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Abstract

A Graphical Rule-Based System for Recognizing On-line
Handwritten Digits

Stephen E. Malowany

A graphical rule-based system for recognizing isolated samples of handwritten
digits is presented. On-line pen stroke position data such as that acquired from a
digitizer tablet or computer mouse is used as input. The system consists of four
major components: a structural feature extractor, a rule-based classifier, a graph-
ical user-interface (GUI), and a control module. The structural feature extractor
segments the stroke data into sequentially connected portions from which geometric
feature vectors are computed. These features are modeled after high-level structural
primitives by which humans could describe the composition of characters. The feature
veclors are then fed into a rule-based classifier where a heuristic rule base is applied
by a conventional forward chaining inference engine. The classification procceds by
abstracting the quantitative feature vectors into top level qualitative elemental prim-
itives. These primitives considered together are then matched against a knowledge
base of digit templates. A list of possible digit identities with corresponding certainty
factors is then concluded. The graphical user interface running under the X Window
System provides “point and click” access to the system’s underlying control module,
data visualization of extracted features, animated display of digit samples, and the
ability to draw new samples with the mouse. The control module simply interprets
events generated by the user via the GUI, and dispatches commands to the various

component processing modules. Some experimental results are given.
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Chapter 1
Introduction

Rescarchers have long attempted to apply computer teehnology to many of our daily
mundane tasks. Typical application arcas include scientitic caleulations, business
applications such as inventory, billing, payroll, and banking [17], entertaimment such
as movie animation, electronic music [21], and games. These applications exploit the
various advantages of computer technology, namely computational specd, accuracy,
and the ability to process vast amounts of data.

Computers have benefited from the recent large seale communication available
through the growth of networks. Advances in telecommunications allow world wide
access via telephone networks, satellite systems. and fibre optic techmologies. These
offer continually increasing bandwidth to share information and knowledge [53]. These
advances are followed by corresponding evolution of database, on-line, and real time
systems [38]. With falling costs and performance improvements of hardware in gen
eral, and microprocessors in particular, computers are finding their way into consumer
products such as cameras, washing machines, automobiles, and home clectronies.
Thus computer researchers are striving to develop suitable hardware and software al-
gorithms for an ever expanding range of uses including video images, sound; medical

diagnostics, teaching, and acrospace.
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CHAPTER | INTRODUCTION

1.1 Expert Systems

One arca of computer applications which has made significant progress in the last
two decades is the domain called artificial intelligence(Al), including expert systems
and neural networks. In the broadest sense, artificial intelligence has been defined as
“...the study of ideas that enable computers to be intelligent”!. An expert system
has been defined as “a computer program that represents and reasons with knowledge
of some specialist subject with a view to solving problems or giving advice”?. MYCIN
is a renowned carly expert system which assists medical professionals in the treat-
ment of blood infections [46]. Other successful expert systems include Prospector for
the analysis of geological saniples [13], and DENDRAL for the determination of the
molecular structure of organic compounds [32]. Probably the most successful com-
mercial application of an expert system is XCON developed by Digital Equipment
Corporation [5]. This system is used to configure VAX computer systems according to
customer orders. Besides providing expert calibre solutions, current expert systems
are now expected to provide meaningful explanations for the purposes of analysis
and training of non-expert users [50]. A wide spectrum of successful expert system
applications can be found in the literature [24].

Many current expert systems are being implemented in the rule-based paradigm
for which a number of development shells are available, such as Nexpert Object,
CLIPS, ART-IM, Levels, EXSYS, and Kappa. Some of these environments offer
objects as an additional scheme for knowledge representation. Early expert systems
were mainly implemented in the LISP language [60], and as such were large and
slow programs which required expensive special purpose hardware to run. This was
an obstacle to the commercial proliferation of expert systems. However, with the
development of fast and efficient pattern matching algorithms, such as the Rete [14)
ana ‘Treat [37] algorithms, today’s expert system shells written in the C language
offer significant performance increases on general purpose computers compared to

LISP-based systems [35).

L59), p. 1
2[27]. p. 3.
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1.2 Man-Machine Communication

In the carly days of computing, punched cards and line printer listings were the
standard way of programming and interfacing with computers. This was the era of
batch processing. Interactive on-line computing followed with the development of
teletypes and alphanumeric cathode ray tube (CRT) terminals attached to a central
computer system. Ivan Sutherland then pioncered the age of interactive compnter
graphics with the invention of his Sketchpad system in the carly 1960 [19]. Following
this a rapid evolution of both hardware and software for computer generated graphices
occurred. These advances included video frame buffers, light pens, digitizer tablets,
and algorithms for performing rendering, clipping, shading, anti-aliasing, and hidden
line and surface removal for two and three dimensional displays [18).

