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Abstract

A Fluid Model for Robot Path Planning in a Time Invariant,
Environment

Zixi Li

Intelligent robot motion planning has been one of the main trends in robotic research
for more than three decades, and colorful variety of techniques are proposed. Among
them, numerical techniques have obtained particular attention, because in many cases,
they are able to achieve real time performance. In this thesis, a new numerical
technique for robot motion planning is presented. It is initialized from the theories of
ideal fluid in fluid mechanics. The path planning process is just like a small particle
in the fluid finding its way out, driven by the velocity potentials along the endless
flow. In a predefined space, usually an enclosed space littered with obstacles, velocity
potentials are computed by Poisson’s equation. Because the simulation is constrained
by a harmonic function, no spontaneous creation of local minima will occur, which
plague some other potential field methods.

Various iteration techniques are experimented with the simulation in order to
choose the best suitable method. The natural flowing path is determined by a depth-
first algorithm and other heuristic algorithms are proposed to further improve the
path. A heuristic bitmap technique for collision avoidance in two-dimensions (3 DOF)
is also suggested. This model contains high potential for parallel processing. Exper-
iments on a vector machine shed light on this approach. Although, the technique
described in this thesis deals with global path planning in a 2-D environment, it can

be extended to n-dimensional domains.
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Chapter 1
Introduction

Robot motion planning has been attracting a lot of rescarch for three decades and
many planning methods have been proposed from various scientific fields such as
differential geometry, topology, graphics and mechanics, etc. In fact, it is a colorful
combination of varieties of sciences and technologies and it is called an important
subset of Spatial Reasoning (see [Lat91]).

Motion planning is by no means a simple problem. J.F. Canny has proved in
[Can88] that dynamic motion planning for a point robot in the plane with a bounded
velocity modulus and arbitrarily many obstacles is NP-hard, even when the moving
obstacles are convex polygon moving without rotation at constant lincar velocity.
This conclusion discloses the difficulties we face in the robot path planning, and the
reason why it encourages wide research interests on this field.

In this introduction, we first give a historic review of this literature, and then we

briefly discuss the most important approaches and methods.

1.1 Classification of Motion Planning Problems

Classically, path planning is divided into two problems. One is the general mover’s
problem, which determines if there exists a path between two predefined locations
(e.g., A and B). Any collision-free path joining A and B at its two extremities is a

solution to the problem. The other is the shortest (or optimal) path problem. It does



not only determine the existence of paths, but also tries to find the shortest one when
a set of paths are proved to be present. Nilsson initiated the trend of the research on
the shortest path problem in computational geometry by proposing Visibility graph
(see [Nil69]). It is the earliest path planning method in the Roadmap Approach. (A
more detailed explanation will be given in the following section.)

Generally, in the process of path planning, most of current algorithms consist of
two phases. Phase one solves the general mover’s problem and phase two solves the
shortest path problem. Before starting the planning, the coordinates of objects (e.g.,
the obstacles, robots) in the working domain are assumed to be known. All the spatial
information in the domain such as edges and vertices of the objects, the hierarchical
rclations among the free regions and so on are stored in a data base. Then the data
base is scarched by different techniques such as graph search, hierarchical tree search,
or potential guided search, etc. to plan the path.

Very often, people do not only stress the path with shortest Euclidean distance.
They try to find a path with good qualities. Sometimes, the term, “good” or “ideal”
path is used. It emphasizes a path with good attributes such as less danger of collision
with obstacles, more flexibility in navigation and a reasonably short distance, etc.

Other classifications of motion planning preblems still exist (see [HA92]). Ac-
cording to the availability of information of obstacles, there are static and dynamic
problems. In a static problem, all the information about obstacles is known a priori,
and the motion of the robot is designed from the given information. In dynamic
planning, only partial information about the obstacles is available. e.g., the visible
parts of the obstacles. The robot plans a path based on the available information.
The information updating and path planning are interchanged continuously until the
robot reaches its goal. Most of the papers in motion planning have dealt with the
static case.

Based on whether there exist moving obstacles or not, the motion planning can be
time-varytng or fime-tnvariant. Or according to whether there are inherent restric-
tions on the motion of robots, e.g., the bounds on robot’s velocity and acceleration,
the constraint on the curvature of robot’s paths and so on, motion planning is either

constrained or unconstraint.



Motion planning is conformable if the shape of robots can be changed, e.g., a
multiple linked robot. Otherwise it is nonconformable. Also according to the number
of robots involved in path planning, there is single or multiple robots problem.

In 2 word, all those classifications of the problems indicate the complexity people
are facing in this field. And it will become more and more intriguing as industries

require solutions in higher dimensional spaces and with higher degrees of freedom.

1.2 Configuration Space

Generally, robots have their own activity boundaries. We call all those areas inside
the boundaries the working space. In other words, a working space (also called world
space or physical space) is where the robot’s activities are bounded. It is very difficult
to plan the robot’s motion directly in the working space, because the robot may have
different shapes and have the capability of rotations. An effective idea is to create
another space, in which the robot is presented as a point only. Then the robot’s
translation and rotation problem, the global path planning problem and the collision
avoidance problem can be solved simultaneously. This space is called the configuration
space. However, the configuration space has to be consistent with the working space
in view of the robot path availability. Therefore, a transformation function is needed.
Let W be the working space, and § be its configuration space. Also we assume
only rigid objects are the concern of our research. Then we have the transformation
function

T:W . (1)

Here T is decided by several attributes like the dimension of the working space, the
shape of the robots and the obstacles. Fig. 1 shows an example of the transformation
from a 2-D working space with a convex-polygon-shaped robot and obstacles to its
configuration space, using the algorithm proposed by [LP83]. In this example, the
robot has only two degrees of freedom (2 DOFs). The verification of this transforma-
tion is shown in Fig. 2, in which the typical contacts of the robot with the obstacle
is specified. The free space for the robot in  is denoted CYy,. or F later in the

thesis, and the space occupied by the obstacles is denoted Copstacte or B. However, the



Working Space Configuration Space

Obstacle C obstacie

C free
T
—_—
Robot
y °
L Reference point Point Robot
0 X

Figure 1: An example transformation by 7 for a triangular robot with 2 DOFs (no
rotation).

Figure 2: The typical positions of contact between the robot and the obstacle.



transformation function 7 is more complicated or even impossible for high degrees of

freedom.

1.3 Main Approaches to Motion Planning

Up to now, hundreds of path planning algorithms are available for reference. They

may be divided into three categories (see [Lat91)):

1. Roadmap methods.

2. Cell decomposition methods (either exact or approximate).
3. Potential fields.

This section follows the above division and discusses in detail the theories, applica-

tions, merits and deficiencies of each method.

1.3.1 Roadmap Approach

The basic idea of roadmap methods is to explore the connectivity of (', in 2
through analysis of its geometrical and topological features such as the coordinates
of the edges, vertices of the robot and the obstacles, etc. Then a network of one-
dimensional curve representing the connectivity of Cj,.. is extracted. The network
is called Roadmap, or Skeleton. Once constructed, the roadmap is used as a sct of
standard paths. Path planning is therefore reduced to connecting the initial and goal
configuration in the map and the map is searched for a path.

The earliest technique of this approach is Viszbilily graph proposed by Nilsson in
1969 (see [Nil69]). It leads to the research for finding the shortest path in computa-
tional geometry. This method connects every pair of vertices in Cj,., by a straight
segment if it does not traverse the interior of a Copacte (see Fig. 3). For a naive
method, i.e., connecting every pair of vertices available (see [LPW79]), the time com-
plexity is O(n®), where n is the total number of vertices of the obstacles. The per-
formance of this method can be improved to O(c* + nlogn) by constructing only

the reduced visibility graph (see [Roy88]), where ¢ is the number of disjoint convex
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Figure 3: An example of visibility graph.

polygons. The generalized polygon technique can transform those non-polygons into
polygons in order to apply this method. Also this method can be improved to O(n?)
(see [Ede8T)).

Another technique, Retraction, is the classical one in topology (see [K.84]). Let p

be the retraction function, then
P:Cfrcc—’Rv (2)

where R(C Cyre.) is a network of one dimensional curves. This is called Preserved
retraction. [0Y82] proposed a retraction of Cy,.. onto its Voronoi diagram and hence
maximized the clearance between the robot and the obstacles. Let 8 = 8Cy,.., for
any ¢ € Cyyee, let

clearance(q) = min,egllq — p|l, (3)

where ||q - p|| is the Euclidean distance between q and p, and let
near(g) = {p € B/llq — pl| = clearance(q)}. (4)
The Voronoi diagram of .. is the set:

Vor(Cjree) = {q € Cjree/card(near(q)) > 1} (5)



-~1

Figure 4: An example of Voronoi graph. Any configuration will be projected on the
graph (e.g., p(q;) and p(q,) are the images of ¢; and ¢;) and the graph is searched to
find a path.

3

where card(E) denotes the cardinality of the set E. Fig. 4 shows the result of
O’Dunlaing’s algorithm (the solid curves) and the image projections of ¢; and ¢,
on the graph (the dotted lines). This algorithm is applicable only when C = R%. It
can be computed in O(n?) time since the total number of arcs in Vor(Cyre.) is O(n),
where n is the sum of all the vertices and edges.

A general roadmap method called Silhouette method is proposed in {Can88]. It is
the only known complete path planning algorithm which runs in single exponent.ial
time in 2’s dimension. This method sweeps out a plane along arbitrary direction in
Q) and extract the extremal parts called critical points which are traced out to form
the silhouette curves. Then the roadmap can be represented as a graph whose links

are algebraic curve segments and whose nodes are the end points of these segments.

1.3.2 Cell Decomposition

Cell Decomposition method first decomposes Cy,.. into a collection of non-overlapping

regions called cells. The technique by which the union of the cells is exactly equal to



Figure 5: An example of trapezoidal decomposition.

Ctree is called the exact cell decomposition, otherwise the approximate cell decom-
position. The approximate cell decomposition requires that the cells have a simple
prespecified shape such as a rectangloid. However, both decompositions construct a
connectivity graph for Cy... and search the graph to find a sequence of cells connecting

Ginyt and @goqr. A path is then extracted from such a sequence.

Exact Cell Decomposition

The simplest bul non-optimal method in exact cell decomposition is Trapezoidal de-
composition, which is used only for convex polygonal configuration space. Each cell
of the decomposition is either a trapezoid or a triangle. Two cells are adjacent if
and only if their boundaries share a segment (see Fig. 5). This algorithm tries to re-
duce the number of the cells. Schwartz and Sharir (see [S583]) solve translation and
rotation of a polygonal robot A by modeling it as a line segment (called a ladder),
decomposing the set of positions of A into 2D noncritical regions and representing the
adjacency relation among the cells in a connectivity graph. This algorithm requires
O(n®). Cylindrical algebraic decomposition, based on Colins decomposition, is also

proposed by Schwartz and Sharir.
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Figure 6: The hierarchical relations of the decomposed cells represented by a quadtree.

Approximate Cell Decomposition

A noticeable recent development on approximate cell decomposition is made by David
Zhu and Jean-Claude Latombe (sece [ZL91]). They adopted the hierarchical decorn-
position used in computer graphics, and divided the workspace into three kinds of
regions: free, occupied and mired. The mixed regions are subdivided into smaller
regions again until it is distinct. The hierarchical relations between the free regions
in the subdivision process are recorded and then the connected free regions to the
goal are traced to find the path. Fig. 6 shows hierarchical relations of the cells by a

quadtree.

1.3.3 Potential Field

Potential field is sometimesregarded as a local method in path planning. It consists of
searching a grid placed onto the robot’s configuration space (see [Don84}). Heuristic

techniques from the partial information about the configuration space are used to
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guide the search. A widely used heuristic technique guides the search for a path
along the flow of the negated gradient vector field generated by an artificial potential
field. Particularly, it treats the robot in configuration space as a particle under the
influence of an artificial potential field. This method is first used in on-line collision
avoidance (see [Kha80]). It seeks real time efficiency but does not always guarantee a
solution. Most planning methods based on the potential field approach have a strong
empirical flavor. They are usually incomplete. However, they are increasingly popular
for implementing practical motion planners. Also the simple potential-guided path
planning techniques do not assume any specific potential function.

A general potential field approach constructs artificial forces based on either the
distance to the goal or the distance to the boundary of the objects; and heuristically
searches the local paths guided by a combination of the forces. The artificial 1 ..e
F(q) is composed of two forces: the attractive force F,, and the repulsive force F,e,,,

where
ﬁalt(‘]) = "6(]0“((1) = _ﬁ(q - ngal) (6)

in the case of a parabolic well, and

n(p_(‘?ﬁ - ;%);71?66p(q) if p(Q) < Po, (7)
> Po,

ﬁrcp(‘l) = —'6U"P(q) = { 0 if p(a)

where U is a differential potential function and U:Cyr.e = R, and U(q) denotes the
gradient vector of U at the configuration ¢q. pg is called the distance of influence of
the C-obstacles.

The depth-first planning and the best-first planning are the two simple potential-
guided planning techniques. The former simply follows the steepest descent of the
potential function until the goal configuration is attained. For this technique, the
strategy to escape from the local minima is under much concern. The latter embed-
ded the configuration space with a fine regular grid GC. It consists of iteratively
constructing a tree T whose nodes are configurations in GC. The root is ginie. At
every iteration, the algorithm examines the neighbors of the leaf of 7" that has the
smallest potential value. If their values are less than some large threshold, then join

them to T as successors of the leaf being considered. Each node in T" has a pointer
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towards its parent. The algorithm terminates when ggoq; has been attained (success)
or all the accessible free subset of GC from g,n.¢ has been explored (failure). If success,
a path is generated by tracing the pointer from gy, to gyny (see [BL89)).

This approach offers an efficient way to solve collision avoidance problem. How-
ever, it may face serious local minima which often make the global path planning
to fail. Many efforts are made to find a local minimum free environment for robots
or seek some strategies to escape from local minima. There exist some escaping
techniques but generally they are very expensive considering the time and the lower
qualities of the path they produced.

1.3.4 Nwumerical Potential Methods

On the contrary, numerical potential methods can effectively avoid the trouble of local
minima. Various numerical methods now exist in the literature. They often try to
generate a local minimum-free environment. An early example of the potential field
method is the charge distribution model proposed by Khatib [Kha85]. Some of the
deficiencies of this method [KB91] are avoided by more recently reported potential
field models satisfying Laplace’s equation together with Dirichlet [CJ90] or Neumann
boundary conditions [TB91]. These methods are ideally suited for implementation
on massively parallel distributed processor systems, either digital [CJ90] or analogue
[TB91]. A wave propagation strategy to optimal path planning in metric configuration
space is first treated in Dorst and Trovato [D'T88].

Simpler numerical potential methods have been proposed in [BL89], which prove
to be efficient and powerful in dealing with many DOF's in robot path planning (sce
[BL89)). For example, the W -potentials, which are computed by a simple technique
called wavefront ezpansion (see [Lat91]), is obtained by recursively assig.ing succes-
sive cardinal numbers from the goal configuration (ggyo) to unoccupied neighbor-
ing regions until all those connected free regions are labeled. However the resulted
collision-free path tends to graze the boundary of C-obstacles, which restricts the
movement of the robot. To avoid this, an improved W-potential method is proposed,
in which a skeleton is extracted from free space and the path is found through tracing

this skeleton using wavefront expansion. This skeleton is actually similar to a Voronoi
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diagram in the workspace. This method maximizes the distance from the C-obstacles
and gives the robot more freedom and less danger of collision. Of course, the resulted
path is no longer optimal or even short. It is good for a workspace with densely
and evenly distributed obstacles, however, it does not generate economical paths in
other cases. Also it is too rigid in the choice of path planning space (i.e., always in
the middle curve of the free channels bounded by the obstacles) and therefore it is
unsuitable for planning multiple moving objects.

Connolly and Burns initiated the use of Laplace’s Equation as a navigation func-
tion in path planning (see [CJ90]). They propose a global method which computes the
solutions to Laplace’s equation in arbitrary n-dimensional domain, and results in a
weak form of what Rimon and Kodischek define as navigation functions (see [RK88]).
The solutions of Laplace’s equation are composed of a system of harmonic functions.
Harmonic functions satisfy the min-max principle. Therefore, spontaneous creation
of local minima w.ithin the region is impossible if Laplace’s equation is imposed as a
constraint on the function used.

What is a navigation function? A navigation function generally has to satisfy four
properties (sce [RK88]): (1) Analyticity, (2) Polar, (3) Admissibility, and (4) Morse.
Every harmonic function ¢ defined on a compact region = 0Q U satisfies three of

the four properties for navigation functions. This may be seen as follows:

1. Analyticity: Every harmonic function is analytic [BS85].

2. Polar: Select a point ¢4 to be the goal point, constrain ¢(gs) = 0 and set all
obstacle boundary points p to some constant ¢(p) = ¢. Since all harmonic
functions satisfy the min-max principle, ¢ is polar. In other words, g, will be
the point at which ¢ attains its minimum value on Q. Hence, all streamlines of
é lead to gq.

3. Admissibility: if we simply set the constant ¢ = 1 above, then ¢ will be admis-

sible in the sense of [RK88]. This is a simple normalization of ¢.

