oot

Nationat Library
of Canada

i+l

du Canada

Bibliothéque nationale

Canadian Theses Service Service des théses car.adiennes

Ottawa, Canada
K1A ON4

NOTICE

The qualty of thus microformis heavily dependent upon the
quality of the original thesis submitted for microfilming.
Every effort has been made 1o ensure the highest quality of
reproduction possible.

I{ pages are missing, contact the university which granted
the degree.

Some pages may have indistinct print especially i the
original pages were typed with a poor typewriter ribbon or
if the university sent us an inferior photocopy.

Reproduction in full or in part of this microform 1s governed
by the Canadian Copynight Act, R.S C. 1970, ¢. C-30, and
subsequent amendments.

NU 339 (1 BVO4) ¢

AVIS

La qualité de celte microforme dépend grandement de Ia
qualité de la thése soumise au microlilmage Nous avons
tout fat nour assurer une qualité supérieure de reproduc
tion

St manque des pages, veullez commumquer avec
l'université qui a conféré le grade.

La qualité d'umpression de certaines pages peut laisser o
désirer, surtout si les pages originales ont &1é dactylogra
phiées & l'aide d'un ruban usé ou sil'université nous a tar
parvenir une photocopie de qualité inférieure

La reproduction, méme partielie, de cette microlorme es!
soumise a la Lol canadienne sur le drot d'auteur, SRC
1970, c. C-30, et ses amendements subséquents

i}

Canada

A DISTRIBUTED PROTOCOL FOR THE NETWORK PRIMAL-DUAL METHOD
AND
SIMULATION ON A SHARED-MEMORY MULTIPROCESSOR

Parimala Thulasiraman

A Thesis
in
The Department
of

Electrical and Computer Engineering

Presented in Partial Fulfilment of the Requirements
for the Degree of Master of Applied Science at
Concordia University
Montreal, Quebec, Canada

November 1991

© Parimala Thulasiraman, 1991

@

A+E

Nationa! Library
of Canada

Bibliothéque nationale
du Canada

Canadian Theses Service

Ottawa, Canada
K1A ON4

The author has granted an irrevocable non-
exclusive licence allowing the National Library
of Canada to reproduce, loan, distribute or sell
copies of his/her thesis by any means and in
any form or format, making this thesis available
to interested persons.

The author retains ownership of the copyright
in his/ner thesis. Neither the thesis nor
substantial extracts from it may be printed or
otherwise reproduced without his/her per-
mission.

Service des théses canadiennes

L'auteur a accordé une licence irrévocable et
non exclusive permettant a la Bibliothéque
nationale du Canada de reproduire, préter,
distribuer ou vendre des copies de sa thése
de quelque maniere et sous quelque forme
que ce soit pour mettre des exemplaires de
cette these a la disposition des personnes
intéresseées

L'auteur conserve la propnété du droit d’auteur
qui protege sa these. Nila these ni des extraits
substantiels de celle-ci ne doivent étre
imprimés ou autrement reproduits sans son
autorisation.

18BN ©-313-73701-&6

Canadi

- il -

ABSTRACT

A Distributed Protocol for the Network Primal-Dual Method
and

Simulation on a Shared-Memory Multiprocessor

Parimala Thulasiraman

The theme of this work is distributed computing for network optimization problems.
Network optimization refers to the class of optimization problems defined on graphs. For
our study we select the transshipment problem (also known as the minimum cost flow
problem) which generalizes several of the network optimization problems, and the
primal-dual method for solving this problem. Thus the goal of our work is to design a
distributed protocol for the network primal- dual method and to simulate the protocol on

a shared memory multiprocessor.

The primal-dual method has the interesting property that its application involves
repeated use (in an iterative loop) of the shortest path and maximum flow algorithns.
We show that the primal-dual initialization problem can also be formulated as a shortest
path problem. Therefore we first present synchronous distributed protocols for the shor-
test part and the maximum flow problems. For the shortest path protocol we adopt
Chandy and Misra’s termination detection scheme. For the max-flow protocol we
develop a scheme for termination detection. We integrate these two distributed protocols
and design a distributed protocol for the primal-dual method. To guarantee correct work-
ing of these protocols in an asynchronous environment, we incorporate appropriate syn-

chronizer mechanisms into these protocols.

-1v -

We carry out simulation of our protocols on the BBN Butterfly parallel machine.
Several issues that do not arise in a truly message-passing environment are encountered
while implementing the protocols on a shared-memory multiprocessor. We discuss these
issues and our approach to resolve them. The thesis concludes with some experiences

that we have gained in the course of the work, and some suggestions for furture work.

(mw&ﬂ -

ACKNOWLEDGEMENTS

I thank my thesis supervisors Professors Marc Comeau and Anindva Das tor then
friendly guidance during the entire period of my research. The lively discussions | have
had with them have enriched my understanding of distributed computing and nctwork
optimization.

[thank Professor M.O.Ahmad for the constant encouragement | have received tiom
him during the last six years of my undergraduate and graduate studies at Concordra, Ty

concern for my success and timely guidance at the appropriate moments are deeply

appreciated.

I also thank Professor C. Tropper for giving permission to use the BBN Buuertly
parallel machine at the McGill Computer Science department. But for this valvable help,

the work in this thesis would not have been completed.

This research has been a part of the NSERC-BNR Co-operative Research and
Developrnent project being carried out at Concordia under a grant awarded o Profesvors
K. Thulasiraman, M. Comeau and A.K. Elhakeem. The project provided an excellent
environment for acquiring valuable academic and practical experience 1 distributed
computing.

I extend my whole-hearted thanks to my father for his encouragement, help and
constant drive through the entire period of the thesis, and to my mother for her warmth
and care. Finally, [thank my husband, Thulasiram for his support, patience and under

standing during this strenuous period.

Parimala Thulasiraman, Nov. 199 1.

-vi-

TABLE OF CONTENTS

CHAPTER I: INTRODUCTION L.ttt nrtiara s sesssas s s st sts e s cabeast s at s s bt bn s n st

CHAPTER II: MODELS OF DISTRIBUTED COMPUTATION AND SYNCHRONIZER

DIESIGN ... oottt et esae e s bbb bbbt as
2.1 Modecls of Distributed COMPULALIONooveeverimieiestitieeiiienine et .
2.2 SYNCHIOMIZELS ..ovovivririeeeeseectcaeeneeseeeres e srsiss e st sse st b et b e r b st e e s s n bt bn s
2.2, 1 Q-SYNCAIONIZET .ottt siereins s e
22,2 PB-SYNCRIOMZET ..ooovvevierecenriaeessnsminissssssie s sensss bt ssn st
223 Y-SYNCHIOMIZELveviiieninininci et s
2.3 Limitations of SYNCHIONMIZETSccoeiimiiminieriininisieini e
2.4 POSSIDIE REMEAICS ..vcveeeenieeieiertreiece et ine st rer st srsben st e b bbbt
2.5 SUIMIMIATY .oovvrinireritrenineeseesinstssetessse s tsbesesaase st s nas s et e sa e nta bt s e s st s s basass st saanns sobins

CHAPTER III: SHORTEST PATH AND PRIMAL- DUAL INTITIALIZATION

ALGORITHMSoconirrieniiciiinerisecis i osieniessnessnsissnransssesniesssssssnsnnnasssens

3.1 Single-Source Shortest Path AIgORthm ...
3.2 Initialization of the Primal-Dual Method ...,
3.3 A Distributed Protocol for the Single-Source Shortest Path Problem ...
34 SUMIMATY coiieiine et esss st st ettt e s bbb bbb as b e s bbb et e b e a e s s asbsbssssbnebesntesanae s

CHAPTER IV: TRANSPORT NETWORK AND THE MAXIMUM FLOW PROBLEM

4.1 Two Fundamental Theorems in Network Flow Theory v
4.2 The Push - Relabel Preflow Algorithm: Goldberg and Tarjanocooovceiinicnnn
4.3 A Distributed Protocol for the Maximum Flow Problemcccoevvivvivicenine e
4.4 SUIMITIATY .oovvereiecerecrnasioreessesiuesessesssessseassestnsassse sssnsanssseseesaasstesenesnreeeseeseesestssseeesecesusies

CHAPTER V: THE TRANSSHIPMENT PROBLEM: PRIMAL- DUAL APPROACH

5.1 The Transshipment ProbBICMccicvvniniencvmrennicriesiereneee e e eereesteseet e e
5.2 Primal-Dual APPrOaCh ..c..ocviiieeiiter ettt sres e
5.2.1 Initialization of the Primal-Dual Method ..o,

CHAPTER VI: SIMULATION OF DISTRIBUTED PROTOCOLS ON A SHARED -MEMORY

MULTIPROCESSORccontianrierniraesenessesssssasaessssssssssessesssesessssesenseseessnsens

6.1 Shared-Memory Simulation of the Distributed Protocol for the Maximum
FIOW Problem oo e
6.1.1 Termination DCICCHON ..ovviiiviveccininn et
6.1.2 Usc of 2 SYNCRIOMIZETc.eovrriiceeecit e

10
11
16

19

e ——]

- vil -

6.2 Shared-Memory Simulation of the Distributed Shortest Path Protocol N

6.3 Shared-Memory Simulation of the Distributed Protocol for the
Primal-Du~l Method

.. - S0
6.4 Performance RCeSUILS ..o.oovvieeriiiinciecrceeinince s e s . o SN
6.5 SUIMMTIATY ..eeiierrineeseneecstiere s erssesestseesaneses sosnstssssesssinsesins smens sieiis snie oo vl
CHAPTER VII: SUMMARY AND FUTURE RESEARCH ... e e e . 02
Tl SUMMATY oottt eeies cevesenssbeseseiereess srreassasseretinies oo Ce wl
7.2 FUunther ReSCArCh ..o e e e e Ve
REFERENCES oottt eeesieestiserieneeesssaestesseesansranessesssssiessannans sirevese o sire o see sons . N
APPENDIX A | oottt e eb et e N
APPENDIX B oottt esreeeersse e senessnmaee sttt eb e e e e s e or et obna b e saesbe s ens b b . i
APPENDIX € ...ooeeiieiierreiieeeeseresiestiaseresosnaaossaesssasnseseassbonsn s basssssssbessnssssssestesiass o cisnresseeens 141

APPENDIX D

- viit -
LIST OF FIGURES

Fig. 2.1 Hlustration of GO SYNCRATONIZCT ..o..ovviieveeiiiien e+ s o
Fig. 3.1 A Dirccted Graph G with Edge Lengths coooevves e e v
Fig. 3.2 Graph G “derived from Graph G of Fig. 3.1 oo et s+ .
Fig. 41 A Transport NCIWOTK ...co..vviviieenenne oot e ee e .
Fig 4.2 ANSLCULE S, S > ooseeresee e eeesseeeesssss woessis e oo+
Fig. 4.3 Flowf in Transport Network of Fig. 4.1 .o e .
Fig. 5.1 A Network N for the Transshipment Problemcoccoooviiveivcvrirnnn.
Fig. 5.2 Construction of Auxiliary Network N ™ ..o,
Fig. 5.3 Construction of GraphNV “"of Fig.5.2

with given flow and ¥ VAIUES ...ceeeeiireciniieeseeen it enrienn
Fig. 5.4 The Primal-Dual Methodcveveeiiinininiencieciceiecneiee e e

[=R

- X -

LIST OF TABLES
Table 6.1 Results obtained for the Maximum Flow problem .o it |9
Table 6.2 Resulis obtained for the Shortest Path problem ... o0

CHAPTER 1
INTRODUCTION

In the recent past there has been considerable interest in the design of distributed
and parallel algorithms. An early interest in distributed computing arose in the context of
routing algorithms in computer networks. A computer network is a collection of geo-
graphically distributed computers interconnected by communication links. Routing in a
network involves a rather complex collection of algorithms that work more or less
independently and yet cooperate with each other by exchanging information. This
interest in distributed routing algorithms has lead researchers to study distributed algo-
rithms for a number of network problems such as the problem of constructing a minimum
cost spanning tree of a network. While distributed network management continues to be
an active area of research, distributed computing has also gained considerable impor-
tance because of applications involving distributed data bases. distributed operating sys-
tems, etc. A substantial introduction to distributed computing and distributed systems
may be found in [Lyn88], | BeT89] and [Mul89]. Whereas the main emphasis in distri-
buted computing is on solving a problem in a distributive manner using a collection of
processors with limited memory and processing capabilities, in parallel computing the
emphasis is on achieving speed-up over sequential algorithms. A detailed discussion of

several parallel algorithms may be found in { AkIR9].

Our interest in this thesis is in design of distributed algorithms for network optimi-
zation problems. Though our main concem is the design of efficient distributed algo-
rithms, we find that these algorithms provide considerable insight into the structure of
parallel (multiprocessor) algorithms aimed at achieving speed-up over uniprocessor algo-

rithms,

We now present a brief review of current literature on distributed algorithms for

network optimization problems. This will be followed by an outline of the scope of this

thesis.

Network optimization refers to the class of optimization problems defined on
graphs. These problems include the problem of constructing shortest paths, tinding a
maximum flow, constructing a minimum cost spanning tree, finding matchings in a net-
work, etc. These problems occur in a variety of applications. While they are themselves
significant in their fullness, they also occur as subproblems in several other applications.
Kruskal [Kru56] and Prim's [Pri57] algorithms for the minimum cost tree problem,
Dijkstra’s [Dij59] and Bellman-Ford-Moore’s algorithms |Bel58]. [FoF62|, [Moo57] tor
the shortest path problems, Ford-Fulkerson’s algorithm [FoF56] and its several variants
(for example, [Din70], [MPM78]) for the maximum flow problem are among the most
fundamental algorithms in network optimization theory. They have also served as the
basis for designing corresponding distributed algorithms. Some of these distributed net-
work algorithms may be found in [ChM83], [GHS83], [Hum&3] and [LTC89]|. Issues
relating to the synchronizer design problem have been discussed in [LaT87], [L.TC89]

and [SeS91].

In this thesis, our focus will be on the transshipment problem, which can be formu-
lated as a linear programming problem. This problem generalizes several of the network
optimization problems. A detailed discussion of this problem and algorithmic solutions
may be found in [Chv83|, [Roc84]. There are two basic approaches to this problem - the
network simplex method and the primal-dual method. Recently, Goldberg [Gol87]
presented a variant of the primal-dual method called the e-relaxation method. Refer-
ences to other e-relaxation methods may also be found in {Gol87]. The relaxation
methods are primarily designed to obtain good complexity results for the transshipment
problem. Goldberg [Gol87] and Goldberg and Tarjan [{GoT&(] also presented a novel

algorithm for the maximum flow problem. This algorithm for the maximum flow

problem and the primal-dual approach for the transshipment problem are quite elegant

and amenable to distributed implementation. The primal-dual approach has the interest-
ing property that its application involves repeated use of shortest path and maximum flow
algorithms. Thus the main focus of our work is on designing and implementing distri-
buted algorithms for the shortest path and maximum flow problems, and integrating them

into a distributed algorithm for the primal-dual algorithm for the transshipment problem.
A brief outline of the scope of the thesis is as folluws.

We define in Chapter Il two models of distributed computation, namely, the asyn-
chronous and synchronous models. We then examine the need for syncironizers in run-
ning synchronous algorithms on asynchronous networks. We also present certain
difficulties one may encounter in designing the synchronizers as well as remedies for
these difficulties. The synchronizers will be used in implementing asyrchronous distri-
buted protocols for the shortest path and maximum flow protocols discussed in Chapters
Il and IV. All the details of incorporating these synchronizer mechanisms will be dis-

cussed in Chapter VI where we discuss simulation of our distributed algorithms.

In Chapter Il we discuss the Bellman-Ford-Moore shortest path algorithm and a
variant of it which is amenable to distributed implementation. We then show how the
shortest path algorithm can also be used to initialize the primal-dual method. Finally, we
present a synchronous distributed protocol for the shortest path problem which incor-

porates a mechanism to detect infeasibility.

In Chapter [V we first present certain basic results in network flow theory and then
discuss the details of Goldberg and Tarjan’s maximum flow algorithm. We then present a
synchronous distributed protoco! for the maximum flow problem. We also discuss

mechanisms for termination detection.

In Chapter V we discuss, in detail, the main steps in the primal-dual approach. We

show that this approach involves repeated applications of the shortest path and maximum

prorar s

flow algorithms.

We present in Chapter VI our simulation of the distributed algorithms for the shor-
test path and the maximum flow problems, and their integration into a distributed algo-
rithm for the primal-dual method. Our simulation is on the BBN Butterfly multiproces-
sor, which employs the shared memory paradigm. We discuss in this chapter various
issues encountered relating to the simulation, in particular, synchronization and termina-

tion detection problems. We also give certain performance results.

The thesis has four Appendices. Appendix A gives an overview of the main pro-
gramming features of the BBN multiprocessor. Appendices B, C and D give detailed
descriptions of our distributed programs for the maximum fow, shortest path and

primal-dual problems, respectively.

For graph-theoretic terminology used in the thesis we follow [SWT81]. We shall use
the terms node and vertex interchangebly. Also, we shall follow the practice n disc ibut-
ing computing literature of using the terms node and distributed protocol in place of ver-

tex and distributed algorithm, when the discussion is in the context of network problems.

CHAPTER I
MODELS OF DISTRIBUTED COMPUTATION AND SYNCHRONIZER
DESIGN

This chapter is concermned with certain issues relating to distributed computing. First
we introduce two models of computation, namely, the synchronous and asynchronous
models. We then present the notion of a synchronizer. After briefly discussing the three
synchronizers introduced by Awerbuch [Awe85] and [Awr85], we draw attention to cer-
tain problems one may encounter in the implementation of the synchronizer mechanism.

We also discuss some of the remedies available in the literature [LaT87] and [SeS91].

2.1 Models of Distributed Computation

A communication network can be represented by a communication graph
G=(V,E) where V is the set of nodes (vertices) corresponding to processors connected by
bidirectional communication links represented by E. Let IVl = n and IEl = m. It is
assumed that processors have distinct identities and each processor only knows the
identities of its neighbours. Also the processors share no common memory and have
access only to their local information. Therefore, messages are frequently exchanged

between processors, through communication links, for the purpose of computation.

A distributed algorithm/protocol consists of a collection of similar node algorithms
residing at the processors. These node algorithms specify the actions to be taken in

response to the messages that may arrive at a node.

Two network models - asynchronous and synchronous - are considered in deal-
ing with distributed algorithms. An asynchronous network is a point-to-point (store and
forward) communication network. Each processor receives messages from its neigh-

bours, performs local computations and delivers messages to its neighbours. Each

message sent by a processor arrives at its destination within a finite but undetermined
time. Messages are of fixed length. The messages sent over a link follow a first-in-first-
out rule. On the other hand, a global clock is associated with a synchronous network .
Every processor in the network has access to this clock. Each processor sends messages
only at integer times, or pulses , of the global clock. It is assumed that all messages sent
at a previous clock pulse are teceived before the next pulse 1s generated. At most one
message may be sent over a given link at a certain pulse. The delay ot cach link 15 ai

most one time unit of the global clock.

In both these models it is assumed that messages received at a processor are
stamped with the identity of the sender and transferred to a single common queue before
being processed one by one. Thus it is not permitted to delay the processing of a message

once received.

For both network models considered above, it is assumed that the
message complexity C of an algorithm is the total number of messages sent during the
algorithm. Also in both models the actions performed by a processor arc assumed 1o take
negligible time. The time complexity T of a synchronous algorithm is the total number
of pulses passed from its starting time to its termination. The time complexity of an
asynchronous algorithm is the worst-case total number of time units from start to comple-
tion. When considering the performance evaluation of an asynchronous algorithm the
propagation delay (difference between transmission time and arrival time) and inter-
message delay (difference between transmission times of two consecutive messages) on
each link are assumed to be at most one time unit. The algorithm must work for arbitrary
delays also. The complexities of a distributed algorithm depend on the structure of the
graph as well as parameters such as number of nodes, number of edges, etc. So while

evaluating these algorithms only worst-case complexities are used.

2.2 Synchronizers

Distributed algorithms designed to run on a synchronous network are called syn-
chronous algorithms and those designed to run on an asynchronous network are called
asynchronous algorithms. Synchronous algorithms are usually easy to design and
analyze for their complexities. This is not so in the case of asynchronous algorithms.
Thus it is helpful to design a simulation technique that enables any synchronous algo-
rithm to be executed on an asynchronous network. For this purpose, Awerbuch [Awe85]
and [Awr85] proposed a simulation methodology called the synchronizer . A synchron-
izer is basically a distributed algorithm designed to convert programs written for syn-
chronous networks into versions that can be used in asynchronous networks. It can be
viewed as a layer of software, transparent to the user, placed on top of the asynchronous

network to run synchronous algorithms.

The synchronizer is designed taking into account the assumption underlying a syn-
chronous network model. Since each processor in a synchronous algorithm uses a global
clock, a synchronizer similarly generates a sequence of clock pulses at each processor,
such that a new pulse is generated only after it has received all messages of the synchro-
nous algonthm sent to that processor by its neighbours at the previous pulse. But there is
a synchronization problem associated with the synchronizer. A processor is not aware of
which messages were sent to it by its neighbours. A solution to this problem is to allow
the processor to wait. But, suppose one of its neighbours has no message to send. Then
the processor may have to wait for an infinite amount of time since the link delay in an
asynchronous network is unbounded. This problem can be eradicated by sending addi-

tional dummy messages for the purpose of synchronization.
The complexity analysis of a synchronous algorithm will be discussed now. The
synchronizer v produces a certain overhead. Let C v and T be the message and time

complexities introduced by the synchronizer at each clock pulse, respectively. Since the

algorithm may have an initialization phase, let C

and T, be the message and time

g

e

complexities of the initialization phase, respectively. Let C,, T, and C_, T, denote the
message and time complexities of the asynchronous algorithm A and synchronous algo-
rithm §, respectively. Then the total message and time complexities introduced by the
synchronizer are C,, * T and T, * T, respectively. Therefore the complexities of the
asynchronous algorithm are:

C, =CVM+Cs +C,*T,

T,=T, +T *T,

a Vinis

Awerbuch proposed three types of synchronizers. Synchronizer « is time efficient,
whereas synchionizer B is message efficient. The combination of o and § synchronizers

results in the y synchronizer, which is efficient both in messages and time.

Before describing synchronizers, a few concepts have to be explained. Awerbuch
defines a node to be safe at a certain pulse if all the messages sent by the node at that
pulse have arrived at their destinations. Using acknowledgement messages a node can
detect that it is safe. That is, when acknowledgements for all messages sent by a node are
received from its neighbours, then the node becomes safe. For proper computational pur-
poses, it is also necessary for a particular node to know that all its neighbours are also
safe. Otherwise, there is no guarantee that messages sent at a previous pulse by a neigh-
bour do not arrive in the future . So each node has to somehow communicate its safety

information to its neighbours at minimal cost.

A graph is said to be acyclic if it has no circuits. A tree is a connected acyclic
graph. A spanning tree of a graph is a tree having all the vertices of the graph. Consider
an unconnected graph G with k components. Then the collection of all the spanning trees

of each component is a spanning forest .

