l*l National Library Bibliothéque nationale

of Canada du Canada

Canadian Theses Service Service des théses canadiennes

Ottawa, Canada
K1A ON4

NOTICE

The quality of this microformis heavily dependent upon the
quality of the original thesis submitted for microfilming.
Every effort has been made to ensure the highest quality of
reproduction possible.

It pages are missing, contact the university which granted
the degree.

Some pages may have indistinct print especially if the
original pages were typed with a poor typewriter ribbon or
if the university sent us an inferior photocopy.

Reproduction infull or in part of this microform is governed
by the Canadian Copyright Act, R.S.C. 1970, ¢. C-30, and
subsequent amendments.

NL-339 (r.88/04) C

AVIS

La qualité de cette microforme dépend grandement de Ia
qualité de la thése soumise au microfilmage. Nous avons
tout fait pour assurer une qualité supérieure de reproduc
tion.

Sl manque des pages, veuilez communiquer avec
l'université qui a conléré le grade.

La qualité d'impression de certaines pages peut laisser a
desirer, surtout si les pages originales ont ét¢ dactylogra
phiées a I'aide d'un ruban usé ou si Funiversité nous a fai
parvenir une photocopie de qualité inféneure

La reproduction, méme partielle, de cetle microforme est
soumise a |a Loi canadienne sur le droit d'auteur, SRC
1970, c. C-30, et ses amendements subséquents

fel

Canadi

A Functional Model for Specification and Analysis of
Distributed Real-Time Systems : Formalism and Applications

Geetha Ramanathan

A Thesis
in
The Department
of

Computer Science

Presented ‘n Partial fulfillment of the Requirements
for the Degree of Doctor of Philosophy at

Concordia University
Montréal, Québec, Canada

November 1988

© Geetha Ramanathan, 1988

|
Y
:
|
|

i+l

National Library

of Canada du Canada

Bibliothéque nationale

Canadian Theses Service Service des théses canadiennes

Ottawa, Canada
K1A ON4

The author has granted an irrevocable non-
exclusive licence allowing the National Library
of Canada to reproduce, loan, distribute or sell
copies of his/her thesis by any means and in any
form or format, making this thesis available to in-
terested persons.

The author retains ownership of the copyright
in his/her thesis. Neither the thesis nor substan-
tial extracts from it may be printed or otherwise
reproduced without his/her permission.

L'auteur a accordé une licence irrévocable et
non exclusive permettant a la Bibliothéque na-
tionale du Canada de reproduire, préter, dis-
tribuer ou vendre des copies de sa thése de
quelque maniére et sous quelque forme que ce
soit pour mettre des exemplaires de cette thése
a la disposition des personnes intéressées.

L'auteur conserve la propriété du droit d'auteur
qui protége sa thése. Nila thése ni des extraits
substantiels de celle-ci ne doivent étre imprimés
ou autrement reproduits sans son autorisation.

ISBN 0--315-49117-5

Canadi

ABSTRACT

A Functional Model for Specification and Analysis of
Distributed Real-Time Systems : Formalism and Applications

Geetha Ramanathan, Ph.D.
Concordia University, 1988

A mathematical model of distributed real-time systems behavior
for problem specification, analysis and proof is presented. The
behavior or external view of a system is the “consequence closure” of
the specification in which events and their relationships are defined.
The pure behavior model is independent of any abstract machine
notion. The model takes into account a metric notion of time, and
makes use of an absolute time as perceived by an external user for
describing event histories. An algebra of events is defined, and the
algebraic structure is characterized and asserted through several
theorems. A set of functions and predicates are defined on the
algebraic structure of events, and they are used in performing proofs
on event histories. Examples from hardware design, robotics, and
concurrency control in distributed databases are given to illustrate

the versatality of the model.

Acknowledgements

I gratefully acknowledge the invaluable assistance of my thesis
advisor Professor V. S. Alagar, in the course of the preparation of
this thesis. I have received financial support, technical assistance
and encouragement from Dr. Alagar throughout my studies at
Concordia University. 1 thank the Quebec Ministry of Education for
a fee remission award, Concordia University for a Graduate
Fellowship and the Faculty members of the Department of Computer
Science, Concordia University for providing a stimulating environment

to conduct this research.

Table of Contents

1 Introduction

D

Specification Models - A Brief Review
2.1 Algebra for Concurrency
2.2 Net Theory
2.3 Temporal Logic

2.4 Assertional Methods

3 Functional Model : Formalism
3.1 Description of the Model
3.1.1 Basic Concepts of Event and Time
3.1.2 An Algebraic Structure for E
3.13 Operators, Relations, Counters
and Properties
3.2 Sum of Events

3.3 The Structure of Sum of Events

4 Specification and Proof of Correctness : Examples
4.1 The Design of a Bus Arbiter
4.2 Holler's Algorithm for Multiple Copy Update
Problem in a Distributed Database

4.3 The Design of Robotic Assembly

4.4 The Design of a Robotic Navigation Controller

11
11
16
22

27

33
36
37

43

47
54

63

73

73

90
105

116

5 Conclusion 130

References 134

CHAPTER 1

INTRODUCTION

In this thesis a mathematical model for the specification,
analysis and proof of correctness of the functional behavior of
distributed and real-time systems 1is presented. This research
originated from a study of robotics and database systems - problems
in both areas exhibit a significant degree of concurrency and
real-time constraints. Tools for specifying time dependent functions
and proofs for time dependent analysis are presented. The expressive
power and usefulness of the technique are demonstrated through the
specification of four problems - one on low-level arbiter design, two
on robotic applications and one on database concurrency. The main
contribution of the study, however, is to demonstrate that functional
model defined on the algebra of events combines the clarity and
precision required for formal specification with the ability to provide

proofs for a spectrum of applications.

A formal model is necessary to define precisely and
unambiguously the desired characteristics of a system - what is not
specified cannot be proved and what is not proved may be incorrect.
The need for formal specification was first recognized in program

design; recently it has been recognized as the first step in designing

complex process control systems. In all situations, the underlying
motivation is the same - namely, to define formally the
characteristics of a system to be built and provide the tools for
verifying the properties. Because automatic verification may never
beccome a reality (or may be prohibitively expensive), in practice,
proof of correctness must be done simultaneously with system design
and development. This requires the use of mathematice to achieve
preciseness in the description of high level design decisions as they
are made. Much of the current research on formal specification has
concerned itself with the degree of formalism required to communicate
idcas as well as their meanings. The formal model in this thesis
uses conventional mathematical notions of relations, functions, partial
orders and lattices. We heavily use functions and higher order
functions and hence call the formalism, a functional model. This
approach is consistent with recent developments such as
VDM [Cohen 86] and Z [Hayes 87] methodologies which combine
recursion equations and abstract data types. That is, the resulting
specifications are very close to being abstract functional programs.
However, as will be explained later, these approaches are different

from the functional model described in this thesis.

The view taken in this thesis is that most real-time systems
(such as process control systems and communication systems) are

concurrent (or distributed) systems with explicit timing constraints

over their computations and actions. From the point of view of
logical formalism and behavior description, distributed systems are no
different from any other kind of concurrent systems; the differences
are only quantitative and not qualitative. Thus, it may be thought
at first that one way to specify a real-time distributed system is to
add time to an existing model of a distributed system. We take a
different approach which differs from the usual models of distributed
processing (see Chapter 2 for a brief review) by two aspects : .) The
metric notion of time referring to an absolute one, such as perceived
by an external observer to the system, is taken into account ; and
2) No abstract notion of machine is taken into account so that the
model is a pure behavior model. As remarked in [Caspi 86,
Cohen 86}, a formal specification based on these two aspects provides
the meaning of what is specified in the consequence closure; that is,
the consequence closure comprises all the time dependent behavior

that could be observed regardless of the internal structuring.

Some remarks are in order to motivate and convince the reader
on the relevance of the study reported in this thesis to application
areas such as robotics and database. The design and operational
issues of a distributed database are well understood; however, only
recently [Ould 87, Shin 87] robotic researchers have begun to identify
the need and relevance of distributed view in robotic applications.

Multirobot systems for manufacturing have numerous advantages over

stand alone independent systems. For the navigation (of autonomous
vehicles) and cooperating robots on an assembly line, it is both
natural and advantageous to distribute control over several processes.
This distributed view requires not only the coordination of multiple
robots but also requires synchronization and communication with
external physical devices such as sensors. Significant actions
characterizing the coordinated workspace are communication between
robots, communication between robots and external devices,
synchronization with external events, waiting and monitoring for
external event occurrences, and other simultaneous motion (collision
free) on the floor shop. The distributed nature of such an integrated
multirobot system will necessarily require sophisticated control and
communication techniques; unless these are defined, specified and
analyzed, the software realizing such a system cannot be guaranteed
to be error free. Different applications may place different demands
on the robots and the computers controlling them; however, in an

abstract level the primitive tasks can be captured in our model.

Analogously, distributed concurrency control for distributed
database management systems is an important research issue. As
remarked earlier, this problem is well understood and many solutions
have been proposed. Most of the proposed algorithms are complex
and difficult to prove correct. One of the main reasons for the

complexity of understanding concurrency control algorithms and the

5

process of providing proofs is due to the lack of a uniform formal
style for expressing the algorithms. Only recently, two correctness
proofs are reported : serialization of executions [Bernstein 87] and
proof of correctness of the majority consensus
algorithm [Ravichandran 86]. In this thesis a formal sp . :iication
and proof of correctness of Holler's algorithm is given in Chapter 4.
Hence our attempt and experience in this research must be
considered significant - the analytical model helps in demonstrating

the stated behavior from the constructed design.

Chapter 2 of this thesis is short and is a brief review of some
commonly used models for specifying internal structuring (such as
interprocess specification) of distributed systems. We refer to several
published reports to bring out three issues: 1) although the
inadequacies of a specific method are well understood, no extended
comparison between the models have been undertaken; 2) which
model is appropriate for which kind of problems is often raised but
left unanswered; and 3) different models are appropriate to express
different properties and hence to express a specific property, one
must choose an appropriate method from a class of models which

represent that property.

Chapter 3 discusses a functional model, which is a
generalization and enrichment of the event based model discussed by

Caspi and Halbwachs [Caspi 86]. The starting point of this

extended formalism is the notion of durational events. The word
event has a wide range of interesting interpretations - from micro
level to macro level. A discussion, comparison and a justification of
its meaning and its intended usage in this thesis is warranted here.

«

In everyday experience one comes across statements such as
the events for the month of October are ...”, “ in the event that I
don't come, cancel the meeting ”, “ 8 is an event in throwing a pair
of dice ” and “ there are several parallel events in Winter Olympics
”. Another important definition from Webster’s Dictionary is that an
event is also “ the fundamental entity of observed physical reality
represented by a point designated by three coordinates of place and
one of time in the space-time continuum postulated by the theory of
relativity ”. This last definition is adopted by Lamport [Lamport 86].
The other definitions convey *‘ie meanings that an event is a
temporal marker, a condition, a subset of possible outcomes of an
experiment and a collection of actions. If an event is regarded as a
collection of actions that are schedulable and partially ordered, then

one is lead to consider it to be a nonatomic and hence a durational

entity.

In Computer Science, one approach to defining data types is to
use a recursive definition of a discriminated union of primitive data
types. A typical example of such an entity is generalized list.

Similarly an event may be defined using the definitions above. The

advantage in this approach is the obtained generality that permits
the applicabilty of the same term wuniformly to several levels of

abstract descriptions.

Concurrent systems are traditionally described hierarchicaily,
wherein each level implements the level above it. For describing the
units of work at various levels, researchers use different terms. To
cite an example from database, “transferring $500 from account
number 24098 in Branch 102 to the account number 196756 in
Branch 201 at 11:10 A.M. on November 11, 1988” is a high level
unit of work. In an intermediate level, say in a high-level
programming language, this must be translated into a sequence of
language constructs, which in turn are translated to next lower level
machine language operational sequences. Finally, these machine
language instructions must be implemented by the circuits and

flip-flops. Lamport [Lamport 86] uses the terms system execcution,

operation execution and events (space-time view) for describing the

units of work at the three levels. In developing axioms for correct
interpretation and implementation for lower level descriptions
corresponding to high-level descriptions, Lamport observes that cven
flip-flops have definite durations associated with their settling times.
That is, system executions, operation executions and events have
definite (bounded) durations. This thesis, aimed at capturing and

analyzing time dependent properties, takes the view that durations of

units of schedulable work form the dominating uniform property at
various levels and must be captured in the external (observational)
specification. So, it is decided to use the term event (with duration)
to refer to unit of work at all levels of description. The advantages
are that a user (not necessarily a Computer Scientist) can
understand the term as applied in everyday usage and at system

implementation level the term applies equally well.

In describing the timing behavior of real-time systems, Jahanian
and Mok [Jahanian 86] use an event-action model embedded in logic.
For them, the notion of event is that of a temporal marker. An
action can be either primitive or composite (a partial ordering of
actions defined recursively) that consumes a bounded amount of
resources. Stop and start events initiate and terminate actions,
whereas transition events assert safety properties that remain true
over a period of time. It is also assumed that there is a finite
delay between the occurrence of a physical event in the external
world (such as pressing a button or reading a sensor) and its
recognition by a computer system. That is, the medium interfacing
external to internal, with its unknown delay, must become part of
event occurrence process. Hence, we are lead to conclude that stop
and start are instantaneous events and others are not (although
event is defined to be a point in time). This inconsisiency, however,

is overlooked by Jahanian in [Jahanian 86].

9

As remarked at the outset, the model of specification attempted
here is purely behavioral and hence is devoid of states, transitions
and operations (actions) with side effects. Hence, the term event,
applicable to several levels of descriptions, seems more unifying and

consistent with the chosen model.

Finally, the specification and proof of correctness of the arbiter
design in [Caspi 86] assumes a time factor due to
communication delay; that is, without this assumpiion, their design
cannot be shown to meet the initial specification based on
instantaneous events. In the extended formalism discussed in this
thesis, the proof of correctness (for the same arbiter design problem)
is shown to follow with no major change in the original proof
structure; no assumnption outside the specification is necessary.
Hence the model built on instantaneous events [Caspi 86] is
inaaequate for handling such low-level problems and as we show in
chapter 4, the extended model is necessary for describing a spectrum

of other problems.

Chapter 4 contains the other major new results of this thesis,
the specification and proof of correctness of four problems: 1) the
design of a distributed arbiter derived from its initial specification; 2)
Holler’s algorithm for multiple copy update problem in distributed
database; 3) robotic assembly (asynchronous algorithm) with multiple

arms and 4) the design of a robotic navigation controller

10

(asynchronous) for the coordinated motion of several robots on a floor

shop.

Chapter 5 is an attempt to unify the loose ends and identify
some of the related work started and left unfinished by us; these are

topics for future work.

11

CHAPTER 2

SPECIFICATION MODELS - A BRIEF REVIEW

This chapter presents a brief survey of the theory and
experience in the specification of distributed systems. The discussion
is not exhaustive and is limited to the most notable methods:
algebraic approach [Milner 83], net theoretic [Petri 62, Thiagarajan
83, Ould 87], temporal logic [Burstal 74, Pnueli 77, Lamport 80a,

Koymans 83] and axiomatic [Hoare 75].

Two key issues are to be addressed in a specification method:
acquiring information and expressing the acquired information. In
our discussion, we address only the second issue - the utility and

expressive power of the specification method.

2.1 Algebra for Concurrency

Building an algebraic model to express concurrency is due to
Milner [Milner 83). The basic elements of an algebra are objects,
operators and rules for combining objects into complex objects. This
model, apparently, arose out of dataflow models due to Dennis
[Dennis 74] which was later put on algebraic footing by Kahn [Kahn

74]. That is, the abstract machine model, more or less, is derived

12

from finite state automata. The semantics assigned to the nodes
and arcs changes the algebra and the meaning of algebraic
expressions. The objects, also called agents, interact among
themselves. Such an interaction signifies that something noticeable
has occurred in the system. Each agent (realized by one or more
processors), has several ports on its periphery at which events occur.
Some events are atomic in nature; that is, when atomic events occur
it is the case that something has occurred instantaneously. It is
conventional to use a Greek letter to name a port as well as an

event occurring at that port.

There are four types of operators: atomic action (a.), summation
(+). product (& d lbeta) and encapsulation (/ g or \ﬂ)' An agent
P which alternates (possibly nonterminatingly) between two events a
and B (in that order) is defined by the equation P = a.8.P = (a.ﬂ)+.
An agent Q which alternatingly performs either a; or a then B3,
is given by the equation Q = al.ﬂ.Q + az.ﬂ.Q; which may be
abbreviated as Q = (ot1 + a2).ﬂ.Q. The regular expression ((al +
a2).ﬂ)+ is a solution to this equation. Notice that the ‘+’ between
agent expressions denotes “disjunction” and the superscript ‘' denotes
‘one or more times’. A hierarchical decomposition of an agent P =
al.Pl + a2.P2 + ..+ an'Pn + .. indicates the possible next
actions of P. For example the algebraic expression T ai.ﬂi.P denotes

an agent P (interpret as a buffer) with two ports a and B where

13

ai(ﬂi) denotes the port a (8) for the i-th value produced (delivered).

Product operators combine several agents to a single agent. If
P = afP and Q = (.4.Q (which are buffer like agents) are pictured

as in Figure 2.1 (a) and 2.1 (b), the agent R = P &, Q — called 8

o
- product or @ synchronization can be pictured as in Figure 2.1 (c).
The actions a and 4 in this product agent may occur independently
but A occurs (possibly an infinite number of times) only when both P
and Q are capable of a handshake. Since R performs a first, then

repeatedly performs g followed by either a or 4, R can be pictured

with three ports as in Figure 2.1 (d).

(a) (b) ' (d)

(c)

Figure 2.1

Moreover, an expression for R is R = .5, S = f.(an.S + 7.a.5). In

general the 8 - product of P = z7j‘Qj is R where

14

P = Eai.Pi , Q = EqJQJ and
R= Y a;. (Pi &ﬂ Q + Y A.P &ﬁ QJ)

ai%ﬂ '7J%ﬂ J
T AP . &, Q)
ai='7j= B g

It is easy to see that B - synchronization permits the modeling
of multi-way hand shakes; infact & 2 is both commutative and

associative.

The operator / : called g - hiding, releases f from further

synchronization. Thus R’ = R/ﬂ’ R = afP & 7 f.4.Q is the system
of equations R' = a.5, S = a1.S + ~4.a.8'. Refer [Milner 83] for
the semantics of other operators and examples illustrating the
algebra for specification. The chief advantage of the algebraic
approach is the ability to define and use general combinators and
provide a way for formal (mechanical) proof-checking. Since behavior
is defined as an equivalence class upon the set of machines, the
proof of a system reduces to the proof of the equivalence between
the abstract machines representing the specification and the
implementation of the system. Based on this algebra for

communicating agents a formal specification and proof of the firing

squad problem [Minsky, 1972, p.28] is also given in [Milner 83].

15

A line of n FSMs (Finite State Machines) are given. At one end

is a ‘general’, at the other end is a ‘sergeant’ and in between are

(n—2) identical ‘soldiers’. It is required to design the machines so that
all soldiers fire at the same time after the General has given the
order. The machines operate in step, with the state of a machino at
time t + 1 depends on the states of the neighboring machines and its

state at time t.