4. The fourth property is that a navigation function is Morse (i.e., there are no
degenerate critical points) [Mil70]. Every critical point of ¢ in Q must be an

isolated ssddle point, from which streamlines may easily be found.
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In [CJ90], Dirichlet boundary condition is used. If the starting point is known,
another harmonic function can also be established. Then the harmonic functions can
be combined using superposition techniques. One such function, which represents a
point source (whose potential is infinite at the source), is log(r(z,y)), where r(z,y)
is the Euclidean distance from the source (zo,%0). The gradient for this function

represents the vector field which would drive an effector away from the obstacles:

log(r(z,y)) = log(y/(z — z0)? + (¥ — w)?), (8)
S loatr(a) = 222, ©)
0 _ Y~
—azlog(r(x,y)) =) (10)

Thus, the gradient for this function at a given point is always a unit vector in a
direction away from the source point. Note also that the second partial derivatives
with respect to z and y vanish everywhere, so Laplace’s equation is satisfied. However,
the superposition of harmonic functions presents problems. There is no guarantee
for collision avoidance in complex or dynamic environments. The potential in the
neighborhood of a given obstacle is a function not only of that obstacle’s potential, but
also of every other obstacle’s ( or goal’s) potentials. By changing the configurations or
strengths (which can easily happen in dynamic environments) the path of the robot
can be led arbitrarily close to the obstacle. Therefore, the only structure that can be
safely modeled this way is a point itself since the potential goes to infinity at the point
source, and thus superposition of fields associated with sources at a finite distance

cannot affect this.

1.4 About the theses

In fact, our research is directly developed from [CJ90] and [BL89]; Poisson’s equation
is employed to constrain the generation of the pctential function over the region of
the configuration space. This function is harmonic except at the two sets of points:
sources and sinks. The generation of the potentials in the specified region is an

analogue of ideal fluid flowing in that region. The idea in wavefront expansion (sec
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(BL89]) is further developed in our fluid model which has the same effect in find-
ing a global collision-free path, and also, more importantly, it creates a beneficial
environment for path planning, path correction and multiple robot navigation.

Chapter 1 acts as an introduction to the path planning literature. Chapter 2
states the theories of ideal fluid, the fluid simulation process and its mathematical
representations. Correct results of fluid simulation is the base of the path planning
and nevigation algorithms. Chapter 3 explains and proves the generic properties of the
domain simulated by the techniques stated in Chapter 2, and discusses the domain’s
structural features. Several definitions (or basic structures) related to the mechanism
of a path in the fluid model are defined. Also, dynamic characteristics of the simulated
ideal fluid in a closed domain are analyzed, which conclude that the existing forces
can distort the path planning. Chapter 4 explains the basic path planning algorithm,
SI'M, its merits and deficiencies, and provides two techniques in path imprcvement.
Chapter 5 proposes a bitmap technique for collision avoidance and chapter 6 compares
the experiments on a variety of techniques for solving Poisson’s equation. In this
chapter, advanced computation techniques such as SOR and MAM are explained.
Chapter 7 records the experiments on a high-powered parallel machine, and indicates
the promising future of this method. Finally, Chapter 8 proposes two highly efficient
path planning techniques, which result from modifications to the navigation function
stated in Chapter 2.



Chapter 2

Simulation of Ideal Fluid

In Fluid mechanics, the term, ideal fluid, is used to indicate the behavior of a real
fluid away from the boundaries. It is assumed that the fluid is incompressible and
invisid. Its flow is therefore irrotational. These features enable generalization of

physical problems and establishment of mathematical models for solving them.

2.1 Basics in Ideal Fluid

This section contains a brief introduction to the theory of ideal fluid which is closely
related to our application. The volume flow rates denoted by ¥ and the velocity
potentials denoted by ¢ are two important elements in both the simulation of ideal
fluid and the path planning. The flow pattern formed by the two types of flow
lines, along which 1 and ¢ are constant respectively, acts as important references for
our heuristic planning algorithms. Also our attention is confined to two-dimensional

steady flow only.

2.1.1 Condition for Continuity of Ideal Flow

Suppose in an ideal fluid, there exists an open region S without interior sources. From
the conservation law, the flow rate into S must be equal to the volume flow rate out
of it (see [Mas90], Chapt. 10). Assume the fluid has a unit thickness, we have (sce

15
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Figure 8: A straight and parallel flow pattern, where I, are the streamlines and % is
the volume flow rate constant on streamlines.

Fig.7)
uby + vér = (u + -gg&z)Jy +(v+ -g%@)&t
ou Ou
= u6y+v6m+616y(a—z+ —a—y) (11)

where u, v are the components of ¢, the velocity. However, Eq. 11 is valid if and only
if
Ju O0Ov
z oy
This is the condition for continuity of ideal fluid.

0. (12)

2.1.2 Stream Function ¢
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Figure 9: The relation between the velocity g along s and the velocity potential ¢
along s.

Conventionally, we use 3 to represent the volume flow rate, and the streamline
shows the path of certain layer of fluid, along which 9 is constant. Therefore, the

average velocity ¢ LY
)

_ o 13

=% )

where n is a vector normal to streamlines (see Fig. 8). If 4 is constant, the shorter

the distance (6n) between streamlines, the faster the speed.

2.1.3 Velocity Potential ¢

When the flow is irrotational, we can define the velocity potential as (see Fig. 9),

~4= [ aids, (14)

where ¢, is the component of ¢ along és from A to B. The minus sign shows ¢

decreases in the direction of flow. Take differentiation of both sides of Eq. 14, we get

6¢ = —q,s, (15)
thus 96
gs = —Ea as s — O) (16)

It is clear, if 8s is perpendicular to a streamline, then ¢, = 0 and 6¢ = 0. Therefore,
¢ is constant. We call the line with constant ¢ equipotential line.
From Eq. 16, we have

0¢ v d¢

u=_a1 = —5&'7

(17)
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Substitute Eq. 17 into Eq. 12, the condition of flow continuity, we get

¢ 0% _
Fr + Frie 0, (18)
or simply
Np =0, (19)

where A is the second-order differential operator. Equation 18 is the two dimensional
formula of Laplace’s equation. Laplace's equation finds many applications in physics.
Here, it can be used to approximate the flow pattern of a fluid by calculating the

fluid velocity potentials at different small regions in its flow path.

2.1.4 Flow Net

For any two-dimensional irrational flow of an ideal fluid, two series of lines may
be drawn. One is the streamlines, along which ¢ is constant. The other is the
equipotential lines along which ¢ is constant. Assume g along the streamline s is
constant, then from Eq. 15, if 6¢ = 0, és = 0. The only line on which és = 0 is
the line perpendicular to s. Therefore, equipotential lines are perpendicular to their
corresponding streamlines. Hence the lines of constant ¥ and lines of constant ¢
together form a grid of quadrilaterals with 90 degrees of corners. This grid is called
flow net. It provides a simple yet valuable indication of the flow pattern (see Fig. 10).
If 6s = én — 0, the quadrilaterals become complete squares.

From Newton’ second law, the fluid flows from higher altitude to lower altitude
out of the force of gravity or, in other words, of the velocity potential. Along with
the decrement of altitude, it gains its horizontal movement. If we ignore the vertical
movement of fluid, the horizontal one represents a path in two dimensional environ-
ment. Assume there are points A and B located in the passway of the fluid, a particle
leaving off A and later reaching B actually draws a path between A and B. Tracing
particles’ movements in the fluid is the fundamental aspect of path planning in our
fluid model.
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Figure 10: Elements of a flow net. The streamlines and the equipotential lines form
a grid of quadrilaterals having 90 degree of corners.

2.2 Poisson’s Equation and Velocity Potentials

2.2.1 Initialization of Q2

Conservation Law

From Section 1.1.3, velocity potentials, ¢, in an ideal fluid satisfies Laplace’s
equation. Or in other words, Laplace’s equation can be employed to simulate the
ideal fluid through the computation of its velocity potentials in its flow domain. Let
§ be a closed domain for the flow, which is also referred to as the configuration space
for the robot path planning. It is assumed that no fluid can flow in or out of the
boundaries of €. Interior sources and inner boundaries (which, in our case, stand
for the areas occupied by the obstacles in ) may be initialized in it. There are two
kinds of interior sources, one (denoted by S*) having the positive volume flow rate
(i.e., the sources), the other (denoted by S~) having the negative volume flow rate

(i.e., the sink). In order to satisfy the conservation law in €2, we define

R(S*) = —R(S7), (20)
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where R(P) represents the volume flow rate at node P. Hence, we have (see [Roy88],
[McC89))
_Lkaz=m (21)

where

B=S"R(S})+ Z;R(SJ‘), wheren=1,2,...and m = 1,2,... (22)
J:

=1
and V stands for the volume of the flow. Eq. 21 is the compatibility condition
which states that the net flow rate in ) must be zero. Only when this condition is
satisfied, there exists a solution for ). Therefore, Eq. 21 imposes the constraint on
the initialization of the sources and sinks.
Discretization of

A classical way to seek numerical solutions in a domain is first to divide the domain
into many subdomains. For our method, a grid is embedded in §2, which has the size
M x N. A node is located on each vertex of those small rectangular regions, or to say,
§ is discretized and represented by a number of regular elements in its domain. For
consistency, S*, S—, the vertices of objects in 2, etc. are always defined on the grid
nodes, and so are the points on which the values of ¢ are calculated and compared.
However, the values of ¢ on the none-node locations can be obtained through proper

interpolation functions.

2.2.2 Poisson and von Neumann Boundary Conditions

Theoretically, m and n in Eq. 22 may be different provided it satisfies Eq. 21. In
robot path planning, however, we consider only a one-to-one problem, i.e., from the
initial position of a robot, plan the path to its expected destination. In any instant,
the robot’s initial position and expected goal position are unique. Therefore, for
simplicity, we define only two interior sources in {2, one is the source, S*, which
represents the initial position of » robot. The other is the sink, S~, the destination.

# in an open ideal flow without sources and sinks satisfies Laplace’s equation (see
[Mas90]). For §2 defined in 1.2.1, ¢ satisfies Poisson’s equation

Ad=—F, (23)
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or
62¢ 624) _ 6245 62()5 a2¢ _

8x2 + B_y"’ =—for ox? + 0y? + 022 = (24)

and

-b if (z,y) = S,

flz,y) =13 +b if(z,y) =85, (25)

0 otherwise,
where b is a positive constant and it can be conveniently assigned to be 1. It is clear
that ¢ in Q still satisfies Eq. 19, except at S* and S~. The points at S* and S~ are
called singular points. They require special consideration. Since no fluid is in or out
of the boundary of 9 (denoted by 9S2) or the boundary of obstacles, the Neumann

boundary condition is the best choice for boundaries. Then we have

-aa—f—: =0 on 09, (26)

where n is the normal vector to the boundaries. Eq. 26 indicates that the velocity
along the normal vector at the boundary is zero. This property prevents the simulated
fluid from flowing directly to the boundaries and excludes the interior occupied areas
(the space occupied by obstacles) from computation. This technique leads to a very

good solution to the collision problem encountered by many path planning algorithms.

2.2.3 Results of Simulation

This section gives several examples of fluid simulation. All the figures in this section
are generated based on computer simulations, i.e., the computation of velocity po-
tentials according to the parameterization of 2 using Eqs. 24-26. Fig. 11 shows the
flow map of an ideal fluid in ) without obstacles. The arrows show the main flow
directions. The directions of arrows are determined by the Steepest Falling Method
(SFM), a path planning algorithm stated in Section 5. The different sizes of the
arrows indicate the magnitudes of the potential gradients. The bigger the size of an
arrow, the larger the gradient. In Fig. 12, there are three obstacles in ). From both

figures, we can notice at least two properties of the flow:

1. No arrow directs to either the boundary of § or the boundary of obstacles.
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A sample of the flow map generated by the algorithms
are eight directions of an arrow and five sizes which show the different levels of the

gradients of velocity potentials.

Figure 11



23

- R PE PR R REES BB R PSR DD s
el i A Ak L X L X L AW A £ L A 4 3 L 2 L X T I JEPEarasy
LA T L L2 T L2 INWE LT T T T ¥ Y Trey ey
Vg resvrvecrt\jferddrssssse i\
(XX AL D L L 11 I Ll L LT SN
oo anancmeodl\voosmeyy\
(Al it A X T AR T L L L 1 T 1 %Y
LL LT D TE AR T XY 1 1Y

’
v
v
[}
4
]
[
[]
[}
]
.
.

Fy 2T 22 AN Y
e g,
[N QPR

-
.
]
4
]
3
4
]
4
[ 4
4

L eansneayyy
AR rrrrvardrrs
P R R Y Y A X

(AR LS N R AR RN RN R RS RN R Rl L L L 4
[ E R NN NS AN RS R RS RN L L L L L N 4

PR ET TP IN SN
N NN R R A A Py Ny

[ 22 T T P ANNE T P T T 2 T ¥
AavoosasvesIV\ | fdococanndss
CShossvsewy L\ | Ffrpeoccncengy,s
Nesovdseses I\ \ | Frleecccverys
F L T T T T Pp s
P eeBoratanny
\ R

¢
4
L4
4
[]
[]
]
]
]
[]
]
.
.
.
.
.

4
’
1
[

4
.
’
.
]
]
'
]
[
]
[]
]
]
.
.
.
.
.
.
.
.
)
.
L]
.
.
.
-
-
N
-
-

s a
tee
toes e
tioe
tloe
tite
il e
1484
114
1104
[ER N
1183
[ER X
AKX ]
[ KRN ]
[N N ]
[N N ]
[N Y
160
i
LEEIR W Y
1isw
ttnn
ténae
tiss
LEE N IS Y
te e
tiee
XY
tiss
tise
XXX
[EX XY
tsas
s a e
LI W Y

R R R R R R R e e N AR
A R I T R R YR T TR PR R R N

P e T X L T T Y T T T T AP A

LA
IZXELL R
(EER RN
sbeee [
trees it .
tede 0t .
et .
I EE AR RN NN M
L EEERE R RN L4
erset byt ’
st AN .
PO S I AP NN\ asnaswsy
PPl It PENANGCEvessomoany
Vs oweoevevseePrprriIdItaNN Ve csscowoenoay
VsacvososssvssacngrrtitIN Nascncaccanccscaar)
...-.l--.n-.....l‘.‘l.......-...-.hcooc

Figure 12: Another sample of the flow map generated by the algorithms in 2.2.2.

2. Starting from any arrow location in €1, one can always reach the sink (57) by

tracing the arrow heads successively.

3. The consecutive arrows indicate streamlines (i.e., paths) in . One noticeable
feature is that the streamlines, i.e., the available paths, are often parallel to

each other, provided that they are not close to the boundaries, the source or
the sink.

These properties prove the correctness of the simulation. Fig. 13 shows the equi-
potential contours of the flow in Fig. 11. They form cycles around S* and S~. Taking
any small region and combined with Fig. 11, it is not hard to find that the contour
lines are perpendicular to the direction of the streamlines. Therefore, the two figures

indicate a flow net in §). Similarly for Fig. 12 and Fig. 14.
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Figure 13: A sample of the equipotential contours. The brightest spot is S* and the
darkest spot is S~. The value of velocity potentials decreases as the darkness of the
shades increases.

Figure 14: Another sample of the equipotential contours.
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isons with Simp

15, all streamlines converge to the shortest path, that is the valleys

Figure 15: A sample of the flow map generated by wavefront algorithm.
shown in Fig. 17. This makes it difficult for multiple robot navigation.

e Tracing the arrow from S*, both maps can reach S~ without a danger of colli-
sion.

e Fig. 12 finds a short path which is properly away from the boundary.

e Fig. 15 finds the shortest path but touches the boundary.

The flow maps shown in Fig. 15 is generated by a simple potential algorithm called
e In Fig.

rable to Fig. 12. Also Fig. 16 and Fig. 17 are provided to show the differences in 3-D

wavefront expansion or W-potentials which we mentioned in Chapter 1. It is compa-
meshes generated by our fluid model and W-potentials. The flow directions in both

maps are determined by SFM. Several things should be pointed out:

2.2.4 Compar
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Figure 16: A 3-D mesh of computed potentials using fluid simulation.
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Figure 1

7. A 3-D mesh of computed potentials using W-potentials.
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e In Fig. 15, all streamlines converge to S~, the sink. The smooth declining
surfaces (no valleys) in Fig. 16 imply the flexibility of path adjustments. The
only place where arbitration is needed for solving contention is the small area

around S~.
e In Fig. 12, parallel property of streamlines occurs.
e In Fig. 15, no parallel property.

e In Fig. 12, different sizes of the arrows show different gradients of the velocity

potentials generated. It is useful in flow direction detection, speed control, etc.
e In Fig. 15, all arrows are of the same size.

Clearly, from the comparison above, the ideal fluid model is superior to the simple
cardinal fluid model. The former is more flexible. Each streamline is exactly a
collision-free path, we can choose the best suitable path among them. The parallel
feature of path lines makes the collision-avoidance easier in multiple robot navigation.
Also a solution in {2 may be reused again and again provided the destination is not
changed. The drawback of the former algorithm is that it takes more time in the

generation of the potentials.



