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ABSTRACT

A Formal Specification in Z of the
Relational Data Model, Version 2, by E. F. Codd

Dorel Biluta

Formal specifications are becoming more widely used in developing computer sys-
tems. They are gaining acceptance as an important component of methods for devel-
oping high-quality software. Data modelling at the conceptual level has always been a
major part of database design of information systemsin general. A data model is a set
of conceptual tools for describing relevant properties of the system under considera-
tion, and it consists of three distinct, yet closely interrelated parts: the data structure
description, a set of operations for data update and retrieval and a set of constraints
that data values must satisfy in order to be considered valid. The relational model,
first introduced by Codd in 1970, has undergone a certain amount of revision and
refinernent since its original definition. The last version of it, RM/V2, was defined by
Codd n 1990 by preserving all existing features of the previous versions, and adding
some new features intended to improve the understanding of this data model and to
enhance its power. This thesis presents a formal definition of the basic concepts of
the relational data model, including some additional features introduced by RM/V2.
The formal notation that we use is Z, 2 model-oriented specification language which
is widely used in industry as part of the software development process.
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Chapter 1

Introduction

Formal methods are becoming more widely used in developing computer systeins,
They provide frameworks within which people can specify, develop and verify sys-
tems in a systematic, rather than ad hoc, manner. The use of mathematically based
techniques for the description of system structure and behaviour is necessitated by
the increasing size and complexity of modern software systems, which can not be

handled by classical structured programming and design techniques.

The ability to specify system propertics in a precise and rigorous way has been
invaluable in the design and implementation of many computer systems, regardless

of their size [Hal90, Haye92]. Formal specifications are gaining acceptance as an



important component of methods for developing high-quality software (But94]. A

formal specification has many roles in the development process. Some examples are:

e as a mean of precise communication between the customer and the software

supplier,

e as the standard document against which the final software product is verified,

e as a model from which it is possible to prove properties of the system and as

an aid to validating the formal specification against the informal requirements.

Growing awarencss of the need for formal specification has led to the develop-
mient of various specification languages. Some of these take as their starting point
a large body of standard mathematical concepts and notation, including set theory
and predicate logic, and use these to build models of systems. Among these, the
most popular are Z [Sp88] and VDM [Jon86], which has even been recommended to

become an official standard for software system specification.

Data modelling at the conceptual level has always been a major part of database

design of information systems in general. A data model is a set of conceptual tools
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for describing relevant properties of the system under consideration, and it consists
of three distinct, yet closely interrelated parts: the data structure description, a set
of operations for data update and retiieval and a set of constraints that data values
must satisfy in order to be considered valid. One of the most popular data models

which enjoys widespread acceptance is the relational data model.

The relational model, first introduced by Codd in 1970 [C'od70], has undergone a
certain amount of revision and refinement since its original definition [Dat86]. The
last version of it, RM/V 2, was defined by Codd in 1990 [Cod90] by preserving all
existing features of the previous versions (RM/V1 [Cod70], RM/T [Cod79]), and
adding some new features intended to improve the understanding of this data model
and to enhance its power. The most important additional features in RM/V2 ai- as

follows:

e anew treatment of items of data missing because they represent properties that
happen to be inapplicable to certain object instances for example, the name

of the spouse of an employee when that employee happens to be unmarried;




o new features supporting all kinds of integrity constraints, especially the user-

defined type;
e a more detailed account of view updatability;
e a more detailed account of what should be in the catalog;
e some of the fundamental laws on which the relational model is based.

In RM/V2, the author attempts to emphasize the numerous semantic features in the

relational model. The semantic features include the following:
e domains, primary keys, and foreign keys;

e duplicate values are permitted within columns of a relation, but duplicate rows

are prohibiled,;

e systematic handling of missing information independent of the type of datum

that is missing.

The motivations for Version 2 of the rclational data model included the following:

1. all of the motivations for Version 1;



2. the errors in implementing RM/V1, such as:

a. duplicate rows permitted by the language SQIL;

b. primary keys have either been omitted altogether, or they have been made

optional on base relations;

c. major omissions, especially of all features supporting the meaning of the

data (including domains);

d. omission of almost all the features concerned with preserving the integrity

of the database.

3. the need to assemble all features of the relational model in one document for
DBMS vendors, users, and inventors of new data models who scem to be un-

aware of the scope of the relational data model;

4. the need for extensions such as new kinds of joins, user-defined integrity and

view updatability;

5. the need for users to realize what they are missing in present relational DBMS

products because only partial support of the relational model is built into these



products [McGo94).

It is true, and indeed significant, that the changes introduced by RM/V2 have
been evolutionary, not revolutionary, in nature. Nevertheless, the situation is that
(to our knowledge) there does not exist any formal definition of the RM/V2. The
previous work on specifying the relational data model includes only some semi-formal
definitions of this data model which do not specify all the concepts involved. It there-
fore secems worthwhile to attempt such a definition, to provide a convenient source
of reference and understanding on the relational data model and on the recent work
on cxtending the model to incorporate additional meaning. This thesis presents a
formal definition of the basic concepts of the relational data model, including some
of the new features introduced by RM/V2. The formal notation that we use is Z, a
model-oriented specification language which is widely used in industry as part of the

software development process.

Chapter 2 of this thesis has three parts. First we present the benefits of the for-
mal specification during the software development process. The second part is a short

description of existing representative specification languages. The last part presents
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briefly the Z notation, the mathematical entities used by it, and how systems can be

modelled using Z schemas.

Chapter 3 presents a survey of previous work on the specification of databases,
related specification case studies using Z or VDM, and formalizations of different data

models.

The main part of the thesis is presented in Chapter 4 where a formal specification
of the RM/V2 is defined. The Z specification language is used throughout, mainly
because of its elegance and simplicity, its mathematical foundation and because of the
link that exists between Z and relational algebra. The specification includes concepts
like domains, rows and relations, retricval and manipulative operators, and integrity
rules such as entity integrity and referential integrity. The definitions consider the
case of composite keys and make use of the naming technique defined in RM/V2.
Some additional features defined in RM/V2 such as the new treatment of missing
data are also specified. The specification does not include concepts like view and

view updatability, and the definition of the advanced operators.



Chapter 5 presents how different properties of the relational data model can be

proved using the Z specification.

Chapter 6 presents the conclusions of this project, several remarks about Z and

FUZZ, and proposed f{urther work.



Chapter 2

Formal Specifications and Formal
Specification Languages

This chapter is intended to present the importance of formal specifications in the soft-
ware development process, to briefly describe the common specification languages and

to introduce the Z language, its properties and its mathematical toolkit.

2.1 The need for formality and abstraction

Systemn specification plays a central role in the software life-cycle for several reasons:
It serves as a contract, a valuable piece of documentation, and a means of comnuni-
cation among a client, 2 specifier, and an implementor; it represents in a systematic
fashion the current state of the real world, its problems and its future requirements;

9



it enables the system developer to transform real world problems into other forms
which are more manageable in terms of size, complexity, human understanding and
computer processability. A formal software specification is a specification expressed
in a language whose vocabulary, syntax and semantics are formally defined. It de-
scribes in a precise way the propertics which a software system must have, without
constraining the way in which these properties are implemented, in other words it
describes whal the system must do without saying how it is to be done. The need
for formality and abstraction means that the specification languages cannot be based
on natural language, due to its lack of precision, but must be based on mathematics.
The advantages of using such a formal language for precise specifications [Som89) are

as follows:

1. Formal specification provides insights into and better understanding of the soft-

ware requirements and software design;

2. Having a formal system specification written using a formal specification lan-

guage, it may be possible to prove that a program conforms to its specification;

10



3. Formal specifications may be automatically processed using software tools built

to help with their development and debugging;

4. A formal specification may serve as the basis for the development of a prototype

system;

5. The mathematical basis of the formal specifications provides the means of pre-
cisely defining notions like consistency, completeness and correctness. Formal

specifications can be studied and analysed using mathematical methods;

6. Formal specifications may be used in identifying appropriate test cases in formal

program verification.

These advantages of formal specifications fully justify their use in the software
development process. Their use should be scen as a way of achieving a high degree
of confidence that a system will conform to its specification.

The role of the language in connection with formal specifications is very impor-
tant. We can say that, in many respects, the practical progress in software engineering
is language-driven: it is hard to introduce methodological concepts unless these are

concretely available as constructs in the language in use. This has been a major mo-

11



tivation behind the introduction of formal specification languages. In practiee 1t is
not. enough to have a good methodological frame or writing formal specifications: we
need also a language as a vehicle. In order for a requirement specification to be use-
ful in systems development, the specification language must exhibit various features

which contribute to the case and user-friendliness of the specification process [Tse91].

2.2 Common Families of Formal Specification Lan-
guages

The most commonly encountered families of formal specification languages are model-

oriented and property-oriented techniques [Wi90]. Using a model-oriented method, a

specifier defines a system’s behavior directly by constructing a model of the system

in terms of mathematical structures. Using a property-oriented method, a specifier

defines the system’s behaviour indirectly by stating a set of properties, usually in the

form of a set of axioms that the system and its behaviour must satisfy.

12



2.2.1 Model-oriented Techniques

Model-oriented specification languages encourage the construction of a model of a
system in terms of sets, maps, sequences and predicates, such that the exhibited
behavioral properties are those desired for the system. The behavior of the system
is studied through a sequence of states of the modeled object where cach state is an
instance of the variables, data types and operations causing a transition of the state.
This approach is also called operational. These are the techniques most widespread in
industrial use, and the most readily grasped. Model-oriented methods for specifying
the behaviour of sequential programs and abstract data types include Parnas’ state-
machines [Tsa95]; VDM [Jon86]; and Z [Sp88, Sp92].

Methods for specifying the behaviour of concurrent and distributed systems in-
clude Petri nets; Milner's Calculus of Communicating Systems (CSS); and Hoare’s
Communicating Sequential Systems (CSP) [Hoa85]. The process algebras exemplified
by CSP allow a system to be modelled by a collection of processes which commu-
nicate with one another. The mathematical basis of the CSP has much in common

with that of Z and this facilitates the complementary use of the two techniques.

13




2.2.2 Property-oriented Techniques

Property-oriented methods can be broken into two categories, sometimes referred to
as axiomatic and algebraic.

Aziomatic methods stem from Hoare’s work on proofs of correctness of imple-
mentations of abstract data types, where first-order predicate logic preconditions
and postconditions are used for the specification of each data type. OBJ and Larch
[Wi87] are example specification languages that support an axiomatic m.thod.

The algebraic specification technique has been developed independently by Goguen
et al [Gog75)] and Guttag and Horning [Gu77], among others. It has been used first
in the specification of abstract data types but, since then, this technique has been ex-
tended into a general-purpose approach to system specification. The name algebraic
is derived from the fact that the technique’s theoretical underpinning is the math-
ematics of many sorted algebras (an algebra is a set on whose members certain
operations are defined and which possess certain formal properties; the term “many

sorted” refers to the fact that the sets are heterogeneous, i.e. comprise members of

14



various types or sorts). In the algebraic approach, a specification has four parts:
an introduction part where the sort of the entity being specified is introduced and
the names of any other specification which are required are set out; an informal de-
scription of the sort and its operations; a signature part containing the definition of
the operations on that object and the sorts of their parameters; and an axioms part
where the relationships between the sort operations are specified. The axioms are
stated in an equational style, i.e. as a set of equations between expressions involving
the operations. The introduction part of a specification also includes an import part

which indicates the other required specifications.

2.3 The Z Notation

The Z notation is a model-oriented formal specification language based on set theory
and first order logic. It has been developed at the Programming Research Group at
the Oxford University Computing Laboratory and elsewhere for well over a decade. 7
is now used by industry as part of the software (and hardware) development process:

IBM has used Z successfully in specifying parts of its CICS transaction processing

15



system [[laye92); 7 has been used to clarify an IEEE floating point standard; It is
currently undergoing BSI standardization in the UK and has been accepted for the
ISO standardization process internationally. The aim of this section is to introduce
the basic features of Z which will be used throughout the specification of the relational
data model. For a complete reference of the syntax and semantic of the Z notation
sce [Sp88, Sp92], [Pot91] or [Wo92].