As remarked by in [Milner 80], we can prove equations bectween
agent expressions but there are interesting properties of processes which

cannot be expressed algebraically.

2.2 Net Theory

On the surface, there seems to be some relationship between net
theory and the algebraic approach. However, the emphasis of thesc
models are different. Net theory emphasizes causal independence

whereas algebra emphasizes (only) communication among agents.

As the name suggests, Petri nets were first proposed by Petri [Petri
62] for modeling concurrent systems. A net may be viewed as a
directed bipartite graph with two kinds of nodes: nodes denoting atomic
states (places) and nodes denoting local transitions. The places,
represented by circles, define locations in the graph where tokens reside.
These are linked by arecs to transition nodes, represented by boxes.
More formally, a net N is a triple N = (S, T, F) where SU T # 0, S

NT=0FC S x T)U (T x S), domain (F) U range (F) = S n T.

16 \
Here S is the set of state nodes, T is the transition nodes and F is the

set of arcs (flow relations). See Figure 2.2.

Figure 2.2

The chief advantage of Petri nets is that they provide a simple and
abstract setting for investigating distributed systems. The basic notions
of sequence (causality), selection (conflict, choice, nondeterminism),

synchronization (concurrency) and failure of synchronization (conflict +

concurrency = confusion) can be clearly stated as in Figures 2.3(a) -

2.3(d).

The situation in Figure 2.3 (a) is causality where e, follows e,

OLHFO{1O

Figure 2.3 (a)

Due to the shared condition b in Figure 2.3 (b), the transitions €y
or e, but not both can occur. This is a conflict and portrays

nondeterminism in a limited fashion.

Nondeterminism in its full generality enters when b is true so that
both e and e, are possible. There is no conflict here in a
simultaneous transition but net theory cannot capture nondeterminism

in its generality.

18

Figure 2.3 (b)

Concurrency is illustrated in Figure 2.3 (¢). The transitions, in
general, can be partially ordered but the ordering cannot be inferred

from the specification.

Figure 2.3 (c)

Confusion arises whenever there is an overlap of concurrency and
conflict. A symmetric form of confusion is shown in Figure 2.3 (d):
there may be disagreement among observers as to how the transition
occurred from {b1 , b2} to {b3, b 4 b5}. To resolve the dispute, more
assertions on the properties of states and data variables must be

assumed

20

Figure 2.3 (d)

Petri net formalism has been successfully applied to model numerous
distributed computing applications. @ We briefly mention two such

applications of interest to us - database and robotics.

The use of Petri nets to model concurrency control algorithms is not
new. Ellis [Ellis 77] and Genrich and Lautenbach "Genrich 79] are the
first to formalize concurrency contrul algorithms using several variants of
Petri net models. However no analysis or performance evaluation was
attempted. It was in [Ramamoorthy 80] that a formal performance
analysis based on safe Petri nets was reported. Recently Ozsu [Ozsu
85] has generalized the Petri net model to Extended Place Transition

Nets supporting (1) the concept of transition time; (2) precondition

21

specification to enable the modeling of situations where a place p
participates in the activation of only a subset of whose set of input
places include p; and (3) the movement of tokens carrying performance

related data.

As an application of net theory for specification in robotics we
mention the recent work of [Ould 87] - the behavior specification of a
flexible assembly cell. The assembly cell consists of two rebots, conveyor,
cameras, a gripper and an assembly table. The functional requirements
are: 1) parts are placed on a conveyor and as soon as the first camera
detects the presence of an object, the conveyor stops; the conveyor is
restarted only after the object is identified; 2) robot R1 picks up the
identified object and i:uves it on a table and 3) robot R2 does the
assembly operations. The petri net for this problem describes the places,
tools and functions (by transitions). A formal analysis and simulation
based on this net specification is given in [Ould 87]. It is worthwhile

comparing this net specification with our specification on a similar

robotic assembly problem discussed in Chapter 4.

In spite of the many advantages and its widespread usage, the
chief disadvantage of the Petri net approach is that it produces complex
and unstructured descriptions of recal life systems. To remedy this
disadvantage research is directed towards first-order marked nets and

hierarchy of sub-nets. This work draws Petri nets closer to logic.

22

2.3 Temporal Logic

Temporal logic belongs to the class of modal logics, the origin of
which can be traced to the ancient Greeks. Necessity (bound to be
true), impossibility (bound to be false), contingency (neither necessary nor
impossible) and possibility are the four modal notions. These notions
gave rise to the three basic modal operators 0O (henceforth), 0
(eventually) and ® (next). Several other derived operators are given in
[Moszkowski 86]; for our exposition we stick to the simplest form of

temporal logic with a few simple operators.

Temporal logic has been used for specification of both hardwar¢ and
software systems ever since Burstal [Burstal 74] suggested it for
reasoning about programs and Pnueli [Pnueli 77] showed its application
to concurrent programs. Bochman [Bochman 82] was probably the first
to use temporal logic for hardware specification. In his work he
introduced “ reachabilty analysis” as a method for analyzing self-timed
arbiter. The recent monograph [Moszkowski 86] describes a new

language, called “ TEMPURA” based on temporal logic.

Some of the notable work in the application of temporal logic to
concurrent systems are due to Hailpern [Hailpern 82]), Lamport [
Lamport 83b], Moszkowski [Moszkowski 83]. Recently, temporal logic
based correctness proof for the Thomas majority consensus algorithm for
concurrency control of fully replicated databases is given by Ravichandran

[Ravichandran 86].

23

Temporal logic assertions are well-formed formulas constructed

according to the rule:

1) an atomic predicate is a wiff.
2) if f is a wff, then so are ~ (f), O (D, O(f) and ® (.
3) if f and g are wiffs, then so are (f v g), f A g), f — g) and (f =

2.
The operators O and 0 are duals:

o=~0~P

P=~0o~P
So, in temporal logic the propositional connectives retain their original
meanings; the universal and existential quantifiers of predicate logic give

rise to (quantified over time domain) O and 0 respectively.

The derived operator ~> is a binary operator: P ~> Q means that
if P ever becomes true then Q must be true at that instant or later.

It is easy to see that

Pr~>Q=0(® - Q

and ~> is transitive.

As an example, consider the simple problem of communication
between two parties. Abstractly, let {a,b} be the set of endpoints of a

channel. For any element e € {ab}, e denotes the othcr element.

24

That is if e = a (b), e denotes the other endpoint b (a). Let m ¢ M
denote an arbitrary message transmitted over the channel. The two
atomic formulas that we consider are accept(m, e) end deliver(m,), m
€ M, e € {a, b}, To assert that the channel cannot accept two
different messages at the same endpoint at any given instant we shall

4

have to prove [accept(m, e) A accept(m’, e)] - m = m

We can state that both endpoints are accepting messages all the

time by the formula.

¢ o [accept(m, a) A accept(m’,b)].

To prove that the channel cannot copy messages, we must establish
that a message delivered at time t cannot be redelivered (unless it was

accepted again) at time t' > t; that is, we must show

[deliver(m, e) A ~ 0 (accept(m, e)] - ® 0O deliver(m, e)

Liveness and safety are two important properties to be satisfied by
concurrent systems. Temporal logic can be used to express these
properties. A liveness axiom is of the form B ~> A which means that
when B holds (B is a condition) then A (an action) must happen at
some time in the future. To illustrate the liveness specification for the
example under consideration, let us use the symbolism e = € to denote
the set of all functions from one endpoint to the other; that is, e = €

denotes the infinite queue of messages. Let front (¢ = e) denote the

25

message at the front of the queue. The liveness property of the action
deliver(m, e) is that the message at the front of the queue must

eventually be delivered. This is specified as

[front(e = €) = m] ~> deliver(m, €)

Safety property asserts that some property P, if it becomes true,
remains true forever. To state that P is such a property (also called

inductive assertion) we write

o@® — o P).

Another important class of safety properties have the form

I-o0@A ->B A0

where B A C means that C holds at least as long as B does. For
example, first-come-first-served property of a queue of processes can be
expressed in this form. We conclude our discussion on temporal logic

with an elaborate formal specification of the channel described below :

The channel between endpoints a and b can pass messages m ¢

M in both directions simultaneously, until it receives a ‘disconnect’
message from one end, after which it neither delivers nor accepts
messages at that end. It continues to deliver and accept messages at
the other end until the ‘disconnect’ message arrives, after which it can
do nothing. The order of messages sent in a given dirction is

preserved.

\

26

In addition to the specifications given above, we have the following

additional axioms which use the operator ‘<’ (before)

An accepted message at e will be delivered at e unless e has

issued a disconnect message:

accept(m, e) — 0 (deliver (m, €) V < accept(DISCONNECT, e)).

This axiom asserts that there can be no loss of messages in an

active channel and messages in that case are eventually delivered.

The order of messages sent in a given direction are preserved:
[accept(m, e) A ® 0 accept(m’, e) A m’# DISCONNECT]

— 0O [delivered(m, €) — ~ < deliver(m’,e)].

It is assumed that m is not a disconnect message and the
messages can be distinguished. The above two axioms taken together

imply that both m and m’ are delivered in the order of their acceptance.

Finally, the effect of a disconnect message at an end e is specified

by the following axiom:

[accept(DISCONNECT, e) v deliver(DISCONNECT, e) —

[((m # DISCONNECT) A ® O (~ accept(m, e) A ~ deliver(m,e)]

If the channel specification is modified to include real-time requirements

27

then new constructs as in {Koymans 83] must be introduced in temporal

logic.

2.4 Assertional Methods

In an assertional method the states (and not events) are specified
and reasoned about. The chief advantage of this method is that the
proof is reduced to a series of precise steps that can be machine

verified; however the number of states may increase exponentially.

Typically a specification method enables expressing the properties of
a system and providing proofs; but a programming language is required
to translate the specification and consequently two separate notations are
employed simultaneously. For example, temporal logic can be thought of
as a tool for specifying and proving properties of programs written in,
say, Hoare’s CSP [Hoare 85]. This dichotomy exists in almost all
formalisms - especially when one is interested in program verification.
Assertional proof methods such as Hoare's logic is closer to a
programming logic formalism in which every state s is viewed as a
relation between two predicates: a precondition and a postcondition.
Thus an execution E consisting of a sequence of states is expressed by
{P} E {Q},which is correct (or valid) if whenever E is started in a state

89 that satisfies P and E terminates in a state Bys then 8, satisfies Q.

The first assertional method for proving properties of concurrent

programs was outlined in [Ashcroft 71]. Hoare [Hoare 72] gave proof

28

rules extending the partial correctness notion of sequential programs to
concurrent programs. But there were severe restrictions in the
application of these rules. For example, these rules are inadequate for
proving programs in which processes communicate because assertions
appearing in the proof of one process are not allowed to mention
variables local to another and only designated shared variables can
appear in an invariant. The work reported in [Owicki 76] extended
Hoare’s proof rules to handle the proofs of concurrent programs that
synchronize and communicate using shared variables. At the same time,
Lamport [Lamport 77] independently developed monotone assertions as
part of a more general method for both safety and liveness properties of
concurrent programs. Soon after, Generalized Hoare Logic(GHL) was
used by Lamport [Lamport 80b, Lamport 84b] to develop techniques for
proving safety properties of concurrent programs written in Hoare style
programming logic. The basic idea here is to derive the invariance
properties of a concurrent program from the invariant properties of

individual processes.

An important feature of GHL is that proofs can be given when the
atomic actions are not known but the invariants are known. Hoare's
programming logic was further augmented by the programming notation
CSP proposed by Hoare [Hosre 1985]. This notation enables
synchronous message passing facility, a distinguishing feature of

distributed programs. In this notation, an input command

29

inp: A? wvar
in process B matches an output command

out: B! expr

in process A if the type of expr matches the type of var. Input and
output commands are executed synchronously in matching pairs thus

implementing distributed assignments statements.

To illustrate the expressive power of this notation, we reproduce

below Hoare’s solution to the firing squad problem:

Notation Neighboring soldiers are combined by the operator >>. A >>
B means that the right channel of A is connected to the left channel of
B; all communications along this line are synchronized. The event ‘fire’
requires simultaneous participation of both A and B; otherwise (A >> B)

will deadlock. The firing line is

LINE (n) = GENERAL >> (>i> <n SOLDIER) >> SERGANT

The line is started by a ‘go’ signal in general’s left channel and it

terminates with a valley of rimultaneous shots from all the soldiers:

A o

30

LINE (n) = (leftgo — fire — stop), n > o.

SOLDIER = SOLDIER0
where

SOLDIERi = if b(i) then fire else
left?j] — leftli —
right!i —?right k —
SOLDIERf(iJ,k)
where f is a function with range (0, .., n). Each soldier communicates
his state with his neighbors and if they simultaneously reach a state i

for which b(i) is true then they all fire.

This brief review is intended to show the similarities and
interdependence of the various specification styles rather than to bring
out the inadequacies of each method. Algebraic expressions come out of
nets - although their emphasis may be different. Net models with the
properties of first order predicate logic have been studied in [Thiagarajan
83] and this shows that some mappings between net theory and
temporal logic can be set up. Linear time temporal logic is close to
assertional specification style. Manna and Wolper [Manna 84] have
investigated techniques for automatically synthesizing CSP

synchronization from temporal logic specifications. For example, consider

31

a synchronizer S that regulates the activity of two processes P1 and P2;
in particular S ensures that they do not simultaneously operate in their
critical regions. Assume the construct S!beg‘ini to represent a request by
Pi to enter its critical region. Similarly S!endi represents the construct
for Pi to leave the critical region. The temporal logic specification
S!beg‘ini A [O (S!beg‘ini -+ ® S!endi)] A [O (S!endi O] S!begini)]

means that Pi makes a request to enter its critical region. Further,
whenever it enters (exits) the region, it subsequently exits (enters). The

specification of S is Sl A S2 where

Slz D[Pl?begin - ([~ P2?begin2] until [Pl?endll)]

1

SZ: D(Pz?beg'in2 — ([~ Pl?beginll until [Pz?end2])]

and the operator ‘until’ is to resolve conflicts. From this initial
specification (which has borrowed ? and ! from CSP) Manna shows
how CSP programs can be derived automatically. Browne et al.
[Browne 85] use a version of temporal logic, called CTL, to automatically
verify synchronous circuits. Accepting the behavioral specification given
in CTL, their technique is to generate a state-transition graph (a form
of net) with associated predicates against which various temporal
properties can be verified. This state-transition graph is a first level
implementation of the CTL specification of the circuit. The functional

model discussed in the next chapter has some characteristics in common

32

with temporal logic; however, the algebraic structure of events, the
quantitative aspects of time dependent functions are outside of temporal

logic formalism.

33

CHAPTER 3

FUNCTIONAL MODEL : FORMALISM

A formal mathematical system has three important components.
These are 1) formation rules dealing with the definition of objects
and rules for combining them; 2) a basic set of axioms, also called
assertions, regarding the subject matter to be discussed in the
system; and 3) effective procedures to determine the truth of
statements that can be made within the system. It is also agreed
that a proof in a formal mathematical system is a method to derive
the truth of an assertion from hypotheses according to given rules of
formation. Thus, when reasoning about the behavior of a computing
system, the first task is to embed the system in a formal model so
that the consequence closure can be looked at for all bchavioral

properties.

The classical approach to proving the correctness of sequential
systems is to model them as finite state transformers and embed the
set of input-output assertions in predicate logic wherein correctness or
contradictions can be established. In the context of distributed
systems, timing constraints induced by synchronization and
communication do arise. Several approaches for parallel programming

systems [Kahn 74, Hoare 85] extend the classical proof method by

34

inventing tools to model the behavior of parallel programs that are
independent of actual execution times. In such models, two systems
exhibiting the same output behavior on identical input streams will
be declared identical, although the nature and durations of
intermittent or interleaving computations may differ. Hence this

modeling approach may not be acceptable for real time systems.

As we remarked in Chapter 1, most of the reai-time systems
are concurrent (or distributed) systems with explicit timing constraints
over their computations and actions. In such systems, the metric
notion of time is used not only to compare the performance of
several implementations, but also to decide of the adequacy of the
system to its specifications. The functional model discussed here
fully explores the time dependencies between internal and external
events of a system. Once again, there are two admissible notions of
time. Researchers [Lampoit 78a, Hoare 85] whose primary objective
is an investigation of the structural (internal) description of
distributed systems have expressed the view that global clock is quite
expensive and even unnecessary.Hence they resort to relative times
mecasured by subsystem clocks. Under this assumption the model of
analysis is a partial ordering relation on the set of internal actions
of the system. The other view is the notion of time referring to an
absolute one, such as perceived by an external observer to the

system. So, in the logical level of description, the problem of the

35

relative times as measured by “local clocks” do not arise. This
latter view is quite consisteni with the traditional algebraic
specification methodology [Gehani 86], where internai operations are
masked from axioms so that the consequential closure can be derived
only from externally visible operations. This view is taken in
behavior descriptions; see Caspi [Caspi 86]. So, we follow this
tradition and refer to an absolute externally visible time in this

thesis.

Caspi and Halbwachs [Caspi 86] have introduced a formalism in
which time sequences (which indicate instances of event occurrences)
are monotonic increasing functions from integers to time (real
numbers). These functions admit pseudo inverses [Sachis 77] that
are interpreted as occurrence counters. Using conventional tools from
elementary function theory, they were able te¢ provide a rich set of
tools for the specification and proof of low level real time systems

arising in hardware systems.

We consider a generalized formalism in which events have
duration (finite or infinite) and illustrate with four examples the
reasoning power of this extended model. We believe that only a
limited set of primitive actions at the hardware level can be
instantaneous. As an example, the event send (receive) can be
considered to be instantaneous at the hardware level specification but

the actual transmission time is a function of message length. In

36

high level specification of real time or distributed systems, the events

send, receive and assign are not instantaneous events.

Thus it seems natural to associate events with intervals (in
addition to the semantics of operations) so that the end points and
the length of the interval denote the starting time, the completion
time and duration of the event. This generalized formalism is
sufficient to define and describe the behavior of events in low level
hardware systems and is necessary for a high level 1a0deling and
description of the behavior of real time systems, distributed systems
and network architecture. In summary, the proposed formalism

provides a single framework for a spectrum of abstract specifications.

3.1 Description of the Formal Model

The formal model is intended to support distributed and real
time behavior in the entire spectrum of systems extending between
hardware simulation and industrial process control such as robotics.
The primitive objects that we wish to characterize are formalized as
events. An event ristory is characterized by a sequence of intervals
denoting the occurrences of that event. For example, assigning a
value to a variable, sending and receiving messages are events in
the system. The activities or the occurrence of events are subject to
time constraints due to twe important factors: there is an

interaction with a physical process, such as sensor, that must be

37

read periodically; or, time 1is imposed by mutual exclusion,
synchronization and ordering of the events. Thus ‘what is the effect
of an event and when the event causing the effect occurs’ are

important to be considered together.

The occurrences, executions and the effects of events can be
continuous and need not be instantaneous. Although the entire
process itself may be nonterminating, the individual events making
up the process may be ideally viewed as happening continuously over
piecewise continuous intervals. Hence we identify time 1T with IR,
the real line. To deal effectively with extreme cases, we let -ﬁ = R

U {co} U {~ oo} and N = N U {0} U {+oo}.

3.1.1 Basic concepts of event and time

The basic assumptions on time and events are:

[A1] An event can occur any number of times within a system;
however within a finite period of time, there can be only a
finite number of occurrences.