Chapter 3
Generic and Structural Properties

In Chapter 2, the basic theories of fluid simulation on a predefined domain are stated.
Let Q) be such a domain. So Q actually defines an environment for the designated
robots. For constraining robots’ activity in the domain, and making the experiment
more realistic, very often different shapes of ’obstacles’ are created in it. Robots can
only move freely in those regions where the imaginary fluid can access. Those regions
occupied by ’obstacles’ are like high beaches at sea, the fluid passes along them but
never goes over them. Only those regions in £ accessible by fluid need to be computed.
Therefore, in view of the fluid simulation, two spaces in §2 are distinct. One is the
computational space and the other is the non-computational space. Computational
space is where velocity potentials in the fluid are computed by the algorithms stated
in 1.2.1 and 1.2.2. It is also called Free Space in robotic terminology, and denoted
here by F (or Cyree). Clearly, it is the area where robots’ activity are bounded. Non-
computational space is also called Occupied Space, denoted here by B (or Copstacte)-
Now we define the shared boundary of F and B as the inner boundary, and the shared
boundary of F and 99 the outer boundary. They are both denoted by dF. Also, F

and B are subsets of 2. Then formally, it can be described as follows:
FUuB=Qand FNB=0. (27)

No doubt, due to the initialization in 1.2.1, the source, S* € F and the sink, S~ € F.

29
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3.1 Generic Properties

In this section, some interesting properties of F in the simulated domain, 2, are
analyzed. These properties reflect the important advantages by which the robot path
planning can be easily and successfully conducted. Generically, it has the following
properties:

Property 1. No local minimum exists in F. In our context, we can define local
minimum as follows: Local minimum is any point other than S~, the sink, that has
the lowest scalar value of ¢ in its surrounding regions.

Proof. First of all, the simulation function - Poisson’s equation is a variation of
Laplace’s equation. The system of equations representing F in € is harmonic except
for a few points which are designated as sources and sinks. Here, sources are actually
the global maxima and sinks are the global minima. Because any other regions in F
satisfy a harmonic equation, any critical points in those regions must be saddle points,
since local extrema of the function are not possible there. This can be easily seen
through analyzing the harmonic functions (see [CJ90]). Here is a two-dimensional

version of Laplace’s equation, )
d“¢ + 0%¢ _
8z ' Oy?

Consider the two curves which are the z and y cross-sections of ¢ at some point py.

0, (28)

If the second derivatives of ¢ are not zero at pg, the two curves in question must have
second derivatives of opposite sign. Assuming that ¢ € C?, this implies that one curve
must be concave upward, and the other must be concave downward. Thus we have
that either ¢ is plannar at py, or that there is a direction outward from py in which
¢ decreases, and another in which ¢ increases. Therefore, in any region in F where
the above harmonic equation holds, local extrema of ¢ cannot exist. Because the
Neumann boundary condition is imposed on the computation, local minima cannot
occur on the boundaries (i.e., 8F) either. Therefore, all critical points on F are
saddled points. More formally, if a function ¢ satisfies Poisson’s equation on some
region  C R", then ¢ attains its minimum and maximum values only on those
designated points, i.e., the sources and sinks. Therefore, if the robot reaches a saddle

point, and it is not near the goal, then there must be a way out. This exit from the
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Figure 18: A local minimum centered at P

critical point may be found by performing a search in the neighborhood of the critical
poim.

Also, this property can be easily proved from fluid mechanics. Assume P, P(i, j) #
S~ ¥ a local minimum. Consider a small region S € F around P, where ¢(P) is
smaler than ¢(N;), ¢ = 0, 1, ... (see Fig. 18). Because P is the local minimum, from
fluidmechanics, there exist flows from N, to P. Let §* C S and P € S*, then the fluid
goeinto S* from No, Ny, ... However, neither fluid can flow out of the boundary of S*
for # holds the lowest potential, nor it can flow out from P for P # S~. Therefore,
theassumption contradicts the conservation law in §*.

Hso the proof can be done mathematically by contradiction. Suppose that there

exiss a local minimum at the node P represented by (i, jo) and P # S~ such that
$(d0, jo) < #(7,7), i =iot 1 and j = jo £ 1. (29)

i.e,,The inequality “<” holds for all the four neighboring nodes: (g + 1, jo), (i —
1790.(fo,Jo + 1) and (ip, jo — 1). From Eq. 24 and Eq. 26, We have the difference
egusion on (io, Jo),

%ﬂ‘£07j0)+bio.m¢(i0+l ] j0)+c|o.go ¢(i0'—' 11j0)+dlo ,Jo¢(i0’ ]0+ 1 )+e|o .)o¢(i0a jO_ 1 ) =9,
(30)
when

G50 — b'o-Jo —Cigdo — dto.Jo = €0 = 0. (31)
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So A Flat Region
[

Figure 19: A flat region Sp cannot exist if there is flow from P* to P.

Then g < 0. This result contradicts the initialization in Eq. 25, in which, all right-
hand sides of the system of difference equations are zero except at S* and S™. Fur-
thermore, for the difference equation on S*, the right-hand side is greater than zero
due to Eq. 25, therefore, the only node which satisfies Eq. 29 is §~, but it is the
global minimum defined in Eq. 25 and P # S~ by the assumption. D

Let Property 1 hold. Then the following properties are its natural results, and
they are easily proved.
Property 2. No flat regions exist in F. In our context, a flat region is a region where
all the values of ¢ are equal. Or in other words, the velocity potentials between any
two points in that region are zero.
Proof. Let S; C F is a flat region and P, N are arbitrary points in Sp, then
#(P) = $(N). Assume S, is not a flat region and is connected to Sy by AB, and P~
is an arbitrary point in S, (see Fig. 19). If ¢(P*) # ¢(P), which is the usual case
when S, is not a flat region, from Eq. 16, there must be flow between P and P".
However, when the flow crosses AB into Sy, So is no longer a flat region. Therefore,
the assumption is incorrect and ¢(P*) = ¢(P). Then S, has to be a flat region so
as to keep Sp flat. In the same manner, we can prove that all regions directly or

indirectly connected to Sp through the fluid are flat regions, then we have

U)si=F. (32)

1=0

However, F is not flat because of the initialization of Q at Section 1. D
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Property 3. No circular flow exists in F.
Proof. To maintain a circular flow, a concentric force must be present, which can be

measured by circulation (I'). From [Mas90],
r Ov Ou

(= Area 0z Oy’ (33)
where ( is the vorticity. From Eq.16, we can get the components of g,:
_ 04 __0¢ .
u= _—.6_1‘, = _'5;, (‘}4)
Substitute Eq. 34 into Eq.33, we get
(= o05) o&) _ u + 2y (35)
dr dy ~  O0rdy  Ordy -

Eq. 35 indicates that { must be zero. Wien ( = 0, however, I' = 0, hence no
concentric force occurs. This is the property of ideal fluid. O

Because of the above three properties of the fluid model, solving the general
mover’s problem for a point object becomes very easy. This will be explained by first
establishing a few theorems. Hence we have
Theorem 1. If a solution for ¢ (see Eq. 24 and 26) exists in Q, there exists a path
(t) in F from S* to S~ by simply following the decrement of the values of ¢ computed
at the discrete points in Q.
Proof. The proof is trivial. Let Property 1, 2 and 3 hold in Q. From Lq. 26, the
velocity vector g perpendicular to 0F is zero, i.e., no fluid flows onto the boundary.
As we defined in Chapter 2, St is the only maximum and S~ is the only minimum in
Q. All other points in F are saddle points. The continuity of the solutions of ¢ in F
of §) (see Figure 2.10) ensures a path can be found by only tracing the decrement of ¢
from St successively in the neighboring points just like particles in the fluid enforced
by the velocity potentials, and finally reaching S~. O

Now we have proved three generic properties of the fluid model which is used
as a navigation function in path planning in a configuration space. Also this leads
to the establishment of Theorem 1. However, One thing should be mentioned here.

Because the solution of Poisson’s equation requires iteration techniques (for example,
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the finite difference method in our work), it terminates when there is no change in ¢
on any grid node from one iteration to the next, or when the change is smaller than
¢, a predefined threshold. Even if 64-bit floating point representations are used, this
is still not sufficient to avoid flat regions in the simulated fluid area. This may cause
failure to the path planning. In that case, Connolly’s remedy to this problem can
be used (see [CJ90}). Basically, when a flat region is the found, i.e., the numerical
values of ¢ are equal, then shift all the values to the left by n bits, compare again,
until differences are found.

For practical use of robot path planning and to achieve high efficiency, the solution
of the system here may not necessarily indicate the exact solution of an equilibrium
state of idea fluid. In our case, the iterative computation is accompanied by a path
finder. Whenever a path is found, the computation terminates.

Generally, the destination of a robot bounded in ) is assigned as the sink, S~, and
the original position of the robot can be any other points in . Based on Theorem 1,

it is often convenient to initialize the position of the robot at S*, and its destination
at 5-.

3.2 Structural Properties

In order to understand how a robot path planning is processed, a close look at the
general structure of  is necessary. In this section, definitions are given to basic
structure of ), types of paths and measure of paths, and most importantly, a path

configuration condition is discussed, which results in Property 5.

3.2.1 Grid Structure in €

From 2.2.1, §) is embedded in a grid structure with the size of M x N. Typically,
M, N are powers of 2. Therefore, §2 is divided into (M — 1) x (N — 1) rectangles. A
node is defined on the crossing of grid lines. It may be shared by up to four rectangles.
There are M x N nodes in 2. A rectangle is the smallest area element in Q. It is

called a Unit Region.
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Definition 1. Unit Region. A unit region U C  is a rectangular area bounded by

four nodes and four cdges with the length in z-direction equal to b, and in y-direction

equal to hy, where

1 i
he= 5 and by = =—. (36)

Here the size of a square-shaped € is assumed to be 1and h, and h, are the intervals

in £ and y directions respectively.

From the definition, all the unit regions are equal. If A, = h, all the unit regions

are squares.

3.2.2 Elementary Steps in U

Since U is the basic area element in 2, a movement crossing a U is regarded as an
action. The distance which an action covers is called an elementary step. Or more
exactly, we have the following definition:

Definition 2. Elementary Step. An elementary step is a distance crossing a unit
region U by starting and ending at different nodes in U.

From the definition, there are three kinds of elementary steps in U.
e Horizontal elementary step e, which is equal to h_.

o Vertical elementary step e,,, which is equal to h,.

e Diagonal elementary step eq, which is equal to \/h2Z + hZ,

Fig. 20 shows a unit region U in €2 and the elemental steps available in U. 1'he arrows
show the bi-direction in the movement.

Clearly, the three different elementary steps are not equal in length. For the
convenience of measuring the length of a path, some metric should be defined. So we
have
Definition 3. Unit Length. Unit length ¢ is a length equal to the shortest of the

three different elementary steps in a U. That is,

e = min(e,, ey, €4). (37)
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Figure 20: A unit region and its elementary steps

or generally,

e = min(ez, €,), (38)

for ry = (/c2 + €l is always greater than e or e, provided none of e and e, is zero.
Let I be the function returning the measurement of the length of a path in terms

of e. lor example, if h; = hy, then ez = e, = €, and
L{e;) = L(e,) = 1, and L(eg) = V2. (39)

Here, I may not return an integer value because diagonal elementary steps are valid
in . However since e is known from the initialization of §, the exact length of a
path is casy to be calculated. This property makes it reliable using the result of L

for comparing the lengths of paths.

3.2.3 A Node and its Nearest Neighborhood (NN)

Let P be a node not on 8F and S be its nearest neighborhood as shown in Fig, 21. S
is composed of four unit regions, Uy, Us, Us and Uy, and it is the regular area for a local
path planning. P is located at the center of S and is often called the central node. It

is the starting point for the next elementary step. There are eigirt neighboring nodes
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Figure 21: The nearest neighborhood of a node P: four unit regions and eight path
search directions.

to P. Therefore, starting from P, there exist eight options in directions to go to its

neighboring nodes by taking either a horizontal, vertical or diagonal elementary step.

3.2.4 Global Path and Local Path

Now, we can define the paths.
Definition 4. The path. A path 7 is a route between any two distinct nodes in F

and is a concatenation of elementary steps. i.e.,

T =€1@62®...®en, (4(])

where n € N and n #0.
Definition 5. The global path. A path starting at S* and ending at S~ is called the
global path (denoted by T4). i.c.,

Tg[’—‘el@ez@...ﬂ)cm (‘“)

where e, = 7(S*, P)and e, = 7(Q,S”). P is a node adjacent to S* and Q is a node

adjacent to 5.
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Definition 6. The local path. A local path (denoted by 7,.) is a path between any
two distinct nodes, and
Tloe & Tyl (42)

However, a local path is chosen before the exact global path is known, Eq. 42 is valid
if and only if the global path is successfully found.
Let T denote a set of paths whose two extremities are joined at the same nodes.
We denote
T =(m,7T2,...,Tk), where K =0,1,... (43)

Also T g; denotes a set of global paths 74, starting from S+ and ending at S~. i.e.,

ng = (Tgm, Tgl,2yeey Tgl,l\’)- (44)

3.2.5 Path Configuration Condition

Due to the kinematic constraints of fluid, the following property is necessarily imposed
onr.

Property 4. Let ¢(q) be the function returning the value of ¢ at ¢ which is a
configuration in F and usually refers to a node in Q. Also let ¢(0) and ¢(N) be the
coordinates of the starting node and ending node of r(€ T) and g(m) be the joining
node between two consecutive elemental paths, 0 <m < N —1. We have the path

configuration condilion,

#(q(0)) > (q(2)) > ¢(9(s)) > ¢(g(N)). (45)

where, 7,7 € m and ¢ < j. This condition indicates that any valid path must be
a route in which the values of ¢ on its successive nodes is always decreasing, It is
the path that a particle in the fluid can possibly travel. This condition can be easily
verified by Eq. 14 and Egq. 15.

By application of this condition, we have the following advantages:

1. The characteristics of an ideal fluid under the force of gravity is correctly rep-

resented.
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o

Each node can be used only once in the path. Therefore, there exists an up-
perbound for the number of elementary steps composed in a path which is

(M x N —1). The average length of a path is far below this upperbound.

3. Circular paths (i.e., paths starting and ending at the same node) are eliminated
and the path searching process can always terminate no matter if it is successful

to find the destination or not.

4. As aresult, the amount of redundant path searches in the path search phase are
greatly reduced, and therefore, the performance of the path searching algorithim

is substantially improved.

This condition also keeps the good paths at higher priorities. For example, suppose
the maximum directions of the paths at a point is L. There exist at most [, — 1
directions at P provided P # S*. However, for the smoothness of equipotential
lines in the flow, the actual directions at each point on the path are much less. On
average, only L/2 possible directions. Thus we have the maximum possible paths
from a starting point is (L/2)¥, N is the number of possible steps needed to reach
S-. This is a great reduction compared to LV.

Now we can have
Property 5. Let Property {4 hold, then along any two paths in T, regardless of the
number of elementary steps involved, the velocity potentials will change by the sarne
amount.

Or formally, let paths 7, and 7, in YT and i # i, we have the total gradient (&

between the two ending points

n-1 m~—1
G = EQ'J = Z 9y (46)
j'=0

=0

where n is the number of grid nodes connected in 7, and m is that in 7,, j and ;'
denote the jth and j'th elementary step in 7, and 7, respectively, and g,, denotes the

gradient of ¢ at step j in 7, i.e.,

9y = |¢(q1(.7 + 1)) - ¢(‘Iu(]))| (47)
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The same formula as Eq. 47 for g,/ .
From Property 5, it is convenient to define the shortest path.
Definition 7. The Shortest Path. A path 7 is the shortest path in T if and only if

it has the greatest average gradient (g,,) among all the paths in T, where

_Lg _4(e(0) ~ é(g(N))|

gOV(T) - L(T) - L(T) (48)
Proof. Eq. 48 can be rewritten as
Zg = gav(T)L(T)' (49)

From Property 5,3 g is constant when ¢(0) and g(N) are defined. Therefore, if g4,(7)
returns the largest value in T, L(7) must be the smallest. Then 7 is composed of the

lcast number of €’s, i.e., it is the shortest.

3.3 Dynamics in ()

In the real world, the movement of a particle in a fluid is caused by the gravity. The
amount of potertial force that a particle possesses is determined by its mass and
altitude. Along with the declining of the altitude, the potential force decreases if the
mass does not vary. In our fluid model, this {orce is represented integrally by two
forces. Since we assume that the source of fluid (S*) is the starting point of a robot
and the sink (S7) is its destination, the path planning is actually to search a route
from St to S, which is the same as the route taken by a particle of fluid. For ideal
fluid, its density is constant and therefore, ignorable. Assume the only force exerted
on the fluid is the gravity. This force can be interpreted as the velocity potential in
the fluid model. Since the flow in § is presumed to be static, the velocity potential
for a particle in all the regions of the fluid is static, tco. Due to the initialization in
Section 2.2.2, the system of equations for the simulation of ideal fluid is homogeneous
except for the two singular points, S* and S~ (Egs. 24 and 25). Therefore, values
arc added to the system only from the right-hand sides of the equations for S* and
S~ and they are later propagated through the system. In this way, the solutions to

Egs. 24 and 25 simulate the ideal fluid flowing continuously into and out of  until
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Figure 22: A radiative flow pattern at S*

an equilibrium state in 2 is achieved. Particles of fluid come in from S* and go out.
of S~. Hence, S* and S~ can be regarded as the sources of two opposite forces (like
those in a magnetic field). One (S*) is positive (or repulsive) and the other (57)
is negative (or attractive) (see Fig. 11). The potential values obtained through fluid
simulation actually represent the combination of the two forces.

