\.\

National Library Biblio
of Canada - du-Can

4 ‘ ~
Canadian Theses Service

nationale

Ottawa, Canada | - ~7
K1A ON4

NOTICE

The quality of this microfiche is heavily deprendent upon the
quality of the original thesis submitted for microfilming. Every
effort has been made to ensure the highest quality of reproduc-
tion. possible. , / '

Y

—

If pages are missing, contact the university whlch gramed the

degree.

-

Some pages may have iridistinct print especially if the original
pages were typed with a poor typewriter ribbon or if the univer:

. sity sent us an inferior photocopy. ° . \

Previously copyrighted materials 00urnal articles, publushed
tests, etc.) are not filmed.

Reproduction in fuil or -in part of this film is governed by the
. Canadian Copyright Act, R.S.C. 1970, c. C-30.

THIS DISSERTATION °
HAS BEEN MICROFILMED
EXACTLY AS RECEIVED

NL-339(r.06/08) _ .

Services des théses canadienges

- Laqualité de cette microfiche dépend grandement de la qualité
" de la thése soumise au microfimage Nous avons taut fait pour
i assurer une qualité supérieure de reproduction

THESES CANADIENNES

. AVIS Ny

, R ,
S'il manque des pages, veuillez communiquer avec 'univer-
sité qui a conlféré le grade

/ .
La qualité d'impression de certaines pages peut laisser &
désirer, surtout si les pages originaies ont é1é dactyiographiées
a L'aide d'un ruban usé off$i Luniversité nous a fait parvenir

une phototopie de qualité inférieure)

Les documents qui font déja 'objet d'un droit d'auteur (articies
de revue, examens publiés, etc.) ne sont pas microfilmés.

AN
La reproduction, mé&me partielle, de ce microfilm est soumise

4 la Loi canadienne sur le droit d'auteur, SRC 1970, ¢ C-30.

J

LA THESE A ETE™
MICROFILMEE TELLE QUE
NOUS L’AVONS RECUE

Canad¥

~ ' ' ’
) . , \ "1
i \\ > . 0}
L) /A ,) .
. . , N
L3 - . . -]
B . - Q ot . ’
- » .
. -) y . » . R
= R A Distributed Reconfiguration Approach for Transient-
‘ Fault Tolerant Self-Reconfigurable Systolic Arrays
p . - and Performance Evaluations R
.o) .
N
! LY ' .] . ~ AN
- - ———— ,, Derek Chi Wai Pao ‘ <.
-) . N . .
. -) P *"\{—‘
. , { \
. I N r . N ’ ’
tow T e A Thesis) T
» ? N R ! ~ 4 -) ~
-) - ' . : el 1
) R . - . - °1n -
[* \ .
The Department ' N
. .
‘ o - - , Of , N b K ?
' - ¢ o . . ‘ :
' . Computer Science . . .] ..
. 4 . : ' ‘

& L 4
! 4 ’
. -y : e ’
’
Presented in Partial Fulfillment of the Requirements \

"fqr the Degree of Master of Computér Science at ,) .

) Concordia University y . .

. . Montréal, Québec, Canada) .t

T~ ¢ { a
<4 P
- : ~ July, 1987 Y
- ' /! , . ?
. o -
P 2
‘ T - T , I Ty
- (©) Derek Chi Wai Pao, 1987
) b q . . Y ' .
- .
7 1 , -
‘ \). ' i ' N \
! ‘\~* // o :(.-:-.\ 4

b e

”

——

Permission has Deen granted
to the National /Library of
Canada
thesis and to lend or sell
copies of the film.

¥

The author (copyright owner)
has reserved ather
publication rights, and
.neither the thesis nor
extensive extracts from it
may be printed or otherwise
reproduced without his/her
written, permisston.

1

. ISBN 0-315-37065-3

to micrédfilm this-

L'autorisation a eté accordée
A 1la Bibliothéque nationale
du Canada de microfilmer

“cette thése et de préter ou

de vendre des exemplaires ,du
film. -- ’
L'‘auteur (titulaire du droit
d'auteur) se réserve les
autres droits de publication?
ni l& thése ni de 1longs
extraits de celle-ci .ne
doivent &tre" imprimés ou
autrement reproduits sans, son
autorisation écrite.

o

~ v

i
ABSTRACT

,
K b
L

A Distributed Reconfiguration Approach for Transient-
Fault Tolerant Self-Reconfigurable Systolic Arrays
and Performance Evaluations

Derek Chi wWai Pao

J\l' »
4 .
A distributed reconfiguration approach based on 1local

! o
invariants technique 1is preseqted.' The re-routing of data
flow paths is based on local information only, and can be

done without interfering with the computation. Hence, tran-

'sient faults can be tolerated. Design of “two éelf-

L

reconfiguréble~ uni-directional 2-data flow systolic arrays
are presented. In the first design, both the haqrizontal and
vertical paths are reconfigurable, whereas in the second

design, only the vertical paths can be reconfigured.'A dis-

tributed scheme to automatically generate an input schedule

for the second design is presented. The internal configura-

tion of the array can be made totally transparent to the
¢

host (user) by .incorporating systolic routing networks made

., up of two types of simple routing cells. Performance of the

\ , . .
two self-reconfigurable architectures are studied from both

theoretical and practical point of views. It is shown that

the two designs are \j%aetly 3n-fault tolerant and o(n3)

iii

<

. ful reconfiguration. This

-

redundancy in the number of processing elements is suffi-

cient to ensure successful recorfiguration. . In the 'worst
: . ’ ‘ . \
case, the first design requires m spare rows and one spare

v
.
" ’ '

column to ensure tolerance’of one transient’ :ault, whereas
.) < i]

only one -spare column is required for the second design.

v

Experimental performance evaluation of the distributed

! ~ ‘ ‘ .
reconfiguration apg}oach is studied via computer simulation.
Simulation results reveal that (1) performance of the two

.proposed designs are comparable to that of the "static"

" counterpart, and (2) O(nz) redundancy in tffe number of pro-

~

cessing elements is apparently sufficient to ensure success-

rggonfiguration- approach is

-

.

easily extenable to 3-datg fdow universal systolic arrays.
- - v K

.

‘ A
0(. 1 ~ \ . R /&
- & ’ ¢ /
\ - o
| } J
_ ' ACKNOWLEDGEMENT -~ - / .

.\ . L " !
"/ .)

I would like to express my sincere thanks to.my supervi-

. PN . ' ' /
sors, Dr. H. F. Li and Dr. R. Jayakumar for their gﬁidance 4

and encour?gement thr0ughout the course of‘thls resiarcx

\
\

Thanks also go to Drgs C. Lam and my cdlleagues/for thEII

.
\

encouragement and ﬁhEII useful comments on'this. 7esearch are
greatly apprec1ateo. E1nally, but not least, I/ would like
to' thank Mr. Paul Gill, the system analyst, fbr his techni-
cal -advice and supportu‘ ' : —

.
«

' 3 . LR
N
‘ “
:“‘ 4
’ CONTENT « - N
’ . P
SR \ ’ ' -
- ‘ page-
List of figures .ﬁf:..]T....... 2 £ O
List Of tables e e s e o 0 e ® e v e .1‘00 ® ® & 8 6 s P O 0 & & .o o 0 -’o -'.- Viii'
Chapter 1. INTRODUCTION . .vuevsvvrneneessencatonestiduan 1
.) \ :
Chapter 2. DISTRIBUTED RECONFIGURATION R 8
2.1 Cell Architecutre i eees e ce e . 12
z,zfpesign-l (DR1) v ivineeans e e e e teteeeeel 16
2.2.1 Routipg Strategypy e ceeenaan 17
. 2.3 Design-2 (DR2) .. iiiiiennrenennaanns s e se e e e . 26
~ « 2.3.1-Routing Strategy e ee e aaaen 27
' 2.3.2 Input Schedule Generation .:.. 34
Chapter 3. DATA COLLECTION AND DISTRIBUTION,.. 42
" 3.1 pData Collection Networkcceevveeuenn .. 42
3.2 pData Distribution Network EEEEE P
Chapter 4. COVERAGE OF TRANSIENT FAULTS ceien... 46,
4.1 Coverage of Single Transient Fault:-............ 46
4.2 Coverage of Multiple Transient Faults wees 50°
Chapter 5. PERFORMANCE EVALUATIONS ceireeeaeae. 52
"5.1 Fault Tolerance c it teies e ceees 53,
5.2 Asymptotic Redundancy Requirement e e 55.
5.3 Computer Simulationcieeinnnnnn .57

Chapter 6. EXTENSION TO UNIVERSAL SYSTOLIC ARRAYS 68

-
l

‘Chapter, 7. SUMMARY AND CONCLUDING REMARKS 72
7.1 Future ReSEArChcevvveeonennenn L £
. - - o
References P Y -
Kppehdi*l -c-o‘--n' ooooooooooooooooo -ooo.ooo-o.o-ou;oo-r 80
Appendix 2 che e eeen I - 2
Appendix3 ---...a-‘-..i--o-o.o.‘.----o.}-'.“-.oooa-oo..-oo 82
. ' v
o .

01 ’)

. -3
J vi]
- ! N

14.
15.

16.

17‘

18.
19

20.
21.

22.
23.

? . v

Figure - . R

1. A restructured 3x4 "systolic arraycicccvunee
2. Type-A cell archltecture e cee et
3 Routing example 1 it iiiieaeeerrecnarons
4. Routin§ example 2 R Ce e
.5. Routing example 3 e s eee e s e e caernan
6. Routing'example 4cciiiieviiieedenans e erens
7 A restructured 3x3 array of type-A cells ce
8. Type-B cell architecture%..0i0ee.n.. ‘e
9. 'Greedy approach for vertical, path generation L,..
10. A restructured 3x3 array of type -B cells
11. Vert1ca1 paths initializationceceunennn
12. ROw elimination by racing of the sp signal
13. Routing cells ! !

.--.---oo--..onooaac--n.--o-

Vertical data collection network for the example
shown in fig. 10t i ittt neersneccnnnns
Horizontal data distribution network for the
. example showf in fig. 10 et eeeee e
Counter ‘example showing that one spare row is
not sufficient to ensure the coverage of one
new faultcccicieeciieon.

Worst case fault distribution that requires m A

spare rows and one spare column to tolerate a

transient fault that occurs at the cell at the .

top-left corner

An 2n x 2n irrecoverable array w1th 3n+l faults ..

Performances of the fpur algorithms when
restructuring a 32x32 array
Plot of performances vs.the aspect ratio of the
array with fixed array size MN = 1024
Asymptotic behaviour of DR1, DR2 and RC
Type-C cell.architecture R

A restructured array of type-C cel}s cee

.

T a

[

----- s o o o o * o @

page
.. 10
. 16
..o -21
.. 21
t.. 22
.. 22
.. 25
.. 26
.. 28
.. 34
.. 36
.. 39
.. 43
..o44

.. 45
48

. 49
. 56
. 63
ro,l~ ‘_.64
.. .66
.. 69
. 69

’

Téble - *

1. Routing function
2. Routing function
—=, < 3. Routing function
4. Routing function
5. Varlances of the

. N)
List of Tables -

v . i

of non-faulty type-A c€ll

of faulty type-A cell
of non-faulty type-B cell
of faulty type-B cell
samples obtained’ in the simulation

¢ 8 @ p s o s e o a0 ..

.
.oo-no--aoou-

‘the performances of the four ‘algorithms w1th
unxformly distributed faults

6. Variances of the samples obtained in the s1mu1at10n

of “the performances of "the four algorxthms with

. clustered faults ,............. e
7. Theoretical measures of performances of DR1 and DR2Z

¢ é 8 00

e s o0 0 0 0 o 080’

—

-

’

viii

o

b4

<9 Chapter 1) '

INTRODUCTION

<

\

Systolic array [18) is a desirable architecture for VLSI
implementation because of its reqularity and locality of

data communications. As the integration scale increases
N

d;amatically, it 1s inevitable that there a}e faulta;(per-
manent or temporary) in the system. Hence “fault-tolerant
?esign is necessary. Yield " and reilabijity are the two
major concerns of fault-£olerance in vLsT. The fault-

tolerant scheme should not only improve the yield, but also

ensure the correctness of the computation performed. .

Fauvlts in VLSI can be classifléd into two categories:
1. Production faults: faults introduced dhring the manufac-
turing process. |,

2. Operational faults: faults that arise during the opera:

tion of the «circuit. These include aging, soft-error

caused by alpha particles, coupling of signals, and hot"

electrons, etc.

—

One consequence of the scaling down of the device dimensions
is that - VLSI circuits are more susceptible to operational

faults. Hence, fault-tolerant schemes that can tolerate

2 .
operatiomal faults are beneficial. ¥

! S

-

There are two fault-tolerance approaches proposed in the

literature, nambly‘ fault-masking and reconfiguration.