[A2] An event may occur continuously between its start time and
completion time. So, each occurrence associates an interval with
it and the event history is given by the associated sequence of
intervals.

The following definition is based on these assumptions:

38

Let INC denote the set of all non-decreasing functions from ﬁ
to H Define the higher order functions TIME1 and TIME2,
TIMEj:Ea(-l\?—»ﬁ),j=1,2

where E is the set of all events and TIME2(e) > TIMEl(e). Thus
the set of all events is embedded into the set

L = {(fl, f2) | fl, f2 € INC, f2 > fl}.

The function comparison is done pointwise. Notice that (INC, <) is
a poset and every interval of this poset is a member of L.
Although every event in E is mapped onto an interval in L (and
hence a sequence of intervals on the real line), corresponding to an
arbitrary interval in L there may not be an event in the system.
By admitting empty (vacuous) events that do not have any effect in
the system and letting them correspond to such intervals, we can

overcome this and thi = identify E with L.

Example 1

Let a;(c;) and bi(di) denote the start and finish times of the
i-th occurrence of the event e(f). Then,

TIMEl(e)(i) =a,,

TIME,(e)d) = b, ,

TIMEl(ﬂ(i) =

I
©
-

TIME,()(i) =

[
o,

39
a, < bi » 6 < di . Figure 1 shows a sample of event occurrences.
b
a3 3
a3 b,
ag b, a3 by
d
c
1 1
C3 ‘—d3
<, d,
Figure 1

The following properties of TIME.i , j =1, 2 are assumed:

[t1] TIMEj(e), J = 1, 2 are monotonic non-decreasing functions.
[t2] TIME2(e)(n) = + 00, N # oo means that the n-th occurrence
of e is not yet complete.

TIMEj(e)(O) = - o0

THMEGQXR o) = + oo

Due to [t3] and [t4] it is sufficient to consider TIMEl(e)(n) and

T]IVIE2(e)(n), 1 < n < oo

The history of a variable in a system is captured by the
sequence of values and the times (with duration) of assignment of
such values. If v € V is a variable, then ASSIGN(v) is an event in
E and TIMEI(ASSIGN(V))(k) and TIMEZ(ASSIGN(V))(R) denote the

start and completion times of k-th assignment to v, a value from its

40

domain. Thus we have the functions,
ASSIGN : V - E
VALUE : V - (N - DOM),

where DOM is the set of values necessary for describing the system.

Although the time sequences associated with TIMEl(e) and
TIMEz(e) are monotonic non-decreasing, TIMEl(e)(n) and TIME2(e)(n)
need not correspond to the start time and finish time of the n-th
occurrence of e. That is, the durations of different occurrences of an
event need not be the same; however for every n, there is a k € KT-
such that [TIMEl(e)(n), TIME2(e)(k)] is the interval corresponding to
the n-th occurrence of e. Thus, there exists a bijective function Pe :
RI- — I_N- with Pe(O) = 0, Pe(°°) = oo such that the composite
function CTIMEz(e) = TIME2(e) o Pe is not in general monotonic, but
Yvn € N, [TIMEl(e)(n), CTIMEZ(e)(n)] define the intervals
corresponding to the occurrences of e. Since Pe is bijective, it is
easy to see that Vn, the intervals {[CTIMEl(e)(n), TIMEz(e)(n)]},
where CTIMEl(e) = TIMEl(e) o P;l, define the same set of intervals

as {[TIMEl(e)(n), CTIMEz(e)(n)]}.

An event e is called single occurrent if TIMEI(e)(n) >

TIMEz(e)(n—l), n > 1,

41

Example 2
a3 bl
3 b, .
as 3
ar bs
ag bs
36 bg a7 by

Figure 2

The occurrences of e are the intervals [an, bn], n > 1; Figure 2
shows the first seven occurrences. The sequences and the bijective
map are:

TIMEl(e) > {al, 8, 8gy 8 85 8¢ Ay vr}

TIME2(e) — {b2, bl’ b 4 b3, b6' b7, b5, v}

Pe : N - N,
Pe(l) = 2, Pe(2) = 1, Pe(3) = 4
Pe(4) = 39 Pe(5) = 7’ Pe(6) = 57
Pe(7) = 6, ..

The next two examples show the usefulness and the expressive

power of the formalism in the specification of timing constraints.

Example 3

In robotics certain global sensor variables must be bound to
particular sensors. The value of the sensor variable at any instant
is the current measurement of the sensor, Such values may have to
be monitored continuously or once measured may remain constant
over a period of time. Thus, if we want to state that sensor
variables are piecewise constants (step functions) with periodicity 6,

we can express as:

vn € N, TIMEl(ASSIGN(s))(n + 1)
= CTIME2(ASSIGN(S))(n) + 6.
Hence, Vt € [CTIMEz(ASSIGN(s))(n). TIMEl(ASSIGN(s))(n + 1)]

the value of s, namely VALUE(s)(n) is a constant.

Example 4

Effector variables denote the parameters of a robot’s end
effectors and a change in the value of this variable causes the robot
to move. Since the end effector should move continuously, the
function y = f(x) describing the motion should be computed in real
time; that is, Yy = f(xn) where Y X, are n-th values computed for
y and x respectively. However, a response time & between the
receipt of the value x and the sending of the corresponding value y
(to the end effector) is frequently assumed. ‘Three different

interpretations are possible:

43

a) The n-th value of y must be computed from the n-th value of
xX:
Vn € N, VALUE(y)(n) = fIVALUE(x)(n)) and
CTIME2(ASSIGN(x))(n) < TIME, (ASSIGN(y))(n) <
CTIME,(ASSIGN(x))(n) + §

b) The value of y may be obtained at a lower frequency than the
value of x, but a value of y cannot be computed from a value
of x issued at time exceeding 6 :
vn € N, 3m € N,

VALUE(y)n) = f(VALUE(x)(m)),

CTIMEZ(ASSIGN(X))(m) < TIMEI(ASSIGN(y)(n) <
CTIME2(ASSIGN(x))(m) + 8,
c) The value of y must be computed more frequently than x.
Vm € N, In € N,
VALUE(y)n) = fIVALUE(x)m)),
CTIME2(ASSIGN(x))(m) < TIME2(ASSIGN(y))(n) <

CTIME2(ASSIGN ())m) + 6.

3.1.2 An Algebraic Structure for E

An algebraic system is a set together with certain relations and
operations defined on the set. An ordered set as well as the set of

complex numbers are simple examples of algebraic systems. In this

44

section we shall first make E an algebraic system and then

characterize its properties.

Two events ¢, f € E are equal, written ¢ = f, if TIMEl(e) =
TIMEl(f) and CTIMEz(e) = CTIME2(f). Note that two equal events
may have different effects in the system and hence are not identical.
For example, if for two variables x, y in the system,
'I‘IMEl(ASSIGN(x))(n) = TIMEI(ASSIGN(y))(n) and
CTIMEZ(ASSIGN(X))(n) = CTIME2(ASSIGN(y))(n) then the two events
of assigning values to x and y are equal but not identical events.

In short, equal events simultaneously occur all the time.

For two events e and f in E, denote e < f, if Vvn € N, the
start and completion times of the n-th occurrence of e do not happen
earlier than the start and completion times of the n-th occurrence of
f. Notice that the start time of e may happen before the completion

time of f. Hence

e<f |if [TIMEl(e) > TllVIEl(f)] A [CTIME2(e) > CTIME2()‘)]

At first, this notation <’ on E may look counter intuitive.
However, interpret “e < f’ as a directed edge from e to f (with e
above f in Hasse diagram) and “greater than or equal to” on the
real line drawn vertically.

Based on the definition of “<” and our discussion on time functions,

45

we state the next theorem.

Theorem 1
i) (E, <) is a poset
ii) Let INC = {f|f : N - H, f is monotonic non-decreasing}
and L = {(f}, f, P) | f;, f, € INC, P : N - N, P is bijective,

f2 > fl, f2 o P > fl}'
The poset (E, <) is isomorphic to the algebraic system L.

Two events e and f in E are not related by < if and only if
there is an interval in the sequence characterizing e (/) which covers
the corresponding interval characterizing f (e). That is, 3 n such
that
either TINIEl(e)(n) < TIMEl(f)(n) < CTIMEz(f)(n) < CTIMEz(e)(n)
or TIN.[El(f)(n) < TIMEl(e)(n) < CTIMEz(e)(n) < CTIME2(f)(n).

In order to compare every pair of elements in (E,<), we define
glb, the greatest lower bound and lub, the least upper bound for
events in E. For two events e, f € E, define g € E, g = glble, f):
TIMEl(g) = max{TIMEl(e), TIMEl(f)}

CTIMEZ(g) = max{CT[MEz(e), CTIMEz(I)}.
Both TIME2(g) and P p are obtained from CTIMEz(g) :
TIMEZ(g) is the sorted sequence of CTIMEz(g) and Pg is the

bijectien forcing the sorted sequence.

Similarly, we define 2 = lub(e, f) :

46

TIMEl(h) = min{TIMEl(e), TIMEl(f)}
CTIME2(h) = min{CTIMEZ(e), CTIME2()‘)}.
The functions TIME2(h) and Ph are obtained from the sorted

sequence of CTIMEz(h)(n), n > 1

It is easy to see that (E, <, glb, lub) is a lattice having a
greatest element. The lattice is no:i complete because it does not

have a least element.

Since event occurrences need not overlap, we now study the
structure of E under a strict precedence relation ‘<<’ (follows). We
say that an event e ‘follows’ an event f and write e << f, if ¥n ¢
N, the start time of the n-th occurrence of e is greater than or
equal to the completion time of the n-th occurrence of f :

e < fif CTIMEz(f) < TIMEl(e)
The next theorem gives two properties of <<,
Theorem 2
i) e<<<f—e<fF
(i) (E, <) is an irreflexive poset.
Proof
(i) e «<f = TIMEl(e) > CTIME2(ﬂ
= [TIMEl(e) > TIMEl(f)] A [CTIMEz(e) > CTIMEz(f)]

=>e< f.

47

(i) The relation << is irreflexive. Let de and d 7 denote the
sequences of duration of events e and f respectively. We have,
e<<fHA(f<<e > [TIME,(e) > TIME,() + df] A

[TIMEl(f) > TIMEl(e) + de]
= TIMEl(e) > TIMEl(e) + de + df
= d, = df = (.
= TIMEl(e) = TIMEl(f) = TIME2(e) = TIMEZ(f)
=>e =f
Hence << is antisymmetric. It is easy to prove that << is
transitive. This proves that (E, <<) is an irreflexive poset.

In general, any two events e, f in E need not have a glb in (E,<<);

however, in later section, we give a criteria to be satisfied by e, f

for glb(e,f) (under the relation <<) to be a member of E.

3.1.3 Operators, Relations, Counters and Properties

In this section we give several operators and time dependent
functions and then prove new theorems characterizing events in our
generalized formalism.

3.1.3.1 Delay Relation and Shift Function

In contrast to the original model of Caspi [Caspi 86], the
generalized model admits a relation as well as a function to describe
delayed events. For events e € E such that Pe =1 and for 6§ > 0,

we define the delay relation A 6(e) as follows :

48

(ef) € /_\.6(e) if Pf =1 and TIMEl(f) = TIMEz(e) + 6.

It is clear that f << e if (e,f) € Aé(e).

The shift function S, § > 0 is defined on E by

Ly
Sé(e) = fif TIMEl(/) = TIMEl(e) + & and TIME2(f)

TIMEz(e) + 6.

It is clear that S 5 shifts every occurrence of e by a constant
amount 6 and hence S 6(e) < e. If § exceeds the maximum duration
of all occurrences of e, S6(e) << e.

3.1.3.2 Subevents and Subsequences Relations

An event f is called a subevent of e, f C e, if there exists an
increasing function r € INC such that
TIMEl(/) = TIMEl(e) o r and
CTIME,(f) = CTIME,e) o r.
Example &

In Figure 3, the occurrences of an event e and a subevent f are
shown.
TIMEl(e) - (al, 85 8g, 84, g, a6)
TIMEZ(e) - (bl' b3,

P = 123456
¢ 132546

TIMEl(f) = (az, a, a5)

b2’ b5, b4, b6)

TIMEz(f) = (b2, b5, b 4)

r:r(l) =2 r(2 =4, r3) =56

49
It is easy to verify that
TIMEl(f) = TIMEl(e) or
CTIMEz(f) = CTIME2(e) or

%4 b,
a1 b1 a5 bS
as b,
2) a b
a. by 6 6
a2 b?_
ay b,
ag bg
Figure 3
Theorem 3
f g e = f S e’ iff Pe = I.

Proof

Let Pe = [. Then,
fCe= [TIMEl(f)(n) = TIMEl(e)(m)] A
[CTIME,()(n) = CTIMEZ(/)(m)], m > n
= [TIMEl(f)(n) > TIM:El(e)(n)] A
[CTIME,(N(n) 2 CTIME,(N(n)]

= e < f

Conversely, assume that f C e = f < e, ¢, f € E. That is,
every subevent f of e is related to e by the relation <. If Pe = [is

not true, there exists a smallest k (> 0) such that

1

50

C‘i‘IMEZ(e)(k + 1) < CTIMEz(e)(k).

Define f such that, for j, 1 < j < k - 1,
TIMEI(I)G) = TIMEl(e)(j)
CTIMEZ(/)(j) = CTIME2(e)(j)
TIMEI(/)(k)

TIMEl(e)(k + 1)
CTIME2(/)(k) = CTIME2(e)(k + 1).

Now, f C e holds but f < e is false. Hence Pe =] must hold.

3.1.3.3 Counters

Loose and strict counters are inverse functions to the time
functions. Using the Galois representation results [Sanchis 77], we
know that TIMEl(e) and TIME2(e) are infinitely supremum and
infinitely infimum distributive functions. That is, for any subset E1
of E,

sup{TIME, (e) | e € E;} = TIME, {sup(e)le € E,}
and

inf{TIMEz(e) | e € El} = TIME2{inf(e)|e € E;}

It is known that such functions admit inverses; that is, there are
two functions TIMEl(e)_, _TIMEl(e) which represent loose and strict
counters:

TIME, ()~ = LCOUNT,(e) : T — N where

LCOUNTl(e)(t) is the number of initiations of e up to and

51

including the time t.
“TIME, () = COUNT,(e) : I — N, where

COUNTl(e)(t) is the number of initiations of e strictly beforc t.

In the same fashion, we can define two inverse functions for
TIMEz(e):

TIME,(e)" = LCOUNT,(e) : Tl — N, where

LCOUNTz(e)(t) is the number of completed occurrences of e¢ up

to and including t.

“TIME,() = COUNT,(e) : IT — N, where

COUNT2(e)(t) is the number of completed occurrences of e

strictly before t.

The next theorem summarizes the precedence relations on

counters induced by the precedence relations on the events E.

Theorem 4
(1) For e € E,

COUNTl(e) < LCOUNTl(e) and COUNT2(e) < LCOUNTZ(e)

2 Ife feE and f < e then the precedence among the counters

is shown in Fig. 4, where x ... — y means x < Y.

e
52

r--»LCOtiNTl(f) —_ LCOAUNTl(e)-<—-—'
I | | |
| ! ! :

1]

- -- -—»LCOUNTz(f) —_— LCOUNTz(e)4- == ==
| | | :
| |
. -
| L - - COUNTl(f) —_ COUNTI(e) - -4 |

A A
| i | |
! |

i |

|
L — — ——COUNT,(— COUNT,e) —— — —

Figure 4

Proof

(1) follows from the definition.

Proof of (2): We will prove

COUNT2(f) < COUNTl(f) < COUNTl(e) < LCOUNTl(e)

and

COUNT2(/) < LCOUNTz(f) < LCOUNTz(e) < LCOUNTl(e)

and leave the rest to the reader. It is sufficient to prove that
COUNTl(f) < COUNTl(e), LCOUNTl(f) < LCOUNTl(e)
COUNT2(f) < COUNTz(e), LCOUNT2(ﬂ < LCOUNTl(e)

Let COUNTl(ﬂ(t) = k, t > 0; that is, there are k initiations of
f strictly before time t. Hence the k-th initiation must have

occurred at time t° < t; that is,

53

TIMEl(f)(k) =t, t <t

But f < e = TIlVIEl(f)(k) > TIMEl(e)(k), Vk € N
=> TIMEl(e)(k) <t<t

= COUNTl(e)(t) >k = COUNTl(f)(t).

Next let us prove COUNTz(f) < COUNTz(e). If COUNTz(ﬂ(t) -
k, t > 0, then it means that the event f has terminated k times
prior to time t. Hence

CTIMEz(f)(k) =t,t' <t

But f < e = CTIMEz(f)(k) > CTIMEz(e)(k), Vk € N
= CTIMEz(e)(k) <t <t
= COUNTz(e)(t) >k = COUN’I‘2(f)(t).

Similar proof applies to other cases.

In general, [COUNTl(e) < COUNTl(f)] and [COUN'1‘2(e) <
COUNTz(f)] does not imply e < f; however, if Pe = [and Pf =]

then the result is true.

There are several precedence relations on the counters induced
by the strict precedence operator << on E. For example, e << f

implies:

54

COUNTz(e) < COUNTl(e) < COUNT2(ﬂ < COUNTl(f)
and

LCOUNTZ(e) < LCOUNTl(e) < LCOUNT2(ﬂ < LCOUNTl(f).

However, [COUNTl(e) < COUNTz(f)] — e << fif Pf = L

We state without proof the next theorem expressing delayed and
shifted events in terms of original event counters.

Theorem 5

ForeeE,6>O,f=Sée
COUNTl(f) = COUNTl(e) o (I - &
COUNT2(ﬂ = COUNTz(e) o I - &

LCOUNTl(f) = LCOUNTl(e) o (I ~ 8

LCOUNT2(,‘) = LCOUNTz(e) o (I - 9,

where I is the identity function. If (e,) € As(e), then
COUNTl(/) = COUNTZ(e) o (I -8

LCOUNTl(ﬂ = LCOUNTz(e) o (I — 9.

3.2 Sum of Events

If an event g is initiated whenever e is initiated or f is
initiated and the initiated occurrence of g terminates when the
corresponding occurrence of e or f terminates, then g is called the
sum of events e and f. Hence it follows that the TIMEj sequence of

£ is the merge sequence of the TIMEj sequences of ¢ and f; a more

55

formal definition follows Example 6. Based on the merge sequence,
a definition of the sum in terms of the counters can also be given:

g is the sum e + f if

LCOUNTl(g) LCOUNTl(e) + LCOUNTl(f)

LCOUNTz(g) LCOUNTz(e) + LCOUNTz(f)
or equivalently
COUNTl(g) = COUNTl(e) + COUNTl(f)

COUNTz(g) = COUNTz(e) + COUNTz(f).

