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A FAST ALGORITHM FOR SOLUTION OF

TRANSPORTATION PROBLEMS

ABSTRACT

vThe transportation problem has been formulated by various invest-
jgators and sblved to various degrees. The systematic method of solution
was first given by Dantzig. In general, the comﬁutational procedures are
adaptation of the simplex method. However, almost a]]uof the techniques
either takg too long to be solved by a digital computer or are not readily

adaptable for use on digitaT computers.

The northwest corner rule has been presented for solving the
transportation problem. The essentials of the stepping stone method are
then reviewed. This technique does not cqnsider costs for determining
the initial basic feasible solution. Other techniques which make some

use of costs are also described.

A modified fechnique for solving transportatidn problem by digital
computer is then presented along with the unique features of the method
" which give its high speed in solving problems. The detailed logic of
the method is also explained. This method was implemented and was.found

to reduce the solution time by 2.6 times as compared to the well known

matrix minima method of solution.
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~ INTRODUCTION

The purpose of this report is to present and implement a method

of solution to a class of problems known as the transportation problems.

The report presents a brief history and definitions of the common
terms used. It then describes in detail the stepping stone method which
was implemented by the author. This new logic was found to provide a
speed improvement over usual methods. Program listing and flow charts

are provided in the appendixes.



CHAPTER 1

BACKGROUND

One of the earliest and most fruitful applications of linear
programming techniques has been the formulation and solution of the

transportation problems as a linear-programming problem.

L.V. Kantorovich showed that a class of problems closely related
to the classical transportation case has a remarkable variety of
applications concerned typically with the allotment of tasks to machines
whose costs and rates of production vary by task and machine type(s)*.
He gave a useful but incomplete algorithm for solving such problems.

In 1942, he wrote a mathematical paper concerned with a continous
version of the transportation problem, and in 1948, he authored an

applicational study, jointly with Gavurin, on the capacitated transport-

ation problem.

The now standard form of the problem was first formulated, along-

with a constructive solution, by Frank L. Hitchcock. His paper, "The

Distribution of a Product from Several Sources to Numerous Loca]ities"(18)

* Represents bibliograbhy reference number.
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sketched out the partial theory of a technique foreshadowing the simplex
method; it did not exploit special properties of a transportation problem

except in finding starting solutions. This paper also failed to attract

much attention.

Still another investigator, T.C. Koopmans, as a member of the
Combined Shipping Board during World War II, became concerned with using
solutions of the transportation problem to help reduce overall shipping

times, for the shortage of cargo ships constituted a critical bottle-
neck(]o).

In 1947, Koopmans began to spearhead research on the potentialities
of linear programs for the study of problems in economics. His historic
paper, "Optimum Utilization of the Transportétion System"(zn), was based
on his wartime experience. Because of this and the work done earlier by
Hitchcock, the classical case is often referred to as the Hitchcock

Koopmans Transportation Problem.

Another, whose work anticipated the recent era of development 1in
linear programming was E. Egervary, a mathematician. His 1931 paper
considered the problem of finding a permutation of ones in a matrix
composed of zero and one elements(]z). Based on this investigation, Kuhn
developed an efficient algorithmic method for solving assignment prob]ems(Z]).
Kuhn's approach, in its turn, underlies the Ford-Fulkerson Method for

solution of the classical transportation prob]em(]])

The linear-programming formulation and the associated systematic

method of solution were first given by Dantzig(s). The computational



procedure is an adaptation of the simplex method applied to the system

of equations of the.associated linear-programming problem.

This report describes the implementation of a new digital computer
techﬁique for solving the classical transportation problem by the stepping
stone method. This technique offers considerable advantage in speed over
methods currently in use(6’]5). First, the essentials of the stepping
stone method are reviewed. Then, the unique features of the method which
give its high speed in solving problems with it, are presented.  The

detailed logic of the method is also given.
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" CHAPTER 2

FORMULATION OF TRANSPORTATION PROBLEM
The general transportation problem may be formulated as follows:

A Company operates m plants ("origins") producing a commodity,
the ith of which can supply Si units. The company sells its production
to n customers ("destinations"), the jth of which demands Dj units of
the commodity. The cost of manufacturing and transporting a unit of the
commidity from plant i to customers J is Cis. It is desired to find
the number of units Xij that should be shipped from each plant to each

customer so that the total cost of the operation is a minimum.

To develop the censtraints of the problem, set up Table 2.1. The
amount shipped from source i to destination J is Xij’ the total
shipped from source is Si;a 0 and the total received by destination j

is Dj >0.

Imposing temporarily the restriction that the total amount shipped
is equal to the total amount received,

that is:

DI ZJ. D, = A (2.1)

The total cost of shippi . its § .
pping Xj; units is (Cij . Xij)' Since a



DESTINATIONS

O @ | o (3) (n)
(1)
W4 Xy [ % X135 X0 | S1
(@) X1 | X5 %53 Xn | 32
(Db Xy | X X435 Xin | 5
(m) Xml Xm2 ij an Sm
D, D, D, D,

TABLE 2.1: Transportation Problem Table
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negative shipment has no valid interpretation for the problem, each

X; i3> 0.

iJ
Table 2.1 gives the mathematical definition of the problem:

Find values for the variables Xij which minimize the total cost:

1= ZE;jcijxij (2.2)
Subject to the constraints:
Zj Xij = Si i = 1,2 .oec M (2'3)
Zi X,ij = Dj j = 1,2 I n . (2.4)
and

Xij> 0 : (2.5)

Equation 2.3 represents the row sums of Table 2.1 and equation 2.4

the column sums.

In order for equation 2.3 and 2.4 to be consistent, the sum of

equation 2.3 must be equal to the sum of equation 2.4.

That is,

IR IIE DI

i
(2.6)

System of equations 2.2 to 2.5 is a linear programming problem

with m+ n equations in mn variables.



For m = 3 and n = 5, writing the equations corresponding
to equations 2.3 and 2.4, gives 8 equations (that is m+n) in 15

(that is mn) unknowns as shown in Table 2.2.

THE TRANSPORTATION PROBLEM TABLE:

Consider the Table 2.3. In cell (i,j) “enter Cij and Xij' If
the Xij entered in the table represents a feasible solution, it must be
true that addition of the Xij in row i yields Si,-for i=T1s0000,m
Similarly, addition of the Xij in column j, yields Dj’ for j = T,..005N.
Hence, all the constraints.are conveniently represented, and it is
easy to check whether any set of Xij’ ijs a feasible solution by

simply summing the rows and columns.

In the last column enter the origin availabilities and in
tre last row the destination requirements. It is also convenient
to use Dj as a heading for column j to jndicate that this
column pertains to destination j. Similarly S,, js placed at
the beginning of row i to indicate that this row pertains to

origin 1.

In the lower right-hand cell of Table 2.3, enter the total
amount to be shipped, 1‘.e.,ZSi = ZDj.



G=Uu ‘gc=w 403 {°2 pue £°2 suoLjenb3

SEy
vEy
€€y
ey
LEy

§€y 4 VEy 4 EEx 4 6y 4+ Ly

Ge
¢Nx
¢y

Le

52, , oy 4 By 4 %5 + ¥

12°2 3navl

Sly
bly
€y
cly

Lly

5Ly 4 Bly 4 Ely 4 Sy 4 Ly



JE——

(s3s0) fuipn|ou]) wa1qo4d uoLjejaodsuedl 404 diqel :g°2 319yl

e e
Uq e fq e 2q Tq Cq
Ex LRI ) ﬁex e o 0 Ngx st Em
uut w w
0 fuL, ¢y ™,
Uty - nﬁx e STy TTy T
ut, Ft, #Nﬁo # 1%,
]
uzy . e fey oo gy T2y 2
QNo nmo Nmo Hmo
uty cee fry cos Ty TTy T
ut, hﬁo AN 1,
u £ 4 T

10



When dealing with basic solutions, no more than m+ n - 1 of the
Xij in Table 2.3 'will be positive(16). For basic feasible solutions,
no more than m+ n - 1 of the Xij will ever be >0. Only the values
of the basic variables will be entered in the table i.e., not fill in
the ‘zeros for the nonbasic variables. However, zero values of the basic

variables will be written in.

1



CHAPTER 3

LOOPS AND TREES

In order to discuss the transportation problem in more detail, it

fs helpful to define certain terms:

ELEMENT or CELL:

An element is a position in the shipment matrix. The value of an
element is the value of xij for the position of the element in the
shipment matrix. Elements of particular interest may be designated by

their column, or may be arbitrarily numbered.

DIRECTED PATH JOINING TWO CELLS:

A directed path from the cell (i,j) to the cell (v,w) in Table 2.3
is defined to be an ordered set of cells (i,j), (i.k), (g,k), (qsr)seers
(v,w) or (i,3), (s,3)s (sst)seees (v,w) such that any two adjacent
cells in the ordered sets lie a]ternater in the same row, then in the
same column, while any three adjacent cells do not 1ie in the same row
or same column. Furthermore, each cell (except the last) must appear
only once in the ordered sets. The cell (i,3) js called the initial cell

of the path, and (v,w) is called the terminal cell.

12
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Fig. 3.4
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It is convenient to be able to illustrate graphically a path
connecting two cells in Table 2.3 (shown in Fig. 3.1). To do this simply
join by line segments the ordered set of cells which form the path. The
direction is indicated by an arrowhead on the Tine. These 1line segments

will be called branches.

DIRECTED LOOP:

A directed loop is a directed path such that the first cell 1in
the ordered set is the same as the last cell, (that is, a path starting
and terminating with the same cell). A typical directed loop is shown

in Fig. 3.2.

TREE:

A tree is a connected set of cells without Toops.

BASIS:

A basis is a tree:in an m by n shipment matrix containing exactly
m+n-1 e]éments. A basis has the following properties:
a) There is at least one element of the basis in each
row and each column of the shipment matrix.
b) Hence, if a new element is added to the tree, a unique
loop is formed including that element.
An example of a basis and the Toop formed by adding a new eTement

is shown in Fig. 3.3 and 3.4.

15



CHAPTER 4

THE DUAL VARIABLES - CHANGE OF BASIS

In order to understand the fransportation problem it is
convenient to define an auxiliary variable Ui associated
with each row and a V associated with each column of the cost matrix.
These are the dual var1ab1es of linear programming theory Their values
are chosen so that

U; + Vj = cij (4.1)

for those combinations of i and j which correspond to elements of the

basis.

Let cir’ C c

L] ’ 3 + - i
qr’ C C j be the m+n -1 prices

i qt® *° ws’ W
corresponding to the variables in any basic feasible solution to a
transportation problem with m origins and n destinations. Now

suppose that:

Ui * Vr - cir’
Uq + Vr = qu,
Uq tV o= th,
(4.2)
Uw ¥ Vs - Cws’
v, * \Ij = ij.

Since there are m+*n - 1 elements in the basis and the number

of U's and V's is m+n resuiting in one more unknown than number

16
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of equations, any one of the variables can be set arbitrarily.

Suppose now that, an element is to be added in cell (3,5) of the
shipment matrix in Table 4.1. The circled elements in Table 4.2(a)
constitute a basic loop including the new element. If the new element is
to have the positive value AX, the changes indicated in Table 4.2(b)
must be made in the elements of the loop so that the supply and demand
requirements remain satisfied. The change in total cost made by bringing
in this new element iné]uding the effect of the changes in the loop

elements is

AX (C351- Cig ¥ Cip - Cop * Cy3 - C33) = -AXAC (4.3)

Using the definition of the U's and V's, this becomes

-A XAC

AX [Cqe - (Uy + V) * (U + Vy)
- (U2 + V2) + (Uz + V3) - (U3 + V3)]
AX (c35 = U3 = V5) (4.4)

Thus, if the quantity AC = Ui + Vj - Cij is negativé or zero, ho gain

can be made by jntroducing an element in cell (i,j). However, if this
quantity is positive, it will pay to make AX as large as possible. For
the present case AC = 2 and a reduction of total cost may be obtained.