-
g

.
LY

[
-

'

1. Fault-masking'

LN

In this approach, extra components are used to mask off
the effect ¢of a fault instantaneousle A comﬁpn technique
employed is the Triple Modular Redundancy [5]). Three cop?es
of the same computation are performed by three proceésors.
Voting among the three results will determine the «correct
answer if only one of the three processors~could fail,
Direct'implementatlon of this method often requires expen-
sive duplicaéions.' Kim and Reddy [13] proposed a scheme
that can reﬁuce the number of processors required by a fac-
tor of two while‘tolgrating only a limited classes of f?ult
distributions. fke desigh of a 1linear array to perform
.matrix (A = ajj) vector (X) multiplicatién is given in this
paper. The X data- are dupiicated over two consecutive time
instances and the Iaij are triplicated spatiall;; Three
copies of the éémputed result canlbe_obtainea at the same

time Exﬁ.proper design of the interconnection links between

the processing elements.

2. Reconfiguration

L}

This approach ‘usés reccnfigurable arr;y structures made
up of a Z-Himensﬁonal array of processing elements (célls)
and. an interconnection network that' can be configured to
embed the required processing topolwvgy (in\fhis thesis we__
only deal with 2-D array). The processing array will first

go througﬁ a tﬁsting phase to identify all the faulty cells.

»

The array is then reconfigured to bypass all the faulty
. .,

a

cells. One property of systolic array is that the processing

+power (number of arithmetic/logic operations per wnit time)

of the system increases in proportion to the size of the
array. Hence, the objectivé of the rnﬂo:F~gurqtion algo-
rithm will be to optimize the utilization of the non-faulty
cells. A-graceful degradation of the: performance of the
system will 'result every time the faulty cells are excluded.

Several reconfiguration algorithms have been proposed
‘ it
(7,15,19,22;34). Leighton and Leiserson [22] proposed a

i

reconfiguration algorithm for wafer scale integration (of
systolic array based on divide and conquer method. The
interconnection wires are programmed by laser- beanm. In
Rosenberg’s method [34), the processing cells are fabricated
with unéommitted 1ntefconnectioﬁ wires and controllable

switches. Processing cells which are non-faulty are con-

|
nected together to obtain the 'desirqu array. Fortes and

.

P
Raghavendra (7)) presented a :reconfiguration algorithm based

~ a

N &
on row and column eliminations. The whole row or whole

column in which a faulty cell resides is removed (bypassed)

. [y L4
by setting the corresponding data switches. One drawback of

these methods 1is that the 1interconnection wires may be

lengthened, and hence the clock rate of the systolic array

may be reduced.

S
R]

Kung and Lam [19] proposed a =systolic fault-tolerant

scheme which maintains the original data flow pattern and

the wire length. ‘' In this scheme, data move through all the

¥y

~) < ' ~

cells. Aéjfaulty cells, data items are simply delayed with
Pypass registers for one é&cle‘and no computation 1is per-
formed. v The processor array is modelled as a‘direcged
graph, with the nodes denoting the processing cells aﬁd the
edées denoting the‘copmunﬁcation links. A cut is defined as
a 'set of edges that "gartition" the ;odes igto two éisjoin;
sets, namely, the source and the destina icn sets, with the

property -that these edges are the only ones between these

sets’, - and are directed from the source to the destination

'set. Two designs are equivalent if given an initial state

of one design, there exists for the other design an initial

state-'such that (with the same input from the host) the two
. “ . X
designs _produce the same output values (although possibly

with @ different delay). For any design, adding the same

4

delay to all the-edgegkin a cut and to those pointing from

Ehe host to the destination set of the cut will regult in an’

-

equivalent design. The restructuring of the faulty array is

. : - . K :
,carried out by choosing a sequence of cuts whose edges cover

~ A
all the faulty cells in the array.

All of the above mentioned reconfiguration schemes are

N

"static"' inl'the sense that the interconnection links are

externally enforced (laser prbgraﬁmed or controllable —data

—

, ‘-
switches). Once the array is reconfigured, the setting of

the interconnection link§ cannot be changed. withdut' inter-

/ , R " ¥ » - ’ .
rupting thé: computation. The' detection and,correctidn of

computation errors caused by operational faults (permanent

- s J— ‘

or transient) that arise during computatidn ar?‘left to the

€

user. Abraham et al [10,12) proposed an algorithm-based

.

fault-tolerant scheme for matrix operations that can detect
and correct, computation errors. The proposed scheme employs
the row aqd célumn checksum technique. Given a vector (a3,
azl ..., &n), two check el;ments WCS1 and WCS2 are appended

-

to the vector where
v

7

[y

WCS1 aj ,

1

1
M

i wc'sz.-‘~O al‘zi-l L
4 . ' ' 1 l '

»
L] . '

™M

The algorithm is redesigned to operate on the encoded data

and produce encoded output. The resylt vector also

preserves the weigﬁted chécksum pererty which is used ¢to

correct error(sy. Discrepancy in“the checksums .produced by

'tﬁgﬁéigorithm and that calculated 5% the output data indi-
cates an error. The located erroidycan be easily corrected
based on the checksu% produced by the -.algorithm. However,

. ‘ . i
in general, the detection and <correction of computation

—
"~
.

. I
errors is by no means an easy job.

This thesis presents a distributed reconfiguration
' @

—

scheme that . can tolerate " permanent as well as transient

faults. The proposed scheme follows Kgﬁg/gnd.Lqm's approach

-

in_ that the faulty cells are bypassed systolically. The

reconfiguration aigorithm uses the data-driven cénceﬁt,

that is, instead of beimg assigned a fixed path, the daéa

¢]

-

tokens will find their own ways through the processing
array. When'a fault is detected, the data tokens conderned

are re-routed to an adjacent cell to retry the computation.
. .
Consequently,. some rippling effect may be irposed on the
e ‘
successor cells. So long as there are enough spare cells to

t

replace the faulty 'ones, a correct computation can be
obtained. To achieve that, the systolic array should pos-
sess the following two capabilities.

1. Concurrept fault detection

r

The proce551ng cell should be able to tell cqpcurrently

with the normal operation whether the computation per-

[-

formed is correct or not, -

\
i

Self-reconfiguration

[]

. The systolic array should manage its own. configuration
without global knowledge of the fault distribution.
Reconfiguratioh is done lecally at the cells and can be

changed at any time, subject to local status detected.

One problem due to the dynamic nature of the reconfiguration
is ‘that the 1/0 port%jwhere data are input and outbut‘may
change from time to time. fp overcome this, a universal
interface~is proposed to'make the configuration of_the array
‘;{ansparent to the user. uData can bg sent in ané collected
- from fixed 1/0 ports at fixed times independent of the fault

distribution.

>

The distributed reconfiguration algorithm will be demon- '

strated only for 2-dimensional 2-data flow systolic arrays,

-

S I . \ N

. v
-
N

although it can be extended to -universal systolic arrays. ' 1

%

.] ,)
Two theoretical® measures of performance, namely, a lower
bound on the number of faults that can be' tolerated and an
‘asymptotic redundancy requirement to ensure successful

I

reconfiguration,- of the reconfiguration' algorithm are stu-

i

died. Experimental performance evaluation is studied via

computer simulation. Performance 'of . the distributed
- - . ‘ M

approach is compared with that of 'two other static

approaches, namely, the row-column elimination [7], and Kung

and Lam’s method [19), in which . the reconfigufation is’

. \ N
derived from global knowledge of the fault distribuaion.

1

Details of the distributed reconfiguration approach
together with two example designs will be given 1n chapter’
;. Chapter 3 will discuss the data collection and distribu-
tion "networks. The transient-fault tolerant capability of
the two designs described in chapter 2 will be discussedf/in
chapter_ 4. Performance evaluations of .the distr;puted
recohfiguration approach can be found }A‘chaptgr 5. Chapter
6 'will highlight how" the distributed reconfiguration .

.approach can be extended to wuniversal systolic arrays.

Chapter 7 is the.summary of the thesis. ' ' |

G

Chapter 2

A

, -DISTRIBUTED RECONFIGURATION

Distributed reconfigypartion is characterized by the
. - . .') ‘
local decision making at individual processing cells. No

global knowledge of the fault disfribution is reg®ired in

I\
restructuring thex qrrayl The ideal goal is an autonomous
subsystem that only requires some initialization. The user

"is free from any reconfiguration analysis. When viewed ftom
outside, the array looks as if it is non-faulty. A reconfi-
guration is successful if an embedding of the required array

is constructured in the faulty array; otherwise it is unsuc-

cessfult

L Koren/ff%j presented a distrisuted reconfiguration algo-
rithm to restructure 2-D processor arrays: A reconfigura-
tioﬂ command (the Aeaa r message) 1is isgued by the wuser
which .specifies the jdesired stfucture. A\procéssing cell
receivang a structuring messace will transmit either another
structuring message .'or an acknowledgement (a positive ack-'
nowledgément if the‘éonstruction is completed or a negative
acknowledgement if it is impossible to complete the con-
struction) to its neighbor(s). As the structuring messages
percolate through the physical array, the corresponding data
switches are programmeﬂ accoraingly. To avoid wusing a

faultyh cell, the «cells in the row and column containing

_to enforce these invariants.

-

faulty.cell(s) are programmed to " function as connecting

cells. 1In case of unsuccessful reconfiguration (receiving a

Al

negative acknowledge), backtracking is required. There are

two drawbacks in this method. ////

1. Even though the reconfiguratioﬁ algorithm 1is distri-

butedt the setting of the data “~switches cannot be
- : { .
changed without interrupting the computation.
2. Utilization of non-%aulty cells .is low because each

faulty cell may cause the removal of one whole row and

one whole column of cells. ‘ .

2

In our distributed reconfiguration approach, the routing

of data is’ based only on local information and.can ‘be

changed at any time subject.to local status detected;///Nc’/\\\

fixed path is assigned to data tokens. Alignment of the
data tokens to arrive at the active processing cells 1is
ensured by a novel invariant technique.| A set of local
invariants of the reconfiquration algorithm are ‘identified.

Intelligence is, then incorporated into the /processing cells

Successful feconfiguration of an M/x N array with
faulty cells into a wusable m x n (ﬁ €M, n € N) array of

smaller size (fig. 1) is equivalent ,to the problem of deter-

'mining a set of non-intersecting horizontal data paths H),

H2, ..., Hp-and a set of non-intersé¢cting vertical data

.péthé Vi, V2, ..., Vp such that ea¢h horizontal data path

meets all the vertical data pathé successivelyfat good

Fig, 1 A restructured 3x4 systolic array.

Faulty cells are crossed/

N
'
»

(non;faulty) cells to perform the required compupatioq, and

vice versa. The horizontal paths are numbered from top to

bottom and the vertical paths numbered from left to right.

.The horizontal (vertical)—#path Hj (Vi) precedes another

horizontal (vertical) path.Hj (Vj) for i < j. A path P1 is
said to have crossed another’path'Pz if it is éxtended from

one side of P2 to the other side of P2, and vice versa. The

4

<]

/

2 - 11 -

word "path" and the phrase "data in the path" are used

id{erchangably. Two invariarfts to ensure correct reconfi-,
; _ €

/éugation can e asseriedr

1. Two successive horizqntal (ver;ibél) data paths. H; and
Hi+4 (Vj and V4j41) do not cross. Touching at a cell is,
however, allowed.

. '
2. The data in horizontal path Hi{ and the data in wvertical

path V5 do not cross unless they have been processed.

Theorem 2.1
t

If an. M th array is reconfigured (with data re-routing)
into a smaller array ofpsize m Xx n in such a way that the
two ‘invariants ére s;tisfied, and every %orizontal path has
crossed every ;;rtical path, "and vice versa, then the recon-

figuration 1s sSuccessful.

Proof

Since ‘the horizontal path Bi'.does‘ not cross Hjisul

(invariant 1), the vertical pagh V4 cannot cross Hj4] Epfore
crossing Hj. When Vy crosses Hj, the required computation

between them should have been’ completed (invariant 2).
Hence, data on Vg will meet.and be processed with data on

the horizontal paths Hj, H2, ..., Hp successively in some

common good cells,. The same argument applies to the ‘hor -

izontal paths. . ‘ Q.E.D. .

1%

— \ - 12 -

2.1 Cell Architecture

W . 4

Each cell has a processing unit togeéher with a‘ self-
tester. The self-tester will check the result computed in
"every cycle., There are basically foéur diﬁferent\ approaches
to achieve concurrent fault detection. When choosing the
technique to be used, we have to decidé on the desired fault
éaverage and thg hardware cost. A brief,iqtroductién to the

four fault detection approaches is given below.

rd

b

¥

This straight-forward method involves duplicating . the

(a) Duplicate-and-compare

i

processing unit and comparing the results produced by
each processing unit. A Sﬁsagreement .indicates an
[]

error. This simple method "has a good coverage of

faults, but it requires pver 100% hardware redundancy.