The next example illustrates the computation of e + f from e

and f.
Example 6 .
b
b
as 2
- b 1
e ajz 3 ag b ~6
az 4
Cl dl
f €2 K °8 e
C3 {13
Sy ~d4 3 dg
Figure 5

From the occurrences of events e and f shown in Fig. 5, we
have

TIMEl(e) — {al, g ag, d, ag, a6}

56
’I‘IMEI(/‘) - {cl, Cor Cgs Cys Cp c6}
TIMEz(e) — {bl’ b3, b2, b5, b & b6}
TIME2(/) - {d2, dl’ d4, d5, d3, d6},

P=123456
e 132646
P-123456
f- 12158346
Let g =e +f

TIMEl(g) = {al, 8gs Cpy Bg, Co By, Cgy 8 Cyy g Cp c6}
TIMEz(g) = {bl’ b3, d2, b2, dl’ d4, b5, b4, d5, d3, b6’ d6}
P = (123456 789101112)
g 145238107611 912
In general, we compute g = e + [as described below:
1) TIMEl(g) = merge{TIMEl(e), TIMEl(f)}
Among the occurrences having the same starting time, the order
is defined depending on their corresponding completion time.
TIMEz(g) = merge{TIMEz(e), TIMEz(f)}
2) Define the functions (M1 is total, M2 is partial)

M, : N ->{1, 2} x N

1
M2:{1,2}xN—>N
such that
Ml(n) = (1, i), if the n-th element in TIMEl(g) sequence is the i-th
element from TIMEl(e) sequence.

= (2, j), if the n-th element in TIMEl(g) sequence is the j-th

element from TIMEl(f) sequence.

57

M2(1, i) = n, if the n-th element in TIMEz(g) sequence is the i-th
element from TIME2(e);

M2(2, Jj) = n, if the n-th element in TIMEz(g) sequence is the j-th
element of the sequence TIME2(f).

The bijection P p is defined by,

Pg(n) = MyQ, P @), if My(m) = (, i)

= M, (2, Pf(i)), if M) = (2,)

It is clear from the definition and Example 6, that ¢ C e + f
and f Ce + f.

Further for e, f € E, if Pe = I then glb(e,/) and lub(e,) can be

+f
defined in the poset (E,<<) as follows :
& = glble,f) where
TIME,(g) = max {TIME,(e), TIME,(N},
TIME2(g) = TIMEl(g),
and Pg = I
h = lub(e,), where
TIMEl(h) = min {TIMEl(e), TIMEI(/)},
TIMEz(h) = TIMEl(h),
and Ph =L

Then, g, A € (E, <<).

A complete characterization of the sum structure is given by five
theorems proved in the next section. Now, we shall show that the

extended formalism admits several other relations and functional

58

dependencies.

For every j € N, we define an integer event j as
- 00, n Sj
TIMEl(i)(n) =
+ oo no>;j
’I‘IME2(i)(n) = TIMEl(i)(n)
and

Pj = I, the identity function.

In particular the integer event 1 is characterized by (TIMEl(I),
TIMEl(l), I), where
TIMEI(I) -+ (—o00, +00, +00, ...)

TIME2(1) « (~o00, +00, +00, ...)

Thus for any event e € E with
TIMEl(e) - (al, a, 8g, o)
TIMEz(e) - (bl’ b2, b3,)

we have f = e + 1 defined by the functions

TIMEl(/) (—o0, a5, 8o o)

TIME2(f) (—o0, bl’ b2,)

1, n-=1
PAn) =
f(Pe(n-1)+1,n>1

It is easy to show that
e <e + 1iff Pe = I,

and e << e + 1 iff e is single-occurrent.

69

Several useful functions arise from functional compositions of
counter functions with those already defined. Three of them are

described next.

[F1] A variable in the system has a sequence of values, The
value of x at any instant should be dependent on the ecvent
ASSIGN(x), especially its completion time.

Thus there are two functions

CURRENT(x), LCURRENT(x) : Il — DOM(x)

defined by

CURRENT(x) = VALUE(x) o COUNT,(ASSIGN(x))

LCURRENT(x) = VALUE®) o LCOUNT,(ASSIGN(x)).

Hence if e = ASSIGN(x) and COUNTz(e)(t) # LCOUN'I‘Z(e)(t),
then LCURRENT(x)(t) is a more recent value of x than
CURRENT(x)(t). Moreover if y = f(x), then CURRENT(y) and
LCURRENT(y) will have three interpretations depending on the

renewal period as explained in Example 4.

[F2] For every event e € E, we define LASTl(e), LAS’I‘2(e) and
NEXTl(e), NEXTz(e) giving the last and next occurrences of e:
LAST;, LAST,, NEXT,, NEXT, : E —» (Il — Il
LASTl(e)(t) =t if the last initiated time of the event e
strictly before t was tl.

LASTz(e)(t) = t2, if the last completed time of the event e

strictly before t was t2.

NEXTl(e)(t) = t3, if t3 is the first initiation time of e strictly
after time t.

NEXTz(e)(t) =t & if t 4 is the first completion time of e strictly
after time t.

It is easy to see that

LASTl(e) = TIMEl(e) 0 COUNTl(e)

]

LASTz(e) TIME,(e) o COUNT,e)

NEXT,(e) = TIME, (e) o LCOUNT, (e + 1

NEXT,(e) = TIME,(e) o LCOUNT,(e + 1).

Some applications require the starting time of the last completed
occurrence of e strictly before t or/and the starting time of the
first completed occurrence of e strictly after t. These are given
by

SLAST,(e) = TIME (&) o P, o COUNT,(e)

and

SNEXT,(e) = TIME,(e) o Pe_l o LCOUNT,e + 1).

By relaxing strictly before (or strictly after) to include the

time of observation, we get the following six functions:

LLASTl(e) TIMEl(e) o LCOUNTl(e)

LLASTz(e)

TIME2(e) o LCOUNTz(e)
SLLAST,(e) = TIME,) o pe‘l o LCOUNT,fe)
LNEXTl(e) = TIMEl(e)) COUNTl(e + 1)

61

LNEXT2(e) = ’I‘IMEz(e) o COUN'I‘2(e + 1)

SLNEXT,(e) = TIME,(e) o pe‘l o COUNT. (e + 1)

ol
These functions show the importance of integer event and event
sum in their definition.

[F3] A condition C is a function from IT to {true, false} with
C(~o0) = true. If x is a variable with DOM(x) = {true, false},
then CURRENT(x) and LCURRENT(x) are conditions. For e, f
€ E,

(LASTl(c) = LASTz(f)) and (COUNTz(e) = COUNTz(I)) are

conditions.

An event f which is initiated whenever C is true at the
completion of e, where Pe = I, is denoted by e | C. Thus a formal
definition is the following:

Let
X={f|fe€ekE 3r: N — N such that

[r o COUNTz(e) = COUNTl(f)] A[C o LASTl(f) = true] A

[[LAST.(e) # LAST;()] — [C o LAST (e) = false]l}.

Now, every member of X is an event e | C; that is, X denotes a
class of events which begin whenever e finishes and C is true,

It is clear that if f=e | C and g = e | ~C then

1. COUNT2(e) = COUNTltf) + COUNT, (g

2. Co LASTl(f) =~C o LASTl(g) = true.

62

Let e ls . denote an event f which starts whenever e starts
and the condition C is true. We define
Y = {f| feE 3 r: N — N such that
[r o COUNTl(e) = COUNTl(f)] AICo LASTl(f) = true] A
[[LASTl(e) + LASTl(f)] — [C o LASTl(e) = false]]}.
Any member of Y is an event e Is C. If f=ce ls C and g =
e Is ~C then

COUNTl(e) = COUNTl(f) + COUNTl(g).

Based on these functions we can give a rigorous interpretation
to expression evaluations in real-time systems. Let g = g(xl, Xy ooy
xn) be a function of n variables. Denoting LCURRENT(xi)(t) by Y
we can extend LCURRENT to g as

LCURRENT(@)() = £(y; » Yg » wa ¥ & € IL

When time explicitly occurs as a parameter in g, g = g(x1 » Xo y e
X T), then for a t € I, g(T) = g(y1 » Yo v s Y o T) is a
function of time T. As t varies over II, {g(T)} gives a collection of
time dependent functions exhibiting different behavior over T € [Tl’
Tyl For example, if g = aT + bT%, e, = LCURRENT()(t), b, =

LCURRENT(b)X(), ther g, = a,T + b1T2 and g, = a,T + b ™ ar

a1 2 2
two functions of T which when evaluated over [Tl, T2] may produce

different effects.

63

Continuous monitoring of significant events give rise to exception
handlings in real time systems, Thus, if S1 must be activated when
a condition C becomes true, S1 must remain active when C remains
true and S1 must be aborted and 82 simultaneously activated when

C becomes false, the specification can be given as follows :

Let clock be the event of ticking of the system clock. Let 8

and S be the events denoting the invocation of S1 and 82

respectively.

s, = clock | C A [COUNT2(31) = COUNTl(sl)]

clock | ~C A [COUNT,_(s,) = COUN’I‘I(sz)]

32 2(32
[[COUNTl(sl) o LASTl(sz) # COUNTz(sl) o LASTl(s2)]
— [TIMEz(sl) 0 COUNTl(sl) o LASTl(sz) = LASTl(sz)]]

During an occurrence of the event s,, if C becornes false then we

1
define the completion time of that occurrence to indicate that sy is
aborted.

In a recent paper Clark [Clark 88] has given a similar formal

specification of watchdog timer based upon CSP and the me too

[Bennett 88] method.

3.3 The Structure of Sum of Events

For our discussion in this section we let e, = TIMEl(e)(i), clf =
CTIMEz(e)(i), i>1 e € E. Moreover we identify an event e with

these two time sequences and let dur(ei) denote the duration of i-th

64
occurrence of e; that is, dur(ei) = CTIMEz(e)(i) - TIMEl(e)(i), i> 1.

For instantareous events, the sum is order preserving; but this
is not so in our model. The following theorems give a set of

sufficient conditions for preserving order in the sum of events.

Theorem 6

For any three events e, f, g € E,e << f => (e + g << f + g

ifforeveryn,figgi, giSei, and Pf=Pg=I, Pf+g=I'

Proof
Let h =e +g, k=f+g
Assume that for every i, f; < Bp 8 < e holds and Pf = Pg =

I, P =]. We have to prove that e << f = (e + g) << (f + 2).

g
Recall that the time sequences for sum of events is obtained by

merging the individual time sequences. For any fixed i, if we let X

= {(h,, h . hi}, Y = {kl, ko, ..., ki}, depending upon whether

1 2 v 2’
hi(ki) is a member of the sequence for TIMEl(e) (or 'I‘IMEl(f)) or
TIMEl(g), we must consider several situations and prove hi > ki,

> 1L

-

Case 1

Let hi = By ki = ft for some s, t > 1. Clearly, s is the
number of g's in X and t is the number of f's in Y and s > [—é—], t

= f%] If s = t, there is nothing to prove. If s > t, then fs ¢ Y

65

due to the fact that the sequences are monotonic non-decreasing.

Hence ft < fs < g, = hi' This proves ki < hi‘ If s <t then s >

t, where 8" =i — s, t" =1 - t. Since Y has (i — t) g’s, Ei_t+1

¢
Y. This implies that f < g b4l Since P, = I, it follows that f’t

k

< g 41’ Moreover (i — t) < (i — s) implies (i — t + 1) < (i — 8);

1—

the fact that X has (i — s) e’s implies e, € X. Hence

i—t+1

€ i1 < 4 that is,
ki = q, = Bi_t+1 = ®i—t+1 (by hypothesis)
< gs = hi°

Case 2
Let hi = e and ki = g If s = t, e > B by the hypothesis.

If s > t, gsé Y. Since Pk = 1, g't < g's and gjs < e by

hypothesis. So it follows that

If s < t, because of the fact that there are only (i — t) fs in Y,

i1 €Y Since P, = I, g < fi_,,q The fact that there are (i

- s)gsin Xand (i — t + 1) < (i — s) show that i (41 € X;

that is, B _t+1 < e Combining these results, we get
k=g <6 41 S8 g1 S8 N
Case 3

Let hi = e and k. = ft. If s = t, then since e << f, f's < e

Ifs>t,thenes>et>ft Ifs<tanngéY,thenft5g8$

66

e. If s <t and g € Y then we claim that g € X; under this
claim, e > g > f't and hence hi > ki follows. To prove the claim,
notice that ki = f‘t and g, € Y implies that i > s + t. Since the
number of e's in X (under this situation) is only s, the number of

g’s in X must be at least t; that is, g € X.

Case 4

Let hi = B, and ki = 8 We consider two subcases depending

on whether or not e belongs to X.

If e, € X, then e, < g By using the hypothesis g; < e it
follows that

ki=g(.set;sgs=hi'

If e, ¢ X, then we claim that fs & Y; under this claim, g; <

f < g That is, ki < hi' Now to prove the claim, observe that

=
i

g, and e, ¢ X implies that i < s + t. Since ki = g the
number of fs in Y is strictly less than s. This proves the claim
that fs ¢ Y.

This completes the proof.

The event occurrences shown in Fig. 6 suggest that e < f does
not imply e + g < f + g; the next theorem provides a set of
sufficient conditions for preserving the sum of events under the

partial order <.

67

€4 4
g ¢3 €5 ds
Cc
y)) d, .
Cl 1
ay bl
3y by ag be
23 b3 £
3; ® 5 b5
Kl ‘.’1 xz y2 8
xg-———-—}':; x6 Y‘v‘
Theorem 7 Figure 6

Let MAX = max{dur(fi)} and MIN = min{dur(ei)}.
Fore,f,geE,e5f=>e+g5f+gifMAX_<_dur(gi)_<_MIN.
Vi and P g = I
Proof
Let MAX < dur(gi) < MIN, i > 1 and Pg = I, for some g € E.
Denote the sums e + g and f + g by h and & respectively. We will
prove that e < f = h < k. It is sufficient to prove that,
Vi,hizkiandh'izk’i.

Let X = {hl’ h2, e hi} and Y = {kl’ k2, - ki}. Assume that X
has r elements from TIMEl(e)(n) and Y has s elements from
TIMEl(ﬂ(n), n > 1. Since e < f, it follows that r < s; thus there

are only two cases.

68

Case 1 r < 8.

There are (i — r) elements from TIMEl(g)(n) in X and i - s)
elements from TIMEl(g)(n) inY, @ -1 >GG - s)

11 k. =f, h, =e_
i g i r

< h, .

Clearly, ki < Bi_gi1 S By i

ki
i

ki + dur(ki)

f + dur(f)
8 5
Since MAX < MIN,
dur(fs) < dur(er)
Hence,
fs + dur(fs) <e. + dur(er) < hi
1.2 ki = fs, hi = g_,
Since Bi_s41 & X,
ki< 8 g1 S8 " by
ki = ki + dur(fs) < hi + dur(gi_r),
Since dur(gi_r) > MAX
< hi + dur(hi) = hi .

13 k. =g. ,h =c¢e

i i-s* 1 r
k. = < g.
i gl—S gl—r’
< e =h
r i

ki = ki + dur(ki)
= ki + dur(gi_ s)

<e + MIN < e + dur(er)

69
< h;
=i

14 k -g o b =g,

Since Pg= ITand G — 1) > (i — 8),

ie., ki < h;
Case 2 r = s.
Once again there are four subcases.

2.1 hi = ki il T - It is easy to see that hi = ki'
2.2 hi=e,k =f.

Sincee <f,e >f ande >f,8 >1
5 8 s 5

So the result follows.

23 h =g,k =f

h =g >

> f =k
1

e
i-s = 5= s i
2

Since dur(gi) MAX, dur(gi_s) > dur(fs);

that is, h. h. + dur.)
i i i

v

ki + dur(gi_ s)

> k. + dur(f) = k. + dur(k.) = ki
i 8 i i

1

24 hi = e, ki =g

hi = %% 2 Eis ki
Since dur(gi_s) < MIN, dur(gi_s) < dur(es)
and hence hi = hi + dur(hi)

= e + dur(es)

[
28

> g

i T dur(gi_ s)

70
The next theorem gives sufficient conditions for preserving the
sum of events under the partial order <<.
Theorem 8

Let e << f, g << h. IfPf+h=I, then e + g << f + h.

Proof

Let p = e + g and ¢ = f + h. It is sufficient to prove Vi > 1,

=]
v

ql For i > 1, let
X = {pl ’ p2 y ey Pi}

Y = {q]. ’ q2 3 ey qi}-

Ifszt,pi=eszetzfi;=qi,sincee<<f. Ifs<it X

has i — s) g's, Y has (i — t) h's and (i — t) < (i — s). Hence @

- t+1) < (@G - s) and hi—t+1

> hi—t+1 > ft = q since Pf+h =L

Case 2

& Y. Thus, P, = e > 8 > hi-—s

Let P = & and qi=h IffséY, due to e << f we have e

¢
> f's and due to Pf+h =1, fs > h;. Hence e > h; is proved. If
fs € Y, then X has (i — s) g’s, i — s) > t. Hence g € X and g

<< h implies e > g > ht'

71

Letpi= s’q1=ft' IfhséEY.then due to g << h and

g .
>h >f. IfhseY,(i-—s)ztimpliese € X

Peop =1 8y 2 by 2 & ¢
and e << f implies g, 2 e 2 f't
Case 4
Let P; =8 » Q = ht' If s > t, due to Pf+h = I, it follows
thatpi=gszh; 2h;=qi. If s <t then X has (i — 8) e's

and Y has i — t) f5, G4 — 8) > (G — t). It is clear that (i — t +

1) < i ~ s) and fi—t+1 & Y. Since e << f and Pf+h = I, we have

P = &g 2 s 2 fi—s 2 fvi—t+1 Z ht =9
Since i is arbitrary, Vi we have proved P, > qi ; that is, e + g
<< f + h.

If two events follow the event g, the following theorem gives

sufficient conditions under which their sum would follow g.

Theorem 9
Ve, , g8 € E,e<< gand f<Kg=>e + f<<g
if TIME2(g)(n) < TIMEl(e)(k), and TIMEz(g)(n) < TIMEI(/)(k), n, k

> 1
The proof is simple and is left to the reader.

The next and final theorem of this section proves the strict

precedence additivity of the last theorem under subadditive property

72

of strict counters.

Theorem 10

For events ¢, f, g € E, let
COUNTl(e) + COUNTl(f) < COUNTz(g).
Then e << g and f << g = ¢ +f<<ging= |
(The theorem asserts that for each occurrence of g there is utmost
one occurrence of e or one occurrence of f but not both.)
Proof
Lete<<g,f<<g,Pg=Ianda=e + f. SincePg=I,
COUNTz(g)(gi) <@i- 1.
COUNT, (e)Xt) + COUNT (fit) < COUNT,@)t), ¥t € II
So, for t = gi we have
COUNTl(e)(gi) + COUNTl(f)(gi) <i-1

Hence a, > gi, i > 1. This proves that a << g.

73

CHAPTER 4

Specification and Proof of Correctness : Examples

The tools of the formalism introduced in Chapter 3 are applied
here in formulating the specification and deriving the proof of
correctness of four examples:

1) a distributed asynchronous bus arbiter design

2) a multiple copy update problem in distributed databases

3) assembling parts with two arms of a robot

4) the design of a navigation controller for multiple robot workplace
These problems are chosen to illustrate the different levels of
applicability of the formalism we have proposed. Time dependent
actions that arise in database examples are causal, and those arising

in arbiter and robotics are due to (physical) real time constraints.

4.1 The Design of a Distributed Bus Arbiter

An asynchronous distributed arbiter is to be provided for n units
Ul’ U2, v Un’ so that the bus connecting the units can be
allocated exclusively to a unit according to a priority rule. Each
unit Ui is associated with an arbitration element. Since there are
no other centralized resources (such as clocks or shared memory), the

units must cooperate among themselves. This is achieved through

74

communication among the arbitration elements and the knowledge of

status of the bus and the name of the requested unit.