2.2.1 a-Sychronizer

The a-synchronizer operates as follows. After a node receives an acknowledgement
for each message sent, it declares itself safe and communicates this information to its
neighbours. If all its neighbours are safe, the node generates the next pulse. Though there
is a dependence between a node and its neighbours, the transmission of messages can be

done in parallel.

As already mentioned, it is easy to see that this synchronizer is time efficient with a
time complexity of O(1) per pulse. Since each link can hold at most one message, the

message complexity per pulse is O(IEI).

2.2.2 B-Synchronizer

This synchronizer is essentially a variant of the a-synchronizer. As in the -
synchronizer, a node declares itself safe using the acknowledgement mechanism. How-
ever, the B-synchronizer employs a spanning tree to detect that all no’es have become

safe. Thus an initialization phase is involved.

In the initialization phase, a rooted spanning tree is constructed from the communi-
cation graph G. Note that though G is undirected, directions are assumed for the purpose
of creatir ¢ a rooted spanning tree. A leader, usually the root of the tree, is then chosen.
When a nonleaf node learns that it is safe and its children are also safe, the node, if it is
not the leader of the tree, reports this information to its parent. Eventually the root
receives this message and at this point knows that all the nodes in the tree are safe. The
root then notifies this by broadcasting a message to all the nodes via the spanning tree
allowing them to generate the next pulse.

It is obvious that initially the communication process is initiated by the leaves. Sup-

pose the leaves are in level k. Then the leaves report 1o their parents at level k-1 that they

- 10-

are safe. The nodes in level k-1, after learning that they are safe and all their children are
safe, convey this information to their respective parents. This process continues until the
information reaches the root. As can be seen, all the operations at each level can be done

in parallel and the B -synchronizer algorithm can be distributively implemented.

Since each message has to pass through the 1VI-1 edges of the spanning tree, the
message and time complexities per pulse are O(IV!). This is in contrast to the o-
synchronizer which requires only O(1) additional time per pulse. Thus the (-
synchronizer, as mentioned earlier, is not time efficient. But it is message cficient

because it requires only O(IV!) additional messages per pulse and IVI-1 <IEL

2.2.3 y-Synchronizer

This technique combines the methods of the o and synchromizers. First the net-
work is partitioned. A cluster is a spanning tree of one component. The combination of
all these spanning trees is a spanning forest of the network. The clusters are connected by
links. Between each pair of clusters one preferred link is chosen which wall serve for
communication between these clusters. As before a leader is selected for each cluster. A

cluster is considered safe if all its nodes are safe.

The y-synchronizer operates in two phases. In the first phase the B-synchronizer 1s
applied separately in each cluster (using the tree). When the leader of a cluster detects
that its cluster is safe, this inforrnation is broadcast to all the nodes in the cluster as well
as the neighbouring clusters through preferred links. At this point, the nodes in the cluster
enter the second phase. They wait in this phase until all the neighbouring clusters are safe
and then generate the next pulse. Thus a-synchronizer scheme is used between clusters

and the B-synchronizer scheme is used within a cluster.

A detailed complexity analysis of the y-synchronizer may be found in [Awe85].

-11 -

2.3 Limitations of Synchronizers

As mentioned before, for the correct working of a synchronous algorithm when
combined with any synchronizer, it is necessary that before a node executes its k" pulse,
all messages sent to it by its neighbours at the (k—l)'h pulse are received and processed.
The a, B, and y synchronizers ensure this. It is also necessary that before a node has
started execution of its k" pulse, any message that has been received from its neighbour
executing its K™ pulse is not processed. This is not ensured by any of the three synchron-

izers described thus far.

Suppose after execution of its (k—l)'h pulse, node i begins its K™ pulse and sends a
message to its neighbour node j. It is possible for node j to receive this message before j
has started its k" pulse, thus modify some data structures maintained by node j, which it
would probably have done during the execution of its k" pulse. This means that some
messages sent by the synchronous algorithm may not get sent in the simulated version.
Thus the simulated version may not behave exactly the same way as the corresponding

synchronous algorithm.
It is easy to see that the @x-synchronizer suffers from the above problem.

In the B-synchronizer mechanism, the leader or the roos sends a PULSE message
down the tree to all the nodes allowing initiation of the next pulse. Since the tree is a
«ooted spanning tree, it is pessible for a node i to receive the PULSE message before its
neighbour j. Therefore as in the a-synchronizer methodology, it is possible for node i t0

complete actions of & particular pulse before node j starts the corresponding pulse.

Since the y-synchronizer is a combination of the a and [synchronizers, the problem

mentioned above persists in this case too.

We next illustrate the above problem using a simple synchronizer called the

GO-Synchronizer described in [LaT87].

The process as usual is initiated by the leader of the nodes. The leader sends a
WAKEUP message to all its nodes. Along with this, a GO message is also sent. The
receipt of this message from all its neighbours notifies a node to start a new pulse. Every
node sends an explicit GO message to its neighbour after sending a message of the syn-
chronous algorithm. A node terminates its activity by sending a« WINDUP message to the
leader. The whole algorithm terminates when the leader receives WINDUP messages

from all the nodes.

The synchronizer algorithm just described above requires a data structure called "go
received". This data structure keeps track of the number of GO messages received from
each of its neighbours. Note that at most two GO messages can be recewved from any
neighbour. For example. suppose that a2t e (k—l)'h pulse, node 1 and node j complete
their computations and each sends a GO message to the other, permitting start of the
next pulse. If node i receives the GO message ecarlier than node j then node ¢ starts s
k™ pulse. Suppose node / finishes the necessary computations of this pulse and sends
another GO message to node j. Then node j will have received two GO messages from
node i - one for the execution of the " pulse and for the (k +1 /* execution. Thus the
"go received" data structure is a multiset. Note that node ¢ has to wait ull it recerves a
GO message from node j before it starts its (k + ™ pulse. Thus at any pomnt in ime the
number of pulses executed by two neighbouring nodes can differ by at most one. Also,
the number of pulses completed by any two arbitrary nodes in the entire network cin
differ by at most the length of a shortest path between these nodes in the communicating
graph.

A distributed synchronous algorithm for the Breadth-First-Search (BFS) tree of a
communication network will now be explained and then an example will be given which
will show that this algorithm combined with the synchronizer described above does not

work correctly on an asynchronous network.

The BFS algorithm utilizes two types of messages - LABEL and ACK. The LABEL
message carries a parameter and is sent by a node to its neighbouring nodes to inform
them of its level number. This enables its neighbours to figure out their level numbers.
An ACK message is sent in response to a LABEL message. The computation of the algo-
rithm proceeds as follows. The leader at level O initiates the algorithm by sending a
LABEL message to each of its neighbours during the first clock pulse. As soon as the
neighbours receive this message, they figure out their level numbers and set their parent
as the leader. Then they send a LABEL message to their neighbours. So in general, when
any internal node receives a LABEL message, it figures out its level number and sets its
parent as the node from which the LABEL message arrived. Note that the first LABEL
message that arrives at a node determines its level number and its parent and cannot be
updated later by the arrival of other LABEL messages. If a leaf receives a LABEL mes-
sage, then its only neighbour is its parent and so an ACK message is sent to its parent.
And if a node that has already been labelled receives a LABEL message, then an ACK
message is sent to the corresponding node since as mentioned above, in this case no
update is done. Each node waits until all ACK messages have been received for all
LABEL messages sent. Then the node sends an ACK message to its parent from which it
received the first LABEL message. Once the leader receives all the ACK messages, the

algorithm terminates.

The BES synchronous algorithm works properly because a message transmitted at
each clock pulse arrives at its destination before the next clock pulse starts. This ensures
that a node with label k receives its first LABEL message only during the ™ pulse.

Clearly, this is not the case, in general, on an asynchronous network.

Now consider the execution of the above BFS synchronous algorithm combined
with the GO synchronizer on a five node asynchronous network shown in Fig. 2.1. Note

that GO messages of the synchronizer also serve the purpose of ACK messages in the

O O

Fig. 2.1: lllustration of Go-Synchronizer.

- 15 -

asynchronous algorithm. This example will pruve that sometimes simulating a synchro-
nous algorithm on an asynchronous network using synchronizers may not produce the
correct results. Let s be the leader. The leader initiates the algorithm by sending a
WAKEUP message and then a GO message to u and v. The WAKEUP message awakes
nodes 4 and v. Nodes w and x receive WAKEUP messages from u and v, respectively.
Each of these nodes sends GO messages following the WAKEUP messages. Note that if
a node has already woken up and another message is received, it is ignored. The initiali-
zation phase ends when each of the nodes receive GO messages from its neighbours. The
nodes are then ready to execute their first pulse. The leader sends a LABEL(1) message
to its neighbours u and v during the first pulse. Following this message, a GO message is
sentto # and v by s. In the meantime, the nodes u, v, w and x send redundant GO mes-
sages to each of their neighbours for the purpose of synchronization. Suppose the nodes
u and v receive the LABEL(1) messages and GO messages from s and GO messages
from w and x respectively, without any delay. Then the nodes u and v figure out their

level numbers as 1.

During the second pulse, nodes # and v send LABEL(2) messages to w and x,
respectively. The node 4 sends a GO message to s and w. Similarly, node v sends a GO
message to s and x. Meanwhile, nodes w and x on the other hand send GO messages to
u and v, respectively, for synchronization. Now suppose node w receives the LABEL(2)
message and a GO message from # and a GO message from x. But suppose the receipt of
the LABEL(2) message from v to x is delayed. Then node w calculates its level number
as 2 and sends a LABEL(3) and a GO message to node x and a GO message to 4. During
this pulse, node x is yet to receive the LABEL(2) message and when it receives the
LABEL(3) message it determines its level number as 3. Recall that once a node that has
already been labelled receives a label message, no update is done. Therefore, even if the

LABEL(2) message from v arrives at x, no update is done to the level number of x. The

-16 -

algorithm has thus produced an incorrect resuit.

This algorithm can be modified as follows. Each LABEL message received from a
node is allowed to update the level number of the destination node. This allows the early
arrival of LABEL messages with higher level numbers to be corrected. This version will
work correctly with the above synchronization. However such a simple modification may

not be possible for arbitrary synchronous protocols.

The failure of the GO synchronizer to help exact simulation can thus cause
incorrect implementation of an algorithm and hence may produce incorrect results.
Again the source of the problem is the fact that the messages sent by a node i during the
k™ pulse may arrive at a neighbouring node j even before j has started its K" pulse . As

we observed before this difficulty is present in other synchronizers too.

2.4 Possible Remedies

Summarizing the discussions of the previous section, we have the following. For the
correct working of an arbitrary synchronous protocol when combined with any synchron-
izer, it is necessary that before a node executes its k" pulse of activity, all messages sent
to it by its neighbours during the (k—l)’h pulse of activity must have been received and
processed. All synchronizers proposed so far ensure this. [t is also necessary that before a
node executes its k™ pulse of activity, no message sent to it by its neighbours during the
k™ pulse of activity should be processed, even if some have been received already. This

is not ensured by any of the synchronizers discussed so far.

There are several ways of solving the above problem. Suppose while processing a
message, it is valid to check upon some condition that determines whether to handle the
message immediately or delay it by placing it in a queue. Then this would allow mes-

sages that have arrived earlier than expected to be placed in a queue to be processed

-17 -

later.

With the GO-synchronizer mechanism discussed above, it can be easily detected if
a message is to be processed or delayed. Suppose a message has been received from node
Jj and there already exists a pending unused GO message from j. Then this cautions the
node to delay the processing of the current message. So, if two queues are kept for
incoming messages, then the messages to be delayed can be placed in the second queue
and then processed after generating a new pulse. a, B, and y synchronizers can also be
corrected by requiring each message to carry a pulse number, which can be used as a
basis for deciding to delay the processing of messages that arrive early. Note that these
corrections do not affect the complexities of the synchronizers. Bur they will not be valid
if the model of asynchronous computation does not pe:mit a processor to delay process-
ing of messages once received.

We now present a modification to thie B-synchronizer, which will not require delay-
ing of processing of a message once received. Recall that in a B-synchronizer, an elected
leader coordinates the pulse-by-pulse activity of all nodes in the network. Here, when the
leader decides to send down thz PULSE message, notifying all nodes to start a new pulse
of activity, it is guaranteed that all nodes have completed the previous pulse, no messages
of the synchronous algorithm are still in transit, and that all nodes are ready to start a new
pulse. But the problem is that the notification to start a new pulse of activity is pro-
pagated via a rooted spanning tree and sometimes this notification may arrive at a node
later than an useful message of the synchronous algorithm transmitted by a neighbouring
node which has already completed its new pulse of aciivity. One way to remedy this will
be to flood the network of this notification to start a new pulse, using the protocol of
Segall [Seg83], as is done for WAKEUP and WINDUP messages of our synchronizer. In
other words, each node, when it first receives the PULSE message, informs each of its

neighbours of that fact before proceeding with the execution of the new pulse.

-18 -

Subsequent PULSE messages received via other neighbouring nodes can always be
ignored. To accomplish this, a PULSE message must carry one bit of information that
alternates between 1 and 0, indicating whether it corresponds to an odd numbered or an
even numbered pulse. Correspondingly, each node must maintain a one bit flag to keep
track of the number of pulses of activity gone through. Based on this bit of information a
node can decide to handle or ignore a PULSE message. As before, after completing a
pulse of activity, a node may have to wait until it recognizes itself as safe before inform-
ing the leader so. This information can, of course, flow through the tree just as in a -
synchronizer. However, observe that this solution then means that the message and time

complexity overheads of the modified B -synchronizer are C pulse = O(m) and T

ulse puLw:
O(n), respectively.

The message complexity overhead of the modified B-synchronizer can now be
reduced, if the PULSE message is forwarded by each node only to those neighbours to
whom it intends to send a useful message of the synchronous algorithm, during that pulse
of activity. But, in order to be sure that each node receives the PULSE message at least
once, it may have to be propagated via the rooted spanning tree also, as in a normal §3-
synchronizer. Now, observe tha:i the message complexity overhead reculting from the
PULSE messages that flow along non-tree edges can be absorbed along with the message
complexity of the synchronous algorithm, without affecting its asymptotic nature. Thus,
this modified B-synchronizer, which ensures the correct working of an arbitrary synchro-

nous protocol, also has only Cpme =0O(n) and Tpulse =Q(n), overhead per pulse.

It can be shown that the o and y synchronizers do not admit any modification
without requiring considerable increase in their complexities. Whereas the remedies we
have discussed (as preserted in {LaT87]) do not require delaying of processing of a mes-
sage, a recent paper |SeS91] presents remedies which permit delaying of processing of a

message once received but do not require messages to carry pulse numbers.

-19-

2.5 Summary

In this chapter we have discussed the notion of a synchronizer and presented the o,
B and Y synchronizers proposed by Awerbuch [Awe85]. We have also illustrated the
difficulties which one may encounter in the implementation of the synchronizer and
presented the approaches available to overcome these difficulties [LaT87]. In Chapter VI

we shall explain how the synchronizers are implemented in a shared-memory model.

CHAPTER 1
SHORTEST PATH AND PRIMAL-DUAL INITIALIZATION
ALGORITHMS

Consider a connected directed graph G in which each directed edge is associated
with a real number called the length of the edge. The length of an edge directed from a
Vertex v; 1o a vertex v, is denoted by w(e) = w(y,, v]) =w, . If there is no edge
directed from v, to v I then w (v, ,vj) = oo, The length of a directed path in G is the
sumn of the lengths of the edges in the path. A minimum length directed s —¢ path is called
a shortest path from s to t. The length of a shortest directed s~ path, called the dis-

tance from s tot,is denoted as d (s , ¢).
In this chapter we consider the following two problems:

(1) Single-Source Shortest Path Problem: Find the shortest paths from a specified

vertex s to all the vertices in G.
(it) Imitalization of the Primal-Dual Method for the Transshipment Problem.

In the following chapter, we present an algorithm for the single-source shortest path
problem. We then show how the primal-dual initialization problem can also be formu-

lated as a single-source shortest path problem.

3.1 Single-Source Shortest Path Algorithm

Two efficient algorithms are available for the single-source shortest path problem.
They are due to Dijkstra {Dij59], and Bellman, Ford and Moore |Bel58], [FoF62j,
[Moo57]. Though Dijkstra’s algorithm has a better complexity than the Bellman-Ford-
Moore (BFM) algorithm, it is not applicable when the graph has some negative length
edges. Since the graph underlying a transshipment problem may have some negative
length edges, Dijkstra’s algorithm is not suitable for the application of interest to us. So

we shall focus our discussion on the BFM algorithm.

221 -

The BFM algorithm is very elegant and easy to present. Inidally it assigns a label,
LABEL(s) = 0 to the vertex 5 and assigns LABEL(v) = o, for every other vertex v. The
algorithm then repeatedly performs the following operation:

Select anedge e = (v, , vj) such that LABEL(v j) > LABEL(v;) + w(v; , vj) and
set LABEL(v;) = LABEL(v;) + w(v;,v)).
The algorithm terminates when the above operation is no longer applicable. At ter-

mination LABEL(v) gives the length of a shortest path froms tov.

A formal presentation of the BFM algorithm is given below:

Algorithm 3.1: THE BELLMAN-FORD-MOORE SHORTEST PATH
ALGORITHM

S0. G is the given directed graph with lengths associated with edges. Shortest paths

from vertex s to all the other vertices in G are required.

S1. (Initialize.) Set LABEL(s) = 0 and PRED(s) =s.Forallv # s, set LABEL(v) = o
and PRED(v) =v.

S2. If there exists no edge ¢ = (v, ,vj) for which LABEL(vj) > LABEL(v;) + w(e),
then HALT. (The current vertex label values represent the lengths of the shortest
paths.)

S3. Select an edge e=(y, ,vj) for which LABEL(vj) > LABEL(v;) + wi(e). Set

LABEL(V}) =LABEL(v,) + w(e) and PRED(VJ) =v,;.Goto S2.

The PRED(v) used in the BFM algorithm serve one important purpose. PRED(vj),
at any step in the algorithm, denotes the vertex from which v f has received its current
label. At termination, PRED(v)’s can be used to trace shortest paths from s to v. For
instance a shortest path from vertex s to vertex v would contain the sequence of vertices

§ = VgV, Vy, o, v = v osuch that PRED(v)) = Vv;_» | S i<k. At termination,

-22-

the edges (PRED(v) , v)also constitute a spanning tree rooted ut 5.

For our purposes in the BFM algorithm o= is not greater than co+k even if k is
negative. Also, the algorithm will not terminate if there is a directed path from s to a ver-
tex on a directed circuit of negative length because in such a case, going around this cir-
cuit will decrease label values, and the process can be repeated indefinitely. We now
prove that ir all other cases the algorithm will terminate in a finite number of steps and at
termination, for every vertex v, LABEL(v) will give the length of a shortest directed

path froms tov.

LEMMA 3.1 : If the graph G has no negative directed circuits of negative length, then,
if at any stage of the BFM algorithm LABEL(v) is finite, there is a directed path froms
to v whose length is LABEL(v).

Proof

We prove the result by displaying a directed path from s to v. The construction is

backward fromv.

Let u denote the vertex that gave v its present LABEL(v). If LABEL (1) represents
the label of u at the time it gave v the label LABEL(v), then LABEL(v) = LABEL (u)
+w(e), where ¢ = (¥ ,v). Now, continue from u to the vertex that gave it the label
LABEL (u), and so on. In this process no vertex will be encountered more than once
because each step in the process refers to an earlier time in the execution of the algo-
rithm, and a vertex can decrease its own label only by going through a directed circuit of
negative length. Thus there is a directed path from s to v such that the LABEL(v) is the

sum of the lengths of the edges on this path. Thus the required result follows.

0
Recall that d(s ,v), the distance from s to v, denotes the length of a shortest

directed path froms tov.

THEOREM 3.1 : For a directed graph G with no directed circuits of negative length,

the Bellman-Ford-Moore Algorithm terminates in a finite number of steps, and upon ter-
mination LABEL(v)=d(s ,v)forallv.
Proof

Consider any vertex v in G By Lemma 3.1, at any stage of the Bellman-Ford-
Moore algorithm, LABEL(v) represents the length of a directed path from s to v. Since
there are only a finite number of such paths, it follows that the number of possible values
for LABEL(v) is also finite.

Clearly, upon termination of the algorithm, LABEL(v) 2 d(s ,v). If LABEL(v) >
d(s,v),thenletP : s = v,,v, , ', v, = v be ashortest path from s to v and let

e, denote the edge (v;_, , v;) on this path. Forevery i = 0,1,2,-+, k,we have
i
d(s ,v;) = Zw(ej)
j=1
Let v; be the first vertex on this path for which, upon termination of the algorithm,

LABEL(v)) > d(s,v,). Since LABEL(v;_,) = d(s.v,;) we have d(s ,v,) =
LABEL(v;_,) + w(e,) and so upon ter.nination LABEL(v,) > LABEL(v,_)) + w(e¢;).
This is a contradiction because when the algorithm terminates there is no edge e (u , w)
with LABEL(w) > LABEL(u«) + w(e). Thus, for every vertex v on P, LABEL(v;) =
d(s ,v;). In particular, LABEL(v,) = LABEL(v) = d(s ,v) and the theorem fol-

lows.

0

Note that the number of directed paths from s to a vertex could be exponential in

the number of vertices of the graph. So, if in the implementation of the BFM algorithm
edges are seleced in an arbitrary manner, it is possible that the algorithm may perform an
exponential number of operations before terminating. We can show that the following

implementation of the algorithm will achieve a complexity of O(/mn) where m and n are,

respectively, the number of edges and the number of vertices of G.

Order the vertices as ViV, Y, Pick vertices in this order, and for cach
vertex v; selected, examine all the edges directed out of v; and perform step S3 on these
edges whenever it is applicable. After one such sweep (examination) of all the vertices,
perform additional sweeps until an entire sweep produces no changes in the vertex labels.
If the number of edges in a shortest directed path from s to v is k, then it can be shown
by induction that by the end of the k"l sweep, v will have its final label. Since
k < (n-1) and each sweep requires O(m) operations, the implementation of the

Bellman-Ford-Moore algorithm requires O(mn) time.

A further variant of the BFM algorithm, which has the same complexity as the
above implementation but yet is amenable for a distributed implementation is presented
below.

S1: (Initialize) Set LABEL(s) =0, and PRED(s) = 5. For all v=s , set LABEL(v)

= TLABEL(v) =< and PRED(v)=v.

S2: Foreachi =1, 2,..., nandeachedgee = (v ,vj),do:

If LABEL(v) > LABEL(v;) + w(e) and TLABEL(v) > LABEL(v) +
w(e), set TLABEL(vj) = LABEL(v,) + w(e) and PRED(vJ)=v,.

$3: Ifforeveryi =1 ,2,..., n,LABEL(v,) = TLABEL(v,), then HALT.
S4: Foreachi =1, 2,..., n,set LABEL(v;) = TLABEL(v,), and go to step
S2.

Note that in step S2 of the above algorithm, one sweep of all the vertices is performed.
After each sweep, label values are updated in step S4. These new label values are used

in the next sweep.

As an example, consider the graph of Fiz. 3.1 with edge lengths as shown. Shortest

.25 -

Fig. 3.1: A Directed Graph G with Edge Lengths.

Fﬁwr’»mw -

paths from vertex 0 are required. Inidally LABEL(0) = 0 and LABEL(v) = e tor all v.