A specification written in Z is a mixture of formal, mathematical statements and
informal explanatory text. Both have their importance: the formal part gives a
precise definition of the system being specified while the informal text makes the
specification more comprehensible and readable, linking the abstract definition of the
system to the real world.

The set theory on which Z is based on is a typed set theory, that is the objects in
its universe may belong to different types, and there is no overlap between distinct
types. The notation of predicate logic is used to describe abstractly the effect of
cach operation of the system in a way that makes possible reasoning about system'’s
behaviour.

A very important feature of Z is the schema, which allows us to decompose a

16



specification into small pieces which can be referred to throughout the specification.
Schemas are used to describe both static and dynamic properties of a system. The
static aspects refer to the set of states that the system can occupy and the invari-
ant relationships that must be satisfied by cach state of the system. The dynamic
properties include the sct of operations on the system, the relationship between their
inputs and outputs, and their effect on the systemstate. Using 7, different parts of a
system can be specified separately, then they can be related and combined using the
schema composition language so that large specifications can be built up in stages.
Schemas can be used to specify a transformation {romn one representation of a sy stem
to another one containing more details of a concreie design. Using this process called
refinement, a specification of a system can start at a very general level and other
specifications can be derived from it by introducing more detail.

In Y, a schema has a name, a signature part and a predicate part:

_SchemaName
Signature _part

Predicate_part

17




The signature part is a collection of typed variables and the predicate part con-
tains one or more predicates (or axioms) over these variables. Schemas are building
blocks which can be combined and used in other schemas. The effects of including
a schema A in schema B is that schema B inherits all the variables and predicates
defined in schema A. Using this feature, the state space of a system can be split
hetween several schernas which are combined to define the overall state space. This
is an important advantage of Z over VDM, which does not have this property of

making up the state space of the system combining different modules.

2.3.1 Sets and Predicates

The set theory on which Z is based on is a typed set theory, that is the objects in
its universe may belong to different types, and there is no overlap between distinct
types. One way to introduce a type into a Z specification is as a given set. In the
RM/V?2 specification, the given set RNAME which denotes all the relation names
that can be defined for a relational database will be introduced by putting its name

in square brackets thus:

18



[RNAME)

This notation is a declaration introducing the name RNAME. A name denotes the
thing that it names, in this case a certain set that is to be a type. In Z, every value
we speak of must be assigned a type. A name is assigned a type when it is declared.
Thus if RNAME is a type we can declare a relation name rell with the following

declaration:

| rell : RNAME

The name rell is called a variable and it denotes some undetermined value of type
RNAME.

A set may be defined by set enumeration, that is by listing its members in some
order, enclosed in braces. The order of the items is arbitrary, but they must be all
of the same type. Two sets of values of the same type are cqual if and only if they
have the same members. A set with no members is called a null set or an emply sct.

In Z we can introduce a type with a small number of members, and give names

to the members of the type. Here is an instance of a declaration to define a boolean

19



type called BOOL which will be used in our specification:

BOOL ::= True | False

The above notation is called a data type definition. The sign “::=" is the data type
definition symbol, and the sign “|” is the branch separator.

The power set of a set A is the set of all its subsets and is denoted by P A. If A
denotes some finite set, then the number of elements in the set is called its cardinality
or size, and is denoted by #A.

One powerful means of defining a set in Z is by stating a property that distin-
guishes its members from other values of the same type. Suppose D denotes some

declarations, P a predicate constraining the values and E an expression denoting a

term; then an expression of the form

{D|PeE}

is called a set comprehension term, and it denotes a set of values consisting of all
values of the term F for everything declared in D satisfying the constraint P. The

vertical bar separating the declaration from the constraint is called a constraint bar

20



and it separates the declaration from the constraint. The heavy dot scparates the
constraint from the term. The whole is enclosed in braces. The set comprehension
notation will be used throughout the specification of the RM/V2 to define the result
of the relational operations, more precisely to define the set of rows returned by an
operation. Reading a set comprehension term aloud may cause a bit of difficulty,
especially in the case of long and multiple predicates. For instance, the resulting set

of rows of the selection operator is defined as follows:

SRel!.Rel = {r: ROW
| (r € (RDM REL?).Rel)
ANVi:N|(iel..#AL7)
}o ((r.row (AL?(3))), VL?(i)) = PL?(%))

This set comprehension might be read: “The set formed of values of the expression
r of type ROW, such that r is a row in the set of rows Rel of the input relation
REL? having the property that for any natural number ¢ between 1 and the length
of the list AL? then the relation between the value of cach attribute of that row
and the corresponding value from the list VL? should be the same relation as the
corresponding relation in the list PL?”.

21




This example also shows how we can build compound predicates from simple ones
using the logical connectives. The logical connectives Z uses are the ones defined in
the set theory: negation, disjunction, conjunction, implication and equivalence. The

gencral form of a predicate formed by applying the universal quantifier

! VD|PeQ

is cquivalent to

| VDo (P= Q)

An existential quantification formed by applying the ezistential quantifier can also

be recast in various ways. The general form

| 3D|PeQ

is equivalent to

| 3De(PAQ)

22



The notion of there being only one thing of a certain kind is formalized using the
unique existential quantifier, denoted 3,. The general form of an unique eristential

quantification is

| 3, Pe@

where D represents declarations, P represents a predicate acting as the constraint

and @ represents the predicate being quantified.

2.3.2 Relations and Functions

A set of ordered pairs of the same type is called a relation. Relations are very useful
and occur often in Z specifications. If X and Y are two sets, then the set X «— YV of

all relations from X to Y is defined to be P(X x Y). The notation

| XY ==P(X xY)

is the generic definition for relations, the one that summarizes the whole family of

possible definitions.

23



The domain of a relation is the sct of first members of the pairs in the relation.
Suppose
| R: XY

then dom R is the set

| {z:X|(By:Yezyeckh)

where z +— y is a graphic way of expressing the ordered pair (z,y).
The range of a relation is the set of second members of the pairs in the relation.

For the same relation R, ran R is the set

| {y:Y|(F3z:Nez—yeR]}

A relation having a strict denotation can be defined by a set comprehension no-
tation. A relation can also be defined by enumeration. If R and S are two relations

declared as follows:

| R:X e V;8: Y o2



then their composition, denoted R; S is defined as:

‘ {z:X5::Z|(3y:Y o (sRyAyS:z))er— :}

Given a relation, we can create a smaller relation by considering only a part of the
original domain. The domain restriction operator which is used, <, appears between
the set that we wish to restrict the domain to and the name of the relation being
restricted. There is a complementary range restriction operation, >, which creates a
smaller relation by considering only a part of the original range. We can give precise
definitions for domain and range restrictions for any relation R of type X <= Y.
Suppose S is a set of elements of the domain type, X, and T is a set of elements of

the range type, Y, then:

SaR={z:X,y:Y|zeSAz—yecRezr y}
RoT={z:X,y:Y|ye TAz—y€eRez - y}

If instead of restricting the domain (or range) to a certain set we want to remove a
particular set of elements from the domain (or range), we can use the domain (or

range) anti-restriction. Their definition is as follows:

25



SaR={z:X,y:Y|z¢SAz—y€ Roezr—y}
ReoT={z:X,y:Y|y¢ TAhz—y€E€ Rez— y}

A function between two sets X and Y is a relation between those sets that has
the special property that each member of the from-set is related to at most one mem-
ber of the to-set. The most general sort of functions as defined above is known as a
partial function. It is called partial since the domain of the function need not to be
the whole of the source. Partial functions are represented by a single arrow with a

bar across:

| Row: ANAME + VALUE

Partial functions can be defined with a generic definition:

X Y=={R: XY
|(Vz: X,y,z: Yoz yERANz— 2€ R= y=2)}

One special type of functions are those for which the domain is the whole of the

from-set. These are called total functions and their definition is:

| X > Y=={f:X- Y |domf =X}

26



A function in which the second members of the pairs are unique is called an injection.

The set of all injections from X to Y is defined as follows:

X Y=={f: X+ Y]|(Vr],22: X |21 €domf A r2 € dom f
o frl = fz2 = 21 = 22)}

If the domain of an injection is the whole of the from-set, the injection is called a

total injection:

| XY =={f:X»»Y |domf =X}

A surjection is a function whose range is the whole of the to-set. As with injectivity,
we have partial or total surjective functions. As before the arrows which are used for

these type of functions can be defined formally:

X+»Y=={f: X+ Y|ranf =Y}
X—»Y=={f:X—>Y|ranf =Y}

Finally, a function which is both injective and surjective is known as a bijection. The

bijective arrow has both a tail and an extra head:

27



| X YV =(X>YV)n(X—>Y)

An ordered collection of values of the same kind is called a sequence. The notion
of sequence can be derived fron the notion of partial functions as follows. A sequence
of values of type X is a partial function from natural numbers N to X whose domain
is 1..n, where n is the length of the sequence. Formally we can define the set of all

sequences of values of type X as follows:

| seqX =={f:N-»X|(3n:N edomf = 1..n)}

The type of any sequence of values of type X is P(Z x X).
Z allows the specifier to extend the mathematical language in various ways. New
functions and relations on values of existing types can be introduced by an aziomatic

description as follows:

emply_rel : RELATION — RELATION

VR: RELATION
o (empty_rel R).Rel = @
A (empty..rel R). Att = R.Att

The first part of this description declares the variable empty_rel to be a total function
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which takes a relation and returns another relation, that is the cmpty relation. The
second part of the description is the predicate which defines the constraints that an
empty relation has an empty set of rows and a set of attribute names.

Since functions are a special type of relations, all the operations which are defined
for relations can also be applied to functions. One further operator which is used to
update a function with new information and which guarantees that the result is a

function is function overriding. A generic definition of this operator would be like

follows:

—[{X, Y]
B (XY )X(XpY)—D(XY)

Vfig: X+ Yef®g=gU((domg)</)

This generic definition starts by naming the generic parameters in square brackets.
The declaration shows that the symbol being defind is to be used as an infix notation.
The function '@’ is a total function that takes as arguments two functions of the same
type, and returns a function of the same type. The predicate defines the value of the

result for any two functions f and g of type P(X x Y).
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2.3.3 Schemas and Specifications

In 7, a schema is a piece of mathematical text describing some property of the system
heing specified. It has a declaration part which declares some local variables and a
predicate part which expresses some requirements on the values of these variables.
The name of a schema is used in a specification to refer to the mathematical text. A
schema can be written in a vertical or a horizontal format. The former is preferred
since usually there are more than a few declarations and predicates.

Schemas can be used to specify the state space of the system or the operations
which are defined. In case of a schema used to describe the abstract states of the
system, the signature and the property together define the data space. The property
is sometimes called the data invariant. Examples of schemas describing properties
of the admissable states of the RM/V2 are RELDATAMODEL, RELATION and
ROW. The RELDATAMODEL schema is used to describe the state on which the
requirements for the operations of the RM/V2 are formalized. An operation on an

abstract state is called an abstract operation. The following conventions about names
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apply for schemas:

1. Undashed names are used to denote the values of the components of the state

before the operation, the starting state.

2. Dashed names are used to denote the values of the same components after the

operation, the ending state.

3. Names ending with a question mark are used to denote the values of inputs to

the operation.

4. Names ending with an exclamation mark are used to denote the values of out-

puts from the operation.

The predicates of a schema concerning only the input value and the starting state
define the preconditions of the schema. They define the situation that must exist
before the operation can behave as it is defined. The other predicates concerning
input, output and ending state define the postconditions of the schema. They define
the situation that must exist after the operation behaved in this way.

Z uses a set of conventions that are intended to reduce the amount of specification

we see, to help not repeating the specification of a property and to draw attention
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to the main points of the behaviour being described. One of these conventions is
schema decoration. It provides a systematic way of introducing the dashed names
of the components of a schema together with the data invariant on them. Another
convention is the schema inclusion which help us to reuse the name of one schema
in the declaration part of another. When a schema is included in a declaration part
of another, it brings all its declarations into the declaration part of the new schema.
The schema DIVISION includes in its declaration part the schema PROJECTION
and makes use of all declarations of this schema.

