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ABSTRACT

A Family of Real Cubic Fields

Fares Fares

This thesis deals with a family of real cubic extensions K,/Q where ? is a rational

integer. This family is paramatrized by the cubic polynomials
fe=a® =3t +t+ 1)z~ (2 +t+1)(2t +1).

The ring of integers Ok, of K, is computed for all ¢ and the unit group U, is obtained
under certain conditions (when O, = Z|[a,]). In the general case, a bound on the
index of a subgroup of U, is given. Also we investigate the arithmetic invariants of

the family K, and get bounds for the regulator and the class number.
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1. Introduction

Consider the polynomial
f=2"-3¢z - o' € Z|[7)[x]

where ¢ =72+ 7+ 1, ¢' =27+ 1 € Z[r] and 7, = are indeterminates. Denote
by a one root .of f in Q(7) the algebraic closure of @(7) and let K = Q(7)(a).
For t € Z, ¢:, 1, ft and a, will refer to specializations of ¢, ¢', f and a at 7 = ¢
(hence fi(a¢) = 0) and let K, = Q (c).

We list certain properties of f:
Proposition 1.1. f is irreducible over (), and [K : Q(7)] =3.

Proof:  For all rational integers ¢, ¢; = 1 (mod 2), and ¢}, = 1 (mod 2),
therefore f; = 23 — 2 — 1 (mod 2). The latter polynomial has no linear factors in

Z|2Z, hence f, is irreducible over Z and hence also over @ for all ¢. 1

Proposition 1.2, K,/Q is an abelian (cyclic) extension for allt. In particular,

K, is a real field.

Proof:  The discriminant of f; is (9¢¢)?, which is a perfect square. It follows
that the cubic extension (K:/Q) is a Galois extension for all rational integers ¢. It

is also abelian since its Galois group has order 3.

Proposition 1.3. (i) ¢; is not divisible by 9 for all t € Z, and ¢; is divisible by
3 if and only if t =1 (mod 3).

(ii) ¢} is divisible by 9 if and only if t = 4 (mod 9)

(iii) ged (¢, 1) equals 3 if t = 1 (mod 3), and 1 otherwise.
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Proof:  The congruence ¢, = 0 (mod 3) is satisfied iff ¢ = 1 (mod 3), but
¢t # 0(mod 9) for t = 1,4,7 (mod 9). Thus 9 does not divide ¢, for all ¢ and
(1) follows. To prove (ii) consider the reduction of ¢} modulo 9. Finally, (iii)

follows from (i) and the observation that 4¢p, — ¢22 =3. 3




2. Ring of integers of K;

Denote by Ok, the ring of integers of the number field K, = @ (o).

Proposition 2.1. If ¢, = 3%°p;™ ...p,™*, where 3,p1,...,p, are distinct primes,

ng,M1,...,ns € Z, and & is disc (K,), the discriminant of K,, then for1 <i < s
n; # 0 (mod 3) implies that p;|5,

and

t=1(mod 3) and ¢ # 4 (mod 9) imply that 3|6,

Proof: Since fi(a;) = 0 we see that o; € Ok, and that o} = 3¢, + ¢4

Taking ideals in Ok, ,
(@) = (¢:)(3cxs + ¢.). (1)

Let n; # 0 (mod 3). Take q = p;, where 1 < i < s, and let Q be a prime ideal
in Ok, above g (QN Z = ¢Z), with ramification index e. Q divides (¢;) implies
that Q divides (a:). But g does not divide ¢} (Proposition 1.3), thus Q does not
divide (¢}) (otherwise, QN Z = qZ would include (¢}) N Z = ¢,Z) and hence Q

does not divide (3a; + ¢;) (3a: € Q and ¢; € Q). In terms of Q-valuation,

3VQ(O£¢) = VQ(¢t) (2)

where VQ(ag), VQ(¢¢) are the exponents of Q in the decomposition of (a;) and (¢;)
into primes in Og,. But UQ(qSt) = eni. Then by equation (2), 3 does not divide
n; implies that 3 divides e, and therefore that ¢ ramifies in Og,. This proves that
in this case, g divides §; the discriminant of K.
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Next, let ¢ =1 (mod 3), ¢ Z 4 (mod 9), then both ¢; and ¢} are divisible by
3 but not by 9, and so ng = 1. Let U be a prime ideal in Ok, above 3, with

ramification index e3. Equation (1) becomes

() = (8Os + 2)