The value of ‘AX 1is limited by the element in cell (2,2) which becomes zero
when AX = 4. The new form of the shipment matrix is as in Table 4.3(a).
Note that the non-zero elements again form with a tree containing exactly
m+n -1 elements which is therefore a new basis. Since the row and
column sums of the shipment matrix are the same as before, the values of

of the basic elements give a new feasible solution.

18
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X - New Element.

(:)-— Element in Loop Including New Element.

TABLE 4.2 (a): Basic Loop Including New Element.

151 D, Dy Dy, D; D¢ 84
340X 5 5- AX 13

h- AX | 1+ AX 5

7- OAX AX 7

3 2 6 11
3 7 10 5 5 6 36

TABLE 4.2 (b):

19
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7 s | 1 T 1
® 5
©) 4 7
@ ® 11
7 10 5 5 6 36

TABLE 4.3 (a): Shipment Matrix after one Iteration.

U,

1

5 7 3 3 6 0

6 3 2 5 y -1

] 5 6 il 3 1

3 6 7 8 L 2
5 i 3 3 2

Table 4.3 (b): Cost Matrix after one Iteration.
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The values of the dual variables Ui and Vj, for the new basis

may be computed without reference to the cost data as follows:

Decrease the U for the row of the added element by AC. Now
select the basic tree consisting of those elements of the basis which may
be reached by basic paths from the added element which do not contain
other elements in the column of the added element. Consider in turn the
basic paths to the elements of the tree. If the last move along the path
to an element is across a row, increase V for its column by AC; if the

last move is up or down a column decrease the U for the row of the element

Ac.

In the example, the circled elements in Table 4.3(a) form the
basic tree. The results are given in Table 4.3(b). New U's and V's
again satisfy equations 4.1 for the elements of the new basis. The search
for another element which, if added to the basis, would reduce the total

cost may now be resummed to begin the next iteration.

When AC =. u; + vj - Cij (4.5)

is less than or equal to zero for all combinations of i and j, the

solution has.been found.

21



CHAPTER 5

THE STEPPING STONE ALGORITHM

A set of X's which satisfies the restrictions of equations 2.3,
2.4, and 2.5 is called a feasible solution. If the set also minimizes
C., it is an optimum feasible solution. One result of the theory of
linear programming is that a feasible or optimﬁm feasible solution to
a transportation problem need contain no more than m + n -1 non-zero

X's (]6’22); The stepping stone method consists of:

(1) Generating a feasible solution having no more than
m+n-1 non-zero X's. Such a solution is called

a basic feasible solution.
(2) Modifying the basic feasible solution to obtain a
new basic feasible solution in a manner that will

decrease the total cost.

(3) Repeating step (2) until no further change will result

in a decrease of cost.

22



The theory of the general simplex method proves that this process
Jeads to a basic feasible solution which is an optimum feasible

so1ution(12’16).

Dantzig(s) shows that, for any basic feasible solution, numbers
Ui and Vj can be found such that. for those Xij in the basic solution,
U + Vj = Cij' Dantzig also shows that, if U, + Vj = Eij for
those variables not in the basic solution and if all Eij - Cs5 L0,
then the basic feasible solution is also a minimum solution. If this
condition of optimality is not satisfied, a new basic feasible solution
can be readily obtained whose corresponding value of the objective
function is less than (nondegeneracy assumed) the preceding value.
Dantzig's ingenious computational procedure enables one to obtain basic
feasible solutions without setting up the usual simplex table and to test
for optimality, i.e., to compute the Z;, = Eij’ in terms of the basis

vectors(12) without the explicit representation of the vectors not in the

basis.

There are many methods of determining an initial basic feasible
solution. It is worth-while to spend some time finding a good initial
solution because it can considerably reduce the total number of

jterations required to reach an optimal solution.

Most of the methods for determining an jnitial basic feasible
solution assign a positive value to one variable and, at the

same time, satisfy either a row or column constraint at each

step.

23



NORTHWEST CORNER RULE

A particularly simple method of determining an initial basic
feasible solution is the so-called Northwest Corner Rule, introduced by

Charnes and Cooper(z).

Begin with cell (1,1). Set Xqq = min (51’01)' At this first

step, satisfy either an origin or a destination requirement.

On the other hand, if D, >Sq, move to cell (2,1) and set
Xp1 = min (D1 - 51,52). When S; = Dy» degeneracy occurs, this will

be treated later.

At the second step, satisfy either the second origin or the second
destination requirement. Continue in this way, satisfying at the kth
step either an origin or a destination requirement. ‘Ultimately, this

results is a feasible solution.

This method cannot yield more than m +n - 1 positive xij
because, at each step, an origin or a destination requirement is satisfied(16).
- After m+n -1 steps, m+n- 1 of the constraints will be satisfied.
In the absence of degeneracy, there are not less than m+n - 1 positive
xij' In this case, it is clear that the resulting solution is a basic
because the method of constructing the solution rules out any possibility
of loops, and at each step, 2 row or a column constraint is satisfied.

In constructing the solution, movement is always down and to the right, and

hence a loop cannot be formed.

24



The basic feasible solution obtained by mean of the Northwest
Corner rule may be far from optimal since the costs were completely
ignored. Other methods of determining an initial basic feasible solution
which do take account of the costs are considered in chapter 6. The
addifional effort spent in obtaining a good initial basic solution is
worth while because it can considerably reduce the number of iterations

which will be required to find an optimal solution.

The solutions obtained by the Northwest Corner rule (and similar
schemes) are extreme-point solutions, and only such solutions need be

considered as candidates for the minimum feasible solution.

Since virtually all applications of the transportation problem
require the shipping of only whole units of the item being considered,
it is useful to establish the following important property of the

transportation prob]em(]s).

Assuming the Si and Dj are non-negative integers, then every
basic feasible so]ution»(i.e., extreme-point solution) has integral values.
Any optimal basic solution to transportation problem will have the property

that all positive X, will be integers.

J
This integrality property is peculiar to the transportation problem.

In general, an optimal solution to an arbitrary linear programming problem

may not have integral values for the variables. In fact, for the

variables to be integers, a linear programming problem usually becomes a

nonlinear programming prob]em(2’7). Intuitively, this integrality

property is expected to follow the physical nature of the problem: if it

25



is profitable to ship a fraction of a unit to any destination, it is aenerally
profitable to ship as large a quantity as possible. Since an integral
number of units is required at each destination, an integral number of

units will be shipped.

The reduced system of m + n - 1 equations in mn variables can,
of course, be solved by the general simplex procedure. However, for even
small values of m and n, the resulting system of equations becomes
unwieldly for manual computation. This dilemma is resolved by the

special adaptation of the simplex algorithm to the transportation

problem.

EXAMPLE

Consider a problem involving 4 origins and 6 destinations.
The origin availabilities, the destination requirements, and the costs
are given in Table 5.1.

Note that Zsi = ZDJ. = 181

An initial basic feasible solution can be obtained by means of

Northwest Corner Rule:

Set X]] = min (S],D]) = min (50,30) = 30

26
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Thus satisfying the requirements of destination 1. But there are

still units available at origin, hence set:

Now the first origin constraint is satisfied. Since an additional

30 units must be shipped to destination 2, set:

X22 = min (D2 - 20,52) = min (30,40) = 30

Thus the requirements of destination 2 are satisfied. 10 units
are still available at origin 2. Thus:
X5 = min (10,05) = 10
An additional 10 units must be shipped to destination 3,
set: X23 = 10
This leaves 50 units still to be shipped from origin 3.
Hence set: X34 = 40 = D4

and satisfy the requirement of destination 4. Since 10 units remain to

be shipped from origin 3,
set: X35 = 10
The requirement at destination 5 is 30,
set: X45 = 20
This leaves 11 units to be shipped from origin 5, which is precisely

the number of units required at destination 6.

28



Hence: X46 = 1.

Circle the xij values just obtained and note that they are
9 = m+n-1 in number. Furthermore, these cells do not form a loop.
This is a basic feasible solution. A1l other Xij are zero, which are not

filled in. The initial basic feasible solution is shown in Table 5.1.

Now determine, for those variables in the basic solution, m numbers

of Ui and n numbers of Vj such that:

U.l + V2 = C]2 = 1
U2 + v2 = 022 = 2
02 + V3 = C23 = 2
Ug+ Vg = C33 = 4 (5.1)
U3 + v4 = C34 = 2
U3 + V5 = C35 = 4
U4 + V5 = C45 = 2
U4 + V6 = C46 = 2

Here there are 10 variables in 9 (i.e., m+ n - 1) equations.
Since equation 5.1 is an underdetermined set of linear equations (i.e.,
the number of unknowns exceeds the number of equations), the system has
an infinite number of solutions. A solution could be determined by letting
any one of the variables equal its corresponding Cij' This reduces the
number of unknowns by 1 and forces a unique solution of m+ n - 1

equations in the remaining m+ n - 1 variables.
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Letting V] = 0, results in

2 v, = 0
u, = 3 V, = 1
Ug = 5 V3 = -1 (5.2)
u, = 3 v, = -3
Vg = -1
Vg = -1

The results are shown in Table 5.1, the corresponding cost

coefficients are circled.

~ Since all the equations of 5.1 are satisfied, Ui + Vj = Cij
for those Xij in the basic feasible solution. Now compute . -

Acij = U+ Vj for all combinations (i,j), ‘Cij = Cij for all Xij

in the solution).

The next task is to compute E}j - Cij' These are calculated and

are shown in Table 5.1.

1] < 0, so the initial basic feasible solution is

not optimal. The largest Cij - Qij is C36 - c36 = 3. Hence select

‘ X36 to pe introduced into the solution at an unknown non-negative level
AX. |

Not all Cij -C

As the row and column sums of the variables must equal the correspond-
ing values of S, and Dj, add or subtract AX from some of the other xij

in the first solution.
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D1 D.2 D3 Dll D5 D6 Si

30 20 50

30 10 4o

10 40 10- AX AX 60

204A X 11-Ax}] 31

30 50" 20 Lo 30 11 181
TABLE 5.2 : Introduction of A X

D1 D2 D3 Dll D‘5 D6 Si

30 20 50

30 10 4o

10 4o 10 60

30 1 31

[ 30 50 20 Lo 30 11 181

TABLE 5 . 3 Shipment Matrix after one Iteration
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Since X=0 in cell (3,6) subtract AX from Xsg. X6 and add
AX to X45 in order to keep the row and column sums correct as shown in
Table 5.2. The size of A X is restricted by those Xij from which it is
subtracted. A\ X cannot be larger than the smallest Xij from which it is

subtracted.

Here AX must be greater than zero and less than or equal to 10 in

order to preserve feasibility. Let AX = 10. The new solution is shown

in Table 5.3.
The objective function for this solution is equal to:

382 - (3)(10)
= 352

The corresponding combined allocation and cost matrix table
including new (Ui’ Vj) is given in Table 5.4.
-C

Here max(Cij - cij):> 01= Cpp - Cypp = C 3.

43 43
Hence there is a tie. Cell (4,3) could be arbitrarily selected to enter
the basis. Introducing AX=>0 in cell (4,3) and adding and subtracting

AX from Xij results in Tables 5.5 and 5.6.