The communication among the arbitration elements and the final
allocation of bus with emission of acknowledgement are done
according to the four rules:

1) (Exclusivity) At ea.h time, at most one unit is allowed to use

the bus.

2) (Reactivity) The bus is allocated to a unit only if it requested
the bus through its arbitration element.

3) (Priority) When the bus is free and is requested by more than
unit, the unit with highest priority (say, the one having
smallest index) is granted access to the bus.

4) (Promptness) At no time the bus can be both idle and
requested (by a unit).

These requirements are formalized next; the summation sign &

n

mecans).
i=1

Problem Specification

Events
req, : the event of Ui requesting the usage of bus.
acki : the event of emitting an acknowledgement to Ui by its

arbitration element.

reli : the event of releasing the bus by Ui

76

ace; : the event of Ui accessing the bus
dec : the event of decision making process of the arbitration
elements.

We assume the following two conditions about the underlying

communication system.

[Al] For 1 <i < n, reli <«< ace; < acki
[A2] Messages are received in the order in which they are sent.
Exclusivity

At any instant t > O, the number of units owning the bus is

at most 1:

0< [z COUNTl(acci)(t) - I COUNT2(reli)(t)] <1

That is,

z COUNTz(reli)(t) <ZI COUNTl(acci)(t) <Z COUNT2(reli)(t) + L

Reactivity
Bus access is granted to a unit only after the unit requests for
the usage of the bus:

acki << reg; fori,1 <i<n

Priority
Access to the bus should be granted to Ui only if at the

starting time of the corresponding decision making event, the bus

76

was free and no unit having higher priority than Ui requested for
the usage of the bus:

For 1 < j<i<n,

COUNTl(ackj) o LASTl(dec) o LASTl(acki) = COUNT2(reqj) o
LASTI(dec) o LASTl(acki)

Thus, for some t > 0, t, = LASTl(acki)(t) gives the instant of

1
initiation of the last acknowledgement by the arbitration element of

Ui’ The instant t, = LASTl(dec)(tl) is such that t, < t, and the

2 2 1

decision making process was last initiated at that time. Now,
COUN'I‘l(achj)(tz) = COUNTZ(reqj)(tz), j <i, 1 <j < n, asserts that
no request from a unit of higher priority is outstanding at this
instant. Hence the specification is a correct description of the
priority requirement.

Promptness

At any time t, the bus cannot be both idle and requested.

i) The bus is busy at time t iff
z COUNTl(acci)(t) =X COUNTz(acci)(t) + 1
=z COUNT2(reli)(t) + 1
But, in order to have a feasible specification, we rewrite

this as,

COUNTI(dec)(t) =X COUNTz(reli)(t) + 1,

77

ii) The bus is requested at time t iff
by COUNTz(reqi)(t) > COUN’I‘I(dec)(t)

iii) The bus is not requested at time t iff the number of
comapleted requests in the system equals the number of
initiated decisions:

z COUNTz(reqi)(t) = COUNTl(dec)(t)

For the promptness condition, either (i) or (iii) must be

true:
Vt, min{XZ COUNTz(reli)(t) +1 - COUNTl(dec)(t).
L COUNT,(req)(t) - COUNT, (dec)t)} = 0
vt, min{X COUNTz(reli)(t) + 1, X COUN'I‘Z(reqi)(L)} =
COUNT, (dec)(t)

Traveling Token Algorithm — A Formal Specification

Traveling token algorithm refers to the following simple
sequential solution for solving the arbitration problem: if there is an
outstanding request for the usage of the bus, as soon as the bus
becomes free, a token is sent through U1 to U2, U2 to US’ .. ete.,
until the arbiter of the smallest indexed unit Ui which requested the

bus picks up the token. Assuming that a unit U,, called the

0!

scheduler initially emits the token to U, and finally gets it back

1

from a Ui’ a formal specification of the algorithm is the following:

Events:

sendi

.
.

nexti :

get

send0 :

next

retn. :
1

back,
i

78

event that i-th arbiter sends a token to the (i + 1)st
arbiter, 1 <i<n

event that the token travels from i-th to (i + 1)st
arbiter, 1 < i < n

event that the token is received by i-th arbiter, 1 < i
< n

event of sending back the token to the scheduler by
the i-th arbiter, 1 <i < n.

event that the scheduler sends the token to the first
arbiter.

event that the token travels from the scheduler to the
first arbiter

event that the token travels from i-th arbiter to the
scheduler

event of the scheduler getting back the token from the

i-th arbiter

Relations Among the Events

vi, 1 <i

<

n

[R1] densi = get, | [COUNT2(reqi) > COUNTl(acki + 1)),

79

[R2] retni << densi

[R3] bwcki << retn,

[R4] acki << backi

[R5] sendi = get, | [COUNTz(reqi) < COUNTl(acki)]

[R6] geti 1 << nexti << sendi

[RT] TIMEl(sendo) = max{TIME2()3 reqi), ’I‘IME2(E reli + 1}
[R8] get, << nexto << sendo

[RI] TIME, (dec) = TIME, (send,))

[R10] TIME,(dec) = TIME,(back,)

Proof of Correctness

The traveling token algorithm will be shown to satisfy the four

properties stated in the arbiter specification.

i) Exclusivity

We first prove that

T acki << T reli + 1

Proof

From [R1] to [R4]

acki << backi << retni << densi << geti, Vi 1 <i<n

From [R6] to [R8],

get, << next, << send0 <«< ¥ reli + 1

0

It is sufficient to prove T acki << gety

Since get, << get Vi # 1, and acki << get; , we get

1 2
acki << get1 , 1 <i<n

Next we prove

) COUNTl(acki)(t) < COUNT2(get1)(t).

[R1] and [RBE] gives, Vi
COUNTz(geti) = COUNTl(densi) + COUNTl(sendi).

From [R2], [R3] and [R4] we have, Vi

acki << densi

and this implies

COUNTl(acki) < COUNTz(densi) < COUNTl(densi).

Hence

COUNTz(geti) COUNTl(densi) + COUNTl(sendi)

> COUNTl(acki) + COUNTl(sendi)

81

and this implies

n-1 n-1 n-1

by COUNT2(get.) > COUNTl(ack.) + L COUNT,(send). (1)
i=1 7 ia Ve 1

From [R6], we have

get, | << sendi

and hence

COUNTz(geti +1) < COUNTl(geti +1) < COUNTz(sendi)

< COUNTl(sendi). (2)

From (1) and (2) we get

n-1 n—1 n-1

) COUNTz(get.) > ¥ COUNT.(ack.) + ¥ COUNT, (get.
. i . 1 1 . 2° 711
i=1 i=1 i=1

That is,

1).

n-1
COUNT,(get,) > ¥ COUNT,(ack.,) + COUNT,(get).
2°7°1 i=1 1 i 2°n
But ackn << get gives

COUNTl(ackn) < COUNTz(get o

n

Q =

So, COUNTz(getl) > ifl COUNTl(acki) and Pgetl I (because of
the assumption [A2]). From Theorem 10 and earlier results it
follows that

z acki << get; << z reli +1

For our further discussion the next result is necessary.

82

Lemma 1 i) ¥ reli is single occurrent

ii) get1 is single occurrent
and iii) © acki is single occurrent.
Proof
i) reli << acki implies
COUNTl(reli) < COUN’I‘2(acki),
z COUNTl(reli) <z COUNTz(acki) <X COUNTl(acki)
We have proved that

z COUNTl(acki) < COUNT2(get1).

Hence it follows,

z COUNTl(reli) < COUNTz(getl).

From Theorem 10 and P = I, we get
get1

z reli << get, << Ereli + 1.

1

Hence ¥ reli and reli are single occurent events.

ii) Since I reli << get1 << X reli + 1 and & reli is single

occurrent, gety is single occurrent.

iii) Vi, reli << acki implies © COUNTl(reli) < I COUNTz(acki).
Now, © acki << ¥ reli + 1 gives

z COUNTl(acki) <X COUNTz(reli) +1< X% COUNTl(reli) +1
Hence

)N COUNTl(acki) < X COUNTl(reli) +1< 2 COUNT2(acki) + 1

and this proves

PN acki < acki + 1,

That is, T acki and acki are both single occurrent.

Similarly it can be shown that & acc; and dec are also single
occurrent events. Moreover,

) reli << % acc, << I acki << dec << ¥ r«eli + 1.

That is
)I.‘reli << “L‘acci << Z)reli + 1.
This gives,

P COUNT2(reli) <3 COUNTl(reli) <z COUNTz(acci)

<z COUNTl(acci) < % COUNT (reli) + 1.

2
ii) Reactivity

From [R1] to [R4] it follows that

acki << dens; = get, | [COUNTZ(reqi) > COUNTl(acki + 1)]

Hence

COUNT2(reqi) o LASTl(acki) > COUNTl(acki + 1) o LAS’I‘l(ucki) >
COUNTl(acki),

since the occurrences of acki do not overlap and we assume that at
least one of the events among acc;, dec has non-zero duration. This
assumption is fair, since the usage of the bus cannot be

instantaneous.

84

That is, COUNTz(reqi) > COUNTl(acki).

Due to [A2], Pre = I, we get acki << reg;.

7;

iii) Priority
We have to prove, YV1<k<i<n,
COUNTl(ackk) o LASTl(dec)) LASTl(acki) =
COUNTz(reqk) o LASTl(dec) o LASTl(acki)
The proof is similar to the one given in [1] and requires three

lemmas:

Lemma 2

Uk never asks for the bus at the last time the event dec was
initiated preceding sendk.

Lemma 3

For k < i, there is an occurrence of send, between geti and the
last time the event dec was initiated preceding it.

Lemma 4

No acknowledgement is issued between geti and the last time
the event dec was initiated preceding it.
The proof is now given in three parts:
(i) proves that Lemma 2 and Lemma 3 imply priority condition;
(ii) proves that Lemma 4 implies Lemma 2 and finally
(iii) proves Lemmas 3 and 4.

(i) Lemma 2 and Lemma 3 imply priority condition.

Proof

Lemma 2 =- COUNTl(ackk) o LASTl(dec) o LASTl(send)

k

1(sen dk)

Lemma 3 == V1 < k<i<n, LASTl(dec) o LAS'I‘l(geti)

]

COUNTz(reqk) o LASTl(dec) o LAST

LASTl(dec) o LASTl(send) o LASTl(geti)

k

Since acki << geti , and for every occurrence of geti if acki follows
then between these events only retni and backi happens. Using
Lemma 3 now we get

COUNTl(ack LASTl(dec) o LASTl(acki)

K °
COUNTl(ackk) o LASTl(dec) o LASTl(send

k) 0 LAS’I‘I(ncké),

COUN'T'2(reqk) o LASTl(dec) 0 LASTl(sendk) 0 LAS’l‘l(ucki).

I

from Lemma 2

COUNT2(reqk) o LASTl(dec) o LASTl(acki), from Lemma 3.
This proves the priority condition.

(i) Lemma 4 = Lemma 2

Lemma 4 states that vi > 1, vk > 1,

COUNTl(ackk) o LASTl(dec) o LASTl(geti) = COUNTl(ackk) o
LASTl(geti).

Since sendk can happen only if gety happens but does not have to
happen for every occurrence of gety it follows that

COUN’l‘z(reqk) o LASTl(dec) o LASTl(sendk) >

COUNTl(ack LASTl(dec) o LASTl(send

K ° K
~ COUNT(acky) o LAST,(send,), by Lemma 4

86

> COUNTz(reqk) o LASTl(sendk), from [R5]
> COUNTz(reqk) o LASTl(dec) o LASTl(sendk).

Hence
COUNTz(reqk) o LASTl(dec) o LASTl(sendk) =
COUN’I‘l(ackk)) LASTl(dec) ° LASTl(sendk).

(iii) Proof of Lemma 3

To prove, for 1 < k <i < n,

LASTl(dec) o LASTl(geti) = LASTl(dec) o LASTl(sendk) 0
LASTl(geti)
Since
LASTl(dec) o LASTl(sendk) 0 LASTl(geti) < LASTl(dec) 0
LASTl(geti),
it is sufficient to prove,
LAS’I‘l(dec) o LASTl(geti) < LASTl(dec)) LASTl(sendk) 0
LASTl(geti)

Since the event dec is single occurrent, this is equivalent to proving

COUNTl(dec) o LASTl(geti) < COUNTl(dec) o LASTl(sendk) o
LASTl(geti)
From get, << sendi_1 and

COUNTl(sendi_l) + COUNTl(acki__l) < COUNTz(geti_l) <

COUNT (get, _,)

it follows readily that

87

COUNTl(geti) < COUNTl(sendi__l) o LASTl(geti)
< [COUNTl(geti__l) 0 LASTl(geti) -

COUNT, (ack; ,) o LAST, (get,)] R)
and

COUNTl(geti) < COUNTl(sendi_l)

< COUNTl(geti_l) - COUNTl(acki_

1) (4)

Iterating on i, we get for k < i,

i—-2
COUNTl(geti_l) < COUNTl(getk +1) - X COUN'PI(ackm)
m=k+1
i-2
< COUNTl(sendk) - =212{+1 COUN’I‘I(ackm)
Hence,
i—2
COUNTl(geti_l) o LASTl(geti) + _)3 COUNTl(ackm) o
m=k+1
LASTl(geti)
< COUNT 1(sendk) o LASTl(geti) (5)
From (3) and (5) it follows,
i-1

COUNTl(geti) + m=213(+1 COUNTl(ackm) 0 LASTl(geti)

< COUNT,(send,) o LAST,(get.) (6)

1 k 1°7°1
Similarly it can be shown that
k

COUNTl(sendk) + m§1 COUNTl(ackk) o LASTl(sendk)

< COUNTl(sendO) o LASTl(sendk)

= COUNTl(dec) o LASTl(sendk) (7

Similar to the proof for Eacki << get,, it can be proven that

38

n
>:;i ackm << get..

i-1 n
Since dec << Z}acki +1= 3 ackm + 1+ ackm,
m=1 m-=i
i—-1
we get dec << g'eti + Y ackm + 1.
m=1
= COUNTl(dec)) LASTl(geti) < COUNTl(geti)
i-1
m}?;l COUNTl(ackm) o LASTl(geti)

< COUNT,(dec) o LASTl(sendk)) LASTl(geti)
and this completes the proof.
Finally, it remains to prove Lemma 4.
Since & acki << dec << ¥ acki + 1,
it follows that

COUNTl(Eacki) o LASTl(dec)

COUNTl(dec) o LASTl(Eacki) o LASTl(dec)

COUNTl(dec) o LASTl(dec) = -1o COUNTl(dec)
| .

Since geti << nexti_1 ,
COUNTl(geti) o LASTl(geti) < I -1 o COUNTl(nexti_
LASTl(geti).
This implies
ECOUNTl(geti) o LASTl(geti) <(I-1o Z:COUNTl(nexti__l)

o LASTl(geti)

From [R1] and [R5] it follows that

ECOUNTl(geti) > ECOUNTl(densi) + ECOUNTl(sendi)

1)

(8

o

9)

89

> ECOUNTl(acki) + ECOUNTl(sendi)

This implies

ECOUNTl(acki) 0 LAST(geti) < ECOUNTl(geti) 0 LASTl(geti)
ECOUNTl(sendi) o LAS’I‘l(geti)
<I-1o Z.‘COUNTl(nexti__l) o LASTl(geti) -
ECOUNTl(sendi) o LASTl(geti), from (9)
<I-1 ECOUNTl(nexti_l) 0 LASTl(geti) -
ECOUNTl(nexti) 0 LASTl(geti),
<T-1o COUNTl(nextO) o LASTl(geti)
=T-1o COUNTl(dec) o LASTl(geti)
= COUNTl(Eacki) o LASTl(dec) o LASTl(geti)
< COUNTl(Eacki) o LASTl(geti) (10)
Hence
COUNTl(Eacki) o LASTl(dec) o LASTl(geti) = COUNTI(Eacki) o
LASTl(geti),
and in turn follows the result that Vk,
COUNTl(ackk) o LASTl(dec) o LASTl(geti) = COUNTl(ackk) 0
LASTl(geti).
(iv) Promptness

The proof follows immediately from the specification of the
algorithm.
Whereas the previous example illustrated the formalism in the case

of hardware level problem, the next problem is a high level

90

concurrency control method for multiple copy update problem in a
distributed databar=.

4.2 Holler's Algorithm for Multiple Copy Update Problem in
a Distributed Database

For us the notion of a database is a set of data items without
regard to the granularity of data items. At any instant an item vi
can take a value VALUE(vi) from a domain DOM(vi). A transaction
is a sequence of read/write operations enforced by admissible queries
in the system. In a fully redundant distributed database system,
each site has a complete copy of the database and VALUE(viS)
denotes the value of i-th data item at the s-th site. At any
instant, it may be insisted that an access to the database should
see the same information regardless of which copy is accessed. This
is a strong condition requiring complex and costly coordination
mechanisms. A somewhat weaker condition is the notion of

database consistency incorporating two aspects: mutual consistency of

redundant copies and internal consistency of each copy.

Mutual consistency requires that at any time all database copies
are identical. In practice this is difficult to achieve. Hence a
weaker version of mutual consistency is to require that when all
transactions are completed, multiple copies must converge to the

same final state.

91

Internal consistency brings out two issues: semantic integrity
and serializability. The task of enforcing semantic integrity is not
specific to distributed databases and so is not considered as an issue
here. A concurrent transaction set preserves internal comnsistencies
only if there is a sequential order for the atomic components of the
transaction preserving the required integrity constraints; in this case,
the transactions are said to be serializable. For example, assume
that the relation x + y + z = 3 should be preserved by the data
items x, y and z, when they all have the initial value 1. Each of

the updates

T1:x<——3,y4-—-—1
and

T2:y+—3,24——1

preserves the condition x + y + z = 3; but neither the sequence (Tl’
T2) nor (T2’ T satisfies the condition x + y + z = 3. So, the
transactions are not serializable and in a concurrent execution, one of

the transactions should be rejected.

Hence the multiple copy update problem in distributed databases
requires mechanism guaranteeing mutual consistency and
serializability. Towards a formal specification of this problem the

events are defined next.

92

Assumptions

1. There are n sites and each site has a database copy and a
controller for obtaining permission to schedule the processing of
a transaction. The database copies have m variables T
Vor o Vo and the variable v; at the i-th site is denoted vis.

2. Each site has a storage processor and is responsible for
manipulating data in that site.

3. Only those data items bound to a transaction can be changed
by an execution of that transaction.

submiti : event that a transaction is submitted to the access

controller Ci at the i-th site.

execute; : event that a transaction is being executed at the i-th
site.
update; : event that a transaction submitted to the i-th site is

taken up for updating the local copy of the database

at the j-th site, j # i

Specification of Mutual Consistency

Let ¢f : T — N such that cf(t) ~ COUNT,(ASSIGN(vE®), t >
0, k=1 .,mand s =1, .., n. (The number of times a variable
is updated need not be the same in all sites).

At any time t, 1 <i #j < n

COUNTZ(Esubmiti)(t) = COUNTI(Eexecutei)(t)

93

- COUNT,(Sexecute)t) = COUNT (¥ update; + exeoute)t
i#
= COUNTz(Zupdatef + execute.)(t)
i !
- VALUE(D(D) = VALUEGD)E) = ... = VALUEGS)(c)
n.,n

k=1 2 .., m.