Since U divides a; and does not divide %i, U does not divide (a; + 93-;-) Hence
3vyy(ae) = es + e3 = 2eg, thus 3 divides e3 and therefore 3 ramifies in Og,. This
proves that 3 divides 6;.

The next proposition produces a Z-submodule of Ok,, whose index is deter-
mined by Proposition 2.3. Let ¢, =3"°p;™ ... p,™, where 3,p1,...,p, are distinct
primes, and no,...,n, nonnegative integers. Write n; = 3k; + r;, where r;, k; are

natural numbers, 0 < r; < 3and 1 £ ¢ < 3. Note that ng is either 1 (if t = 1

(mod 3)) or 0 (otherwise). For 1 < i < s, let

i = 0 ifr; =0 .__{1 if t =4 (mod 9)
! r; —1 otherwise L0 otherwise.

Thus

. _f0 ifn;=0,1(mod 3)
=11 if n; =2 (mod 3).

Proposition 2.2. (i) é; = (:/3%pke ... pkn) and ¢} = (aF /3notiopZhitin  p2kitiny
are algebraic integers.
(ii)  1¢ € Og, (n € Z)implies that n = £1

1¢i € Ok, (n € Z) implies that n = £1

Proof: If w € Og, has a minimal polynomial h(z) = 23 + maz? + myz + my ,
where mo, m; and my are rational integers, and if a € Z , then (w/a) € Ok, if

4




and only if a divides m3, a? divides m; and a® divides mg. Now since a; has the
minimal polynomial z° ~ 3¢,z — ¢.4}, it follows that §t € Ok, if and only if 27|¢:¢}
and 9|3¢;. This is equivalent to 3|¢; and 9|¢;, which is equivalent to ¢t = 4 (mod 9)

Also, &t does not belong to Ok, for any t since 9 does not divide ¢;. Hence,

% € Ok, ifandonly if t =4 (mod 9) (3)
& g0k, foralteZ.

Taking g to be a prime different from 3, then for m € Z , ;"-,,‘; € Ok, if and

only if q3"‘|¢,¢’ and qz"‘|3¢¢. Thus
t
=L € Ok, if and only if 3"‘|¢ (4)
m K, y q t-

Similarly, a? satisfies the minimal polynomial : =% — 6¢:2? + 942z — ¢,?¢2. Con-
sequently, '—’g‘:- € Ok, if and only if 3|¢; (since 3|¢; if and only if 3|¢}). Also

fé €0k, ,me€ Z, m>1if and only if m =2, 3|¢;, 9|¢,. Hence

%:- € Ok, if and only if £ =1 (mod 3)
;—,,:.-EOK, ,meZ ,m>1 ifandonlyif m=2andt=4(mod?9).

For q a rational prime different from 3, m € Z
of . e 3my 12
o € Ok, if and only if ¢°™|¢;. (6)
In the above computations, we've used repeatedly the fact that ged (¢, ;) = 1 or 3.
By equation(3) a:/3% € Ok, and a;/9 € O, for any t € Z. Also equation
(5) implies that 3;:-;;3 is an integer (since t = 1 (mod 3) if and only if ny = 1,
and ¢t = 4 (mod 9) is equivalent to ng + jo = 2). By equation(4) we have that for
m € Z and p; one of the primes of ¢; with exponent n;, 1 < i < 5 a;/p™ € Ok, if
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p}™ divides ¢, thatis 3m < n; =3k; +r; orm < k; + 3. Therefore, ag/pf" is an
integer. Also by equation (6), we have that -:;'1- € Ok, is equivalent to 3m < 2n;.
This is true if and only if m < 2k, + 3—? Hence,