Another simplification is achieved by the A and = conventions. These are used
by schemas defining operations on data types and have two copies of their state vari-
ables: undecorated variables corresponding to the state of the data type before the
operation and dashed variables corresponding to the state after the operation. The

schema AStale i1s defined as the union of State and State’:

AState
State
State’

The A is always used to suggest change. In our specification we use this convention
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for the definition of the manipulative operations which affect the state space of the
model. The RM/V2, like all the other data models, has operations which access
information in the state without changing the state at all. This fact is specified by

using the =State schema which has the following definition:

_ =State
AState

0State = OState’

In the specification of the RM/V2, the = convention is used for the definition of the
retrieval operations which do not modify the state space of the data model.

The schema calculus of Z allows us to build new schemas combining existing
schemas. Schema conjunction, disjunction, negation, implication, quantificalion, pip-
ing, composition are examples of logical connectives which can be used to create a
new signature by merging the signatures of the participant schemas, and to create a

new property by combining the properties of the participating schemas.
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Chapter 3
Survey of Related Work

3.1 Introduction

The researchers in the database field have been always convinced of the benefits of
using formal specification techniques to describe database systems. However, they
were faced with a whole host of specification techniques and languages from which
to choose. Questions like: “Should we start from basic set theory and first-order
predicate logic and devise our own approach 7", “Should we use different techniques
for different aspects of database systems ?” or “Which are the relative merits of
model-based and algebraic techniques ?” generated many debates on this subject.
The decisions that have been made were based partly on functionality, partly on fa-

miliarity and partly on politics. This chapter is intended to be a survey of the work
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done on specification for database systems during the last decade. It presents a set
of specifications of different aspects of relational databases, most of them using 7
or VDM as the specification language. It also presents specifications of an object-

oriented data model and some related Z case studies.

3.2 Formal Specifications for Data Models

One of the first attempts to formalize the relational data model was done by C.J.Date
[Dat83, Dat86]. The author summarizes the structure of a relational database by
means of a set of production rules. Using an abstract syntax, he defines the basic
concepts of the relational data model: domain, attribute, tuple, relation, keys, re-
lational operations, relational rules. The definition of these concepts makes use of
plenty of informal explanatory text which completes the definition. For instance, the
definition of candidate keys is: (candidate — key) ::= (attribule — name — set), but the
uniqueness and minimality properties of candidate keys are stated informally. The
definition of the relational rules and relational retrieval operations is also explained

informally. The paper does not include the specification of the manipulative oper-
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ations and considers the relational data model as defined at that moment. These
semi-formal definitions do not make it possible to proove the well-known relational

propertics.

In [Su85], a brief definition of the algebra which underlies the relational approach
to databascs is presented. Using the notations of set theory, extended slightly to
provide a means of naming mathematical structures, the authors formalize the base
concepts of the relational algebra. They also give an account of the simpler normal
forms for relational schemes, functional dependencies and decompositions. The paper
does not specify the naming technique and its implications in Jefining the relational
model concepts. It also does not define all the relational retrieval operations, the in-
tegrity rules and the relational manipulative operations. The authors do define some

of the relational properties, but they don't provide proofs for them.

Another formalization of the relational data model is given in [Bj682]. The au-
thors consider two possible representations of a row (tuple): as a list of values and as

a mapping from attribute names to values. They try to illustrate the consequences of
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choosing one over the other by exemplifying both alternatives in the definition of the
relational operations. The paper also presents the definition of a predicate calculus
based query language. The preconditions for the relational operations, defined as
their syntactic well-formedness, are simplified and do not include all conditions that
should be satisfied by the relational operations. The specification of the relational data

model does not include concepts like keys, integrity rules and manipulative operations.

A complete formalization of the relational algebra and functional dependencies is
presented in [Kan90]. Using predicate logic, the author specifies the syntax and the
semantics of relational retrieval operators and of functional dependencies. Different,
properties and theorems of the relational algebra and its declarative counterpart, the
relational calculus query language, are introduced and exemplified. Another part,
of this work deals with deductive data models and first-order theories. The article
does not include the specification of the relational integrity rules and manipulative

operators.

In [Mi§92], a formal definition of the data dictionary for an extended entity-
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relationship data model is described using the 7 notation. The authors define the
bhasic objects of the model like entities and associations, cycles, cardinality, and
relationships like generalisation and specialisation or identification dependence. A
schema transformation from the extended entity-relationship data model to the rela-
tional data model is presented. Each object (entity or association) is transformed to
a relation, attributes of objects are allocated to their appropriate relations, and the
key attribules of relations are determined. The paper does not include update and

retrieval operations and integrity constraints.

A similar paper which present the entity-relationship model expressed in Z is
[Jos91]. The authors take the entity-relationship data model of a CASE tool, and
provide a systematic translation of its diagrams into Z. They demonstrate how the
expressiveness and precision of structured methods can be enhanced by specifying
in Z further constraints on the data model and the effect of the transactions on the
system state. The paper provides a style of writing Z specifications that could be
casily be adopted by someone familiar with entity-relationship modelling. The same

authors present in [Jose91] a library of Z schemas for use in entity-relationship mod-

38



elling. They also demonstrate how to use the library by instantiating the schemas.

The relationship between Z and the relational algebra is presented in detail in
[Die90]. The authors show that the relational algebra can be embedded into 7. A
formal semantics for Z based on naive set theory is introduced. Using the notation
of a script, which is a set of definitions in which a name is given to expressions, the
authors construct a mapping € from R-scripts, i.e. scripts in the relational algebra,
to Z-scripts, and a partial mapping ¢ the other way around, such that € and ¢ are
semantics preserving, ¢ o £ is the identity on R-script and £ o ¢ is a subset of the
identity on Z-scripts. The approach opens the possibility of a modular way of spec-
ifications, which is important for the reusability of specifications. In this approach
the semantics of a schema is a possible infinite table, and there the link with the

relational algebra occurs.

A formal specification of an object-oriented data model using the 7 specification
language is presented in [Cha92]. The model supports all the essential features found

in existing object-oriented data models. More important, it simultancously supports

39



multiple inheritance, method overloading together with static type checking. The
specification demonstrates the use of Z as a formal technique in an area where such

a definition is greatly needed.

The BROOM data model [Nor92] combines features of the object-oriented, entity-
1clationship, semantic and relational data model. The author demonstrates the use of
an intermediate level of specification by presenting a meta-circular description of the
structural part of the data model and indicating how this may then be transformed

into a formal specification in the Z language.

3.3 Formal Specifications for Databases

The use of VDM in the formal specification and design of a program to implement
simple update opcrations on a binary relational database called NDB is described
in [Wal90]. The author presents first an initial specification and then transforms it
in a rigorous way through the careful introduction of design detail in the form of

data structures and operations until an implementation is reached. This single level
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description of NDB is the starting point in [Fit90], where a case study in the mod-
ular structuring of this “flat” specification is presented. The goals are the effective
separation of concerns within a specification and the module generality. In addition
to the flat specification of NDB introduced by {Wal90], the authors present a second
specification which makes use of an n-ary relation module, and a third one which uses
an n-ary relation module with type and normalization constraints. They demonstrate
the reusability of their modules, and also outline specifications for an n-ary relational
database with normalization consiraints (RDB), and an n-ary relation database with
a two-level type hierarchy and no normalization constraints (1S/1). A Z approach in
specifying the same database is presented in [Hay92]. The paper provides a cornpar-
ison of the VDM approach taken in {Fit90] and the approach taken in developing 7
specifications for the same systems. After presenting an cqui salent Z specification for
NDB, the author overviews the differences in the VDM and 7 approaches as high-
lighted by the database examples, and underlines some of the differences hetween the

two specification languages related to this case study.

The design specification of an early version of IST’s integrated project support
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environment, known as the ISTAR database management system, is described in
[Sha90]. After describing the informal design requirements that were produced prior
to the development of this database system, the author presents an analysis of the
requirements using entity relationship modelling and the various database operations

are identified. From this a VDM specification structure is derived.

Another aspect of specifications for database systems is related to database appli-
cations. A complete description of a general method for the specification of relational
database applications using Z is described in [Bar91, Bar93]. The method prescribes
how to specify all the important aspects of relational database applications, which
includes the definition of relations, the specification of constraints, and querying
and updating of relations, including error handling. The paper also addresses more
advanced features such as transactions, sorting of results, aggregate functions, etc.
Some features of the relational data model itself are specified as predefined operators
which simplify the specifications. The idea of the paper is to formalize the design
of database transactions (applications) in a way that can be used by practitioners in

the development of real world applications. The use of the method is illustrated by
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a simple example application. The formal specification of relational database appli-
cations and the formal specification of the relational data model are complementary.

They both allow for the standardization of the database design process.

Traditionally, the description of database applications consists of two parts, the
database schema and a more or less formal description of the application functions,
In [Saa91], the authors present an object-oriented approach to integrate both aspects.
They describe a formal model that models objects as processes that can be observed
through attributes. Based on this model, the language TROLL is introduced, a logi-
cal language for the abstract object-oriented description of information systems. The
authors propose a mechanism for defining and handling external views and for queries

that fit in the framework.

An algebraic approach to the specification of relational database systems is de-
scribed in [Wor91l]. The author shows how specifications may be constructed using
axiomatizations of transaction semigroups which generate database instances. A gen-

eral class of tuple-based transactions is defined, and it is shown how unconstrained
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insertions and deletions may be modelled and axiomatically characterized using this
class. A general class of integrity constraints is defined, and examples are given to

show both static and dynamic constraints within this class.

An introduction to the use of formal semantics as a means of specifying relational
query languages is presented in [Tur85]. The authors provide a formal semantic
framework which can be used in tackling different problems like the well-formedness
and correcteness of queries and other problems of relational query language analysis.
The semantic techniques are demonstrated with respect to a form of the relational
calculus and also to two query languages SEQUEL (now SQL) and QUEL. For each
language a set of recursively defined functions is provided which map syntactically
correct constructs on to elements of certain sets. These domains or sets form a second
compouent of any such formal specification. The framework which is developed can

be used to formally define any relational query language.

[Davyl] introduces a denotational semantics approach to object-oriented query

language definition. An object-oriented database (0ODB) is characterized as a se-
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mantic domain, so that query expressions can be mapped to their meaning, in terms of
the OODB. In this research, the authors propose a high-level view of OODBs and an
algebraic query language that support query processing studies. The model is appli-
cable tostructurally similar database models, which include most object-oriented and
semantic databases. A contribution of the denotational definition of the model and
query language is the precise characterization of both the intention and the extention

of an OODB and the results of queries on the OODB.



Chapter 4

A Specification of the Relational
Data Model Using Z

The main purpose of this chapter is to define in a rigorous and precise manner the
basic features of the relational data model version 2 (RM/V2) as defined by Codd
[Cod90]. We define first the state space of the system, specifying concepts like do-
mains, rows and relations. The definition of keys and integrity rules completes the
state invariant of the relational data model. We define next the basic relational
operators intended to retrieve and manipulate information from the database.

The structure and behaviour of the relational data model is defined using the Z
specification language. The type correcteness of this specification has been verified

by the FUZZ type-checker.
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4.1 The Relational Model State Space

4.1.1 Domains, Rows and Relations

The relational data model consists of three basic components:
e a set of domains and a set of relations;
e operations on relations;
e integrity rules.

Basically, domains are sets of values from which one or more attributes draw their
values. In the RM/V2, domains are referred to as extended data types which are

intended to capture some of the meaning of the data. In this specification, the basic

type

[DOMAIN]

contains all domains which are defined for a relational database. The basic type

[VALUE)
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contains all values that attributes can have. These are proper values drawn from
the domains defined above and marked values which can be used whenever a proper
value is missing. These marked values are Amark values which stands for missing-but-
applicable values and Imark values for missing-and-inapplicable values. The VALUE

domain can be partitioned into three disjoint subsets Amark, Imark and ProperValue:

Amar k : VALUE
Imark : VALUE
ProperValue : P VALUE

({Amark}, {Imark}, ProperValue) partition VALUE

Manipulation of missing information in databases is an important issue which will
be discussed in this specification when dealing with concepts like keys and integrity
rules.