The label values at the end of the sweeps are :

Sweep LABEL(0) LABEL(l1) LABEL(2) LABEL(3) LABEL(4) LABEL()

wn B (8 [38
S O S O C
w w W %) O8]
t
=

Algorithm terminates at the end of sweep 5. It can be verified that vertices have the

PRED values:

PRED(0) = ()
PRED(1)=0
PRED(2) = 1
PRED(3) =2
PRED@4) =3
PRED(5) =3

3.2 Initialization of the Primal-Dual Method

As we shall see in Chapter V, the problem of initializing the primal-dual method for

the transshipment problem can be formulated as follows.

Given a graph G = (V,E) with cost w, j associated with each edge e =(v, WY,), and
variable y; associated with each vertex v;. Then, the primal-dual initialization problem

is: Determine y,’s such that for each edge (i , j),y, - y, +w, 2 0.

.27-

If all w, ; s are non-negative then setting every y = 0 will give a required solution.
The problem becomes interesting when some w; j ’s are negative. In [CoT88] it is shown

that y,’s selected as follows will give a required solution :

y = Max[O , -Min { d, }]. (3.1)
j

where d‘.j denotes the length of a shortest path from node v; to v ;- Here, w;; represents
the length of edge (v, , v,). In other words y; is equal to the negative of the length of the
most negative shortest path originating at vertex v,, if a negative length path exists; oth-
erwise y; is zero.
For instance, for the graph shown in Fig. 3.1, we have
Yo=1
y =4
y,=2
y3=0
y,=8
ys=0.
Calculating y;'s as given by (3.1) would require finding shortest paths between all
pairs of vertices and then taking the appropriate maximum. However, we can reduce the

problem to the single-source shortest path problem as follows.
1. First reverse the orientations of all the edges in the given graph G.

2. To this graph add a new vertex s and connect s to all the vertices with the
edges directed away from s. Assign zero costs to these edges.
If G~ denotes the graph constructed as above and d ".j denotes the length of a shortest

path in G from vertex v, to vertex v i then y.'s given by (3.1) can also be obtained from

the following

(3.2)

The fact that the y,’s computed using (3.2) indeed satisfies (3.1) cun be shown from

the following:

1.

There is a one-to-one correspondence between the directed i —j paths in G and

the directed j—i paths inG *,for alli, j = s.
A shortest i —j path in G has the same length as the shortest s—i path in G .

If d;, = M.in(d‘.‘l) <0 then d ;" = d So by (3.1) in this case
1

y; = = d‘.'k =-d,;" If d‘.'k 2 Othen by 3.1) y, = 0. Butin this case s ~i
path in G~ also has length equal to zero. Thus in both cases (3.2) correctly

computes y,; ’s.

As an example, the graph G~ constructed from the graph G of Fig. 3.1 is

shown in Fig. 3.2. We can now verify that (3.1) and (3.2) both yield the same values

fory,’s.

3.3 A Distributed Protocol for the Single-Source Shortest Path Problem

We now return to the single-source shortest path problem considered in Section

3.1 and consider the design of a distributed protocol for this problem.

The variant of the BFM algorithm presented at the end of Section 3.1 is amen-

able to a distributed implementation. However, we need :0 add to this algorithm two

mechanisms — one to detect termination and the other to detect the presence of a

directed circuit of negative length. Recall that the algorithm terminates when the dis-

tances of all the vertices reach their final distance values. We adopt schemes given

by Chandy and Misra [ChM82].

We now present the essential features of a synchronous distributed protocol

-29.

Fig. 3.2: Graph G' derived from Graph G of Fig. 3.1.

for the single --source shortest path problem. We are required to determine the shor-

test paths from a specified vertex s to all the other vertices in a graph G. The proto-
col uses four types of messages — DISTANCE, ACK, TERMINATE and INFEASI-

BLE messages .

The Distance message sent by a node carries the value of its current distance. A
node sends an ACK message for every DISTANCE message received. The ACK
messages help in detecting termination of the distributed protocol: the vertex s
detects termination when it receives ACK messages for all the messages it has sent.
Soon after detecting termination, vertex s sends TERMINATE messages to all ver-
tices adjacent to it. These vertices then broadcast this information to adjacent ver-
tices and so on. A vertex detects the presence of a directed circuit of negative length
when it finds, at the time it receives a TERMINATE message, that an ACK message
is yet to be received for a DISTANCE message it had sent earlier. In the following
PRED(v) of vertex v has the same meaning as in Algorithm 3.1, and d (v) is used 1n
place of LABEL(v). We also assume that each vertex processor v is aware of the

lengths of the incoming edges at v .

Algorithm 3.2 : A SYNCHRONOUS DISTRIBUTED PROTOCOL FOR
THE SINGLE-SOURCE SHORTEST PATH PROBLEM

(1) During the first pulse, the following actions are performed by the different

vertices.

(i) Vertex s setsd(s) = 0, PRED(s) =s and sends DISTANCE messages

to all adjacent vertices along all outgoing edges.
(ii) Eachvertexv # s setsd(v) = oo and PRED(v) = v.

(2) During each subsequent pulse, each vertex v examines the messages

231 -

received

and performs the following actions :

Vertex s
If it has received ACK messages for all the DISTANCE messages it has
sent during the first pulse, then it detects termination and sends a TER-

MINATE message to each adjacent vertex.

Vertexv #s

(i) If v receives any ACK message, then it checks to see if ACK mes-
sages have been received for all the DISTANCE messages it had
sent. If so, it sends an ACK message to PRED(v).

(i)
a) Suppose v receives DI° ANCE messages along edges

(i1 ,V),(iz,v),...,(ik ,v). Then v computes

MIN = Min[d(ij) + w(ij ,v)].
J

b) Ifd(v) > MIN and MIN = d(ij) + w(ij ,v) then v does

the following:

(i) Sends ACK messages to all the vertices i_, r # j.
(ii) Sends an ACK message to PRED(v).

(iii) Setsd(v) = MIN and sets PRED(v) = i

(iv) Sends DISTANCE messages along outgoing edges.

(iii) If it receives a TERMINATE message, it checks to see if ACK mes-

sages have been received for all the DISTANCE messages it had

sent earlier. If so, it sends TERMINATE messages to all adjacent
vertices. If not, it sends INFEASIBLE messages to all adjacent

vertices.

The above synchronous protocol can be converted into an asynchronous protocol by
augmenting it with a synchronizer. In the case of the shortest path problem, the o-
synchronizer or the simpler GO-synchronizer discussed in the previous chapter will
be appropriate. All the details of incorporating the synchronizer mechanism will be

discussed in Chapter VI, where we discuss simulation of our distributed algorithms.

3.4 Summary

In this chapter, we have presented the Bellman-Ford-Moore Algorithm for the
single-source path problem and a variant of this algorithm that is amenable for distri-
buted implementation. We have shown how the primal-dual initialization problem
can be formulated as a single-scurce shortest path problem. Finally the main
features of a synchronous distributed protocol for the shortest path problem have
been discussed. Several issues relating to synchronization that will be required

while running the protocol in an asynchronous environment will be discussed in

Chapter VI.

CHAPTER 1V
TRANSPORT NETWORK AND THE MAXIMUM FLOW
PROBLEM

A transport network represents a model for transportation of a commodity from its
production center to its market through communication routes. The network is thus a con-
nected directed graph N=(V,E) with no self loops (cannot transport to itself). N has to
satisfy the following conditions:

1. There is only one node with zero indegree; this is designated as the source

(production center) and is denoted as .

2. There is only one node with zero outdegree; this is designated as the sink

(market) and is denoted as ¢.

3. Every directed edge e = (i ,j) in N is assigned a non-negative real number
c(i,j).the capacity of (i ,j).c(i ,j) = 0if there is no edge directed from
itoj.

4. Everydirected edge e = (i ,j)in N is assigned a non-negative flow f (i , j).

The capacity of an edge can be thought of as representing the maximum amount of

some commodity that can be transported along the edge.

A flow f through a transport network N is an assignment of non-negative real

numbers f (i , j) to the edges (i , j) such that the following conditions are satisfied:

1. capacity constraint: The flow along an edge cannot exceed the capacity of an

edge. Therefore,
0<fG,j)<cl,j), V. (,j)e E

2. conservation constraint. For each vertex i, except the source s and the sink ¢,

the material transported into i is equal to the material transported out of i .

-34 -

Therefore,

(3fs.j) Jifi=ys.
!
SFGE.H)-XfG.D=1-2f0.,n ,ifi=1.

J J J

‘0 , otherwise .

Fig. 4.1 shows a typical transport network.
The value of a flow f denoted by val (f) is defined as
val(f)y =% f(s.Jj) .

J

In Fig. 4.1 val(f) = 6 . Note that because of the conservation constraint, the total
amount of material transported out of the source is equal to the total amount transported

into the sink. This can be verified for the network in Fig. 4.1. Thus

val(f)y =3 f(s,j) =3 fU.n.

J J

”
A flow f in a transport network N is said to be maximum if there is no low f in

N such that val (f) > val(f *).

The maximum flow (in short, the max-flow) problem is to find a maximum flow in a

transport network.

4.1 Two Fundamental Theorems in Network Flow Theory

In this section we present two fundamental theorems in network flow theory ,
namely, the augmentation path theorem and the max-flow min-cut theorem. They form

the basis of all algorithms for the max-flow problem.

Consider a connected graph N with vertex set V. Let § and § = V - § be two

mutually disjoint subsets of V suchthat V. = § U S . Thatis, § and § have no

Fig. 4.1: A Transport Network.

common vertices and together contain all the vertices of V. Then the sct of all those

edges having one end vertex in S and another in § is called a cur of G, and is denoted
by <§ ,8>.
A cut <S , §>in a transport network N is said to separate the source s and the sink

t,ifs € S and ¢t € S§. Such a cut will be referred to as an s—¢ cut. The capaciy

c(S ,8)ofacut<S ,S>isdefined as

c($,5)=3 T,

ieSje§
Note that the capacities of the edges directed from § to S do not contribute to the capa-
city of the cut <S , §>. Let,

f(S,8) = the sum of the flows in the edges directed from S 10 5.

f(5,8) = the sumof the flows in the edges directed from S to §.
Anedge (i ,j)is f-saturated £ f (i ,j) = c(i,]) ;itis f-unsawrared, otherwise.
Anedge (i ,j)issaid tobe f-zero iff(i ,j) = 0 ;itis f —positive , otherwise.

Let us consider an example. Consider the cut <S , > in the transport network of
Fig. 4.1, where S = {s ,a,b,c]} and S = (d ,1}. This cut is shown in Fig. 4.2
c85H= X Y clG,))

iESjef
ca@a,d) + cb,t) + c(c,d)

2+6+3

11,

fSS= f@,d) + fb,t) + flc,d)
=2 +4+ 2 =28,
and f(§,S)= 2.

-37-

Fig. 4.2: s-t Cut <S,S>.

-38 -

The following theorem is a consequence of the conservation constraint.

THEOREM 4.1 : For any flow f and any s—¢ cut<§ , J> in a transport network N,
val(f) = f(§,5) - f(§,5)

COROLLARY 4.1.1: For any flow f and any st cut <S , 8> in a ransport network N
val(f) € ¢(5,5).
Proof
We have,
val(f)y = 3 Sf6.)- % TfG.D=F,68.5-r85.9
ieS je§ ieS jef
That is, the value of any flow is equal to the net flow through any cut. However,

0<Lf@,j)<cl,j) Therefore,

val(f) € f(§.5)

= X Xf0.))
t€S5 jef

< Y Xcl,.))
ieS jef
=c(5,9)

a
Note that val(f) = c(S,8) if £(§,5) = Oand £(5,5) = c(S,5). In other
words, val(f) = ¢(S ,S) if all the edges directed from S to S are [—sawrated and

those directed from S to S are f ~zero.

Ans—t cut<S , 8> in a transport network N is minimum if there is no cut <K , K>

in N such that ¢ (K , K) < ¢(5,5).

COROLLARY 4.1.2: Let f be a flow and <5 ,8> be an s—r cut such that

-39-

val (f) = c(S ,S). Then f is a maximum flow and <S , $> is a minimum s —¢ cut.
Proof
Letf bea flowand <§ ,S>beans—t cutsuch thatval (f) = c(S ,). Assumef‘
is a maximum flow and <K , K> is a minimums-t cut. Then by Corollary 4.1.1,
val(f*) < ¢k , K).
Also,
val(f) < val(f*)and
c§,8) 2 ck ,K).
Therefore,
val (f) € val(f') < c(K ,K) < ¢S , 3.
But by hypothesis, val (f) = ¢(S ,). So,
val(f.) = c(K .K).
Thus,
val (f) = val(f') = ¢k ,K) = ¢(S,8)

and f is a maximum flow and <S , S> is a minimum cut.

To understand and prove the maximum flow minimum cut theorem, we need the aug-

menting path theorem presented next,

Consider a transport network N with a flow f. Let P be a path (not necessarily directed)
in N from the source 5 to some vertex v. Suppose that

P:s= W o Uy 5 Uy ooy Wy s Wy e, W =V,
Let ¢; denote the edge connecting vertices «,_, and u;. Then an edge e; of P directed
from u;_, tou, is called a forward edge of P. Anedge ¢; of P directed from ; tou;_, is

called a backward edge of P. For each edge ¢, inP, let

Ic (¢;) - fe) ,if e isa forward edge.

&= e \if e, is a backward edge.
Define €(P) = min { €;(P) }.Note that €(P) 2 0.

3

A path is said to be f —unsaturated if the following two conditions are satistied :

1. fG,Jj) # c(i,j)forevery forward edge (i ,j).

2. f@,j) > Oforevery backward edge (i ,).
An s—t path P is called an faugmenting path if P is f-—-unsaturated. If P is
f —augmenting then ¢(P) > 0.

Given a network N, let P be an f —augmenting s — path. Then a new flow f can be

obtained as follows:

f(e) + &P) , ifeis a forward edge of P.
f(e) = 1f(e) — &P) , ifeis a backward edge of P.
0 , otherwise.
Thus val (f) = val(f) + €P) and val(f) > val(f). So if an f-augmenting path P
exists, then the flow f is not maximum.
Consider the network N shown in Fig. 4.1. Let flow f be as shown in this figure. In
this figure the numbers assigned to the edges indicate capacity and flow in this order. If
the path P consists of edges (s ,c),(c¢ ,a)(a ,b) and (b ,t), then (s ,¢),(a ,b) and

(b ,t) are forward edges, and (c , a) is a backward edge. With respect to the flow f,

|

m
1

L= € o) = 3-2
& = & oP) = 1

=g, pyP)=2-1=1
=€, yP)=6-4=2

S
1

m
rN
|

Hence,

€(P) = min (§,(P) , &(P) , &(P) , £,(P)) = 1

-41 -

Since €(P) > 0, Pis f -augmenting. The revised flow f based on P is:
fs,c)=fGs,c)+e® =2+1=3
fc,a) =f(c.,a)+eP) =1-1

0
fa,b)=f@,b) +e®) =1+1=2
5

ftb,1) =fkb,t)+eP)=4+1=
The flow f is shown in Fig. 4.3.

THEOREM 4.2 (AUGMENTING PATH THEOREM): A flow f in a transport net-
work N is maximum if and only if there is no f —augmenting path.

Proof

Necessity : Suppost there exists an f- augmenting path. Then the revised flow f based

on P has a larger value than f . Therefore, flow f in N is not maximum.

Sufficiency : Suppose N contains no f —augmenting path. Let S be the set of vertices of N
such that they are reachable from the source s by f -unsaturated paths. Since there is no

f —augmenting path,s € Sand! e S.

Now we show that val (f)=c(S . §), f —unsaturated path from s to v. So, if (v , w)
is not f —saturated then there will be an f —unsaturated path (with (v ,w) as a forward
edge) from s to w, implying that w € . This is a contradiction because w € §. Thus

each edge (v ,w)withv € S andw € Sis f —saturated.

Consider an edge (v ,w) withv € § and w € S. Then the edge is directed from
St S.If f(v,w) is not f—zero then as before, there will be an f —unsaturated path

from s to v, implying thatv e S. This is not possible since v € §. Thus for every edge

Fig. 4.3: Fiow Fin Transport Network of Fig. 4.1.

-43-

(v,w)withv € Sandw € S,f(v,w) = 0.
Now,

val(f) = f(§,8) - F&§,95). _
Since the edges directed from S to § are f —saturated (f(i ,j)=c(i ,j)i€ S,j€S)
and the edges directed from § to S are f-zero (f(i , j)=0,j € §,i € $),
£ ,8)=c(s,5)andf(S,S) = 0.
Therefore,
val(f) = f(§ ,5)=c(S.5)

Thus by Corollary 4.1.2, f is 2 maximum flow and <S , S’> is a minimum cut.
[m]

Finally we have the maximum flow minimum cut theorem due to Ford and Fulkerson

[FOoF59] and (FoF62] stated and proved next.

THEOREM 4.3 (MAX FLOW MIN CUT THEOREM): In a transport network the
value of a maximum flow is equal to the capacity of a minimum cut.

Proof

Consider a transport network N. Assume the present flow is maximum. Then as
proved in Theorem 4.2, there is a cut <§ , §> such that
val(f) = c(S,S)

Then from Corollary 4.1.2,<S , §> is 2 minimum cut.

4.2 The Push-Relabel Preflow Algorithm: Goldberg and Tarjan

Consider a transport network N with source s and sink . Recall that a function f :E

— R, where R is the set of real numbers, is a maximum flow if the following conditions

are satisfied:
. 0<f@,j)<cl,

2 S i) -XfG.D =0, Vie V- (s,

J j
3. There is no augmenting path from s to ¢ under f.

Conditions (1) and (2) ensure that f is a flow. Since condition (3) is also satisfied, it {ol-

lows from the augmentation path theorem that f is a maximum flow.

The earliest algorithm for the maximum flow problem was due to Ford and Fulker-
son [FoF62]. This algorithm starts with a flow f 0 that satisfies conditions (1) and (2) and
constructs a sequence of flows f, , f, , -+ such that each f also satisties these two
conditions and that val (f;) > val(f). The algorithm terminates with a flow f, that
satisfies condition (3). Then f, is a maximum flow because under f, there is no aug-

menting path froms to ¢.

Several variations of the Ford-Fulkerson algorithm were subsequently presented
resulting in algorithms with better complexities. One such algorithm was due to Dinic
[Din70] which when combined with the MPM algorithm {MPM78] for constructing a
maximal flow in an acyclic network has a complexity of O(n3) for a network with n ver-

tices.

Recently Goldberg and Tarjan [Gol87],(GoT88| presented an approach that is tun-
damentally different from that of Ford and Fulkerson. This algorithm starts with an
assignment f (i ,j) that satisfies conditions (1) and (3) and terminates with a flow that
satisfies condition (2). This algorithm is quite elegant and is amenable to a distributed

implementation.

We now proceed to preseut Goldberg and Tarjan’s max-flow algorithm.

-45 -

Let N«(V , E) be a network with each edge assigned a non-negative real capacity.
Without loss of generality assume that N has no multiple edges. If there is an edge froma
vertex v tO a vertex w, this edge is unique by the assumption and is denoted by (v , w).
A pseudoflow is a function f:E — R that satisfies the following constraints :

fw,w)<c(k,w), V (v,w)e E/(capacity constraint)

fw,v) = =f(v,w), ¥V (v,w) € E(antisymmetry constraint)

Weletc(w,v) = 0 if(v,w) e E. Given a pseudoflow f, the excess function
e : V — R is defined by,

e,(v)= X fluy)

ueV

Thus ¢ (v) is the net flow into v. A vertex v has excess if e f (v) is positive. This indi-
cates that some amount of flow can be pushed out from vertex v. A vertex v has deficit
if ef(v) is negative.

Given a pseudoflow f, the residual capacity function cp E — R is defined by
ey, w) = c(v,w) - f(v,w). The residual graph with respect to a pseudoflow f
is given by Gf =(V, Ef), where Ef ={(v,w) € Elcf (v,w)>0}). Edge(v ,w)is a

residual edge if ¢r (v.,w) > 0.

A preflow f is a pseudoflow f such that the e (v) 2 0 for all vertices v other than

s and .

The push-relabel preflow algorithm of Goldberg and Tarjan starts with a preflow
and a distance labeling, and uses two operations, pushing and relabeling, to update the

preflow and the labeling, repeating them until a maximum flow is found.

For a given preflow f, a valid distance labeling is a function d from the vertices to
the non-negative integers such that d(s)=n, d(t)=0 and d(v) < d(w)+1 for all resi-

dual edgas (v w). The intuition behind this is as follows.

d(v) provides an estimate of the maximum distance from v to r. This is obvious for
s and r because d(s)=n and d(z)=0. Now consider a vertex v adjacent to vertices
Wy, Wy ,..., w.letd(w,),i =1,2,..., k be theestimated distance from w,_ to 1.
From among these vertices choose the one with the smallest distance. Let w, be such a
vertex. Then the estimated distance d(v) will be at most d(w /) + 1. So, during the relabel

operation the minimumof d(w), (v ,w) € Ef will be used to update d(v).

A vertex v is said to be active if v ¢ (5 ,t} and ef(v) > 0. Anedge (v,w)is

admissible if (v,w)e Ef andd(v)=d(w)+1.

The push-relabel algorithm begins with an initialization phase. The flow on each
edge leaving the source is set equal to the edge capacity, and all other edges not incident
on the source have zero flow. Thus under this preflow, there is no augmenting path from
s to t. For each vertex w, the excess e f(w) is calculated. It is clear that since some flow
is pushed from the source, there exists at least one vertex with positive excess. So there
exists at least one active vertex. Each vertex we V - {s] is assigned an initial labeling

d(w)=0. For vertex 5,d (s)=n.

Then an update operation is selected and applied to an active vertex. This process
continues until there are no more active vertices at which point the algorithm terminates,
with a preflow f with no active vertices. Thus f satisfies conditions (1),(2) and (3) and is

therefore a maximum flow. A maximum flow is thus found.

We next consider the update operations. The push vperation modifies the preflow f

and the relabel operation modifies the valid distance labeling d.

Consider a vertex v. The push operation is applicable if the following two condi-

tions are satisfied :

1. visactive: vertex v has positive excess flow . This implies that some amount of

flow can still be pushed out from v.

-47-

2. There exists a residual edge, say (v,w), that is admissible: (vw) € E y

and d(v)=d(w) + 1. Then path v 1ot via (v,w) is an estimated shortest path.

If these two conditions are satisfied, then a push along (v , w) can occur. A push
from v to w increases the flow f(v,w) and € (w) by up to & = min

(e[), ¢t (v , w)] and decreases ef(v) by the same amount.
After each such push, the new flows on edges and the residual graph are modified.

The relabel operation at vertex v is performed if the following conditions are

satisfied:

1. Vertex v is active.
2. d(v) < d(w),forevery residual edge (v ,w).

Once these two conditions are satisfied, the updating of vertex v begins. Consider
all outgoing edges at v in the residual graph. Then consider the labeling of all the termi-
nal vertices of these outgoing edges. Pick the vertex with the minimum distance labeling.
Let this vertex be w. Update the distance of v as d(v) = d(w)+1. d(v) then gives the
estimated shortest path from v to ¢. Thus the relabeling of v sets the label of v to the

largest value allowed by the valid labeling constraints.