In this section, the forces and flow patterns at S* and S~ will be analyzed. It is
helpful for understanding the behavior of the fluid in a closed domain. This behavior
sometimes brings irregular results for SFM (see Chapter 7). Based on this analysis,

we can establish our strategies for planning better paths.

3.3.1 Radiativity at S*

From 2.2.1, R(S*) is constant, i.e., a steady flow out of S* is independent of time.
Assume St isin an open area. The flow pattern at the small area around S* presents a
full radiative shape (see Fig. 22). In Fig. 22, 9 is constant along the flow lines (i.e., the
streamlizes) and ¢ decreases along thein in proportion to the increase of the distance

(r) from S* (see Section 2.1.3). Hence the equipotential lines form concentric cycles
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around S* and the velocities of the flow in all directions from St are equal. However,
if there is another force affecting the flow, for example, an attractive force from S~,
the equipotential curves are no longer circular. The direction in which the attractive
force is larger (i.e., closer to S™) now contains higher speed. It is reflected by the
larger potential gradients in the same distance. This is how SFM works (see Fig. 32).
While SFM is looking for the largest potential gradients, it actually seeks the best
way to go to the origin of the attractive force.

When S is defined close to the boundary, at least one side of the flow is hindered
by the boundary. Because R(S™) is constant, the volume of the flow out of S* remains
the same. Then the flow has to become more concentrated and the distance between
two adjacent flow lines becomes closer, hence the average velocity is larger (Eq. 13).
Also the velocity at diflerent streamlines are no longer the same. In the direction
opposite and perpendicular to the boundary, the speed is always the fastest. Fig. 23a
shows a flow map of such a situation and Fig. 23b enlarges the region around the
source, from which the force and the main flow direction is clearly seen. In this case,
the repulsive force in one direction of S is so large that the attractive force from S~
is not very affective. Hence, the main direction of flow from S* may not be the best
direction for a path to its destination.

Fig.24 shows the results of SFM for different initial locations of S*. Part a shows
how horizontal moves of S* can change the natural path, and Part b gives the results
of vertical moves. Paths in a{l) and b(1) are almost optimal. However, paths in
a(2), a(3), b(2), b(3) are not ideal. They have the common problem: close to the
boundary. We call this locality sensibility of S*t. It greatly affects the result of SFM.
To deal with the locality sensibility, SFM should be improved. It will be discussed in
detail in Chapter 7.

3.3.2 Concentricity at S~

On the contrary, the flow pattern at S~ is concentric (see Fig. 25). The flow direction
is outwards, hence 1 is negative and ¢ is also negative. Equipotential lines form
the same kinds of cycles as those around S*, however, the value is decreasing along

the decrease of the radius r. S, in fact, can be regarded as a source from which a
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Figure 24: Examples of natural paths. Notice the horizontal and vertical shift of the
initial position may result in quite different paths.
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Figure 25: A concentric flow pattern at S~

negative fluid “flows” out. Therefore, it possesses a force, a negative one compared
with that from S*. Judging from this view, the dynamics of S, both at the open

area and by the boundary, is similar to that of S*.

3.3.3 ¢, the Combined Force

After fluid simulation, ¢ represents the value of the combination of the two forces
from St and S~ when both forces are present in Q. Now let us discuss some features
of ¢ in an obstacle-free environment.

From [Mas90],

b = K%‘g, (50)

where K = In(r/ro), and 1o is an arbitrary small radius of either S* or S~, where

g, — *oo (see Fig. 22). Integrating both sides, we get

1
¢=m/¢do. (51)



46

1.2

14
0.84
0.6+

0.4+

02,
40

30 40
20

Figure 26: The distribution of ¢ when t is only positive. The tip of the upside-down
parabolic well is S*. ¢ tends to zero when the distance to S* goes to infinity.

Here, [4d0 = R(S*), which is constant, and as r — 7o,

K =1n (1> = In(1) = 0. (52)

To

Clearly from Eq. 51, when rg is the radius of a very small centric point of S*, [df
is positive, then

. . 1
i srg =l ooy / $df = +oo. (53)

On the other hand, when r¢ is the radius of S—, [1d# is negative, then
lirm vy ¢ = lim, _ory —— [$do = —oo (54)
nlf--tro - T—T0 27I'K had .

Also in both cases, as r — o0, ¢ — 0. The following figures of 3D meshes generated
from the values of velocity potentials show the distribution of ¢ in  in three different
cases: (1). Only St i.e., ¢ is positive (Fig. 26). (2). Only S7, i.e., ¥ is negative
(Fig. 27). (3). Both are present (Fig. 28). Of course, in the first two cases, the flow

can never be static.
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Figure 27: The distribution of ¢ when % is only negative.The tip oi the parabolic well
is S~. ¢ tends to zero when the distance to S~ goes to infinity.
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Figure 28: There are the two parabolic wells in opposite direction. ¢ is the combina-
tion of the two forces from S+ and S~.



Chapter 4

Path Generation

4.1 Steepest Falling Method (SFM)

By the path configuration condition defined in Eq. 45, the number of searches for
the shortest path is greatly reduced. However, searching every valid path still needs
extensive work and it is not economical. On the other hand, the shortest path may not
be a good one, because it often goes along the boundaries, which brings unnecessary
difficulties for robot navigation (see [Lat91]). Therefore, in [BL89], one of their path
searching approaches is actually trying to maximize the distance between the path of
the robot and the boundary so as to reduce the danger of collision. It is justifiable
to put collision avoidance at the first place of path planning. In our fluid model, the
solution of collision avoidance is integrated in the fluid simulation in 2. A collision-
free path can be obtained by simply following the natural flow of fluid, i.e., foliowing
the main streamline of the flow. Based on Theorem 1 and 2, a simple algorithm in a
local path finding is proposed, which is similar to the fast descending method in PDE
(see [Van83)]) and to the depth first planning in [Lat91].

4.1.1 Algorithm and its Efficiency

Because ¢ is precomputed at all the nodes in F and on 0F, the algorithm of SFM

becomes very simple. Let S be a nearest neighborhood (NN) centered at P and

48
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Image of comer node on the circle
"’— -._~..
.

N, No 7 N,
Comparison Circle

Figure 29: A nearest neighborhood of a node P for the local path planning.

M, Ny, ..., N, are neighbors of P (see Fig. 29). The local path from P is found
by connecting P to the node on 95 with which the greatest potential gradient is
obtained. Or in another word, by taking the direction in which the steepest falling
of the fluid occurs (see Fig. 30). Hence, this technique is called the Steepest Falling
Method or SFM.

Let N,er: be the node of selection, then
Nnerl — D(maz:;,(g([’,./\f.)), (55)

where D is a function returning the local path to the next node in S, and

g(PN) = €% ((P(z,1) - ¢(Ni(z',y)), (56)

and
1 ifr =zory =y,
= 57
¢ { 4, otherwise. (57)
Here, the distance factor £ ensures the comparison is taken in the same length (as

the radius in a circle).

This algorithm is composed of three steps as shown in Fig. 31. The termination
condition is Mpezt = S~. If there is flow in 2, which is the precondition for invoking

SFM, this condition can always be reached, i.e., the algorithm can always terminate.
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Figure 30: A 3D sample of SFM working on local path planning in the nearest
neighborhood of a node P. Here. VP means velocity potential.

1. Starting from P, obtain the vector of potential gradients,
9(P,No), g(P, M), ..., g(P,N,), j is the maximum number
of available nodes in NN of P (the default is 8).

2. Compare the gradients obtained from 1 and select Npez:
such that

g(PaNnext) = mazr (g(PaNO),g(P3M)7-",g(P,M)) .

3. If Muert = S~, terminate the process, else P = Nz,
return to 1.

Figure 31: The algorithm of SFM.




From the initialization of Q in 2.2, the maximum number of elemental steps one
path can contain is M * N — 1 because of no repeated traversal of the same node
in a path constrained by Eq. 45. Let K be the total nodes joined in a path r. For
constructing 7, SFM invokes X’ — 1 times of gradient calculations and comparisons
(see Step 1 and Step 2 in Fig. 31). However, the time used for each invocation is
constant because the number of nodes in a NN is fixed. Let t be the time used for

each invocation. SFM’s time efficiency (T') increases only linearly with K, i.e.,
T=t*K. (58)
In the worst case, K = M x N — 1. Hence we have the upper bound for 7',
T=t+(MxN-1). (59)

In practice, the actual number of nodes joined by a path is far below the maximum

because of the characteristics of ideal fluid.

4.1.2 Paths Generated by SFM

Because the path generated by SFM represents the natural movement of a particle in
ideal fluid, we call it a natural path. Or formally, we have the definition:

Definition 8. Natu al Path. A natural path 7, is a subset of 7 in which every
elementary step is generated by SFM, or in other words, it always takes the direction
of the main streamline (which contains the steepest flow) in a concerned region. In
our later explanation, the term, streamline, exactly means the natural path.

When a solution in € is obtained, the natural path 7,,, from St to S~ is defined
and unique in Q (refer to Fig. 11 and Fig. 12). The paths shown in Fig. 32 arc
natural paths. In each figure of Fig. 32, there are two black points. The smaller
one stands for St, or the starting point of a point robot, and the bigger one for S,
or the destination of the robot. The solid line connecting the two points shows the
generated path by SFM. Obviously, all the paths are or close to the shortest (optimal)
one in their own environments. Also note that the lines are not smoothed in order to

accurately trace the functionality of the algorithm on the grid of Q.
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In general, natural paths are good (here “good” indicates short and proper). How-
ever, because of the locality sensibility of S*, which is the initial position of a robot,
the global path by SFM may not always be satisfactory (see Section 6.1). The force-
fulness of the repulsive dominates the region around S*, which makes the attractive
force from S~ ineffective. Therefore, the local path planning at regions close to S+
is dependent largely on the main direction of the repulsive, which may not be con-
sistent to that of the attractive. We know that the velocity potential (¢) computed
at a node represents the combination of the two forces but we do not know exactly
what percentages they possess respectively. From Figs. 26 and 27, we can see that the
repulsive force reduces drastically along the increase of the distance from S*, and on
the other hand, the attractive force becomes larger at the regions closer to S~. This
fact indicates that if we choose some nodes farther from S* for comparison, the re-
sult of SFM would be more reliable to show the shorter distance from S~. Therefore,
SFM can be suppiemented by extending the concerned distance from S* or any other
center point so as to compare potential gradients in a larger area. This technique is
called Area Ezpansion.

In the following sections, two techniques of path improvement based on area ex-
pansion are proposed. The first is simple, fast and more heuristic. It adds direction
correction technique to SFM in order to adjust the direction and shorten the path.
This technique first takes two best candidate directions, compares the velocity poten-
tials on the nodes in those directions until a significant difference is achieved, then
chooses the winner. The serond is more exact and reliable to find a best path but
needs more time in execution. Because of the radiativity of fluid at S*, we can find
an alternative path by just moving the initial point of the robot a little away from
S* and generate a natural path from it, joining the point to S* with a shortest
line (which may not be a straight line when encountered by obstacles). This moving
can be completed through image projection of the robot. Clearly, the projection is
multi-directional. Hence, we can get a set of quite different natural paths starting
from those nodes around S*. When r increases, i.e., the conccrned region around
St expands, the number of available nodes also increases. One noticeable result is

that the set shows a full coverage of the paths in all related directions from S*. This
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technique is still valid in aiy other regions in F except those close to S™. The dif-
ference is that, at the source, the searching are.. may be circular, i.e., in 360 degrees
while at other places, it is not. This is because of the path configuraticn condition
(Eq. 45). Theoretically, we can get as many points as we like on the boundary of a
region. However, since () is embedded in a grid aud only those grid nodes are un-
der our consideration. In the region around S*, for example, a NN, there are only
eight boundary nodes. If we obtain a path starting from each of the nodes, we have
a set which contains the possible paths in eight main directions from S*, and the
interval of selection is 45 degrees. Obviously, the best path selected from the set
has very high reliability. This technique is probabilistically complete when the circle
can be expanded endlessly, i.e., the interval for search tends to be infinitesimal. if
one direction of the flow is hindered by the boundary, the others must have larger
momentum (or velocity) than usual, provided R remains ccnstant. If at a node P on
7, we have two natural subpaths 7 and 7, which lead to N and N, respectively,
and (M) < ¢(N) i.e., G(P,N1) > g(P,N;). SFM takes N; as its successive step.
However, there is no guarantee that the average gradient decrement of velocity po-
tentials in 7 is greater than that in 75, because N is chosen locally, disregarding
the global information. Therefore, techniques of path improvement are necessary to

guarantec the achievement of a better path.

4.2 Flow Direction Correction (FDC)

The result from Eq. 55 to 57 may be improved by adding global direction reference
to SFM. However, it is expensive to keep track of the distances and directions geo-
metrically from S~ for each movement. According to Eq. 14, ¢ decreases along the
streamlines proportionally with the increase o™ és provided ¢, is constant. However,
¢s is not constant because of the spatial variety of flow channels in Q. Hence the
equi-potential lines around the sources occur as irvegular curves (see Fig. 12). SFM
plans the local path based on the numerical information in a NN. When the gradient
difference g is too small (e.g., betwesn the first largest and the second largest), it may

not be significant in decision-making. However, it is an important signal to re-assess



the flow direction. We have added to SFM a heuristic algorithm called Flow Direction
Correction (FDC), which is simply to stretch out the two or more possible candidate
nodes in their own directions, and compare their velocity gradients again untii certain
condition is satisfied. This algorithm is effective because of the continuity of velocity
potentials in © by Poisson’s equation. The stretching-out technique allows the plan-
ning in a larger area in which the decline of ¢ towards S~ can be more accurately
sensed out. By keeping track of the decreasing ratio of the gradients, we can predict

the right direction which leads to a much better global path.

4.2.1 Algorithm

Let g, and g, be the first two greatest gradients obtained between P and its neighbors
N7 and N3, respectively and g; > g2, N; will be chosen provided

91 — g2 2 €, where € = ——|¢(P)| (60)

uM

€ is a threshold of significant gradient diflerence and is related to the size of the
grid in  and the value of the poter.tial computed at P. Clearly, ¢ varies only with
the variation of ¢ because when  is defined, M is a constant. u is an adjustable
coefficient. Increasing g, reduces € and hence decreases the frequency of invoking
FDC. Empirically, p is chosen from 1 to 5.

If Eq. 60 is not satisfied, FDC is invoked. Starting from N, i = 1, 2 in above

case, one step is taken in the same direction as it comes from P(t, ),
Nnezt(mlay,) "—N(zay)v (6])

where

' rxl ifzx#i +1 if y )
{ # y={y y#7 (62)

z = ' .
y ify=j.
Eq. 61 and 62 are repeated unti! the condition in Eq. 60 is satisfied. However, the

z ifz =1,

maximum number cf stretches, d, is controlled to present missing S~. Naturally, d
should be proportional to M, the size of grid in 2, and is defined as |[M/16]. The

scenario of FDC is shown in Fig. 33.
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1. Starting from P, find N, and N, by SFM where
g(P,N,) > g(P,N;) > mazz:ka;‘:mk;éj(g(P’Nk))’ (63)
where n + 1 is the maximum available nodes in NN of P.
2. Iflg(P, M) — g(P,N;)| 2 ¢, then
Nuezt = D(maz(g(P,N;), g(P, N)), (64)
go to 4, else assign d =1 (only once) and go to 3.

3 Stretch N, to N and N, to M! by Eq. 61 and 62, and increase
d by one, return to 2.

4. U Nyezs = S™, then terminate, else P = Nzt return to 1.

Figure 33: The algorithm of SFM with FDC.

4.2.2 Results of Experiments

We have used FDC to deal with many close-to-boundary cases and the resvlts are
satisfactory. The improved ratio compared to SFM will be explained in 7.3. Here are
several examples of our experiments. Fig. 34 shows pa‘hs found by SFM with FDC
in a close-to-boundary environment. Fig. 35 gives the flow map of Fig. 34. From the
map, FDC technique can be seen from those points where the path is switched away
from SI'M. Figs. 36 and 37 give two comparable examples with the cases shown in
Fig. 24. The other two figures (Fig. 38 and 39) show paths generated by FDC in a
more complicated situation, and the paths are smoothed by B-splines. Finally, Fig. 40
shows one goal position with three global paths generated. It proves the computed

function can be reused to a very satisfactory results.