Other basic types which will be used throughout the specification are

(RNAME, ANAME]

which contain the names of relations and attributes, respectively.
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The function domain_of_attribute associates with an attribute name the domain

from which that attribute draws its values:

| domain_of _attribute : ANAME — DOMAIN

This axiomatic description introduces the partial function domain_of _attribute as
a global variable which becomes part of the global signature of the specification.
Optionally an axiomatic description has a predicate part which states the relation
between the values of the new variables to each other and to the values of variables
that has been declared previously. If the predicate part is absent, like in this case,
the default is the predicate true. The partial function domain_of _attribute will be
used whenever we need to check whether or not two attributes are based on the same
domain.

The function values_of_domain returns the set of values corresponding to a do-
main:

| values_of _domain : DOMAIN —+»> P VALUE
This function will be used in order to verify whether a certain value is in the set

of values corresponding to a domain.
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A row can be modelled in different ways: as a mapping from attribute names to
values; as a sequence of values, as a tuple of values, etc. Each of these representations

has advantages and disadvantages. We will use the following representation for rows:

_ ROW
Row : ANAME - VALUE
Vanm : ANAME
o Rowanm € values_of _domain (domain_of _attribute anm)

Row is a variable specified as a partial mapping from attribute names to values.

This representation has the following advantages:

e it captures both attribute names and their values and, more often, people prefer

to refer to individual row elements using a freely chosen attribute name;

e the order among row attributes is of no importance, so we do not need to have

an index to specify the “nextness” of row attributes;

e the mapping implies relations to be at least in the first normal form.

The possible problem of duplicate attribute names in intermediate or final results

is solved by the naming technique used in the RM/V2. Whenever an attribute name in
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an intermediate or final result occurs twice, that attribute nameis combined with the
name of the relation from where that attribute comes. According to this technique,
duplicate attribute names will never occur in intermediate or final results as relation
names are unique in the database. When an attribute name comes from two different
instances of the same relation we consider those two instances of the same relation
name to be different, so we don’t have to deal with duplicate atiribute names.

A relation is a finite set of rows which have the same attributes. The specification
of a relation as a set of rows implies that only proper relations which contain no

duplicate rows are modelled, as defined by the RM/V2.

_ RELATION
Rel :F ROW
Att :F ANAME

Vr:ROW |r€ Rele domr.Row = Att

The empty relation is defined relative to a type of relations, that is tn a set of

|
relations having the same attribute name set: |
|
|
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empty_rel : RELATION — RELATION

VIR:RELATION
o (empty_rel R).Rel = @
A (empty_rel R).Att = R.Att

Il R is arclation, then emply_rel R will return the empty relation which has the same
set of attribute names as R.

We now introduce an operator which defines the property of a relation R1 being
a subrelation of a relation R2. According to this, Rl is a subrelation of R2 if it has

the same attribute name set and its rows are a subset of those of R2:

—subrel_: (RELATION x RELATION) — BOOL

VR1,R2: RELATION
o R1 subrel R2 = True &
R1.Att = R2.Att A
R1.Rel C R2.Rel

The universal relation relative to a type of relations is a relation which contains

all the rows whose domain is the attribute name set of those relations.

52



universal_rel : RELATION — RELATION

VR: RELATION
o (universal_rel R).Att = R.Att
A(Vr:ROW [ domr.Row = R.Atl
o 7 € (universal_rel R). Rel)

A relation R is always a subrelation of the universal relation of its type, and it

includes the empty relation of its type:

VR: RELATION e (empty._rel R) subrel R = True A

R subrel (universal_rel R) = True

The trivial relation is a relation having no attributes and just a single row, which
is the empty mapping. This relation is the only relation having an empty set of

attribute names so it is also the universal relation of that type.

trivial_rel : RELATION — RELATION

VR: RELATION
o (trivial_rel R).Alt = @
A (trivial_rel R).Rel = @

We will use the definitions of the empty relation, universal relation and trivial
relation in Chapter 5, when some of the properties of the relational model will be

proved.



The size of a relation is the number of rows it contains:

' size : RELATION — N
| YR:RELATION e size R = #R.Rel

4.1.2 Keys and Integrity Rules

The concepts of keys and integrity rules will be introduced by a set of functions which

return boolean values. We need first to define the boolean type:

BOOL ::= False | True

This free type definition introduces the basic type BOOL and two boolean con-

stants, True and False,

A candidate key of a relation is defined as a subset of the attribute set of that

relation which has the following time-independent properties:
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o Uniqueness: In each tuple of the relation, the value of the key uniquely identifies

that tuple.

o Nonredundancy: Ne proper subset of the key has the unique identification

property.

The uniqueness property of a key is defined by an infix functicn which determines
whether a specific set of attribute names uniquely identify the rows of a specific re-

lation.

—unig_identifies_rows_in_ : (P ANAME x RELATION) -+ BOOL
Yatts : P ANAME; rel : RELATION

o alts unig_identifies_rows_in rel = True &
atts C rel . Alt N
(Vr1,72 : ROW | rl € rel.Rel A 12 € rel.Rel
o ((atts a rl.Row) = (atts 4 r2.Row)) = rl.Row = 12.ow)

The domain restriction atts <rl of the function r1 to the set alls relates an attribute
name to a value if and only if r1 relates that attribute name to that value and that
attribute name is a member of atts. The definition of the _uniq_identifics_rows_in
is true also for the case of empty relations.

The _is_key_of — operator, used to specify that a specific set of attributes of a relation
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is a candidate key of that relation is defined below:

_is_key_of _: (P ANAME x RELATION) - BOOL

Valts : P ANAME; rel : RELATION
e allsis_key_of rel = True &
atts uniq_identifies_rows_in rel = True A
- (3 subsetatts : P ANAME | subsetatts C atts

o subsetalls uniq_identifies_rows_in rel = True)

This infix _is_key_of - operator takes two parameters: a set of attribute names
and a relation. The uniqueness property of the key is specified using the already
defined function _uniq_identify_rows_in_. The minimality property is specified using
a predicate of the form: = (35| P o Q) which is equivalent to = (IS5 | P A Q).
This predicate is true if there are no values of the variables introduced by S so that
the property of S is true and both predicates P and Q are true.

For cach relation, one and only one candidate key of that relation is designated
as the primary key. A foreign key consists of one or more attributes drawing their
values from the domains upon which at least one primary key is defined. A relation
can have zero, one or several foreign keys.

Before defining the state space of the RM/V2, we introduce the function do-
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main_preserving_attribute_map which will be used throught the specification to en-

sure the fact that corresponding attributes must have the same domain:

domain_preserving_atiribute_map : (ANAMI > ANAMIE) — BOOL

Vf:ANAME »+» ANAME
o domain_preserving_attribute_map f = True &
(Vanm : ANAME | anm € dom f
¢ domain_of _attribute anm = domain_of _attribute (f anm))

The schema RELDATAMODEL defines the major data structure of the relational
data model which is a set of uniquely named relations, each relation having a unique

primary key and the set of foreign keys defined for the model:

—_RELDATAMODEL
RDM : RNAME »» RELATION
primarykey : RNAME - P ANAME
foreignkey : (RNAME x RNAME) - (ANAME »» ANAML)

dom RDM = dom primarykey
V ram : RNAME | ram € dom RDM
o (primarykey rnm) is_key_of (RDM rnm) = True

dom foreignkey C ((dom RDM) x (dom RDM))
Vraml,ram2: RNAME; f : ANAME ~» ANAMFE
| rnml € dom RDM A ram?2 € dom RDM A

[ = foreignkey (rnml, rnm2)
e dom f C (RDM raml).Att A ran f = primarykey rnmn2 A

domawn_preserving_attribute_map f = True




‘The variable DM of this schema is a partial injective function which associates
with a relation name a certain relation in the database. It is partial because there
could be relation names which do not designate existing relations and it is injec-
tive because two different relation names can not designate the same relation. The
primarykey variable is a partial function which associates with a relation name a
unique (designated) primary key which must be one of the candidate keys of that re-
lation. The variable foreignkey is a function which associates with a pair of relation
names the mapping between the foreign key of the first relation and the correspond-
ing primary key of the second relation. This mapping should preserve the domain of

corresponding attributes.

Another part of the relational data model structure is the catalog which holds
the database description. This description includes information about domains, rela-
tions, integrity rules and views. An important property of the relational data model
is that both the database and its description are perceived as a collection of rela-
tions. Thus, the same relational language that is used to interrogate and modify the

database can be used to interrogate and modify the database description. Hence, we
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do not explicitly specify the catalog as it has the same structure as any relation and

all defined relational operations can be applied on it.

The relational data model includes two general integrity rules which implicitly or
explicitly define the set of consistent database states, or changes of state, or both.
Other integrity constraints can be specified, for example, in terms of functional depen-
dencies during database design. We restrict ourselves to the integrity rules formulated
by Codd.

In order to express these rules we have to deal with “missing values” that at-
tributes can take. The RM/V2 places heavy emphasis on the semantic aspects of
missing information. It deals with the inapplicability of certain properties to some
objects. In RM/V2, a missing value can be a value that is either not known at the time
(missing-but-applicable) or does not apply to a given instance of the row (nissing-
and-inapplicable). These missing values are represented by the constants Amark and
Imark defined earlier in this specification. An example of the missing values for the
attributes SALARY and SALES_COMMISSION of a relation EMPLOYEL would

be as follows: .
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I. If an employee has a missing-but-applicable present salary, his or her record

would have an Amark in the salary column.

2. If an employee has an inepplicable sales commission (such an employee does
not sell products at this time), his or her recoid would have an Imark in the

commussion column.

The first integrity rule, entity integrity , states that no component of a primary
key is allowed to have a missing value of any type and no component of a foreign key
is allowed to have an Imark value.

The function ENTITY_INTEGRITY_RULE checks the entity integrity rule for

all relations of the relational data model:
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ENTITY _INTEGRITY _RULE : RELDATAMODEL — L00L

Vrdm : RELDATAMODEL e
ENTITY _INTEGRITY _RULE rdm = True &

(Vraml : RNAME

| rnml € dom rdm.RDM

o (Vr: ROW
| € (rdria.RDM rnm1).Rel
o Amark ¢ ran((rdm.primarykey rnm1) < r.Row) A

Imark ¢ ran((rdm.primarykey rnm1) 4 r.Row)))

(Vfk:PANAME

| (3rnm2: RNAME | ranm2 € dom rdm.RDM A
& = dom(rdm.foreignkey(rnml, rnm?2)))

o (Vr: ROW
| r € (rdm.RDM rnml).Rel
o Imark ¢ ran(fk < r.Row)))

The function ENTITY _INTEGRITY _RULE returns a True value if and only
if all the relations which are part of the data model satisfy the two conditions: no
missing value for a primary key and no Imark value for a foreign key. The value
of a primary or foreign key is specified using the domain restriction operator which
restricts the set of values of a row to those of the primary or foreign key attributes.
The condition for primary keys is that Amark and I'mark should not be in the set of
values of a primary key. For foreign keys, the condition is that lmark value is nol

allowed as a value of a foreign key attribute.
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The second integrity rule, referential integrity, is concerned with foreign keys.
The referential integrity rule states that, for each distinct unmarked foreign key
value in a relational database, there must exist in the database an equal value
of a primary key. If the foreign key is composite, that is iv is a set of attribute
names, those components that are themselves foreign keys and unmarked must ex-
ist in the database as components of at least one primary key value. The function
REFERENTIAL_INTEGRITY _RULE verifies whether or not a database satisfies

this integrity rule:

REFERENTIAL_INTEGRITY _RULE : RELDATAMODEL — BOOL

Vrdm : RELDATAMODEL e
REFERENTIAL_INTEGRITY _RULE rdm = True &
(Vraml, rnm2 : RNAME | (rnml, rnm2) € dom rdm.foreignkey
o (Vrl: ROW | rt € (rdm.RDM ranml).Rel
e (3r2: ROW | r2 € (rdm.RDM rnm?2). Rel
o (Vanml : ANAME
| anm1 € dom(rdm.foreignkey (rnml, rnm2))
o (rl.Rowanml) =
(r2.Row((rdm.foreignkey (rnml, rnm2))(anm1)))
V (rl.Row anml) = Amark))))

These integrity rules define constraints on the values that primary and foreign keys

can take. The referential integrity rule also implicitly defines the possiule actions
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that could be taken whenever updates, insertions and deletions are made. All these

issues will be discussed when dealing with manipulative operators.