The push and relabel operations and the generic maximum flow algorithm are formally

stated below.

Push(v,w) .
Applicability
v is active, cf(v ww)> 0 and d(v) = d(w)+1.
Action
Sendd = min(ef(v) + €, (v . w)) units of flow fromv tow ;

fW . w)ye f(v,w)y+ 8, fw,v) e f(w,v) =39,

-48 -

ef(v) «— ef(v) -3, e (w) & ef(w) + &

Relabel(v) .
Applicability

v isactive and Vwe V | f(v yw) >0 ==>d(v) £ dw).
Action

dVy) & min {d(w)+1).

(v,w)e E,

(If this minimum is over an empty set, d(v) ¢ o).

Algorithm 4.1 : GENERIC PUSH-RELABEL MAX-FLOW ALGORITHM

(GOLDBERG AND TARJAN)
S1. (Initialization phase) :

V (v,w) € E setpreflow f as follows:
fG,w)=c(s,w) forwelV,
fv,s) = -c(s,v) (byantisymmetry);
fov,w)y=0, V (v,w)eE v, ,wss;

VweVset

ef(w) =¥f(v,w) : (compute the excess flow)

14

dis) =n ,d)y=0,dw) =0,Vw €

(initialize the distance)
S2. While 3 a basic operation that applies do

select a basic operation and apply it;

end.

- 49 -

We shall now explain an efficient implementation of the generic maximum flow
algorithm. We shall start with a simpie implementation and then refine it to improve

efficiency. We need some data structures to represent the network and the preflow.

An unordered pair (v , w} such that (v ,w) e Eor (w,v) € E is an undirected
»dge of G. Each undirected edge (v ,w)} is associated with three values
c(v,w), c(w,v)and f(v ,w)(=—f (w,v)). Each vertex v has a list of the incident
edges (v , w}, in fixed but arbitrary order. Thus each edge {v , w) appears in exactly
two lists, the one for v and the one for w. Each vertex v has a current edge (v ,w)
which is the current candidate for a pushing operation from v. The reﬁnc;d max-flow
algorithm repeats the push/relabel operation given below until there are no more active

vertices.

Push/Relabel (v) .
Applicability
v is active.
Action
Let (v , w] be the current edge of v.
If push(v ,w) isapplicable then push (v ,w)
else
If {v,w]isnotthe lastedge on the edge list of v then
replace {v , w} as the current edge of v the next edge on the edge listof v;
else begin
make the first edge on the edge list of v the current edge;
relabel(v)

end .

-50 -

The pushirelabel operation combines the basic push and relabel operations.

Initially, the current edge of v is the first edge on the edge list of v. When applied
to an active vertex v the push/relabel operation tries to push excess along the current
edge (v,w) if a pushing operation is applicable to this edge. If not, the operation
replaces {v ,w) as the current edge of v by the next edge on the edge list of v; or if
{v ,w) is the last edge on this list, it makes the first edge on the list the current one and

relabels v,

The refined algorithm needs one additional data structure, a set Q containing all
active vertices. Initially Q={w € V - {s,t] | ¢(s,w) > 0}. Maintaining Q takes only

O(1) time per pushirelabel operation.

By processing vertices in a more restricted order, we obtain improved performance.
One such algorithm is the first-in , first-our (FIFO) algorithm. The algorithm maintains
the set of active vertices Q as a queue. The FIFO algorithm consists of applying the
discharge operancn (described below) until Q is empty. The discharge operation ter-

minates when the excess at vertex v is reduced to zero or v is relabeled.

Discharge .
Applicability
Q=0.
Action
Remove the vertex v on the front of Q.
(Vertex v must be active)
Repeat
pushlireiabel(v) ;
If w becomes active during the push/relabel operation then

add w to the rear of Q;

until ef(v) = 0 or d(v) increases.

If v isstill active then add v to ihe rear of Q.

In the analysis of the FIFO algorithm, the concept of a pass is used. Pass one con-
sists of the discharging operations applied to the vertices added to the queue during the
initialization. Given that pass i is defined, pass i +1 consists of the discharging operations
applied to vertices in the queue that were added during pass i. A key result is that the
FIFO algorithm needs at most an? passes. This results in complexity O(ns) for the Gold-

berg and Tarjan max-flow algorithm.

4.3 A Distributed Protoco! for the Maximum Flow Problem

We now present a distributed protocol for the maximum flow problem. This proto-
col is a distributed version of Goldberg and Tarjan’s push-relabel preflow algorithm dis-
cussed in the previous sect.on. We first present the synchronous protocol. As usual, each
vertex in the network represents a processor with a certain amount of memory. The ver-
tices have access only to local information that is, capacities and flows on incident edges.
Therefore, communication between vertices is by exchange of messages over the edges.
Since messages can be received and transmitted by a vertex along an edge, each edge in

the network is required to be bidirectional.

The algorithm proceeds in pulses. All the vertices perform the algorithm in parallel.

During each pulse, the active vertices go through the following four stages.

In the first stage, all the flows received by the vertex from its neighbours are added
to the excess and the edge tlows are also updated. Pushing of flow is done during the
second stage and if necessary relabelling of vertices in the third stage. In the final stage,

the current distance label is broadcast to all its neighbours.

-52-

The algorithm terminates when there are no more active vertices. But in a distri-
buted implementation, termination detection is difficult because a vertex which becomes
inactive at a particular pulse may become active again at a later pulse. We now present

a simple scheme for termination detection. This is based on the following theorem.

THEOREM 4.4 : If at any pulse, the total flow out of the source is equal to the total low

into the sink, then at that pulse and all subsequent pulses there will be no active vertices.

Proof

Consider the following flow equations at all the vertices.

Y fs,v) =4, (4.1)
S Sfw,v)y-Yf(v,u) = —ef(u), wo#s ,t (4.2)
=Y, flu,n = -4, (4.3)

u
In the above equations, term f («,v) appears exactly once as f (u4,v) and exactly once as

—f (4,v). So, summing the R.H.S. and L.H.S. of the above equations, we get
0= A -4 - Ze/(u)
u

If flow out of the source is equal to flow into the sink, that is A, = A,, then we get

Y ef(u) = ()
u
But ep(u) 2 0.
Soef(u) =0, Yu #s5,1
In other words, all vertices are inactive at the pulse when A, = A,. This will be true at

all subsequent pulses also, because no update operations are performed once all the ver-

tices become inactive.

-53-

The above termination detection scheme can be implemented as follows. First, we
select a path P from the source to the sink. This is done initially at the start of the algo-
rithm using any distributed Breadth-First-Search Algorithm. At each pulse, the sink will
send a message to its neighbour in the path P giving information about the flow into
itself. In turn, each vertex in P conveys this information to its neighbours. When the
source receives this information, it will check to see if the flow out of itself is equal to the
flow into the sink. If so, it conveys to all other vertices that termination has occurred.
This can be done through any broadcast scheme. Thus the source will detect termination
in no later than n pulses after it has occurred because P has at most n-1 edges, and all the
vertices will be informed about termination in no later than 2n pulses after it has

occurred.

One can show that the distributed protocol performs O (n 3 pulses and its message
complexity is O (n 3). The proof will follow along the same lines as that for the sequen-

tial time complexity [Gol87].

To implement the synchronous protocol on an asynchronous network, a synchron-
izer has to be incorporated. Consider first the o— synchronizer. It requires O (m) mes-
sages per pulse. This means that using the o~ synchronizer would result in a message
complexity of O(mnz) for the asynchronous protocol. On the other hand, using the
bera— synchronizer will not increase the message complexity because it requires only
O (n) messages per pulse. Issues relating to the choice of the synchronizer, when imple-

mented in a shared-memory model, will be discussed in Chapter V1.

We now present the essential features of the synchronous protocol outlined above.

The protocol uses four types of messages : TFLOW, TERMINATE, 8 and d-
messages. A TFLOW message carries the value of the flow into the sink at an earlier

pulse. When the source observes that the flow out of it is equal to the flow into the sink, it

broadcasts a TERMINATE message to all its neighbours. These nodes will then broad-

cast TERMINATE message to all other nodes and so on. A §-message from node i to
node j carries the value of 8(i , j), which is the amount by which the fiow on the edge
(i ,Jj)is to be increased. A d-message from node i carries the current value of node i 's

distance label.

Each node i is associated with an edge list. An edge (i ,j) in this list represents the
undirected edge connecting nodes i and j. c (i , j) gives the capacity of this edge if, in
the network, it is directed from node i to node j; otherwise ¢ (i ,j) = (. We assume
that each node is aware of the capacities of all incident nodes. Finally, we assume that a
path P connecting the source and sink has been selected before activating the distributed
protocol. Each node in the path is aware of its predecessor node as one traverses P {rom
source to the sink. The variables f (v ,w), c,v,w) and e, (v) denote the flow on edge

(v , w), the residual capacity of (v , w) and the excess at node v, respectively.

Algorithm 4.2 : SYNCHRONOUS DISTRIBUTED MAX-FLOW PROTOCOL

1. (Initialization).

During the first pulse at each node the foliowing actions are performed.

Node s

i) Setd(s) = n, ef(s) = Q.

(ii) Foreach edge (s ,j)do:
set
fs,j)y=cG.j),
&8s ,j) = c(s,j),
ef(s) = e[(s) + c(s,j)

-55 -

(iii) Send d(s)and d(s , j) tonode j.

Node v # s
(i) Setd(v) = 0.
(ii) For each edge (v,j)

setf(v,j) = 0,and
send d(v) to node ;.

(iii) Set the first edge in the adjacency list of v as current edge.

2. During each subsequent pulse, the actions to be performed at a node are :

Node s

Examine messages received from adjacent nodes and do :

a) If the message is a TFLOW message containing the value of flow into
sink ¢, check to see if this value is equal to e, (s). If so, send TER-

MINATE messages to all adjacent nodes and HALT.
b) If the message is a 3-message received from node /, then set
fG,j)=fG.))-03,s),
ef(s) = ef(s) -3¢ ,s).
Node v # s
S1: Examine messages received from adjacent nodes and do :

a) If the message is a TFLOW message, send this message to the prede-

cessor of v in the path P.

b) If the message is a d -message from node j, update the value of d(j).

c)

d)

S3:

-56 -

If the message is a TERMINATE message, send TERMINATE mes-

sages to all adjacent nodes and HALT.

If the message is a -message received from node /, then set
O =fv,j)-38G.v),
ef(v) = ef(v) + 3 ,v).
If ef(v) > 0, then repeat the following until ¢, (V) = 0 or Jdov)
increases:
(i) Let (v ,w) be the current edge in the edge list of v. Set
cf(v W) =cv,w)-f,w) If ¢, (v ,w) >0 and

d(v) = d(w) + 1 thenset
Sv . ,w) = min[epv W), ¢, (v)],

fv,w) = fE,w)+ v, ,w),
ef(v) = ef(v) - O(v ,w).
Send 8(v , w) to node w.
(i) If (v , w) is not the last edge in the edge list of v, then make

the next edge on the list, the current edge.

(iii) If (v , w) is the last edge in the edge list of v, then muke the
first edge on the edge list of v, the current edge and refabel v

as follows :

d(v) = min{d(w) + 1 | ¢ (v.w)> 0}

Send d (v) to all adjacent nodes.

4.4 Summary

In this chapter, we first presented a review of certain basic results in network flow

theory. We also presented, in detail, the push-relabel preflow ilgorithm of Goldberg and

Tarjan [GoT88). We then showed how to design a synchronous distributed maximum
flow protocol starting from the push-relabel preflow algorithm. Issues relating to syn-
chronization that will be required while implementing the protocol in an asynchronous

environment will be discussed in Chapter VI,

CHAPTER V

THE TRANSSHIPMENT PROBLEM: PRIMAL-DUAL APPROACH

In this chapter, we discuss the transshipment problem which is also known as the
minimum cost flow problem. We present the details of the primal-dual approach for
solving this problem. This approach uses the shortest path and the maximum flow algo-
rithms of the previous chapters as building blocks and involves repeated applications of

these two algorithms.

5.1 The Transshipment Problem

Consider a network N with the underlying graph G = (V,E). Some of the vertices in
N represent sources and are called supply vertices. Some of the others represent demand
centers called sinks. There may be vertices which are neither supply nor demand. These
are called neutral vertices. The supply or demand at a vertex v; is denoted by b . For a
neutral vertex, b =0. Each edge (v, ,v ;) is associated with a cost w, R which represents
the cost of transporting a commodity along the edge. Each edge (v,) is also associ-
ated with a capacity c (i ,j) representing the maximum amount of the commodity that
the edge can accomodate. Given the supplies available at the sources and the demands at
the sinks, the transshipment problem is to arrive at a routing pattern for a given commo-

dity so that the demands are satisfied at minimum cost.

The transshipment problem is a linear programming problem and can be formulated
as follows :
minimize : WX
subject to :
AX =b S.1

00X <C (5.2)
where

-59 -

W= Row vector of edge costs W,
X= Column vector of edge flows x; i
A= Incidence matrix of the graph G underlying network N.

C= Row vector of edge capacities ¢ (i , j).

1}

The incidence matrix A =|a‘.J] has one row for each vertex in G and one column for

each edge in G. The elements of A are given by :

1. if edge (v, ,vj) is incident into vertex v;.

a, = -1, it edge (v, ,vj) is incident out of vertex v,.

() , otherwise.
With a; 's defined as above, we get from (5.1),

b; = sum of the flows into vertex v, - sum of the flows out of vertex i.
From this we can see that b, is negative, if v, is a supply vertex, and b; is positive, if v; is
a demand vertex. We assume without loss of generality that the total supply available is
equal to the total demand. Thus,

¥h, = 0.

3
See Fig. 5.1 for an example.

Associated with any linear programming problem there is a dual problem. The ori-
ginal problem is then called the primal problem. The dual of the transshipment problem
has n dual variables y, , y, ,..., y,. The optimum values for ¥,'s would maximize

the sum ¥’ y,. An important result in linear prramming theory is stated next.

!
If v y 's and v, 's represent optimum solutions for the | :imal and dual problems,

respectively, then

- 60 -

(a) Node Names and Edge Costs.

(b) Node Demands and Edge Capacities.

Fig. 5.1: A Network N for the Transshipment Problem,

-61 -

x, =0, ify‘—yj+w‘.j>0

c,j), ify - y; +w, < 0. (5.3)

The above conditions are called the complementary slackness conditions.

o
I

We can now say that for any optimum solution X for the transshipment problern the

following are true :

(1) AX =b.
) 0<X <C.
(iii) There exist y,'s such that (5.3) is true.

At this point, it will be useful to explain the significance of the complementary

slackness conditions.

Consider an edge (v, .v}) of N with flow x ;- In linear programming theory, the

quantity y, — y, + W, is called the relative cost coefficient of (v, , vj). This quantity

has an important role to play. If the flows in all the edges except (v, 'V, are kept
unchanged and x; , s changed to x; , t A‘.J, then the objective function Y w ;% will
1.}

change by (y, - y, o+ WU) Al}. Since no further decrease in the value of the objective

function is possible once an optimum is reached, it means that at that point

=0, 1fy‘.—y!+w‘j>0
X, =€, if v, -y, W, < 0.

There are two distinct approaches to the transshipment problem — the primal and

primal-dual approaches[Chv83]. The primal approach, called the nerwork simplex
method, starts with an X satisfying (5.1) and (5.2) and repeatedly updates X (without
violating (5.1) and (5.2)) until (5.3) is satisfied. The update of X is achieved through what

is called a pivot operation . Note that each new X leads to a value for the objective |
function WX that is not greater that the previous value. As a sequential algorithm, the

primal approach is known to be a very efficient one. However, unfortunately, it is not

- 62 -

suited for a distributed or parallel implementation. The bottleneck here is that the pivor

operation is inherently sequential in nature.

The primal-dual approach starts with an X and ¥ satisfying (5.2) and (5.3). Tt then
updates X and Y (without violating (5.2) and (5.3)) until X satisties (5.1). This approach
is quite amenable to distributed and parallel implementations, since it uses the maximum

flow and shortest path algorithms of the previous chapters, as building blocks

In the following section we present the primal-dual approach.

5.2 Primal-Dual Approach
The primal-dual approach consists of three main steps :
(1) Initdalization.
(i) Updating Y.

(iil) Updating X .

5.2.1 [Initialization of the Primnal-Dual Method
In this step, a pair of vectors X and Y such that

@ 0<x <cli,j)

i
-y >
0 , whenever y, y, o+ oW, 2 0
a x,=1 .
Yolel ,j), whenever y - v, +w, < 0

are to be selected. The following cases arise.
Casel: Allw, J 's are positive.
In this case, selecting all X, ’s and all y, 's equal to zero will result in a required pir

of X andY.

=63 -

Case2 : c(i,j)=-ooforall edges (v, , v]).
In this case, we need to find y; s such thaty; - Y+t W 2 O for all edges (v, , v,):
As we have shown in Section 3.2, finding such y,’s (whenever they exist) reduces to the
shortest path problem on a graph G * constructed from the graph G of the given network.
Note that if there exists in G a directed circuit of total negative cost, the shortest
path problem is infeasible. In such a case, it can be shown that the solution to the trans-

shipment problem is unbounded.

Case3: c(i.}j) finite for some edges (v, ,v).

In this case, we need to find y, 's such that for all edges (v, vj) withc(i ,))=eo,
Yi =y, W, > 0. Such y ’s can be obtained by applying the shortest path &'gorithm
after removing all those edges (v, , v]) with ¢ (i , j) finite from the graph G ~ (see case 2).

Note that the traditional approach to the initialization problem is to apply the
primal-dual approach to a new network constructed from the given network.

Once y ’s have been formed, as described in all the three cases considered above.

we can select X, s as in (5.3).

5.2.2 Updating the Dual Vector Y

Given a pair of X and Y vectors satisfying (5.2) and (5.3), we now show how we

can update X and Y without violating these conditions.

From X and b we first calculate the new demand vector b ~ as follows.

b’ b, - net flow into vertex i

b - Xa,x, + ¥a,x,
J J
Each b, then gives the current supply available or the current demand at vertex v;. We

th

i}

shall call a vertex v, wer, balanced or dry if b” is negative, zero or positive. respec-

tively.

Using b~ and X we construct an auxiliary network N~ from the original network as

follows :

(i) N7 hasanedge (v, .v)) of costy, =y, + w, for each original edge (v, . v)

withx’j < c@,f).
(if) N’ has an edge (v} .v,) of cost of v, =N W, for each original edge
(vi,vj)withx‘-j > 0.

(iii) Add a new veriex s and new edges (s , v,) with zero cost for every wet vertex

V..
i

For example, for the network in Fig. 5.1 with flows as shown in Fig. 5.2(a) and the
following y; s,
Y =[012100]

the corresponding auxiliary network with vertex demands and edge costs 1s shown

Fig. 5.2(b).

To update Y, we apply the single-source shortest path algorithm of Chapter T to N
and determine the shortest paths and distances from: s to all the vertices in N 7, in particu-
lar, the demand nodes. The new N “is given by

y, =y +dy, (5.4)
where d”_ | is the length of a shortest path from s tov inN".

It can be shown that the new vector ¥ “and X satisfy condition (5.3). In other words,

the update of ¥ has been achieved without violating the complementary slackness condi-

tions.

- 65 -

(a) Network N of Fig. 5.1 with a Flow and New Demands.

(b) Auxiliary Network N' with Edge Cosrts.

Fig. 5.2: Construction of Auxiliary Network.

5.2.3 Updating the Flow Vector X

Given X and Y, we now show hecw X can be updated to a new X~ such that both

X "and Y ’satisfy complementary slackness conditions.

Our aim really is to update X so that we make as much progress as possible towards
satisfying (5.1), namely, the equation A X = b. This requires that we push as much flow
as possible from the current wet nodes. But this should be accomplished without violat-
ing (5.3). Thus, we can modify the flows only on those edges (v,) for which

yi_yj+wi'

j = 0. Interestingly, all the edges on a shortest path from s to vertex v,

satisfy this requirement. Thus while pushing the flows from the wet to the dry nodes, we

should use only these edges.

This suggests the use of the following network & " for modifying the X vector :
(i) N “"isasubnetwork of N ".

(i) N " hasanedge (v, , v,) of capacity ¢ (i ,)~ Y, for each orngmal edge

(v, ,vj)for whichy, - y, +w,

= ()andx‘] < i)
(1)) N " has an edge (vj »v,) of capacity X, for each original edge (v, . v)

for whichy - y, +w, = 0 and X, > Q.

J

(iv) Foreach wet vertex v ,N " has an edge (s , v,) with capacity -h",

(v) N " has a new vertex ¢ and an edge (v) of capacity b, for each dry
node.

Thus pushing as much as possible from the wet nodes to the dry nodes reduces to

pushing a maximum flow froms to ¢ inN *".

As an example, the network N constructed from N ° of Fig. 5.2 is shown in

Fig. 5.3. Here the edge capacities are shown next to the edges.

-67 -

Fig. 5.3: Network N'' constructed from Network N'
of Fig. 5.2 with given Flows and y values.

At the completion of the maximum tlow algorithm, we update the fiow vector X toa

new vector X ° as follows.

For each (v, ,vj) in the original network, let X, “and X " be the corresponding

flowsin N ", Then the new flow x, y “ of the vector X “is given by

xu’ =X, + x,.j” - xﬂ"
Note that some of the edges in N *" may not lic on any path from 5 to 1. These edges
would not play any role while performing the maximum flow algorithm. So, for an
efficient implementation, it will be worthwhile to remove these edges before applying the

maximum flow algorithm.

The primal-dual approach discussed in this section in summarized in the flow chan

of Fig. 5.4.

In the sequential case, like the network simplex method, the primal-dual is also
known to be very efficient. Variants of the primal-dual method called e-relaxation method

are also available in [Gol87] |GoT88].

——p=lConstruct Auxiliary Network N'

Algorithm FEASIBLE:
Initialization

Feasible ?

'

Algorithm SHORTEST PATH

'

Construct Network N"

'

Algorithm MAX-FLOW

All
Demand and

Supply Constraints
Satisfied ?

No

‘Yes

Stc'Jp:
Optimum
Solution

Fig. 5.4: Primal-Dual Method.

Stop: No
Optimum
Solution

.70 -

S.3 Summary

In this chapter, we presented the transshipment problem and discussed the details of
the primal-dual approach to this problem. The approach is eiegant and can be eusily
implemented in a distributed manner, because it involves repeated applications of the
max- flow and shortest path algorithms discussed in the previous chapters. In Chapter VI,

we shall present the details of our distributed protocol for the primal-dual method.

CHAPTER VI
SIMULATION OF DISTRIBUTED PROTOCOLS ON A SHARED-MEMORY
MULTIPROCESSOR

In this chapter we discuss the main features of our simulation (in a shared-memory
environment) of our distributed protocols for the maximum flow and the shortest path
problems and their integration into a shared-memory implementation of a distributed pro-
tocol for the primal-dual method. Detailed descriptions of these shared-memory proto-
cols are given in the Appendices B, C and D. A brief description of those features of the
BBN Butterfly shared-memory machine that we have used in our simulation work is

given in Appendix A.

6.1 Shared-Memory Simulation of the Distributed Protocol for the

Maximum-Flow Problem

We first briefly recall some aspects of Algorithm 4.2, a synchronous distributed pro-
tocol for the maximum flow problem. We then proceed to a discussion of its shared

memory implementation.