The objective function becomes

352 -[max(Ci. - Cij):> 0] . AX

j 352 - (3)(1)

349
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1 2 3 5 i
30 20 50
30 10 40
10- AX 4o 10+A X 60
AX 30 1; Ax 31
30 50' 20 ) 30 11 181
TABLE 5.5 : Introduction of A X
Dy D, D, Dy . Dy Dg Sy
30 20 50
30 10 4o
9 bo 11 60
1 30 31
h
30 50 20 40 30 11 181
TABLF; 5.6 : Shipment Matrix after Second Iteration
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The combined table with (Ui’ Vj) is shown in Table 5.7.
Here [lmax(Cij - Cij) >0] = C3y-C3 = 2

Introduce AX >0 in the cell (3,1). Add and subtract AX as

shown in Table 5.8, selecting AX = 9 gives new solution as shown in

Table 5.9.

The new objective function is:

349 - (2)(9)
“= 331

349 - [max(Cij - Cij) > 0] . AX

The new values of (Ui’ Vj) are shown in Table 5.10.

Here [max(Cij - Cij) > 0] = Cpp-Cyy = 1.

Introduce AX> 0 in the cell (4,4), add and subtract AX as
shown in Table 5.11. Selecting AX = 1 gives the new solution as

shown in Table 5.12.

The new objective function is:

n

331 -[max(Eij - C35)> 0] . AX 331 - (1)(1)

330

The new values of (Ui’ Vj) are shown in Table 5.13.

Here all Cij - Cij

feasible solution.

L0 and this last solution is a minimum
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D, D.2 Dy Dy, Dy Dg 84

30- AX|204AX 50

30- AX |10+AX 40

9-Ax | 4o 11 60

1 30 31

30 50 20 40 30 11 181

TABLE 5 "8 : Introduction of AX

Dy D, Dy D), Dy D¢ 84

21 29 50

21 19 40

40 11 60

1 30 31

30 50 20 40 30 11 181
TABLE. 5 . 9 : Shipment Matrix after Third Iteration
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Dy D, Dy Dy, Dg D¢ Sy

21- AX 294 AX 50

21- A X 194AX 40

9 X no- Ax 11 60

1-Ax| AX 30 31

30 50 20 40 30 11 181

TABLE 5 .11: Introduction of A X

Dy D, Dy D), Dy D¢ Sy

20 30 50

20 20 40

10 39 11 60

1 30 31

30 50 20 40 30 11 181
TABLE 5 I‘12:, Shipment Matrix after Fourth Iteration
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The stepping-stone algorithm permits the solution of
transportation problems that are too Tlarge to Tlend themselves to
direct application of the simplex method. For example, on a computer,
it is not difficult to solve a transportation problem involving 1,000
destinations and 50 origins by means of the stepping-stone algorithm

or some of its variants.

The stepping-stone algorithm has another property which is very
important when a digital computer is to be used: it requires only the
arithmetic operations of addition and subtraction. A digital computer
can be made to operate in fixed-point arithmetic so tHat no rounding
off errors occur in addition. or subtraction. Thus, the stepping-stone
algorithm makes it possible to avoid the problem of rounding-off errors
which 1imit the size of the problems that can be solved by the simplex
method. A transportation problem may require an arbitrarily large number
of iterations, and no loss of accuracy due to rounding-off will occur if

fixed-point arithmetic is used.
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CHAPTER 6

DETERMINATION OF AN INITIAL

BASIC FEASIBLE SOLUTION

The Northwest-Corner rule for determining an initial basic
feasible solution to a transportation problem has already been discussed.
Now some other methods which often yield a result much closer to an
optimal solution than that obtained by the Northwest-Corner rule will be
presented. As suggested before, it is worth»while to spend some time
finding a good initial solution because it can considerably reduce the

total number of iterations required to reach an optimal solution.

Most of the methods for determining an initial basic feasible
solution assign a positive value to one variable and, at the same time,
satisfy either a row or column constraint at each step. Any procedure for
determining a feasible solution which assigns a positive value to one
variable and satisfies either a row or column constraint at each step
will automatically yield a basic feasible solution, and in the absence of
degeneracy, the resulting cells will form a basic tree. Such a technique
cannot give more than m + n - 1 positive variables since, after m+ n - 1
steps, m+ n - 1 of the constraints will be satisfied, and the remaining
constraint is automatically satisfied(16). A11 methods described below

make some use of the costs.
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(1) COLUMN MINIMA.

Beginning with column 1 of the Table 2.5, choose the minimum
cos; in this column. Suppose that it occurs in row r. Then set
Xy = min(Sr,D1). If Xr1 = Dy, cross off column 1 and move to
column 2. If X4 = Sr’ cross off row r from the table, and choose
the next lowest cost in column 1. Assume that it occurs in row s.
Set Xs1 = min(Ss,D] - Sr)‘ Continue in this way until the requirement
at the first destination is satisfied. If the minimum cost is not unique,
select any one of the minima. when the requirement of column 1 is

satisfied, cross off column 1 and repeat the above procedure for column

2. Continue until the requirement of column n is satisfied.

In the event that a row constraint and a column constraint, say
column k, are satisfied simultaneously, cross off only the row. Then
‘move to the cell in column k having the next lowest cost. Assign a
value of zero to this cell anid assume it to be in the basic solution.
Now cross off column Kk and move to column k + 1. This will yield a

degenerate basic feasible solution.

If this procedure is used to obtain an jnitial basic solution for
the example solved in Table 5.1, Table 6.1 is obtained, provided that

in columns 2 and 3 the row with the lowest index is chosen when the

. minimum cost is not unique.
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(2) ROW MINIMA:

Beginning with row 1, choose the minimum cost in this row.
Suppose that it occurs in column r. Set X]r = min(S1,Dr). If
X1r = S], cross off row 1 and move to row 2. If Xlr = Dr’ Cross
off column r and determine the next lowest cost in row 1. Assume it
occurs in column s. Set Xy = min(S;-D s D.). Continue in this way
until the first row constraint is satisfied.. When the requirement of
the first row is satisfied, cross off row 1 and repeat the above proced-
ure for row 2. Continue until the row constraint m is satisfied. When-
ever a minimum cost js not unique, make an arbitrary choice amdng the

minima.

In the event that a row constraint, say row k, and a column
constraint are satisfied simultaneously, Cross off only the column. Then
find the next lowest cost in row k, and jnsert this cell into the solution

at a zero level. Then cross off row k, and move on to row k + 1.

If this technique is used to obtain a first solution for the
problem of Table 6.1, Table 6.2 results. Note that degeneracy appears.
According to the rule, either cell (1,1) or (1,5) could have been added

at a zero level. Cell (1,1) is chosen.

(3) MATRIX MINIMA.

Determine the smallest cost in the entire table. Suppose this

occurs for cell (i,j). Set Xij = min(Si,Dj). Then cross off either

- 45
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row i or column j, depending on which requirement is satisfied. If

xij = Sj, decrease Dj by Si’ and if Xij = Dj’ decrease S; by Dj,
Repeat the process for the resulting table. Whenever the minimum cost

is not unique, make an arbitrary choice among the minima. If a row and a
column constraint are satisfied simultaneously, cross off only the row or

the column, not both.

This method yields the initial solution (shown in Table 6.3) for
the example under consideration if, in the absence of a unique minimum,
the cell for which i + j is smallest is chosen. Here again degeneracy

appears.

(4) VOGEL'S METHOD.

This technique has been suggested by Voge1(23). For each row,
find the lowest cost Cij and the next lowest cost C., in that row.
.Compute cit - Cij’ In this way, m numbers are obtained. Proceed in the
same way for each of the columns and obtain n more numbers. Choose the
largest of these m + n differences. Suppose that the largest of these
numbers was associated with the difference in column j. Let cell (i,3)
contain the lowest cost in column j. Then set X1.j = min(Si,Dj).
Cross off either row i or column j, depending on which requirement 1is
satisfied, and repeat the whole process for the resulting table. When
the maximum difference is not unique, an arbitrary choice can be made ,
and if a row and a column constraint are satisfied simultaneously, Cross

off only the row or the column, not both.
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For the above example, this method yields the solution shown in
Table 6.4. It is convenient to list the row differences in a column to
the right of the table and the column differences in a row at the bottom
of the table. The differences shown in the difference row and column are
those for the first step, i.e., those which are to be used in selecting
the first basis cell. This is the worst possible case; every difference
has the same value. The tie is resolved by choosing the cell with the
smallest value of i + j. At each step, a new set of differences must

be computed.

CHOICE OF METHOD.

Unfortunately, there is no easy means at present for determining
an initial basic feasible solution which would lead to the smallest number

of iterations(16). It would be necessary to solve the problem in each case.
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CHAPTER 7

DEGENERACY AND THE TRANSPORTATION PROBLEM

A feasible solution to a transportation problem is degenerate if
less than m + n - 1 of the X1.j are positive(s). Dggeneracy may be
encountered in the process of determining the initial basic feasible
solution or at some subsequent jteration. From the practical point of
view, degeneracy does not cause any difficulties. No transportation
problem has ever been known to cycle (16). The degeneracy problem can be
eliminated by the use of a perturbation method as in the case of simplex

method. However, a much simpler perturbation method can be used.

DEGENERACY DUE TO INSUFFICIENT POSITIVE XijIS:

If h is the number of Xij:> 0 and if the method used to provide an
initial solution yields a feasible solution with h<m + n - 1 degeneracy
occurs. The cells associated with the positive Xij’ do not form a basic
trée. To obtain an initial basic solution and a basic tree in the table,
m+n-1-h additional cells at a zero level must be added. Choose the
cells to be added such that the resulting m+ n - 1 cells forma basic
tree. Enter a zero into the cells added and circle these zeros to indicate

that they are part of the initial ba§ic solution. In manual computations,
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D1 D2 D3 Du D5 D6 Si

® 25

B @ :_io_: X 25

v |

50

30

20 30 4o 50 10 20 170
TABLE 7.l: Degeneracy where h Lm+n-10f

Positive Xij
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it is very easy to choose cells which will yield a basic tree. Having
determined a basic solution, proceed in the usual way. In this case a

variable can enter and leave the solution at a zero Tevel.

Consider the Table 7.1. Costs are omitted since they are not
relevant to the discussion. The northwest-corner rule to find an initial
feasible solution results in Table 7.1. Here there are-only 8 positive
xij’ although m+n -1 = 10. It will be noted that the set of cells
corresponding to the pdsitive Xij’ is not connected.

Two more cells are needed to obtain a basic tree. Adding cells
(2,3) and (4,5) (dashed circles), a basic tree results. The value zero
is .entered into these cells, giving a basic (degenerate) feasible

solution.

If the E%j - Cij are such that cell (2,4) should appear in the
basic tree at the next iteration, X24 will enter the basic solution at
a zero level. The values of the variables in the basic solution remain
unchanged. Only cell (2,3) is replaced by cell (2,4) to obtain a new

basic tree.

DEGENERACY DUE TO TIE OF VARIABLES:

Degeneracy can also appear at some later iteration if there is a
fie for tHe variable to leave the basic solution. Choose arbitrarily any
one of the tied variables as the variable to leave the basis. At the next
stage, the variables that wéfe tied with the removed variable will be at a

zero level. However, keep these variables in the basic solution (i.e.,
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(with tie of Variables)
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Dl D2 D3 Dll D,5 D6 Si

50

o

60

30

30 50 20 Ko 30 10 180
“TABLE 7.2 Initial Basic Feaslble Solution




®

® ©

\‘uo

@ | 6o
30 50 20 40 30 10 180
TABLE 7 .3 : Solution of Table 7.2, Dégeneracy

occurred

_ 55




they remain circled) and proceed as usual.

Suppose that in the problem in Table 5.1 the availability at
origin is changed from 4 to 30 and the requirement at destination 6 to 10.
For this new problem, the northwest-corner rule yields the initial basic

feasible solution shown in Table 7.2.

The Eij - Cij are the same as in Table 5.1, so X36 enters the
basic solution at the ﬁext stage. Now, there is a tie for the variable
to be removed. Either X35 or X46 can be replaced by X36' If X35 is
arbitrarily replaced, the new basic solution is that shown in Table 7.3.
One of .the basic variables is now zero, and degeneracy has appeared.
Again, the Cij - Cij are the same as in Table 5.4. If X43 is chosen
to enter the basis, it enters at a zero Tevel.