Specification of Serializability

The serializability condition can be rephrased as follows:

The distributed execution of transactions is serializable if there
is a sequential schedule (consistent with integrity constraints) for the
execution of transactions such that the sequence of values taken by
a data item at any site during the original execution of the
transactions is a subsequence of the values taken by the same data
item in the serial execution of the transactions. Hence
VALUEGS) = VALUE() o qf, where
NN
is a nondecreasing function, 1 < i < m, and 1 < k < n. Here, if
e denotes the serialized executions then vi’s are assumed to be
modified due to e.

Specification for a Starvation-Free System
A transaction should be committed within a finite amount of time.

That is, [TIMEz(submiti)(k) < 0] —

[[TIMEl(update;)(k) < oo, Vj# il and

94

[TIMEl(executei)(k) <o0], 1 <i<nk?>1.

Next, we discuss a synchronous algorithm, originally due to
Holler [4], for solving this problem and provide a formal proof of its
correctness. It is assumed that for a given set of transactions the
ordering can be deduced from a tag attached to each transaction.
The algorithm enforces a voting procedure based on message
exchanging between controllers so that agreements on global sequence

of transactions can be reached.

An Informal Description of a Synchronous Voting Algorithm

At any time, the set of transactions in the system are assumed
to be totally ordered. The ordering can be based on their time of
arrival. That is, if a transaction T1 is submitted earlier than ’l‘2
then T1 has higher priority than TZ' If T1 and T2 are submitted
at two different sites Ci and Cj at the same time then ’1‘1 has
higher priority than T2 if i < j and viceversa. When a request T is
submitted to a site, the controller broadcasts a vote for this
transaction, if not having initiated a voting for a previous
transaction. The receiving site compares the priority of T with the
priority of each incomplete transaction at that site. If T has higher
priority, then a vote is broadcast to all sites; otherwise T is queued.

Whenever every site receives (n — 1) votes on a transaction, the

transaction is executed at that site. After completing the execution,

end-signals are broadcast.

96

After receiving (n — 1) end-signals, a site

processes the transaction of next highest priority.

A Formal Specification of the Algorithm

Definition of Events

send.. :
|

next.. :
1)

get.

i,
ackjk :

i,
bacl.'cjk :

i,
densjk :

i .
send-endjk :

i,
next-endjk.

i
get-endjk :

event that Ci sends request for voting to Cj’ i#j.
event that the request for voting goes from Ci to Cj’
i+#£]

event that Cj receives the request for voting from Ci R
i#j

event that Cj sends an acknowledgement to Ck for a
transaction submitted to Ci v #F ki #]

event that the acknowledgement goes from Cj to Ck
for a transaction submitted to Ci 1 #§, # k

event that Ck receives the acknowledgement sent by
Cj for a transaction submitted to Ci yi# 4+ k
event that Cj sends an end-signal to Ck for a
transaction submitted to Ci » 1 # k

event that the end signal goes from Cj to Ck for a
transaction submitted to Ci yJ #F ke

event that Ck gets the end-signal from Cj for a

transaction submitted to Ci »J # k.

96

Informal and Formal Description of the Steps

1. The controller Ci at the i-th site sends a request to every other

controller for voting on a new transaction submitted to it if

a) it has completed issuing end-signals to all other controllers
for the previous transaction submitted at Ci .

b) it has received the end-signals from all other controllers for
the last transaction submitted at Ci .

¢) there are outstanding transactions at Ci for execution.
TIMEl(sendij) = max{TIMEz(submiti),

max{TIME,(get-end' . + 1),
k . 2 kl
#1
TIME2(send-end;k + 1)}} (11)

2. The controller Cj at the j-th site issues an acknowledgement
(vote) to Ck for a transaction T submitted to Ci if:
a) among the requests submitted to j-th site, Cj does not have
any outstanding (pending) transaction whose priority is
greater than the priority of T.
b) among the incomplete transactions for which requests were
received for voting by Cj from other sites, there is no

transaction with priority greater than the priority of T.

Let f:] be the function which at any time t determines the
number of completed transactions in the system from among those

submitted to the j-th site:

97

f.:-r-[-—vﬁ,
J

i:i = min {min(COUNTz(send~end}8)), min(COUNTz(get-endis j))}.

8%#j 8#j
and (t:i + 1) = f:i(t) + 1.

Similarly, let g; be the function which at any time t determines
the number of transactions completed in the system from among

those submitted to r-th site, r # j.

g;:l'[—»l:f,

gf = min {min(COUNT,(send-end.)), min(COUNT,(get-end..)},

) . 2 Js . 2)]
BF] 8#j

and (gjr + 1)) = g}(t) + 1.

Now we can formally state the conditions:
COND1 = [COUNTZ(submitj) = f:j] v

[(COUNT2(submitj) > i:i) A

((TIME2(submitj) ° (t:i + 1) <

TIME2(submiti) o LCOUNT2(getij)) v

((TIME2(submitj) o (t:i +1) =

TIME2(submiti) o LCOUNTz(getij))

A G < Nl (12)

COND, = A [(COUNT(get) = gj’) Y,

2 ri ‘]
((COUNTz(getrj) > gJF) A

(TIME,(submit) o (gjr +1) <
TIME2(submiti) 0 LCOUNTz(getij))

98

. r
\Y ((TlMEz(submztr) o (g.i +1) =
TIMEZ(submitr) o LCOUNTz(getii))
A G <))l (13)
Define events ej and h;, r#jr=1 .., n, as follows:
TIMEl(ej)(n) = TIME2(ej)(n) = min{t | f}(t) = n}
Tmml(h;')(n) = TIME2(h;)(n) = min{t | g;'(t) = n}
Then
i
ackjk = [getii [[COND1 A COND2]] +
r i
(ej + r%é:j hj) | [(COUNTz(getij) > COUN’I‘I(ackji)) A
COND1 A COND2], k #j,i+#] (14)
3. The storage processor at site i executes a transaction when Ci
has received the acknowledgement from all other controllers.
T]MEl(execute.) = max {TIME (densi.)} (16)
1 ji 2 ji
4. Storage processor at site j updates a transaction submitted to Ci
when it has received the acknowledgements from the rest of the
controllers and it has acknowledged the transaction to other
controllers.
T]ZMEl(update;) = max{ max{TIME

k#ig 2
Relations _Among the Events

i i
(denskj)}, llr{l;)ic{TIMEz(ackjk)}} (16)

H1 et.. < next.. < send., , V j i
[H1] get;; < § = i i #

[H2] dens}kg back}kSack}k,Vk%j.Vj#:i

99

[H3] TIMEl(send-end;j) = TIME(execute), V i, i #
[H4] get-endgj < next-endgj < sendeendiy , ¥ i, i # §

i i S .
[H6] get-endjk < ne.act-endjk < send-endjk, Vi Vi#+i Vk #]j
[H6] TIMEl(send-end;k) - TIMEj(update)), ¥ k # 4,V § # i, V i

Proof of Correctness

We prove two lemmas and then show that the proof of

correctness follows from these lemmas.

Lemma b5 proves that the execution sequence corresponds to the
total order imposed by the priority. Lemma 6 proves that the
updates and execution of a transaction are completed before the

update or execution of another transaction starts.

Let TI' T, oo TN be the sequence of transactions defined by

the total ordering. Consider the event u, defined s follows :

TIME,(u)) = min {TIME (execute,), TIMEl(update;)}

J#
TIME,(u,) = max {TIME,(execute,), TIME (updated)}
i . e 2 i 2)
J#i
Lemma 5

Let the k-th occurrence of Eui be the kl-th occurrence of uj for

some j and the (k — 1)-st occurrence of Eui be the k2th occurrence

100

of U, for some r. Then

TIMEz(submitr)(kz) < TIME2(submitj)(k1)
or
[(TIMEz(submitr)(kz) = TIME2(submitj)(k1)) A {r < j)). That is, the

transactions are executed in the decreasing order of their priority.

Proof
If the result is not true, then

TIMEl(ack;'s)(kz) max{max{TIME(get- end’ iy,
8]
max{TIME,(send- end" Sk}
8#j
= [(Tmml(ackjrsxkz) > TIMEZ(executej)(kl))

A (TIME, (ack})(k)) > TIMEupdatel i))]
= TIMEl(ack)(k2) TIME2(u J(k)

TIME (execute)(k) > TIMEl(ackjs)(kz)
= TIME (execute)(k2) TIME2(uj)(k1), a7
But

TIME, (update))(ky) > TIMEz(ack.;'S)(kz), §# 1,8 #j

r r
and TIMEl(updatej)(kz) > TIME2(ackjs)(k2).
This gives

TIMEl(ur)(kZ) > TIME (ack)(k2)

> TIMEZ(uj)(kl).

= TIMEl(Eui)(k - 1) > TlMEz(Eui)(k)

This contradicts the property that 'I‘IME1 is an increasing function.

101

Hence the theorem is proved.

Lemma 6

The storage processor for site i processes Tj iff processing of Tl’ T2,
. Tj-~1 are completed. That is, both U and Eui are
single-occurrent events.

Proof

From [H3], V j # i, send-endii << executei

= TIMEl(send-end;i) > TIME,(execute,)

N TIMEl(send-endgj + 1) > TIME,(execute; + 1)

= max{TIMEl(send-end;i + 1} > TIMEZ(executei + 1).
J#i

From [H5] and [H6]

get-end;k << update; , VK # j, Vi # i

i
= TIMEl(get-endjk

£ 1) > TIME2(update; + 1)

- TIMEl(get-end}i F 1) > TIME2(update; + 1,5 4 i

= max{TIME, (get-end’, + 1} > max{TIME, (update’ + 1)}.
oo oo 2

From (11), Vj # i,

TIME, (send.) > max{TIME(get-end. + 1), TIME. (send-end.. + 1)}
1 ij ji 2 Ji 2)]

102
> max{TIl\/IEz(executei + 1), max{TIMEz(update; + 1}}
i#i
> TIME2(ui + 1)

= send,. << u, + 1
ij i
But execute, << sen,dij and update} << sendﬁ, AJE

imply that U, << sendii . Hence, u, << u, + 1 which proves that u;

is single-occurrent.

Next, we prove that Eui is a single-occurrent event; that is,

TIMEI(Eui)(k) > TIME2(Zui)(k—1), k> 1.

Let the k-th occurrence of Eui be kl-th occurrence of u.‘i for
some j and (k — 1)-st occurrence of Eui be the k2-th occurrence of
U, for some r. It is known from Lemma 65 that the transactions

are executed in decreasing order of their priority. So, from (14)
V s, TIMEl(ack':'s)(kl) >

r r
max{x:;;:{TIMEz(get-endsr)(kz)}, l;l:;:{TIMEz(send-endrs)(kz)}}

= TIME, (ack))(k,) > TIME,(execute)(k,)
and TIME, (ack))(k,) > TIME,(update))(ky), ¥ # 8

= TIME, (ack))(k,) > TIMEy(u)(k,)

103

Since TIMEl(updateL)(kl) > TIME2(acki_s)(k1),

TIME (execute;)(k TIlVIEz(ackl,j)(kl)

) 2
and from (16),
TIMEl(update:,)(kl) > TIMEZ(ack’ k),

it follows that

min{ TIME (execute)k,), TIMEl(updatez,)(kl)}
> max{TIMEZ(ack:_j)(kl), TIMEz(ack;s)(kl)}.
Hence TIMEl(uj)(k

) > TIMEg(u)k}

i.e., Eui is single occurrent.

Finally, we prove that the algorithm specification is correct; that

is, it meets the problem specification.

Proof of Mutual Consistency

Lemma 5 and Lemma 6 imply that transactions are executed in

the order of their priority. Moreover they prove that the execution

is done before the

and update corresponding to one transaction

execution and update of another one starts.

have

So, if at time t > 0 we

104

COUNTI(Eexecutei)(t) = COUNTz(Eexecutei)(t)

COUNT,(£ update® + execute.)t)
ig 7 !

- COUNTZ(ii_ubdate; + execute)®) = k
J

then COUNTI(Eui)(t) = COUNTZ(Eui)(t) = k.
Hence by Lemma 6
COUNT, (5z,) o LASTI(ASSIGN(VJ.I)) -
COUNT, (Zu) o LASTI(ASSIGN(ij)) -

= COUNT, () o LASTI(ASSIGN(V;I))

= K, kK < k
Hence
COUNT2(ASSIGN(V§))(t) = K, V.
= VALUE(V;) o COUNTZ(ASSIGN(ij))(t) = VALUE(v;)(k'). V.
That is, Tk’ is the last transaction that changed the value of vj at
all sites. This proves the claim that for every variable Vip

VALUE(vjl)(k’) - VALUE(vjz)(k’) - .. = VALUEGDH).

Proof of Serializability

Lemma 6 proves this.

Proof of Starvation Freeness

We prove thet V i, Kk, TIME2(submiti)(k) < o0 = TIMEl(ui)(k) < oo
Let TI'MEz(submiti)(k) = t.
= LCOUNTz(Esubmiti)(t) =g < oo,

106

since only finite number of occurrences happen in a finite interval
time.
=> TIMEI(Zui)(s’) = TIMEl(ui)(k), 5 < s

Since Vr >0 dur(Eui)(r) is finite,

s-1
TIMEI(Eui)(s’) < TIME2(submiti)(k) +) dur(zui)(r) + st’,
r=1
where t° = 2 (maximum communication delay between sites). Hence

TIMEl(ui)(k) < oo.

The next two examples are taken from robotics. Notice that the
algorithms are asynchronous and timing constraints enter in the
definition of events. Because of simplicity of assumptions, proofs are
not long. However if we are to describe the internal structure of
the system based on event occurrences, then issues on object
specifications and details of vision system must be addressed. As
remarked earlier, for external behavior description, the internal details

are assumed to exist in their total correctness.

4.3 The Design of a Robotic Assembly

A recent work [Ould 87] describes the behavioral specification of
a flexible assembly cell. Thic cell is used as a test bed in
Laboratoire d' Automatiqu. et d’Analyse des Systemes du C.N.R.S,
France. As we briefly mentioned in Chapter 2, this formalism is
based on Petri netls; however a CSP based language called

LCS(Language for Communicating Systems) is used for specifying the

106

interaction between agents(such as conveyor, vision, gripper and
robots). Notice that two different styles of notations are used here.
Proving correctness in such situations is very difficult and so it is
not entirely surprising that no correctness proof is given in [Ould

871.

We consider a robot with two arms engaged in assembly
operations. For simplicity assume that a robot having two arms and
equipped with a vision system can recognize two types of objects: ¢
(cup) and d (dish). The objects, n of each kind, are placed in a
circular conveyor belt moving at a constant speed and the robot may
pick up an item from the conveyor belt at a prespecified location.
The robot is expected to assemble the objects in the order <c, d> so0
that n assemblies are output for any arbitrary placement of the 2n
objects on the conveyor belt. Assuming the correctness of
computations involved in object recognition and coordinate
transformation, a simple specification of the problem, an algorithm

for its solution and a proof of its correctness are given here.

Problem Specification

The various events characterizing the problem are as follows:

cup : event that a cup is recognized on the conveyor belt
by the robot

dish : event that a dish is recognized on the conveyor

belt by the robot

107

event that the left arm of the robot picks up a cup.
pick K event that the right arm of the robot picks up a dish.
The events pick tc and pickr 4 are defined similarly.

assemble : event that an assembly <c, d> is made by the robot.
place : event that the robot places the assembled item on a

tray.

Assuming that the robot’s arm is synchronized to pick up the
item as soon as it is recognized and an arm can hold at most one
item at any time, the events satisfy the following properties:

[S1] pick e ¥ pick R single occurrent.

[S2] pzckrc + pwkr R single occurrent.

[S3] place << assemble

We have to prove

[S4] TIMEl(place)(n) = TIME2(pickec + pickw + pickrc +
pwkr d)(2n) + 6

for some constant § > 0.

An_Informal Description of Robotic Assembly Algorithm

Initially both arms are empty and the stack (used for storing
objects) is empty. Whenever both arms are empty and the stack is
empty, the left arm picks up an item from the conveyor belt. When
the left arm holds an item, the right arm picks up the next item

from the conveyor belt. If the item on the right hand is the same

108

as the item on the left hand, the item from the right hand is
pushed onto the stack; otherwise the items are assembled and placed
on a tray. If both arms are empty but the stack is not empty, the
left arm picks up (pops) an item from the stack. When the
conveyor belt is empty, the stack becomes empty and the robot’s
hands are free, the algorithm ensures that n assemblies are correctly

done.

Formal Specification of the Algorithm

The events and their relations defined below describe the algorithm.

pushc : event of pushing a cup onto the stack by the right
arm
pop, : event of popping a cup from the stack by the left arm

push d and pop 4 are defined similarly.

Since the left arm holds a cup (dish) whenever a cup (dish) is
picked up from the conveyor belt or the stack is popped resulting in
a cup (dish), the events holdc (left arm holding a cup) and hold d

(left arm holding a dish) satisfy the relations

TIMEl(holdc) TIMEl(pick et popc),

TIMEl(hold d) = TIMEl(pick d T POP d)

hold = hold_ + hold, .
c d

LEMPTY and REMPTY are conditionals that at any time indicate

whether or not the left and right arms are respectively empty.

Thus

109

LEMPTY = [COUNTl(pickec + picked + pop, + popd) =
COUNTz(place)]

REMPTY = [COUNTz(pushc + push d) - COUNTZ(popc + pop d) +
COUNTz(place)] < COUNTl(pickrc + pickrd)

The events push and pop can be written as the sum of events:

push = pushc + push d

pop = pop_ + pop4

The condition SEMPTY denoting whether or not the stack is empty

can be written using push and pop:

SEMPTY = COUNTl(push) = COUNTl(pop) = COUNTz(push) =
COUNTZ(pop)

We define the function TOP which at any time t € E gives k
€ ITN- which is the occurrence number of the push corresponding to
the current top element in the stack. Hence
TOP(t) = if [LCOUNTl(push) o LAST2(push)(t) - COUNTl(push) o
LAST2(pop) o LASTz(push)(t)}

> S(t) then [LCOUNTl(push) o LASTz(push)(t) - S(t)]
else TOP(LASTz(pop) o LASTz(push)(t)),
where

S:H—»E,

S = COUNT,(pop) — LCOUNT,(pop) o LAST,(pop) o LAST(push)

The events of picking items from the conveyor belt pushing (or

110

popping) items from the stack and assembling can be expressed as:

pick tc = cup | [LEMPTY A SEMPTY]
pick,y = dish | [LEMPTY A SEMPTY]
pickrc = cup | [not (LEMPTY) A REMPTY]
pick 4 = dish | [not (LEMPTY) A REMPTY]

pop, = place | [[COUNTz(pushc) > COUNTz(popc)] A
[LCOUNTl(pushc) o TIMEl(push) o TOP] #
COUNTl(push c) o TIMEl(push) o TOPI]

popy = place | [[COUNTZ(push d) > COUNTZ(pop A
[LCOUNTl(push d) o TIMEl(push) o TOP +
COUNTl(push d) o TIMEl(push) o TOP]]

puShc = pickrc | [COUNTl(holdc) > COUNT2(holdc)]

push 4 = pick_; | [COUNT, (holdy > COUNT,(hold)]

assemble = pickrc | [COUNTl(hold d) > COUNTz(hold d)] +
pickr d | [COUNTl(holdc) > COUNTz(hold c)]

TIME2(hold) = TIME2(place)

Proof of Correctness

It is sufficient to prove that the algorithm satisfies [S4]; that is,
if 2n items (n of each kind) are picked up at some time t, then

after a short time delay, say §, n assemblies are completed by the

11

robot. We prove first that the stack at any time is either empty or
contains items of the same type. Next we apply this result to prove

the correctness of the algorithm.