4.2.3 Efficiency of the Algorithm

The parameter d shown in Fig. 33 is limited to a very small number. For example, for
a Q of 128x128, d should be limited to 8. If the condition of Eq. 60 is still not satisfied
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Examples of paths generated by SFM with FDC (1)
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the above figure with the generated path. The switch
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points of the path is clearly shown.
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Figure 36: Examples of paths generated by SFM with FDC (2)

Figure 37: Examples of paths generated by SFM with FDC (3)
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Figure 38: Example of paths generated by SFM with FDC (4). Simulation takes 8.54
seconds and path planning takes less than 0.01 second,

Figure 39: Example of paths generated by SFM with FDC (5). Simulation takes
10.07 seconds and path planning takes less than 0.01 second.
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Figure 40: Examples of paths generated by SFM with FDC (6). Three paths are
generated on the same simulation result.

when d > 8, SFM is resumed. This may lead to a longer path, but no control for
stretching could result in missing the destination, S~. On the other hand, controlled
stretching limits the time spent on FDC so that the combined algorithm generates
satisfactory paths while its performance does not degenerate.

Let t;4. be the time spent on one comparison, then d * t;4. is the approximate
time for one invocation of FDC. In the worst case, FDC is invoked at each step, and

the time complexity is:
T=2x(K-1)*(dty4)=2dts. K —2d ts4. = O(K). (65)

K in Eq. 65 is the number of nodes joined by a path, bounded by M x N, and is the

only varying factor.

4.3 AreaExpansion and Image Projection (AEIP)

Another heuristic algorithm for path improvement called Area Ezpansion and Image
Projection (AEIP) is proposed in this section. This algorithm first projects a config-

uration onto the boundary of a region around the configuration, and then from the
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projected images, generates their natural paths separately and compares those paths
so as to find the best one.

This algorithm takes the advantage of the finiteness of T in €, computes the
preference ratio of the selected paths from T and chooses the path with the highest

preference ratio. It provides an ensured way to find the best path in T.

4.3.1 Finiteness of Paths in 2

No doubt, only when T is a set of finite elements, can we examine all the elements in
it and find the best one.
Property 6. T is a finite set in .
Proof. From 4.1,  is bounded and embedded in a grid of M x M. If M is not
infinite, so is the number of nodes (N) in . In our method, the simulation of fluid is
done by computing the values of the velocity potentials on those nodes and the path
planning algorithms are also based on comparisons of the values on them. According
to Eq. 45, ¢ along the path must be decreasing, and all the paths will converge to
5=, the destination, from the generic feature of Q each path contains only a finite
number of elementary steps. Finally, the number of the paths in T is decided by the
radiativity of S* (see 6.1.1). It is clear that for 2 bounded and embedded in a grid,
the number of streamlines radiated from S* is finite, and bounded by a factor of Af.
O

The finiteness of Y indicates that it is possible, in the worst case, to compare all
the subset of T in order to find the best path. In the following path improvement
algorithm, SFM is always used as the basic path searching technique, or in other

words, the comparisons are based on the natural paths generated by SFM.

4.3.2 Image Projection

First, we have the following definition for image:
Definition 9. Image. An image (I) is a copy of configuration g(€ F) which is
obtained through a parallel projection onto a boundary node of an expanded area

E(€ F) around ¢.
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Figure 41: The preliminary area expansion and the eight directions of image projec-
tioni of ¢. Here ¢ is a point.

The boundary of E is denoted by OF. 1f ¢ is a point, then the image of projection
is also a point. In our context, @F always coincides with the horizontal or vertical
grid lines in Q.

Fig. 41 shows the basic method of projection of a configuration ¢(z, j) in eight
directions. The center for expansion is defined as Ep. Hence in Ep, there is only
one node. E) is the first expansion around ¢g. There are eight possible images of ¢
on JL,. They are, in clockwise, I(z — 1,7),I(Z = 1,7 — 1),{(¢,7 = 1), I(1+ 1,7 —
D), 10+ 1,5),1(i+ 1,5 +1), I(4,5 4 1),1(i = 1,j-+1). A configuration can have
multiple layers of images on the boundaries of successive area expansions Ey, Es, ....,
which may be generated recursively. For example, in Fig. 42, there are eight images
lo, ...,I7 on OF;, and total 16 images on dF;. In the projection, only the images on
the outer boundaries of the expansion are counted and the duplicates are discarded.
Clearly, the image projection is one to many. For example, in Fig, 42, I(2) on 8E,
has sub-images 1(1,4), I(1,5), 1(2,6) on QE,.

AEIP is composed of two phases. Phase one is for starting direction determination

from the initial position of a robot, i.e., S*. Phase two is for the on-path processing
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Figure 42: The images on 0F; and dF;. The arrows show the recursive image
projection for the first two expansions. The first numberin the bracket is the number
of the previous expansion, and the second is the order of images generated in the
current level.



64

until the goal (S7) is reached.

4.3.3 AEIP at the Source

Originally, S* is defined as a line source which appears as a point in two-dimensional
domain  and the initial position of a robot is assigned to it. Hence S* is always
the starting point of a global path. Because of the radiative feature at S¥*, in which
direction the first step is going to take is crucial for path planning and therefore
needs special consideration. On the other hand, this feature enables comparisons of
the available natural paths in all directions by simply expanding the circle around
S+,

Starting from those images of S* on E,, 7 = 1,2,... separately, we can get, by
SEFM, a number of natural paths joining S~ at their ends. By comparing those paths
using the length function L, we can choose one which returns the smallest value. If
the result in £, is not satisfied, we can do expansion again and examine more images
in L4

We have this relation between the successive expanded areas. as well as far from
the boundaries of obstacles if it is available.

To ensure the success of this technique, the following condition should be satisfied.
Projection Condition 1. Any expanded region, E,, must be a subset of F, and
hence all projected images are in F, or possibly on OF.

This condition puts constraint on the expansion activity and ensure the algo-
rithm to work in a valid environment. From this condition, E is only a finite set of

expansions with n <=M — 1. And
E, C Eiy. (66)

Therefore,
TEg C TE,,. (67)

Eq. 67 indicates that the paths found in E; can also be found in E;y;. In a special
and rare case, an image on JF, is exactly S~, then the optimal path is found.
Let E, be the nth expansion from S*, E,, € F, then we have a vector of images

I,, on OF,. If the projection is complete, i.e., no boundary has been encountered



65

since the expansion, the number of images in 7, is 8 * n. By increasing the number of
layers in E, we increase the images of S*, and therefore obtain more natural paths
for comparison.

At E,, a global path, 7.(€ Tg,) is composed of two secgments. 7(S*,I}) is a
shortest path established during the expansion process and 7(I,5~) is a natural

path. Therefore, the length of 7! is,
Lm) = L(r(S*, L) + L((L;, S7)). (68)
And the shortest path in E,,
Short(E,) = ming, (L(11), L(T2), --., L(7)), (69)
where k = 8 * n. The expansion will be terminated when
Short(E,) = Short(E,-,) — L(e). (70)

Here, L(e) = 1 (see Chapter 3), because we assume that each area expansion is
to expand to E, from E,_; by stretching the distance from St with the length of
an elemental step. This requirement guarantees all the images will fall on the grid
nodes. One special case for F, is whenn = 0. Then I, = St and Shorl(Fy) =
L(r(5*,57)), which is the natural global path. If Eq. 70 is true, it is no need to go
further since E,_, already contains the shortest path.

In order to achieve high flexibility for robot navigation, the favorable path should
not touch the boundaries of B or, at least, the total length of those segments in the
path which touch OB should be reduced to as short as possible. For this reason,
the boundary-touching distance is under concern in the path selection. In practice,
a ratio of preference (Rat) for each path is calculated. Let e; be any of elementary
steps in 7. which contact 8B directly, then we have the following formula,

Short(E,) + (0.5 i L(Cb))

I(r3) il ) )

Rat} =0.5 * 20

and the preferred path in E,

Tore] — mintg '(Rall,). (72)
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1. Obtain the natural path 7(5%*,57) in Ey by SFM.

2. Assign n =1 (only once), project St on OF, and obtain
a set of images Io, 11, veey ]8n-l-

3. Obtain all the natural paths 7o, ..., 7,1 for the images on
E,, and compute Short(E,).

4. Compare Short(E,) with Short(E,.,) by Eq. 70. If it
is true, calculate T,y on E, and terminate. Otherwise,
increase n by 1 and go back to Step 2.

Figure 43: The algorithm of AEIP at the source.

Clearly, Eq. 71 favorites a path with 0 or fewer e;’s.
This algorithm is shown in Fig. 43. Fig. 44 shows the natural paths starting from

the images on L5,

4.3.4 AEIP on the Path

The algorithm for the source can also be employed for on-path improvement with the
following extra condition:

Projection Condition 2. The image of Q will be projected to a node P on 9F,(C
F) in nth area expansion, provided ¢(P) < 4(Q).

In Projection Condition 2, @ is a configuration anywhere in F other than at S*
and S~. This condition is consistent with the path configuration condition stated in
Chapter 3. dE, has the same meaning as that in 4.2.2, but the images only occupy
part of its nodes. This condition reduces the number of images projected from Q.
Also n is controlled as in 4.2.2.

Assume after the execution of the algorithm in Section 4.2.2, Q is chosen as the
favored point, from which a best natural path can be produced. Now the subpath
7,(S*, @) is decided, which is the shortest from S* to @. The AEIP algorithm on
the path is invoked for further path planning from @. There are still four steps in
this algorithm which are stated in Fig. 45.
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Figure 44: Natural paths from the projected images of S* on E,.

. Calculate L(7(Q, S7)), or Short(EJ). Assignn = 1.
. Project Q on EQ and obtain a set of images I3, IS, ..., Ig._+.

. Obtain all the natural paths 13, ...,78_, for the images on ES,
and compute Short(E?).

. Compare Short(ES) with Short(EZ.,) by ©q. 70. If it is falsc,
increase n by 1 and go back to Step 2. Otherwise, calcuiaie Ty
on OEQ and identify I,re; from which Tprey is obtained. Connect
Q to I,res with a shortest path. If I,.; = S~, tcrminates, else let
Q = Iprey, go back to 1.

Figure 45: The algorithm of AEIF on the path
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In Fig. 46, two examples of paths generated by AEIP are given. Compared with
Fig. 24 and Figs. 36- 37, they are the best paths with the necessary distance away

from the boundaries.

4.3.5 Time Complexity of AEIP

If no bound on AEIP, the number of paths it generates is exponential in K, the
average number of nodes joined by a path. For example, assume that the average
number of images projected at S* is a and the average number of images projected
from each node on the path is 4. Because each image indicates one path alternative,

the total number of paths P is roughly, with possible duplicates of the paths,

P = atarr+a*xy +. taxy™ ' =a(® +y' +¥2 + ..+

K-1
= oY )= O(axy*). (73)

=0
However, this algorithm is to be executed heuristically. In each cycle, only one path
with the highest priority is selected, all others are excluded from further processing.
Therefore, the performance of this algorithm is desirable. It will be analyzed in the

following text.

4.3.6 Efficiency of AEIP at Source

Because S* holds the maximum value of ¢ in Q (see Chapter 2), the projection can
be performed from it in all the directions. Hence in the nth expansion, the maximum
number of images (8) on E, is 8n. However, n is bounded by M — 1 and when St is
located at the center of  and n = M1 a configuration has the maximum number
of images on the outmost expanded cycle, which is equal to 4M — 4. In the worst
case, for an uncontrolled projection, the total number of images ever proiected in the

process
M

2
Botar = Y 8n = M* + 2M = O(M?). (74)
n.z1
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Figure 46: Samples of paths generated by AEIP.
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Eq. 74 implies the upper bound of the nuinber of images in the projection at the
source is quadratic to M.

However, since AEIP at the source is used to select the correct direction to start
with, one or two expansions are sufficient to obtain a good solution. When n = 1,
there are eight paths going from S* in eight directions for selection. When n = 2,
there are sixteen paths in sixteen directions. In practice, AEIP at the source is
controlled by n <= 2. Therefore, Bio1ar < 24 and P = 24. The time complexity in

phase one (7)) related to the number of paths processed is
T\ = Piotai * P x T = 24 % (24tK) = 576K, (75)

where { is the time for each iteration in SFM (see Eq. 58) and is constant.

4.3.7 Efficiency of AEIP on the Path

From Eq. 74, the coeflicient for a full image projection is constant and equal to 8. Let
¢ s¢ the coefficient. In the second phase of AEID, the center for expansion is any node
on the way of a path other than S+, then ¢ is a variable. When P is close t¢ S+, S—,
or in narrow channels, ¢ tends to be in a bigger range (1 < ¢ £ 7). However in general.
the equipotential lines in a NN centered at P can be approximated by straight lines,
then the average of ¢ < 4 (see Fig.47). This reduction of ¢ is significant when n is
controlled in a small range. If ¢ = 1, there is no need to invoke AEIP. Assume AEIP
is executed in cach elementary step, and n = 2 and ¢ = 4, 50 Biotas = Z:‘:___l cxn = 12.

Then the total number of paths processed is
P = frotar * (K~ 1) = 12K — 12, (76)

where K is the total number of nodes traversed in a path. Let T be the time needed
for each natural path generation by SFM as in Eq. 58. Then the time complexity of
phase two (T3) is

Ty=Px*xT=(12K-12) +tx K =12t K? - 12t K = O(K?). (77)

Hence, in the worst case. this algorithm is quadratic with respect to the average

number of nodes joined by a path (see Eq. 59). This is a drawback compareu to
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Figure 47: A neighborhood of P. P is a node on the path. In the example, only
No, Ny, Ng, N7 are valid node for image projection.

FDC, however, the actual number of nodes contained in a path is much smaller than
M? for the characteristics of fluid, therefore, the resulted performance is reasonably
fast.

4.4 Concluding Remarks

SFM is a simple but basic planning algorithm in our method. The paths it generates
follow the route of ideal fluid and in general, are short. Because of the presence of
dynamic forces in the flow, the natural routes of the fluid sometimes are not satisfac

tory. FDC and AEIP are designed to improve the paths. FDC imposes a threshold to
the amount of the potential difference obtained by SFM from two adjacent points. It
tries to find where the greater negative impact is and adjusts its flow direction so as to
achieve a better path. AEIP is proposed based on the radiativity of flow of ideal fluid
at the source. AEIP uses the technique of image projection, expands the searching
area and achieves a vector of paths for comparison. This vector of paths covers all the

directions from the point in consideration. The search is nearly complete, therefore,
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Figure 48: The comparison of the paths generated by the three algorithms. The one
around the outer boundary is by SFM and the one in the middle is by AEIP. The
zigzag one is by FDC.

Table 1: The comparisons among three algorithms on path planning.

Algorithm | Length(e) | Bound(e) | Improved(%)
SFM 186.72 32.48 -
FDC 139.61 0 25
AEIP 127.04 0 32

a better result is ensured. Fig. 48 shows an example of the different paths planned by
SFM, FDC and AEIP. In Table 1, the average results from about 50 different samples

are recorded. The improvement of the path is calculated by the following equation:

(78)

Improved = (1 _ Length by FDC or AEIP) « 100,

Length by SFM

Also notice in the table that the eilementary steps along the boundary of the obstacles
are zero in the paths generated by FDC and AEIP, which suggests a better quality.
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4.5 Comparison with W-Potentials

[BL89] proposed a few numerical potential field techniques, among them there is
W-potentials which are generated by wave propagation. Its speed is claimed to be
very fast and they are capable of solving as high as 31 DOF problems. In order to
compare our algorithm in some aspects, we have experimented this potential function,
and achieve some very interesting results.

For potential field construction, it is based on a very simple algorithm they called
wavefront to generate W-potentials (i.e., potentials in the working space). Actually,
this is a well-known simple algorithm which recursively assign cardinal numbers to
unoccupied neighbors in a grid structure until all available spaces are exhausted.
Generally, the increment of potential values in each closest level of neighborhood is
regular, typically by 1 (see Fig. 17 in Chapter 2). This method is used repetitively
to generate a Voronoi-like diagram first, then the potentials on this diagram and on
all other available spaces in W (see Fig. 49). This is called Improved W -potentials. A
path based on W-potentials is found by searching the diagram following the deepest
descending algorithm.

W-potentials are then transformed into C-potentials (i.e., potentials in (*-space).
Usually, several control points are chosen from the points on the robot configuration
to their corresponding goal positions. Then many paths are generated using the above
technique. An arbitration function is used to integrate those paths into a global one
to reduce the contention of those control points. However, no matter what kind of
arbitration algorithm is used, local minima occur. The algorithm then has to adopt
an escaping technique (see [BL89).

For finding a "good” path for non-point robot, C-potentials are calculated which
integrate the paths of several control points chosen from the points on the robot
configuration to their corresponding goal positions. An arbitration function is used
to reduce the contention of the control points. Of course, local minima occur in C-
potentials. According to this article, the quality of a potential function is not simply
determined by the number of local minima but by the depth of those local minima.

Because the deeper the local minima, the harder for robots to escape.