(b) Coding [3,3%] i
In this approach, the input data . are encoded and the
processing unit is specially designed to produce~encoded
qutput. During normali (fauit-free) opéraLion, the
encoded output only takes on(a subset of gll possible
values (code-space). The appearance of a valué that
does not belong to the code-space indicates the occu-
rence of fault(s). ﬁany coding schemes have been pro-

npcsed such as residué code, checksum code, and arith-

metic code, etc. One drawback of this approach is that

all the above mentioned coding schemes are based on the

(c)

(d)

- 13 -

P

stuck-at fault model. Recent studies on the failure -

’ . \\ . \ v ’

modes of VLSI [4,28] reveal that many,physical failures
K ’ A:G:‘ .

in VLSI cannot be modelled as stuck-at faults. More -

6ver, the"hardware cost to implement such self-checking

°

circuit (2,11] is relatively high.

Recgmputation with shifted operands [30]

This approach makes use of time redundancy. The normal

computation 1is performed and the result is stored. The

operands are then shifted left before the recomputation’

takes place. . The result of the recomputation is then

right shifted and compared with the previous result

obtained. A mismatch indicates an error in the computa-’

tion.. The hardware requirement of ﬁh/s .method is low
}

but it involves 1008% time redundancy.

Algorithm-based fault detection

s

) L, '
Local invariants of the specific algorithm are identi-

. fied.” violation of one or more of these'invariants at p

cell indicates an errér. The advantage o% this high

' level fault detection method '1is that little

hardware/time overhead is required. Choi ahd Malek pgb-
posed a fault-tolerant systolic sorter [6] which employs
this fault detection approach: The sortigg algorithm is
as follows. A linear' array of N cells.ié used. Each
cell[i] has two reg{&ters, P(i] and Q[i]. The sorting

is done by the following two phase operation:
- “

v

-

Procedure Sprt

N

BEGIN
initialize P[i], Q[i] to MAX;

. FOR i=1 TO N/2 DO (N cycles)

PARBEGIN (*input phase*) R
Q[i) « Qi-1}; |
IF P[i] > Q[i]) THEN swap(P[i],Q[i]);
PAREND . ‘ -
FOR i=1 TO N/2-DO (N—ctycles)
PARBEGIN ‘ (*output phase*) ’
P[i-1) ; Pﬂi]; (P[N/2] « MAX)
' IF P[i} > Q[i]-TﬁEN swap(P[1]),Q(1i));

3

R PAREND B

END o o .

[

e : Vd
The proposed method is based on the two invariants: (1)
. ! y

for all i‘’s the input keys and the output keys of

~ cellli) t have the same checksum; and (2) for all

-

i's, cell[i) in the array pops off completely sorted

ouput for a correct recursion. The linear array/}s par-
titioned into b blocks with the first cell of each block

operating in test mode. Data are duplicated at the

a4

test cells wusing bypass links. A test cell will check
the monotone property of the data stream, and computes

the checksums of the input keys and that of the output

"keys. _A mismatch between the two checksums indicates
s - ' -

the existence of a fault within that block. One diffi-

o

- 15 -

culty in désigrdng algorithm-baéed fault detection

schemes is that the reiationships betdeen the functional

faﬁlts and the faults in the physical 1layer have no%
o

been well understood5‘3Further Tesearch in this area is

expected.

i fon

The fault detection technique employed will be ,applica-
t}on‘spécific and/the detail of which is beyond the scopevofl
“-this thesis. Hence, in this thesis the phrase "éell archi -
tecture" refers Ato the organization of the interconnection
links ané the data switches ;nly. In the following discus-
sion, it is'assumed“that only the processing unit may fail.
The interconnection wires, data switches, -and self-teser
will not fail. This assuhption is justified as .the datar
switches have a smaller active area than the proce;sing unit
and the fabéication process of the interconnection wires 1is -

.o 8
simpler. The self-tester, depending on the implementation,

éan be made fail-safe. - o

" The celliarchitecture and the zbﬁting iqvariants adopted
é{e interdependent. A tradeoff betwees-the flexibility and
simplicity has to be 'made when designing ths routing func-
tion of the cell. Two cell architectures, namely, type-g
and tﬁbe-B, are proposed.and §tudied in depth. The type-B
cell 1is less flexible than the type-A cell, but it has
several advantages over the type-A countefpart; as shown

AN

later.) ') /

. 16 -

2.2 Design-1 (DR1) ‘

Type-é cells (fig. 2)- are used in.this,design. Two hor-
izéntal and two vertical paths are allowed to traverse a
cell at the saﬁe time. If there is more than one horizontal
path‘ entering the cell, then _the path associated with the
local 1,0 port hy precedes that asngiatquwith ho. Simi -
larly, if there are two vertical paths enteting the cell,
tﬁen the path associated with v pfecedes that associated
Qifh vl. A single-bit logic flag dj (done flag) accompany-
ing the pair of data tokens on each side is used to indicate
whether or not the ;omputation between that pair of data has

6;en completed.

T : SelfJEester -
L I Prdqgssing.unit ‘) .

Fig, 2 "Type—-A cell architecture

.

2.2.1 Routing Strategy

v

The cells in the array route the data paths according to
tables 1 and 2 depending upon whether the cell is fault-free
or not. nNasically, the routing strategy is to greedily
extend the horizontal path toward the right boundary of the
array. To preserve the two invariants, the horizontal path
will make & turn and go one steé/downward if |
1. it meets another horizontal path coming down from thé

cell apove, or |
2. 1t is moving together with a tﬁyéﬁcal path to find a

good (faultlfree) cell to perform the computation, and
meets another vertical path coming from the cell above

at a faulty cell.

Pl

A vertical path V')will be greedil extended downward to
j y

. 1
meet H;i. It willthen move along with H; to find an unused

“good céll to do Lhe)computation. afterward, it will ~crocs

Hi and cxtend to H;41, and so on. V5 will take a step to

the right if

4}

(5
1. it is moving along with a horizontal path to find an
unused good cell, or ' - 3
2. it meets another vertical path coming from the left.

Referring to the routing tables 1 and 2, 1hj/Iy4y = 1 if
there is valid data present at the local input port hi/vy.
Some of theé entries of the-tables will be explained below

and the rest can be understood’easily by following the same

b » -

/

-u;'i}

. - 18 -

.,) ' J

-

-

! The' outputs are specified in the square :

2

LR

Io

* : do the computation

vy h3
vq hy
s
)

: do the computation if done flag = ¢

A : ig'dl =‘Q,compute hlvl\\‘
eise if'dy = Oléoépute hav2
+&Ise do not process

if d; = 6 compute hjv)

else compute hav)

. C : if.d2 = 0 compute hzv2

else compute h2y1

i
v

>

vi h
v2 h2

h)
vl h2
vy h3
v2

1 Routing function of non faulty type-A cell

N

o v h3
The' outputs are specified in the square :
ve hyg:
Ih;
Iv) | Tho
Iv) ;
0 O 0 1 0 —
h2 hi h)
00 - K
h?
B \h
LT : . 2" 2 ! h)
01 s ’ A
V2 V2 -~ [v2 h2 |v2
vl - ' {vi h2 ~vl hy |va hi.
1 y ‘ '
va vz hpt|v2 hp v;\‘ ’
: vy h2 ,vl+ hj vl+ hi
10 ' 5
v ‘V1f hy*lvi hy [va

Y

+ : if the incoming pair is not done

* : cells at the righﬁ bonndary

-
- N »

Table 2 Routing.function of faulty type-A cell
. | } \ !’ -

l

1.

reasoning. ‘. N ' { ‘
~ “ .

Referring to fig. 3a, the cell will perform the computai
tién between h3 ana th. - If the result'obtaﬁned is
correct, then the two data paths yill cross each otheg
as shown in fig. 3b. TIf the cell is faulty, then the
computed result will be discarded. The two data paths

will then travel in parallel and the done flag will be

‘set to ’'0’ (computation not done) as in fig. 3c. o
* \

Referring to fig. 4, the horizontal path at h) must

I

have met and crossed the vertical path v before.

Hence, no computation will be performed.
N . ’ ¢

O

There are two horizontal paths entering the cell ffig.
5). 'Since hy preceds hy, hjvy should be processed
before hjv). Thetgfore, if dy = 0, the processor will
compute hlvi, otherwise, it will comﬁute hpvy. If the
cell is faulty and d] = 0, then v] .will move along with
hy, otherwise, it will cross h] and travel in pgrallel

with ha. ' “ —

N A

There are four data paths entgriﬁg the cell (fig, 6).
In order to preserve the invariants, the routing of\the
data paths are fixed. If dj = 0 then'hjvy will be com-
puted, , otherwise, if d = @ tﬁen hzvz:ﬁill be’computed.
If both dllanq da are 'IQ; no computation can be per-
formed. The routing of. a faulty épll is exactly the

same as that of a good'cell, except that no useful com-_

4
= '|
~) A\Y)
..\ '
v B ' * - L) ! -
. l1 ‘ \
\ | v
hL"O ".,'Q—;“z ®:;Iv’
o L h2
¥
a) . . b) vy c)
Fi'g'. 3 Routing example 1. a) input da'tia pathsy ‘
LL'routing of good cell; c) routing of faulty cell. .
hl . j ' !
vy : - ' ‘ ‘ _ y N
<) . h.l R v . ,
'. T
a) S NS
F'g. 4 Rout1ng example 2. a) input data paths]
b) routing of good and faulty cell .0 ; ‘ -
'/ / , : - .

Y. 4

a) SRR

¥
i

Fig. 5 Routing'example 3. a) input data paths;

b} routing of good Eeil or input done flag = 1;
ld

Noc) }outingzhf faulty cell and input done flag

, \ . -

')

<
[]
\y :
hy X0

' L4 '

15 - vz-— \

’ h2 7 . \

a) ’ . -

Fig. 6 Rgutiqg example &, ay input data paths

5) routing of good and faulty cells
}d-*\

‘uw

-
0

0

-~

/

o

Theorem 2.2a

The routing tables 1 and 2 satisfy the first invariant.

i

N — -

An abstracted proof by indugtion on the cell position is
presented. If there is more than one horizontal (vertical)
data received £t the Ainput ports bfla cell, the inductiop
hypothesis asserts that the horizontal path associated with

® h) precedes that with hy (the vertical path associated with
vy precedes that with’ vl1). At the output ports; h3y (v3)
goes to tpe right and hg (v4) goes downward. Hence, h3 (vyg)
rprecedes hyg ;v3) at the output ports. Wheﬁever there are

~

two horizontal (vertical) data entering a «cell (faulty or
Y . .

not), h; (v]) will be routed to h3z (v3) and h2 (v2) routed

to hy (Q). Hence, the 'order of the paths are preserved

- when théy pass througﬁ the cell. Q.E.D.

Theorem 2.2b

The touting‘tables 1} and 2 satisfy the second invariant.

v 0 ‘

.. Proof
| Consider the table for faulty cell. An incéming pair of

paths will be crossed if and only if the corresponding done

flag is se% to ’l’; otherwise, they will be kept in pair and

the . done flag copied to the output ports. 1If originally hj

and vy are to be processed at the faulty" cell, then they

\\\\\w» will be paired ‘and the corresponding done flag is set to

'0’. Hence, the routing' table 2 satisfies the "second
- ‘\

S

invariant.

For the good- cell, the routing of an incoming pair of
~data is the same as that of the faulty cell, except that the
computation will be performed’if the condition allows. If

e

hj and vj have been processed, then they will cross each
, ‘ 4

other lor be kept“in pair and the done flag is set to '1’.

Hence, the routing table 1 satisfies the second irvariant.

Q.E.D.

Theorem 2.3

Horizontal path Hj; and vertical path V5 will be pro-

cessed exactly once if the reconfiguration is successful.

Proof A

The first time Hj meets V5, Hj should be méVing hor;zon-
tally, Nand‘vj mo&xng vertically. After they have been pro-
cessed, they will eventually cross eacﬁlother. If Hi. we:e
to meet v the second time,‘Hi should be moving downward and
V4 moving to the right. }or all the four ©possibie” ééses

, x
shown 1in tables 1 and 2, the two paths are simply separated

without doing any computation. Q.E.D.