Lemma 7

If for any n > 1,

TIMEl(push)(n) = TIMEl(pushc)(k) (or TIMEl(pushd)(k‘)) and
TIMEl(push)(n + 1) = TIMEl(push d)(i) (or TIMEl(push c)(i'))
for some k(k’), j (G°) then 3 t such that

TIMEl(push)(n) <t< TIMEl(push)(n + 1) and SEMPTY(t) = true.

Proof
We prove this lemma by the method of contradiction. Suppose the
lemma is false, then 3 n such that
TIMEl(push)(n) = TIMEl(push c)(k) (or T]MEl(pushd)(k’)) and
TIMEl(push)(n +1) = T[MEl(push d)(i) (or TIMEI(push c)(i'))
and ‘vt such that
TIMEl(push)(n) <t < TINIEl(push)(n + 1), SEMPTY(t) = false.
Choose the smallest n satisfying those conditions and without loss of
generality, we can assume

TIMEl(push)(n) = TIMEl(push c)(k)
and TIMEl(push)(n + 1) = TIMEl(pushd)(i)
> COUNTz(push c) o TIMEl(push)(n) > COUNTz(pop c) 0

TIMEl(push)(n)

112

and COUNTz(push d) 0 TIMEl(push)(n) = COUNTz(pop d) o

TIMEl(push)(n)
Let t* = TIMEl(push)(n) and t* = TIMEl(push)(n + 1.
Then
COUNTl(holdd)(t') = COUNT2(hold d)(t’) (18)
COUNT2(push d)(t') = COUNTZ(pop d)(t')
= COUNT2(push d)(t’") = COUNTZ(pOp d)(t'"), vVt e lt, t)
= COUNTz(pop d)(t') = COUNT2(pop d)(t") (19)
SEMPTY(t) = false Vt € (t/, t")
= COUNT2(pick et picked)(t') = COUNTQ(pick et pick (FUUNE
= COUNT2(pick ed)(t’) = COUNTz(pick ¢ d)(t") (20)

From (18), (19) and (20) we get
COUNTl(holdd)(t") = COUNT2(hold d)(t")
which is a contradiction to the fact that

t" = TIMEl(push)(n +1) = TIMEl(push d)(j) for some j.

Corollary 1

[not (SEMPTY)] = [[COUNTz(pushc) > COUNTz(pop c)] A
[COUNTz(push d) = COUNTZ(pop d)]] v

[[COUNTz(pushd) > COUNT,(popy] A [COUN’I‘Z(pushc) =

COUNT,(pop).

In a similar fashion, we can prove

@ If for any n > 1,

TIMEl(pop)(n) = TIMEl(popc)(k) (or TIMEl(pop d)(k’))

and

TIMEl(pop)(n + 1) = TIMEl(popd)(j) (or TIMEl(popc)(j'))

for some k(k"), j(37) then 3 t such that

TIMEl(pop)(n) < t< TIMEl(pop)(n + 1) and SEMPTY(t) = true.
(ii) If for any n > 1,

TIME, (hold)(n) = TIME, (hold)(k) (or TIME, (hold (k"))

and

TIMEl(hold)(n + 1) = TIME, (hold g (or TIMEl(hold c)(i'))

for some k(k), jG) then 3t such that

TIMEl(hold)(n) <t< TIMEl(hold)(n + 1) and SEMPTY(t) = true.

Lemma 8
SEMPTY(TIMEl(pick)(Zn)) = true where

pick = pick et pickr , pickl = pick e pick 2d
and pickr = pickrc + pickr d -
Proof:
Suppose not, then SEMPTY(TIIVIEl(pick)(Zn)) = false.
=> TIMEl(pick)(Zn) = TIMEl(pickr)(k) for some k.
= LEMP'I‘Y(TIMEl(pickr)(k)) = false.
Since SEMPTY(TIMEI(pick)(Zn)) = false, from Corollary 1 without loss
of generality, we assume
[COUNTz(pushc)(t) > COUNTz(pop c)(t)] A [COUNTz(push d)(t) =
COUNTz(pop d)(t)] (21)

where t = ’I‘IMEl(pick)(2n).

114

LEMPTY(t) = false = COUNTl(hold)(t) > COUNT2(hold)(t).
COUNT,(push JO > COUNT,(pop)(t) and CCUNT,(hold)t) >
COUNTz(hold)(t)

imply COUNTl(hold c)(t:) > COUNTz(hold c)(t‘) (22)
(21) and (22) contradict the fact that there are n objects of each
kind.

Corollary 2

COUNTZ(assemble) o TIMEl(pick)(2n) = n - 1.
Proof of [S4] :
Since SEMPTY(t) = true where

t = TIMEl(pick)(Zn) and we have 2n objects with n of each kind,

LEMPTY(t) = false.
= TIMEl(pick)(Zn) = TINIEl(pickr)(k) for some k.
Further, LEMPTY(t) = false implies
COUN'I‘I(hold)(t) > COUNTz(hold)(t).
If COUNTl(hold S > COUNT,(hold)(t) then
TIMEl(pick)(?..n) = TIMEl(pickrd)(k') for some k’
and vice versa.
This is due to the fact that there are 2n objects, n of each kind.
If we set 6§ to
dur(pickzn) + dur(assemble n) + dur(placen),

the proof follows.

115

We remark that cup and dish are synonyms for two objects and
thus the above specification can be viewed as a parametric functional
gpecification. To validate an assembly line operation involving any
number of robots, the same specification can be instantiated for each
robot with two parameters - the assembled object thus far and the

new part to be assembled at this site.

44 The Design of a Robotic Navigation Controller

We consider the coordinated motion of several robots in a
common workspace. Some of the significant actions characterizing
this coordinated workspace are communication between robots,
communication between robots and external devices, synchronization
with external events, waiting and monitoring for some event
occurrences, and dealing with concurrent activities. For simplicity, we
assume that cartesian robots move in a large rectangular-shaped
workspace and the only requirement is that collisions must be
avoided. Let us also assume that the workspace has sufficient width
so that three robots, each in a lane of its own, can move
simultaneously. Under this assumption we give the design
specification and the proof of correctness of the design of a
distributed navigation controller that is to be installed at the

intersections.

116

This problem can be further simplified and abstracted to the
design of a traffic controller that is to be installed at the
intersection of two two-way highways (east-west and north-south) so
that cars coming at the intersection can pass the intersection in a
finite amount of time with no collision. Notice that both in the
original problem (with robots) and in the abstracted problem (with
cars), the speed and the space (width of lane) for robot motion is

not required in the specification of the controller.

We assume the following : 1) at a predetermined proximity to
the intersection there are three lanes on each highway; 2) a car in
the right lane must turn right; a car in the middle lane goes
straight and a car in the left lane must turn left; 3) the traffic
controller at the intersection should allow the car that arrives at the
intersection first to cross the intersection first (without collision); in
case of a tie, traffic on east-west highway has priority over the
traffic on north-south highway; 4) to enhance the flow of traffic, cars
that can cross the intersection in parallel should be allowed to do so;
and 5) cars, when allowed to cross the intersection, do so in a finite
amount time (they do not break down at the intersection).

Events

east : event that the sensor at the intersection goes high

indicating the arrival of a car to go east,

west : event that the sensor at the intersection gr:s high

north :

south :

en .

es .

wn .

ws .

ne :

nw .

117

indicating the arrival of a car to go west.

event that the sensor at the intersection goes high
indicating the arrival of a car to go north.

event that the sensor at the intersection goes high
indicating the arrival of a car to gc south.

event that the sensor at the intersection goes high
indicating the arrival of a car from west to go north
(to make a left turn at the intersection)

event that the sensor at the intersection goes high
indicating the arrival of a car from west to go south
(to make a right turn at the intersection)

event that the sensor at the intersection goes high
indicating the arrival of a car from east to go north
(to make a right turn at the intersection)

event that the sensor at the intersection goes high
indicating the arrival of a car from east to go south
(.to make a left turn at the intersection)

event that the sensor at the intersection goes high
indicating the arrival of a car from south to go east
(to make a right turn at the intersection)

event that the sensor at the intersection goes high
indicating the arrival of a car from south to go west

(to make a left turn at the intersection)

se :

sw

e-high :

w-high :

n-high :

s-high :

en-high :

es-high :

wn-high :

ws-high :

ne-high :

118

event that the sensor at the intersection goes high
indicating the arrival of a car from north to go east
(to make a left turn at the intersection)

event that the sensor at the intersection goes high
indicating the arrival of a car from north to go west
(to make a right turn at the intersection)

event that the sensor at the intersection indicating the
arrival of a car to go east, remains high.

event that the sensor at the intersection indicating the
arrival of a car to go west, remains high.

event that the sensor at the intersection indicating the
arrival of a car to go north, remains high.

event that the sensor at the intersection indicating the
arrival of a car to go south, remains high.

event that the sensor at the intersection indicating the
arrival of a car from west to go north, remains high.
eveat that the sensor at the intersection indicating the
arrival of a car from west to go south, remains high.
event that the sensor at the intersection indicating the
arrival of a car from east to go north, remains high.
event that the sensor at the intersection indicating the
arrival of a car from east to go south, remains high.

event that the sensor at the intersection indicating the

nw-high :

se-high :

sw-high :

e-go :

w-go

n-go :

s-go :

en-go :

es-go :

wn-go :

ws-go :

119

arrival of a car from south to go east, remains high.
event that the sensor at the intersection indicating the
arrival of a car from south to go west, remains high.
event that the sensor at the intersection indicating the
arrival of a car from north to go east, remains high.
event that the sensor at the intersection indicating the
arrival of a car fron: north to go west, remains high.
event that the car at the intersection bound to go east
is allowed to cross the intersection.

event that the car at the intersection bound to go
west is allowed to cross the intersection.

event that the car at the intersection bound to go
north is allowed to cross the intersection.

event that the car at the intersection bound to go
south is allowed to cross the intersection.

event that the car at the intersection from west bound
to go north is allowed to cross the intersection.

event that the car at the intersection from west bound
to go south is allowed to cross the intersection.

event that the car at the intersection from east bound
to go north is allowed to cross the intersection.

event that the car at the intersection from east bound

to go south is allowed to cross the intersection.

ne-go :

nw-go :

se-go :

sw-go :

e-Ccross .

Ww-Cross

n-Ccross

8-Cross :

event that
bound to go
event that
bound to go
event that
bound to go
event that

bound to go

120

the car at the intersection from south
east is allowed to cross the intersection.
the car at the intersection from south
west is allowed to cross the intersection.
the car at the intersection from north
east is allowed to cross the intersection.
the car at the intersection from north

west is allowed to cross the intersection.

event that the car at the intersection bound to go east

crosses the intersection.

: event that the car at the intersection bound to go

west crosses the intersection.

: event that the car at the intersection bound to go

north crosses the intersection.

event that the car at the intersection bound to go

south crosses the intersection.

In a similar fashion, we define events ne-cross, nw-cross, se-cross,

Sw-cross, en-cross, es-cross, wn-cross and ws-cross.

e-low :

event that the sensor which senses the arrival of the

east-bound car going low.

Similarly, we define events w-low, n-low, s-low ...

Formal Specification of the problem

Any design of the traffic controller should satisfy the following two

121

conditions.

1) At any time t, there should not be any collision between
the cars at the intersection.

2) Cars that go to the intersection should be allowed to cross
the intersection within a finite amount of time. That is,
the system should be starvation-free. This ensures that
there is no deadlock in the system.

Next, we define the conditions using the above events that in turn
lead to the predicate for a collision free motion of the cars.

INTER-E = COUNTl(e-go) > COUNTz(e-cross)

INTER-W = COUNTl(w-go) > COUNT2(w-cross)

INTER-N = COUNTl(n-go) > COUNTz(n-cross)

INTER-S = COUNTl(s-go) > COUNTz(s-cross)

INTER-EN = COUNTl(en-go) > COUNT2(en-cross)

INTER-ES = COUNTl(es-go) > COUNTz(es-cross)

INTER-WN = COUNTl(wn-go) > COUNTz(wn-cross)

INTER-WS = COUNTl(ws-go) > COUNTz(ws-cross)

INTER-NE = COUNTl(ne-go) > COUNTz(ne-cross)

INTER-NW = COUNTl(nw-go) > COUNTz(nw-cross)

INTER-SE = COUNTl(se-go) > COUNT2(se-cross)

INTER-SW = COUNTl(sw-go) > COUNTZ(sw-cross)

The meaning of these conditions should be clear; for example,

the condition INTER-E is true if there is an east-bound car that is

122

allowed to cross the intersection but has not yet crossed the
intersection.

E = INTER-S v INTER-N v INTER-WS v INTER-NW

EL = INTER-S v INTER-WS v INTER-NW v INTER-W v
INTER-SE

W = INTER-S v INTER-N v INTER-EN v INTER-SE

WL = INTER-N v INTER-EN v INTER-E v INTER-NW v
INTER-SE

S = INTER-E v INTER-W v INTER-NW v INTER-EN

SL = INTER-W v INTER-NW v INTER-N v INTER-EN v
INTER-WS

N = INTER-E v INTER-W v INTER-SE v INTER-WS

NL = INTER-E v INTER-SE v INTER-S v INTER-EN v
INTER-WS

NO-COLLISION = [INTER-E — ~E] A [INTER-EN — ~EL] A

[INTER-W — ~W] A [INTER-WS — ~WL] A [INTER-S — ~8S]

A [INTER-SE — ~SL] A [INTER-N — ~N] A [INTER-NW -

~NLJ.

Liveness condition (Starvation-free system) can be stated as:
The duration of each occurrence of the events e-high, w-high ... is
finite. That is,

duri(e-high) = finite, V i

duri(w-high) = finite, V i and so on.

123

Specification of the design of the traffic controller

Some of the relations governing the events are the following:

e-high << east

w-high << west

n-high << north

s-high << south

en-high << en

es-high << es

wn-high << wn

ws-high << ws

ne-high << ne

nw-high << nw

se-high << se

sw-high << sw
If an east-bound car arrives at the intersection, it should be allowed
to cross the intersection, provided the intersection is clear. The

following conditions are defined for specifying this requirement:

Let,
E-BEFORE-N = [COUNTz(n-go) = COUNTl(n-high)] v
[[COUNTz(n-go) < COUNTl(n-high)] A
[TIME, (n-high) o (COUNT,(n-high) + 1) >
TIME, (e-high) o (COUNT,(e-high) + D]

124

E-BEFORE-S = [COUNTz(s-go) = COUNTl(s-high)] v
[[COUNTz(s-go) < COUNTl(s-high)] A
[TIMEl(s-high) 0 (COUNTz(s-high) + 1) >
TIMEl(e-high) 0 (COUNTz(e-high) + D]

E-BEFORE-WS = [COUNT,(ws-go) = COUNT, (ws-high)] v
[[COUNT,(ws-go) < COUNT, (ws-high)] A
[TIME, (ws-high) o (COUNTz(ws-high) + 1 2
TIMEl(e-high) o (COUNT2(e-high) + DI

E-BEFORE-NW = [COUNTZ(nw-go) = COUNTl(nw-high)] \%
[[COUNT,(nw-go) < COUNT, (nw-high)] A
[TIMEl(nw-high) o (COUNTz(nw-high) + 1) >
TIMEl(e-high) o (COUNTz(e-high) + I

E-BEFORE-SE = [COUNTz(se-go) = COUNTl(se-high)] Vv
[[COUNTz(se-go) < COUNTl(se-high)] A
[TIMEl(se-high) o (COUNTz(se-high) + 1) 2
TIMEl(e-high) o (COUNTz(e-high) + DI
In a similar fashion, we define functions W-BEFORE-N,
W-BEFORE-S, W-BEFORE-EN, W-BEFORE-NW, W-BEFORE-SE,
N-BEFORE-NE, N-BEFORE-EN, N-BEFORE-WS, S-BEFORE-NW,
S-BEFORE-EN, N-BEFORE-WS, EN-BEFORE-WS, SE-BEFORE-NW,
SE-BEFORE-EN, SE-BEFORE-WS, NW-BEFORE-EN,
NW-BEFORE-WS.

125

Due to symmetry we have,
N-BEFORE-E = [COUNT,(e-go) = COUNTl(e-high)] v

[[COUNTZ(e-go) < COUNTl(e-high)] A
[TIMEl(e-high) o (COUNTz(e-high) + 1>

TIMEl(n-high) o (COUNTz(n-high) + DI

Similarly, we define functions N-BEFORE-W, S-BEFORE-E,

S-BEFORE-W, EN-BEFORE-S, EN-BEFORE-N, EN-BEFORE-W,

WS-BEFORE-S, @ WS-BEFORE-N, WS-BEFORE-E, SE-BEFORE-E,

SE-BEFORE-W, SE-BEFORE-N, NW-BEFORE-E, NW-BEFORE-W,

NW-BEFORE-S, EN-BEFORE-NW, EN-BEFORE-SE, WS-BEFORE-NW,

WS-BEFORE-SE, WS-BEFORE-EN, NW-BEFORE-NE.

All events are not independent; for example we have:
e-go = (e-high + n-high + s-high + ws-high + nw-high + 1) |
[COUNTz(e-go) < COUNTl(e-high)] A
E-BEFORE-N A E-BEFORE-S A E-BEFORE-WS A
E-BEFORE-NW.

w-go = (w-high + n-high + s-high + en-high + se-high + 1) |
[COUNTZ(w-go) < COUNTl(w-high)] A
W-BEFORE-N A W-BEFORE-S A W-BEFORE-EN A
W-BEFORE-SE.

en-go = (en-high + s-high + ws-high + nw-high + se-high + w-high +
1) | [COUNTz(en-go) < COUNTl(en-high)] A

126

EN-BEFORE-S A EN-BEFORE-WS A EN-BEFORE-NW
A EN-BEFORE-W A EN-BEFORE-SE.

ws-go = (ws-high + n-high + en-high + nw-high + se-high + e-high +
1) | [COUNT,(ws-go) < COUNT, (ws-high)] A

WS-BEFORE-N A WS-BEFORE-EN A WS-BEFORE-NW

A WS-BEFORE-E A WS-BEFORE-SE.

In a similar fashion, we give the specification of the events s-go,

se-go, n-go and nw-go.

ne-go = (ne-high + 1) | [COUNT, (ne-high) > COUNT,(ne-go)]
sw-go = (sw-high + 1) | [COUNTl(sw-high) > COUNTz(sw-go)]
es-go = (es-high + 1) | [COUNTl(es-high) > COUNTz(es-go)]
wn-go = (wn-high + 1) | [COUNTl(wn-high) > COUN’I‘z(wn-go)]

Some of the partial orderings and the completion time sequences
of these new events are:
e-cross << e-go
w-cross << w-go
n-cross << n-go
§-cross << s-go
en-cross << en-go
es-cross << es-go
wn-cross << wn-go

ws-cross << ws-go

127

ne-cross << ne-go
nw-cross << nw-go

se-cross << se-go

Sw-cross << Sw-go

e-low << e-cross

w-low << w-cross

n-low << n-cross

s-low << s-cross

TIMEZ(e-high) = TIMEz(e-low)
TIMEz(w-high) = TIME2(w-low)
TIMEZ(n-high) = TIMEz(n-low)
TIME2(s-high) = TIMEz(s-low)

In a similar fashion, we define events en-low, ws-low ... and the

completion time sequence of the events en-high, ws-high and so on.