Suppose that at step k, a row and a column constraint are
satisfiéd simultaneously, this means that degeneracy has appeared. Now,
imagine that either the row or column constraint sat{sfied at step k is
perturbed by increasing its requirement by A . Then continue the process-
of finding the initial solution. Had]ey(16) has shown that the resulting
solution will be basic, and when A's are set to zero, a degenerate basic
solution is found. It is really unnecessary to introduce A's explicitly.
It eliminates the necessity of introducing numerical values of A.'s, when
problem is solved with digital computers. Thus cells at zero level can

be automatically added.
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CHAPTER 8

MODIFIED STEPPING STONE ALGORITHM

FOR DIGITAL COMPUTERS

Associated with each basic feasible solution is a basis whose
elements include all positions in the shipment matrix where Xij does not
equal zero. The following procedure may be used to form an initial basic
feasible solution and the corresponding basis with which to start the

stepping stone method.

Examine the entries in the first row of the cost matrix and select
the entry having the smallest cost. Include this position in the shipment
matrix as an element of the basis, with its value equal to the smaller of
the supply for its row and the demand for its column. Decrease the supply
and demand by this amount. I1f a positive supply is left, drop the column
whose demand was just satisfied from further consideration and again look
for the lowest cost in this row. If a positive demand is left, insert an
element in the same column but the next row, and again check whether there
is supply or demand left over, and proceed as above. This is the row

minima method described in Chapter 6.

This process yields in general a basis containing exactly m+n - 1
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elements Qith no loops(12). An example of a shipment matrix and a basic
feasible solution generated in this manner from given supply and demand

data is shown in Table 8.2 and 8.3.

DATA STORAGE IN THE COMPUTER:

The input data required to specify a transportation problem are:
(1) cost matrix Cij: (mn) values,

(2) supplies and demands S and Dj: (m + n) values.

After the formation of the initial basic solution, the data
required in the performance of the iterations are:

(1) shipment matrix Xij: (m+ n - 1) values,

(2) dual variables U; and Vj: (m + n) values,

(3) cost matrix Cij: (mn) values.

The largest volume of data that must be handled is the cost data.
However, it is only necessary to have access to this data sequentially.
Therefore, it may be recorded on some slow access, high capacity storage

medium 1ike magnetic tape or magnetic drum.

MAJOR COMPUTER ROUTINES:

The block diagram of the major computer routines required for the

transportation problem is shown in figure 8.1.

Part 1 and 8:

The input and output blocks are not of interest becuase they

involve no unusual ideas.
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8.2:

Table
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Shipment Matrix

10

10

Basis Table

8.3:

Table
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Part 2:

The "Form initial basic feasible solution" block sets up a
feasible solution in the manner described above, computes K and L values
for the basis table, and calculates the initial values of the dual

variables Ui and Vj.

Part 3:

This block searches through the cost data in sequence and selects

a position in the shipment matrix for which Ui +V,-C is positive

J 1
as the next element to be added to the basis. If no such position is
found, the present basis is an optimum solution and the results are print-
ed. The amount of cost data which is examined for each iteration by this‘
block has a very important effect on the overall time requirement for

solving a problem.

Part 4 and 5:

The next two blocks perform the tasks of finding the basic Tloop
including the new element, finding the element that 1imits the size of the
new element and hence drops from the basis, and changing the values of the

elements in the loop.

Part 6:

The "Modify basis table" block makes the necessary changes in the
K and L values of the basis table to take care of the new element. It
also shifts an entry in the table, if required, to maintain the ordering

of the ffrst n entries.
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Part 7:

Block seven computes the U's and V's for the new basis. The
details of each routine (except Part 1 and 8) are given in Appendix A and
a program listing in Appendix B. Details for Part 1 and 8 (input/output

blocks) are not given as they are user dependent.

DETAILS OF THE PROCEDURE:

From the discussion of the stepping stone method it is seen that
the shipment matrix must be referred essentially at random. Therefore,
in order to facilitate high speed operaticn, the shipment matrix must be
stored in the high speed memory of the computgr. Since, at most m+ n - 1
of the positions of the shipment matrix can contain non-zero Xijls’ a

basic feasible solution may be stored as a table of m + n - 1 entries

giving the row, column and value of each element of the basis.

In carrying out the processes of the stepping stone method, basic
paths between elements must be traced. This requires much referring on
the part of the computer between basic elements either in the same column
or the same row of the shipment matrix. In order to allow the computer to
" proceed as rapidly as possible in tracing the paths, the following inform-

ation may be stored for each entry in the basis table.

(1) Data informing the computer where to find entries for
the other basic elements in the same row of the shipment

matrix.
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(2) Data informing tha computer where to find entries for
the other basic elements in the same column of the

shipment matrix.

One convenient way of representing this information is shown in
Table 8.3. For entry number t of the table, the value of Kt gives the
entry number of another basic element in the same row; the value of Lt
gives the entry number of a basic element in the same column of the
shipment matrix. The table is arranged so that by jumping from entry to
entry as directed by K (or L) values, all basic elements in a particd]ar
row (column) of the shipment matrix will be encountered. Also, for ease
in finding the entry for a basic element in a particular column, the first
n entries of the basis table are for elements in columns of the shipment
matrix corresponding to their entry number. These features of the basfs
table give the program to be described its high speed. However, the
arrangement has the siight disadvantage that as the basis changes with

each iteration, the new basis table must be calculated.

The numbers in the shipment matrix are the entry numbers of the
elements in the basis téb]e and not the values of the elements. Each
point on the graph js identified by the entry number of the element it
represents in the basis table. The graph starts with the element in the
basis table whose entry number js the column number of the element being
introduced. This element will always be in the same column of the ship-
ﬁent matrix as the new element, i.e., column 1 in the example. A move
from left to right in the graph correcponds to moving from one element
in a given row of the shipment matrix to the element in the same row

designated by the K value of the first in the basis table. Similarly, a
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move down in the graph corresponds to moving to the element in the same
column of the shipment matrix designated by the L value in the basis

table.

In searching for the loop involving the new element, start from an
element in the same column as the new element. Hence a basic path from
the starting element to an element in the same row as the new element
must be found. This is done by searching the branches of the graph
sucessively until an element in the correct row is found. Sufficient
information must be remembered during the search so that the path may be
jdentified once it is found. The search is carried out as follows:
First, a path is traced through the tree without turning at any of the
branch points as shown by the arrow labelled 1 in figure 8.4. While
tracing this path the branch points encountered are as in Table 8.5 (b)
to provide starting points for searching the remaining branches of the
graph. Entry b in the branch point table gives the basis table entry
number of the branch point Gb and an indicator B, telling whether the
branch point was encountered while moving across a row (Bb = 0) or down
a column (Bb = 1). A separate tabulation, Table 8.5 (a) is kept of
those elements (branch points and corner points) which could belong to
the desired loop. Entry a in the search table gives the basis table
entry number Fa of the element, and tells whether it is a corner poinf

(Aa = 0) or branch point (Aa = 1) of the graph.

Since an entry in row 3 was not found while searching this path;
the last entry in the branch point table is examined and the search is
continued by tracing the path indicated by the arrow labelled 2 in figure

8.4. The number of this branch point-is recorded in the search table and
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Branch Point O
Corner Point @
New Element X

Sequence of Searching the Branches of a Tree

Fig. 8.4:
a Fa Aa b Gy, Bb
1 1 0 1 8 0
2 8 1 2 9 0
3 9 1

(a) Search Table (b) Branch Point Table

Table 8.5: First Stage of the Search for a Loop
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identified by Aa = 2 to denote that a new path is being traced as shown
in Table 8.6. The search is continued as indicated in figure 8.4 until
element 7 is reached which is in row 3. Since element 7 is an element of
the desired loop, it is entered in the search table. The state of the

tables is then as in Table 8.7, and the search is terminated.

The decisions as to whether a particular element t is a bfanch point
or a corner point, and what basic element is to be examined next, may be
easily made by examining K and L values in the basis table. For instance,
suppose we have just moved to element t from another element in fhe same
row. Let h be the entry number of the first element that was examined

in this row. Then,

(@) ifK, = h and L, = t, the end of this path
has been reached.

(b) ifk, = h and L, # t, element is a corner
point; examine element number Lt next.'

(c) ifK, # h and L, = t, element t is neither
a branch or corner point; examine element number Kt
next.

(d) if Kt # h and Lt # t, element is a branch

point; examine element number Kt next.

Completely analogous rules apply for moving an element in the same

column of the shipment matrix.

The determination of the elements of the basic loop from the

entries in the search table may be accomplished by considering the entries
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]
a Fa Aa b Gb Bb
1l 1 0 1 8 0
2 8 1 2 2 2
3 9 1 2 y 0
h 9 2
5 5 0
6 b 1
7 6 0
(a) Search Table (b) Branch Point Table

Table 8.6: Second Stage of Search

[
i
)
>
)
o
()
o
w
o

O o~ oAU =W N
g &= O &= Ul WO VO o+

onN O OB H O

(a) Search Table (b) Branch Point Table
Table 8. 7: Completion of Search
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of the search table in sequence starting with the last and applying the

following rules:

(1) The last element in the search table is the first

element of the loop.

(2) If entry a of the search table has Aa = 0,
element Fa is in the 1oob.

(3) If entry a of the search table has Aa = 1, it
is ignored except as noted below.

(4) If entry a of the search table has A, = 2, all

entries are ignored until an entry b is found
with Ab = 1, Fb = Fa. Element Fa is a member
of the loop.

Essentially the identical search technique is used in calculating
the new values of the dual variables. The difference is that the object
of the search is to examine all of the elements in a particular sub-tree

of the basis rather than to find an element in a particular row.

When the logical search procedure is used on a high speed computer,
the time required to carry out the operations of one jteration becomes
short compared to the time required to search through the entire cost
data in finding the new element to be put in the basis. Thus, the total
time for solution might be cut down if the time spent searching the cost

data per iteration were shortened at the expense of a larger number of
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jterations.

The average time required to perform an iteration using the method
describcd here depends linearly on the size of the problem, m + n. This
is a consequence of the fact that in searching for a loop, each entry in
the basis table is considered no more than once. Since experience has
shown that the number of iterations required to solve a problem is rough-
1y proportional to m +n, the overall time requirements should increase
as the square of the size of the problem. A1l this indicates the
feasibility of solving extremely large transportation type problems in a

economical amount of time.

The example of Chapter 5 was solved by this technique. The results

are shown below.
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NUMBER OF ROWS  -M
TNUMBER OF COLS  -N

Hyn
3‘

R 30 50 20 40 30 11
sRGHH S0 40 60 31

ITERATION ]  w##3 NUMBER OF ROWS ~-M = 4 N MREo OF COLS -N = 6

waes BASTS TABLE #u#us

™ S0#+ . 0+ S0+ 0+ 0+ 0+ 0+
1 40%+ 0+ N+ 10+ 0+ 30+ 0+
4 60%+ 0+ 0+ 10+ 39+ 0+ 11+
%

Haeet COST MATRIX e



ITERATION 2 #%% NUMRER OF ROWS =M = 4 NiMRED OF COLS =N = 6

#ans BASIS TABLE suas

- - D - P S > . - - - - - S - o T G T ", - I P

1 3 6 1 0 30 1
2 1 5 2 0 50 9
3 2 7 3 2 10 4
4 3 1 4 3 9 0
5 1 2 5 1 0 0
6 3 8 6 0 11 0
7 2 '3 5 0 30 0
8 3 4 3T T TTTTYeT T T 0T
9 4 9 A 0 31 0

ELEMENTS ADDED 12 = 3 J2 = 1
ELEMENTS DROPPED Il = 4 J1 = 1 IHl = 1

saas COST MATRIX #u#ss

-------—----------—-—---—-——-——-—------——--——.