Given a transport network with underlying graph G = (V , E), in the distributed
protocol each node is assigned to a processor with a certain amount of memory. In the
following, the term node will also be used to refer to the corresponding processor. Each
node has access only to local information, that is, capacities and flows on its incident
edges. Therefore, communication between nodes is by exchange of messages over the
edges.

The protocol proceeds in pulses. All the nodes perform the same algorithm in paral-
lel. During each pulse, the active nodes go through the following four stages. In the first
stage, all the flows received by a node from its neighbours are added to compute the

excess. The edge flows are also updated. Pushing of flows is done during the second

stage and, if necessary, relabelling of nodes is done in the third stage. In the final stage,

the current distance labels are broadcast to all the neighbours of each node.

The push/relabel algorithm of Chapter 1V is used for the pushing and relabelling

operation of the max-flow algorithm.
The protocol terminates when there are no more active nodes.

In the shared-memory implementation, the four stages described above are per-
formed by a node during three phases - read, compute, write. During the read phase, all
the flows received by the node from its neighbours are added to calculate the current
excess and the edge flows are also updated. It also reads the distance information of all
its neighbours. This is required to correctly perform the push operation. During the com-
pute phase of the pulse, the node computes the flows to be pushed along its incident
edges, and relabels itself (if necessary). The amounts of flow pushed along the incident
edges are then transmitted to the neighbours in the write phase. Finally, the new distance
value is transmitted tc the neighbours through write operations. Note that read and write
operations essentially | lay the roles of send and receive operations in the message -pass-

ing model.

Each node i needs two adjacency lists pertaining to incoming and outgoing edges.
Two data structures al(i) and a0(i) are therefore declared, respectively. The node
must also have access to the capacities of its outgoing edges. A data structure called

cap(i) is definea for this purpose.
The degree of a node i is the number of nodes except s and ¢, adjacent toi.

The edges incident on a node, the capacities of the edges and the degree informa-
tion are all input to the algorithm. Without loss of generality, we assume that at most two
edges may be connected between any two nodes. For this reason, two data structures

delta0(i) and deltal(i) are declared in the shared-memory for storing messages. These

-73.-

data structures store two types of information: the amount of flow(&) pushed along an
edge and the terminate information. delta((i) receives messages pushed along its out-
going edges and deltal(i) receives information pushed along its incoming edges. Con-
sider an edge (¢ , j) in graph G directed from i to j. Then (i ,j) is an incoming edge at
J. Suppose j pushes an amount 8 of flow along (i , j). According to the antisymmetry
rule, there exists a corresponding virtual edge (j , i). Node j then updates f(j , i) and
stores -0 in deltal(i)(j) so that node i can update f (i ,j) in the next pulse. Similarly,
for an edge (j , i) directed from j to i, there exists a corresponding virtual edge (i , j).
Node j then updates f(j ,i) and stores -8 in deltal(i)(j) so that node { can update

f (i ,j)inthe next pulse.

In the shared-memory model, care has to be taken to ensure write conflicts do not
occur when processors try to access the same memory location. It is also possible for
concurrent read and writes to occur. So, without proper synchronization. the coherence

of the data may be destroyed.

During a pulse, a node reads information written in the previous pulse. In a distri-
buted implementation, depending on the speed of the processors, a processor can read
out-of -date information or read data to be received in the next pulse. This could result in
an incorrect implementation of the synchronous protocol. In other words, the shared
memory environment in which our protocol is expected to work is actually asynchronous.

To overcome this problem, read and write operations have to be properly synchronized.

For the data structures delta0(i) and delral(i) declared previously, two boolean
data structures checkOfi) and checkl(i) are, respectively, defined for synchronizing the

read and write operations.

For a node i to perform a read or a write cperation, it first determines if it is safe to
do so using the value in the entry, say (i . j), of the boolean data structure. FALSE in

this entry indicates a read operation is possible. And TRUE indicates a write operation is

-4 -

possible. After every read and write operation, FALSE is set back to TRUE and TRUE 18

set back to FALSE, respectively.

In the initialization phase (pulse 0), the source performs the generic maximum flow

algorithm, while all other processes only communicate dummy messages.

For computational purposes, a node i needs to be informed of all its neighbours’
distances. A node i updates its distance information after it ensures that all s neigh-
bours have read its old distance value. One technique is to allow the neighbours to
decrement the degree of node i after reading node i’s distance information. Eventually,
the degree of node i will decrease to zero, indicating that it is safe for a node ¢ 10 update
the distance value. It is clear that the distance and dezree variables permit concurrent
read and concurrent write, respectively. So. again synchronizauon is necessary to avoid
concurrent writes. Lock variables are used for this purpose. Since only one processor at
a time can gain access to a lock variable, others must "busy want” until the lock s

released.

Note that in the definition of the degree of a node, the nodes s and ¢ are excluded.
This is a departure from the conventional definition of a degree. The reason for this s as
follows. The source s and the sink ¢ never modify their distance values. Also they do
not need distances of their neighbours to perform any pulse. So they do not have to read
the distance variables of their neighbours. Thus they are excluded while defining the

degree.

Note that during a pulse, an active node performs read operations because it needs
distance and new flow information to perform the push/relabel operation. 1t also has to
perform wri{. operations because it has to commun .ate the updated flow and distance
values to its neighbours. In the case of an inactive node, which is not required to transmit
any flow information to neighbours, dummy messages & = 0 have to be sent to neigh-

bours. This is vitally important in a shared-memory asynchronous environment, for

otherwise. the nodes may not know whether updated flow values are due from their

neighbours. Interestingly, these dummy messages also help in the implicit implementa-

tion of the a-synchronizer.

6.1.1 Termination Detection

The termination of the maximum flow protocol can be detected using the scheme
employed in Algorithm 4.2. In this scheme, a path P from source s to sink 7 is first deter-
mined. Ateach pulse the sink transmits the total flow it has received to its neighbour in
P. In the next pulse, the neighbour transmits this information to its predecessor in P and
so on. Thus at each pulse, each node in P will perform write and read operations to
transmit and receive the sink flow information. Since these operations also use syn-
chronization primitives, this scheme will cause considerable slowdown in the progress of
the protocol. Also the complete termination of the protocol will occur only 2k pulses
after the termination has occurred, where k is the length of P. In order to overcome these
problems, we have used the following scheme to detect termination and propagate this

information.

A virtual edge (¢ , s) is connected from the sink to the source. During each pulse,
the sink calculates the total flow it has received and sends this message to the source.
When this information reaches the source, the source determines the total flow out of it
and compares it with the information received from the sink. If both are equal then the
protocol terminates. The source then sends a TERMINATE message in the next pulse to

all its neighbours including the sink.

When a process i receives a TERMINATE message, it propagates this information
in the next pulse to all those neighbours from-whom a TERMINATE message has not
been received. In the subsequent pulse, it will read and write to those neighbours from

whom a TERMINATE message has not been received. In the current pulse, it will read

276 -

and write to all neighbours regardless of which neighbour sent a TERMINATE message.
Receiving a TERMINATE message from a neighbour indicates that this netghbour 1s no
longer active. Notice that sending a TERMINATE message is basically the same as writ-
ing this message in the globally-shared memory. A neighbour that has already ter-
minated will never acknowledge this information by reading it and thus process will
wait endlessly. This would result in deadlock. This explains the purpose of sending the

TERMINATE message to only those from whom this message has not been received.

There is still one more point to be mentioned. After propagation of the TER-
MINATE message, a processor performs one more pulse for synchronization purposes

and then terminates.

Suppose process i received a TERMINATE message during pulse k. It then broad-
casts this information to its neighbour j in pulse & + 1. Neighbour j will read this infor-
mation only in pulse & + 2. Assume process { terminates in pulse ¥ + 1 and pertorms
no more pulse. Since process j will notify all its neighbours (from whom a TER-
MINATE message has not been received) only in pulse & + 3, it will wait in pulse
k + 2 to perform a write operation to process i. Remember that in pulse & + 2, ;7 will
not write to i until i has read the information delivered to it in the previous pulse. Bul
since process i already terminated in pulse & + |1, this will never occur, and process j

will deadiock.

Therefore, every process has to go through one more pulse after broadcasting TER-
MINATE information. Then in the above example, process j will be able to write to pro-
cess i in pulse k + 2. In pulse & + 3, process j will notify all its neighbours (i.e.,
read/write to only those that have not sent a TERMINATE message) to terminate. So,

process i will aot at all be considered in the read/write operations in pulse k. + 3.

Notice that sincc the TERMINATE message travels in both directions (from sink to

peighbours, and from source to neighbours), the rate at which this information is

conveyed to all processors is faster than just the rate of traversal of the message in one

direction, source to neighbours. Thus the TERMINATE information will arnve at all

processors in at most k /2 pulses, where & is the diameter of the network.

6.1.2 Useof a Synchronizer

In a parallel computer the relative speeds of processors play a significant role. It 1s
possible for a processor to be more than one pulse ahead of its neighbour. This could
cause a processor to read out—of—date information or read information to be received in a
later pulse. Thus, our implementation of the synchronous protocol Algorithm 4.2 should
take into account the asynchronous nature of the environment. So, for a correct working

version of our synchronous protocol it has to be augmented with a synchronizer.

We may recall (Section 2.3) that for an exact simulation of a synchronous protocol

in an asynchronous environment, the following requirements have to be met:

. th . :
1. Before a node completes its k' pulse of activity, all the messages sent to it by

its neighbours at the (k - 1)"' pulse are received and processed.

. th . . .
2. Before a node completes its k~ pulse of activity, no messages received from a

. . . th
neighbour executing its k~ pulse are processed.
We now discuss how our shared memory implementation meets these two requirements.

First, we note that whe:: a node completes its pulse, it will have read and also pro-
cessed all the information sent by its neighbours in the previous pulse. Thus requirement
(1) is met. Also, the synchronization primitives used with read and write operations
guarantee that all the information transmitted by a node i during a pulse will have
reached its neighbours before i completes its present pulse. Thus the read and write

operations provide considerable help in the synchronization process.

To meet requirement (2) we proceed as follows.

-78 -

We associate with each node i a variable safeser(i) . At the beginmng of a pulse,
this variable is set equal to the degree of node i. At the end of the pulse, node 1 decre-
ments safeset(j) for each neighbour j. Node i initiates its next pulse when safeser(i)
becomes zero. In other words, node i initiates its (k + 1™ pulse only after it has com-
pleted its k™ pulse and after it has become aware that all its neighbours have completed
their k" pulse activities. This guarantees that during the (k + " pulse, node ¢ will pro-
cess only messages sent during the k™" pulse. Thus our implementation using the variable

safeset meets requirement (2).

Essentially, our implementation uses the a-synchronizer mechanism remedied as
suggested in Section 2.4 (but without using ithe pulse number). Though we mentioned in
Section 4.3 that the B -synchronizer is appropriate when the implementation is in a
message-passing environment, in a shared-memory environment this synchronizer will
require considerable overhead in terms of messages required for synchronizaton and will

result in a slowdown of the progress towards termiration.

6.2 Shared-Memory Simuliation of the Distributed Shortest Path Protocol

In this section we present the main features of our shared-memory implementation
of Algorithm 3.2, a synchronous distributed protocol for the shortest path problem. To
make our presentation easier, we first explain Algorithm 3.2 using the data structures we

have employed in our shared- memory implementation.

Let G = (V,E) be the graph of the network in which we have 10 find shortest paths
from a specified node s to all the other nodes. Each edge (i ,j) is associated with a
lengthw (i , j). Some of the lengths could be negative. But the graph is assumed to have
no directed circuits of negative length. Let i be a node in G and let (i ,) be an edge
directed from i to j. Then i iscalled a dominator of j and j is called a successor f i.

A predecessor j of i is defined as the dominator node that caused the most recent

update in the distance estimate of i.

All nodes in the distributed protocol (Algorithm 3.2) perform the same algorithm.
They all receive distance information from their dominators and whenever a node dis-
covers a path from s that is shorter than that currently known it updates its distance and
sends appropriate length messages to all its successors so that they can update their dis-
tances, if necessary. If there exists no shorter distance from s than that currently known
then the node sends no length messages to its successors. A node acknowledges each

length message it receives by sending an acknowledgement message.

When a length message arrives at node i from a dominator causing no update in dis-
tance d (i), then an acknowledgement is immediately transmitted to its dominator. Every
node has a predecessor. Initially the predecessor of a node is itself. An acknowledge-
ment will not be sent to the predecessor of a node if the nodz has not received all ack-
nowledgement messages for all the length messages it t.nsmitted to its successors. Sup-
pose j is a predecessor of i. During the course of the algorithm, suppose a message
arrives from & that causes an update in node i ’s distance value. Then an acknowledge-
ment is sent back to the predecessor j and k& becomes the current predecessor of {.
Predecessor k£ will not be acknowledged until all length messages sent by i have been
acknowledged by its successors or is replaced by another node as node (’s predecessor.
These are the different cases for which a length message arriving at‘a node will be ack-

nowledged.

The protocol terminates when the source node has received all acknowledgement

messages for all the length messages it sent to its neighbours.
The above protocol works correctly even in an asynchronous environment.

The synchronous version of the protocol also uses two messages: LENGTH and

ACK. The protocol works in pulses.

Messages are transmitted only when a clock pulse is generated. So, during a pulse

the processing of messages does not necessarily trigger the dispatch of further messages.
But data structures are updated during the current pulse and information regarding mes-

sages to be transmitted in the next pulse is recorded.

If a LENGTH message arrives at a node i and causes an update of its distance esti-
mate, appropriatt LENGTH messages need to be transmitted 1n the next pulse. For a
node to recognize that an update has occurred in the previous pulse, a boolean variable
called changefi) is set to TRUE. After sending the appropriate messages, change(i) 1s
set back to FALSE. In order to keep track of the identities of the predecessors in the pre-
viously known shortest paths for which ACK messages have 10 be sent, a data structure
called ackset(i) is needed. And another variable num (i) is needed to keep track of the
number of messages propagated by node i that are yet to be acknowledged. These data
structures will be updated during a given pulse.

We now proceed to a discussion of our implementation of this protocol using a

shared-memory model.

During a pulse a node goes through three stages. In the first stage, a node recerves
information from all its dominators. In the second stage, it updates its current distance. 1f
necessary and in the third stage it propagates appropriate LENGTH messages it an
update of its distance has occurred.

Recall that in the shared-memory model, read and write operations serve the role of
receiving and transmitting messages, respectively. These operations have to be properly
synchronized, as explained in the previous section.

Two data structures — distinfo(i) and mesgterm(i) — are globally declared to store
messages. The distinfo data structure is used for storing messages received from the

dominators and the mesgterm data structure is used for storing messages received from

successors.

.81 -

Suppose j is a dominator of i. distinfo(i)(j) consists of three types of information:
distance estimate, terminate information and change value. The mesgterm(i)(j) , on the
other hand, consists only of the terminate information since the successors do not send
any distance value. Associated with these two data structures are two boolean data struc-

tures checkdist (i) and checkterm(i) for synchronizing the read and write operations.

Before any read operation, a node i checks checkdist(i)(j) to determine if it is set
to FALSE. If so, it indicates that dominator j has already written to i in distinforiyj) .
This then allows i to proceed with reading the information delivered to it by j. After a
read operation checkdisy(i)(j) is set to TRUE to inform j that node i has acquired the
message delivered to it. This allows j to write to i in distinfo(i)(j) . After each write
operation checkdist(i)(j) is set back to FALSE. In a similar way, mesgrerm(i) and

checkterm(i) are handled.

For ¢very LENGTH message transmitted to a successor, a corresponding ack-
nowlegement has to be received. The number of acknowledgements vet to be received
from the successors for all the LENGTH messages propagated to them is noted in a vari-
able called num(i) declared globally. Remember that a2 node does not acknowledge it's
predecessor until the node receives all acknowledgement from its successors. In our
implementation num(i) = 0, indicates that acknowledgement messages have been
received for all messages sent by i. num(i) is a concurrent-write and exclusive-read
variable. It is possible for num(i) to assume a negative value if num(i) is not updated at
the appropriate time. num (i) is incremented by the number of successors of i, every time
LENGTH messages are propagated to the successors. This is done at the end of a pulse.
However, before this is done, suppose a successor node decrements num (i) when it
equals zero. Then mum(i) will become negative. Such a situation is possible due to the
difference in the speeds of the processors. To avoid any modification to occur in the vari-

able nun(i) before any update has been performed on it, some sort of synchronization

has to be utilized. One scheme is to associate a one bit boolean variable to each node

that is globally declared. Assume that after a node i modifies num (i) the boolean vari-
able is set to FALSE. But the problem in this scheme is that node { may not be aware if
all its neighbours have modified the data structure so that it can update or change the
value in num(i) and reinitialize the boolean variable to FALSE. It might be the case that
num (i) never gets decremented by node i’s neighbours during a given pulse, causing the

variables to remain TRUE without being reinitialized to FALSE.

In our implementation, we follow the scheme described next. A global variable
called pulsenum(i) is used. This variable contains the current pulse number of node i .
A node j does not decrement num(i) until the pulse numbers of i and ; are equal. This
would indicate that both nodes i and j are in the same pulse and therefore, the necessary
updates to num(i) have taken place in the previous pulse.

In the shared-memory mode:, a message has to always to be exchanged between
nodes during each pulse for proper synchronization. Because of this requirement one

may encounter certain problems as explained next.

Note that a node’s distance value may not change during a pulse. As was menuoned
earlier, whenever a node i finds a path shorter than that currently known, it sends
appropriate LENGTH messages to all its successors and increments nuwm(i) . Suppose
LENGTH messages are transmitted regardless of whether an update has occurred or not
in the distance valug. num (i) is still incremented by the number of successors of i . Since
num(i) is a concurrent-write and exclusive-read variable, lock variables are necessary o
access it. Assume an update has not occurred in the distance value of i. After the suc-
cessors receive the information, they immediately send back acknowledgements 1o i
since the information received is not new. Sending acknowledgement basically means
accessing the lock variable to decrement nwm(i) . So, if LENGTH messages are sent

even if there is no change in the distance value of a node, mwm(i) and the corresponding

-83 -

lock variables will have to be accessed several times during a pulse. But, accessing lock
variables is a time-consuming operation. The only way to solve the problem is to send
LENGTH messages only if an update has occurred in the node’s distance value. This is

implemented as follows.

We introduce a variable called change(i) . Whenever an update takes place
change (i) is set to TRUE and num(i) is incremented by the number of successors. This
change information is propagated to the successor along with the LENGTH information.
When a node j receives this message it first checks change(i) . If change(i) is FALSE
then the distance information of i is ignored. change(i) = FALSE indicates no update
has taken place in the distance value d(i) since the previous pulse. Otherwise, node j
considers the distance information of i and updates d(j), if necessary. This avoizs the
repeated and unnecessary updates of num(i), resulting from transmission of LENGTH

messages even when no change has occurred in the distance value of a node.

Consider next the following situation. Suppose during a pulse p, change(i) =
FALSE and at the end of the pulse nwum(i) = 0.1f j isa predecessor of i, then at pulse
p +1, j receives an acknowledgement from i. But, suppose at p+1, change(i) is still
FALSE. This means that nwmij will remain zero at the end of this pulse, also. Thep at
pulse p +2, j would receive an acknowledgement message again. change(i) could con-
tinuously remain FALSE and the predecessor j could go on getting acknowledgements
indefinitely. This is a very serious situation because this may cause the protocol to ter-
minate prematurely! The problem here is that node i is not aware that its predecessor has
already been sent a required acknowledgement. We next discuss how, in our implemen-

tation we prevent a situation such as this from occurring.
Recall that a node i sends an acknowledgement to j in either of three cases:

(i) Ifthe LENGTH message received from j does not cause an update of d (i).

-84 -

(i) If j isthe predecessor and j is replaced by k as i s new predecessor,

(ii1) If j is the predecessor and all acknowledgements from the successors for

all the LENGTH messages propagated to them have been received.

In cases (i) and (ii), it is possible to send an acknowledgement immediately to the
corresponding nodes. However, as we have seen just now, case (iit) can occur in a
number of consecutive pulses resulting in more than one acknowledgement to be sent to

J. This cannot be avoided using num(i) and chonge(i) alone.

Let us call a node acrive if it has a predecessor to whom an acknowledgement has
not yet been sent. We use a new variable active(i) . If active(i) = TRUE, it means
that the predecessor has not yet received an acknowledgement. Thus we send an ack-
nowledgement to the predecessor if active(i) = TRUE and num(i) = 0. We then

set active(i) = FALSE.

Suppose during pulse p, change(i) becomes TRUE and j becomes the predecessor
of i. Then at this pulse active = TRUE. At pulse p +1, let change(i) be FALSE. Thus
at p+1, active(i) continues to remain TRUE. Assume num(i) = 0 at the end of pulse
p +1. Then during pulse p +2, predecessor j receives an acknowledgement and active(i)
is set to FALSE. Thus an acknowledgement is sent back to the predecessor if active(i)

= TRUE and num(i) = 0.

Suppose num(i) = 0 and change(i) = 0 for several pulses. Note that during
these pulses active(i) continues to be FALSE and no additional acknowledgements will
be sent to j. Let, during pulse p+q , ¢ 2 2, change(i) become TRUE and a ncw
node k replace j as the predecessor of i. At this point, no acknowledgement will be sent
to j because active(i) = FALSE. We make active (i) = TRUE after £ becomes the
predecessor of i. Now note that at the end of pulse p+gq, num(i) becomes non-zero

again.

Suppose at the end of pulse p+r ,r 2 g+1, num(i) becomes zero. Then at the
beginning of the pulse p +r +1, an acknowledgement will be sent to the current predeces-

sor of i because at this point, active(i) = TRUE.

We have used the above ideas in our shared-memory impiementation of the shortest
path protocol. In our implementation, active(i) is set to TRUE at the beginning of the
pulse that follows the one where the new predecessor is selected. This is correctly done
by using a variable prevchange (i) that indicates whether change(i) was TRUE or
FALSE in the previous pulse and also a variable received(i) which is TRUE if ac*ve(i)
is TRUE and num(i) = 0. After an acknowledgement is sent received(i) is set to
TRUE, and active(i) is set to FALSE. received(i) is set to FALSE if the current prede-
cessor is replaced by a new predecessor. This scheme helps to avoid the problem of the

same predecessor receiving more than one acknowledgement during consecutive pulses.

The protocol terminates when the source node has received all acknowledgements
from its neighbours. This happens if the neighbours of the source have received all the

required acknowledgements and so on.

As in the case of the max-flow protocol, the source when it detec-ts termination
sends TERMINATE messages to all its neighbours. The nodes keep track of all its neigh-
bours from whom TERMINATE messages have been received and are cautious not to
send any message to those already terminated. Important features of our termination
detection scheme may be found in Section 6.1.1. When a process receives a TER-
MINATE message and finds that num(i) = 0, then it detects the presence of negative

length circuits a.d terminates, signalling that the shortest path problem is infeasible.

The processes are synchronized using a modified form of a- synchronizer tech-
nique, as described in Section 6.1.2. This prevents processes from running several pulses

ahead of the others.