The advantages of utilizing graphical user interfaces (GUL) to inerease the offi
ciency of human-computer interaction are now becoming widely known and accepted.
Window-based user interfaces arc now a common feature of most computer systeins,
and as a result users have come to expect all applications to have polished user-
friendly interfaces. However, a user interface that is casy 1o use is seldom casy to
build. In a recent survey of user interface developers, approximately half of the code
and development time for their applications is dedicated to the user interface por-
tion [39]. Hence the emergence in recent years of user interface management systems
(UiMS) and GUI building tools [1]. The X Window System, a de-facto standard in
the workstation environment, provides a hardware-independent window platform that
allows application programmers to spend more time improving their programs and
less time porting to new systems. X permits these GUI enviromments to be exploited
in a distributed computing environment hased on the client-server model [61].

Windows, icons, menus, and pointing devices constitute today’s computer graph
ical user interface environment which has evolved from the pioncering work done at
XEROX in the mid-seventies [28]. Current personal computer systems and worksta-
tions offer high resolution color hit-mapped displays to support such environments.
Interactive multimedia adds compact disk(CD) quality stereo audio, in addition to full

motion video [9, 22]. The modern computing trends focus on visnal programming [54]
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and data visualization [20, 33].

The leading rescarch in man-inachine interaction is evolving in the domain known
as virtue! reality, or simply VR [41]. Multiple new input/output devices are involved
in these man-machine interfaces. They include: voice recognition for speech input,
31 spatiai audio outputs, head helmet with built-in position and orient ation sensors,
stereoscopic eye glasses display and eye position sensor for determining the user's point
of focus, Lody suit for mecasuring user limb positions, gloves capable of measuring
hand gestures and generating force reflection. The glove can optionally heat or cool
the user’s fingers! “Virtual reality presents a syntheticaily generated environment to
the user through visual, auditory, and other stimuli. ... Users perccive themselves as
being inside the scene, and they have a 3D spatial understanding of objects’ locations
with respect to their own body”?.

Leading rescarchers in this area include Jaron Lanier of VPL Research Inc., cre-
ator of the “cyephones”, the “data glove”, and the “data suit”, and Tom Furness
of the University of Washington’s Iluman Interface Technology Laboratory [§]. Vir-
tual Reality promises major breakthroughs in many fields such as sports, medicine,

architecture, desigu, as well as entertainment [10].

1.3 Character Recognition

Another interesting arca of rescarch is in the domain of handwriting and character
rccognition. This field is enjoying a resurgence of interest due to recent advances in
recognition algorithms and 1/O hardware, as exemplified in the pen-based notebook
computer [43].

Character recognition is a specialization within the broader field of pattcrn recog-
nition which concentrates on the interpretation and understanding by computers of
machine and handwritten information. On-line chaiacter recognition involves the
user inputting data directly into the computer from a writing device. Typically, the
data consists of a strcam of x and y position coordinates, and sometimes pressurc

and velocity information are also captured [40]. On the other hand, optical character

341], p. 79



CHAPTER 1. INTRODUCTION )

recognition (OCR) addresses the processing of handwritten or machine printed docu-
ments which are subsequently scanned and inputted for analysis. Reliable computer
recognition of machine printed characters has been achieved and commercial systems
exist for this purpose. However, computer recognition of handwritten characters re-
mains difficult and requires continued rescarch efforts. Comprehensive surveys on the
state of the art in both on-line and optical character recognition are presented in [52]
and [11].

The goal of character recognition is to identify symbols from a given alphabet ov
language. For example, the 26 letters of the English alphabet, Arabic characters [},
or Chinese characters [45], which may represent entire words by themselves. Classifi-
cation methods can usually be categorized as either statistical or syntactical. Many
different approaches to the problem of on-line character recognition have been taken
utilizing a wide varicty of feature types. Some of the more common niethods include
recognition algorithms based on Fourier coeflicients [23], curve matching and other
signal processing techniques [25, 26], clastic matching with local affine transforma-
tion [55], and stroke codes [45].

At Concordia University’s Centre for Patlern Recognition and Machine Intelli-
gence (CENPARMI), researchers have been studying and developing algorithms for
pattern recognition of handwritten information, including document analysis, seg-
mentation of connected handwriting, application of multi-expert combinations {12],
human performance analysis [31], as well as recognition of isolated characters and
numerals [29). This thesis work combines current expert systems and man-machine
communication technologies for research into charucier recognition at CENPARMI
A prototype system named OLDRES, an on-line digit recognition expert, system, was
developed and is presented here. Chapter 1 provided an introduction and overview
of some relevant literature in the arcas of expert systems, man-machine interface,
and character recognition. Chapter 2 explains the OLDRIS system architecture and
the graphical user interface. Chapter 3 describes the structural feature extraction
methods used, while Chapter 4 develops the rule-based classification system. Chap-
ter 5 presents sample outputs, test results, and an analysis of the system performance

before concluding in Chapter 6.