Sk €0k, ifm=0,1
;?%‘fneox, ifri=2

Therefore,

2

oy 0 ifn;=0,1(mod 3)
2k +7i

€ Ok, wherej;= {1 ifn; =2 (mod 3)

To complete the proof of (i), let § € Og,, c1, c2, relatively prime rational

integers be such that ;"1- and ci, belong to Ok, . Then there exist l),l; € Z such

that lic, + lpe = =hZ +4L] €0,
To prove (ii) note that the conditions we obtained on the primes of the de-
nominators of an integer of the form £t or 3‘;; (equations (3),(4), (5) and (6)) are

necessary conditions. §

We describe the ring of integers of K.
Proposition 2.3. With the same notation as in proposition 2.2, an integral basis
for O, is given by {1, (ce/3iopk . phe), (a';’/3"""‘5“;)3"‘'*""1 ...p",’"'+5')}

Proof: Put & = (au/3%ps ... pht), &) = (af/3mtiopihitit . pthitin), 4 =
Z[cy) and B = Z[1,4;,€;]. From Proposition 2.2(i), it follows that the index of
the Z-module A in Bis [B: A] = 3"°p"1 .ps™ where

1 ifno=1andt#4 (rod9)

{3 if no =1 and ¢t = 4 (mod 9)
0 ifno =0.
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and for 1 <1 < s,

' .
n, = n; if 3|n;
n; =n; —1 otherwise.

By proposition 2.1, the number (B"Zp?", ...p?"' )? divides disc (K;) (the power 2

appears because the discriminant of K is a perfect square) where

"_ {1 if no =1 and ¢ # 4 (mod 9)
0 0 otherwise

and for 1<i<s
{n’,-’=0 if 3|n;

ni =1 otherwise.

Now disc (f:) = [Ok, : B]*|B : A]*disc(K) where disc(f:) = (94¢)2. Hence

1 if t =4 (mod 9)
1,3, or9 otherwise.

Ok, : B] = {

This means that Ok, = B if t = 4 (mod 9). We prove that this is also true
when ¢ # 4 (mod 9).

We remark that [Og, : B] = 3 or 9 implies that there exists ¢ € B such that
(¢/3) € Og, — B. Let € = Ag + A& + X&) where Ag, A1, A2 € Z be such that
¢/3 € Ok, — B, suppose that ¢ # 4 (mod 9). We will show that this leads to a
contradiction, which in turn shows that the index of B in Ok, cannot be 3 or 9.
This shows that the index is 1 according to our proposition.

Observe that 3 cannot divide Mg, A1, A; simultaneously (since ¢/3 & B ) nor
can it divide exactly 2 of {ose integers because 1/3, {;/3 and £,/3 are not integers
(Proposition 2.2(ii)).

In the remaining cases 3 divides none of the integers \g, A1, Az, or only one of
them. Write D; = pf‘ ...p* and D; = pf"""j‘ ...p¥**3s Since jo = 0 (t # 4
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(mod 9)) it follows that ¢ = (a¢/D;) and €} = (a?/3™D,). Note that D, divides

D3 and 3 does not divide Da. Now

_ AoD2 + A1D; Az,

Dr= =3~ +3p, * T g ()

<
3
First consider the case where ng = 0 (¢ # 1 (mod 3)). Reading $D; modulo
Z[ay) we conclude that one of the following elements: 3 + %, +§ + %z, 5+
33"-, +i+%+ 95: belongs to Og,. This list of elements could be restricted further
to(3£%) (3 :{:%:), (+ 53:), (3+%+ %z) We use the norms of these elements

to prove that none of the above is an integer.