4.2 The Relational Algebra

Relational algebra is a collection of operations to manipulate relations. These oper-
ators are the basic operators intended to retrieve information from the database and
the manipulative operators concerned with making changes to the contents of the
database.

In the specification of these operations we check the syntactic and semantic cor-
recteness against the proper data part of the relational model, that is the set of values
that attributes can take. Another possibility is to check against the schema definition

of the model, which is a catalog describing all existing relations.

4.2.1 The Basic Operators

The basic operators of the RM/V2 include relational union, intersection, dif-
ference, projection, theta-selection, theta-join, natural-join, equi-join, and
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division. The definition of each of these operators is a schema such that:

I. It includes the ZRELDATAMODEL schema which specifies that the state space

of the system does not change;

2. It declares the input variables and output variables of the operation. Input
variables are those whose names are followed by ‘7’ and output variables are

those whose names are followed by ‘!’;

3. It declares the pre-conditions of the operation and defines the results of the
operation. The resulting relation is of type RELATION, but it is not stored
explicitly in the system, so it has no name. The variable Rel of the resulting
relation indicates the resulting set of rows; it is defined using the set compre-

hension notation.

The relational union, intersection and difference operations require that operand
relations be union compatible. Two relations R1 and R2 are union compatible if they
have the same arity (degree) and it is possible to establish at least one mapping f
between the attributes of R1 and those of R2 that is one-to-one, and with the prop-

erty that, for every attribute Al of R1, then Al and f(Al) draw their values from
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a common domain. These operators also require that the attribute alignment for
their two operands be in conformity with one of the mappings that guarantees union
compatibility. The union compatibility property is specified using the infix function,
domain_compatible which checks whether two attribute name sets are domain com-
patible, that is they have the same number of elements, there exists a one-to-one
correspondence between all elements of the two attribute name sets and correspond-

ing attributes draw their values from the same domain:

—domain_compatible_ : P ANAME x P ANAME — BOOL

V attsl, atts2 : P ANAME
¢ attsl domain_compatible atts2 = True &
(3f : attsl » atts2
¢ domain_preserving_attribute_map [ = True)

The mapping between corresponding attributes of the two domain compatible
attribute sets is specified by the bijective function f which preserves the domain of
the corresponding attributes.

The attribute names which occur in the resultant relation can be the attribute
names of one of the two relations or they can be indicated by the user. We introduce

first the function rename which, given a relation and a mapping from one attribute
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name sel Lo another, returns the identical relation (in terms of values) with the at-

tributes renamed according to the input mapping.

rename : RELATION x (ANAME »» ANAME) — RELATION
Vrel : RELATION; anm : ANAME;, f : ANAME »» ANAME

| dom f = rel. Att A domain_preserving_attribute_map f = True
o (rename (rel, f)).Rel =
{r,rr: ROW; anm : ANAME
| 7 € rel.Rel A anm € rel. Att A
dom rr.row = ranf A
r.row anm = rr.row (f anm)
o}
(rename (rel,f)).Att =ran f

Given these requirements, the union operation is the set-theoretic union of two rela-

tions:
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__ UNION
=Z=RELDATAMODFEL

REL1? : RNAME

REL2? : RNAMFE

Att_Map? : ANAME s ANAME
UANames? : P ANAME

URel! : RELATION

REL1? € dom RDM
REL2? € dom RDM
(RDM REL1?").Att domain_compatible (RDM REL2?). Att
UANames? domain_compatible (RDM REL1?). Alt
dom Att_Map? = (RDM REL1?).Att
ran Att_Map? = (RDM REL2?).Att
Af1:(RDM REL1?).Att »» UANames? A
3f2:(RDM REL2?).Att »» UANames?
o URel!.Rel = (rename((RDM REL17?), f1)). Rel

U (rename((RDM REL2?),{2)). Rel

URell.Att = UANames?

The input variables for union are the two relation names RELI? and RIFL2?, the injec-
tive function Ati_Map? which establishes the one-to-one correspondance between the
two attribute name sets, and the attribute name set. UANames? which contains the
attribute names for the resulting relation. The first two conditions express the fact
that the input relation names name two relations in the actual system RDM. To spec-
ify that the two relations should be union compatible we use the domamn_compatible

function defined earlier. The input attribute name set UANames also should bhe
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domain compatible with the two attribute name sets. The domain of the bijective
function Att_Map? is the attribute name set of the first relation and its range is the
attribute name sct of the second relation. The resultant relation URel! is the union of

the two input relations whose attributes have been renamed according to UA Names?

The intersection operation selects the common tuples from two relations. Like

union, it requires the two relations to be union-compatible. Attributes have to be

aligned in the same way as for the union operator.
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__INTERSECTION
ZRELDATAMODEL

REL1?: RNAME

REL2? : RNAME

Att_Map? : ANAME »» ANAME
IANames? : P ANAMFE

IRel! : RELATION

REL1? € dom RDM
REL2? € dom RDM
(RDM REL17?).Att domain_compatible (RDM REL2?). Att
TA Names? domain_compatible (RDM REL1?).Att
dom Att_Map? = (RDM REL17).Att
ran Att_Map? = (RDM REL2?).Att
3f1:(RDM REL1?).Att > IANames?,

f2:(RDM REL2?).Att = IANames?
o [Rell.Rel = (rename((RDM REL1?), f1)).Rel
N (rename((RDM REL2?),{2)). Rel
[Rell. At = IANames?

The input for intersection is same as for union: two relation names RELL? and RFFL2?,
the injective function A#_Map? which maps the attribute sets of the relations, and
the attribute name set IANames for the resulting relation. The pre-conditions for
intersection are the same as for union, that is the two relation names should name
two existing relations which are union compatible, the domain and range of the input
attribute name mapping should be the attribute sets of the two relations. The set

of rows in the resulting relation is the set intersection of the two sets of rows of the
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input relations.

The difference operation removes common tuples from the first relation. The re-
lations should be union-compatible and the attributes must be aligned in the same

way as for the union operator.

— DIFFERENCE
ZRELDATAMODEL

REL1? : RNAME

REL2? : RNAME

Att_Map? : ANAME »» ANAME
DANames? : P ANAME

DRel! : RELATION

REL1? € dom RDM
REL2? € dom RDM
(RDM REL17).Att domain_compatible (RDM REL27). At
DANames? doman_compatible ( RDM REL1?). Att
dom Att_Map? = (RDM REL1?).Att
ran Att_Map? = (RDM REL27?).Att
3f1:(RDM REL1?).Att »» DANames?,

' f2: (RDM REL2?).Att > DANames?
o DRel!.Rel = (rename((RDM REL1?), f1)).Rel
\ (rename((RDM REL2?), f2)).Rel

DRell. Att = DANames?
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The input variable Att_Map? which occurs in the specification of the union, inter-
section and difference operations shows the mapping between the two attribute sets.
Each attribute in the first relation is related to one attribute from the second relation,
both attributes having the same domain. We assumed the general case when not all
domains of attributes of a relation are distinct, so the user has to explicitly specify
the alignment of the attributes. In the case when the domains of the attributes of
a relation are distinct, then there is no need for this input variable, the aligniment

being determined by ensuring that aligned pairs have the same domain.

The Select operation delivers as a result those rows whose values for given at-
tribute names satisfy given predicates. Any of the following ten comparators can be
used: equality, inequality, less than, less than or cqual to, greater than, greater than
or equal to, greatest less than, greatest less than or cqual to, least greater than, least

greater than or equal to.
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__SELECTION
=RELDATAMODEL
REL? : RNAME
PRED?: ROW - BOOL
SRel! : RELATION

REL? € dom RDM
SRell.Rel = {r: ROW
| (r € (RDM REL?).Rel)
A PRED? r = True
or}

SRel!.Alt = (RDM REL?).Att

The first condition specifies that the input relation should name an existing relation.
The input function PRED? specifies whether or not a row meets some criteria in
order to be selected. The result is the relation of rows which satisfy the selection

criteria represented by the function PRED?.

Projection operates on a single relation and delivers as a result sub-segments of

rows of the named relation. Projection removes all occurrences, except one, of each

sub-segment that occurs more than once.
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— PROJECTION
ZRELDATAMODEL
REL? : RNAME
AL? :iseq ANAME
PRel! : RELATION

REL? € dom RDM
ran AL?C (RDM REL?).Att
PRell.Rel = {r,pr : ROW | r € (RDM REL?). Rel
A pr.Row = ran AL? < r.Row
o pr}
PRel!. Att = ran AL?

The input variables are the relation name REL? and the AL? which is an injective
sequence containing the attribute names on which the projection is performed. The
first condition says that the relation named by the input relation name should exist
in the system. The next condition indicates that the input attribute names shouid
be a subset of the attribute set of the relation. The resulting relation is the set of
projected rows on the given attributes in the list AL?. 'T'he order among row elements
in the result is the order in which the attribute names were specified in the input
injective list. Projection is the only relational operation for which the order among
attributes in the resulting relation is important. The specification above does not

capture this, as it uses the general specification of a relation for which order among
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attributes is of no importance.

'The cartesian product of two relations delivers as a result, the relation whose rows
are the concatenation of each row of the first relation with all rows of the second re-

lation.

—CARTPRODUCT
ZRELDATAMODEL
REL1? : RNAME
REL2! : RNAME
CPRel! : RELATION

RELI? € dom RDM
REL2? € dom RDM
CPRel'.Rel = {rl, r2,cpr : ROW
| 1 € (RDM REL1?).Rel A 72 € (RDM REL2?).Rel
A cpr.ow = r1.Row U r2.Row
® cpr}

CPRel'. Att = (RDM REL17).AttU (RDM REL2?). Att

The predicate part of this operation has three conditions. The first two are pre-
conditions which state that the two named relations should exist in the Jatabase.
‘The third one defines the resulting relation using the set comprehension form. The

concatenation of rows is specified using the union of the mappings corresponding to
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the rows. This is possible because the two attribute sets are disjoint sets according
to the naming technique used in RM/V2 where a combination of relation name and
column name denotes precisely one column in the entire database, provided the col-
umn name is the name of a column within that relation. Whenever two relations
involved in an operation have a common attribute, we can differentiate between the
two attributes by using this combination. The attribute name set of the resulting

relation is then the set union of the disjoint attribute name sets of the two relations.

Natural join operates on two relations. The rows of resulting relation are the com-
position of exactly those rows from the relations which for corresponding attributes
have equal values. Only one sct of the corresponding attributes is retained in the
result. To make the column naming clear and avoid impairing the commutativity,
the retained comparand attribute is assigned whichever of the two attribute names
occurs first alphabetically. To specify this, we make use of the function fust which,
given a pair of attribute names, returns only the one which occurs last alphabetically
in this pair. The important property of this function is that, given the same pair of

attribute names it will always return the same attribute name, no matter the order
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of the attributes.

last : ANAME x ANAME — ANAME

Val, a2 : ANAME | al! = a2
o last (al,a2) = last (a2, al)
A last (al, a2) € {al, a2}

The function last_set returns the set of attributes appearing last in a set of attribute

name pairs.

last_set : P ANAME x P ANAME — P ANAME

Y attset : P ANAME x P ANAME
e last_set attsel = {al,a2: ANAME
| (a1, a2) € altset A al! = a2
e last (al, a2)}

The specification of the natural join of two relations is as follows:
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— NATJOIN
ZRELDATAMODEL

REL1? : RNAME

REL2? : RNAME

Att_Map? : ANAME - ANAME
NJRel! : RELATION

REL1? € dcom RDM
REL2? € dom RDM
dom Att_Map? C (RDM RELIL?).Att
ran Att_Map? C (RDM REL27).Att
Vanm : ANAME | anm € dom Att_Map?
e domain_of _attribute anm =
domain_of _attribute (Att_Map? anm)
NJIRel!.Rel = {rl,r2,njr : ROW; anm : ANAMFE
| 71 € (RDM REL1?).Rel A 72 € (RDM REL2?).Rel
A (anm € dom Att_Map? =
rl.Row anm = r2.Row (Att_Map? anm)) A
njr.Row = ((dom r1.Row U dom 2. Row)\
last_set(dom Att_Map?,ran Att_Map?)) < (r1.Row U 2. Row)
e njr}
NJRel!.Att = (RDM REL17).Att U (RDM REL2?). Att\
last_set(dom Att_Map?,ran Att_Map?)