Chapter 2

On-Line Digit Recognition Expert
System

T'his chapter describes the functionality and features of the On-Line Digit Recognition
Ixpert System (OLDRES) and its graphical user interface (GUI). Its purpose is to
facilitate the development of the recognition sub-systems by providing the researcher
with an integrated environment offering efficient access to data and presenting it in an
intuitive, meaningful fashion. The data visualization capabilities were especially im-
portant in refining the algorithms for the feature extraction sub-system, as well as the
classification knowledge base. The functionality of the system as a demonstrational
tool was also an important feature.

The first section presents an overview of the OLDRES system including the design
objectives and system architecture. The services provided by OLDRES are then
described from the user’s perspective followed by some implementation highlights of

the system, ending with a discussion of the control module.
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2.1 OLDRES System Overview

2.1.1 Objectives

In the design stage of development, the basic system requirements were identified as

the following:
Data Management

o Loading of selected digit samples from the training and testing databases

into the system.

e Inputing of samples to the system by drawing with the mouse.
Data Processing

o Interface to and coordinate the execution of the feature extraction and

rule-bhased classification sub-systems.
Data Visualization

¢ Animating the graphical display of the component strokes of digit samiples.

o Graphical display of extracted structural features.

The OLDRES system implementation has realized these objectives,

2.1.2 System Architecture

OLDRES is an interactive window-based application. In contrast to the conventional
command line style of programming, window applications are cvenl-dreen. Conven-
tional text-based interactive programs have an internal command loop which prompts
the user for input, reads in some characters, and performs some actions. 'This sequence
repeats until the user keys-in a request to exit. Window-based applications on the
other hand, surrender execution control to the event dispatcher of the window system.

The application simply registers what events it is interested in, and which functions it
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Graphical User interface

Control
Module

Rule-Based
Classifier

Feature
Extractor

Tralning
Testing Database
Database

Figure 1: Block diagram of the OLDRES system architecture.

wishes to have called as a result of those events. Such functions are known as callback
Sunctions.

OLDRES is comprised of four principal software modules, namely the graphical
user interface, the feature extractor, the rule-based classifier, and the control mod-
ule. Figure 1 shows the interrelationships among these modules. Using the mouse
and keyboard, the user interacts with the system by manipulating GUI objects dis-
played on the screen. These input events are then passed on to the control module
for interpretation and processing. The control module is a layer of code consisting of
callback functions which have been registered with the window system during GUI
creation. These callback functions have been “attached” to interface objects, and
are executed by the window system in response to prespecified event(s) (e.g. mouse
clicks, key presses). The control module also handles the reading in of digit samples
from database files on disk, and those that are drawn by the user with the mouse.
The feature extraction module processes the raw digit sample data into geometric
feature vectors, which are then passed into the rule-based classifier. Here, the digit
classification knowledge base written in the CLIPS expert system language[4], is ap-

plied by the forward chaining CLIPS inference engine in an attempt to classify the
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Figure 2: The main OLDRES window (a) without a sample currently loaded, (b)
with a sample currently loaded from a database.

patterns. The resultant features and classifications are then displayed back to the
user. Training the system consists of developing the feature extraction capabilities
and classification rules to process the features. Separate databases were used dur-
ing the training and testing phases of development. The testing phase evaluates the

combined performance of the tuned system on an independent, data set.

2.2 Using OLDRES

Figure 2(a) shows the main OLDRES window as it appears at start-up. It contains
two sub-windows, a control panel at the top, and a large drawing canvas underncath.
The control panel is where the various parameters and options are sct, and processing,
actions are triggered. There are five rows of pancl items here. The top row contains

push buttons which are used to initiate processing or cause other windows to appear.
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Figure 3: The OLDRES control panel items.

Notice that in Figure 2(b) there are three extra buttons which do not appear in
Iigure 2(a). These three items are context sensitive and only appear when a sample
is currently loaded.

The second row of items is used to access digit samples from the databases. It
consists of a nuineric ficld and two exclusive choice settings. Exclusive settings are
those where only one of the choices can be sclected, or active at any one time. A
numeric field is a text item where only numeric ASCII characters can be entered or
displayed. Items from the third and fourth rows, exclusive settings and sliders, control
various options for the graphic display of digit samples and extracted features. The
hottom row of the control panel sub-window contains a single textual message item.
The message string shown here changes dynamically. It is used to display system
state information, data sample statistics, as well as the results of classification.