The following table was produced using Maple:

(integer % 3) norm norm = 0 (mod 27)
(14 ay) 2t3 — 1 no solution
(1—a) -2t3 — 6t2 -6t -3 no solution
(1-a?) (1 —283)(2t3 + 6% + 61 + 3) no solution

(14+a2) 17+ 30t + 482 + 40t + 30¢% + 12£° 4 448 no solution
(e + af) (2¢° +3t2 + 3t +1)(2t* - 1) t =4,13,22 (mod 27)

(ar —ad) —(2t% + 3¢t + 3t + 1)(2t2 + 6t + 6t +3) ¢ =4,13,22 (mod 27)

(1+ae+a?) 15t +12£° 4+ 1882 + 9t + 9 + 4t° + 6t no solution
(14 a¢ —a?) —27t* — 20t — 6¢% + 3t + 1 — 1825 — 4¢8 no solution
(1-ar—a?) 3t*+1263+12¢2 +3t —1—4¢% —6t° no solution

(1 — at + a?) 45¢* + 683 + 72t? 4 45t + 19 + 18¢5 + 448 no solution
The only possible solution namely ¢ = 4,13, 22 (mod 27)leads to ¢ = 4 (mod 9),
a case that we excluded at the start. Note that the above proves that this list of

8




numbers are not integers when ng =1 also.

Next consider the case when ng == 1. If equation (7) is reduced modulo Z{o]
it follows that one of the elements: +§ + k%’, +3+ k%’-, 3+ S, 38+ Ic%:-,
where 1 < k < 8, should be an integer. Since a?/3 is now an integer, k can be
restricted to 1,2 (read the above list mod Z|a;, a?/3]). Finally use the norms of

these numbers to prove that they are not integers. 3




3. Group Of Units Of Ok,

We compute the roots of the polynomial f;.

Proposition 3.1. If a; is one root of f; and

fr = —a? + tay + 2¢¢
Tt = af - Q-‘;'—l-)-ae - 2¢g

then B; and v, are the other two roots of f;.

Proof:  From B+ ¢ = —a; and Beye = (did}/ae) = a? — 3¢,, we see that
(Be=m)" = ~3a} +12¢e. (1)
On the other hand, disc(f:) = (9¢¢)?, thus
(ae — Be)(ae — 71¢)(Be — 7¢) = £9¢. (2)
But (ar — Be)(at — ve) = af — (Bt + ve)ot + 7eBy, and s0
(ar = Be)(@e = 7t) = 3} — 34 (3)

Equations (1), (2) and (3) imply that (3a? — 8¢¢)(—3a? + 12¢:) = £9¢:(B: — 7¢).
Using the fact that a = 3¢ + ¢ed}, the last equation gives 9¢:(B: — 7¢) =

(184102 — 9p}dra — 36¢42). The following system of equations

{ﬂt -7 = £(20] — Pl - 44)
B +7=—ay

results in the expressions for A; and ;. (Choosing either the plus or minus sign
on the right side of the first equation interchanges the solutions for 3; and v:.) In
what follows a; refers to the root of largest absolute value (no two roots have the
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same absolute value as K is real) and §; and v, are fixed by the statement of the
proposition. g

Now we turn to the problem of finding the group U; = 0;"' of units. We know
that K, is a real field. Therefore all of its conjugates are real, and the group of

roots of unity of K is W(K) ={-1,1}. Hence the structure of U, is as such:
Uy = {~1,1} x Z°.

Proposition 3.2. u; = a +1t and v; = a +t + 1 are two independent units of K,

forallte Z.

Proof: Since fy(—t) = —1, it follows that norm (a; +t) = (e +¢)(8e +t)(7: +
t) = —(—t —a¢)(—t - B:)(—t —7t) = —f(—t) = 1. This proves that u, = a; + ¢ is

a unit. Also, note that

vit=al - (1/2)(2t+ 2, ~ 2% —t -2 =7+t =ul"

1) . . . .
where ug )isa conjugate of u;. Hence, v, is a unit.