7



ITERATION 3  ### NUMBER OF ROWS -M = 4 NIMBRE® OF COLS <N

1 3 6 1 0 30 S
2 1 5 2 0 50 K{
3 2 7 3 0 20 3
4 3 1 4 3 19 8
S 1 2 s 2 0 4
6 3 4 6 0 11 4
T 2 3 5 0 20 9
8 4 9 5 1 1o "o
9 4 8 4 0 21 0

ELEMENTS ADDED 12 = 4 g2 = ) ,

ELEMENTS DROPPED I1 = 3 U1 = 3 IHL = R
#aitr SHIPMENT MATRIXVG**f -

#* SO+ 0+ S0+ 0+ 0+ 0+ 0+

* 40%+ O+ 0+ 20+ 0+ 20+ 0+

g 60%#+ 30+ 0+ 0+ 19+ 0+ 11+

#* 31#+ 0+ 0+ 0+ 21+ 10+ 0+

* 181#+ . 30+ 50+ 20+ 40+ 30+ 11+ o
#at COST MATRIX #aus

3 2%+ 0+ 1+ 0+ 0+ 2+ 0+

#* S S 0+ 0+ 2+ 0+ 3+ o+ -

& -] 3+ 0+ 0+ 2+ 0+ 1+

3 -P%e O+ 0+ O+ 1+ 2+ 0+

& 330%+ 4+ 3+ 3+ 3+ 4+ 2+

TOTAL COST 330 B
#and ELEMENT MATRIX ##as#

1% O+ 2+ 0+ 0+ 5¢ 0+
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CHAPTER 9

INEQUALITIES IN THE CONSTRAINTS OF

TRANSPORTATION PROBLEM

The. discussion so far 1is based upon the equations 2.2
through 2.5, which assume that total quantity shipped is equal
to total quantity required. However, it 1is possible to have
inequalities for the constraints. If these inequalities could be replaced

by equalities then the problem could be solved as outlined earlier.

Two such cases are considered below.

1. Total availability is greater than the total demand.

Consider the following equations:

n-1

inj < S i = 1,0, m (9.1)
=1

m

inj = Dj, J = ],..--,n-] (9.2)
i=1

X5 = 0 | all 1, J, (9.3)
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winz - 2 Ci5 %43 (9.4)
15
The first m constraints now contain a< sign rather than an

equality sign. Physically, this simply means that more units may be

available at the origins than are required at the destinations.

The inequalities can be converted to equalities by the addition

of m slack variables. These slack variables may be written as

Xs

in® for i = 1,....,m

Then the constraints become

n - 1

D A T i = Teeeam  (9.5)
j =1

m

>. Xij = Dy i = Tyeeesn-1 (9.6)
i o= 1

Sum (9.5) over i and subtract from the result the sum of (9.6)

over j.

This gives
m m n-1
:EZ X1.n = :E: Si - :gj Dj = Dn (9.7)
i=1 i=1 j=1
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Thus the total slack, i.e. the sum of the slack variables, remains
constant and is the difference, denoted by Dn’ between the origin
availabilities and the destination requirements. To construct the table,
simply add one more column, i.e., an additional destination for the slack.
Intuitively, this approach is to be expected since the units not shipped
can be considered to be shipped to origins at no cost. That is, the cost

cin associated with the slack variable . Xin is zero.

2. Total demand is greater than total availability.

Consider the following problem:

n

inj = s, i= 1,....,m-1 (9.8)
=1

m-1

2 Xy > 05 i = leeeisn (9.9)
i=1

Xij ;3 0, all 1, (9.10)
max Z = :E: Co.Xose (9.11)

iy 19T

Here, ZD. >Z S.
7 ; i
J i
Introduce the surplus variables ij, for j = 1,...., n. Now
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n n
S22 x. = 2, - s, = s <o. (9.12)

The constraints of equation (9.8) through (9.10) can therefore be

converted into the set of equations:

n
jZ::,Xij = S5 i= 1, m-1 (9.13)
n .

) jz=:1xmj " w (9.14)
m-1
z:] i3 = *mj = Dy» i = 1,..,n (9.15)

The computational method is precisely the same as before except
that use ij =- Um - Vj for computing ij - ij. This follows
immediately from the dual. To solve this problem, add one more row to
‘the table, i.e., an additional origin containing the negative of the

total surplus. Here the additional cost elements C are assumed

m+ 1,3
to be zero.

Thus, provided all costs are positive in the optiaml solution to

a problem of the form:

m
J-%] Xy <5 i = lee,m  (9.16)

76



1%:1 xij > DJ, J = 150000 (9.17)

?xij >0, all i,j (9.18)

Max or min Z = :E: C:Xiss (9.19)
1.3 13713

strict equalities will hold

(a) in the destination constraints if Z is to be

minimized and

(b) in the origin constraints if Z 1is to be maximized.

Physically, this means that if costs are minimized, no more will be

shipped than necessary, and if Z 1is maximized, as much will be shipped

as possible.
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CHAPTER 10

OPERATING EXPERIENCE

The size of problem that can be solved by the method outlined in
this paper is limited by the size of basis table and the amount of cost
data which would fit into the fast access cores. However, the cost data

may be stored on the magnetic drum or disk.

In many practical transportation situations, it is known at the
start that many of the total of mn possible shipping routes are
absurd. In fact, costs may not be known for many of these routes because
it is certain that they would be inefficient. One would not ship to a
customer in Vancouver from Montreal warehouse if there were a warehouse
in Victoria, (B.C.). For problems involving a large number of cost
elements, only the essential costs may be stored, all other costs not

specified in the data being assumed infinite.

Virtually all applications of the transportation problem require
the shipping of only whole units of the item being considered. Hence
every basic feasible solution has integral values. Any optimal basic

solution to transportation problem will have the property that all positive
Xij will be integers (]2).
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This integrality property is peculiar to the transportation
problem. In general, an optimal solution to an arbitrary linear program-
ming problem may not have integral values for the variables. In fact,
for the variables to be integers, a linear programming problem usually
becomes a nonlinear programming problem. Since an integral number of
units is required at each destination, an integral number of units will

be shipped.

Three different methods of selecting the element for the next
jteration were tried. The resuits are tabulated in Table 10.1. The test
data was stored in the main memory and execution times were obtained for

each method for the same test data.

J

METHOD 1: BEST POSITION IN COST MATRIX.

According to usual practice with the stepping stone method, the
entire cost matrix is examined at each iteration and the position is
selected that gives the greatest incremental cost, AC = Ui + vj - cij‘
A new element is placed at this position in the shipment matrix for the

next iteration.

When the logical search procedure is used on a high speed computer,
the time required to carry out the operations of one iteration becomes
short compared to the time required to search through the entire cost data
in finding the new element to be put in the basis. Thus, the total time

for solution might be cut down if the time spent searching the cost data
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per iteration were shortened at the expense of a larger number of

jterations.

METHOD 2: FIRST WHICH WOULD REDUCE TOTAL COST.

The cost matrix is scanned row by row and the first position for

which Ui + Vj - Cij

search is resumed where it was broken off.

is positive is selected. After each iteration, the

METHOD 3: BEST IN ROW OF COST MATRIX.

A complete row of the cost matrix is examined and the position in
this row with the'greatest incremental cost AC = Ui + Vj - Cij is
chosen. For the next iteration the next row is examined in the same way.

COMPARISON OF METHODS:

The method of searching one row at a time gives the best results.
Naturally, with a different computer, a different compromise between
number of iterations and time spent in searching the cost data will be

optimum.

A1l the 3 methods were tried for a problem with 30 supplies, 260
demands and 7800 non-infinite costs on CDC 3500 computer. The results

are compared with the usual rule in Table 10.i. Where,

solution time of a method

Ratio of timings =
solution time of method 3 for 30 x 260 problem
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No. of Exam-

Method of Selecting Number of Ratio of
inations of

. NP
New E1emen§ Iterations Cost Matrix Timings
Best position in
cost matrix 509 509 2
First which would
reduce total cost 2200 29 2.6
Best in row of
cost matrix 672 43 1

Table 10 .1:

Comparison of Methods for a 30 by 260 Problem

* QObtained by dividing solution timings by the solution time of

third method.
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COMPARISON OF SOLUTION TIME RATIOS.

A second set of tests were performed using a variable set of data
by all the above three methods. The results are shown in Table 10.2 and

Fig. 10.3. It should be noted that these results vary only in the second

decimal place.
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CONCLUSION

The stepping stone method described in this report was succes-
fully implemented and tested. The results show consistently that the

mehtod presented in this report considerably reduces the solution time.
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APPENDIX A

FLOW CHARTS
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START

READ 1IN

COST DATA

READ 1IN

DEMAND AND
SUPPLY

Note: The input/output routines are user dependent and
hence the above flow chart is block diagram.
However, it is coded for the computer program to

enable testing.
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IF = N PART 24
IV =N -1
W = MFN -1
U0 = 0
IE = 1
U(IE) = O
1z = 1
=
E(IZ) = O
¢ ‘
Crz=-n_  >E Jmm-12 1
Y
ISWA = 0
A
IN = (IE-1)¥N+Hl
IZ = 1
Co = o0
i N
( cco)<co o
| ¥ ID = 1z
(B = 0 j).___zq, CO = C(IN)
IN = INt1] - <
Iz = Iz+1.q_( IZ = N )
Y
IZ = 1D
E(IZ) =1
V(ID) = CO-UO
VO = V(ID)
] N v Y
(1swa =0 D>
4 <
IS = IR ISWA = 1
IT = 0 IR = ID
IR = ID IS = ID
- IT = 0
T 19 = 10
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- PART 2B
(Iv 0 )_E_._—
Nyl
r———-*CD(ID) >¥S(IED
IV ; ID [ 1Y 15
(@) —= 7
I(1Y) = IE K(IY) = R
J(Iy) = ID I1Q = ID
K(IY) = IS Iy = ID
LS(IY) = IT 4
X(IY) = D(ID) ' T(I1) = IE
S(IE) = S(IE)-D(ID) J(IY) = ID
D(ID) = 0 K(IY) = IS
W = IW-1 LS(IY) = IT
1 Y X(IY) = S(IE) .
C =0 )—-— D(ID) = D(ID)-S(IE)
N | S(IE) = 0
‘IV;IV-l‘ W = IW - 1
J Y
- ( =0 D
4 ]
CIN = 1
1z = 0 IE = IE 1
’ “IN = (IE-1)¥N-+ID
CO = C(IN)
250 U(IE) = CO - VO
U0 - U(IE)
IP = IFH

180
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- PART 2C

<

| 1y = 1Q
LS(1y) = IP - N

IQ = IP

| Iy = TP

-,
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PART 3

SEARCH FOR NEXT ELEMENT
0 - 70 ENTER BASIS

N ¢
———-——C"U(IE)+V(ID) —c(IN) » Dc_)e—————-
' '

TSWA = 1

DC = U(IE)= V(ID) -C(IN)
J2 « ID

‘ \ |

IN
P 1D =

1}

H
=2
+
—

1
-
w)
+
o}
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@ * PART 4A

IA = 1
IB = 1
IY = J2
315 IH = J2
DX =
ISWA = O
305
Y N 7 o i
o { LS(IY) = O J
k-
Y ¥ - N
(1Y = K(IY) ) (C IYy = K(OY) ) 355
Q N Y
N 312
X(IB) = MINO(X(_IY),DX) IB = IB - 1
B(IB) =1 : IY - G(IB)
G(IB) = 1 lle.; X(IB)
A(IA) = 1 —1( ) - 2
F(IA) = IY F(IA) = T
IA = IA+1 IA =IA+1
IB - IB+1 {
CB(IB) )_—>357
—