The input variables are the two relation names, RIEELI? and REL2?, and Alt_Map?,
which indicates the attribute names which participate in the natural join. The first
two predicates indicate that the two input relation nawes should name two existing
relations. The third predicate specifies that the domain of the mapping Att_Map?

should be a subset of the attribute set of the first relation, and its range should he
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a subset of the attribute set of the second relation. The domain from which cor-
responding attributes draw their values should be the same. The resulting relation
is specified using the set comprehension form: it is the set of values taken by the
expression ((domr1.RowUdom r2. Row)\ last__set(dom Att_Map?,ran Att_Map?)) <
(r1.Row U r2.1ow) when the variables rl1, 2, and anm take all values which satisfy
hoth the declaration part and the predicate part. This expression is the domain re-
striction of the relation (rl. Row U r2. Row) to the set ((dom r1. RowU dom r2.Row)\
last_set(dom Att_Map?,ran Att_Map?). This domain iestriction for rows in the re-

sulting relation indicates that only one set of participating attributes is retained.

The theta-join of two relations REL1 and REL2 has as result a relation of rows

formed by the concatenation of exactly those rows for which given predicates over

pairs of attributes (one from each relation) are satisfied.
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__THETAJOIN
ZRELDATAMODEL

REL1? : RNAMFE

REL2? : RNAMFE

AL1? : seq ANAME

AL2? : seq ANAME

PL? : seq(VALUE «— VALUE)
TJRel! : RELATION

REL1? € dom RDM
REL2? € dom RDM
#AL1? = #AL2? = #PL?
ran AL1? C (RDM REL17).Att
ran AL2? C (RDM REL27).Att
Vi:N|iel..#AL1?
o domain_of _attribute(AL17? (1)) =
domain_of —attribute( AL27(3)
TJRel!.Rel = {r1,72, tjr : ROW
| r1 € (RDM REL1?).Rel A r2 € (RDM REL27).Rel
AVi:N|iel..#AL?
o (rl.Row (AL17(7)), 2. Row(AL2?(1))) € PL(i))
A . Row = r1.Row U r2. Row
o ljr}
TJRell.Att = (RDM REL1?). Att U (RDM REL2?). At

The two input lists AL17, AL2? contain the attributes which participate in the oper-
ation. These attributes should be in the attribute set of the corresponding relation.
The list PL? contains the predicates that should hold over pairs of attributes. These
predicates are actually the comparison operators equality, incquality, less than, less

than or equal to, greater than, greater than or equal to, greatest less than, greatest
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less than or equal to, lcast greater than and least greater than or equal to. These
operators are represented as relations between two values. The three lists should have
the same length and the corresponding attributes from AL1? and AL2? should be
domain compatible. The rows in the resulting relation are the concatenation of rows
from the two relations for which all predicates in PL? are satisfied. The attribute set
of the resulting relation is the set union of the atribute sets of the two participating

relations.

The equi-join operation is similar to natural join, the same equality operator is
used, the only difference being that equi-join retains both sets of attributes that par-
ticipate in the join. The pre-conditions are similar to the preconditions for theta-join,
where the predicate list doesn’t exist anymore, all predicates being replaced by the

equality operator.
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— EQUIJOIN
ZRELDATAMODEL
REL1? : RNAME
REL2? : RNAME
AL1? : seq ANAME
AL2? : seq ANAME
EJRel' : RELATION

REL1? € dom RDM

REL2? € dom RDM

#ALL? = #AL27

ran AL1? C (RDM REL1?). Att

ran AL2? C (RDM REL2?). Att

Vi:N|iel..#AL1?

o domain_of _attribute(AL1? (i)) =

domain_of _attribute( AL2?(1)

EJRel'.Rel = {r1,72,¢jr : ROW
| 1 € (RDM REL17).Rel A 12 € (RDM REL2?). Rel
A(Vi:N|iel..#AL1?

o r1.Row (AL17(%)) = r2.Row (AL27(3))) A

ejr.Row = rl1.Row U r2. Row
o ¢jr}

EJRell.Att = (RDM REL1?).Att U (RDM REL2?).Att

Division operates on two relations, REL1 and REL2. We treat the relation named
by REL2 as representing one set of properties and the relation named by RELI as
representing entities. Entities are defined on the set-difference of the two attribute
sets of the relations, and the properties are defined on the set attributes of the di-

visor REL2. The resultant relation is the set of entities (rows) that possess all the
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properties specified for RIEL2.

— DIVISION
ZRELDATAMODEL
PROJECTION
RELL? : RNAME
REL2? : RNAME
DRel' : RELATION

REL1? € dom RDM
REL2? € dom RDM
REL? = REL1?
Jatts : PANAME | atts < (RDM REL17).Alt
e atts domain_compatible (RDM REL2?).Att
Aran AL? = (RDM REL1?).Att \ atts
DRel'.Rel = {r1,pr: ROW
| r1 € (RDM REL1?).Rel A pr € PRel!.Rel
A(Vr2: ROW | r2 € (RDM REL2?).Rel
e pr.Row U r2. Row C rl.Row)
o pr}
DRell. Att = PRel!. Att

This specification of the division operation uses the definition of the projection oper-
ation to express the fact that the resultant relation is a suoset of the set of rows of the
projected relation REL1? on the attributes contained in REL1? but not in REL27.

Jonsequently, the PROJECTION schema is included in this schema definition. The

two input relation names should designate two existing relations. The attribute name
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set of the dividend relation should contain a subset atts which is domain compatible
to the attribute name set of the divisor relation. The dividend relation RELI? is the
relation which is projected in the PROJECT schema and the attribute list on which
projection is to be performed contains the attributes which are in the attribute set of
the dividend relation but not in the set atts. The attribute name set of the resulting
relation is the set difference between the attribute name set of the dividend relation
REL1? and its subset which is domain compatible to the attribute name set of the
divisor relation REL2?. A row is in the set of rows of the resulting relation if it is a

row in the projected dividend relation REL17? and if its composition with all rows in

REL?2? are rows in REL1?.

4.2.2 The Manipulative Operators

The manipulative operators are those concerned with making changes to the content
of the database. We restrict ourselves to the specification of insert, update, pri-
mary key update with cascaded update, delete and delete with cascaded

deletion. The definition of each of these manipulative operators is a schema such
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1. Itincludes the expression ARELDATAMODEL \ (primarykey, foreignkey) which
alerts us to the fact that the schema is describing a state change and indicates
that the primarykey and foreignkey variables are not affected by the manipu-

lative operators;

2. It declares the input variables; normally there are no output variables.

3. It indicates the updates to be performed according to the specific operator
which is applied and specifies which relations are changed by the operation,

and which relations are not.

4. It specifics the conditions that should be satisfied in order to maintain database

integrity.

The insert operator permits a collection of one or more rows to be inserted into
a relation. The position where these rows are inserted is of no importance. A row
is withheld from insertion to avoid duplicate rows in the result or to avoid duplicate

values in the primary key of the relation. The formal specification of this operator is
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given by the following schema:

_INSERT
ARELDATAMODEL \ (primarykey, foreignkey)
REL? : RNAME

Rows_to_insert? : P ROW

REL? € dom RDM
Vir : ROW | ir € ROWs_to_insert?
o (RDM REL?).Att = domir. Row
(RDM' REL?).Rel = (RDM REL?).Rel U
(Rows_to_insert? \
{ir : ROW; ait : P ANAME
| ir € Rows_to_insert?
A primarykey REL? = att
A(3r: ROW |r e (RDM REL?).Rel
e att Qir.Row = att 4 r.Row)

e ir}
(RDM' REL?).Att = (RDM REL?).Att
Vram : RNAME
| rnm € dom RDM A ram # REL?
¢ RDM' rnm = RDM rnm

This schema definition includes an expression based on the ARLLDATAMODEL
schema and the schema hiding operator to indicate that only the I£DM variable will
change, but not the primarykey and foreignkey variables. The input consists of the
relation name and the set of rows to be inserted. The first predicate in the predicate

part specifies that the input relation name should name an existing relation. The
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next predicate indicates that the rows to be inserted should have the same attribute
names as those of the input relation, so consequently they have the same domain.
The change of the state space of the database is defined by specifying the resulting
relation in which the given set of rows has been inserted. This resulting relation is
the union of the set of rows of the initial relation with the set of rows to be inserted
minus those rows which are withheld from insertion to avoid duplicate values for the

primary key of the relation. All other relations in the database do not change.

The justification of the update operator is that sometimes it is necessary to
change the values of one or more components of one or more rows that already exist
within a relation. The information that must be supplied with this operator consists
of the name of the relation to be updated, the specification of the rows in that rela-
tion to be updated, the attribute names that identify the row components of these
rows to be updated, and the new values for tkese components. Referential integrity
may be damaged if the column to which the update is applied happens to be the
primary key of the pertinent relation or a foreign key. The next operator should be

used to update a non-primary and non-foreign key attribute only. When updating a
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foreign key value only, the user should make sure that the new value for this foreign
key exists as the value of a primary key defined on the same domain. Otherwise, the
update operation will be rejected. The update operator is specified by the following

schema definition:
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__UPDATE
ARELDATAMODEL \ (primarykey, foreignkey)
REL? : RNAME

Key_values? : iseq( ANAME - VALUE)
New_values? : seq( ANAME - VALUE)

REL? € dom RDM
Vkey : ANAME - VALUFE | key € ran Ney_values?
o (3r:ROW | r e (RDM REL?).Rel
o key = (primarykey REL?) < r.Row)
Vval : ANAME —» VALUE | val € ran New_values?
e domwal C (RDM REL?).Att A
dom val N primarykey REL? = O A
(VREL2 : RNAME | (REL?, REL2) € dom foreignkey
e dom val N dom(foreignkey (REL?, REL2)) = ©)
#Key_values? = # New_values?
(RDM' REL?).Rel =
{r: ROW | r € (RDM REL?).Rel A
(Vkey : ANAME —» VALUE | key € ran Key_values?
e (primarykey REL?) < r.Row # key)

or}
U
{r,ur: ROW; key : ANAME - VALUE; i :N
| r € (RDM REL?).Rel A
(primarykey REL?) 9 r.Row = Key_values i A
ur.Row = r.Row B (New_values t)
o ur}
(RDM' REL?).Att = (RDM REL?).Att
Yram : RNAME | rnm € dom RDM A ram # REL?
e RDM' rnm = RDM rnm

This schema definition includes the ARELDATAMODEL schema. The rows to be

updated are specified by the input variable Key_values? which is an injective se-
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quence of mappings from attribute names to values. Each element of this sequence
represents a primary key value corresponding to a row to be updated. The variable
New_values? is a sequence of mappings from attribute names to values indicating at-
tribute names to be updated and their new values. The predicate part of the schema
defines the constraints that should apply on the input variables and the state space

of the database after the update was completed. The predicate

Vkey : ANAME —~» VALUE | key € ran Key_values?
o (Ir: Row|r € (RDM REL?).Rel

o key = (primarykey REL?) < r.Row)

specifies that cach input key value should designate an existing row to be updated.

The next predicate:

Y val : ANAME - VALUE | val € ran New_values?
o dom val C (RDM REL?). At A

dom val N primarykey REL? = O A
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(VREL2: RNAME | (REL?, REL2) € dom forewgnkey

e dom val Ndom(forcignkey (REL?. RIFL2)) = O)

restricts the attributes to be updated to the attributes not in the primary key or the
foreign keys of the input relation. The two input lists Ney_values? and New_values?
should have the same length so that cach row to be updated has a corresponding set
of new values for the attributes to be updated. The resulting relation is composed
by the union of two sets: the set of rows which are not affected by this operation
(those whose primary key values are not in the input Key_values? list), and the set

of the updated rows. These sets are represented using the st comprehension notation.