It is sufficient to prove that u, and ugl) are independent. Consider V;, =<
ut,ugl) > the subgroup of U, generated by u; and ugl). Let {1, 0,0%} be the Galois
group of K,/@ where o(a:) = v;. Let o(u,) = ugl) and 0?(u;) = w;. From
we = l/ugugl), it follows that the Galois group acts on V;. Suppose that u, and
ugl) are dependent. Then V; has rank 1 (as a free abelian group). This makes it
isomorphic to Z, which admits only 2 isomorphisms (as an additive group), one is
the identity and the other of order 2. But ¢ and ¢? act nontrivially on u, (u: € @).

This contradiction proves that u; and v; are independent. j

11



To explicitly determine the units of K; we will consider the following quantity

S(e)=% T (e - i)

f,jm1...8
igkj

where (¥, i = 1...3, are the conjugates of ¢, € € Ok, (V) = ¢, €?) = o(e) and
e(®) = 0%(¢€)). If an integer 6 is given by 8 = ma? + ra; + s (m,r,s being rational

numbers) then one calculates using proposition 3.1 that
5(8) = 9¢4(r? + ¢ymr + ¢ym?).

(Compute, on Maple, recursively the powers of oy using the equality o = 3da, +
bt )
Proposition 3.3. Let t be such that ¢, is square free and not divisible by 3, and

let |t| > 4 then

Uy =< —1,ue, v > .

Proof: 1In this case Ok, = Z[a:]. Hence m,r,s € Z andsom=0andr =1
would give the non-zero integers of lowest possible values for § ((S(8)/9¢:) is here a
positive rational integer since its discriminant (as a polynomial in r) is —3m? < 0).

Explicitly
S(u¢=a¢+t)=9¢¢ and S(‘Ut =ag+t+1)= 9¢¢

Also, v, is not a power of u; by the previous proposition.
[Godwin’s theorem [1] is stated here for reference (with his own notations).
Any integer A of a (totally real ) cubic field (K) is of the form p+ g8 +rQ(8), where

12




0 is a defining integer (i.e.' 1, 8, Q(0) is an integral basis) Q(8) is a quadratic in 8
with rational coefficients and p, g, r are rational integers. S(\) = S(g8 + rQ(6))
is a positive definite form in g,  and we can find the values of ¢, r, which make
S(A) least and then see if for any values of p, p + ¢f + rQ(f) is a unit. If not, we
repeat this with the next lowest possible value of S()), and so on until a unit ¢, is

reached. We then continue until another unit €3, not a power of ¢; is reached.

Theorem. If every unit of the field has S(e) > 34 and if S(ez) > 122 then either

€1, €2 are a pair of fundamental units or there exists
(i) a unit n = elé eé such that S(n) < (818(e;)S(e2)/2)3,

or

(i) a unit n = €1§ e§ such that S(n) < (2435(e2)S(e2)/2)3.
End of quote].

According to the above theorem, (and restricting |¢] to values greater than 4
go that S(@) > 122 for all units), the above information leads to one of the following
possibilities

1. u; and v, form a fundamental system of units,
2. m= ufv? is a unit and S(n:1) < (6)(9¢:),
3. m= u?vé is a unit such that S(n3) < (2)(9¢:).
The following table gives a list of all possible candidates for 7; or ; (under

the restriction that S(n;) < (6)(9¢:), and S(7n2) < (2)(9¢:)).