¢ y

Fig. 7 depicts annexkyple reconfigured arrgyz of type-A
cells. It .is obvious that the recogfigurabiiity of a faulty
array depends on when and where data are sent into the array
(input schedule): It' is observed that in the ﬁRl design,
the route of a horizontal path depends on the routes of the

vertical paths, and vice versa. Hence, it is impossible to

. ' - 25 -

%

derive a goéd input schedule without global knowledge of the

fault distribution. This is to say that to obtain an

optimally reconfigured array, some kind of offline analysis
is requi}ed. However, this is not desirable for the distri-

bu£ed reconfiguratioy approaéh. I1f no offline analysis is
allowed, a simple ;néut schedule that backs all the inputg
towards the top-left corner can be adopted. One drawback of
‘this str%tegy .is that “fhe reconfiqgurability of the array
will be sensitive toAthe faults in the tob—left quadrant,
In the next section, we discuss the second design which
overcomes this drawback. For this design a good input
schedule can be derived automaticall§ in approximately

linear time. . \

v, v, v, _ .,

et _.«Q_,@;_,d;‘.q__.@_,

Fig. 7 A restructured 3x3 array of type-A cells

.

- 26 -

PR

1

. - 2.3 Design-2 (DR2) _ ‘ ‘
. //
" -

Type-B cells (fig. 8) are used in this design. For the

[

—

type-B‘ cells the routing of ‘horizontal paths is fixed
(fo;med by the horizontal rows), but the vertical paths are
réconfiéurabie. Up to three vertical paths can traverse the
saﬁe cell simqltaneougly.‘ﬂowever, the input port vy can
have valid data only if there is valid'data‘at_vl. By con-
fining the routing of the horizontal paths, the interdepend-
P

ence between the horizontal and vertical .paths can be elimi-
nated. Heuristics can be appliedlto select the horizontal

rows (horizontal paths), and generate the input schedule

vertical data without knowing the fault distribution. \

*T : Self-tester
-t P : Processing unit
$‘ . A . . v
L L Fig. 8 Type-B cell architecture

L , -

S,

27 -

Two done flags, namely, di and dg, are used to indicate

Fl

whether the computation between hjvy and hgvg, respectively,
have been completed or not. The srp (send-to-right) signal

can be set to request the cell on the upper right not to/‘
send vertical data downward in the next cycle. Conse-

guently, on receiving the sri reguest, a cell will avoid
sending vertical data downward and-forward them horizontally
instead. The sry signal in a cell will be set if

1. the cell ig faulty in the current. cycle and useful com-

putation should have been performed if it were fault-
’ N +

free, or |

’ N .. .

2. it receives the srj reqguest from the cell on its bottom

left and cne or more vertical data from 1ts neighbors.

o

The sp (self-progtumming; signal is wused in the initializa-

tion phase for horizontal row seleétlpn which will be *ela-
o -
borated in section 2.3.2. |

r‘
» 4

2.3.1 Fouting stratedy

—~

O

Given thé set.of horizontal paths,.Hl, Hz2, ..., Hp, an
N .
optimal set - of non-touching vertical paths is determined

f

“using a "greedy" approach (fig. 9). The reason wny non-

) ——

touching vertical paths are desirable-is that if a. transient

fault or a new fault arises} there will be enough room to

ensure successful local re-routing of data dynamically.

/

Suppose the vertical paths Vi, V2, ..., V4.1 have been con-

4
structed. Vj will be constructed starting from the first~

P
.
)
.
.
.
Al
P
N
-
.
——
.
]
.
*
y
-
«
.
L3

\

o
b :‘
H
4 : . .
I S v 1
: - \
. \
a) path Vj to be constructured
S, \\ . L3
\
° ' \\
A

" ' a '

b) path Yj i§ greedily extended é;wnward

~ Fig. 9 Greedy approach for vertical path generation

/
?
!
.
_? .
1
L]
L]
.
.
N
N
-
-
.
.
‘* o

4.'29"

L]

"unused (not includea in Vi.1) cell on the first row. . Local

. re-routing extends Vj greedily downward. Whenever Vi sees

the srj request (the cell below is occupied), it will takeA
one step to the right and the corresponding processing cell

will set its srp signal. When V5 meets Hy, it moves along

o
with Hj; to find a good celﬂ to perform the' computation. vy

will then cross H; and extend to H2. ®his process will be

§

repeated until it crosses Hp. Each pfocessing cell that

receives horizontal data routes the vertical data .inputs:

according to tables 3 and 4 depending upon whether it is
good or faulty. A processing cell (faulty or not) that does

not receive horizontal data will perform exactly the sam

roﬁting function as that of a good céll except tha{ no com-
putation will be‘performed. “Note that the sro-signal is not
set even if vertical dat; is.sent to thé right /by a good
éell '(table 3) if the srj input of the cell is not sét.

These cases only arise-during the dynamic re-routing of data

£ - ’
when, a new fault is detected during computation. Such cases

4

only last® for one cycle, and therefore the sré signal should

not be~ set, otherwise the data’ tokens might have taken

unnecesgsary right steps.

Theorem 2.4a
: +

Routin§ tables 3 and 4 satisfy:tﬁe first invarignt.
. ,K\w |

.,‘,’\’

).

/’A\ /)
An abstracted proof by inductién on the cell position is
C N — .
presented. The vertical paths enter thé'cell at the local

=

- /

Proof

’

- 30 ' e ’ b
|) A . STro V6
The outputs are specified in the square :
. ‘ : Vg4 Vs
.~ Iv)y
3 £1 Iva - ,
Iv;3 ' .
0 0 o 1, 1 1 1 0
0 0 0
* 00 ‘ A’ .
’ vl “vz |v1*t
’ 0o 0 ~v3 {0
' 01 . A’ B"
vy V] -v2 |Vl V3
1 ,v3 ‘v3
11 . A" '
v3 vl V2 vi*
‘ . 0 1 wva |l '
N 1'0 : .
. , . oo ’ vi? vt
) 2 . - 3
! oo *.: do the computation \
, + : do the computation if dj = 0
A compute hjvy if dj = 0 '
o ‘,:: . ' else compute h;v, |
. . /
, B': compute hjvy if df = 0
s 1 - !
) else compute hiv3
Table 3 Routing function of non-faulty type-B cell
. ' p
" , o
: A - . - & i
i s -

-Er,

-

The outputs are specified in the square :

Ivy
Srj Iva -
Ivs
0 0 -1 1 } 1 0°
0 1 0 '
00 |- . - a4 8"
P vy -v2 Iva
7
1 1 vy |1
01 opoFt ¢t
Y3 vl V2 [vi v3
' 1 <1 Lv3 |1 v
11, . . ’
i V3 Vi V2 Vi~
.10 : 1 vy |1
10 .
vl . vy’
) 1 v2
‘A s if dy =0
» - v1
A s ‘
~ . l 3
~ B: ifdj =0 S S
on - : v1
Y. i
' o Sl vy
. C: if d; = 0.
"F : reconfiguration fails if dj = 0
s ,
Table 4

Routing function of faulty type-B cell .

™

input ports v3, v2, v3 and leave the cell at outbut ports
w4, vg and vg of the cell. If there is more than one verti-
cal dat; received at the input psrts of a cell, the induc-
tion hypothesis7 asserts that the path associated with vj
precedes thet associated with v4, for i < j (i, j = ,1;2,3):
At. the output ports, vg goes downward whereas vg and vg ;re
connected to the first and second input ports (vy and v3),
respectively, of the cell Sn fhg right. At éhe output .ports
of.the‘cell, ﬁ?e‘re-routed data at vp precedes that at Yq
for p < g (p, 9 =4,5,6). If there afe two or more vertical
ggta enteriqg a cell, then for any two of the vertica.l dat§¥

I .)
say vi and vj, vj will be routed to vp and vj routed to vqg. -

3

The two touting tables’ 3 and 4 ensure that if i ¢ j then p <

- g. - Hence the order of the vertical paths is preserved when
L -
they pass through the cell. Q.E.D.

" Theorem 2.4Db , o

¢

‘Routing tables 3 and 4 satisfy the second invariant.

Proof ‘ ‘ - .

Consider the routing table, of a type-B faulty"’ cell. .

-

Excluding the }failure cases, the vertical data associated

with pt:z\vl that enters the cell will cross the horizontal
‘path only if the input done flag di is equal to 1 (i.e. the
computatié% was already performed). For the case of a gooé
cell, the crossing of a vertical path with the horizontal

”

b?th'occurs only ifhthe‘corresponding computation has been

?

performed at that cell or previously. S . Q.E.D.

Theorem 2.5

If the external input pofts of .the vertical paths’to'the
array satisfy the <condition that the vertical'ﬁath.vj is
Being sent into t;e array at the first unused (not included
in Vj.1) cell in the top row to thg right of that for Vj.j,
then a maximum set of non-touching vertical paths cag be

abtained.

Proof
Suppose j-1 'non-touching vertical paths - that are
optimally’ packed to the left have'been constructed. _vi is
"+ then gent into the array from the first unused cell to the
right of Vj.1. Vj is then greedily extended downward. The
.

greediness assures that no other vertical path V’4 can be

constructed to the left of V4 without touching V5.1 since Vj

will only take a step to the right at a faulty cell or when

" [

it sees the srj request. Hence, if every cells on the top

row are tried out, the set of non-touching vertical paths

obtained is optimal. Q.E.D.

Fig. 10 depicts an example reconfigured array of type-B

cells. The method’ employed to automaticalli'generqte the
¥ * ’

" input schedule is,presqntéd,in the next section.

-

At

Fig. 10 -A rest;ructuré_d 3x3 array of type—-B cells

t 4 N

&

.
) : "

‘:2.3.2 Input Schedule Gengration ,

4

v

: Finding the opfiyﬁl reconfiguration of a faulty array'is
a—fpmbinaforial problem. The recaﬂfigurébility of the array
depends very much on the input schedule. 1In gpe distgibuted
qreconfigurati}on‘" approach, the fault distribution’ is ﬁot

known and enumeration of all the possible input schedules is

* t

not practical either. Heuristics are applied to find a good

| o '

AT - 35 -

!

input échedule‘in linear time. We @ill discuss the genera-
tion of the ippu£ sché@ple fqr horizontal and veriical data
separately. We will first answer the question: given ; set
of hori;ontal paths, how are we going to generate the

optimal set of vertical paths by‘adeciding on where they

«

should be sent in (Vertical data input schedule)?

Since the routing of the data paths insidé the systolic
~array is managed loéally at individual cells, we cannjust
send in some initializatio? data an‘walt for the systolic
érray to indicate the best‘input ports to be used. Duriné

~

such an initialization phase, vertical initialization data
are. sent in at all ext;;nal vertical input ports. By making
use of Fhe sro signals generated, we gan determine the
optimal wvertical inéut schedule. Fig. 11 depicts the pro-
cess of vertical path initialization. During initializa-
tion, the sr; signal generated from a cell on the top row is
used to fkill" the data token that enters the array at the
next colunmn. If the number of.vertical paths that success-
. fully pass through the array is-grea£er than or equal to the
desi;éd numbgy'of\paths, say n, then the reconfiguratjon -is
successfully done. Tﬁe leftmost n input ports that do not
haQe their input data "killed" by the cell on the left form
‘the desired input ports. It is obvious that there is no
‘unusgd cell on the top row in between the first and the n-th

vertical paths. Hence, by theorem 2.5, the 8et of non-

intersecting vertical paths obtained is optimal.

The second row is removed.

(8) T = 3; three cycles after initializathﬂh started.

?
4

(b) T = A. Data on V

generated by the second cell on the first row.

is killed by 'the SRO signal

w

Al W s

L

(d) paths Vise Yy and vV, can pass through the array

Fig. 11 “Vertical paths initializittion

P

. 38 -
7 ' -

The second question we have to answer 1is: how are we

i {
going fo select the m out of M horizontal rows? Since no

global information is available, a, simplé heuristic is
3 .
applied in solving the problem. The M-m rows\to be removed

are selected one by one. 1In every iteration, t row that

‘contains the maximum number of faulty cells will be identi-

fied and removed by not sending horizontal data in that row.
Direct impiementation of simple count-and-compare function
will be too costly. We solve the problem win a systolic

manner. The count-and-compare function is implemented by .
. ‘ . \

the‘racgng of the sp signals 4{fig. 12) that propagate

through the array from right to left in the rows. ‘Differentu
delays are introduced at a good cell il cell/2 cycles) ‘and
at a‘faulty cell (1 cell/cycle). The row that wins the race

will contain the maximum number of faultd cells and will be

removed. It is also required that the winner identifies

o

itself without an external monitor. To achieve this, a time
skewing 1is introduced into the race. The i-th row (counted
from the top) starts the propagation of the sp signal at the

i-th cycle (if‘ the row is active). When the sp signal of-

-

each row reaches the left, the row will claim itself as the

winner of the race and notify the other rows (if it has not

-

been disabled to do so) by:

l. sending a signal to disable the tows/ﬁelow it from mak-

Y {
b

ing a claim, and

2. sending a signal to nullify the claims of the rows above

it. -

%

Fig. 12 Row elimination by racing of the 'sp signal.