Proof of correctness of the traffic controller design

We prove that the design of the traffic controller meets the two
criteria, namely, 1) there is no collision and 2) the system is

starvation-free.

Proof of 1) :

From the definition of the conditions E, EL, W, WL, N, NL, S
and SL, it is clear that the condition for collision free system is

equivalent to the following condition:

128

[[INTER-E — ~E] A [INTER-EN — ~EL]] v

[(INTER-E — ~E] A [INTER-W — ~W]] v

[[INTER-E — ~E] A [INTER-SE — ~SL]] v

[((INTER-EN — ~EL] A [INTER-N — ~N1]] v

[[INTER-W — ~W] A [INTER-WS — ~WL]] v

[[(INTER-W — ~W] A [INTER-NW — ~NL]] v

[[(INTER-WS — ~WL] A [INTER-S —» ~8]] v

[((INTER-N — ~N] A [INTER-NW — ~NL]J] v

[[INTER-S — ~S] A [INTER-SE — ~SL]I.
We prove that [[INTER-E — ~E] A [INTER-EN — ~EL]J]; a similar
proof can be given for other clauses. Proving INTER-E — ~E is
equivalent to proving the events
i) e-go + s-go, ii) e-go + n-go, iii) e-go + ws-go and iv) e-go + nw-go
are single-occurrent events.
From the definition of conditions E-BEFORE-S and S-BEFORE-E,
they cannot be true simultaneously. At any time t, at most one of
them can be true. For the event e-go to start occurring,
E-BEFORE-S should be true at that time. For the event s-go to
start occur, S-BEFORE-E should be true at that time. Suppose
E-BEFORE-S is true at time t and the event e-go starts at that
time, then S-BEFORE-E is false at least until time t’ at which the
corresponding occurrence of the event e-high finishes. Hence s-go

cannot start up until that time. Similarly, if an occurrence of s-go

129

starts, until the corresponding occurrence of s-high finishes, an
occurrence of e-go cannot start. This implies, e-go + s-go is
gingle-occurrent. Similarly we can prove (ii), (iii) and (iv). Similar
argument can be carried out to prove the other condition [INTER-EN
- ~ELJ.

Proof of 2) :

We prove that duri(ws-high) is finite V i € N. When an occurrence
of the event ws-high starts happening (a west-bound car that is
about to make a left turn at the intersection is sensed), there might
be a maximum of six cars that have to cross the intersection before
this car is allowed to cross the intersection. According to our
assumption, cars do not break down at the intersection and they
take only finite amount of time to cross the intersection. This

implies, duri(ws-high) is finite V i.

130

CHAPTER 5

CONCLUSION

Most real-time systems are either concurrent or distributed with
timing constraints on the actions and computations. There are two
points of view in describing such systems : internal (structure) and
external (behavior). Present day specification methodologies
emphasize and try to decouple these points of views. From a user's
point of view only the behavior description is important. It is
important to assure the user that stringent timing constraints are
met and imperfect execution environments do not arise. Hence any
safety assertion stated by the user must be related to stated timing
constraints or those derivable from initial specifications. This thesis
has made contributions to time dependent specification, behavior
description and formal reasoning of real-time systems; this is
achieved without any regard to any formal (internal)representation
and computation model. The model due to Caspi [Caspi 86] has
been generalized and enriched. The expressive power of this
extended model is illustrated through the specification of a spectrum
of problems chosen from hardware arbiter design, database and

robotics.

131

After briefly reviewing a selected set of specification models in
Chapter 2, we described the generalized functional formalism in
Chapter 3. Relaxing the constraints that events are instantaneous
we showed an algebraic structure for events and provided tools for
problem specifications. The new results of this thesis are contained
in Chapters 3 and 4. The specifications and proofs given in Chapter
4 are significant and non-trivial contributions. They demonstrate the
adequacv of time-dependent functions defined in Chapter 3 for
specification of distributed real-time systems behavior such as robotics.
We can claim with some degree of confidence tl:at the formalism
presented in this thesis provides a unifying framework for several

other problems in this field.

Although the class of problems that we have chosen to illustrate
the formalism are from different areas and levels of complexity, a
great deal of investigation is yet to be done on this approach. We

mention some of these next.

From a designer’s point of view, the structure (internal view) of
a real-time distributed system is significant. Both control-related and
data-related properties, actions and computations must be specified.
Since resource-limitations, in addition to timing constraints, are
central to the design and implementation of real-time programs, they
must also be specified in the event-based 1aodel. Only then, correct

semantics for real-time programs can be given. Moreover, the

132

primary objective of the internal view specification is to provide a
document which the design and implementation team can use. The
choice of the functional model necessarily forces the structure of
specification to be functional and thus the design and implementation
descriptions are close to being functional programs. The natural next
sten is the validation of this detailed specification (implementation
level specification). Because it is close to being a functional
program, one can make it a functional program that is executable.
This step, once again, requires semantics for real-time functional
constructs introduced in the model that are used in the oactual
functional program. We believe that the definitions of time delay
and shift operators, conditions and counters discussed in Chapter 3
provide sound semantics for similar constructs when used in
functional programs. In Alagar et al [Alagar 86], a functional
language with real-time constructs was proposed for robotic
programming. It is important to investigute the adequacy of the
madel for internal specification of a systcrn with limited resources
and derive the semantics of time dependent constructs defined in
Chapter 3 within this context. This investigation pertains to the

notion of applicative real-time programming and is an open problem.

Finally, the suitability of this approach for specification of
network systems can be investigated. The several layers spanning

from low level protocols to application level algorithms in a network

133

may be specified under one framework. If specification at one level
is viewed as a transformation of the specification at the next higher
level, a conventional method would require proving the correctness of
transformation at each level. This does not seem necessary in this

formalism, since the same functional model can support all levels.

134

References

[Alagar 86] Alagar, V.S., Grogono, P.D., Ramanathan, G., “A
Functional Language for Robotic Programming”, Proc. Japan-USA
Symposium on Flexible Automation, Osaka, Japan, pp.739-747, July
1986.

[Alagar 87] Alagar, V.S., Grogono, P.D., Ramanathan, G., “On the
Design of a Programmable Robotic System”, IFAC Proc. on Theory
of Robots, Vienna, pp.315-318, 1987.

[Alagar 88a] Alagar, V. S., Ramanathan, G., “Formal Environment
and Tools Description for the Analysis of Real-Time Concurrent
Systems”, Workshop on the Specification and Verification of

Concurrent Systems, Stirling, Scotland, July 1988.

[Alagar 88b] Alagar, V. S., Ramanathan, G., “A Functional Mode! for
Specification and Analysis of Distributed Real-Time Systems:

Formalism and Applications”, submitted for publication, October 1988,

[Ashcroft 71] Ashcroft, E., Manna, Z., “Formalization of Properties of
Parallel Programs”, Machine Intelligence 6 (1971), Edinburgh

University Press, pp. 17-41.

135

[Bennett88] Bennett, S. M., Minkowitz, C., Rowles, J. S., “me too

reference manual”, STC Technology Ltd and Stirling University, 1988.

[Bernstein 80] Bernstein, P. A., Shipman, D. W., “The Correctness of
Concurrency Control Mechanisms in a System for Distributed
Databases (SDD-1)”, ACM TRANS. Database Systems, Vol. 5, No. 1

(1980), pp. 52-68.

[Bernstein 81] Bernstein, P. A., Goodman, N., “Concurrency Control
in Distributed Database Systems”, Computing Surveys, Vol. 13, No. 2

(1981) pp. 185-221.

[Bernstein 87] Bernstein, P. A, Goodman, N., “A Proof Technique for
Concurrency Control and Recovery Algorithms for Replicated

Databases”, Distributed Computing, Vol. 2 (1987), pp. 32-44.

[Bochman 82] Bochman, G. V., “Hardware Specification with
Temporal Logic: An Example”, IEEE Trans. on Computers, Vol. C-31,
No. 3 (1982), pp.

[Browne 85] Browne, M., Clarke, E., Dill, D., Mishra, B., “Automatic
Verification of Sequential Circuits using Temporal Logic”, in Computer
Hardware Description Languages and their Applications, C-J. Koomen

and T. Moto-Oka (eds.), Elsevier Science Publishers B. V. (1985).

136

[Burstal 74] Burstal, R. M., “Program Proving as Hand Simulation
with a Little Induction”, Information Processing 74, North Holland

(1974), pp. 308-312.

[Caspi 86] Caspi, P., Halbwachs, N., “Functional Model for Describing
and Reasoning about Time Behaviour of Computing Systems”, Acta

Informatica, Vol. 22 (1986), pp. 595-627.

[Clark 88] Clark, R. G., “The Design and Development of Ada
Real-Time Embedded Systems”, Proceedings of BCS-FACS Workshop
on Specification and Verification of Concurrent Systems, Stirling,

Scotland, July 1988.

[Cohen 86] Cohen, B., Harwood, W.T., Jackson, M. 1., The
Specification of Complex Systems, Addison-Wesley Publishing company,
1986.

[Dasarathy 85] Dasarathy, B., “Timing Constraints of Real-Time
Systems: Constructs for Expressing Them, Methods of Validating
Them”, IEEE Trans. Software Eng., Vol. SE-11 (1985), pp. 80-86.

[Dennis 74] Dennis, J.B., “First Version of a Data Flow Procedural

Language”, Proc. Colloque Sur Programmation, LNCS 19, 1974.

137

(Dijkstra 81] Dijkstra, E. W,, “An Assertional Proof of a Protocol by

G. L. Peterson”, Tech. Report EWD779, Burroughs Corp., (1981).

[Ellis 77] Ellis, C. A., “Consistency and Correctness of Duplicate
Database Systems”, Proc. 6th Symp. Operat. Syst. Principles, (1977),

pp. 67-84.

[Gehani 82] Gehani, N., H, “Specifications : Formal and informal -

A Case Study”, Software-Practice and Experience, 12, pp.433-444.

[Grenrich 79] Grenrich, H. J., Lautenbach, R., “The Analysis of
Distributed Systems by Means of Predicate/Transition Nets”,
Semantics of Concurrent Computation, G. Kahn, Ed. New York:

Springer-Verlag (1979), pp. 123-146.

[Hailpern 82] Hailpern, B. T., Verifying Concurrent Processes Using
Temporal Logic, Lecture Notes in Computer Science, 129,

Springer-Verlag, (1982).

[Hayes 871 Hayes, I, Specification Case Studies, Prentice-Hall

International, 1987.

[Henderson 86] Henderson, P., “Functional Programming, Formal
Specification and Rapid Prototyping”, IEEE Transactions on Software

Engineering, vol.SE-12, No.2, 1986, pp.241-250.

138

[Hoare 72] Hoare, C. A. R, “Towards a Theory of Parallel
Programming”, in Operating Systems Techniques, C. A. R. Hoare and
R. Perrot (eds.), Academic Press, New York (1972).

[Hoare 75] Hoare, C. A. R., “Parallel Progamming: An Axiomatic

Approach”, Computer Languages, Pergamon Press (1975), pp. 151-160.

[Hoare 85] Hoare, C. A. R., Communicating Sequential Processes,

Prentice Hall, International, New Jersey (1985).

[Holler 74] Holler, E., “Multiple Copy Files in Computer Networks”,

Kernforschungszentrum, Karlsruhe (1974).

[Jahanian 86] Jahanian, F. and Mok, A. K., “Safety Analysis of
Timing Properties in Real-time Systems”, IEEE Transactions on

Software Engineering, Vol. SE-12, No. 9, (1986), pp. 890-904.

[Kahn 74] Kahn, G., “A Simple Theory of Parallel Programs”, IFIP

Congress Proceedings (1974).

[Koymans 83] Koymans, R., de Roever, W. P, “Examples of
Real-Time Temporal Logic Specification”, Workshop on The Analysis

of Concurrent Systems, LNCS 207 (1983), pp. 231-251.

[Lamport 76] Lamport, L., “Towards a Theory of Correctness for
Muiti-User Data Base Systems”, Report CA-7610-7612, Massachusetts

Computer Associates, Wakefield, MA., October 1976.

139

[Lamport 78a)] Lamport, L., “Time, Clocks and the Ordering of
Events in a Distributed System”, CACM 21, 7 (July 1978), pp.
568-666.

[Lamport 78b] Lamport, L., “The Implementation of Reliable
Distributed Multiprocess Systems”, Computer Networks 2 (1978), pp.

95-114.

[Lamport 80a] Lamport, L., “Sometime’ is Sometimes ‘Not Never: A
Tutorial on the Temporal Logic of Programs”, Proceedings of the
Seventh Annual Symposium on Principles of Programming Languages,

ACM SIGACT-SIGPLAN (January 1980).

[(Lamport 80b] Lamport, L., “The ‘Hoare Logic’ of Concurrent

Programs”, Acta Informatica 14 (1980).

[Lamport 82a] Lamport, L., Milliar-Smith, P. M., “Synchronizing
Clocks in the Presence of Faults”, Op. 60, Computer Science

Laboratory, SRI International, Menlo Park, CA (March 1982).

[Lamport 82b] Larﬁport, L., “An Assertional Correctness Proof of a
Distributed Algorithm”, Science of Computer Programming 2, 3
(December 1982), pp. 175-206.

140

[Lamport 83] Lamport, L., “What Good is Temporal Logic?”
Information Processing 83, R. E. A. Mason, ed., (1983) North
Holland, Amsterdam,

[Lamport 84] Lamport, L., Schneider, F. B.,, “The ‘Hoare Logic' of
CSP and All That”, ACM TOPLAS 6, 2 (April 1984).

[Lamport 85] Lamport, L., Schneider, F. B, “Formal Foundation for
Specification and Verification”, in Distributed Systems - Methods and

Tools for Specification, LNCS 190 (1985), pp. 203-285.

[Lamport 86] Lamport, L., “The Mutual Exclusion Problem : Part 1 -
A Theory of Interprocess Communication”, JACM, Vol. 33, No. 2,

(1986), pp. 313-326.

[Lamport 86] Lamport, L., “The Mutual Exclusion Problem : Part II -

Statement and Solutions”, JACM, Vol. 33, No. 2, (1986), pp. 327-348.

[Lauer 79] Lauer, P. E., Torrigiani, P. R. , Shields, M. W, “COSY
— A System Specification Language Based on Paths and Processes”,

Acta Informatica, Vol. 12 (1979)

[Manna 84] Manna, Z., Wolper, P. L.“Synthesis of Computing
Processes from Temporal Logic Specification”, ACM TOPLAS, Vol. 6,
No. 1 (1984), pp. 68-93.

141

[Milne 85] Milne, G., “CIRCAL and the Representation of
Communication, Concurrency and Time”, ACM TOPLAS, Vol. 7, No. 2

(1986), pp. 270-298.

[Milner 80] Milner, R., “A Calculus of Communicating Systems”,

LNCS, Vol. 92 (1980).

[Milner 83] Milner, R., “Using Algebra for Concurrency: Some
Approaches”, Workshop on The Analysis of Concurrent Systems,

LNCS 201 (1983), pp. 7-25.

[Minsky 72] Minsky, M., Computation: Finite and Infinte Machines,

Prentice-Hall, 1972.

[Moszkowski 83] Moszkowski, B., “A Temporal Analysis of Some
Concurrent Systems”, Workshop on The Analysis of Concurrent
Systems, LNCS 207 (1983), pp. 359-364.

[Moszkowski 85] Moszkowski, B., “Temporal Logic for Multilevel
Reasoning about Hardware”, IEEE Computer, Vol. 18, No. 2 (1985),

pp. 10-19,

[Moszkowski 86] Moszkowski, B., Executing Temporal Logic Programs,

Cambridge University Press (1986).

142

[Ould 87] Ould Kaddour, N., Courvoisier, M., “Issues for Concurrent
Programming Real-Time Systems”, IEEE Int'l. Conference on Robotics

and Automation (1987), pp. 1469-1474.

[Owicki 76] Owicki, S., Gries, D., “An Axiomatic Proof Technique for

Parallel Programs I”, Acta Informatica, No. 6 (1976), pp. 319-340.

[Ozsu 85] Ozsu, M. T. “Modeling and Analysis of Distributed
Database Concurrency Control Algorithms Using an Extended Petri
Net Formalism”, IEEE Trans. on Software Engineering, Vol. SE-11,
No. 10 (1985), pp. 1225-1239, 1986.

[Petri 62] Petri, C. A., “Kommunikation mit Automaten”, Schriften
des TIM 2, Institute fiir Instrumentelle Mathematik, Bonn, West

Germany (1962).

[Pnueli 77] Pnueli, A, “The Temporal Logic of Programs”, Proc. of
the 18th Symposium on the Foundations of Computer Science, IEEE
(1977).

[Ramamoorthy 80] Ramamoorthy, C. V., Ho, G. S., “Performance
Evaluation of Asynchronous Concurrent Systems using Petri Nets”,

IEEE Trans. Software Eng., Vol. SE-6 (1980), pp. 440-449.

143

[Ravichandran 86] Ravichandran, A., Shyamasundar, R. K,
“Correctness Proof of Majority Consensus Algorithm”, Information

Sciences 38 (1986), pp. 213-227.

[Sanchis 77] Sanchis, L. E., “Data Types as Lattices: Retractions,
Closures and Projection”, RAIRO Theoretical Computer Science, Vol.

11 (1977), pp. 329-344.

[Schwartz 82] Schwartz, R. L., Melliar-Smith, P. M., “From State
Machines to Temporal Logic: Specification Methods for Protocol
Standards”, ZTEEE Trans. on Communications, Vol. CAM-30 (1982),
pp. 2486-2496.

[Shin 87] Shin, K. G., Epstein, M. E. “Intertask Communications in
an Integrated Multirobot System”, IEEE J. of Robotics and

Automation, Vol. RA-3, No. 2 (1987), pp. 90-100.

[Smoliar 79] Smoliar, S. W., “Using Applicative Technique to Design
Distributed Systems”, in Proceedings Specifications of Reliable

Software Conference, Cambridge, MA, 1979, pp. 150-161.

[Smoliar 81] Smoliar, S. W., “Applicative and Functional
Programming™, in Sofiware Engineering Handbook edited by C. V.
Ramamoorthy and C. R. Vick, Prentice-Hall, Englewood Cliffs, NJ,
1981.

144

{Thiagarayam 83] Thiagarayam, P. S., “Some Aspects of Net Theory”,
Workshop on The Analysis of Concurrent Systems, LNCS 207 (1983),

Pp. 26-54.

[Thomas 79] Thomas, R. H., “A Majority Consensus Approach to
Concurrency Control for Multiple Copy Databases”, ACM Trans. on

Database Systems, Vol. 4 (1979), pp. 180-209.

[Zave 82] Zave, P.,“An Operational Approach to Requirements
Specification for Embedded Systems”, IEEE Trans. Software Eng.,
Vol. SE-8 (1982), pp. 250-269.