The primary key update with cascaded update of foreign keys is an
operation which should be done correctly, otherwise integrity in the database will be
lost. An important check is that cach allegedly new value for a primary key is not
only from the domain specified for that key, but is also new with respect to that
simple or composite key: that is, at this time the new value does not occur clsewhere

in that primary column. This command not only updates a primary key value, but
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also updates in precisely the same way all of the matching foreign key values drawn

from the same domain as the primary key.
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_PK_UPDATE_CASCADED
ARELDATAMODEL\ (primarykey, foreignkey)
REL? : RNAME

Key_values? : iseq(ANAME - VALUE)
New_values? : seq(ANAME - VALUE)

REL? € dom RDM
Vkey : ANAME —» VALUE | key € ran Key_values?
e (3r: ROW | r € (RDM REL?).Rel o key = (primarykey REL?) < r.Row)
Yval : ANAME — VALUE | val € ran New_values?
e dom val C (RDM REL?).Att
# Key_values? = # New_valucs?
(RDM' REL?).Rel = {r: ROW | r € (RDM REL?).Rel A
(Vkey : ANAME - VALUE | key € ran Key_values?
o (primarykey REL?) < r.Row # key)
o r}U
{r,ur : ROW; key : ANAME - VALUE; i :N
| r € (RDM REL?).Rel A
(primarykey REL?) < r.Row = Key_values? i A
ur.Row = r.Row & (New_values? i)
o ur}
V ram : RNAME | ram € dom RDM A (rnm, REL?) € dom forcignkey
o (RDM' ranm).Att = (RDM ram).Att A
(RDM' rnm).Rel = {r : ROW | r € (RDM ram). Rel A
(Vkey : ANAME — VALUE | key € ran Key_values”
e (3anm : ANAME | anm € dom(foreignkey (rnm, REL?)
o r.Row anm # key ((forewgnkey (rnm, REL?))(anm)))

or}U
{r,ur : ROW; key : ANAME —» VALUL; i : N
| » € (RDM rnm).Rel A key € ran Key_values? A
(dom (foreignkey (ram, REL?))) Q r.Row = Key_values? 1 A
ur.Row = r.Row & (New_values? 1)
o ur}
(RDM' REL?).Att = (RDM REL?).Att
Vram : RNAME | rnm € dom RDM A rum # REL?
A (rnm, REL?) ¢ dom foreignkey
e RDM'rnm = RDM rnm
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Tte previous update operation can be extended to cascade updates not only for
foreign keys, but also for all sibling primary keys, that is, primary keys defined on

the same domain as the primary key of the input relation.

‘The delete operator permits to delete multiple rows from a relation. The schema
corresponding to this operation includes the ARELDATAMODEL schema and has
two input variables: the name of the relation involved and the set of primary keys of

rows to be deleted.

_DELETE
ARELDATAMODEL \ (primarykey, foreignkey)
REL? : RNAME

Key_values? : P(ANAME -+ VALUE)

REL? € dom RDM
(RDM' REL?).Rel = (RDM REL?).Rel \
{r: ROW; key : ANAME -» VALUE
| r€ (RDM REL?).Rel
A key € Key_values?
A (primarykey REL?) < r.Row = key

o7}
(RDM' REL?). Att = (RDM REL?). Att
Vram : RNAME | ram € dom RDM A ram # REL?
o RDM' rnm = RDM ram
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The first condition in the predicate part of the DELETE schema says the input
relation name should name an existing relation. No condition is imposed on the key
values in the input set Aey_ralues? because the condition that the user has incorpo-
rated in the delete command might not be satisfied by any row. So, ‘multiple’ rows
deletion includes the special cases of zero and oune, and these cases do not receive
special treatment. The result is the set difference between the initial set of rows
and the set of rows that have been deleted. The last predicate indicates that all the
other existing relations remain unchanged. The primary and foreign keys are also
not affected. Execution of this command will often violate referential integrity if the
deleted primary key values happen to be referenced by foreign keys in other tables.
Since referential integrity is not fully checked until the end of a transaction, this vi-
olation may be just a transient state that is permitted to exist within the pertinent

transaction only.

The delete operator with cascaded deletion is similar to the previous one,
except it takes into account the fact that a value of an attribute of each of the rows

being deleted happens to be the value of the primary key of another relation. Execu-
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tion of this operation causes the DBMS to propagate deletions to those rows in the

database that happen to contain dependent foreign-key values as components.

__DELETE_WITH _CASCADED_DELETION
ARELDATAMODEL\ (primarykey, foreignkey)
REL? : RNAME

Key_values? : P(ANAME - VALUE)

REL? € dom RDM
(RDM' REL?).Rel = (RDM REL?).Rel \
{r: ROW;key : ANAME -+ VALUE
| » € (RDM REL?).Rel
A key € Key_values?
A key = (primarykey REL?) < r.Row
o7}
Vram : RNAME; key : ANAME - VALUE
| rnm € dom RDM A key € Key_values? A
(rnm, REL?) € dom foreignkey
o (RDM' rnm).Att = (RDM ram). Att A
(RDM' rnm).Rel = (RDM rnm).Rel \
{r: ROW; key: ANAME - VALUE
| » € (RDM rnm).Rel A key € Key_values?
A (Vanm : ANAME | anm € dom(foreignkey(rnm, REL?))
e r.Rowanm = key ((foreignkey (rnm, REL?))(anm)))

o}
(RDM' REL?).Att = (RDM REL?). Att
Vram : RNAME; key : ANAME - VALUE
| rnm € dom RDM A key € Key_values? A
(rnm, REL?) ¢ dom foreignkey
o (RDM' rnm). Rel = (RDM rnm). Rel
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The schema definition includes the ARELDATAMODEL schema. The rows to be
deleted are specified by the input variable Key_values? which contains all primary
key values corresponding to the rows to be deleted. The resulting set of rows for the
input relation is composed by the set difference between the initial set of rows and
the set of rows indicated by the input variable Ney_values?. All relations having
foreign keys with respect to the primary key of the input relation have their resulting
set of rows specified as the set difference between their initial set of rows and the set
of rows indicated by foreign key values from the variable KNey_values?. These sels

are represented using the set comprehension notation.
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Chapter 5

Proving Properties

Using the formal specification of the RM/V2, we can easily reason and prove the well-
lnown and important relational properties. Some of these are obvious and emerge

from the definition of domains, rows and relations:

e Since a row is a partial function from attribute names to values, all attribute-
values are atomic. In other words, all relations are normalized. So the require-
ment of the relational algebra that all relations should be in (at least) first

normal form is satisfied.

¢ Within a given relation, attributes are unordered. This follows from the fact

that the collection of attributes of a relation is also defined as a set.
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e Within the row-set of a given reiation, no two rows are identical, and the rows
are unordered. This follows from the fact that sets by definition do not contain

duplicate elements and the order of elements is of no importance.

e As a consequence of the previous point. a relation will always have a primary
key. At least the combination of all attributes of a relation has the uniqueness

property, and hence at least one candidate key always exists.

We prove next some important properties of the join operator. The proofs make
use of the definition for the join operator and properties of se! theory and predicale

logic.

P1. Join is commutative:
VR1,R2: RELATION e NATJOIN(R1, R2) = NATJOIN (R2, 1)
Proof:
To prove this property we have to prove that the output variables of the resulting
schemas are equal, that is

NJRel (R1, R2)!.Rel = NJRel (R2, R1)!. Rel
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and
NJRel (R1, R2)\.Att = NJRel (R2, R1)!. Att.
Let T'1 be the resulting set of rows NJRel(R1, R2)!.Rel of NATJOIN(R1, R2). Then,

according to the set comprehension definition from the NATJOIN schema:

T1 = NJRel(R1, R2)!.Rel =
{rl,r2: Row; anm : ANAME
| r1 € {RDM R17).Rel A 72 € (RDM R27).Rel
A (anm € dom Att_Mapl? =
rl.Row anm = r2. Row (Att_Mapl? anm))
o ((dom rl.Row U dom 72. Row)\
last_set(dom Att_Map1?,ran Att_Mapl?))
<(rl.Row U r2.Row)}
where Att_Mapl? is the mapping between the attributes of R1 and 2 which partic-
ipate in the join. Similarly, let T2 be the resulting set of rows NJRel(R2, R1)!.Rel
of NATJOIN(R2, R1):

T2 = NJRel(R2, R1)!.Rel =
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{r2,r1: Row; anm : ANAME
| 72 € (RDM R17?).Rel A r1 € (RDM R27).Rel
A (anm € dom Att_Map2? =
r2.Row anm = rl.Row (Att_Map?2? anm))
e ((dom r2.Row U dom rl1.Row)\
last _set(dom Att_Map2?, ran Att_Map?2?))
<(r2.Row U rl.Row)}
where Att_Map?2? is the mapping between the attributes of 2 and 1 which partic-

ipate in the join. It is obvious that A#_Map2? is the inverse of Att_Mapl?, so the

expressions
anm € dom Att_Mapl? = r1.Row anm = r2.Row (Att_Mapl? an.n)
and
anm € dom Att_Map2? = r2.Row anm = rl.Row (Alt_Map?2? anmn)
are equivalent. For the same reason,
dom Att_Mapl? = ran Att_Map2?

and
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ran Att_Mapl? = dom Att_Map2?

S0.

last _sct(dom Alt_Mapl?, ran Att_Mapl?) =

last_set(dom Att _Map2?, ran Att_Map2?)

So, T1 and T2 represent the same resulting set of rows. Proving that the result-

ing sets of attribute names are equal is similar:

Al = NJRel(R1, R2)'. Att =
(RDM R17).Att U (RDM R27).Att\
last _set(dom Att_Mapl?,ran Att_Mapl?)

A2 = NJRel(R2, R1)LAtt =

(RDM R27).Att U(RDM R17). Att\

last_set(dom Att_Map2?,ran Att_Map2?)

But
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last _set(dom Att_Map1?, ran Att_Mapl?) =

last _set(dom Att_Map2?. ran Att_Map2?)

so Al and A2 represent the same set of attribute names.

a

P2. Join is associative:
VR1,R2,R3: RELATION
o NATJOIN(NATJOIN(R1, R2), R3) = NATJOIN(R1,NATJOIN(1t2, iR3))
Proof:
T1 = NJRel(NJRel(R1, R2), R3)!.Rel =
{r1_2,73: Row; anm : ANAME
| 71_2 € NJRel(R1, R2)\.Rel A 3 € (RDM R3").Rel
A (anm € dom Att_Mapl2_37? =
r1_2.Row anm = r3.Row (Atl_Map12_37 anm))
e ((dom r1_2. RowUdom 3. Row)\last_set(dom Att_Map12_37,ran Att_Map12_37))

QA(r1-2.Row U r3.Row)}
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T2 = NJRel(R1, NJRel(R2, R3))!.Rel =
{r1,72.3: Row; anm : ANAME
[ 71 € (RDM R1?).Rel A r2_3 € NJRel( R2, R3). Rel
(anm € dom Att_Mapl1_23? =
r1.Row anm = r3.Row (Att_Map1_237 anm))
¢ ((dom r1. RowUdom r2_3.Row)\last_set(dom Att_Mapl_23?,ran Att_Mapl_237))

A(rl.Row U r2_3.Row)}

Same logic as above applies for Att_Mapl2_3? and Att_Mapl_237, so:
anm € dom Att_Map12_3? = r1_2.Row anm = r3. Row (Att_Map12_37 anm)
is equivalent to
anm € dom Att_Map1_23? = r1.Row anm = r3.Row (Att_Map1_23? anm)

and

last_set(dom Att_Map12_37, ran Att_Map12_37) =

last_set(dom Att_Mapl_237,ran Att_Mapl_237)
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So, T'1 and T2 represent the same sets of resulting rows.
Al = NJRel(NJRel(R1, R2), R3)!. Att =
NJRel(R1, R2).Att U (RDM R3). Alt\
last_set(dom Att_Map12_37,ran Att_Map12_37) =
((RDM R1).Att U(RDM R2).Att\
last_set(dom Att_Map12?,ran Att_Map12?)) U (RDM R3).Att\
last_set(dom Att_Mapl12_3?,ran Att_Mapl12_37) =
(RDM R1).Att U (RDM R2).Att U(RDM R3).Att\
last_set(dom Att_Map12?,ran Att_Map127)\
last_set(dom Att_Map12_37,ran Att_Map12_37)
and
A2 = NJRel(Ri, NJRel(R2, R3))\. Att =
(RDM R1).Att U NJRel( R2, R3).Att\
last_set(dom Att_Mapl_237, ran Att_Mapl1_23?) =
((RDM R1).Att U ((RDM R2).Att U (RDM R3).Att\
last_set(dom Att_Map237?,ran Att_Map23?))\

last_set(dom Att_Mapl_237 ran Att_Mapl_237) =
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(RDM R1).Att U (RDM R2).Att U (RDM R3).Att\
last_set(dom Att_Map23?,ran Att_Map237)\
last _set(dom Att_Map1_237,ran Att_Map1_237)
where Att_Map12? is the input mapping of NATJOIN (R1, R2), Att_Map12.37 is
the mapping of NATJOIN(NATJOIN(R1, R2), R3), Att_Map23? represents the in-
put mapping of NATJOIN (R2, R3), and Att_Map1_237 represents the input mapping
of NATJOIN(NATJOIN(R1, R2), R3). But:
last_set(dom Att_Map12?,ran Att_Map127)U
last_set(dom Att_Mapl12_37,ran Att_Mapl2_37) =
last _set(dom Att_Map23?,ran Att_Map237)U
last_set(dom Att_Mapl.237,ran Att_Mapl_237)
So, A1 and A2 represent the same set of attribute names.