-%6 -

6.3 Shared-Memory Simulation of the Distributed Protocol for the Primal-Dual
Method

In this final part of the thesis, we integrate the distributed protocols for the max-flow
and shortest path problems, described in the previous sections, and constnuct a distributed
protocol for the primal-dual approach. Since the shortest path and max-flow protocols
are, by themselves, very useful in several applications, we ensure, during our integration,

that no modifications are done to these protocols.

AO@i) and A 1(i) are, respectively, the adjacency lists containing information about
outgoing and incoming edges at node i. cost(i) and C (i) are the data structures
representing the cost and capacities of edges at node i. Demprime (1) and Y (i) denote
the demand (or supply) and y-value (dual variable) at node i. Associated with the adja-
cency lists are the data structures f Oprime (i) and f iprime (i) representing the flows in
the edges represented in AO(i) and A 1(i). All these data structures are declared glo-
bally.

Before the main body of the primal-dual protocol is initiated, the transshipment
problem is tested for feasibility (see Section 3.2). If the problem is not feasible, the pro-
tocol terminates with no solution. If the problem passes the feasibility test, then the

remaining phases of the protocol are executed.

In the first phase the y-values and edge flows are initialized to satisty the comple-
mentary slackness condition (Section 5.2.1). The y-values are obtained as in Section 3.2.
From the initial flows, the new (residual) demands and supplies at all nodes are calcu-

lated.

In the second phase, network N ° is constructed as in Section 5.2.2. The adjacency
lists a0() and a 1(i) of N~ are created. This phase is carried out sequentially by one
processor, say, processor 0. The reason for this sequential computation is as follows.

Suppose edges (i ,j) and (k ,j) directed into node j are to be included in N °. Then j

-87-

has to be included in the adjacency lists a0(i) and a0(k). This can be done in parallel.
s0 i and k have to be included in ¢ 1(j). Thus both nodes i and k need to acces a 1(y).
This could result in write conflicts. it is for this reason, the second phase is performed

sequentially by one processor.

In the third phase,the shortest path protocol is invoked and applied on N°. The y-
values are also updated using the distance values obtained at the completion of the shor-

test path protocol.

In the fourth phase, the network N “” is constructed as in Section 5.2.3. This is done
in two subphases. In the first subphase, each node i checks an outgoing edge (i ,J) of
the original network. If condition (ii) or (iii) of Section 5.2.3 is satistied then the
appropriate entries are included in a0(/) and a 1(i). This can be performed in parallel by
all the processors. Once this has been done, in the next subphase for cach entry j in
a0(i) and each entry k in a1(i) (included in the first subphase), the node ¢ should be
included in a 1(j) and aO(k), respectively. The adjacency lists aO(s) and a 1(z) are also
created in the second subphase. The reason for performing the fourth phase in two sub-
phases is explained next.

Suppose there exists an original edge (i , j) and processor i created in N ™" an edge
(j ,§). Then at processor f, a0(j) would contain i. But (4, i) is not an original edge.
If, while updating the edge flows, we examine only outgoing edges at each node then the
edge (j ,i) should not be considered. Thus we need to partition the lists a((i) and

al(i) so that only those added during the first subphase are used while updating the

flows.

To avoid write conflicts, as in the third phase, we perform the second subphase of

the fourth phase sequentially.

In the fifth phase, the max-flow protocol is invoked. The processors update the

flows in the sixth phase. New demands and supplies are also calculated. If not all the

-88 -

demands are equal to zero, phases 2 — 6 are repeated.
The protocol terminates when all the demands and supplies become equal to zero.
For this purpose a variable dzero is used. This is initially set to the number of nodes
in the network. When dzero = 0, it signals the completion of the primal-dual protocol.

At this point, all the processors terminate.

Note that all the phases discussed above should be done in sequence. Thus in addi-
tion to synchronization between pulses in a phase, synchronization is also required
between phases. These synchronization issues are handled as explained in the first two

sections of this chapter.

A description of the primal-dual distributed protocol may be found in Appendix D.

6.4 Performance Results

The protocols discussed in the previous sections have been implemented in the C
language and tested on several networks. Since the BBN Butterfly machine available to
us has only 20 processors, we tested the protocols on networks containing up to 20 nodes.
Since our main interest is in the correct implementation of the distributed protocols, we
counted the average number of messages per processor. We also counted the average

number of steps performed by a processor.

We also designed sequential implementations of the max-flow and shortest path
algorithms. In each case, we counted the total number of steps performed by the unipro-
cessor. The above results are summarized in the following tables, where n and m refer,

to the number of nodes and the number of edges in the graphs tested, respectively.

-89 .

n m Max.# steps Max.# messages # steps
per processor per processor by uniprocessor

20 | 190 10278 7050 387839
15 | 105 5327 4007 176802
12 66 3392 2315 84624
10 45 2666 1241 38652
20 | 190 7931 4727 265480
15 | 105 3573 1183 73121
12 66 2390 796 35273
10 45 203 290 23134
20 | 190 367 620 186490
15 | 105 272 455 7844

Table 6.1: Results obtained for the Maximum Flow problem

-90 -

n m Max.# steps | Max.# messages # steps
per processor per processor by uniprocessor

20 | 190 124 441 962
15 | 105 113 331 612
12] 66 110 263 385
10 | 45 106 218 289
20 | 190 176 445 2049
15 | 105 159 331 1307
12 | 66 145 264 702
10 | 45 141 218 654
20 | 190 165 442 2132
15 | 105 159 331 1233

Table 6.2: Results obtained for the Shortest Path problem

.91 -

As one would expect, the number of steps per processor is much smaller than the

total number of steps performed by a uniprocessor.

A good portion of the messages broadcast by the processors are mainly for syn-
chronization purposes. In a truly distributed environment, a number of these messages

will not be necessary.

The protocols can be modified to run on a parallel machine using the message pass-
ing paradigm. They can also be incorporated in applications involving the network

optimization problems.

6.5 Summary

In this chapter, we presented in detail several features of our simulation of the dis-
tributed protocols for the shortest path and max-flow protocols as well as heir integration
into a distributed protocol for the primal-dual approach to the transshipment problem,
The simulation has been carried out on the BBN Buttertly machine, which employs the
shared-memory model. Our simulations make an effective use of the synchronizer
mechar’ s in designing correct implementations of distributed protocols running in an
asynchronous environment. Though synchronizers are proposed mainly in the context of
synchronous distributed protocols running on asynchronous networks, our work and dis-
cussions underscore the importance and need for synchronizers in the implementation of

parallel algorithms on commercially available multiprocessors.

CHAPTER VII
SUMMARY AND FURTHER RESEARCH

In this chapter, we give a summary of the work presented in the thesis and highlight

some of our experiences. We also point to certain directions for future work.

7.1 Summary

QOur goal has been to design and implement a distributed protocol for the transship-
ment problem (also known as the minimum cost flow problem). Two distinct approaches
are available to solve this problem, namely, the network simplex method and the primal-

dual method.

In the sequential case, both these approaches are known to lead to very efficient
algorithms for solving the transshipment problem. So, to start with, we studied them and
examined their suitability for distributed/parallel implementation. The network simplex
method suffers from two shortcomings. First, the algorithm is inherently sequential in
nature, moving (through pivots) from one basic tree solution to another. The pivot opera-
tion does not have much parallelism 1n itself. This is because during a pivot operation not
all the nodes in a network would participate in the process. Added to this shortcoming,
there is also the problem of determining, in a distributive way, an initial basic feasible
solution. To our knowledge, ro distributive algorithm is available for this process. This is
because the traditional approach in linear programming is to use the simplex method
itself to obtain an initial basic feasible solution. On the other hand. the primal-dual
method has several attractive features, which make it an excellent candidate for
distributed/parallel implementation. First, the application of this method involves
repeated applications (in an iterative loop) of two simpler but well known algorithms,
namely, the shortest path and maximum flow algorithms. In ctker words, the primal-dual
method uses these two algorithms as building blocks. If we follow the traditional

approach to initialization of the primal-dual method , it also suffers from the same

.93

problem as the network sin plex method. But, as we have shown in the thesis, this inttiahi-
zation problem can also be solved using the shortest path algorithm. We have also exam-
ined variants of the primal-dual method such as the €-relaxation method. Though they
help in obtaining better theoretical complexity results, they are not casy to implement
and are not known to be better than the primal-dual method even in the sequential case.

These considerations led us to focus our work on the primal-dual method

Essentially, our work involved designing distributed protocols for the shortest path
and the maximum flow problems and then integrating them inio a distributed protocol
for the primal-dual method. We also needed :o incorporate synchronizer mechanisms for

a correct working of these protocols in an asynchronous environment.

With the above in view, we first examined algorithms for the shortest path probiem.
Though: Dijkstra’s algorithm for this problem is known to be very efficient in the sequen-
tial case, it suffers from two shortcomings which make it unsuitable for use in our work.
First, it is not applicable when there are negative length edges. Such edges could be
present in a typical transshipment probiem. Also, Dijkstra’s algorithm passes through
different phases with each phase requiring computations of the mimimum of all the node
labels generated during that phase. In a distributed or parallel implementation this could
result in considerable slow down. On the other hand the Bellman- rd-Moore algonthm
does not suffer from these shortcomings. So we selected this for our work. We tirst
presented in Chapter lII a variant of this algorithm, which 1s elegant for distnibuted
implementation. Our distributed protocol for the shortest path problem, given 1n Chapter
I11, is synchronous in nature and also incorporates mechanisms for termination detection
and for detecting the presence of negative length circuits. For these purposes, we use
Chandy and Misra's approack[ChM82]. We have also shown, in Chapter I, how the
shortest path algorithm can be used to solve the primal-dual initialization problem. This

became possible because of a result in [CoT88]. But for this, we would not have been

-94 -

able to achieve an elegant distributed protocol for the primal-dual method.

We then examined different approaches to the maximum tlow problem with regard
to their suitability for distributed /parallel implementation. We found that Dinic’s algo-
rithm [Din70} combined with the MPM algorithm [MPM?78], though known to be very
efficient, suffers from a very serious shortcoming. Like Dijkstra’s algorithm it passes
through different phases with each phase requiring the computation of the minimum of
what are cailed the potentials of all the nodes. On the other hand, the recent algorithm
due to Goldberg and Tarjan |Gol87], [GoT88] is quite attractive from the point-of-view
of distributed implementation. However, no work on the distributed implementation of
this algorithm is available. We have presented, in Chapter IV, a distributed version of the
Goldber-Tarjan max-flow algorithm. We also incorporated in this protocol a mechanism

for termination detection. This is based on a theorem that we proved in Chapter IV.

The shortest path and the max-flow protocols presented in Chapter III and IV are
synchronous in nature. For them to work correctly in an asynch-onous environment, we
need to incorporate synchronizers into these protocols. For this reason, we examined in
Chapter Il the synchronizer design approaches available in the literature and the
difficulties one may encounter in implementing them. We found that the a-synchronizer
is appropriate for the shortest path protocol and B-synchronizer is appropriate for the
max-fow protocol. We showed, in Chapter V, how the primal-dual protocol can be con-

structed using the protocols of the previous chapters.

We presented, in Chapter VII, our simulation of the different distributed protocols.
Our simulation was carried out on the BBN Butterfly parallel computer, which employs
the shared-memory model. Several problems that one does not encounter in a truly dis-
tributed (that 1s, message-passing) environment were encountered during our shared-
memory implementations. Many of these problems relate to synchronization issues. For

instance, the scheme used for termination detection for the shortest path protocol raised

several problems while we implemented it in the shared-memory model. Without proper
care to details, one might end up with a protocol that could terminate prematurely
Interesting questions also arose while integrating the max-flow and shortest path protw
cols to construct the primal-dual protocol. These different issues and our approaches are

discussed in sufficient detail in Chapter VL

We have presented. in the appendices, detailed descriptions of our distributed pro-
grams written in the C language. These programs can be modified to run on a message
passing computer such as the hypercube. Appropriate optimization heuristics for map-
ping nodes onto the hypercube nodes would then result in efficient parallet programs for
the transshipment problem. Such programs will be very valuable in solving pracucal
problems. One such problem is the layout compaction and wire-length nunimizauon
problem. Interestingly in this application, the corresponding problem can be fornulated
as a transshipment problem [TCC90],| LoV90] and {Yos85]. The distributed/paralle!l pro-
tocols of this thesis can also be used to design protocuis for certain important network
optimization problems, becauasc either they can be formulated as a shortest path or as a
maximum flow problem or they can be formulated using these two problems as some sub-
problems. Two such optimization problems are: the maximum matching problem n

bipartite graphs and the Chinese postman problem.

Summarizing, our contributions are as follows. It has been shown that the primal
dual initialization problem can be solved using the shortest path protocol. A scheme has
been devised to detect termination and properly broadcast the TERMINATE message 1o
prevent deadlock of the protocol. While implementing the shortest path protocol we
encountered that acknowledgements have to be sent appropriately at the appropriate time
to prevent the protocol from the following: premature termination, endless looping m
incorrectly signalling infeasibility. During the implementation of the maximum flow pro-

tocol we showed that though the B-synchronizer is appropriate for this probleny in a

-96-

message-passing environment. in a shared-memory environment this synchronizer will
require considerable overhead 1n terms of messages required for synchronization and so
will result in a slowdown of the progress towards termination. So, we used the a-
synchronizer with modifications. We showed that no old information read before new
information written and no new information written before old information read guarna-
tees that the protocol do not suffer from the shortcomings of the a-synchronizer discussed
in Chapter II. In this scheme pulse numbers are not necessary. Also, we showed that
synchronization is necessary between pulses in a phase (creating N, shortest path, etc.)
and between phases of the primal-dual protocol. This is achieved using the a-
synchronizer mechamsm. But, in this case pulse numbers (alternately O and 1) are neces-
sary because read-write requirement is not there. And finally while constructing the
network N °° the adjacency lists must be partitioned appropriately to avoid computing
flows incorrectly. Parallel algorithms for several implementation applications can be

designed through easy modifications to tiae distributed programs presented in the thesis.

7.2 Further Kesearch

Our experiences during this work point to two possible directions for further
research.

Almost all the paraliel or distributed algorithms presented in the literature follow
from the corresponding sequential algorithms. This approach necessarily restricts algo-
rithms to be of fine grain nature — each node/ edge requining a processor. Thus these
algorithms assume the availability of a very large number of processors, though with lim-
ited processing capabilities. But fine grain parallel algorithms impose exclusive syn-
chronization requirements, which could cause considerable slowdown and, hence, lower
the speed-up which one would like to achieve. An interesting problem would be to

design parallel graph algorithms which are of a coarse grain nature. No works of this

-97 .

nature for graph or network problems are available in the literature.

In designing asynchronous algorithms, we have proceeded in two steps: first design-
ing a synchronous algorithm and then embedding a synchronizer. There are two reasons
for this. First it is difficult to design and prove correctness of an asynchronous algorithm,
Secondly, asynchronous algorithms may require an excessive number of message
exchanges. But this would result only if the transmussion delays are unpredictable. This
may not be so in a practical situation. On the other hand, asynchronous algorithms may
not require much synchronization. Therefore another problem for further research is the
design of synchronous algorithms that run correctly even in an asynchronous eaviron-
ment. Note the synchronous shortest path proiocol of Chapter 115 in fact one such algo-
rithm, which will work correctly even in an asynchronous network. However, the syn-

chronous max-flow protocol of Chapter V does not have this property.

[Ak189]

[Awe8S]

|Awr85]

[BBN9(]

[BeG87]

{Bel58]

[BeT89j

[ChM82]

[ChMB&9|

[Chvg3]

[CoTR8|

REFERENCES

Akl, S., The Design and Analysis of Parallel Algorithms , Prentice Hall,
New Jersey, 1989.

Awerbuch,B., "Complexity of Network Synchronization”, J. ACM, Vol.32,
804-823, 1985.

Awerbuch, B., "Reducing Complexities in the Distributed Max-Flow and
Breadth-First-Search Algorithms by means of Network Synchronization",
Networks, Vol.15, 425-437, 1985.

Getting Started with the Mach 1000 Operating System, BBN Advanced
Computers Inc., Cambridge, Massachusetts, 1990.

Bertsekas, D., and R. Gallagher, Data Networks , Prentice Hall, Englewood
Cliffs, New Hersey, 1987.

Bellman, R.E., " On a Routing Problem", Quart. Appl. Math., , Vol.16, 87-
90, 1958.

Bertsekas, D.P., and J. Tsitsiklis, Paralle! and Distributed Compurtations:
Numerical Methods, Prentice Hall, New Jersey. 1989.

Chandy, K.M., and J. Misra, " Distributed Computation on Graphs", CACM ,
Vol.25, 833-837, 1682.

Cheriyan and S.N. Maheswari, "Analysis of Preflow Push Algorithms for
Maximum Network Flows", SIAM J. Comp., , Vol.18, 939-954, 1989.

Chvatal, V., Linear Programming , Freeman Company, Potomac, Mary-

land., 1983.

Comeau, M., and K. Thulasiraman, "Structure of the Submarking Reachabil-

ity Problem and Network Programming”, IEEE Trans. Circuits and Systems,

{Dij59]

[Din70]

{FoF56]

[FoF62]

[GHS83]

[{Gol87]

{GoT88]

[Hum83]

[Kru56]

[LaT87]

-99 -

Vol.CAS-35, 89-100, 1988.

Dijkstra, EW., " A Note on Two Problems in Connexion with Graphs®,

Numerische Math., Vol.l, 269-271, 1959.

Dinic, E.A., "Algorithm for the Solution of a Problem of Maximum Flow in a
Network with Power Estimation", Soviet Math., Dokl., Vol.11, 1277-1280,

1970.

Ford, L.R., and D.R. Fulkerson, "Maximal Flow through a Network", Cana-
dian J. Math., Vol.§, 399-404, 1956.

Ford, L.R., and D.R. Fulkerson, Flows in Networks, Princeton University

Press, Princeton, New Jersey, 1962.

Gallagher, P. Humblet and P.A. Spira, "A Distributed Algorithm for
Minimum-Weight Spanning Trees", ACM Trans. Programming Languages

and Systems , Vol.5, 66-77, 1983.

Goldberg, A.V., " Efficient Graph Algorithms for Sequential and Parallel
Complexity", Ph.D., Thesis, Lab. for Comp. Science, M.I.T., Cambndge,
Massachusetts, 1987.

Goldberg, A.V,, and R.E. Tarjan, "A New Approach to the Maximum Flow
Problem", J. ACM, Vol.35, 921-940, 1988.

Humblet, P.A., " A Distributed Algorithm for Minimum - Weight Directed
Spanning Trees", /EEE Trans. Communications, COM-34, 345-347, 1983
Kruskal, J.B., "On the Shortest Spanning Subtree of a Graph and the Travel-

ling Salesman Problem”, Proc. Am. Math. Soc., Vol.7, 48-50, 1956.

Lakshmanan, K.B., and K. Thulasiraman, " On the Use of Synchronizers for
Asynchronous Communication Networks", Proc. 25 th Allerton Conf. on

Communication, Control and Computing, Univeristy of [llinois, Urbana-

[LoV90j

[LTCB89]

|[Lyn88]

[Mar90]

IMoo57]

[MPMT78]

[Mul89]

[Pri57]

[Roc84]

[Seg83]

-100 -

Champaign, 1987.

Lo, C.Y, and R. Varadarajan, " An O (n 1‘Slogn) I-d compaction Algorithm",
Proc. 27th ACM/IEEE Design Automation Conf., 382-387, 1990.
Lakshmanan, K.B., K. Thulasiraman and M.A. Comeau , "An Efficient Dis-
tributed Protocol for the Shortest Path Problem in Networks with Negative
Weights", IEEE Trans. Software Engg. , Vol. SE-15, 639-644, 1989.

Lynch, N., "Distributed Algorithms", Lecture Notes , Lab for Comp. Sci-
ence, M.I.T,, Cambridge, Massachusetts, 1988.

Marple, D., "A Hierarchical Preserving Hierarchical Compactor”, Proc.
ACMIIEEE Design Automation Conference, 375-381, 1990.

Moore, E.F., "The Shortest Path through a Maze", Proc. Intl. Symp. Theory
of Switching, Part I, Univ. Press, Cambridge, Massachusetts, 285-292,
1957.

Malhotra, V.M., M. Pramodh Kumar and S.N. M.aheswari, " An 0(v3) Algo-
rithm for Maximum Flows in Networks", Information Proc. Letters, Vol.7,
277-278, 1978.

Mullender, S., Distributed Systems , Addison-Wesley, Reading, Mas-
sachusetts, 1989,

Prim, R.C., "Shortest Connection Networks and Some Generalizations", Bell
Syst. Tech. J., Vol.36, 1389-1401, 1957.

Rockfeller, R.T., Network Flows and Monotropic Optimization, Wiley-
Interscience, New York, 1984,

Segall, A., "Distributed Network Protocols", IEEE Trans. Information

Theory , Vol.IT-29, 23-25, 1983.

[SeS91]

[SwT81}

[TCC90]

[Yos85]

- 101 -

Segall, A., and L. Shabtay, "Message Delaying Synchronizers", Proc.
Workshop on Data Structures and Algorithms, Spain, 1991,

Swamy, M.N.S., and K. Thulasiraman, Graphs, Networks and Algorithms,
Wiley-Interscience, New York, 1981.

Thulasiraman, K., M. Comeau, R.P. Chalasani, A.Das and J.W. Atwood, "On
the Design of Parallel Algorithm for VLSI Compaction”, Proc. Inil. Symp.

Circuits and Systems , 1990.

Yoshimura, T., "A Graph-theoretic Compaction Algorithm", Proc. Inil.

Symp. Circuits and Systems, 1445-1458, 1985.

APPENDIX A
THE BBN BUTTERFLY MULTIPROCESSOR

The BBN Butterfly multiprocessor uses the Mach 1000 operating system which is a
Berkeley 4.3 BSD — compatible version of the UNIX operating system. It uses the
GP1000 hardware. Either C or Fortran can be used to write programs to run on the

GP1000 multiprocessor.

A.l Programming with the Mach 1000 Operating System
This section describes clusters, how to use them and commands that can be used to
manage them.

A clusrer is a set of GP1000 nodes grouped together. These sets of nodes can be
used to run a particular program. The programmer has the flexibility to divide the system
into any number of clusters, each containing one or more nodes, depending on the
number of nodes available in the system. Each cluster then becomes a separate comput-

ing resource with its own characteristics, specified according to the programming needs.

The cluster configuration can be changed to better suit the program needs. The size
of the clusters can be varied. Alsc, nodes to be included in a cluster can be specified.
Several other characteristics, such as who can access the cluster and how nodes of a clus-

ter are selected can be defined.
The way the clusters are used depends on several factors:
(1) Number of nodes in the system.
(ii) Characteristics of programs run.
(iii) Number of users on the system.

(iv) Characteristics of programs currently run by other users.

g

PPN S e T

- 103 -

The cluster mechanism has several commands which allow a programmer to:
(i) Putadditional nodes into an existing cluster with addnodes .

(ii) Execute a command in a particular cluster with runincluster .

(iii) Obtain information about clusters with whichcluster and clusters .

(iv) Remove nodes with freenodes .

(v) Disband clusters altogether with removecluster .

(vi) Modify cluster attributes explicitly with clusterct! .

For more information on the use of cluster commands and other features of clusters,

refer to [BBN9O].