The second row will ‘win the race and be removed.
v

T
The details of the scheme now follpw. The sp signal of the -
cell at the top right corner will)be set to 1. This signal
will propagate downward (1 row/cycle) and :to the left in
each active row., The winner of the race is identified by a
column of "select" cells (fig. 12) on the left of the pro-

cessing array. Each select cell has a latch to store the Bp

signal and four "kill" signals, KDj, KDg, KUi, and KUg. All

* i ,

- 40 -

the four kill signals and the latch of each select cell are

reset before each iteration takes place. The operation wof

the cell is as follows: . ‘
case 1. KDj = 0, Kﬁi = 0, and Qb‘- 1l:

’ 1:ﬁe sp signal will be.latched. The KUp and KDg sig-

' mals, will be set to 1 and are prqpagated at a speed

* of 1 ¢cekl/cycle upvard and. downward, resbectively.‘

The top and bottom cells, Wowever, will only gen-

erate the KDg and KUp, respectively.

case 2. KDj = 1 and KUj = 0: : , .

°

Thé latch will remain in 1its current state. The
incoming sp signal willi be'igﬂored. The KDo signal
" will be set to 1. : ' . | N (,
case23. KUj = 1: / A
. The latch will be reset to 0. KUp will be set to 1.
If KDj = 1, then KDg wili.be set to 1} else KDg will
stay in its current state.

.
’

The winner of the race can be‘identiféed within‘ 2kN+M)
cycles. :Thg éottom'row will start the propagation of the sp
signal at the M-th cycle. The .sp signal takes at most 2N
cycles to reath the left hand siée, and at most another M
cycles are required to identify the most faulty row. ‘After

2(N+M) cyclés,' the row with the latch value of 1 contains

the maximum number of faulty cells.)

In practice, the initialization of the horizontal ' and

vertical paths can be done together. At the beginning, test

e e

-

r

d - 41 -

data are sent in at all input ports. The number of vertical

-

data that exit the array from the bottom after N+M cCycles is
¢

equal to th®e number of vertical paths that successfulﬁ§ pass

" through the array. If there are at least n vertical paths

that pass through the array, thén the inikialization is
done. If less than n vertical paths can pass through, th;n
one horizontal row will be removed if the: number of horizon-
tal pathg is greater than m; otherwise the array cannot be
reconfigured into a m x n array usingJ the ?iétributedﬁ
approach. The most faulty row can be «identified in 2(N+M)
cycles. - The row ideﬂtified will +be removed from future com-
puéation. The total time¢, T, required to initialize the

array is:

T ¢ (N+M) + (M-m) ((2N+2M) + (N+M))

L

(N+M) "+ 3(M-m) (N+M)/

(3(M-m)+1)(N+M) .

For M-m << N or M, the initialization can be done in appro-

3
?

ximately linear time. The mechanism elaborated so far still

.suffers from having to choose I,/0 ports for the array.. Chap-

/

ter 3 will remedy this drawbaék with an appropriate désign
of a ﬁniversal distribution and collection network that

hides all such detail from the host (user).
. v Ve

9
it -

"
31 [}
N -
e f e

>

-t

3
. ighapter 3

DATA COLLECTION AND DISTRIBUTION

—— =

Because of the variability of the data paths in case new

.

faults arise after initialfzation, the data that belong to

the same path may come out from different output ports.

Also, the timing relationship between data of different

paths is complicated. This imposes difficulty in collecfing

o

(the outputfdata. Moreover, the vertical pathginitialization

process described in section 2.3.2 requires the user to
* ' i
select proper input ports to send in data. To make the con-

flguratlon totally transparent to . the use}, a universal

,interface . is lntroduced which will allow the user to sendl

in apd collect data from fixed 1/0 'ports at fixed times

ihdependent of the fault distribution. . ‘

(B.
‘ % %

3.1 Data’colfigggon netﬁx;k

\

The problem of éata coll;ction arises because the path
lengths of the jﬁta are not the same and they' can be changed
dynamically. If we can somehow equalize these path lengphs\
independeqt of the fault distribution) then we can expect
the output data to come out from fixed ou?pqt po}ts at fixed
times. Q‘tsystoliE roufing netwérkl(céllection-network) is,

introduced to perform this job. Two types of routing .cells

are ‘required and their ;odiing funétions are shown in fig.

/

. . R ‘\ . - '
. ,) ‘.43 - . -) : :

v

13."It'is_bbvious that the two types of routing cells will
preserve the first invariant; that is; two adjacent horizon-

tal (vert{cal) paths do not cross. ' Y

) . . ! . . .

-~
)

h-type cell

' - -
. - y
v—type cell .
’, Pl . *
Fipg, 13 -Routing célls »
) ' ‘ ' l - ’
. Y \
. * ! . ' , . - . 4 \ .
. Fig. 14 shows the structure of the vertical data collec-

tion network.- The routing network consists of a nxN rec-

4

tanqular array of h-type cells and a nxn square array of v- 4‘

~

.) type cells. The number of rows required in thec routing net-

work ig equal to the number of Qerticql paths.. The data are
greedily routed igo the right by the H;tyﬁe cells and. then
downwé;d by the w-type cells. By ehf;rcing the. first ‘
. ingg{iant, the i-th vertical ;:th always comes out from the
i-th column . of v-type cells. THe ’total paéh’ lengths
(iﬁéluding the time delay introduced at the input of thé‘

! proces$ing array to éatisfy the data skewing requirement) of

A\

. .* e - 44 - . -

»

all wvértical paths Are the same.’ Similarly, a collection
- " ~

¢

’ neltwdrk for ‘horizontal data collectiagn can ‘be constructed

L3

- network to distribute the-data to the des‘fred,input ports of .

. i
using a. Mxm recta’ngular array of v-type cells and a mxm'
- ¢ , .
square array of h-type cells. ' ' . . .
‘ . . . ’

-

Fig. 14 Vertical data collection netwo;k for

the example 3hown in fig.-10. .

- Yy

‘ v o K]
/ ’

3.2 Data distribution network
.) o

[
Extending the 'same idea, we can 'builci similar routing

the processing array from fixed external input ports for the
. . Cd .

DR2 design. In this application, the routing cells should

be self-pmle. Fig. 15 depicts the structure of the

distribution network for horizontal data. A row of routing

cells in the routing network are automatically programmed as
n /’v . . ! N ’ ‘

-

W/

~

v-type if the corresponding row in the processing array is

-

. "removed" by the sp race; else they are set to function as

., h-type. The programming signals are derived from the

"select" cells during ﬁnitialization. M-m columns of rout-

F2RN

ing*cells are required: Similarly, the distribution network
. ~5

for‘wgrtical data involves N-n rows. The sro signal from

. oy . . !

€tg-'top row are used to program the routing cells when ini-

tialization is done. The j-th column of routing cells are
. .o , [}

set to function as h-type if the sro signal,of the process-

- [y

ing cell on the top row of column j-1 is ss;, else they are
»
.set to function. as v-type. With the help of the self-
. -programmable distribution networks, the configurdtion of the

progcessing array is totally transparent to the uset.

n
4 o

[N

- . . Fig, 15 Horizontai data diétributioﬁ
network for the example shown in fig. 10.

\ - R
>
- K23 fe . ot

1

~

. correct computation can'be obtained as Sshown now.

-

Chapter 4

3

COVERAGE OF TRANSIENT FAULTS

g" £

_ "
In the two designs described in chapter .2, the routing
of the data pathg is bqsed on local information only. No

. . T '

fixed paths agg assigned to the horizontal and/ot wvertical
data. I1f new faults (transient or permanent) arise during
computation, the data can be re-routed dynamically te¢ an
adjacent <cell to retry the compqtat}on. S5 long as there

are sufficient spare cells to reﬁlace the faulty cells,

P

-+

4.1 Coverage of Single Transient Fault L

In this section, we assume that only a single transient

.) tl
fault "~ occurs during the computation. The amount of redun-
dancy requfrea to ensure the cdvefage of one tran§ien£'fault

for the two designs ‘described in chapter 2.will be esta-

I~b1ished\below:

-
. ‘
. ’
. ‘ v
' I
° .

Theorem 4.1

-

. Even if the input schedule is not ﬁbanged, an Aarray of

type-B.éells can tolerate one additional fault '(transient or

germf%ent;.independent of the fault location after initiali-.

zation, provided there is a spare (unused) vertical path on «

the right of vp. i /
' , \ '

Proof.

If one additional fault occurs at an active éémputation
site during the computation, the vertical data wiil be re-
routed locally and dynamically. Since all the vertical
paths are initially non-touching, the addition of one fault

. . -

may only lead to the toudﬁ?ﬁgh\of two adjacenp vertical
. paths. Hence the failure cases\;ndicated in routing table
4 which involve touching of three vertical paths can never
occur. 1f the new fault causes V3 to touch Vi+l,-Vi+1 will:
then be displaced to the right. The new route of vy wills
lie on "or to the left of\Ehe old route of.vj+1.j Conse-
quently, V4+1 may touch Vj,2 and causes V542 to be displaced
to the ‘:ight; and so on. This displacement will not cause
“Vn to'miss Hm as long as there is an additional spare path

on the'right of Vp. Q.E.D.

i

For the DR1 design, both the --horizontal andﬂ»vert&car
paths are regonfigurabie._ IntuitivelQ, one spare row and
one spare column of non-faulty cells seem to be sufficient
“to énsure the coverage of one additional fault. ‘Fig. 16
shows a counter example which disproves this sfatement. In
the Qorst Ease, m spare rows and one spare column are
required to egsure the coverage of one additional fault.
Consider the fault distribution shown in fig. 17. Suppose
‘”the\inputs are packed towards the top-left. corner. 1£f the

| éell at the‘top-ieft corner becomes faulty, then the first

horizontal-path is going to take m steps downward. Conse -

- -

,_g&—i

Frs -
¥

i

oA g a

(s

g

O 000 Qo0

|
t N |

o { i

a) a.restructured 2x3 array of type-B cells with

one spare row and one spare column \

-

" .b) new fault occlrs in the cell at the top-left corner °

Fig. 16 Counter example showing that one spare row and

one spare column are not sufficient to ensure the coverage
of one new fault. ‘

-

L}

) C. 4?—- ’

-

quently, m spare rows are reqguired. The superiority of DR2
to DR1 is even more %fonopnced if multiple .new faults are to

be tolerated. \ i . -

t
i

. je——— m oo n-1—+1 p—
1 0 . T o
0 o 1o '
1 0 0 ' '|m .
1 0.

o -

0 : faulty cell
1 : non-faulty cell .

All cerls not labelled are non-faulty — e
Fig. 17 WDtst case fault d1str1but1on that tequ1res o

m spare rows and 1 spare column to tolerate a transient
fault that occurs at the cell at the top left corner.

SR

\ . 50 -
J .

4.2 Coverage of Multiple Transient Faults

* the input

When dealing with multiple transient faults,
schedule for the DR2 design has to be adjusted in accordance
with the occurence of new faults to maintain the non-
touching ;roperty of the vertical paths. This’is accom-
plished by the wuse of the data distribhtion network
described, in section 3.2. Since the distrisution network is
self-programmable, it is possible to modify the wvertical

data input schedule (for the DR2 design) without interrupt-

ing the computation. L&che set of vertical paths can be

J/
made non-touching (by changing the input schedule) even if a

. new+ fault arises éuring computation, then multiple addi-

.

tional faults can be tolerated.

Theorem 4.2

If the routing cells in the vertical data distribution
network (for,gge DR2 design) are‘programmable dur?ng compu-
tation (by the srg signal)} then thé processing array is
able to tolerate one additional fault per spare vergical
patﬁ on the right provided these new faults arise at‘ least

N+M cycles apart. . J&
. ‘ .

Proof - A
It has been shown in the proof of theorem 4.1 that if
the vertical paths are non-touching, the processing array

can always tolerat;\;;§§additional‘fault provided there is a

spare vertical path on the right. If a new fault is

.

- 51 -

detected, a chain of er gignals are generated. When the
srg signal reaches the top row, tge corrlesponding column of
routing cells are set to function as h-type one by one. The
internal input schedule of the processing array is adjust;d
to take care of the new fault. The rippling of the data
d{éﬁ .ouﬁ within N+M cycles (M cycles for the sry signal to
reach {he top row, N-M cycles for the rippling of the data
on the top row, and‘another M cycles for the last vertical
path to take up a new stable route), and a new se£ of 'non-
touching vért%cal paths' is obtained. Hgncé, the proof.

. ’

- Q.E.D.

If the processing cell in the systolic array contains
lpcal storages (state of the processor), then the-temporary
fault should be treated as if it were a new permanent .fault
(remain in -a faulty state) _uptil the, array 1is ré-
initialized.. The reason for this is ‘that), when the data ar?
re-rouged, the 1local storgges shéuld also be routed to the”
new computation site. When the tempo{ary fault disappears
later, the original configuration cannot bg¢ restored insta$~
taneousl{’as it requires bringing back the local storages to

the original cell and re-alignment of future data, features,

not supported by the architecture presented.