13




5(6)/9¢
*[a; + ¢4] 1
+[a? - tay + ¢ 1
tla? + (-1 —t)ar +¢5] 1
dfad + (~t — 2as +ci] 3
+lo? + (~t+ 1)as +c5) 3

+(2a2 + (-2t — 1)as +cs) 3
({20 + ¢7] 4
+[2a2 — 2ta; + cg 4

+2a2 + (-2t — 2)a; +¢5) 4

where ¢;..co € Z

m

Thezsquares of the above integers are
m

o +2c1a + ¢

(42 + 2c5 + 3t +3)a? — (2c3t + 3t + 43 + 382 — 1)a + cf — 612 — 2t — 4t — 613
(4+5t+41% +2cs)a? — (5+ 423 + 912 +- 9 + 204 + 2cqt)a + ¢ ~ 8t — 2 — 4t~ 10¢° - 12¢2
(2c5 +4¢% +1 +4)a® — (25t — 2c5 +41% —7— 312 = 3t)a +cf — 4t* — 2% + 4t + 2
(482 +Tt+T+2cqe )0 — (114443 +-152 +15¢ +2cat +4cs ) +c2 — 142 —4— 4t —14¢° - 1842
(16t2 416t +13+4dcr)a? —2(2t +1)(482 + 4t +4 + c7)a + c2 — 20t — 4 — 1644 — 3223 — 36¢2
40? + 4cga + c3

4(4t% + c10 + 3t +3)a® —4(crot + 3t + 43 + 312 — 1)a + 3 — 2482 — 8t — 168 — 2443

4(412+5t+4+c11)a? —4(5+483 +9t2 49t +c1yt+ g Ja+c?, —32t— 8- 164 —40¢% —48¢2

The cubes of the candidates for the unit 52 are

14
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2 3

) +[3cy0® + 3(c + 12 +t+ 1)a +c] + 1 + 2t5 + 382 + 3¢
82 +[3(9¢* + 5¢ + 6t + 3c3 + 3 + 3cst + 4est? + ¢ + 4t%)a? -
3(6t% + 3t + ¢ — 24 4t5 + 9¢3 + 3cst + cit + dest® — ¢3 + 3eat?)a +
1 — 36t° — 6cst — 18c5t® — 18c3t? — 12¢4t* — 54¢* -
42¢3 — 3t — 21#2 — 16t% + c3]
83 £[3(5 + 4cqt? + 10¢% + 118 + ¢ + 48 + 15¢% + dcy + Begt)a® —
3(4cat® + 258 + T + 2812 + 9cqt + c3t + 4% + ¢ + 5cq + 18t + 9cqt? +
14t%)a ~ 9 — 30cqet® — 36¢cqt® — 6025 + c3 — 16¢% — 114¢* — 99¢% —
bcg — 13483 — 458 — 24cq4t — 12c4t4)
Thus the candidates for 7, are 8, ...68y, and those for 77, are 6, ...6;. Using
7% = us, eliminates possibility 1. ( S(6?) is quadratic in ¢i for 1 < i < 9. We
put S(6?) = S(us:), and solve for ¢; in terms of t. Then we check whether any
of those 2 values for ¢; results in 62 = w,v, for some t). Now use 3 = ulv, to
eliminate possibility 2. (Reduce the terms not involving a; on both sides of the

equation modulo 3. The resulting equation has no solution for any t. As ¢;is a

rational integer for 1 < i < 3, it follows that 6] # v, for 1 <4 < 3 and for all ¢).

Thus u; and v; form a system of fundamental units whenever t € Z is such
that [¢| > 4 and Ok, = Z[ay]. 1y

The next proposition gives a bound on the index of < u¢,v; > in the group of
units U, of Ky. It is convenient to write ¢y = A B;C; where C; is a perfect cube,
B: is a square and cube free and A, square free. Also gcd(4,B) = 1. Let po be

0if t #1 (mod 3),2if ¢t =4 (mod 3) and 1 otherwise.

Proposition 3.4.