A.2 The Uniform System Approach

The Uniform System is a library of subroutines that can be used with C or Fortran

programs. Here, we explain the system with reference to the C language.

There are two main considerations of the GP1000 parallel processor: storage
management and processor management. The goal of storage management is to utilize
the full memory bandwidth of the machine. All the memories in the machine are kept
equally busy. This increases speed up, since processors are allowed to access ditferent
parts of the memory, reducing memory contention. Slow down and memory conflicts
may occur if all processors attempt to access a single memory. The goal of processor
management is to utilize the full processor bandwidth of the machine. The purpose is to

keep all processors equally busy, thereby preventing overloading of some processors

while others sit idle.

- 104 -

A.2.1 Memory Management

The GP1000 switch provides low delay and high bandwidth access to all the
memory.

The Mach 1000 operating system provides virtual memory. It enables the

processes to manage their own address spaces, thereby preventing memory contention.

The GP1000 hardware and Mach 1000 operating system are a foundation on which

a variety of software structures are built.

'The Uniform System allows the processes to share a single large block of virtual
memory. The application program is implemented on this single large address space.
This frees the application programmer from the need to manipulate memory space maps,
thereby simplifying L -ogramming. The application data is scattered across all memories
of the machine, thus reducing memory conteaticn. Stacks and local variables of the pro-
cessors are kept locally. So one processor does not have access to the other processors’

local memories.

The collection of the memories of the GP1000 nodes form the shared memory of the
machine (See Fig. A.l).' In other words, each processor of the machine has a block of
memory local to the processor. The combination of these memories is the shared
memory. This means that the large shared memory the application program sees is

implemented by a collection of separate memories.

If the data is located in the memory of just one processor then accessing the data
causes memory conflicts, forcing one processor to wait until the other is finished if they
are both trying to access the same memory location. Therefore, to avoid memory conten-
tion, the data is distributed across the different memories. By so doing, the full memory

bandwidth of the machine is utilized.

As one would expect, there is a cost associated with the memory management

RSty e

- 105 -
Process 1 Process 2 Processm Process n
. -
Private s 8 @
poooJ'-ooood-oa:;c*;,o;J
Sharag

Fig. A.1. Processes Share Much of their Address Space.

- 106 -

strategy. The memories of the processors are connected by an interconnection network
to form the shared memory. Therefore, a processor has to follow a path along this inter-
connection network to access the data which may be located in some other physical
memory other than its own. So, there might be memory contention problems and slow-
down in accessing the data. But the execution time is increased from 4% to 8% mainly

due to less contention.

The purpose of the memory management strategy is to allow the programmer to
treat all processors as identical workers, each processor having access to all the applica-

tion data and, hence, being able to do any application task independently.

The Uniform System also provides atomic operations such as locks to avoid
conflicts in certain operations (for instance, concurrent write operations at the same loca-

tion) using the same memory locations.

A.2.2 Processor Management

The r.al of processor management, as mentioned earlier, is to allow all processors
to be busy, thereby using the full processor tandwidth. In other words, the goal is to
minimize processor idle time. Without proper processor management, it may so happen
that one processor sits idle after completion of its computation, while others are still

working.

The GP1000 parallel processor uses two strategies, dynamic and static strategies, to
minimize the idle time of processors. The staric approach uses exactly as many con-
current tasks as there are processors. The programmer, in this method, has to apportion
the work so that all processors finish at approximately the same time. The dvnamic
approach , on the other hand, uses many tasks per processor. Tasks are dynamically allo-
cated to the processor. When a processor finishes with a task it is assigned the next task

for execution. This method balances the load in the system. Though there might be some

:
i

- 107 -

wait at the end of the program, it is generally small compared to the total program eaecu-
tion time. The advantage of the approach is that it is not necessary to know in advance
how long an individual task takes to complete. It also adapts to the varying numbers ot

processors and sizes of problems.

The Uniform System encourages the dynamic approach but also supports the static

approach.

Once the programmer determines what processing will occur in parallel, these tasks
have to be scheduled for parallel execution. To use the Uniform System, the programmer

must structure the application into two parts:
a) A set of subroutines that perform various application tashs : and

b) One or more subroutines called rask generators that identify the task for exe-

cution.

The task generators will be explained later.

A.3 Using the Uniform System (Us)

In this section, we explain some of the Us library routines used in the programs

implemented in this thesis. For more details on various other routines, see {[BBNY0O).

Include File

Any Us program must include the header file 5.2t at the beginning of the program:

#include <us.h>

Initializing the Us

The program (or process) is loaded into all the processors in the cluster. The routine

InitializeUs();

- 108 -

initializes the Uniform System. This routine starts and creates a Us process on every
available processor in the cluster, sets up the memory that is globally shared among all
Us processes in the cluster, and initializes the Us storage allocator. This routine should
be called before any other Us routines except SetUsConfig , or ConfigureUs. It should

be called only once in a program.

Obtaining Configuration Information

Sometimes it is necessary to refer to processors by numbers. There are two separate

numbering schemes for processors, and routines for converting them.

In the firs' scheme, a process is assigned the number of the hardware processor on
which it is running. The number assigned to a processor depends on the size of the
GP1000 switch and the way the processor is connected to the switch. The hardward pro-

cessor numbers used can range from 0 to 2585.

In the second numbering scheme, a virtual number is assigned to each of the proces-
sors. The virtual processor numbers are consecutively numbered from 0 to P-1, where P
is the number of processors available to the program. The Us uses this numbering

scheme because it affords considerable flexibility to the programmer.

Routines are available to determine a processor’s hardware or virtual number. And
mapping routines for conversion between hardware and virtual processor number also
exist. Routines are also available to get more information on the number of processors

and memory available to a program.

For more information on different routines, see [BBN90].

Memory Classes

A process has access to two classes of memory (See Fig. A.2). Memories local to a

- 109 -
/ | Taxt {program)
Private
er Process

(°) Heap |

Uniform

System
Shared Part

Stack

Fig. A.2. Address Space of a Uniform System Process.

- 110 -

process p are called process private memory . Only process p can access this memory.
The other class of memory is the globally-shared memory . Data to be shared by two or

more processors are located in this memory. All processors have access to this memory.

Within these two memory management classes, several different types of storage are
available to C programs.

Local variables declared within a process p are local to this process. The process p
can access these local variables and modify them. The changes made to these variables
within the process are not seen by the other processes. The local variables are stored in

stacks.

Within a process there may be several subroutines, and one subroutine might need
access to some variables local to the process. By passing these variables to the subrou-
tines by means of pointers, any changes made within the subroutine can be seen by the
process after completion of the subroutine. So, variables can be shared by subioutine

calls within the same process, but are hidden from all other processes.

Then there is the dynamic storage obtained by malloc and other related routines.
They are local to the process. Variables created by these routines can be accessed by

subroutines within the same process, but are hidden from all processes.

The last type of storage is data that are globally shared. Data can be allocated in the
shared-memory by using routines of the Us. In particular, the UsAlloc routine allocates
space for data to be shared globally. Pointers to these variables are valid on all proces-

sors and can be passed freely among them for communication purpose.

The Us allocator creates and manages the globally-shared memory region of the
process address space. A program can ask the allocator for space within a particular pro-
cessor node or for space that is scattered across the machine. Once space has been allo-

cated for a program for sharing, the program is free to pass poinfers to variables in the

- 111 -

space from one process to another.

Memory Allocator

The Us provides a variety of memory allocators that allocate storage in globally-
shared memory. The allocators return a pointer to the block of memory allocated. If an
allocator is unable to obtain the requested amount of memory, it returns the null pomnter

(i.e., zero).

In this section, only allocators that have been used in the programs will be

explained. For more information on other allocators, see [BBN90].

To allocate a block of storage in globally-shared memory,
UsAlloc(SizeInBytes);

is use?d

The Us library provides storage allocation routines for arrays and matrices. These

routines scatter data across the memories of the machine to reduce memory contention.

The routine
UsAllocScatterMatrix(nrows,ncols,element_size);

allocates a matrix that is scattered by rows over the memories of the machine.

It does this by allocating a vector of pointers arows long, and nrows separate vec-
tors, each containing ncols items of size element_size bytes. The row vectors are allo-
cated in separate memories. UsAllocScatterMatrix retumns a pointer to the vector ol
pointers. The vector of pointers is itself filled in with pointers to the scattered row vec-
tors (See Fig. A.3). Elements of an array A allocated in this way cian be referenced
using standard C notation as follows:

Afrow][col]

Internally, UsAllocScatterMatrix uses the routine UsAllocAndReportC 1o scatler

P = AllocScanarMatrix (nrows, ncals, element_size)

.] [aeioment _ size |
I - |

p g ——g
‘4 e« o o , r‘-‘ 2n Node © ’
L
-2
nArows
[}
- o e :ﬂNw'vV

- L] - .H mNm,y '

Fig. A.3. A Scattered Matrix Created by UsAllocScatterMatrix.

- 113 -

the row vectors.

There are other allocators which define space only in local processors or specitied

processors. For more details on allocators see [BBN90].

Once the space has been allocated in globally-shared memory for certain data struc-
tures, the processors must be able to access them. This is done through the Share

mechanism of the Us.

Assume X is an integer variable declared as global or static.
Share(&X);
copies the value of X into each processor that performs tasks generated by subsequent
task generators. The value copied is the value X has when Share is involved. X is set
prior to the first call of the task worker routine on thai processor. The effect of share is

illustrated schematically in Fig. A.4.
When processor P executes Share (&X), the following happens:

1. Processor P allocates a Share block in shared memory to hold both the address

of X and the current value of X.

2. The Share block, is linked together with other Share blocks and they cun all

be found when needed.

When processor Pa begins working on a task generator for the first time, the follow-
ing happens.
1. Processor Pa finds all of the Share blocks that have been linked together.

2. For each Share block, processor Pa copies the value of X saved in Share

block to the address of X, which was also saved in the Share block.

Allocating X in static or global process private memory ensures that the address of
X is at the same location in all processes. If X was a local variable (i.e., allocated on the

stack), processors P and Pa could have X located at different addresses.

-114-

Private N voa | /

> o v o \OIJ“-i-ol/“olooJ

Share [&x; Task Geneczlon

(9%]

Sharzz

Fig. A.4. Share Passes Copies of Process Private Variables.

- 115 -

When many processors make frequent references to many elements of an array allo-
cated by UsAllocScatterMatrix , it is often desirable for each processor to have its own
copy of the vector of pointers created by UsAllocScarterMarrix . This reduces contention
for the pointers which are all stored in a single memory and must be referenced to access
the array elements. The routine

ShareScatterMatrix(&p,nrows);
where p is
p = UsAllocScatterMatrix(nrows, ncols, element_size);
causes such copies to be made. p is globally shared. Each processor that performs tasks
zenerated by task generators called after the call to ShareScatterMarrix will have its p
set to point to a local copy of the vector of pointers (the local copy is allocated in

globally-shared memory).

Task Generators

The Us processor management is accomplished using task generators. A task is a
basic unit of computation; a Uniform task is a subroutine call. At any instant, there 1s a
set of runnable tasks that must be mapped on to the available set of processors. The Us
takes the view that both the set itself and the priority of items within the set are dynanu-
cally changing; as a result, a siniple queue is not an adequate model of the task structure.
Instead, the Us requires a user-supplied task generation procedure that can answer the

question, "What is the current most important task at this instant?"

It is good practice to make the tasks themselves small. The responsiveness of the
syctern to changes in priorities depends on the size of a test, because once a task is
started, the system runs it to completion. Also, even if the priorities are not changing,

there wil! come a point towards the end of a task generator when all the tasks have been

-116 -

generated by the task generation procedure. When that happens and if there are no other
active generators, some processors will sit idle while others finish the last task. If the

tasks are small in size, the idle time will not have much impact on program efficiency.

The Us supports two generator control disciplines. Synchronous generators return
to the caller after all of the generated tasks have been processed. Furthermore, the pro-
cessor that calls a synchronous generator always works on the tasks that are generated.
Asynchronous generators return fo the caller as soon as the generator has been activated.
This enables the calling process to do other work. The calling process can later work on

generated tasks if it so chooses.

The Us matches available processors to the generated tasks and keeps track of
active generators. Whenever a processor has no work to do, it obtains a task using the
task generation procedure for one of the active generators. When a Us program begins
execution all the processors, except the one used to start the program, are idle. As long

as there are active generators with tasks to be done, there are no idle processors.

Deadlocks are possible using generators. For synchronous generators, since
there is always at least one processor working on each generator, (perhaps recursively),
progress should be made unless that processor hangs. With asynchronous generators,

more care needs to be taken to avoid race and deadlock conditions.

The Us Library includes a collection of generator activator procedures that embody
various commonly-used task generation procedures. Here only one family of the syn-
chronous generator activator procedures will be described. For more details on other

synchronous and asynchronous activator procedures, see [BBN90].

The index family of the synchronous generator activator procedure are next dis-
cussed. Each family of generators has a simple, abortable, limited or full version of the
call to the generator. Our main interest is in the simple version of the call to the genera-

tor.

117 -

Consider a subroutine Worker(Arg, index) which is to be called tor all values of
index from O through Range — 1. A call of the form
code = GenOnl(Worker, Range);
generates tasks of the form
Worker(0, index);

Note that the worker routine is passed a dummy Arg parameter.

A.4 Synchronization and Atomic Operations

Sometimes two processors need to work on the same data at the same time. If the
order of work does not matter (e.g., incrementing a counter), the principal concern is that
the processors do not interfere with one another (i.e., one finishes before the other starts).
If the order of work does matter (e.g., task A is writing and task B is reading), the pro-
gram logic may be flawed in the sense that task B is really not ready to run, and should

not have been generated until A finished.

Mach 1000 supports atomic operations for both 32-bits and 16- bit quantities. For

example, Atomic-add, Atomic-and, Atomic-or etc.

Some cases may require more than a simple atomic operation. In these cases, it

may be necessary to construct a lock around the code as follows:

lock

Operations that must be atomic
unlock;
The Us provides the following lock and unlozk operations:

Uslock(lock, n);

UsUnlock(lock);
The Uslock operation is z; "busy wait" type of lock, where lock is a pointer to a short

variable used as the lock (assumed to have been initialized in the unlocked state with

- 118 -

value zero), and n is an integer that specifies the time to wait in tens of microseconds
between attempts to get the lock. Using zero for n forces use of a default value, which is
about one millisecond. If a program simply needs to wait until something occurs, and if
"busy" waiting is acceptable, it can use LockWait as follows:
While (something has not occurred)
LockWait(n);
where n is an integer that specifies the time to wait in ten of microseconds. As usual,

using n = (forces use of a default value of about one millisecond.

There are various other routines for atomic operations. For more details see

[BBN9O].

APPENDIX B
SHARED-MEMORY SIMULATION OF THE DISTRIBUTED PROTOCOL FOR TII
MAX - FLOW PROBLEM

Global Shared Variables

For a given node i:

a0() Adjacency list of node i. Node j is included in this list if it is connected o
node i by an edge (i , j) directed from i to ;.

al(i) Adjacency list of node i. Node j is included in this list, if it is connected

to node i by anedge (5 , i) directed from j to{.

cap (i) J * element of cap (i) contains the capacity of edge (i , j) directed from i

toj.
degree (i) The number of edges incident on node i except those connected to s and

t.

safeset (i) At the end of each pulse, the node determines it is safe to start the next
pulse. The next pulse begins only if all its neighbours are safe. This 15
indicated as safeser(i) = 0. At the beginning of a new pulse saf eser (i)
is initialized to the number of nodes adjacent to /.

da(i) Contains two types of information; degree of node i as defined above and

distance of the node from the sink.

delta 0@i) If (i ,j)is an outgoing edge at i, then delta 0(i)(j) will store two types of
information:
delta: The amount of flow pushed along (j ,i). Set to 0 ini-
tially.
terminate : TERMINATE information, set to FALSE initially.

delta 1(i)

check O(i)

check 1(i)

size

If (j ,i)is an incoming edge of i, then delta 1(i)(j)
will store two types of information arriving {rom j.
terminate : TERMINATE information, set to FALSE initially.
delta : The amount of flow pushed along (j , i). Set to zero ini-
tially.
A boolean variable corresponding to deltaQ(i). If the jth element of
check 0(i) is TRUE then j can write in the j'h element of delta O(). It 1t
is FALSE, i can read from the j'h element of delta0(i). It is used mainly

for synchronizing read/write operations. Initially all entries are TRUE.

A boolean variable corresponding to deltal(i). If the j'h element of
check 0(i) is TRUE then j can write in the j”l element of delta 1(i). If it
is FALSE, i can read from the j"l element of delta 1(i). Used mainly for

synchronizing read/write operations. Initially all entries are TRUE.

The number of nodes in the graph.

Local variables at node i

e€xcess

Excess at node i.

tempdel O(i) ,tempdel 1(i)

distance (i)

termset (i)

A vector which stores the amount of flow pushed along outgoing and

incoming edges, respectively, at node i.

A vector containing the minimum distance estimate of all the neighbours

of node i.

A boolean vector indicating the neighbour from whom TERMINATE mes-
sages have been received. termset(i)(j) = TRUE, if i has received a

TERMINATE message from j.

-121-

flow0@) A vector containing the total amount of flow along all outgoing edges at
node i.

Sflow 1(i) A vector containing the total amount of flow along all incoming edges at
node i.

totaloutf low (0)The total flow out of 5.

totalinflow (size —1)
The total flow into ¢

check (s) A one-bit variable. If it is TRUE, then it means that some flow was

pushed during the procedure check — push — applicability.

Note: Nodes 0 and (size-1) represent the source and the sink respectively. A data struc-
ture x which contains more than one piece of information will be addressed as follows

X. item.

Procedure Read message()
begin
for all j € a0fi] do
begin
while (checkO[i][j] # FALSE) Wait();
excessji] = excess|i] - deltaO[i][j].value;
flowOli](j] =flowO[i][j]+delta0[i][j].value;
if (deltaO[i]{j].end = TRUE) then
begin
termset(i][i]= TRUE,;
termset[i]{j]=TRUE;
end
checkO[i}[j]=TRUE;
if ((j = (0)) AND (j #(size-1))) then
while (d[j].deg =0) Wait(),
Lock(lock);
distance[j]=d[j].dist;
if ((j#0) AND (j# (size-1))) then
d[j].deg =dlj].deg-1;
Unlock(lock);
end
for all j e al[i] do
begin
while (check![i][j] # FALSE) Wait();
excess[i] =excess[i] - deltal[i][j].value;

flow1[i][jl=flow1[i][j]+deltal[i}[j].value:

- 123 -

if (deltalli]{jl.end = TRUE) then
begin
termset[i][i]=TRUE;
termset{i][j]=TRUE;
end

check[i}{j]=TRUE:

if ((j#0) AND (j # (size-1))) then
while (d[j].deg = 0) Wait();
Lock(lock);
distance[i][j]=d[j].dist;
if ((j #0) AND (j # (size-1))) then
d(j].deg =d[j].deg-1;
Unlock(lock);
end
end
Procedure Check Push_applicability ()
begin
for all je a0[i] do
begin
residualcap(i}=capl(il[j]- lowO[il[;];
if ((excessli] >0) AND (residualcapfi] >)
AND (d[i].dist = (distance[i]{j]+1))) then
begin
if (excess[i] < residualcap([i]) then
tempdelO[i][j]=excess[i];

else

AR T ¥

tempdel0|i][j]=residualcaplil;
excess[i] =excess[i] - tempdel0fi][j];
flow0|i]{j] =flow0[i][j]+tempdelO[i][]];
end
else
tempdelO{i][j]=0;
end
for allj e alli] do
begin
residualcapl(i] = (-flow1[i](j]);
if ((excess[i] > 0) AND (residualcap(i] > 0)
AND (d[i].dist = (distance[i][j]+1))) then
begin
if (excess[i] < residualcap) then
tempdel 1[i][j]= excess[i];
else
tempdel[i][j]=residualcap(i];
excess[i] =excess[i]-tempdell[i][j];
flowl{i][j] =flow1[i][j]+tempdell[i][j];
end
else
tempdel 1{i]{j]=0;
end
end
Procedure Relabel ()

begin

- 125 -

distance(i)(i) = min {dixtance IY)]+ 1
Vie{a0alj

end
Procedure Write_message()
begin
for allje aOfi] do
begin
while (checkl[jl{i] # TRUE) Wait();
if (check[i] = TRUE) then
deltal{j]i].value= (-temdelO[i][j]);
else
deltallj}fi}=0;
check1[j][i]J=FALSE;

end

for allje alli] do
begin
while (checkO[j][i] = TRUE) Wait();
if (check[i] = TRUE) then
deltaO[j]{i].value= (-tempdel1[il{j]);
else
deltaOf{j][i]=0;
checkO[j][i]=FALSE;
end
end
Procedure Store_new_label ()

begin

while (d}i].deg # 0) Wait();
Lock(lock);
d[i].dist=distance(i][il;
dli].deg=degreel[i];
Unlock(lock);
end
Procedure Set pulse ()
begin
if (p=0) then
begin
for allje a0[0] do
begin
while (safeset[j]= 0) Wait();
Lock(key);
safeset(j] = safeset|j] - 1;
Unlock(key);
end
while (safeset[size-1] = 0) Wait();
Lock(key);
safeset[size-1] =safeset[size-1]-1;
Unlock(key);
end
if (i = (size-1)) then
begin
for all je al[size-1] do

begin

if (termset[i}[j] # TRUE) then
begin
while (safesetfj] = 0) Wait()
Lock(key);
safeset[j] = safeset[j]-1;
Unlock(key);
end
end
if (termset[i]{0} # TRUE) then
begin
while (safeset[0] = 0) Wait();
Lock(key);
safeset{0]=safeset[0]-1;
Unlock(key);
end
if i#sort then
begin
for all j € a0[i] AND al[i] do
begin

if (termset{i][j] # TRUE) then

begin

while (safeset(j] = 0) Wait();

Lock(key);

safeset{j] =safeset[j]-1;

Unlock(key);

end

end
end

end

Procedure Source read_write ()
begin
for all j € a0[0]do
begin
while (check0[0][j] # FALSE) Wait();
flow0[0]{j] = flowO[01[j] + deltaO{0][j].value;
check0[0][j]=TRUE;
totaloutflow[0Q]=totaloutflow[0] + flowO[0][;];
end
while (check![0][j] # FALSE) Wait();
flow1[0][j]=delta1[0][size-1].value+ flowO[0][j];
totalinflow(size-1] = deltal[0][size-1].value;
checkl1[0O][size-1]=TRUE,
for all je a0[0] do
begin
while (check1[j][0] # TRUE) Wait();
deltal[j}j[0].value=0;
check1[j][0]=F ALSE;
end
while (checkl1[size-1]{0] # TRUE) Wait();
deltal[size-1][0].value=0;
checkl[size-1][0]=F ALSE;

end

Procedure Source finish()
begin
for all j € aG{0] do
begin
while (checkO[0][j] # FALSE) Wait();
checkO[0][j]l=TRUE;
end
while (check1[0][size-1] # FALSE) Wait();
check1[0][size-1]=TRUE;
for all j € a0[0] do
begin
while (check![j][0] # TRUE) Wait();
delta1[j][0].value=0;
deltal[j][0].end=TRUE;
checkl(j][0]=FALSE;
end
while (checkO[size-1]{0] # TRUE) Wait(0);
deltaO[size-1}[0].value=0;
deltaO[size-1][0].end=TRUE;
checkO[size-1][0]=F ALSE;
end
Procedure Process_source()
begin
d(0).dist=size-1;
totaloutflow[0]=0;

totalinflow|0]=0;