IH = 1V ] é
CLS(IYJ])N L.,,rIY = J(1IY) ‘

[ 1v= “LS(IY)+ N

L——————(HIY{E: )

ISWA = 1 CIH>N )__* 305)
. Y

l (is(1y) - IH - NJ 315
Y
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- PART UB

DX = HINO(X(IY),DX)

A(IA) = O
F(IA) = I¥
1A = IA+1
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ISWA

~ 0
ISWB = 0

—

‘ IA:lIA-l
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(f IAN< O

v
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3
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o

\ IA=TIA -1

Y

=i

<

|
{
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Y
_____("F(IA; = IY_)

T

CHANGE VALUES OF
TLOOP_ELEMENTS

500

: T

ISWB =
X(IY) = (IY)+DX
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I

A

. _
,_,w-—(T~;SWA =0
v

o N x(Iy) = 0

D
D

e X
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i TH1 = IY

LI SWA =1
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@ PART 6A
IH2 - IHl
Iy = TH1
IC = IH1
4 N ’
my N yr——( J1=J2 )
i N 1
[ 1swa = 1 | IswA = 0
— >
KP =¢IH1 |
[ KP = IHL ]
—{_ LS(KP) = O N = .
| ¥ —>(K(XP) = I8l ) 710
<—| kp = 31 N
KP = K(KP)
( Ls(IY) = THI-N Y
N LS(KP) = LS(IY)
KP - LS(KP)+ N IswB = 0 l
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KP = J2 ‘ ' X(IC) = DX
LS(IC) = LS(KP),
J(IC) = : i I(IC) = 12
LS(XP) = IC - N K(IC) = K(KP
. ’ K(KP) = IC
—( IsWwB =0
4 680‘
C 1L )—-9
L—*’C I(IC) } KP = IHIL
720
e mom )
(tp-1w )—w| KP=TE]_ 4}
I xp = 1P ‘1 .
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680

(KP) = K(IY)

" PART 6B

N
(IswA =0 D l
e Y
< IC = LS(IY)+ N
KP = 1 IH2 = IC
KP = IH2
ety
rkp) =12 J | .
N <{ K(KP) = IH2 )
KP = KP+1 g N
KP = K(XP)
K(KP) = IY
IP = K(IY)
I(IY) = I(IC)
K(IY) = K(IC)

LS(IY) = LS(IC)
X(IY) = X(IC)
ISWB = 1
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PART 7A

800
1B = 1
IY = IH2
IE = I2
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X Y '
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¥
r»(f LS(IY) =

970; .

910

PART 7B

IY = J(I¥) AJ“‘"‘(rLS(IY)

D)

N
I

1y = Ls(z)+ N

P

IE = I(IY)
U(IE) = U(IE) - DC

:}‘—EL(;ﬂ IH >

N
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= K(IY)

[€

y

'

= e

1y = x(1y)

'}

N

B(IB) =
G(IG) =
IB = IB+ 1

3
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PRINT FINAL

SOLUTION

J.

END

Note: The input/output routines are user dependent and
hence the above flow chart is block diagram.

However, it is coded for the computer program to

enable testing.
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PROGRAM LISTING
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' §
3
ROUTINE GXPOSE CDC 6688 FTN V3,0-P296 OPT=zy 75 .
SUBROUTINE GXPOSE (A,B,C,D,E,F,6,1,J,K,LS,M,N,S,U,V:X) : gﬂ
c ' o . . - as
c ."-—-------—--—-------------------------------—--;q;-;;;---;----‘-;-;-;g;’
C #*«+ R GSUPTA +#+  TRANSPORTATION PROBLEM ¥ Ao
c , as
c AUTHOR R. GUPTA _ar
C ' o
C  DATE WRITTEN MARCH 19,1970 ?;;
¢ . . ‘ a7
C_-------—--------------------------------;--—;-;-.‘-;q;-‘.;;-;.;-;-----;-;gf;
C 2
c @7
C PROBLEM, ar.
C o
C  MINIMIZE COST C = SUN OVER I,J OF (C(I,J)#X(I,J)) g?
c SUBJECT TO THE CONSTRANTS arc;
c e SUM OVER J OF X(I,J) = S(I) e
C : Qs
c 2, SUM OVER I OF X(I,J) = D(J) g
c 3. X(I,J) ,LGE, @ as
c G
C NOTE: DATA MUST HAVE SUM OVER I OF S(I)= SUM OVER J OF D(J) B
C ' 2«
- o 0 00w 0w . - - Ty T ey ) -----—----‘-----—-------------—------—;r—---éa:
c g
C a7
€ PARAMETERS, . ot
c o
c 0¢
c M = NUMBER OF SOURCE (PLANTS), S(I) - ROW &7
c N = MUMBER OF DISTRIBUTION POINTS (CUSTOMERS), D(¢J) coL,
c D(J) = DEMAND OF COMMODITY BY CUSTOMER J . % MAX N -
c S(I) = SUPPLY OF COMMODITY AT PLANT 1 %k MAX M -
c I = VARIABLE FOR M (VALUE BETWEEN { AND M) wk Q-
c J - VARIABLE FOR N (VALUE BETWEEN { AND N) g2
o ne = INCREMENTAL COSYT = UCI)+V(J)=C(I,.J) : ar
c UCIE) = DUAL VARIABLE FOR ROW IE OF COST MATRIX ** MAX M o~
c V(ID) ~ DJAL VARIABLE FOR COL ID OF COST MATRIX % MAX N 207
c K(IY) = NUMBER OF AN ELEMEMT IN THE SAME ROW OF k% MAX MeNmi 07,
c SHIPMENT MATRIX AS ELEMENT 1Y 6e
C LCIY) = NUMBER OF AM ELEMENT IN THE SAME COL OF *% MAX M4Net ke
o SHIPMENT MATRIX_ A3 ELEMENT IY an
c I(IY) = ROW OF BASIS ERLEMENT *% MAX M4Nay 7z
c JCIY) = COL OF BASIS ELEMENT *k MAX MaNet ol
c LscIy)= 9 IF L(Iy) ,LE, N & MAX MeNet av
c . = L(IY)=H OTHERWISE "
c F(IA) = ELE4EMT NUM3ER QF BRANCH OR CORNER POINT % MAX 2%M4Ne2 -
C ENCOUNTERED DURING SEARCH o
o A(CTA) = IDENTIFIES F(IA) EMCOUNTERED DURIN SEARCH ASw# MAX 2«M4N=2 2°
(o ACIA)=2 - CORNFR POINT ac
c 1 =~ BRANCH POINT o
c =2 = BRANCH PQINT FROM WHICH A NEW i
c PATH WAS SEARCHED nr
c G(IB) « FLFMENT MUMBER OF BRANCH POINT ENCOUNTERED DURING##MAX Mei 37

R GEORGE WILLIAMS UNIVERSITY



ROUTINE

GXPOSE

CDC 6600 FTN V3,0-P296 OPT=1 72

c SEARCH @
c B(IB) = INDICATES WHETHER BRANCH POINT WAS FOUND DURING *wMAX Mwl 2
C RON SEARCH « B(IB)=9 OR ]
o col. SEARCH =~ B(IB)=l, )
c X(IB) = VALUE OF SMALLEST ALTERNATE CORNER OR BRANCH *eMAX Mmi 2
c ' ELEMENT OF THE PATH FROM THE STARTING POINT 21
C OF A TREF TO AND INCLUDING FLEMENT G(¢IB). 2
C CCIN) = UNIT COST FROM PLANT I TO CUSTOMER J *#MAX MaxN @
c IN e INDEX FUR COST,CCIN) = J+N#(I~-1) oK
c %N
c E(IZ) - DENOTES WHAETHER AN ENTRY. IN THE BASIS TABLE HAS ««MAX N o
c BEEN MADE (E(1Z)=1) OR a
(o} HAS MOT BEEN MADE (E(IZ)=3) 0
Cc FOR CoL 1Z OF SHIPPIMG MATRIX al
o (USED ONLY IN FORMING INITIAL BAS1S), !
C Cco = COST FOR CURRENT BASTIS ELEMENT At
o ue « VALUE OF U FOR ROW OF CURRENT ELEMENT !
C va = VALUE OF U FOR COQL OF CURRENT ELEMENT 7
C IH1 - BASIS TABLE ENTRY NUMBER OF ELEMENT DROPPED FROM Q
C BASIS IN A PARTICULAR I1TERATION, : X
C I - ROW ENTRY NUMBER OF ELEMENTY DROPPED FROM @
C BASIS IN A PARTICULAR ITERATION 7
C J1 = Col, ENTRY NUMBER OF ELEMENT DROPPED FROM o)
C BASIS IN A PARTICULAR ITERATION, o)
o Ip - REGISTERS FOR TEMPORARY STORAGE AND COUNTING a
C 1q - REGISTERS FOR TEMPORARY STORAGE AND COUNTING R
C IR - REGISTERS FOR TEYPORARY STORAGE AMD COUNTING o}
C Is - REGISTERS FOR TEMPORARY STORAGE AND COUNTING 2
C IT = REGISTFRS FOR TEMPORARY STORAGE AND COUNTING e
(o IV - REGISTFRS FOR TEMPORARY STORAGE AND COUNTING o}
c 1v -~ REGISTERS Fnr TEMPORARY STORAGE AMD COUNTING 2
C Iw - REGISTERS FOR TEMPORARY STORAGE AND COUNTING @
C IH2 - BASIS TABLE ENTRY NUMBER OF ELEMENT ADDED TO BASIS 5]
C IN THIS ITERATION, a
c 12 - ROW ENTRY MNUMBER OF ELEMENT ADDED TO BASIS ¢
c IN THIS ITERATION : ¢
c J2 - CaL ENTRY NUMBER OF ELEMENT ADDED TO BASIS A
c IN THIS ITERATION 2
C TH ~ BASTS TABLE EnTRY NUMBER OF FIRST ELEMENT EXAMINFED @
C It A PARTICULAR ROW OR COL OF THE SHIPMENY MATRIX 3
C DURING LOGICAL SEARCH, a
C IPALL = 3 PRINT EVERYTHING o]
C = 4 PRINT FIMAL ITERATION ONLY 2
c KAUNT = NUMRER GF ITERATION 15
¢ o
c ,{.
c A
c @
COMMON IPALL,KDST,KSUMS ¢

(of xkkkx SIZE Mw N khkh K I
INTEGER cc1) ¢

C . ¢
c kkkkw SIZE M kkkkk ¢
INTEGER S(Ci1),uU(l) .0

‘ e T
IR GEORGT WILLIAMS UNIVERSITY ey
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ROUTINE GXPOSE CDC 6600 FTN V3,8=-P296 OPT={

'
e

72
C a
C wwxarw SIZE N hhdk al
c INTEGER D(C1),V(1),E(1) z:%
¢ whawn  SIZE MaNal #wesws a1
. INTEGER TI(€1),J(1),K(1),LSC(1),X(1) e: |
—R
C akwdnx SIZE M= WhRdh . !
' INTEGER G(1),B(1) ¢!
c 3!
c  hkkkw SIZE 24MeNe? wnwww zd
INTEGER A(C1),F(1) @i
c @t
c 21!
c 21,
KR = 60 2
KW = 61 ;i

KSUMS = @ a1

KSUMD = @ a:

c a1
c =8=====3===::8:3:::::====llS!S:::::I!B:=l$====3==3====flI:=ﬂ=tl======8ﬁ:
c o
C » PART § * INPUT SECTION = READ IN THE DATA # : o
Cc @
c ==================8==H=888Il==8'-‘38ISESSSEB'-'..'-':SI’S'-'BBEﬂﬂ‘!lﬂ:‘-‘:ﬂl:::zzl[ﬁ‘
C 7))
C [YBE
DO 28 1K=1,M a1
FC(IK)=0 ' 7"
A(Ik)=a 7l
B¢(IK)=9 55
G(IK)=0 . S8

KSUMS = KSUMS + S(IK) 4!