Figure 49: The Voronoi-like diagram generated by wavefront technique.
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Figure 50: The global path generated by W-potential method (1).
g

Because the simple wavefront algorithm is used for generating W-potentials, this
algorithm gains speed in the precomputation of W-space. According to our experi-
ments, for an object with five control points, generating the W-potential for the whole
work space (128X128) only takes 0.35 secon<. For our model, in order to achieve a
steady flow simulation in W-space of the same configuration, 3.01 seconds and 140
iterations are needed. Also, the speed of generating W-potential tends to be constant.
It changes slightly with the changes of the size of the worl. space and the number
of obstacles. However, our model’s results vary because, in solving the differential
equation for a work domain, different configurations may require different number of
iterations to achieve the desired error tolerance.

However, because the final path generated by W-potentials is based on the Voronol
like diagram, in some cases, there exit limitations. Fig. 50 and Fig. 51 give examples
of the paths generated by the improved W-potential method. They are clearly not
short paths. The results indicate that this algorithm works fine in an environment
with evenly distributed obstacles, However, in other cases, it may not. By using our
fluid model, this can be avoided. Fig. 52 and Fig. 52 show the results in the same
working space as in Fig. 50 and Fig. 51.
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Figure 51: The global path generated by W-potential method (2).

Figure 52: The global path generated by SFM (1).



Figure 53: The global path generated by SFM (2).



Chapter 5

Technique on Collision Avoidance

5.1 Introduction

In an obstacle-present environment, robot motion is constrained by the boundary
of the obstacles. It is the only constraint when we assume that the robot has ro
kinematic constraints for itself. Collision avoidance is a crucial issue in robot motion
planning. In simple cases, like planning for point robots, or convex polygons with fixed
orientation, the best way is to integrate the strategies of path planning and collision
avoidance into one in a configuration space through Eq. 1. In the configuration space,
the robot is represented as a point only, and the shape of obstacles (B) are calculated
by considering the shape of the original robot and its orientation. Lozano-Pérez gave
an efficient algorithm for computing B in in environment in which all objects are
convex polygons (see {LP83]).

However, for a robot with free translaiion and rotation, the collision avoidance
becomes much harder. For example, in the configuration space of a robot with two
translations and one rotation (3 DOFs), B is a 3 dimensional volume bounded by
patches of C-surfaces (see [BT83]). The dimension in § is increased by one when one
more DOF is added to the robot.

The alternative to keep the dimension of the configuration space the same as its
physical space is first to plan a path for a reference point p in the robot (generally, p is

the center or the center of gravity of the robot) and then to conservatively approximate

78
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the range of free orientation of a robot at a given configuration on the path. Many
planning methods have their own techniques for collision avoidance in this manner.
For example, the enclosed rectangle in freeway method (see [Bro83)), critical curves
and non-critical regions in exact cell decomposition method (see [SS83]) and so on.

Another technique is first to choose those extremities of the shape of a robot
as reference points, and then plan a path for each ref.rence point. An arbitration
function is needed to solve the contention between those reference points so as to
keep the physical integration of the robot in its motion. This technique is goud for
conformable robots.

When planning for multiple jointed robot or car-like robot, we are dealing with
a robot with constraints not only on obstacles but also on its own kinematic move-
ment. Diflerent techniques are used to deal with both holonomic and nonholonomie
constraints of a robot (see [Lat91], Chapter 9).

The basic approach of our current research is to define a new numerical method
for motion planning in 2 dimensional environment. The robot is assumed to be rigid
with free translations and possibly one rotation (i.e., 3 DOFs). Because the predefined
domain (environment) is embedded in a grid structure, we find the bitmap technique

is the most efficient and the easiest way for collision avoidance.

5.2 Bitmap for Obstacle Detection

Among all the techniques, bitmap is, perhaps, the best one to comply with the grid
structure of 2. We adopted the bitmap approach to solve the collision avoidance
problem when rotation is allowed to a robot. t'his method is confined to solving a
problem of 3 DOFs, i.e., an object having two degrees of translations and one degree

of rotation.

5.2.1 Formation of the Bitmap

Assume  is a square and h = h; = hy, and A is a rectangular rigid robot and a

free-flying object in 3 DOFs. Its width is equal to 2ah and its length 2bh (a,b 2 0
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Figure 54: A rectangular robot represented by (z,y,0).

and smaller than some predefined limit of the size of the robot). Let ¢(z,y) be the
center of the robot. The configuration of A in § is denoted by A(z,y,0). z,y are the
domain coordinates in Q and @ is the angle between the z-axis of  and the moving
direction of A, which coincides with the spine line of A across ¢ (see Fig. 54). To
satisfy a free rotation of the robot around c, the circular area around c with a radius r
equal to \/(ah)? + (bh)? must be free of obstacles (i.e., € F). After the initialization
of 2, cach node contains information showing whether the region it represents is
occupied or not. All the information is stored in an information base of §. Since the
coordinates of ¢ is known, we can start from the correspondent node of ¢ and extract
information about those nodes which are within the range of r. Let A(z',y’) be a

node in . It occurs in the bitmap, provided

Ve -2+ @y —ap<r (79)

Each node appears as a bit in the bitmap at its correspondent location. If the node
is occupied, a bit is assigned to 1 in the bitmap, else to 0. After the extraction, a
circular bitmap is constructed with only 1’s and 0’s as in Fig. 55. Now the collision

detection can be done through scanning the extracted bitmap.
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Iigure 535: The bitmap technique for obstacle detection.

5.2.2 Bitmap Scanning and Bit Arrays

Let M denote the bitmap. It is conveniently subdivided into four quadrants, Q;, Qy,
Q1rrend Qv asin Fig. 56, since it is in the shape of a cycle. The scanning will be done
for each quadrant separately in row and in column. For each quadrant, two bit arrays
are defined. One is for the rows and the other for the columns. Along the scanning
process, the bit values are "OR”ed and finally stored in bit arrays. Therefore, cach
bit in the array represen.s the union of the bits in that row or column. Examples of
the scanning and the resulted bit arrays in Q; and ;v for the sample: bitmap in
Fig. 55 are shown in Fig. 57. Clearly, the bit arrays have the same length, because
there are as many rows as there are columns. The number of bits in each row or ecach
column in M may vary. However, it can be calculated through Eq. 79. Therefore,
only one array (e.g., length|n|, n is the size of bit arrays) is needed to store the
exact number of bits in each row or column. The maximum of bits in both row and
column is I.\/(a_h)2 + (bh)?]. The order of the array always starts from the center,
i.e., the first bit shows the row or the column where ¢ is on. The first bit is the
most significant 1it and the (|1/(ah)? 4 (bh)?])th bit is the least. The bitmap in each
region will be processed in the same manner and its two bit arrays will be obtained

which represent the results of horizontal and vertical scanning and union operation,
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Figure 56: The subdivision of the bitmap.

Bii Array for Col Row Scanning
i y oumil o S~
54321/ -g 0-0411 F~ w
0011 ;] Flo 2
g g & & 10000/ Blw §
<t ’ 8 c : ’
5 o100y & £ 1000 N
= o ;11008 5' g~ L 8
g ™ 0000 | % S8 3
| - '9_0_0_0_0 5 12345 €
& £ (O 0TI
- Row Scanning Bit Array for Column
a. b.

Figure 57: The scanning of the bitmap is always to start from the center of the circle.
The bit values in the scanning process are ORed and the results are stored in the row
or column bit arrays, respectively.
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respectively. After scanning, eight bit arrays are obtained. For example, in Fig. 55, if
we show in ascending order for quadrants, put the row bit array first and the column
bit arrays second in a quadrant, the values of those bit arrays are 10000 00111 00110
00110 00000 00000 11000 00111.

5.2.3 Cases Analysis and Union of Quadrants

Assume that the configuration of a robot A is defined by A(z,y,0) and A € F. The
value of 9 refers to the x-axis in 2. Occupied regions (i.e., either Ry or R;) can be
decided by 0.

For simplicity, assume a = 0, i.e., A has zero width (a straight line). The loss
of accuracy by the assumption can be compensated, for example, through expansion
of the obstacles in the configuration space with a parameter related to the original
width of A. Because of the center of A resides at the center of M. There are four

cases for the position of A:
1. Reside in Q; and Qi
2. Reside in @y and Qv
3. Reside on the boundary of @; and @y or @y and Qv (vertical),
4. Reside on the boundary of @; and Qv or Qi and Qs (horizontal),

Obviously, the two diagonal quadrants are always used together. Hence, they can be
regarded as one part. Let Ry be the union of @ and Q;;; and R, of Q7 and Qv

(see Fig. 58). Then the number of cases is reduced to three.
1. Reside in Ry,
2. Reside in Ry,
3. Reside on the boundary of Ry and R;.

Here, we actually have two questions to answer. While A is in R;, : = 0,1, the

question is whether it can freely rotate in R, or out of R;. If not, what is the size of
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Figure 58: The two diagonal quadrants are combined together to decide the rotation.
Therefore, M is divided into two 1egions: [ and R;.

the angle to rotate without collision? While A is not in R,, the question is whether A
can rotate into Rj,—; and how far it can go. The second question needs to be solved
only when the answer to the first is positive. The two problems are often required
to be solved together so as to decide the maximum allowable rotation of A in both
clockwise and counter-clockwise.

To further simplify the calculation, the two quadrants in R, can be combined as

if one quadrant has been turned 180 degrees around ¢. The technique is as follows.
Let Q' be the union of Q; and Q3, i.c.,

Q' =QiUQs (80)

The union operation can be either row-wise or column-wise. For example, we choose

the row-wise union operation. Then
Qr=rl4ri+. . +rland Q=13 +7ri+..+1], (81)

where r? represents the bits in nth row of Q. and n is the total number of row bit

arrays in @, or 3. Therefore,

Q=rlurl+riuri4..+r7urs. (82)
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Figure 59: The union of the two diagonal quadrants. a). The original configuration
in o, b). The combined quadrant, in which the maximum allowable rotation angle
remains unchanged, i.e., y = f.

The union operation should be done in the same order of the correspondent bit arrays.
As we stated before, the order of the bit arrays is always from the center of M to the
outside-circle. The advantage is shown in Fig. 59. In Fig. 59a, two angles (a and f8)
are calculated in @ and Qy;; respectively. After the union operation, only one angle
(7) needs to be calculated. Clearly v = 8, which is the maximum allowable angle to
rotate into Ry counter-clockwise. This can be verified since the union of the row or
column bit arrays of @; and Q; is exactly equal to the row or column bit array of Q.
For example, in Fig. 59a, the row and column bit arrays for Q; contain 00111 and
10000 respectively, and for @3, they are 00100 aad 11000. Then we have the union
of the bit arrays of @, and Q3

row 00111 column 10000
00100 11000

(83)
00111 11000

Clearly, the result is the same as the row and columu bit arrays for Q' (see Fig. 59b).
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Now, for each region, i.e., Ry or R,, we can have only two bit arrays, one for the row

and the other for the column.

5.2.4 Maximum Allowable Rotation into R;

First, let us answer the second question raised in Section 5.2.3, because this problem
can be solved only through analyzing the combined bit arrays of R,. We have the

following steps to process the bit arrays:

1. If the value of either row or column bit array for R, is zero (i.e., all are zero bits

in the array), R, is totally in F. Then, no further collision detection is needed.

2. The first bit in both bit arrays is called entry bit. As to Ky, if the first bit of
its row bit array is 1, it cannot be entered counter-clockwise, and if the first
bit of its column bit array is 1, it cannot be entered clockwise. The same as to
R;, but in reverse direction. For example, for By in Fig. 55, the row bit array
is 10000. Then this region cannot be entered counter-clockwise. However, its

column bit array is 00111. It can be entered clockwise.

3. If the entry bit for R, is zero, what is the maximum angle allowed for entering

R, without collision? This can be easily calculated through two ways.

(a) Tangent Method. In Fig. 60a, if the lengths of st and ¢l are known,

sl h
o = arctan { = | = arctan [ 2| = arctan (E) , (84)
cf vh v

where u,v are positive integers. In fact, u and v can be obtained through
counting the bit arrays. The counting always starts from the entry bit.
Clearly, the entry bit for a bit array must be zero so that the counting can
be applied. There are two methods of counting, denoted by m1 and m2.
For m1, counting starts from the entry bit until a 1 is encountered, then
record the count in cl. For m2, when counting meets a 1, go on counting
until a 0 or the last bit is encountered, put the count in ¢2. If encountered

by a 0, go on counting the another part of the bit array. If all zeros, report
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Figure 60: The tangent method and cosine method in calculation of a.

Table 2: The technique of calculating v and v in Ry and R;.

Entry Clockwise AntiClockwise
Region Ry R,y Ry Ry
Array | Method | Array | Method || Array | Method | Array | Method
u Col. ml Row ml Col. m2 Row m2
v Row m2 Col. m2 Row ml Col. ml

c2, else put the count after the last 1 in the array into ¢2. In different
regions, the method applied may be different. Table 2 shows the detail of
the counting method for different regions in different directions.

For example, in Fig. 60a, the column bit array is 00110 and the row bit
array is 00100. This region is allowed to enter from both sides. Now we
consider entering the region counter-clockwise. Counting the column bit
array using ml, we get v = 2, and counting the row bit array using m2,

we get u = 3. Now we can apply the tangent method to calculate a.
u 3
a= arctan(;)—) = arctan(-z-) ~ 56.3. (85)

Since a is known, the maximum counter-clockwise rotation angle 8 can be

easily calculated according to what quadrant is under consideration.
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(b) Cosine Method. Cosine method is used for calculation when the value
n obtained by m2 is equal to or greater than length[n]. For example in

Fig. 60b, u = 4 using m2 and length[4] = 3, so the cosine method is used.

Then
CS i
a = arccos (2_7) . (86)

where
5 =r = /(ah)2 + (bh)? = \/(bh)? = bh = 5, (87)

since a = 0 and b =5 for the line robot. Let d = 1, then

c
o = arccos(=) = arccos(

d

[S2 N ]

) = 66.4de grees, (88)

where c is either u or v obtained by m1l.

5.2.5 Maximum Allowable Rotation in R,

From Section 5.2.4, we know whether a region can be rotated into or not, and il it
can, how far (or what angle) it can be rotated. However, in the quadrants which A
occupies, if they are not entirely free, where are the bounds of its rotation? They
cannot be calculated simply by using bit operations as we have done in Section 5.2.4.
A new strategy of calculating the maxirmnum rotation angle is explained below.

Let a bitmap M be extracted from 2 as stated in Section 5.2.1. Let R, be in M
where the line robot A(z,y, 0) is positioned with its center point ¢(z,y) at the center
of M and an angle @ to the x-axis of Q. If R, is entirely in F, only the entry checking

to Rji_y| is necessary. Assume part of R; is in B. Then we have a different strategy.

1. Scan Q’, the combined quadrant of R,, row by row (or column by column) and
locate the critical points. Here critical points mean where the bit value changes
from 0 to 1 or from 1 to 0. If by row, scanning starts from the y-axis which
crosses the center of M. If by column, starts from z-axis. Always scan the row
or column which is closer to the center first. The scanning is done in a loop.
When the bit is 1, store the coordinates (in row and column) in CritP, then

ignore the continuous 1’s until a 0 is encountered or the end of the bit array. If 0
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is met and not the end of the array, another coordinates (in row-1 and colnmn)
is stored in CritP. The scanning continues until all the bits array in Q' are
passed. Then a set of critical points is obtained. The algorithm for row-wise

scanning is shown below:

scan(Q,CritP, length, n, Cn)
bool Q[][]; 2 dimensional arrays in 1’s and 0’s
point *CritP; store the coordinates of obstacles
int  length[]; the number of bits in each row
int n, *Cn; n is the number of rows or columns and
Cn is the number of elements in CritP
{ int 1,j; bool inbound = FALSE, temp; *Cn = 0;
for (i = 1; i < n; i++) {
for (j = 0; j < length[i]; j++) {
switch (Q[i][j1) {
0: temp = FALSE;
if (inbound != temp) {
CritP.r = i-1; CritP.c = j;
CritP++; *Cn++; inbound = FALSE;
}
break;
1: temp = TRUE;
if (inbound '= temp) {
CritP.r = i; CritP.c = j;
CricP++; *Cn++; inbound = TRUE;
}
break;
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Figure 61: The calculation of maximum allowable rotation angles on Q' of Ry. 'The

allowable rotation area is ang[2] — ang(1).

2. Calculate the angles for each starting or ending point for the obstacles using
CritPli].r
Crit Pli).c”

Then sort ang[] in ascending order. Finally, search angf] for the location of 0

ang[i] = arctan( (89)

and get ang[k] and ang[l] which are closely adjacent to 0 in two sides such that

ang[k] < 6 < angll). (90)

Clearly, ang[k] and ang[l] are the two bounds for the rotation of A around
its center in R; (see Fig. 61), i.e., the maximum counter-clockwise rotation is
ang[l]—6 and the maximum clockwise rotation is ang[k]—0. The total allowable
rotation angle is ang[l] — ang[k]. If @ is smaller or larger than any element in

ang||, one bound is on the z or y-axis in Q.