. 52 -

Chapter 5

PERFORMANCE EVALUATIONS

The performance of the distributed reconfiguration
approach is studied from both theoretical and practical
pointh of view. First we try to answer the following two
questicns: K
1. fault tolerance: how many faults, regardless of their

locations in the faulty array, are definitely tolerable?
2. Cell redundancy for successful reconfiguration: asymp-

totically how mﬁch cell redundancy 1is needed in the

faulty array to ensure successful reconfiguration?

AN

\?he qbovg two fault-tolerance cha;acteristics of two static
econfiguration approaches, namely, the classical row-column
elimination approach [7) (referred Lo as RC-cut), . and Kung
and Lam’s approach [19) (referred to as RCS-cut), have been
‘'studied in depth by Lam et al {24]). The results derived 1in
‘[24] will jbe extended to our distributed reconfiguration
approach. Secondly, practical comparison of the distributed
reconfigurafion approach with the RC-cut and the RCS-cut
. approaches that dérive the data paths with the global
knowledge of' fault distribution is studied via computer

simulation.

. 53 -

>

»

5.1 Fault Tolerance

<
In this section, we want to extend the lower bound

results on the number of faults that are definietly toler-

able reported in f24] to our distributed reconfiguration-

architectures. In particular, we will consider reconfigur-
ing a 2n x 2n array into.a n x n array.

Definitions:

2. *
1. An array is said to be k-fault tolerant if it can

tolerate k arbitrarily distributed faults.

2,

2. .An array is said to be exactly k-fault tolerant if it is

¢

- k-fault tolerant but not (k+l)-fault tolerant.
e

We will show that both the DRl and DR2 designs are
. { :
exactly 3n-fault tolerant when reconfiguring a 2n x 2n array

into a n x n array.

?

A

Lemma 5.1
\
Any solution of the RC-cut approach is a feasible solu-

tion in the DRl design if the data input sch®dule is derived

by the user based on the fault distribution.

Proof

If the data are input at exactly the same places as in
“the RC-cut approach, then the configuration of Ehe array
obtained by the distributed reconfiguration algorithm will
be the same as ' that of the RC-cut. This is because each

ho&izontal (vertical) path is going to meet every vertical

‘ (horizontal) path at an‘ unused good cell. The two paths

s

D i - 54 -

3 . s
will cross each other right after passing through the cell,

a

'] henée no pairing of paths will occur. Q.E.D.
~J) —— N
, Theorem 5.1 N JV

A 2n x 2n array of type-A cells is exactly .3n-fault
tole;ant when reconfigured into a . x n array using the ,dis-
tributed approach if theé input schedule is dérived from the
fault distribution.,

Proof
'It hés been proved in [24) that a 2n x én array is?
e;éctly 3n-fault tolerant when reconfiqured into anxan
array using both the RC-cut and the RCS-cut approaches.
According to lemma 1, the search-space of the distributed
\ ' approach (with offline analysis) is larger than éhat&of the
RC-cut approach, however, it ;s smailer khan th?t of the .
RCS-cut approach. The proof now follows;since both the RC-
cut and RCS-cut approaches are exactly 3n-fault'tolerant.
‘ Q.E.D.
Lemma 5.2
A 2n x 2n array of type-B cells is 3n-fault tolerant
when!%reconfighred into a n x n array ﬁsing the distribu£ed
approach even if the input schedule is self-genera%ed using

the method described in section 2.3.2.
f)

-

Proof
Suppose”there are 3n faults in the array: The sp row

elimination mechanism can remove the n most f;ulty [OWS cov-

- 55 -
o

¥ \
ering at least 2n faults, leaving behind at least n fault-
free columns which can be detected by the vertical path ini-

tialization process. Hence, 3n faults can always ' be

tolerated. wem e ‘ Q.E.D.

Theoréh Sﬂg

A 2n x 2n array of type-B cells is exactly 3n-fault
tolerant when reconfigured into a n x n array using the dis-

tributed approach with sélf-generation of input schedule.

/

Proof k . . . i

¢ According to lemma 5.2, the array can tolerate at least
. »
3n faults. An example of an irrecoverable 2n x 2n array
having 3n+1 faults (fig. 18) has'been reported in [24]. In
the distributed abproach, thé n most faulty rows are removed
to cover 2n faults in region B. There rémains n+l faults
distributed in n+l cofumns, none of which can share a verti-

callpath with another. Hence, only n-1 vertical paths can

be constructed. ‘ Q.E.D.

5.2 Asymptotic Redundancy Requirement

-

Here we consider the probabilistic reconfiqurability of
the distributed reconfiguration approach. 1In particﬁlar, we
try to establish the asymptotic amoﬁnt of rédundancy
represented by the number of additional cells needed to
ensure successful reconfiguration of a given M x N array

into an x n array. Let F[M x N » n x n] denote the proba-

j— n-1 e n+l ——»f
ro Tr
0 s
' n-1 !
A
0 #
0O o
0O 1 © .
0 1 f
n+l
-
B . 0
0O 1 0 ’
0 0 i ‘

0 : .faulty cell
1 : 'non-faulty cell
All cells not labelled are non-faulty

Pl
+ Fied

Eig. J8 A 2n x 2n irrecoverable array with 3n+l faults

A
4

\ . .
bility of failure to reconfigure a M x N array into a n x n

‘array. It has been shown in [24]) that for the simplified

.

RCS-cut approach in which the horizontal paths are fixed as

the physical rows and the wvertical paths are constructed

such that after the j-th vertical path has been constructed

using the first i columné, the (j+1)-th vertical path

will bg constructed greedily stérting with the (i+l)-th

e

[

column, . .
. Lim F[nm x O(af) »nxmn) >0

n -+ e -

a

For the DRl design, if the input schedule is derived from
the global knowledge of ™the fault distribution, then any

solution of the simplified RCS-cut approach is also a feasi-

i

ble solution of the DR1 design. Hence, O(n3) redundancy is.

asymptotically sufficient for the DRl design.

‘ For the DR2 des:gn, the search space of the vertical
path generation mechanism is larger than that of the simpli-
fied RCS-cut approach. ‘Hence, L0(n3) redundancy is also

asymptotically sufficient for the DRZ‘designl

5.3 Computer Simulation

]

The reconfigurability of a fault& array when using dif-
ferent .reconfiguration algorithhé is’studied via computer
simulation. The‘utilization of fhe array (ratio éf mn/MN)
is ~used as the figure of merit. The performances of the
distributed algorithms described in chapter 2 are "compared
with two othe; reconfiguration élgorithms. Tﬁe four recon-
figuration algorithms are:

l. DRl --‘The digtributed aigorithm descr%bed ~in’ section
2.2. The input data are assumed to be ﬁacked.toﬁards
the top-left corner.

2: DR2. -- The distributed algorithm described in section

3

»

Ry

2.3.

- 2 -

RC -- The classical row-column eiimination' approach
[71. Solving fot‘ the global optimup solution of this
problem is equivalent to the maximum node matching prob-
lem of a bipartite graﬁh [21), which is NP-complete. Iﬁ
the simulation study, we solve for a locai optimum using
a simple heuristic by alternately,-remov%ng the most
faulty row and the most faulty column. See appendix 1
for details of the algorithm.

RCS -- This follows Kung and Lam’s approach [19]. The

program implements the lalgorithm proposed by Li et al

[25). This élgorithm will maximize the number of verti-
cal “paths_ obtainable for a given number of horizontal
patﬁs required. Assume the required working argray size
is m x n. The horizontal paths Hy, Hy, ..., Hp -are gen-
erated successively. Assume H}, H2, ..., Hi.i have been
generated ‘and Hi 1is to be generated. H; will be con-
structed starting from the first (highest). cell in
column 1 of the original array below Hj.31. Hj is then
greedily moved horizontally to the right along that row.
A corre;ponding optimal- set of Gértiéal paths v, V2,
-eer Vp will then be generated. If p > n then the pro-
gram';ill proceed to construct Hj,1; else a different Hj
is geﬁerated by baéktracking along Hi until encountering-
a faulty cell‘at'thch a turn was not taken p%eviously,

and then extending the new Hi by taking a turn' at the

faulty ‘cell. 1If. the backtracking ends at the first cell

-

.‘;‘

@

L. 59 .

v

in Hi, then the existing Hj must be’ discarded and the

[

generaiion of Hi is restarted from the next row. Back-

tracking to Hj.] will be required if all possible combi-
b - ,
nation of H;j have been enumerated. The ¢omplexity of

this algébrithm is o(2*mMN) “here. k is the number of

faulty cells in’ the: array. The performance of .this

1

algorithm is the theoretical upper bound: of the two dis- o

* [}

ﬁributed‘algorithms.

+

For all the four algorithms, a 1local/global optimum is

obtained iteratively -depending on the defined objective. 1In
! N R , .

each iteration, a certain number of horizontal paths, say m,

is assumed, and the\number of vertical paths obtainable is

N . \ . . o)
maximized. For the DRl, the optimum solution i$§ obtained by

extensive enumeration. The value of m is changed from 0.7M

k]

(this value is determined by some test runs of the program)

-

to M. and the highest score (value of mn) is recorded. For

-

.the other three algorithds, the program starts with an ini-

tial guess .(close te optimum), say ml, based on some test

runs of the program. If the,kcore of the case m = ml+l is
higher than that of m = ml, then the search’will continue by
iﬁcreasing m; else the search will continue by decreasing m.

The program stops when the\fcore‘of‘tﬁe current trial is

" less than that of ‘the previous trial.

Faults are randomly injected into the array with two

1

.

distribution functions: v

»

(1) Uniform

12)

>

Two\uniformiy distributed random ‘numbers . ranging -
from 0 t? 1l are genéraﬁgd. The x- and y-coordinates ofi
the fault lacation is obtained by ‘scaling the two random

'numﬁers by N and-M, respectively. 1If the ceil'locatiqn

obtained has a{feady been marked faplty, then 5noth;‘

location w;ll.bé generated using .the same procedﬁre. (‘

Clustered

Each cluster of faults is generated ‘as follows : “the,

' !

cluster center (xq,yQ) is ggnerdted as a uniformly dis-

tributed fault. .The other' fiwlts are generated with

»

respect to the cluster ceuter using the polar method. .

‘Let r be the distance from the cluster center and‘e' the

angle with the x-axis. Then the fault. location is
determined by ‘ C
. x'= xp + T E:oset - e

- Ty o= y0‘+,r sin®
< .

wvhere 6. is a uniformly distributed random nﬁmbér'ranging

from 0 to 2rm and r is ¥ Gaussian distributed random

number with the mean value prbportional to the square

root-of the cluster size. ' The.routine to generate r can

_be found in appendix 2. If the determined location is

" in the same way. To avoid getting a very large cluster,

already marked faulty or " falls outside the physical

H

array then it will be replaced by another. one gonerated

L

the cluster size is limited to 40. "If the. number of

faults to be genékated is greater than 40, then two
I F Lol ' .

~

2Ry

\
i

u - M

“ -]

¢

P

- 61 -

equally sized clusters (with distinct ‘CLUéter centers)

are geherated. |

Example fault distribution patterns can be found in
appendix 3. For dach c;;e, fifty different fault distribu-
tioﬁ Eatterns are {simulated and the mean ;alues of the pér;
formances are §hown in the plotsvin figs. 19 to 21:. The
variances of the data samples of figuré 19 are shown in

tables 5 and 6. The simulation results are summarized bﬁlow:
4 .

-

1. The perﬁgrmances of the two digtributed approaches when
regonfiguring a- 32 x 32 array are close tc that of the
ﬁés for both uniformly distributed and clustered faul;s
‘Lfig. 195. -

2. As expected, RC Jhas ‘better performance when dealing with

clustered faults (fig. 19), however, it is stiil much
inferior to the-other three algofithms. Note tha(i the

-~
difference in performance pf the RC as compared to the
others increases with the array size.

3.- One interesting finding 1is that all the algorithms,
excépt DR1, have. better performances whfn restructuring
rectangular arrays than the square 'counterparF (fié.
20). The exception of DR1 is mainly due to the sensi-

A
2 ¢ . Y
tivity of the algorithm to the faults in the top left

) | :

4. Fig¥\21 hows the asymptotic behavior of DRl, DR2 and
B . J . .

guadrant.

RC. ofr a given fixed percentage of faults, the two

/gief?ibuted aléorithms,are found to have a steady utili-

, . e

[.
) ‘ . / —~
- ' q

o

44

- 62 -

zation as the size of the array increases. No similar
t;énd is observéd for the RC. The simulation res@lt
seems to -imply lhat O(nz) redundancy is suffici;nt to
ensure successful reconfiguration, although s%ch“ a
theoretical bouné has not been obtained.