: 2p CONTINUE _ 21
Cc B
C 2
C :======================lB================='—'B=======8===l=====3888===:2(.,‘,
C 21
C * PART 2 » FORM INITIAL BASIC FEASIBLE SOLUTION #« .2l
C &1
c =====8===========8=======8=====8===================2=3=:35=====8:=83==f'f
Cc 2
1P = N ' ' ¢

1V = Nel (D]

MN1 = M4+Na~ti ¢1

Iw = MN{ 01

MN2 = Mue2+Na2 o

M1 = ., S |

ug = @ 21

INF = 2%x%20 a1

1E = 1 A |

KAUNT = @ a2

C ‘ ' : B!
UCIeE)= 0 ) B4R

(R GEORGE WILLIAMS UNIVERSITY




]

INE GXPOSE CDC 6600 FTN V3,0~P296 OPT=t{ 72/08/:
o 01765
PO 194 1Z={,N D177¢

KSUMD = KSUMD + D(IZ) P175¢-

100 ECIZ)= @ 21782

c .
IF (KSUMS~-KSUMD) 103,185,103 %%53%7

183 WRITE (K4%,1@4) KSUMS,KSUMD n1792-
104 FORMAT (1H ,10HSUM OF 8 =3,16,3X,10HSUM OF D 2,16/) 01793.
GO TO 2099 01794

C 01795°
105 CONTINUE 91796
ISKA = 0 a1eas-

C — @181
115 1IN = (IE=1)*nN+{ g185¢.
1z = 1 0186¢"

CA s INF Bwi87¢

122 IF(CCIN)~CQ) 125,125,135 A188: "
125 IF(E(IZ))135,132,135 p1897 4
13 ID s 12 p19gaer
Co = C(IN) 9191

135 IF(IZ=N) 144,145,140 R192¢7,
140 IN = IN+1 91937
12 z 7+ a194¢

G0 TO (28 pL9s5¢ ™

C a196y
145 12 = ID R197¢°
ECIZ)= 1§ p198c:
v(iD)= Ca=-yd Vw199

va = V(ID) P26

C g2o1e:
IFCTISWA) 155,157,155 n2029 .

15¢ ISKA = | NaR3i .
IR = ID na2e4>;

1s . = ID @057 "

IT =0 g206:

IQ = 1D 2077

GO TO 160 nAPP8c:

c p2¢9s.
155 IS = IR p2Lrove
IT =0 p21100

IR = ID @212+

c 02137
150 IF(IV) 165,175,165 p214°
165 IF(DC(ID)=S(IE)) 171,170,175 n215a:
17¢ 1Y = ID p216
GO T0 229 217

c #218:°
175 1Y = IQ p219:'”
K(Iv)= IR 9229, 0

C pn21:
IQ = ID n227:>"

IY s ID P228°7

' w229,
182 1(1y)= IE wa3e.y
K(IY)= IS p231e”
sEORGE WILLIAMS UNIVERSITY Ci




JROUTINE GXPOSE

CDC 6600 FTN V3, @2~P296 OPT=y 72

[

J(Ivy)s 1D o

LSCIY)=IT e

XCIy)=s S(CIE) I

DCID)=D(ID)=S(IE) o)

-SCIE)= 4 )

IW = Ihey )

c . ¢

c n
IFCIW) 185,22%,185

185 IE T lE+] )
IN £ (IE=~1)«N+ID

(o] s C(IN) )

UCIE)=s CA=VA a

ua = U(TE) )

1P 2 IP+1 ’ o

IF(IR=N) 195,195,19@ )

190 IT = IR=N a

GO 70 292 a:

C a;

195 IT e Q 2

209 IR = IP o

IS=1IR 9.

IF(IE=M) 235,215,205 a:

2085 IF(SC(IE)=D(ID)) 214,218,215 a:

21a 1Y = 1P 9,

GO 70 188 2.

c @

215 1Y = 1@ Q:

LS(IY)=s IP=N @

C ) a:

1Q = 1P @a:

1Y = IP W

C Qe

22p I(C1Y) = IE Qe

JC1Y) = ID 0:

K(IY) = 18 e

L.S(Iy)=s 1T B

X(IY) = D(CID) e

S(IE) = S(IE)=~D(ID) e

D(CID) = @ Be

IW z Iu=i c

C ' a:

IF(IW) 233,225,234 ¢

225 IN s |{ Az

12 = 4 fiz

GO 10 252 ve

c . Az

23¢ IV = Vel ne

GO Y0 1415 a2

C ng

250 CONTIMUE 0e

C 23

KAUNT = KAUNT+1 e3

1GO = 1 $3

IF (IPAL{=3) B8253,19MA2,8253 23

(R GEORGE WILLIAMS UNIVERSITY




‘ROUTINE GXPOSE

8253

CONTINUE

CDC 6628 FTN V3,p-P296 OPT=1 72

il

C 4]
c B-'-=================83233883======8=========38=====2==8=88¥"8l8==:=:=z$}
c 2
C « PART 3 ~ SEARCH FOR NEXT ELEMENT TO ENTER BASIS o)
c .
C ==8:::::::===!8BS::l===8Bll==========83===3== 3
C 7
ISWA = g 2
DC 20 o
IR = 9 a:
255 I2 = J2+1 f.
IF(I2-M) 265,265,26Q a:
260 IN =1 o
12 LI | f:
265 It a I2 2.
ID =1 , @
270 IDC = UCIE)+V(ID)=CC(IN) a:
IF( IDC=DC ) 280,280,275 A.
275 ISYA = 1 0
DC = IDC N
J2 = ID 2N
280 CONTINUE a:
c N
IN = IN+1 0
ID 2 ID+} a:
IF(I0=N) 270,270,285 a:
285 IF(ISWA) 373,295,310 Q.
295 IR = IR+} 7N
IF(IR=M) 255,1009, 100802 I
c . [0
300 CONTINUE 7N
DO 3u1 IJ=1,MNt p:
c az
‘ 301 ECIJ) = X(IJ) gz
c N
c ==========‘-‘==:============l=============================8============‘:_=;-'1::
C 9z
C ~ PART 4 » FIND BASIC LOOP INCLUDING NEW ELEMENTS = az
C az
C =======================:=:=a===================s========:=:=====:=====nf
C ol
1A = 1 N
18 LI | AN
1Y = J2 K
IH s J2 n3
DX s INF B2
ISWA = P 03
C 3
3235 IF(LS(TY)) 315,314,315 a3
310 IF(IY=-K(CIY)) 355,312,355 g2
311 CONTIMUE 73
C . 3
KRITE (KW,8311) , "3
8311 FORMAT (1H ,15Hx PART 4 w IB=9 /) 3

[R GEORGE WILLIAMS UNIVERSITY




OUTINE GXPOSE CDC 660@ FTN V3,2-P296 OPT=1 72/
GO TO 2749 a7

c 03
312 I8 % IBwi @3¢

o B3
IF (18) 311,311,313 P34

313 1Y 3 G(IB) 23:

C a3
DX = E(IB) 23¢
A(lA)= 2 3¢
FCIA)= 1y 33¢

IA = IA+1 23¢
IF(B(IBY~1) 314,357,314 B3

314 TH = Iy 84
c 24:
GO TO0 325 04!

¢ 04:!
315 CONTINUE a4;j

c p4:;
320 CONTINUE @4

c B4::
ECIB)Y=MINO(X(TY),DX) a4
B(IB)= 1 A4::
G(IB)= 1y a4 .
ACIAY= ¢ a4
F(IA)= Ty P4

IA = TA+1 g4

I8 = IB+} Ba:.

325 IF(LSC(IY)) 335,331,335 B4
33g 1Y = J(1Y) pa:
GO 10 340 N4;

C g4
335 1Y = LSCIY)+N ¢a:
348 IFCICIY)~I2) 345,342,345 @4
342 1SWA = | Q4.
GO 1O 355 na.

C 24
345 CONTINUE 24.
IF(IHaN) 305,305,350 Q4

352 IFCLSCIY)=(IH=N)) 315,310,315 "4,
355 DX = MINO(X(IY),DX) a4.

c P4
ACIA)= Q4.
FC(IAY= 1y na.

IA s JTA+1 n4:
IF(ISWA) 400,357,480 g4

c A4t
357 IH = 1Y Ba:
362 1Y S_KCIY) a4
IF(IH=-K(IY)) 380,365,383 4t

365 IF(IlY=N) 379,372,375 24t
378 IF(LS(IY)) 375,312,375 s
375 A(IA)= 9 A
FCIA)= 1y A4r

TA £ TA+1

)"ﬂﬁ‘l
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OUTINE

GXFOSE

GQ TQ 344

cDC

6680 FTN V3,0=-P296 OPTx1 7:

380
385

IF(IY=N) 385,385,390
IF(LS(IY)) 399,36¢,390

390 CONTINUE

ECIB)=DX
B(IB)= @
G(IB)= 1Y
ACIA)= ¢
FCIA)= Iy
1A = TA+g

I8 = IB+d
GO TO 369

400 CONTINUE

Ty Ay e oy ATy | RO Y M Ay my Ay <Yy ey e L‘

OOOO0O0OmO0 (9]

3:-‘-::::::======'-'===='-':=EB::::3:32==========3======8====88B====8=======’

* PART § CHANGE VALUES

OF

Loop

=I=3=8=====’==========8===8=======3=8======8

ISKA

Y

ELEMENTS ». ¢

==:=E==B==3========B=3=SB=:,’

a
ISWB 2
IA =
IF(IA) Se2,50a,419

1Y E F(IA)
IF(ACIAY) 42¢,450, 420

405 IA={

410

Y ey e e e

429
430

IF(ACIA)=2) 405,430,4¢5
IA = A1

IFCIA) 522,500,435
IFCACIAY=1) 430,447,430
IF(F(IA)=-1Y) 432,459,430
IFCISWB) 469,479,460

435
44p
450

470

46 ISWB = @
X(IY)= X(IY)+DX

GO TO 495

isWg =
XCIY)s X(IY)=DYX

IF(ISWA) 425,480,425
48a IF(X(IY)) 425,490,405
499 11
Ji

IHY

I(1Y)
J(IY)
1y

oy

c

C
C

ISvA
GO TO

1

Hin nn

o
(9]

500 CONTINUE

DS E e eI P E TS eSS S SRS S SN ESErRSSSECSESESSEESESSIZoS
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'OUTIMNE GXPOSE

CDC 6600 FTN V3,8~P296 OPT3y

*+ PART 6 w * MODIFY BASIS TABLE «

(s Xa Xy Nal o]

IH2 = IHg
1y a THY

==It===============3:82388I383’!8ﬂ====3==l===.llll====’ISSICSBB=SSIRS=l-'

4

IC s IH{

IF(Ji1~J2) 550,510,550
510 ISWA = 0
520 KP = IH1
93 JF(K(FP)=THY) 540,710,540

.

TRV s
C e etamre s et

54y KP = K(KP)
GO 70 530

552 IF(IH1-N) 569,568,570
568 ISWA = |
GO YO 524

<R

578 KP = TH1
58¢ IF(LS(KP)) 625,599,605
590 KP = Ji

GO TO 5802

AR NN

600 KP = LS(KP)+N
GO 70 589

685 IF(LS(KP)-(IH1~N)) 600,6108,6C0
618 LS(KP)= LS(IY)
I1swB @

626 KP J2
LS(IC)= LS(KP)
S JCIC) = J2
LS(KP)= IC=N
IF(ISwWR) 642,639,640

I R I N A T R R e R R )

a}

630 IF(Iil~I12) 512,790,512
64p IF(ICIC)~IZ2) 650,690,650
65¢ IF(Ii~-12) 728,660,720
660 IF(IP=-1Y) 670,704,679
670 KP ipP

68¢ ICIC)

-
e !