[Ug 1< ULy Vg >] < gouo C:Bg
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Proof:  Let py = 3°C} / 3B:/ 2. Then by proposition 2.2 p,0k, C Z[a).
The canonical homomorphism from Ok, to Ok, /p:Ok, sends U, into the group of
units of Ok, /peOk,. Also, the ring Ok, /piOKk, has p; elements. Hence for a unit
¢ € Ok, there exists a positive rational integer n < p? such that " =1 + p;z where

2 € Ok,. Thus €® belongs to Z[a]. This proves that the index (U 1< uy v >] <

O |
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4. Class Number Of K,

Let ¢, = py°p*...pr, where ng,...,n, € Z and s > 0. We know from
proposition 2.3 that the discriminant of K; is (3*q1 ... qx)? where k < sis a non-
negative integer, and ¢; for 1 < i < k is such that ¢; = p; for some j and n; is
not a multiple of 3. Also A =0if ¢ = 4 (mod9) and A = 2 otherwise. Now
let my =q1...qr if t =4 (mod 9) and m: = 9q; ...gr otherwise. Thus m; is the
conductor of K, and is equal to the square root of the discriminant of K;. By
the Kronecker- Weber Theorem, K, is contained in the cyclotomic field @[(] where

axi
m

( = e™:. Moreover the primes of Z which are ramified in K, are exactly those

which divide m,.

By the class number formula we have the following (cf [3] ):

_1y/disc(Ky oy, 1 -
he= 3o —g LA -0 -7) I[ L(1,x).
x€G
x#1

plm

where p is a rational prime, f, the inertial degree of any prime ideal P of K; over
p, and r, is the number of primes of K, over p, x is a character mod m , and G is
the group of characters of the galois group G of K;/@, considered as a subgroup of
i,i the group of characters of Z;, (identified with the galois group of Q{(]/@).
We consider bounds on the class number 2, of K;. We first obtain some bounds

on the regulator R;. To do this we need to find bounds on the roots of f;.
Proposition 4.1. (i) K; = K_,-, for all t.

(ii) If t is nonnegative then the roots of f; are such that

—1-2< B < —t-1< <=t <A+1 <0, < 2t+2
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and

B+ t+1< -ll—ofort >3

Proof: We first note that f_,_i(¢) = 2® — 3¢z + ¢¢'. Hence f_4—1(—z) =
Sfe(z). It follows that the roots of the polynomial f, are the opposite of the roots
of f-1-1, and that K; = K_,_;. We can therefore restrict ¢ to positive integers.

Also,
fi(-t-2)= —-6t-3 <0

f(=t-11) =-33t + 969 < 0if t > 3
f(=t-1)=1>0

fil—=t)=-1 <0

fi(2t +1)= —6t-3 <0

fi(2t +2)=9t2+9t +1>0

Finally, since a; is the root of f; of largest absolute value the inequalities 2¢ +1 <

oe < 2+ 2 follow. It remains to show that 4 > B,. By Proposition 3.1
Yo = Be =20} — Glo — 4¢r.

Thusit is sufficient to prove that «; is greater than the positive root of the second

7
+/3605 136433 o
i : . This is

degree polynomial 2z? — @,z — 4., ie. that a; > z =
~3¢)-3/36t7138i+38
16 < 0!

true because z > ¢} and f(2) = [

Proposition 4.2. If ¢; is not divisible by 3 and is square free, and if t > 3 then

log(3t + 3) < R¢ < [log(6t + 6)}°
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Proof: In this case ¢:+ = p;...p, and discriminant of the field is just (9¢;)2.

The regulator R; of K, is the determinant of

log | + | log |Be + t|
loglag +t+1| log|B:+t+1]| )"

Note that with a., B; and -, referring to the specific roots described above, we

have
log |ate +t + 1| > log |a; + ]

log |B: +t| >log |B: +t + 1]
since Gy +t and B; + ¢t + 1 are both negative.

