010~~~ e ~000TI0TTT c00 .
- 1110 - 00310000
— -0000CTITY 000
————— -1010 — 001110t
- QI100~~- e e e e e 0010000
— -- : ~—TI1TTITT11T~ TTFITTI00000T T I ———mem -
—= “ —-00000000~ — —— 1111010000
_] - _ 1001101
= 0110~ = ~00000010TT10-—-001——-1000000 -

- orT?t - 0010000
o = - =0T 10~ O000TITIOOTIO 00T 0000
— - TO00- — ---—1001100
—_— 1011 === : - ——0OITIO!L
=~ 1001 - -—0010000
- - 0110~ 01007100001 70000000 ——~————~— TT111
w NOIL1VIN3SIUd3IYH AHVYNIE

,

B

40 INIOJ ANINZ
“ (. JEOT., X)

(.3€01,
(.4geo0l.

o
n

~

-~
0oe<€Lmy
inlvlvlvlyv
[s]ele]ale
v v vt

o~

4

A,
(.,

T e

N NP Nt N NP Nt NP N Sl Nl P NS W Nt Nl NP S Nl Nl S N Nt ot
D-8 -

(o XaXal o ¥ W N

. NI NG~

o Iviniviviviy]

(o] elelolelule]

L Ln Lo Lo R P R R e P v i

~
-
v
[o]

A I T R
PEICICICICICTICICICICICIC NI ICIC RN
NINDPO NN ONDO-NMTINON
tﬂnnrﬁﬁr¢¢<wﬂ¢¢¢dwnnnnpwnn£n$
"QF‘—OF‘ﬁﬂﬁﬂﬁHﬁﬁHﬁﬂﬂﬁﬁﬁﬂﬁﬁHﬂ;
SR A LA L il ol L L L

L T T

o
a
Qa
<4

‘SMDT104 d31VH3N3D 30000¥DINW

e et e e e A A B 8 e e o

[

3,
P,

i’ APPENDIX E - MICROPROGRAM LOADER AND DRIVER

The jobs to load .and drive the microprograms ‘are- shown

in the fdllowing pages. The Jjob to load consists of an

assembly step, a catalog step to make the loader privileged,

and an execution step to write into the WCS. 1In the

- assembly the doublewords corresponding to the

microinstructionsa of the microprogram are stored in mdin
memory using DATAD assembler directives. From main. memory
they 'are written into the WCS using a loop which includes a

WWCS (write WCS) instruction. General register two . points

to .the address of a doubleword in main memory, and register

four points to the address in the WCS.

$JOB FACTL 710000 JUAN LINARES '’
$OPTION 2 5 15 '

SASSIGN3 -SLO=LP7A

SALLOCATE 10000

SEXECUTE ASSEMBLE

PROGRAM FACTL i . \
R2 EQU 2 j%@
R3 EQU 3o ' .
R4 EQU 4 .

BOUND 1D

MPROG DATAD X'F004061206000000"
' DATAD X'0800000000090000"
DATAD X'B8000000000D00OCO"
. DATAD X'3200000020000000'
DATAD X'00204F0006000000"'
DATAD X'08000000000E0000""
DATAD X'0220680006000000"
DATAD X'B200000000000000"
DATAD X'0BC0000000000000°
DATAD X'00383F000FF00000"
DATAD X'0800000000020000')
" DATAD X'B80QQ00000050000"
DATAD X'OOOggQgOOOOOOOOO' \
DATAD X'080000D000070000"'
DATAD X'0000E80006000000' v
DATAD X'08000000000D0000Q"
" DATAD X'B8000000000OA0000'
DATAD X'0000E80006000000'

-~

E-1

——

DATAD X'(1203880007000000"

DATAD X'OHCOONRABEORENO0 o

DATAD X'GN383FAAAFFGOANG" '
DATAD X'080ANNCANAN2¢0A0
DATAD X'B8O0OBAACONFOOAG"
DATAD X'{200EBGUCGARROAN" . _
DATAD X'02031800060G000R0" -

- INITWCS DATAW X'0027' WCS LOADING ADDRESS
START BOUND 1W "4 \
* LEA R2,MPROG * FIRST DWORD OF MPG IN MAIN
LEA R3,8*25+MPROG- LAST DWORD OF MPG IN MAIN
. . LW R4, INITWCS , P
LOOP WWCS R2,R4 | WCS[R4]:= MAIN[R2]
ADI R2,38 POINT NEXT DWORD OF MPG
ADI R4,1 ' POINT NEXT WCS LOCATION
CAR R2,R3 . LAST DWORD OF MPG?
BNE' LOOP) _ 'IF R2 <> R3 GOTO LOOP
CALM X'S5' - . . QUIT NORMALLY
END START -

SIFT ABORT SKIPGO

5

. SASSIGN3 SLO=LP7A

SEXECUTE CATALOG
CATALOG FACTL BP P . - .
SOPTION DUMP ' . '

SASSIGN3 SLO=LP7A) .) . -

$EXECUTE FACTL

SDEFNAME SKIPGO

SEOJ ' . - AN

$% . . .

’

The job to drive the microprogram consist of an‘assembiy

step, and a debug step. In the assembly a number is loaded

"into register six and the microprogram is invoked through a

JWCS (jump WCS) instruction. The debug step i8 performed

through the DEBUG utility offered by SEL. In this step the.

utility is directed to take a snapshot of the registers and

the area of main memory where the driver 'program resides.
r

) Snapshats are taken before the JWCS instruction, and after

it. For both of the sample programs shown in appendix D the

%

results observed were correct.

$JOB - MPRUN 71C000 JUAN LINARES . '

$OPTION 2.5 15 , C, o o

$ASSIGN3 SLO=LP7A ~ ' .
. |

E-2

R i Nt e . BTN “

" $EXECUTE ASSEMBLE o :)
PROGRAM MPRUN ' . .

. e
NUMBER DATAW 6 .NUMBER TO BE PROCESSED
START LW’ 6, NUMBER LOAD REGA WITH: NUMBER
. JWCS X'27! ' JUMP TO ENTRY PQINT IN WCS
QUIT CALM X'55' - QUIT NORMALLY :
. END START
SIFT ABORT SKIPGO

SASSIGN3 SLO=LP7A . . ‘
SEXECUTE DEBUG : _ .-

LOAD : L . Lo
: SNAPSHOT 8,6,F ' : ! .
.. . - SNAPSHOT C,06,F - ‘
START

' C $DEFNAME SKIPGO :
LT $EOJ) :
. ’ $S ' v
& - ’ , ' ' .
| The two jobs display in this appendix correspond to the
.ioading and execution of the samﬁle miéroprogram FACT, which

computes the -factoriéi‘pf the contents of general register’

6. . ‘ . , »\\§< : y

, . :
. . oo [
- *;t- - 'WM%WU W wpin bt wglt) QECRTR | PP . - L
.) - s . Q