AN

K(IC)
K(KP)
GO 710

N otonjan
=t
(]

69a KP = IH1
GO 10 68n

BN B NS

788 KP 2 IH2
GO 10 683

712 K(KP) = K(IY)
YF(ISWA) 759,720,759

e N RS
NERNCRA TN

by R T
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OUTINE

GXPOSE

72¢

KP = 1

CDC 66a@ FTN V3,2~P296 OPT={

7

730
749

751

IF(I(KP)~12) 740,680,740
KP = KP+1
G0 TO 730

IC 2 LSCIY)+N
1H2 2 IC

Noery oy ws me b

760
77¢

780

KP = IH2
IF(K(KP)=1I42) 770,782,770

KP = K(KP)
GO TO 760

K(KP) = TY

Fo o=y @y ny =y

K(Iy) = K(IC)
I(IY) = I(IC)
IP z K(IY)
LS(IY)= LS(IC)
X(Iy) X(¢IC)
ISWB 1

)

<y

PN "y <)y

79@

GO0 TO 629

X(IC) = DX
GO TO 81®

e Nl

====‘=========3=====8===328=383::88===2:38:‘::8:!88!823:3!8::2.3:::8323:

OO0 OO

* PART 7 =+ COMPUTE DUAL VARIABLES

FGR NEW BASIS «*

e
P

Ia

:::3:==================lﬂ======8=3=8::25:!2'—':3:883‘3:3:3B’SSS'SS:::S:SQ'

8aeg

CONTINUE

.

-

IB =1
Iy = IH2
1E = I2

UCIE) = U(IE)=DC
IF(K(IY)=-1Y) 810,250,817

81a
82D

IH
IY

1Y

K(IY)

1D J(TY)

V(ID) V(TD)+DC
IF(K(IY)=-TH) 830,868,839

»

830
840
85a

IF(IY-N) 840,840,857
IFCL3CIY)) 853,829,850
B(IB) = A

G(IB) 1Y

IB I8+

G0 TO 824

Ny e

86a
87¢
880

89¢p

IF(IY=N) 873,872,989
IFCLSCIY))Y 973,880,922
IB = Idel

IF(1B) 892,253,899

1Y = G(IR)

R GEORGE WILLIAMS UNIVERSITY




'OUTINE

GXPOSE

IF(BCIR)=1) 977,817,900

CDC 6600 FTN V3,0=-P296 OPT=y

7

9@
910
920

930

IH s 1Y

IFC(LS(IY)) 928,939,920
IY=LS(IY)+N

GO TO 949

1Y JCTIY)

P

9440

950
968
979

IE I(1IY)

UCIE) U(IE)=~DC

IF(IH=N) 952,952,960
IF(.SCIY)) 983,970,980
IF(LSCIY)=(IH=N))O8R,072,988@

“ AN e«

980
999

c

IF(IY-R(IY)) 810,880,817
IFCIY-K(CIY)) 993,913,990
B(IBY = 1

6CIB) = 1v

IB = IB+1

GO 70 914

1009

* PART 8 «

CONTTNUE
1IGO = 4

k% PRINT

EINAL

‘SOLUTION we

B eSS S S S S S S TS SIS SIS I A SIS S E S SR RN E R S S S eSS SEASES RS EERSIREISSSEIS

OO0 O0O0

1002

CONTINUE

C P XIS ST S S S S S e S S S SR ST I IR E SIS C S S T I E s RS S S S TS SN EISCSBEREXEE TS

[eXel gl

1083
c

W b * ok ok

D0 tvas3
D(IJ)=0

IJ=1’N

DO 1934 IJ=1,M

CALCULATE s AND D

dkhdd

1004
c

S(1J)=0

DO 1869 KT=1,MNY
IJsJ(KT)
DCIJI=DCIT)+X(KT)
IJ=T(KT)

1060

C

S(IJ)=S(IJ)+X(KT)
CONTINUE

KSUMS
KSUMD

(
d

n

1875
C

1789
C

DO 1@75 IJ=1,N
KSUMD = KSUMD+D(1J)

DO 1282 IJ=1,M
KSUMS = K3UMS + S(1J)

R GEORGE WILLIAMS UNIVERSITY
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'QUTINE GXPNSE COC 66ap FTN V3.0»P296 0OPT=y 7:
** TOTAL S = TOTAL D IF NOT ERROR CANCEL JOB ww

c

c
IF (KSUMS<KSUMD) 123,109,103 '

1892 CONTINUE :

IF (TPALL-3) 20920,1693,1092 N
1092 IFCIPALL=-5) 1493,20002,2869 A
1093 CONTINUE

c ‘
WRITE (KW,1095) KAUNT,M,N ¢

1095 FORMAT(IHl,ldH*** ITERATION, 14,5H #xw ’ ¢
1 224 NUMBER OF ROWS -M =,14,22H NUMBER OF coLs N 314/) ;

c : .
C * ok ok ko BASIS TABLE *hodkok .
c £
WRITE (KW, i109) ¢

1190 FORMAT (12X, 22H*%«w BASIS TABLE waws ) - .
c s

WRITE (K%,1110)
1112 FORMAT( tH 0131 (14=))
HRITE (K4\,1123) } . . ;
1120 FORMAT ¢ 83H ***KT*....*I(KT)*QQQ*K(KT)*goQ*J(KT)*GOQQ*LSCKT)*»"
1*.*X(KT)*..*F(KTJ*--*A(KT)X ) &
WRITE (Kiw,1118)

RPN Y

PO 1132 KT=1,4Ny
' KRITE (KW, 1125) KT,1(KT),K(KT),J(KT),LS(KT),X(KT),F(KT),A(KT)
1125 FORMAY (1H p121I10)
1130 CONTINUE

WRITE (KW,1113)

oy em ey Ay a

TWRITE(KW,1131) (UCIP),IP=1,M)
1131 FORMAT (6H *kijkk,2515)
WRITE(Kw,{132) (V(IP),IP={,N)
1132 FORMAT (6H khVke,D575)
1134 FORMAT (AH *kFhk,2575)

TN R ey e by ey oy

]
1135 FORMAT (8H kkAkw,25]15) £
WRITE(KA,1136) (BCIP),1P=1,M1) ¢
1136 FORMAT (6H *eDhkx,2515) 7
WRITE(KK, 1137) (GCIP),IP=1,M1) r
1137 FORMAT (6H *kkGhx,26]15) °
C 2
C v
WRITE (KwW,116@) 12,J32,11,J1,IH1 o
1160 FORMAT (/211 ELEMENTS ADDED I2 =, 14,6H J2 2, 14/ o
122H ELEMENTS DROPPED It =,14,5H J1 =,14,7H IH1 = ,14)
C

c ktkdkk  SHIPMENT MATRIX shawsw
C :
KSUMS = 0 2
WRITE (K4%,1180) N
1188 FORMAT(/12X,25H %%+ SHIPHENT MATRIX "k k) -
WRITE - (KW, 1114) , ‘
C ’ e

2 %2

DO 1397 IROW=1,M

R GEORGE WILLIAMS UNIVERSITY
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CDC 6608 FTN V3,08=-P296 OPT=1

KSUMSsKSUMS+S (TROW)

DO 1223 KZay,N
122¢ E(KZ) = ©

DO 1249 KZ=1,MNy
IF(IRON=-T(KZY) 124Q0,1230,1240

Sy gy e e g

1230 NCOL = J(K2Z)
E(NCOL)=X(KZ)
1248 CONTINUE

WRITE(KW,1250) SCIROW), (

E(IS),1Jd=1,N)
1260 FORMAT(IH ,iH%x,15,1H*,24(1H+,14))

L B M
x> &

N

1300 CONTINUE
WRITE (KwWw,1119) .

WRITE (Kw,1253) KSUMS,(D(IJ),IJ=1,N)

WRITE (KW,1113)

C wkkkk  (COST MATRIX dwkakw

KOST =
WRITE (Kv,142%)

1420 FORMAT(/12X, 22H*%x+« COST
WRITE (KW, 1110)

DO 15720 IROW=1,M

MATRIX #*xxwn)

1w e ey e D 7 e

DO 1430 KZ=z{,N
143¢ E(KZ) = @

DO 1470 KZ={,MN{
IF (1ROW=I(KZ)) 1470,1451,1470
1450 NCOL = J(KZ)

R e ]

IJ=z (IROW=1)Y+N+NCOL.
KOST = KOST+X(KZ)Y+C(lJ)
E(NCOL) = C(CIJ)

1470 CONTINUE

WRITE(KW,1252) U(TROWY, (E(TJ),IJ=1,N)

15¢8 CONTINUE
WRITE (K¥,1119)

HRITE (KW, 125Q2) KOST,(V(IJ),I1J=1,N)

WRITE (KW,1119)
WRITE(KA,1512) KOST

151¢g FORMAT (11H TOTAL COST,18/)

*kkkk  ELEMENT MATRIX

OO0O0

WRITE (Kii,1622)

bk k&

1620 FORMAT(/12X,24H**** FLEMENT MATRIX ##kwk)

WRITE (Kw,1113)
DO 1702 IROW = {,M

DO 16393 KZ =1,N
1632 F(KZ) = @

R GEORGE WILLIAMS UNIVERSITY
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DO 1670 Kz = 1,MN1

IF (IRON=I(KZ)) 1670,

1658 NCOL = J(KZ)
E(NCOL) = k2
1679 CONTINUE
C

1650,1670

WRITE (KW, 1252) IROW,(E(IJ),IlepN)

1700 CONTINUE
c
WRITE (KW,1112)

_ c
-

IF (IG0a1) 2000,8253,2000

2022 CONTINUE
C

RETURN
END

7

L R I R TP
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7
¥

IGRAM
J

PROGRAM GUPTA (INPUTOUTPUT,,TAPFAO=INPUTsTAPE61=0UTPUT)

COMMON IPALL yKOST o KSUMS
INTEGER C(900)+S(30)+U{30)+D130)4V(30)+E(S9) +F (88)A(88)

OO0

C
c

HO0 '3

o o

10 FORMAT (1615)

INTEGER T1(59) ¢ J{59) +K (591 eLS(59)4X(59)+G(29)+R(29)

KR 60
Kw 61
IBLANK = 0

TUipALL = 3
#ax REFAD SIZE OF MATRIX s

DO 2000 IPT=1.5
REAN(KR«10) MeN

WRITE(KWelS) MyN

MN1 = M+N-=]
Pt =1

soase READ COST MATRIX s -
DO 20 IK=1l.M
P2 = TPl+N-1
READ(KRW10) (C(IP)IP=IP1aTPR2)
WRITE (KWelA){C(IP),,IP=IP1.,.1IP2)

15 FORPMAT(22HINUMRFR OF ROWS =M =,14/22H NUMBRER OF COLS -N =14/)

16 FORMAT (1H «12110)
20 IP1 = IP1l+N
WRITF(KWel5) MeN
#2#  READ SUPPLY AND DEMAND s
READ (KRe10) (D(IP) o IP=1.N)
CWRITE (KWe32) (DCIP) o IP=1.N)
READ (KRe10) (S(IP)Y e IP=1 M)
WRITFEF (KWWe33) (S{IP)eIP=1.M)

32 FORMAT (6H ##D##,25715)
33 FORMAT (6H ##S##,2515)

sa# GO TO TRANSPORTATION SI1IBROITINE wae T

CALL GXPOSE (AsBeCoDEaFaGola JeKeLSeMgNaSsUsVeX)

2000 CONTINUE

STOP
END
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