~) .
when comparing the two distributed algorithms, DR1 has a

more flexible routing strategy than DR2 (fixed horizontal
paths). However, simulation reveals that confining the hor-

izontal paths does not‘affept the performance significantly

so long as the vertical paths are reconfigurable. Moreover,

DR2 has the following advantages over DRl: . .
1. Self-generation‘of a good data input schedule.

2. Little sensitivity to the fault distribution.

3. Less ;e@undancy requirement to ensure, the coverage .of

: >
transient faults.

+ 90
80.

70

60

50

40

30

- 20

——

2 fault v

Fig. 19a Performances of the four algorithms when restructuring

a 32x32 array with uniformlj distributed faults.

A

90
80
70
60
50
40
}ao

20

X Utilization

$y -

RCS/DR2

5) 7 8

%2 fault

Fig. 19b Performances of the four a

lgorithms when restructuring

a 32x32 ar}ax)with clustered faults.

! - 65 - o

* \ A

$fault . - . T
'~\\\\\\\\\ 1 2 3 4 5 6 7. | 8
algorithm \

DRI |10.5 |11.4 [19.3 |27.3 | 24.5019.0]25.3] 23.5
et TS OISR PP USSRV e SR S R S —

DR2 |6-8 [7.0 |10.8[10.2|14.511.0|16.0]13.3
I ahd) il Ml Mabeb et

RC 7.3 |10.6 |15.3 [21.9 | 29.9 | 37.437.0] 23.0
- - S - e S e D Bl “

RCS 3.9 |8.5 5.2 [12.1|11.4{8.6 |12.1] 14.5

Table S5 Variances of the samples obtained in the simulation

of the performances of the four algorithms with uniformly

distributed faults. v
sfault : 7]
| 1 2 3 4 5 6 7 8
aldorithm
DR1 6.1 9.5 11.2f 43.1}] 45.4} 50.1| 60.3| 50.7
— . — ._v_ JRSPSEEN EPINEIN YDV (NP S e —— J—
DR2 4.6 5.5 5.5 [-21.6]| 31.1} 35.9] 34.5| 36.6
RC 5.4 13.7116.6 | 33.2| 32.2} 37.8| 49.7| 46.5!
RCS 3.17 | 3.98~- 6.9 | 26.4| 25.1| 36.4| 36.6| '41.5

Table 6 Variances of the samples obtained in the simulation

of tﬁe performances of the four algerithms with clustered
faults.

%Z Utiljzation

4
Uniform fault distribution

90 ,
12 fault

80

70 ' , : ey
DR2

60
50 ‘ BZ'f?ult

40

20

—
v 1 2 3 A aspect ratio

Fig. 20 Plot of performances vs the aspect ratio
of the array with fixed array size MN = 1024,

.
e .
Y ——

% Utilization. o

4 - 12 fault,

90 Uniform fault distribution

DR1/DR2
80 2

70

60

50

40

20 40 60 80 100

Array dimension (NxN)

Fig. 21 Asymptotic behaviour of DRI, DRZNAnd RC

with fixed percentage fault,

Chapter 6

EXTENSION TO UNIVERSAL SYSTOLIC ARRAYS

The concept of the distributed reconfiguration apptoagh
described in chapter 2 can be extended to universal systolic
arrays. In a universal systolic array, three data streams,
namely, horizontal (Hy;, H2, ..., Hm), vertical (Vi, V2, ...,
Vn) and diagonal (D3, D2, ..., Dm;nfl), meet at a cell.
Consider the type-C cell shown in fig. 22. The diagonal out-
but is confined to flow diagonally whereas the horizontN
(vertical) output can pass through a physical horizontal
(vertical) or diagonal edbes, that is, the diagonal paths
are fixed but the horizontal (vertical) paths are reéqggj-

gurable. In each cell, there can be at most one valid hor-

izontal (vertical) input at any one time.

Fig. 23 dépicts a restructured array of type-C cel}s.
The horizontal paths are numbered top to bottom, the verti-
cal paths are numberea left to right, and the diagonal paths
are numbered bottommost diagonal to topmost diagonal. The
following facts can be observed.
1. The horizontal path Hj should meet the vertical path Vvj
and the diagonal path Dp+j.i at a common good cell.
2. The first active cell (where computation is -performed)
in Hj should be on Dpy-j+1 and the fig;t active cell in

’ -

V4 should be on Dp4j-1-

- 69 -

]
) h3 o
4 -
Fie. 22 Type—-C cell architecture L
- v v)
1 D ' 2 D 3

—<>~®—<>——® R
| ~®\® ® ®\D—'

T \

A restructured array of type-C cells

Fig. 23

- 70 - :

§

3. The diagonal path Dj should contain at 1least min{i,

__Min;i} good cells in it.

L

. Consider reconfiquring a M x N array of type-C cells
into a m x n array. The set of diagonal paths are first

identified based on the requirement that Dj should contain

at least min{i,:m+n-i} good cells. The external input port

for the horizontal path Hj (vertical path V5j) will be the

same as thail of Dp-ji+1 (Dm+j-1) . The routing strategy of

"the horizontal and vertical paths is as follow.

1. If there is only one path entering a cell, 'it will be
routed go the right, downward or diagonally depending
upon whether it is a horizontal, vertical or diagonal
path, respectively.

2. Hj meets Dy only. Hj will be routed diagonally along
Dk.

3. V5 meets Dk only. Vj will be routed diagonally along
Dk . ‘ .

4. When Hj meets Vjy and Dy at a common good <cell, the
corresponding computation will be performed.- The three
paths Hj, V5 and Dk will be routed to the right, down-
ward and diagonally, respectively.

5. When Hj meets V5 and Dy at a common faulty cell, the
three'paths will be roudted all together along Dk to find

) a good cell to perform the required computation.

-

(

The above routing function only requires local informa-

tions such as the status of the cell (good or faulty) and

¥ -
24 . ’ i

SR B

-

the number of data paths entering the cell. This routing
function can ‘“be implemented in the same way as for the 2-
Baata flow systolic arrays. Detailed™studies regarding the
automatic selectién of a gbod set of diagonal paths and the
performace of thé dist}ibutéd reconfiguration approaéh when
applied to wuniversal ‘systglic array ar; left to future

research.

SN

. Chapter 7
SUMMARY AND CONCLUDING REMARKS

L3

A distributed reconfiguration approach based on 1local

invariants technigque 1is presented. The routing of data

paths is done lpcally, and intelligence is incorporated to

preserve the invariants. Two cell architectures are pro-
posed and studied. 1In the firstldesign (DR1), both the hor-
izontal 'énd vertical paths are*dynamiéally reconfigurable.
In theusecond'design (DR2), the routing of the horizontal\
paths is fixed but the vertical paths are reconfigurable.
Routing networks made up of/ two types of simple routing
cells can be used to interface the processing array to the
external world, so that data can‘be sent in and collected at
fixed I/0 ports at fixed times independent of the internal

configuration of the array. The theoretical measures of

performances of the two designs are listed in table 7.

_Comparison of the distributed approach to the RC and RCS
is studied via computer simulation. The simulatién results
are summarized below:

a

I. Performances of the two distributed algorithms are com-

parable to that of the static Rcs‘method where global .

fault distribution is used to derive the reconfigura-

tion.

4

2. Simple row-colpmn elimination (RC) method is inferior to

- - 73 -

the other three algorithnms. .

3. Except DR1, the reconfiguration algorithms have ' better

per formance when restructuring tectangular arrays.. -
- \Y

q. O(nz) rédundanby is apparantl& asymptotically sufficient -

to ensure successful reconfiguration for the two (distri-

buted algorithms. This is a much tighter 'bound than

what we'can prove theoretically. L
¥

The performances of the twb designs, DRl and DﬁZ are
comparable, butl LR2 has' three desirable properties: (1)
self-generation of -nput schedule; (2) little sensitivity {o
fault distribution; and (3) less redundancy requirement to

| &

tolerate transient fault.™

4

T e R ——— e e 1
Performance DR1 (; DR2 .
3n-fault tolerant yes, with yes

- offline analysis '
Asymptotic cell ' 0(n3), with O(n3)
redundancy "offline analysis
required. -

’ simulation 5 simulatjon 2
indicates 0(n°) indicates O{(n“)
Worst case m spare rows ’ one spare
redundancy to and one spare column
cover one column
additional fault ‘

Table 7 Theoretical measures of performances of DRl
and DRZ2. .-

<r

N
R

7N ‘ E

7.1 Fdture Research .
i3 . ‘ .

The effectiveness of the distriputed réconfiguration

, 'abproach ldeﬁenas on how good is the fault detection scheme.

v rraditional fault detection approdches such as duplicate-

and-compare, coding,iand recomputation with shifted operands

193
require large amount of hardware and/or time overhead. To

=4 b T . ; X \
reduce the overhead cost, fault detection should be done at -

.the functional levél..Purthér research in° developing high

v

(funciional) ,levei fault modelg that can agcurately capture

.the faults at lower (physical) level is~“required.

W The di;triﬁuted reconfiguratioh appr®ach has been demon:
strated for wuni-directional 2-data -’ flow systolic arrays, " .

“hoWever, it can be extended to ':festructure universal sys-

tolit arrays. One major problem to be solved is to develoé

~

.

an aptomatic mechanism to generate ihe zet of diagonal
N : . ~ . -

: . I 7 ’ ! ’
AN a Paths.)) ., o)
. e . ﬁ‘ ! ! /‘ b . - ‘ -—\, -
' ' Th ibuted- algorithms described in chaptew 2 only

for dJni-directional Z-dété flow systolig arréys.l

+ [} -

‘Extending the algorithm for b}-dirgctional data flow sYé{

tolic arrays will be an interesting prablem.

w s

T
REFERENCES ~

Jacob A. Abraham, W. Kent Fuchs, "Fault and Error Models

for vLsI", Proc. IEEE, May 1986, pp 639-654.

e
)

M. J. Ashjaee, S. M. Reddy, "On Totally Self-Checking

Checkers for Separable Codes", IEEE Trans. Computers,

Aug. 1977, pp 737-744. .o .o

\ - .
A. Avizienis, "Arithmetic CoQgg: Cost and Effectiveness
Studies for Application in Digital Systems Design", IEEE
Trans. Computers, Nov. 1971, pp 1322-1331.
grithviraj Banerjee, Jacob A. Abraham,'“Fault Character-
N 1 4

ization of VLSI MOS Circuits", Intl. Conf. Circuits and
%%mputers, 1982, pp 564-568. - -

\
P / M
M. Ball,;H. Hardie, "Ma39rity Voter Design Considera-

tions for. TMR Compu£er§h, Computer Design, April 1969,

pp 100-1Q4.

v

Yoon-Hwa Choi, Miroslaw Malek, "A Fault-Tolerant VLSI

Sorter", Intl. Conf.'qn Coméutér pésign; 1985, pp 510~

513 |
/

J. A. B. Fortes, C. s..Raghavéndra, "Gfacefully Degraq-
. - 4
able Processor Arrays", IEEE Trans. Computers, Nov.

1985,&p§‘1o33-1044. ' -
' 3y)
[. . R .
D. Fussell, ‘P, Varman, "Fault-Tolerant IWafet\Scale

Architectures for VLSI", 9th 1Intl. Symp. on Computer

i
i

; o,

10.

11.

12,

13,

14,

" Seminumerical Algotifhms, Addison Wesley, 1973.

.15,

16.

- 76 -

Architecture, 1982, pp 150%198. \.

D. Fussell, P. Varman, "Designing Systolic Algorithms
for Fault-TbleraTce", Intl. Conf. Computer Design, 1984,
pp 616-622.

i

‘. !
Kuang-Hua Huang, Jacob "A. Abraham, "Algorithm-Based
Fault Tolerance for Matrix Operations", IEEE Trans. Com-

puters, June 1984, pp 518-528. . oo

N

N. K. Jha, J. A. Abraham, "Techniques for Efficient MOS
Implementation of Totally Self-Checking Checkers", 15th

Intl. Symp. Fault-Tolerant Computing, 1985, pp 430-436.

Jing-Yang Jou, ;}%ob A. Abraham, " Fault-Tolerant Matrix
/
Arithmetic and Signal Processing on Highly Concurrent

Computing Structures", Proe. IEEE, May 1986, pp 732-741.

Jung-Hwan Kim, Sudhakar M. Reddy, "A Fault-Tolerant Sys-
tolic Array .Design Using TMR Method", Intl. Conf. on

Computer Design, 1985, pp 769-773.