Hence,
Ry =|logla; +t+ 1| log |B: + ¢| — log |Be + ¢ + 1| log |ex; + ]|
=(log et + ¢ + 1|)(log |B: + t|) — (log |Be + ¢ + 1])(log |ax¢ + t])

>(log o + t|)(log |8 + t|) — (log | + t|)(log |Be + t + 1|)

=log |ax¢ + t|(log |B¢ + t| — log |8 + t + 1])

|Be + |
1Be +t + 1]
1

Be+t+1

=log |a¢ + t|log

=log |a¢ + t|log 1 — |

= log |a; + t|log(1 + )

1
|6+t +1]
>loglag +¢| ift >3 (since |B, +t+ 1] < %)
> log(3t + 1)

>logt (t2>3)
Also,
R; =|(log |a + ¢ + 1[)(log |8s + t|) — (log |B: + t + 1|)(log | + t))]

<log(as+t+1)(log|Be Ft|+ | log|B: +t+1|]) (4.1)

Slog(3t +3) [log2 + |log |B: + t + 1]|
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But 8, + ¢ + 1 is a unit, so

1
loe + ¢+ 1)|ye + ¢ + 1]

1> )8 +t+1 =
(4.2)

1
zm (e +t+1 < 1)

Equations (4.1) and (4.2) give that R, < log(3t + 3)log(6t + 6) Therefore
log(3t + 3) < R; < [log(6t + 6)]?
Now we obtain some bounds on the class number of X;. We know that ([4])

IL(1,x)| < 3logm,.

Also, [2]
E
11 L(l,x) 2 log( disc (K?))
T

where E is a positive constant independent of ¢t (K, has no quadratic subfield
and hence x; the residue of its (-function {,(s) at s = 1 is such that k~! =

O(3!log( disc (Kz))).
Proposition 4.3. If t > 3, and ¢, is square free and not divisible by 3 then

9%, E 1 <h < 81¢: (log 9¢:)?
4 log(94¢)? [log(6t +6)7 ~ * " 4 log(3t +3)

In particular under those circumstances, h, tends to infinity when t gets larger.

Proof: In this case, the discriminant of K, is (9¢;)2. Looking at the class-
number formula, we note that for all p|m, we have f, = 1 and rp =1 since p ramifies
in the extension K,/@. Also, G the Galois group of K;/@ admits two non-trivial
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characters x and ¥, those characters being complex conjugates of each other. It

follows that the corresponding L functions are complex conjugates, and that

L(1,x)L(1,%) = |L(1,x)|?

where x is any nontrivial character of G.

Hence

) IL(1, x)I?
tT g R,

and

9¢t E 1 < 3 < 81(}5; (logmg)z
4 log( disc (K:)) log(6t +6)]2 ~ '~ 4 log(3t+ 3)

Putting m,; = 9¢, gives the desired result. §

Using Propositions 3.4 and 4.2 one gets the following Proposition.

Proposition 4.4. Lett > 3. Then

A.B} (log3#1 4,B})?
4 log(3t + 3)

341 4,B} E 1

34
8uo 4 3
! 108(3“1AtB§ )2 [log(6t + 6))2 < he < 3°#C} B,

where pu; = 0 if 3 does not divide A, and 1 otherwise.

Proof: The regulator m, = 3“‘A¢Bé = y/disc (K;). Also if R} is the regulator
computed from u, and v, then R; = (R}/[U; :< u,v, >]) and so by Propositions
4.2 and 3.4 the inequalities

log(3t + 3)
380 C3B}

< R; < [log(6t + 6))?
follow. The class-number formula completes the proof. g
If t = 4 (mod 9) and ¢;/3 is a prime then the conductor of K; is that prime,

and the computation of the L function is easy (the princinpal character is primitive
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and the cubes modulo m, are exactly its kernel). Also using proposition 3.4 and
4.2 we could get ‘close’ bounds on R;. In fact in this case, [U; :< uy,v, >] <272

Call R, the regulator computed from u; and v;. Then

R,

We compute using maple the following special cases. The class number h, is such

that A} < h, < 272h).

t &: k),

4 (3) (7) | (.0769230788)
13 (3) (61) (11.000000036)
31 (3) (331) (1.9999999541)
40 (3) (547) ?4.000000137)
76 (3) (1951) ‘(14.000000259)
85 (3) (2437) ,(76.999999461)
103 (3) (3571) (76.999985858)
112 (3) (4219) (2287.99999542)
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