5.2.6 Concluding Remarks

The bitmap algorithm is an efficient technique for collision avoidance in a dormain

embedded in grids. In fact, this algorithm is valid for any shape of rigid objects
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provided they can be enclosed in a circle. The possible change for different shapes
is the change of the way M is divided. For example, for an L-shaped robot, M can
be divided into two parts according to whether it is occupied by the robot. So the
adjacent two quadrants now are combined into one region. The actual calculations
(e.g., the tangent method or cosine method) may have to be changed too. If the
two sides of the robot coincide with z and y-axis simultaneously, the division of the
regions can be arbitrary. In practice, this technique is used after fluid simulation
and a global path is found. In each step, M is created and tested. If no collision 1s
found, go to the next step on the path. If it is, some simple escaping techniques are
used such as backing up one or two steps, adjusting its moving directions, or reducing
rotation angles, etc. M is regenerated, and the same cycle goes again until the goal
configuration is reached.

The global path generated acts as important references for the moving directions
of the non-point robot. It is used to guide the robot to its goal and the robot tends
to converge its movements to the closest path line. Problem of this technique is
that it may fail in some situation where the areas between obstacles are narrow and
composed of continuous turns. Ideally, these techniques should be used with AEIP
(see Chapter 4). When a collision danger is found on a global path and there is no
way to escape it, the path will be abandoned and another global path generated by
AEIP will be tried, because AEIP keep records of all the paths found. This process
goes on until a collision-free path for the non-point robot is found or to declare failure
when all the global paths are tested without success.

Fig. 62 gives some samples of paths for rectangular and triangular robots generated

with the bitmap collision detection. Fig. 63 shows a path for an L-shaped robot.
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Figure 62: Samples of paths for rigid robots with 3 DOFs in different environment.
The collision detection is done by the bitmap algorithm.
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Figure 63: A path for an L-shaped robot generated by the fluid model and with the
bitmap algorithm to deal with collision avoidance.



Chapter 6

Technique in Solving Poisson’s

Equation

Solving the path planning problem is at least NP hard. For real time application, the
speed is essential. In our method, the simulation of fluid involves solving Eqs. 21 and
26, and its time complexity increases quadratically with the increase of the number of
unknowns in its representative matrix (i.e., O(n?), where n = M x N). However, there
are advanced computation techniques which can substantially raise the convergence
rate of iterations and lead to much better performance (up to O(n log n)). In this
section, different kinds of iteration techniques for the fluid simulation are briefed and
the results of experiments are explained. By using advanced techniques, this model

will be virtually made possible for real time application.

6.1 Formulation of Difference Equations

6.1.1 Denotations

To solve Poisson’s equation in §), we adopted the Finite Difference Method. From
Section 2.2, the bounded working domain §) is embedded in a grid. Let the size of
the grid be M in z-direction and N in y-direction. Then there are (M —1) ¥ (N - 1)

94
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Figure 64: The interior difference node (i, ).

rectangles (denoted by O) in (, i.e.,

0; C Qand O =0, (91)

i]
where 0 <: < M —1and 0 <5 £ N -1 and 0O,, denotes a unit rectangle whose
lower-left corner is at the node (Z, 7). In our context, a node is enclosed in brackets

with two parameters showing the order of spacings in z and y directions. i.e.,
(j)={z,ylz =i y=1y,}, (92)
Also the difference solution for the potentials is denoted by
i = 8(1,7) = d(ziy;), (93)
and the mesh spacings
8 = Tig1 — Ziy L =Y — Y (94)

Now let us establish the difference equations on the interior nodes (i,5) (see
Fig. 64). A subdomain Q;, € Q such that

Y y Ti- S S ' y
Q= | B T Se S T } (95)
Yi-172 S Y S Y410,



where

Topr2 = (T +2041) /2, Y412 = (30 + Y511)/2.
and

Ty-1j2= (Tia + 20) /2, Yy-172 = (Y-1+ w)/2.
Also denote the middle nodes

(i+1/2,5) = {2,y 2 = 22 v = 1,},

(7,]+ 1/2) = {Ivy | T=I,¥= yJ-H/Q}a

(i-1/2,j)={z,y|z =212,y = 1},
and

(2,] - 1/2) = {-’E,y | IT=InuyY= y1—1/2} .

6.1.2 The five-point Formula

Integrating the two sides of Eq. 23 on (1,, yields (see [Way59])

//Q'JAquQ:—]/QufdQ.

From Green’s formula, we obtain (see Fig. 64)

/ L Agdn = /a . gf-;dz

0¢ d¢ d¢

= [ a4 /B_——dH %us | 24

c dn TD On DA On
The integral on AB can be approximately by

/6¢I d¢

AB On

8 + 8,1 ¢s,j-l - ¢u

zﬁé—ﬁd z%(z—l/&]):&s 5

t—

Similarly, we obtain

/ %dl ~ ti+ti-1 Gis1j — ¢
BT dn 2

3C $;-1

/ d¢ 8i + 8i-1 biy41 — @i
—dl
TD on 2 t)-1

96

(96)

(98)
(99)

(100)

(101)

(102)

(103)

(104)

(105)

(106)

(107)
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a¢ t, +t,-1 ho1,y — &
'_dl s J J 3] J 1 8
/TA 3n 2 Sj-1 ( 0 )
According to Eq. 25, f is a constant. Hence when (7, ) is neither S* nor S—, then
[[ faa=o. (109)
0.,

Then the difference equation from Eq. 105-108 can be written as

t,+ 1,1 (¢z+1., - ¢y, + $i-1,5~ ¢x,j) 45 + 8i—1 (¢i,j+l - i + bij-1 — ¢i.l)

2 S, Si-1 2 tj t_-,._l
= 0. (110)
Also when (7,7) = S*, we have

// fdQ = —c, (111)

.,

and when (7,7) = §-,

/ fdQ = . (112)

Q.,

Consequently, the difference equations on St and S~ are nonhomogeneous:

t; + t_)—l (¢l+l,] - ‘15:'.] + d’t—l,) - ¢1.J) + Si T S4-1 (¢i.j+l - ¢i,1 + ¢|.j—l - ¢:,j)

2 S, Si-1 2 t t,

= %ec. (113)
llere, ¢ is a constant and typically is assigned to 1.

Next we discuss the difference equations when a node (3, j) is on the boundary as

illustrated in Fig. 65. Here, the boundary is defined on grid edges, either horizontal
or vertical. Let 9¢);, be ABEC DA(C ). We have

/ [ Agar= yﬁ . g—‘:idz

_ a¢ ¢ d¢ 0¢ a¢
= fa 5ttt fep it fond* Lyt a0
where
99 11 o SiBiio1 = i (115)

AB On 2t
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Figure 65: The boundary difference node (i, j).
a¢ S ¢l +1 = ¢l
Tl I )
/C_D On 2 t (116)
From the Neumann condition (Eq. 26),
9¢ 94
—dl = —dl = 0.
foz = Jep 7t =0 ()

Also the integral [57 %dl is given in Eq. 108. Therefore, we obtain the difference

equation on the boundary node (¢, ) when (4, 5) is neither S* nor S~

tJ + tj—l d’x—l.] - ¢i,j + :S_t ¢x._1+1 - ¢l,] + ¢:,]-1 - ¢|,; =0
2 S,—1 2 '

(118
t, t1 )

When S+ or S~ are on the boundary node (7, j), then

tj + t]-l ¢\'—1.) - ¢i,j S, ¢\,J+l - ¢t,] ¢t,]-l - ¢l,] _
> e ot =41,  (119)

For the equi-distance grid structure, i.e.,
si=1t; = hr = hy V(l,]), (120)
we can simplify Eq. 110, Eq. 113, Eq. 118 and Eq. 119 as

4¢; — (41 + dic1y + Sigr + $iy-1) =0, (121)
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44):3 - (¢l+l.] + ¢i—1.; + ¢z.]+l + ¢i,1-l) = il’ (122)

and : :
2¢u - (¢|—1,j + §¢c,1+l + §¢i.j—l) = 0, (123)
2¢i5 — (¢i-1,5 + ’;'¢i,j+l + '12'¢-‘.j-1) =%l (124)

The above techniques using box integration method can be found from Varga [Var62],

and are developed into the finite volume element method in [McC89).

6.2 Stopping Condition for Relaxation Methods

Iteration methods are generally employed to approximate the solutions of Eq. 23. On
the other hand, fluid simulation is to obtain a stable flow pattern in I so that it
can be used as the guidance of path planning and motion control. Therefore, any
solution will do if and only if it represents well a stable situation. It is found by
Huang [Hua64] that the difference of any two sets of solutions for Eq. 23 is constant.
By taking the constant off, we actually achieve the same result. Therefore, it is very
important to choose a proper stopping condition for the iteration. By this condition,
the correct solution (i.e., one in the set of the solutions) is obtained while the time
spent on computation is as short as possible. For example, we take the residual r as
the stopping condition for relaxation (see [Way59]). At the (k + 1)th iteration,

5 = “¢(k+l) — (/,U‘)Hoo = mamgks)‘-sﬂlqﬁf-k“) - gk)], (125)

where ¢*) is the solution of ¢ at the kth itcration and n is the total number of

elements. A small threshold g will be chosen so that when
r® <, (126)

the computation terminates.
Also we can define r as the ratio of the current residual (r*)) and the initial

residual (ryn.),
(K)

r=

(127)

b
Tinit
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and check the stopping condition similarly to Eq. 126. In general, by using Eqs. 125-
126, u chosen as 5 x 1073 to 5 x 10~* is sufficient to achieve a proper solution in €

with a grid of not more than 256 x 256, and by using Eq. 127, u is between 1 x 1074
to 1 x 1075,

Below, we shall discuss several relaxation methods and their experimental results

in the fluid simulation.

6.3 Jacobi’s Method

Jacobi's method is a basic method for solving Eq. 23. Let us write the interior and

boundary difference equations in Section 8.2 in a general form

au¢|] + bi]¢l+].] + Ct]¢:—l,] + dl]¢l.]+1 + Cl]¢l,]—| = bu, (]28)

where the coefficients and constants satisfy

b,=0,1or —1, (129)
a; >0, b,<0, ¢,<0, d,<0, e,;<0, (130)

and
ay; = —(by; + 6, + dy; + €y,). (131)

Then Jacobi’s method is defined by
1 o
B3t = = by dlh s+ cudlh, + dydBy + endll, -0y, (132)
1

where ¢g-’) are the initial guess, e.g.,

¢f§?> =0 VY(i,j). (133)

6.4 Gauss-Seidel Method

Gauss-Seidel’s method is not only faster in convergence than Newton’s method, but
also requires less storage space. It operates on the same matrix, therefore, no copies

are needed.
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For the rate of convergence, Gauss-Seidel method is superior to Newton method.
From Hagement and Young, Newton has 1/27%h? and GS has only 27h. From Hage-
men and Young [HY®81], the formula for Gauss-Seidel is

1 k
(k1) o —[b, — a8 — a0t — = i1 = a8 — . — aing®).
' (134)
It can be rewritten as
i-1 q
A 0% = 54,00 _ 3 4, 0 4 F (135)
=1 =141

Or in matrix form,

(D = Cp)p**Y = Cpyé®) + b, (136)

where D) is the diagonal matrix of A, and Cp and Cy are the lower triangular and

upper triangular matrices. Eq. 136 can be also rewritten as

¢t = Lok + d, (137)
where
L=(I- L)'IU, d=(I - L)']D'lb, (138)
and where
L=D"'C,, U= D'Cy. (139)

L is the iteration matrix.

6.5 Successive Overrelaxation Method

To achieve a faster convergence rate, we combined Gauss-Seidel method with the

successive over-relaxation method (SOR). Then Eq. 135 can be written as

-1 q
A8 = {- Y A0 - 3 A + F.} +(1-w)A, 0¥, (140)
j=1

j=i+1
where w is the relaxation factor. When w > 1, Eq. 140 is the over-relaxation, while
when w < 1, it is the underrelaxation. If w = 1, Eq. 140 reduces to Gauss-Seidel. To

accelerate the convergence rate, we choose w > 1.



Eq.140 can also be expressed in matrix form:

Or rewritten as
o+ = £ 6*k) 4 gtF) (142)

where L is the iteration matrix for SOR and
L,=(I~wL)y ™ wL)+ (1 -w)), (143)

and
dF) = (I - wL)'wD™'b. (144)

The relaxation factor

w

2
-\ T-MB?
where M(B) = Mazi<i<n )i, and X is the eigenvalues of £,,. M(B) hereis the spectral
radius of £,,. From [HY81],

A+w-=1) .
M(B)= ————~ < 1. 146
(B) o (146)
Therefore, we can get the optimal relaxation factor by (see {Li80))
k) _ 2

(147)

)
wopt z wopt —

1+ \Jl - (A‘,::ruf:::),)
6.6 Multigrid Adaptive Method (MAM)

The time complexity of fluid simulation can be further decreased by using advanced
techniques such as the multigrid method. This method processes the computation
on a multigrid structure, and runs the iterations at each level either sequentially or
parallelly. Fig. 66 shows a four level multigrid. As we stated in Section 2, § is
solved by Poisson’s equation (Eq. 24) with Neumann boundary conditions (Eq. 26).

Therefore, for each level of multigrids, both the equation and the condition must be
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o8
- h ~fh «feh =~ h +f b~ h =~} h < h

Figure 66: A multigrid structure with four levels.

satisfied. For simplicity, we assume the sources (i.e., S* and .5~) are on the shared
nodes of multigrids, i.e., on the nodes of the coarsest grid.

From [McC89], the maximum number of levels on multigrids can be n + 1, for
n =logM. (148)

Obviously, it is not applicable to use n + 1 levels in §2, because the coarsest level
is only a point. For the presence of obstacles, the computable regions in Q) generally
have an irregular shape. Some narrow channels appear in a finer grid may totally
disappear in a coarser grid! (See Fig. 67). This phenomenon causes more relaxations
on the finer grid so as to achieve the required accuracy. Hence the performance of
the multigrid method is greatly degenerated. To prevent this from happening, the
number of levels of coarser grids should be limited. For the choice of the degree of
coarseness in the multigrid method, it is better to consider the maximum width of
the predefined robots. Let four levels of multigrid is chosen. Then if M*, the size of

the finest grid, is 256, we have the sizes for other grids as follows,
M =128, M* =64, M®" = 32, (149)
We adopted the following strategies for MAM:

1. Four levels of multigrids are used, which are denoted by 0!, 02k Q4 and Q8*.

2. St and S~ are assigned on the coarsest grid so that they appear in all the grids.
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Figure 67: Part of the three levels of multigrid with boundaries. The big black nodes
are those on 2%, the big blank nodes on 9** and the small dark nodes are on the
finest grid . Notice, channel w does not appear in Q.

3. The irregular inner boundaries are preprocessed to comply with the structure

of each grid.

4. Gauss-Seidel relaxation is used on each grid, and the coefficient A is precom-
puted so that we have A", A%h, A*h and A®A at hand.

5. The organization of relaxations on multigrids is V-cycle (see [McC89]). They are
processed in the following order: Qt, Q% Q4h 8k Q4 O Ok repetitively.

6. The transgrid linear interpolation and error correction appear at the backward

process of the V-cycle.

7. The same stopping condition as in Section 8.2 is adopted.

6.7 Experiment Results

We have experimented on each relaxation method for fluid simulation in . All
methods are good for the simulation while MAM gives the most satisfactory results.

Its time complexity is close to O(n log n) (see Table 2 and Fig. 68). Table 2 shows
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Table 3: The comparison of the performances of different relaxation methods in fluid
simulation.

M r NEWTON SOR MAM
IN. | T(sec.) || LN | T(sec.) || LN | T(sec.)
64 [1x1077 || 162 8.51 || 144 431 22 1.1
5x 1074 || 752 23.0 || 178 5.0 | 88 4.0

128 1 1 x 10~ || 160 259 | 62 174 || 10 2.8
5x107% [ 318 46.6 | 68 18.4 | 41 8.3

256 {1 x107° | 160 | 139.7( 62 96.7 8 16.1
5x 107 [ 318 3251 [ 68| 101.0 [ 12 18.4

the comparisons in the performances of Newton, SOR and MAM. Fig. 68 shows the
performance behavior of each method in Table 3, where the solid line is for the Newton
method, the dashed line for SOR and the dashdoted line for MAM. In this table, the
intervals for optimal successive factor selection in SOR is 15 iterations except that it
is 10 in the case of M = 64.
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Figure 68: The curves of the performances by different relaxation methods in second
(in y-direction) versus the increase of M (in z-direction).



Chapter 7
Parallel Processing

In recent years, parallelism becomes more and more popular in computer architecture
and computation technology. Using parallel processing can break the time constraints
caused by hardware and substantially speed up computer operations. In light of the
parallel processing of this fluid model, we have done experiments in two aspects.
First, in fluid simulation, large matrices are used for information storage. They are
good structures for parallel computation. We reordered the mesh points (nodes) in
the matrix and adopted block iteration to solve it (see [HY81]). Second, we ran
this model on strong parallel computational facilities such as a supercomputer for
enhancing its performance (sce [LBT92]). In this section, we will talk about the
ideas and experiments on the two issues. Also, we will talk about decoupled planning
techniques in multiple robot path planning and navigation using this model, which, if

supported by parallel means, can greatly improve its performance (also see [LBT92)).