- 130 -

for all (j) € a(0) do
begin
flowO[0](j]=cap[0](j};
deltal(j]{0].value= -cap[O][j];
check1[j][0]=FALSE;
totaloutflow|{ 0] = totaloutflow[0] + flowO[0]{j];
end
delta(Q(size-1][0].value=0;
checkO[size-1][0]=F ALSE;
repeat
begin
Lock(key);
reset safeset(0);
Unlock(key);

Source_read_write(),

if (-totaloutflow[0] = totalinflow[size-1]) then

termset{0][0]=TRUE,;
Set_pulse();
while (safeset[0] # 0) Wait();
if (termset[0]{0] = TRUE) then
begin

Lock(key);

reset safeset[0];
Unlock(key);
' Source_finish(),
Set_pulse(),

- 131 -

while (safeset[0] # 0) Wait();
Lock(key);
reset safeset[0];
Unlock(key);
Source_finish();
Set_pulse();
end
end
until (termset{0][0] = TRUE)
end
Procedure Sink_read_write()
begin
for all j e alfsize-1] do
begin
while (checkl[size-1][j] # FALSE) Wait();
flow1[size-1}{j] =flow1[size-1][j] + deltal{size-1]{j].value;
totalinflow[size-1] =totalinflow(size-1]+flow1{size-11{{ji;
if (deltal[size-1][j].end = TRUE) then
begin
termset([size-1][size-1]=TRUE;
termset[size-1][j]=TRUE;
check1[size-1][jl=TRUE;
end
end
while (checkO[size-1][0] # FALSE) Wait();
flowO[size-1]{0] = flowQ[size-1}[0]+deltal]size-1]]0].value;

if (deltaQ[size-1][0].end = TRUE) then
begin
termset[size-1][size-1]=TRUE;
termset[size-1][0]=TRUE;,
end
checkOQ[size-1]{0]=TRUE;
for all je alfsize-1] do
begin
while (check0[j]{size-1] # TRUE) Wait();
deltaO{j][size-1].value=0;
checkO[j][size-1]=F ALSE;
end
while (check1[0][size-1] # TRUE) Wait();
deltal[0][size-1].value= totalinflow[size-1];
check1[0][size-1]=F ALSE;

end

Procedure Sink_finish()
begin
for allje al[size-1] do
begin
if (termset[size-1](j) # TRUE) then
begin
while (check1[size-1][j] # FALSE) Wait();
check1{size-1][j]=TRUE;
end

end

-133-

if (termset[size-1]{0] # TRUE) then

begin
while (checkQ[size-1][0] # FALSE) Wait();
checkO[size-1][0]=TRUE;

end

for all je al[size-1] do
begin
if (termset{size-1]{j] # TRUE) then
begin
while (checkO[j][size-1] # TRUE) Wait();
deltaOfj][size-1].value=0;
delta[0j(j][size-1].end=TRUE;
check[O][j][size-1]=F ALSE;
end
erd
if (termset[size-1][{0] # TRUE) then
begin
while (check1[0][size-1] # TRUE) Wait();
deltal{0][size-1].value= O,
deltal[0][size-1].end=TRUE;
check1|O][size-1]=F ALSE;
end
end
Procedure Process_sink()
begin
d[size-1].dist=0;

- 134 -

for all je al[size-1] do
begin
deltaOfj][size-1].value=0;
checkO[j]{size-1]=F ALSE,;
end
deltal|0]]size-1].value=0;
check1[0][size-1]=F ALSE;
repeat
begin
Lock(key);
reset safeset[size-1];
Unlock(key);
Sink_read_write() ;
Set_pulse();
while (safeset[size-1] = (0)) Wait();
if (termset[size-1][size-1] = TRUE) then
begin
decrement safeset(size-1) by the number of neighbours who sent TER-
MINATE message;
Sink_finish ();
Set_pulse();
while (safeset{size-1] # 0) Wait();
Lock(key);
reset safeset[size-1];
Unlock(key);
Sink_finish();

-135-

Set_pulse();
end
end
until termset[size-1][size-1] = TRUE;

end

Procedure /Intermediate finish()
begin
for all je a0fi] do
begin
if (termset[i][j] # TRUE) then
begin
while (checkO[i][j] # FALSE) Wait();
checkO[i][j}--TRUE,
if (j #0) AND (j # (size-1)
begin
while (d[jl.deg = 0) Wait();
Lock(lock);
d[j]l.deg = d[j).deg-1;
Unlock(lock);
end
end
end
for allje al[i] do
begin
if (termset[i][j] # TRUE) then

begin

- 136 -

while (check1[i][j] # FALSE) Wait();
check1][i][j}=TRUE;
if ((j # (0)) AND (j != (size-1))) then
begin
while (d[j].deg = (0)) Wait();
Lock(lock);
d[jl.deg =d[jl.deg - I;
Unlock (lock);
end
end
end
for all je a0li] do
begin
if (termset[i][j] # TRUE)
begin
while (check1[j]{i] # TRUE)Wait();
deltalj][i].value= 0;
deltal(j][i}.end=TRUE;
check1[j]li]=F ALSE;
end
end
for allje al[i] do
begin
if (termset[i][j] # TRUE) then
begin
while (check(0)(j][i] # TRUE) Wait():

-137 -

deltaOfj]{i].value= O;
delta0[j][i].end=TRUE;
check0[j]{1]=F ALSE;
end
end

end

Procedure Process_intermediate ()
begin
for all je a0[i] do
begin
deltal[j}[i].value=0;
checkl1[j][i]=F ALSE;
end
for all j e al[i] do
begin
delta0fj][i].value=0;
checkl1[j][i]J=F ALSE;
end
repeat
begin
Lock(key);
reset safeset{i];
Unlock(key),
Read_message();

if excess[i] >0 then

begin
Check_push_applicability (),
check[i]=TRUE;
end
if (excess[i] > 0) then
begin
Relabel();
relabel[i]=TRUE;
end
Write_message (),
check[i]=FALSE,
if (relabel = TRUE) then
Store_new_label(),
else
begin
if (termset(i][i] = TRUE) then
begin
while (d[i].deg # (0)) Wait();
Lock(lock);
d[pid].deg=# neighbours from whom a TERMINATE message is
not received;
Unlock(lock);
end
else
begin
while (d[i].deg # (0)) Wait();

- 139 -

Lock(lock),
d[i).deg=degree[i];
Unlock(lock);
end
end
Set_pulse (),
while (safeset[i] # (0]) Wait();
if (termset[i][i] = TRUE) then
begin
Lock(key);
decrement safeset by the # neighbours who sent TERMINATE message:
Unlock(key);
Intermediate_finish ();
while (d[i].deg = (0)) Waii();
Lock(lock);
update d[i].deg;
Unlock(lock);
Set_pulse(),
while (safeset[i] = 0) Wait();
Lock(key);
update safeset[i];
Unlock(key);
Inte.mediate_finish(),
while (d[i].deg =0) Wait();
Lock(lock);

update d[i].deg

- 140 -

Unlock(lock);
Set_pulse(),
end
end

end

APPENDIX C
SHARED MEMORY SIMULATION OF THE DISTRIBUTED PROTOCOL FOR T11k
SHORTEST PATH PROBLEM

Globally Shared Variables

For a given node i :

a0Gi) Adjacency list of node i — a set containing all the successors of 1. (Note :

J is a successor of node i if (i , j) is directed fromi to j.)

al(@i) Adjacency list of node i — a set containing all the dominators of i. (Note

: j is a dominator of node i if (j , i) is directed from j toi.)
degree (i) The number of edges incident on node i .
size The number of nodes in a graph.
length (i) length (i)(j) indicates the weight of edge (i , j).
num (i) Contains two types of information.
ack: number of acknowledgements yet to be received.

pulsenum : the number of the pulse the node is currently

creating.

distinfo(i) distinfo(i)(j) for an edge (i ,/) stores three types of information
received from dominator .
distance : the calculated distance estimate of /.
terminate : Ifit is to terminate then terminate = TRUL
otherwise,terminate = FALSE.
change . Indicates if an update has occurrred in the current

d@i)

mesgterm (i)

checkdist (i)

checkterm (i)

safeset (i)

142

feasible : Determines the feasibility of the algorithm.
Initially TRUE.
mesgterm (i)(j) stores information received from successors. Receives

only terminate and feasible information.

Boolean data structure. checkdist (i)(j) = TRUE if a write has occurred
and FALSE if a read has occurred in distinfo (i)(j). Mainly used for syn-

chronizing read and write operations.

Boolean data structure. checkrer: (i)(j) = FALSE if a read has occurred
in mesgterm(i,‘j). Mainly used for synchronizing read and write opera-

tions.

At the end of each pulse, the node indicates to the negihbours its comple-
tion of the pulse. A node does not start the next pulse until all its neigh-
bours are safe and it is safe also. This is indicated as safeser(i) = 0.

safeset (i) = degree (i) at the beginning of each pulse.

Local variables at node §

received
pred (i)

ackser (i°

termset (i)

Indicates that the predeessor has received an ack.
predecessor of node i .

A list containing all dominators from whom updated distance informauon
has been received. This is indicated as change (i) = TRUE in the

received message (distinfo data structure).

Boolean variable indicating the neighbours from whom TERMINATE
message is received. terminate (i)(j) = TRUE if j has sent a TER-

MINATE message.

dmin (i)

change (i)

- 143 -

th . e .
The j' element contains d {j) if j belongs to ackser (i).
A boolean variable which determines if an update has occurred m d G
This information is propagated to all successors. change (i) = TRUL

an update has occurred, otherwise FALSE. Initially it is FALSE.

prevchange (i)The value of change in the previous pulse.

active (i)

d)

Indicates if there exists a predecessor of i which 1s vet to receive an ack
nowledgement from i. active (i) = TRUE, if there is such a predecessor.
After sending an acknowledgement back to the predecessor active (i) is

set to FALSE.

The current distance of i from the source.

- 144 -

Procedure Source_initialization
begin
for all je a0[0] do
begin
distinfo(j][0].distance=(*d)-+length{0][j];
distinfo[j]}[0].change=TRUE;
checkdist[j][0]=FALSE;
end
end
Procedure Source read()
begin
for all je a0[0] do
begin
while (checkterm[O][j] # FALSE) Wait();
checkterm[0][j]l=TRUE;
end
end
Procedure Source_write()
begin
for all je a0]0] do
begin
while (checkdist[j][0] # TRUE) Wait();
distinfo[j][0].change=FALSE;
if (termset[0][0] = TRUE) then
begin
distinfo[j][0].terminate=TRUE;

- 145 -

checkdist([j]{0]=FALSE;
end
end
end
Procedure Source_node()

begin

‘ Source_initialization(),
Lock(key);
num{0].ack=num[0].ack+# successors of source;
num(0].pulsenum=num{0].pulsenum+1;
Unlock(key);
repeat
begin
if (# ACK received # () then
begin
Lock(key);
Reset safeset{0];
Unlock(key);
Source_ready();
Source_write();
Pulse_finish();
while (safeset[0] = 0) Wait();
UsLock(lock);
increment pulse number;
UsUnlock(lock);

end

g

- 146 -

else
begin
termset{0]{0}]=TRUE;
Reset safeset[0]{0];
Source_read();
Source_write();
Pulse_finish();
while (safeset[0} = 0) Wait();
Reset safeset[0][0];
Source_read(),
Source_write(),
Pulse_finish(),
end
end
until (termset[0][0] = TRUE)
end
Procedure Intermediate_read()
begin
for all je alli] do
begin
while (checkdist[i][j] = FALSE) Wait();
if (distinfo[i][j].change = TRUE) then
begin
insert j in ackset[i];
dmin(j]=distinfo[i][j].distance;

end

- 147 -

if (distinfo[i][j].terminate=TRUE) then
begin
termset[il{ijJ=TRUE;
if distinfo[i](j].feasible=FALSE then infeasible[i]=TRUL:
end
checkdist[i][j]=TRUE;
end
for all je a0[i] do
begin
while (checkterm(i]{j] # FALSE) Wait();
if (mesgterm{i]{j] = TRUE) then
begin
termset[i][i]=TRUE;
if mesgterm([i][j].feasible=FALSE then inteasible[i]=TRUE:
end
checkterm(i]{j}=TRUE;
end
end
Procedure Compute_minimum_distance()
begin
if acksetfi] not empty then
begin
determine the new minimum distance and new predecessor:
place the minimum distance in dmin{i}[ili;
if dmin[i][i] <d(i) then

begin

- 148 -

d[i}=dmin[i];
change|i]=TRUE;
while num(pred|i]].pulsenum # num(i].pulsenum then
if (pred[i] #1)
begin
if (received[i] #TRUE) then
send ACK to the old predecessor.
else
received[i]=FALSE;
end replace old predecessor by new predecessor:
for all j € ackset[i] j#i do
begin
while num(j].pulsenum # num[i].pulsenum Wait();
send ACK;
end
end
else
begin
change[i]=FALSE;
for all j € ackset[i] do
begin
while (num(j].pulsenum # numfi].pulsenum) Wait();
send ACK;
end
end

end

- 149 -

end
Procedure [Intermediate write()
begin
for all j € a0[0] do
begin
while (checkdist(j]{i] # TRUE) Wait();
distinfo(j][i].distance=d[i]+length[i][j];
dmin[j]=distinfo[j][i].distance;
distinfo[j][i].change=change[i];
checkdist[j][i]=F ALSE;
end
for all j e al[i] do
begin
while (checkterm[j}{i] # TRUE) Wait();
checkterm(j][i]=F ALSE;
end
end
Procedure [Intermediate_finish_SP ()
begin
for all j € a0[0] do
begin
if termset[i]{j] # TRUE then
begin
while (checkterm(i][j] # FALSE) Wait();
checkterm[i][j]l=TRUE;

end

- 150 -

end
for allj e al[i] do
begin
if termset[i][j] = TRUE then
begin
while (checkdisti][j] # FALSE) Wait();
checkdist[i][j]=TRUE;
end
end
for all j € a0[i] do
begin
while (checkdist[j][i] # TRUE) Wait();
distinfo[j][i].distance=infinity;
distinfo(j][i].terminate=TRUE;
distinfo{j][i].terminate=infeasible;
distinfo[j]{i}.change=F ALSE;
checkdist[j}{i]=F ALSE;
end
for allje alfi] do
begin
if termset{i}]j} # TRUE then
begin
while (checkterm([j][i] # TRUE) Wait();
mesgterm{j}{i]=TRUE;
mesnterm(j}[i]=infeasible[i];

checkterm|j}{i]=FALSE;

- 151 -

end
end
end
Procedure Pulse_finish()
begin
if (p=0) then
begin
while (safeset(j] = 0) Wait();
Lock(key,0);
safeset[j] =safeset[j]-1;
Unlock(key);
end
else
begin
for all j € aO[i] AND al[i] do
begin
if (termset[i][j] # TRUE) then
begin
while (safeset(i][j] = 0) Wait();
Lock(key,0);
safeset[i][j] =safeset[i}{j]-1:
Unlock(ke /)3
end
end
end

end

Procedure [Intermediate_node()
begin
Process_initialization();
repeat
begin
Reset safeset|i];
if (pred[i] # i) then
begin
if ((active= TRUE) AND (# ACK’sreceived=0)) then
begin
while (num{pred[i]].pulsenum # num{i].pulsenum) Wait();
send an ACK to the predecessor;
active=FALSE;
received=TRUE;
end
end
prevchange[i]=changeli];
changeli]=FALSE;
Intermediate_read ();
Compute_minimum_distance();
Intermediate_write(),
if ((prevchange[i] = TRUE) AND (change{i] =FALSE)) then
active=TRUE;
Pulse finish (),
while (safeset[i] 0) Wait();
if (change[i]= TRUE) then

Imme———— Y

end

- 153 -

increment num{il.ack by the number of successors;
increment pulse number;
if (termset[i]{i] = TRUE) then
begin
if (still an ACK is pending) then
set infeasible=TRUE;
decrement safeset[i] by the # neighbours who sent TERMINATE message:
Intermediate_finish_SP(),
Pulse_finish(pid,termset);
while (safeset[i] # 0) Wait();
Reset safeset(i];
Intermediate_finish_SP();
Pulse_finish();
end
end

until (termset[i}{i] # TRUE)

APPENDIX D
SHARED-MEMORY SIMULATION OF THE

DISTRIBUTED PROTOCOL FOR THE PRIMAL - DUAL

Globally Shared Variables

For a given node i:

AQu)
Al@)

cost(i)
nodecount (i)
tasknum (i)

C@)

demprime (i)

dzero
Y ()

f Oprime (i)

| prime (i)

Adjacency list of node i. Node j is included in this list if it is connected to

node i by an edge (i , j) directed from i to j.

Adjacency list of node i. Node j is included in this list, if it is connected

to node i by an edge (j , i) directed from j toi.

cost (i)(j) indicates the weight of edge (i , j).

Number of nodes in the network — for synchronizin. jetween tasks.

The number of the pulse node i is currently executing.

Jth element of C (i) contains the capacity of edge (i , j) directed trom i to
J.

Indicates the demand or supply of each node.

Initially contains size-2 nodes. A processor decrements the value in dzero

when its demand equals 0.

Contains Y “(i)+d (i) in the current pulse, where Y “(i) is the value in the

previous pulse.
Vector containing the total amount flow along all outgoing edges of i.

Vector containing the total amount of flow along all incoming edges of i.

- 155 -

Local variables at node {

pdquit (i) Contains the TERMINATE value.

setdemand (i) Indicates whether a processor has already decremented the value in dzero
when the demand was equal to 0. This variable ensures that dzero is not

decremented more than once when the demand equals 0.

demand (i) Indicates the residual deinand or supply of a node.

- 156 -

Procedure Reduce nodecount()
begin
for all nodes jexcepti do
begin
while (tasknum(j] # tasknum(i]) Wait();
Lock(nodekey);
nodecount|t] =nodecount{i}-1;
UsUnlock(nodekey);
end
while (nodecount|i] # 0) Wait();
end
Procedure Update nodecount()
begin
Lock(nodekey);
nodecount[i] =size;
tasknum{i] =tasknum[i]+1;
Unlock(nodekey);
end
Procedure /nitialize PD()
begin
if (i #»ize-1) then
Ylil=0;
Reduce _nodecount(),
Update nodecount();
if (1 #size-1) AND (i #0)) then

begin

for je AO[i] do
begin
if (Yl[i]+cost[i][j] 2 Y[j]) then
fOprime[i1(j1=0;
else
fO0prime{ i}{j}=ClLi{jl:
flprime[j][i}= (-fOprime[i}[j]):
end
end
Reduce _nodecount();
Update_nodecount();
if ((i#size-1) AND (i=0)) then
begin
for all je Al[i] do

demand(i] =f1prime][i}[j]+demandfi];

for allje AQ[i] do

demand[i] =fOprime[i]{j]+demand(il;

if (demand[i] = O) then
begin
Lock(nodekey);
dzero=dzero-1;
setdemand(i] =TRUE;
Unlock(nodekey);
end
end

Reduce _nodecount();

- 158 -

Upduate _nodecount();

end

Procedure Terminate PD ()
begin
if dzer()=() then pdquit[i}=TRUE;
Reduce_nodecouni(),
Update_nodecount() ;
end
Procedure Create_newadjcost()
begin
if (i=0) then
begin
for all nodes j except sink do
for all ke AOQ[j] do
begin
if (fOprime[j][k] < C[j1[k]) then
begin
Add k in a0[j];
Add jin alfk];
length[j1[k]=Y[j]- Y [k]+cost[j | [kI;
end
if (fOprime{j]}{k] >0) then
begin
Add k in al[j};
Add j in aOlk];
length[k]lj1=Y[k]-Y[jl-cost[k][j]:

end
end
for all node j with negative demand do
begin
Add j in a0[0};
Add O in al[j];
length[0][j]=0;
end
end
Reduce _nodecount();
Update _nodecount();
end
Procedure Create t()
begin
if (i #size-1)
Y[i]l=Y[i]+pathdist{i];
Reduce nodecount();
Update_nodecount();
if ((i #size-1) (1=0))
begin
for all je AQ[i| do
begin
if (Y[j] = Y[il+cost{i][j]) then
begin
if (fOprime[i](j] -< C[i][j}) then
begin

- 160 -

Add j in a0[i};
cap(i]{jl1=Clil[ji-fOprime[i}|j]:
end
if (fOprime[i][j] > 0) then
begin
Add jin al[i};
cap(j][i]=fOprime[i](j];
end
end
end
end
Reduce_nodecount(),
Update_nodecount(),
if (i=0) then
begin
for all intermediate nodes i except sink do
begin
countO[i]=aO[i][0];
countlfi]=al[i}[0];
end
for all intermediate nodes i except sink do
for all je AO[i] do
beg n
if (Y[j] = Y[i] + cost[i]{j]) then
begin
if (fOprime[i][j] < C[i]{j]) theu

begin
Add i inat{jl:
end
if (fOprimeli]{j] > 0) then
begin
Add i in aQ[j];
end
end
end
end
Reduce nodecount(),
Update _nodecount(),
if (i=0) then
begin
for all je AQ[0] do
begin
for all nodes j with negative demand do
begin
Add Oin al[j];
cap|0}{j]=(-demand|j]);
end
end
for all nodes j with positive demand do
begin
Add t in a0fj];
Add j in al[t};

- 162 -

cap[jllt]=demand|j];
end
end
Reduce _nodecount();
Update_nodecount();
end
Procedure PDupdate flowdemand ()
begin
if ((i#0) AND (i #size-1)) then
begin
boundO=countQ[i};
bound l=countl[i];
for ali j e countO[i] do
begin
fOprime[i][j] =fOprime[i]{j]+fowO0(jl;
flprime[j][i}= (-fOprimeli][j]);
end
for all je countl[i] do
begin
fOprimeli][j] =flow 1{j]+fOprime(i](j];
f1primef(jii]=(-fOprime[i](j]):
end
end
Reduce _nodecount();
Update_nodecouni();

if ((i#size-1) AND (i=0)) then

- 163 -

begin
for allje Al[i] do
Update demand of i;
for all je AO[i] do
Update demand of i;
if ((demand[i] =0) AND (setdemand # TRUE) then
begin
Lock(nodekey);
dzero=dzero-1; setdemand:= TRUE;
Unlock(nodekey);
end
end
Reduce_nodecount();
Update_nodecount();
end
Procedure Primal_dual()
begin
Update_nodecouni():
Enter Shortest Path Algorithm;
Reduce _nodecount();
Update_nodecount();
if (Algorithm feasible) then
begin
Initialize_ PD();
Terminate PD(),

begin

- 164 -

while (pdquit # TRUE)
begin
Create_newadjcost();
Enter Shortest Path Algorithm;
Reduce _nodecount();
Update_nodecount();
Create i();
Enter Max-Flow Algorithm
Reduce_nodecount();
Update_nodecount();
PDupdate_flowdemand();
Terminate_PD();
end
end
end

end