0

P3. Join is idempotent:
VR :RELATION ¢ NATJOIN(R,R)=R

Proof:
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NJRel(R, R)!.Rel =
{rl,r2: Row; anm : ANAME
| 71 € NJRel(RDM, R?).Rel A v2 € (RDM R?).Rel
A ‘anm € dom Att_Map? =
r1.Row anm = r2.Row (Att_Map™ anm))
¢ ((dom r1.Row U dom r2. Row)
\last_set(dom Att_Map?,ran Att_Map?))

A(rl.Row U r2.Row)}

In this case dom Att_Map? = ran Att_Map?, r1 and 72 represent the same row,
and last_set(dom Att_Map?,ran Att_Map?) = O, so:

((dom r1.Row U dom r2. Row) \ last_set(dom Att_Map?, ran Att_Map?) < (rl.Row U
r2.Row) = (domrl \ @) < rl.Row = rl.Row

So,

NJRel(R, R)\.Rel = R.Rel

NJRel(R, R)!. Att =
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W

R.AU U RR.ALN last _set(dom Att_Map?,ran Att_Map?) =
RAUN\OD =
R.Al

0

P4. Joining a relation to an empty relation of its own type yields an
empty relation of the same type:
VR:RELATION
o NATJOIN (R, empty_rel R) = empty_rel R
Proof:
NATJOIN (R, empty_rel R)!.Rel =
{r1,12: Row; anm : ANAME
| rl € R.Rel A r2 € (empty_rel R).Rel
A (anm € dom Att_Map? =
rl.Row anm = r2.Row (Att_Map? anm))
o ((dom r1.Row U dom r2. Row)\

last _set(dom At{_Map?, ran Att_Map?))

107



<Q(rl.Row U r2.low)}

The only row of an empty relation is the empty mapping, so the constraint rl.Row anm =
r2.Row (Att_Map? anm) is not satisfied by any row in I2; hence the resulting set of
this join will be the empty sct. Relation R and relation empty_rel R have the same
attribute name set, so the mapping Att_Map? = R.Att — R.Alt. The resulting

attribute set of the join is:

NATJOIN(R, empty_rel R)\.Att =
R.Att U (empty_rel R). Att =
R.Att U R.Alt =

R.Att

a

P5. The trivial relation is an identity for the join operator:
VR: RELATION

e NATJOIN (R, trivial_rel R) = R = NATJOIN (trival_rel IR, 1)
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Proof:
NATJOIN (R, trivial_rel R)!. Rel =
{r1,72 : Row; anm : ANAME
| 1 € R.Rel A 72 € (trivial_rel R).Rel
A (anm € dom Att_Map? =
rl.Row anm = r2.Row (Att_Map? anm))
¢ ((dom r1.Row U dom r2. Row)\
last_set(dom Att_Map?,ran Att_Map?))

<(rl.Row U r2.Row)}

The trivial relation has no attribute, so the mapping Att_Map? is the empty

mapping. Then the expression:

anm € dom Att_Map? = r1.Row anm = r2.Row (Att_Map? anm)

is always true. The only row of the trivial relation is the empty mapping, so:
(dom 71.Row U dom 2. Row) \ last _set(dom Att_Map?,ran Att_Map?)) < (rl.Row U

r2.Row) =
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(domrl.Row U @)\ @) < rl.Row = dom rl.Row < rl.Row = rl.Row

So, the the resulting set of rows of the operation NATJOIN (R, trivial_rcl R) is the
set of rows of the relation R. Using the same logic, we can prove that the output set
of rows of the operation NATJOIN (trivial_rel R, R) is the set of rows of R.

The set of attibute names of the trivial relation is the empty set, so:

NATJOIN (R, trivial_rel R)!.Att =
R.Att U (trivial_rel R).Att =
RAttUQD =

R.Att

Same logic applies for NATJOIN (trivial_rel R, R)!.Att = R.Att. So, the trivial rela-
tion is an identity for the join operator.

a

P6. Natural join is equivalent to cartesian product followed by selec-

tion and projection
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Proof:
To prove this property, we have to prove that the resulting set of rows of the natural
join and the resulting set of rows of the projection which follows the cartesian product
and the selection are the same, and that their resulting attribute name sets are the
same. The first property is equivalent to the following two properties:
(1) Vr: ROW | r € NJRel!.Rel @ r € CPRell.Rel A

(2) Vr: ROW | r € CPRell.Rel @ v € NJRel!.Rel

Proof of (1):
Yr: ROW | r € NJRel'.Rel o
(3r1,r2: ROW | rl € (RDM R1).Rel A 12 € (RDM R2).Rel
o (Vanm : ANAME | anm € dom Att_Map?

e rl.Row anm = r2.Row (Att_Map?anm)))

So, the row r1_2 represented by the concatenation of the two rows, r1. RowUr2.Row,

is in the set of rows of the cartesian product of relations R1 and R2. This set of rows
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constitutes the input for the selection operator. The other input for selection, the

function PRED?, has the following definition in this case:

PRED? : ROW -+ BOOL

Vr: ROW | r € CPRell. Rel
o PRED? r = True &
(Vanm : ANAME | anm € dom Att_Map?

o r.Row anm = r.Row (Att_Map? anm))

The row represented by rl.Row U r2. Row satisfies this property, so it will be in the
resulting set of rows of the selection operation, which is the input for the projection

operator:

r1_2 € SRell.Rel

The row r from the resulting set of rows of the natural join is of the form:

r.Row = ((domrl.Row U dom r2.Row) \ last_set(dom Att_Map?,ran Alt_Map?)) <

(rl.Row U r2.Row)

The input sequence AL? of the projection operation is in this case:
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-

ran AL? = (R1.Att U R2.Att) \ last_set(dom Ati_Map?,ran Att_Map?))

= (dom r1.Row U domr2. Row) \ last_set(dom Att_Map?,ran Att_Map?))

which is exactly the domain of r.Row. So, projecting the row represented by rl. RowU
r2.1tow on the attribute names indicated by the AL? list will result in the original
row 7 of the natural join of relations R1 and R2. The proof of property (2) is similar.

The resulting set of attribute names of the natural join and the cartesian product

are ecqual:

NJRel'. Att = (RDM R17). Att U (RDM R27). Att\
last__set(dom Ati_Map?, ran Att_Map?) =
ran AL? =

CPRel!. Att

a
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P7. Updating a relation is equivalent to deleting the affected rows fol-

lowed by inserting new rows containing the new values

Proof:

Proving this property is equivalent to proving that every row in the resulting sel of
rows of the update operation is in the resulting set of rows of the insert operation
which follows the deletion, and every row from this resulting set of rows is in the
result of the update operation.

The input for the update operation is represented by the relation R?, the sequence
Key_values? representing the primary key values of the rows to be updated, and the
sequence New_values? representing the attributes to be updated and their new val-
ues. The same relation name R? and sequence of primary key values Key_values? are
the input for the delete operator, in this case Key_values? representing the rows to be
deleted. The input for the insert operator in this caseis the relation {7 and the set
of rows Rows_to_insert? representing the rows to be inserted. The Rows_to_insert?

variable has the following definition:
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Vr:ROW | r€ Rows_to_insert?
o (Ji:N|i€l..#Key_values?
o (primarykeyR?) < r. Row = Key_values? i) A
(let f : ANAME - VALUE | f = ran New_values?
o (Vanm: ANAME o
(anm € dom f = r.Row anm = f anm) A
(anm ¢ dom f = r.Row anm = old_value)))

where old_value represents the original value corresponding to attibutes of row r
which are not updated. So, any row whose primary key value is not in the Key_values?
list is not updated, so it will remain the same in the resulting set of rows of the update
operation. The same row is not deleted by the delete operation, and it is not changed
by the insert op-zration. The rows which are updated by the update operation are

the rows in the set:

{r,ur: ROW; key : ANAME -» VALUE; ¢ : N

r € (RDM REL?).Rel A
(primarykey REL?) < r.Row = Key_valuesi A
ur.Row = r.Row & ( New_values 1)

o ur}

This definition corresponds to the definition for Rows_to_insert?, so the set of

updated rows will be the same as the set of inserted rows. O
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Chapter 6

Conclusions and Future Work

This thesis presents a formal specification in Z of the relational data model, version

2, of E.F.Codd. The contributions of this work include:

o the specification fully formalizes the basic concepts of an industrially significant
data model, the relational data model, including the retrieval and manipulative

operators;
¢ new features introduced by RM/V2 are incorporated into the relational model;

e the formal specification provides a convenient source of reference and under-

standing on the relational data model.
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‘The specification uses Z as the formal specification language because of its sim-
plicity, modularity capabilities and because of the link that exists between Z and the

relational algebra. The specification was type-checked by the FUZZ type checker.

The specification starts with the definition of domains, rows and relations. The
state space of the system is defined by the RELDATAMODEL schema which makes
use of other schemas, global variables and axiomatic definitions previously defined.
Formal definitions are given for the empty, trivial and umversal relations, which are
used later on when proving important relational properties. The definition of keys
includes both the uniqueness and minimality properties. The specification of missing
values defines the case of two possible null values, missing-but-applicable and missing-
and-inapplicable. These are considered when defining the two integrity rules, entity
integrity and referential integrity. The semantic features of the relational data model

are fully supported by this specification. These are:

e domains, primary keys, and foreign keys;
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e duplicate values are permitted within columns of a relation, but duplicate rows

are prohibited,;

e systematic handling of missing information independent of the type of datum

that is missing.

Throughout the specification we consider the case of composite keys and make use
of the naming technique as it is defined in RM/V2. The retrieval and manipulative
operations completes the definition of the relational data model. Using this formal

specification we make proofs for some well-known relational properties.

The use of formal reasoning to prove properties of the system under consideration
is a very important feature of formal specifications. Using formal rcasoning, we can
not only demonstrate at an early stage that the system enjoys certain properties, but
we can also check the parts of the specification involved in proofs. During formal
reasoning about the relational data model, we were able to detect inconsistent def-
initions in the specification, and to go back and complete this with new definitions

needed by proofs.
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The use of Z as the formal specification language allows us to define the state
space of the model using separate definitions for different concepts involved, then to
combine them in the RELDATAMODEL schema which represents the global state
of the system. The constraints represented by the two data integrity rules are also
defined separatelly, using different schemas. The schema calculus allows the specifi-
cation to be partitioned and presented in smaller pieces. This modularity capability
of Z is a major advantage over VDM, which has no such feature. The formal setting
of Z also allows questions on properties of the model to be answered confidently using
formal reasoning. The set theory forms an adequate basis for building complex data
structures which are needed in specifications. The FUZZ package allowed us to check

the Z specification with the Z scope and type rules.

The Z specification of the RM/V2 is not complete in the sense that not all the fea-
tures introduced by the RM/V2 are included. We do not provide a formal definition
of the usual logical connectives from the set theory with respect to the four-valued

logic of RM/V2. The specification does not include the definition of views and view
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updatability. This work can also be extented to include concepts like user-defined
integrity constraints and advanced operators like outer-join or recursive join. Having
the specification of the relational data model as the starting point, we can go further

and specify deductive databases. All these additional features are part of future work.
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