7.1 Block Iteration and Parallel Computation

As we stated in Chapter 2, the simulation of the ideal fluid in © is realized by

computing Poisson’s equation with finite difference method. We solve,

Az = f, (150)
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where A is the coefficient matrix, r is an unknown vector and f is the known vector.

For finite difference method, the five-point formula for a mesh point is
Q4,3 Tij = by Timry = CyTigb1 = dyjTagrj = €4, Th -1 = — by, (151)

Assume A is a square matrix with the size of M x M. For Eq. 150, the block

iteration method can be used by first converting it into the form

[ Al,l Az .. Al.q 1T | ] h
A2.1 Az,z A2.q ) _ S (152)
L Agr Ag2 . Agg i l.Tm ] S

Here, A is divided into ¢ x ¢ blocks, and each block has the same size. Now, Iiq. 152
makes relaxation processing possible through g-level parallel processing.

For converting Eq. 150 to Eq. 152, reordering the mesh points of the concerned
domain is necessary. For example, when ¢ = 2, we have the classical red/black
ordering. Fig. 69 shows a simple example with a mesh of only 5 x 5. This is a closed
domain. The dark nodes are in the boundary, i.e., the subset of B, and all other
nodes are computational nodes, i.e., subset of F or dF. Fig. 69a shows the normal
ordering of the mesh points and Fig. 69b the red/black ordering. From Eq. 24 and
Eq. 26, the Neumann boundary condition, Eq. 150 for Fig. 69a may be written as

1 —-;— 0 —% :cl1 -blj
-% 2 —.1—, 0 -1 0 T b,
0o -1 1 o0 0 -! 3 by
-1 0 0 2 1 0 -1 T4 by

0 -1 0 -1 4 -1 0 -l zs [ = | 65 |- (153)

-1 0 -1 2 0 0 -i||=e be
-10 0 1 -3 0 z7 br
0 -1 0 -} 2 -—}||zs bs

] -3 0 -3 1 [|l=ze] [b)]
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Figure 69: The ordering of mesh points for point partitioning. a). natural ordering.
b). Red/black ordering.

If we reorder the points in the mesh as in Fig. 69b, Eq. 150 may be like this,

1 ~1 -1 0 o |[=w] [&]
1 -3 0 =3 0 Ty b,
4 -1 -1 -1 -1 T3 b3
1 0 —% 0 --;- T4 by

1 0 0 -3 =3 |las|=]b]- (154)
-1 -1 -1 0 o0 2 z6 be
-3 0 -1 -1 0 2 T7 br
0 -3 -1 0 -1 2 T3 bs
0 0 -1 -1 -1 2 ||ze]| |b]

Now, the block division is very clear. Hence, for simplicity, the red/black point

partitioning for Eq. 150 can be rewriticn as

DR H UpR _ bR
EXAIMEH]
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where
1 | ]
2 |
! 2
Dg = 4 and Dg = 0 . (156)
1
2
A 1- b -
and : _
-} - o0
40 -
H=|-1 -1 -1 =1/, (157)
0 -1 o0 -!
R

Obviously, two processors can be used to compute Eq. 155 parallelly. This method
can be expanded to divide a matrix into many more blocks with the number of blocks

equal to 2", n =1,2,...

7.2 Real-time Performance in Supercomputing

Choosing an advanced computation technique to improve the performance of this
model is very important. On the other hand, the computational facility, i.e., the
hardware support, is another crucial factor for real time performance of this model.
It is an ideal way to be able to connect the robot to a high speed computer. Luckily,
we have opportunity to try our program on NEC SX3/44, a supercomputer with
22 giga FLOPS. SX3 is basically a vector machine and it has four CPU’s, each of
which contains a powerful pipe set with 256 processors. It is highly facilitated for
large matrix computations. In this experiment, the relaxation technique used for
simulation is SOR, which is stated in Section 8.5 for this experiment. The result is
tabulated in Table 4.

In the table, the performances on Sparc-station (SUN4.1 with 16 MFLOPS) are
cited for comparison with those on NEC SX3 in different M and different u. Here, M
is the size of the matrix to be solved and p is the stopping condition stated in Eq. 127
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Table 4: The comparisons of the performances of the same program on Sparc-station

and NEC S$X3 with different m and R.

M 1! Sparc NEC SX3 | Speed Up
(in second) | (in second)
5 x10~° 1.6 0.2 8.0
641 x10~° 23.0 1.3 18.1
5 x10™4 50.1 1.9 26.3
1 x10~1 148.4 4.2 35.3
5 x10~3 8.8 0.8 9.1
128 | 1 x107° 31.8 3.7 9.6
5 x10~1 116.7 7.8 14.9
1 x10~4 993.8 32.2 30.7
5 x1073 30.1 3.3 9.1
256 | 1 x107° 147.8 15.3 9.6
5 x10~* 283.3 30.3 9.3
1 x10~4 1890.7 75.5 25.0
5 x1073 112.2 13.6 8.2
512 |1 x107° 522.4 58.2 8.9
5 x107* 1764.8 81.7 21.6
1 x10~1 6359.7 147.7 43.0

in Section 9.2. The rates of performance speedup by using NEC SX3 are calculated
in the table. The conclusion from the experiments on NEC SX3 is obvious. By the
strong support of a supercomputer, the differential equation in the fluid model can
be solved in a second or two, therefore, this model is feasible for robot path planning
and navigation in real time, provided that we restrict M < 256 in two dimensions
and choose g < 1 %1073, In practice, M = 256 is large enough for general working

domains.

7.3 Parallel Processing for Multiple Robots

Assume there are robots 4;, Ay, ..., A, working in the same world space W and they
are projected to the same C-space, 1 of dimension m. In any instant, a robot A;

must be either at its initial position, ¢(S;"), or at its goal position, ¢(S), or on its
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path, 7;. For finding collision free paths for all the robots in €1, we are dealing with
m X n dimensions. It is inapplicable when n is large, for this is an exponential-hard
problem with dimensions (see [Can88])).

7.3.1 Reduction of Dimensions in )

We can reduce the dimension by mapping the configuration of each robot into separate
configuration spaces. That is, for all A; € A, there exists ; € 2 such that A,(q) € F,,
0 < ¢ < n. In the same manner, each (), consists of two types of regions, F, and B,.

Let 7; be a global path for A, in F,, then
k-1
7,:{0,k] = {q. € F,| A(0) = Q(Sj-) U Z Alg) U A(k) = ¢(S7)}, (158)

=1

where g, is the configuration of A, at step j. And

F.=0,NB. (159)

m
BE B, fori=1,2..,n (160)

j=1
where B, are stationary obstacles in W and T, is the transformation mapping U7, 13,
into ,. Eq. 160 implies that all the £, have the same number of stationary obstacles
with the same relative locations (However, the exact boundaries of B in different 1,
are dependent on the shapes of A; (see [Lat91]).
When we process each §); independently, we only face a dimension of m. Thus we
sacrifice storage for achieving lower dimensions. However, this tradeoff is particularly

significant in improving the performance when parallel and vector processing are used.

7.3.2 Decoupled Planning

In the presence of multiple robots in W, proper interactions between the robots are
very important for obtaining a collision-free path. This tcchnique depends heavily on
information exchange (updating) between the configuration spaces. 1t is called decou-

pled planning. Each robot A, has its own {1, for its path planning. {) is independent
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of Q, for 1 <i,j < m,i#j. Thepath 7, for A; must be in F, and

Fi =N (PG U1B,), (161)
and m
m,. LB, (162)
=1
B,E | A (163)
k=1,k#4

We call PB, permanent obstacles in §}, and TB, temporary obstacles in Q, which are
marked differently.

Eq. 161 to Eq. 163 state that in dynamic motion planning for multiple robots,
if A, has taken a step forward, its new position has to be projected in all ; with
¢ # k. This means updating each §,, 1 = 0,1, ...,n, by T}, is required at each step
so that when it is time for A, to plan its path, the region of F, is exactly known
(e.g., the coordinates of PB and 1B in (2). Fortunately, the updating processes are
independent with each other by using individual functions T, and requiring access
to different memory locations (i.e., the space for 0,Q,,...,Q,). This makes parallel
processing possible to speed up the execution.

After all, parallel processing has great potential in enhancing the performance of
fluid simulation and path planning of this model, especially, when multiple robots are

involved.



Chapter 8

High Efficient Path Planning

In Chapter 6, various kinds of techniques in solving Poisson’s Equation are discussed.
Those techniques compute the solutions of the entire domain. Generally, the time
spent on them by the current computation facilities is still too long in view of dynamic
path planning. Therefore, these techniques are practical only when very powerful
parallel machines are available, which are supposed to solve the differential equations
in milliseconds.

On the other hand, the actual use of the solutions is generally limited to a small
part of the domain which the robot’s route may cross. To save computing time, one
option is to avoid solving the differential equation completely, since our purpose of
computation is to find the path. Whenever a path is found, further computation is
not necessary. In this section, we have two proposals about how to eflectively use the
intermediate solutions of the fluid simulation in path planning. However, since the
solution is not complete, and what we have simulated in the concerned domain is only
an unsteady flow, some features of ideal fluid will be lost (see Chapter 2). Therefore,
the solutions can hardly be reused.

Also in this chapter, we briefly talk about the use of potential gradients as reference

for controlling a physical robot.
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8.1 Sensor-based path planning

One technique we have experimented can achieve very high efficiency in planning
the path for a point robot in 2-D invariant space. We call it the Sensor-based path
planning. It is similar to [SN92], but with Poisson’s Equation as the navigation
function, which is combined with Neumann boundary conditions. Assume the robot
and its destination are both in F, and on a slope. The robot is at the highest altitude,
and its destination is at the lowest altitude. Assume there is water coming out of
the robot position (i.e., the source) , and flowing downward, it must finally reach
the robot’s destination sooner or later. Then we can install a sensor at the robot’s
destination. Whenever, it "tastes” the water (or senses that the value of potentials
at the destination becomes nonzero), the path from the robot to its destination is
found. According to this simple idea, some experiments have been done.
Poisson’s Equation with Neumann conditions is still used for simulating the fluid
in . and the system of equations is formulated as follows:
2 2
%}3 + g—y‘i—’ =-f, (164)

where
ﬂ%wz{bﬁum=cww,
0 otherwise.
b is a positive constant, and G(z,y) represents the goal position of the robot. The
difference with what we stated in Chapter 2 is that there is no sink initialized. There-
fore the fluid simulated in ) is unsteady. However, since what is of concern to us here
is the path of the robot, the simulation (or iterative computation) can be stopped
right away after the path is found. This strategy makes the planning highly efficient.
Now we use the intermediate solution of Poisson’s Equation as the navigation func-
tion. The whole region may not satisfy the properties in Chapter 3, however, it can
just be ignored, because this solution is used only once. For any next planning, the
region will be recomputed. To exactly describe the formulas, the time factor should
be introduced in the equation, thus we have,

0
508 =1, (165)
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where ¢ shows the solution at certain instant (see [Way59)).

Clearly, the "water” sensor of the robot can be used as a stopping tool for the
computation as well. Then we can use the same techniques stated in Chapter 4 to
plan the path. The only case that will fail the planning is that no connection between
the robot and its destination exists in F. Then the program will run forever. One
simple way to avoid this is to set up a time threshold. When the threshold is exceeded

and still no reaction from the sensor, failure should be declared and computations

terminated.

8.2 Controlled Simulation by Path Finder

Another approach to achieve highly efficiency is to integrate the simulation with a
path finder. A path finder is an algorithm similar to SFM. It is invoked interactively
with the computation of the navigation function. The navigation function is the
same as stated in Chapter 2. After some number of iterations on the function, the
path finder checks the intermediate solutions on the domain, and tries to find a path
from the robot point to its destination point. If it succeeds, then the computation
terminates. Otherwise, let the computation go on and wait for the next check. This
process may be repeated for a few times before a path is found.

Although the time complexity of the path finder is constant with the number of
grid nodes, it is still not economical if it is to be invoked at each iteration. The best
way is to start the check after n iterations, and check it repetitively afterwards in
regular bases. For example, invoke it when n%m = 0, (% is a modular operation),
where m is the number of iterations, which is the needed time before the change of
the solutions becomes significant.

The time of solving could be reduced by half of that spent by the algorithm stated
in [SN92)] using diffusion equation. Although the value decreases on the grid is in the
same manner, in the iteration of our method, values are added to the system at
two points instead of one: the robot’s initial position and its destination. This is
important especially because the arithmetic representation of the values is machine-

dependent. Truncation makes very small values become zero. A number of iterations
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is needed before the value on a grid in a distance to the source or sink is significant.
In our case, a positive value is added at the source while a negative value is added
at the sink (see Eq. 25). Then when the two values meet on a grid node, our path
planning algorithm based on deepest descending technique will find ii, at the same
time terminates the computation.

The time complexity of the above two algorithms is only related to the number
of grid nodes it needs to pass in order to connect the robot to its goal. This measure
of the distance in a grid is called L-metric in [SN92]. For experimenting the above
algorithms, in order to reduce the damage of truncation, 64 bit floating point repre-
sentation should be used for the potentials. This is because in the fluid simulation,
five-point formulais used (see Section 1, Chapter 6), the reduction rate of the value on
the concerned point to its closest neighborhood is quadratic. Assume that at point
P, a value of r is given, after one iteration, its neighbor nodes with one L-metric
distance to it, only a value of r~? is added. If a node has n L-metric distance, then
only 7=2" will be added. Clearly, the time complexity of the above algorithms is not
constant. However, they are time-efficient because, in general, the density of the grid

does not need to be high.

8.3 Idea of Robot Speed Control

One very interesting discovery is that the potential gradients can be used for control-
ling the speed of a real robot’s movement. Because of the limitation of the content
of the thesis, we did not go deep into this aspect. However, we believe the following
idea is worth being recorded here.

From Eq.16, the velocity of an object can be calculated from the potential gradi-
ents. However, The result from Eq.16 cannot be directly applied to robot navigation
because when R is constant, the narrower the channel, the faster the fluid flows. On
the contrary, considering the physical constraints for a real robot, we should allow it
to move slower in narrow channel and faster in open space. Also at the beginning,
the speed should be increased gradually and at the end, the robot should slow down

so that it can station itself accurately at the destination. These requirements can



118

be inversely satisfied by the characteristics of ideal flow in ! Thus we can use the
computed velocity potentials for the purpose of speed control of a real robot. For the

speed v between two points, p and py.,, we can have

04 a
V(P Pren) = |6(p) — ¢(pprcv)| B g(p, Pprcv). (166)

where a is the velocity control factor. It can be obtained from experiments. In reality,

upper and lower bounds of the robot’s speed of navigation may be defined.




Chapter 9
Conclusion

Based on the ideal fluid in fluid mechanics, we have explored the theories and prac-
tices in using the flow of an ideal fluid for robot path planning and navigation in a
closed 2-dimensional domain. They include the simulation of ideal fluids, the analysis
of generic properties, the path finding configuration and the dynamics. A basic path
planning algorithm (SFM) which seeks the path by following the natural flow of tke
fluid is given. Two other heuristic techniques are proposed to improve the natural
flow path. We also propose a bitmap technique for collision avoidance. Computa-
tion techniques are systematically experimented for solving the partial differential
equation-Poisson’s equation, which is the core of the ideal fluid simulation. Also the
experiments on a powerful supercomputer is performed. After all those experiments,
we are confident in that, in using advanced parallel computation techniques and high-
powered computational facilities, this model is promising in real-time performance.
On the other hand, just like all other numerical potential functions, solving path
planning in this model requires simulation of fluid in the entire domain (i.e., all the
robot’s activity related area). Therefore, computation takes the lion share of the time
consurned. The path planning algorithm itself on the function is linear and constant
because it only involves the evaluation of the gradient of the solutions of the potential
functions. It takes far less than a second. In real time performance, this model is quite
suitable for a static situation, where the goal point and obstacles are fixed. Then the

solution may be reused again and again.” It does not need to be recomputed unless
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the obstacles and goal points change position. However, in a dynamic situation, the
solution must be recomputed whenever the configuration of the environment changes.

Practically, the potential function may not need to be completely solved. We can
use its intermediate (or incomplete) solution to plan the path. This technique can
greatly reduce time in computation, and make this model possible to be used directly
in dynamic situations.

There are some features of the fluid model remained to be studied. For example,
the adjacent streamlines (i.e., the natural paths) tend to be parallel to each other
provided they are not close to the source, the sink or the boundaries (se¢ Section
2.2.3). Thus they actually subdivide the free space evenly into a few separate open
channels (the width of the channel is related to the resolution of the discretization of
the domain). Obviously, this parallel characteristics can help collision avoidance for
multiple robots when they meet and surpass in a time-invariant environment. Another
example is that the velocity gradients computed in the fluid simulation can be used
for the speed control of a physical robot. In fact, they are inversely proportional to
the speed requirements of a robot’s movement (see Chapter 8). Besides, our further

researches could, at least, be in the following directions:
¢ Motion planning for 3-D objects using the fluid model.

o Fluid simulation and motion planning in a closed domain with multiple sources

and sinks.

¢ Motion planning in an open domain with a fluid model.
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