Y

D. E. Knuth, The Art of Computer Programming' Vol. 2:

[l

Israel Koren, "A Reconfigurable and Fault-Tolerant VLSI
Multiprocessor Array", Proc. 8th Intl. Symp. Computer

Architecture, May 1981, pp 442. ’ \

A
Israel Koren, M. A. Breuer, "On Area +and Yield Con-

siderations for Fault-Tolerant VLSI .Processor Arrays",
'

I

'

e .

v

17.

" 18.

19.

20.

21.

f

-~
-
B

77 -
IEEE Trans. Computers, Jan. 1§84, pp 21-27.

Israelr Koren, D. K. Pradhan, "Introducing Redundancy

into VLSI Designs for VYield and Performance Enhance-

‘ment", Proc. 15th Annu. Symp. on Fault-Tolerant Comput-

ing, 1985, pp 330-335.

H. T. Kung, "Why Systolic Architectures?", IEEE Com-

puter, Jan 1982, pp 37-46. g , .

H. T. Kung, Monica S. Lam, "Wafer-Scale Integration and

Twolevel Pipelined Implementations of Systolic Arfays",

.. Journal of Parallel and Distributed Computing, ' Aug.

1984, pp 32-63. o

S. Y. Kung, D. D. Souzé, J. T. Johl, "On Fault-Tolerance
. \ ‘

in Array Processors", Intl. Conf. on Computer Design, .

1985, pp 764-768.

Sy Yen Kuo, W. Kent Fuchs, "Efficient Spare Allocation

in Beconflgurable Arraygf 23rd Design Au#omation Conf.

~§?_4§36, pp 385-390.

22.

23

24.

Frank Thomson Leighton, Charles E. Leisgrson, "Wafer-
Scale Integration ?f Systolic Arrays"”, IEEE Trans. Conm-

puters, n%y 985, pp 448-461.
\

. P. K. Lala, Fault Tolerant and Fault Testable Hardware

Design, Premntice-Hall, 1985. - j

. {(~
C. Lam, H. in Li, R. Jayakumar, "A study of Two

25.

26.

27,

'28.

29.

30.

- 78 -

. Approaches for Reconfiguring Fault-Tolerant Systolib

Arrays", to appear in IEEE Trans. Computers.

H. F. Li, R. Jayakumar, C. Lam, "Restructuring for

'Fault-Tolerant Systolic Arrays", submitted to IEEE

Trans. Computers, also available as Technical Report:

CCSD-VLSI-86-]1; Computer Science Dept., Concordia

‘University, Montreal, Canada, 1986. -

H."F. Li, D. Pao, R. Jayakumar, "Dynamic Recoﬂfiguration

H

for Fault-Tolerant Systolic Axrays", Proc. Intl. Conf.

on Parallel Processing, 1987, pp 110-113.

~

H. F. Li, D. Pao, R. Jayakumar, "A Transient-Fault

Tolerant Self-Reconfigurable Systolic Array and Perfor-

mance Evaluations", submitted to Journal of Parallel and '

Distributed Computing; also to appear in Can. Coxnf.

VLSI, oct. 1987, as "A Transient-Fault Tolerant Self-

.Reconfigurable Systolic Array and Related Performance

Comparisons".
v

Tulin Erdim Mangir, AlgirdaswAvizienis, = "Failure Modes

"for VLSI and Their Effect on Chip Design", Intl. Conf.

Circuits and Computers, 1980, pp 685-688.
&

C. Mead, L. Conway, Introduction to VLSI Systems,

Addison-Wesley, 1980.

Janak H. Patel, Leona Y. .Fung, "Concurrent Error Detec-

.{,b ¥

]

31.

tion in ALU's by Recomputyng with Shifted Operands",

IEEE Trans. Computers, July 1982 589-595.

!

bhiraj K. Pradhan, "Fault-Tolerant Architectures -for

Multiprocessors and VLSI systems", 13th Intl. Symp.
Fault-Tolerant Computing, 1983, pp 436-441.
}

S 32.\D. K. Pradhan, Fault-Tolerant Computing Theory and Tech-

33.

35.

36.

niques Vol. 1 & 2, Prentice-Hall, 1986.

David "A. Rennels, "Fault-Tolerant Computing -- Concepts
and Examples"”, IEEE Trans. Computers, Dec. 1984, pp

1116-1129.

4

A. L. Rosenberg, "The Diogenes Approach to Testable:

Fault-Tolerant Array of Processors", IEEE Trans. Comput-

ers, Oct. 1983, pp 902-910. .

Mariagiovanna -Sami, Rento Stefanelli, "Reconfigurable
architecture for VLSI processing arrays", National Com-

puter Conf., 1983, pp 565-577. ' o

\
John Wakerly, Error Detecting Codes, Self-Checking Cir-

cuits and Applications, Elsevier North-Holland, 1978.
o : e . *

~ . ~

c

. 80 -

Appendix 1

&
o

A

Two queues are used to store the number of rows and
number of columns, respectively,l that contain faulty

cell(s). The two queues are sorted in descending order of

[N

the number of faulty cells in the row/column that have not
been covered. The procedure ARCE will remove the most

faulty row and column alternately. Suppose m rows are

.

required.

" ARCE() . i |
{ X 6
initilaize the row_queue and column_gqueue;

’ e I~
while there -is fault not yet covered

{
| if number of rows left > m
" remove the most faulty .row;
ﬁpd;te column_queue; ,

update number of faults covered;

’; . if column_queue not empty ' “ S

remove the most faulty column;

hpdste row_queue;

update number of faults covered; . -
y o . -

return;

Jo "

Appendix 2

The Gaussian distributed random number r is generated

using the polar method due to Box and Muller [20]). Let Ul
, Oy :

and U2 are uniformly distributed random number ranging from

0 to 1. The number r is generated as follows:

double generate gaussian()

{

double Ul, U2, V1, V2,-S, Z;

Ul = random(); -) . .
U2 = random();
Vi=2.0*Ul -1.0;
V2 = 2.0 * U2 - 1.0;

S = V1l *'V1 + V2 * V2;

} while (S >= 1.0);) ' |

Z = sqrt((-2.0 * log(s)) / 8);
‘bV‘l = V1 * Z;
r = offset + V1 * soale; ~ .
return(r);
) ;
. . . - o : .

offset is the expected mean value of r where

' offset = 0.8 * sqrt(cluster _size) -~ -
scale is a numerical parameter used to adjust the .variance
6f the samples, and it is set to 3.

<

>
i ¥

BT

i

¥

<
s
. -
~
.
¢

L - L] - . L] Ll L] - Ld L] -
L] . L] L * L] L - . L] ' L -
L] - . L2 L] - » L] - - L -
o 4 o 2 4 & 4+ e s e e e
. L] L] - . L] » . L L] . L]
L 2 . .\ . L] - L L] L 2 L] . L]
L] L] L] L . L] L) L] - - ; L]
L] . L] L] . . L] - L] - - *
.- "9 - . [L) . . - . L] *
- - . L - - L] - - - . .
L] - . L . . . LJ . . . L
L] A L] . . L] -
- . L] * ' * » "’ . L) L] .
B
L]) - . - L] . - . L) L L] -

.
L] . . . L] . - - . . » -
- L] L . . L] . L . - L] []
* . . . * » -] . - . .
L] . . . L 9 . .[. » - L] .
LJ [L L] L] - _ * - . - L] .

- ’ .
L L] L] . . L] - . L] - - -
* e e s s s s s s e e s
. - * o« 0 e - .
* s s ¢ s 8 s e+ e o e =
» L] l. L] - L] -
. » . . - L] - * L] Ll - -
- - . . . [. . - - . -
" . L] . * . L] » . L] - -
* v 4 s s+ s s & e e
. - L] - . . . L] [[] L] L
L . L) L] L] . .* . L] - . -
¢ * s s s s s e e+ e &
[
.
[N

© - 82

i

~Appendix 3

N

e o o o
e ¢ e o
e &+ e .
o o ‘s o
¢ o e =
é . . .
.
*« e e @
« s & &
t
e & s
I T
e ¢ s
e & . .
*
. . .
« . %,
. ¢ e e
e« s e .
* s 4 e
¢ e e
.
e & e .
¢ s e s
L
4
¢ e+ e w
e s s+
L
\ N
. e *,
" e e 9
e 4 e »

- - * *
o e e
. . s e
. e e

L] . . .
L] - . .
- - * -
¢ & s
. * . .
. . . .
.
e e o o
* *» . -
L] L] . L
L] L] . .
e ¢ & .
- - N . .
« s+ e .
. - L] .
« s e e
. - - .
e s e
L * . .
« e e
e o e »
. . . L]
. - L] .
* s e e
e e o o
L] L] ; .
- - - .
« o e s
.
!

number

’

* s+ & & e
e ¢ o e o
¢« e+ s e .
* » e s & o+ .
* & o e o o = .
* e o e s e & o
e e & o e s e o
. 7 ¢ & e s e e ’
S R A T Y
e s e s o, . .
® e s e o s e .
e s e ::. . ¥ . o
e & &+ e s s s e
N
. e ¢ o e
. e s e e
. ¢ 4 e e
" 4 s e l.
. e &« s e
e ¢ s s e s+ e s
« * . . R
LI e« & v o
¢ ¢ e s e e o =
. e * ox N
LI L T .
e X LIS
. . - . ‘*. Y . .
e e+ s o & e .
* o s+ e e e @ .
* + s+ e e+ e e o
e & e e e e+ o .

s o

S ‘
.
.
-f
[}

- .

' .
e s @ . . 0 . s e e o o . e . e e o . o
s o ¢ - « s . . e e . . * - L] . -(. - . »
. e e - . . . o . . . - . . - *« s o . s 0
. . . . * " L] . - . - L] . [L] . . « % - - . .
. s . LI . . LA . . . - LI} . * e @ - 0
. o . . e o e - o e 3 . - « o o - LI)
- o @ . e s 3 * s » - s« - o' « a s e - .
. . - . ko * . * * ® L] * L] - . .
" .
. s e . . - . - . . . s - « ‘o @ . « o
e - . . s - * . . - . ¢« s - . * . . . 0
LR N) L] . e . *’ . " . e v - * . - . ¢« » - . 0
k*. . e - . - w . * - . - . » - . . L L . L]
- " - w . - . . - . . . - . .

." . . . - [) - . . LN] . - LI

bt g
s s » . * » . . s - . 9 . + . . « e . . . =
LI) . o . T . . e - “« . - LI} . . « . . . -
- s e » * e - . . . ¢« e - 'o .
L - . e - . . v & ¢« w - . . . - [- . .
¢« s - . 0 o . . » - . e - * . . « e e - e e
e s » - - . . - o o - « e -) . . . » . * o
e e+ e - - - . s e - DY - + e L3 . ¢ » . LI}
« o . - . . - - TR . * e . s
s o+ e - e 0 . . & s - L] - ¢ v L] * s & - . 8
e + e - . . - - . ‘. . e - + e ., o o . ¢ e
L . . - . . - - . - - . . - . . - . . . » . .
e a2 s . . e . - . . - ¢ e e > s . . * e . s »
n’ « e . . e - e o+ = . . . - . . - . v . 2 . . .
« o . - . e - e o . . T - . -] s
¢« ¢ e e o 0 . « o e - * v - . e . ' @
.- LI = e ¢ . LI T } .) - L) - e e e - .
. & s - > ¢ « ¢ = . « e - e o . . .« . . s
¢ - . 0 - . * » . o" . [} . . L] . LI]

‘number of faults = 30; cluster size = 30.

» e } I)

s

<

.

.

i{

* o

faults: number

84

* ® e &
« o . e
« 3 . e
. - .« e
s . e
e * s e
s « s
. . .
¢ . ¢ o
¢ e . e
. e « .
. * s e
s LI
s . . e
. . . .
[. .
. e « o
. (o . *
. - . ¥
. . * o,
. . * .
. . ¢
. . « .
. . .
1}

. e . .
. . « e
. . [
. . * o
. . . s

faults-

. .
« »
« .
e o
¢« o
. .
e o
« »
« s
. .
. .
. .
« .
. e
« .
« .

*

*
. .
- e
. e
. o.

. .
. .
*
. .
. -
. »
. .
L] .
. .

61.

4

L]

*

L B I I B AR A R

e s o s s ¢ 3 o o
e o & & s = e s =
e & s o 5 s & ¢ @
L 3 - . . L] - 3 - .
e & . L » » . .

.
L]

.v
x Xk k %

L]

L

e & s ° e
. e« e e
. & o e o
. . s e
s« e s .
e ® . 8 e
L N e
e » e & o
LY LI I ¥
¢ s & &
a e e » s
¢ e e b
.« s & o
s s s s e

L) o« o
. e * & =
. o . o .
* s s =

k3 . ¢ s .

DR ST S S

&* D T
N

e s e e o

e« e e s .

L T

: number of faults = 61; cluster size = 31.

.

Clustered faults