The canvas sub-window is where digit samples are displayed and drawn, and
extracted features are graphically illustrated in colour. The main OLDRES window

can be arbitrarily resized using facilities provided by the window manager.

2.2.1 Loading Samples from Disk

Before doing anything useful, OLDRES needs to have a currently loaded digit sample
to work with. Digit samples can be loaded in one at a time from either of two database
files (the testing database and the training database). When a sample is loaded, it is
automatically displayed in the drawing canvas according to the current control panel

display settings (discussed in Section 2.2.3). Access to digit samples from the two
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databases is controlled by the second row of panel items (sce Fig. 3). They are shown
here in a state where a digit sample has been loaded in, but recognition has not been
attempted yet.

There are three possible modes in which samples can be loaded from disk, namely
immediale mode, saume digit mode, and nert error mode. The load mode setting is the
middleitem of therow. Immediate mode simply loads and displays the sample number
specified in the “Load Sample” numeric ficld. Same digit mode scans sequentially
through the database for the next sample with the same identity as that of the current
sample. In other words, if the currently loaded sample is a *4’; we scan through the
database for the next sample of a ‘4’, then load and display it. Next error mode
scans sequentially through the database looking for the next sample which is not
correctly classified by the system. In this mode, cach sample is successively loaded
but not displayed, and processed by the recognition systeni. When the first non-
correct classification is encountered, the scarch halts and that sample is displayed.
The loading action is triggered by typing enter into the “Load Sample” numeric
field, or by clicking on ecither of the increment/decrement buttons (small squares
with triangles pointing upward and downward) associated with the numeric field. Tn
immediate mode, the increment /decrement buttons step the “Load Sample”™ value by
one. In the other two modes, they sclect the direction of the scarch. The panel item
labeled “Database” specifics which database to load samples from, the 1000 member

training set or the 2300 member testing sct.

2.2.2 Drawing Samples with the Mouse

Besides loading in samples from disk, the user can also enter in new patterns by
drawing themn onto the canvas sub-window with the mouse. Whenever the mouse
pointer enters this window, the cursor glyph changes to that of a pencil (see Iig,
6(a)). Upon leaving the drawing arca, the cursor glyph reverts back to whatever is
appropriate. This is to indicate to the user the intended input modality, i.c. that
handwriting can be effected here. To draw a new sample, the user simply presses down
and holds any of the three mouse buttons, moves the mouse to form the pattern, and

releases the mouse button at the end of the stroke. While the mouse button is held
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down, its z,y location within the window is measured at the maximum possible rate,
Lypically around 20-25 points per second. Stroke points are continually drawn as they
are sampled, giving real-time [cedback to the user. An arbitra y number of strokes
may be entered up to a maximum of 500 individual points.

liven though the computer mouse is generally considered a very unnatural writing
instrument, and the locator sampling rate is somewhat slow, it is adequate for an
experimental system and is universally available on systems supporting the X Window

System,

2.2.3 Digit Display Options

The appearance of displayed digit samples in the drawing canvas can be controlled via
the third and fourth rows of control panel items. The “Stroke Type” exclusive setting
specifies whether the pattern is to be drawn using just points, just line segments, or
with both points and line segments. Points are rendered in white as single screen
pixels. Line segments are drawn in blue at the width specified by the “Stroke Width”
slider item. Digit samples can be animated at varying speeds by adjusting the value
ol the “Stroke Speed” slider. A stroke speed value of 10 results in instantaneous
display of the entire pattern (no animation), whereas a speed of 0 yields very slow
animation of strokes at the approximate rate of ten points per second.

The “Zoom” and “Grid” items are boolean settings. “Zoom” specifies whether
or not. to magnily the sample image on the canvas. This is useful for viewing small
patterns with increased detail. The “Grid” item specifies whether or not to draw a
dashed bounding box around the pattern. Also, when viewing features (discussed in
section 2.2.5), feature end point coordinates are illustrated by projecting normals to
the bounding box. Both “Zoom” and “Grid” are set to “On” in the sample screen
outputs of Figure 4.

The “Redraw” push button causes the loaded sample to be redrawn according to
the current display options mentioned above. The “Clear” button purges the loaded

sample from the system and clears the drawing canvas.
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2.2.4 Classifying Samples

Once a digit sample has been loaded into OLDRES (e.g. Fig. 2(b)), recognition of
the pattern is attempted by clicking on the *Classify” push button. The pattern
is then processed by the feature extraction sub-system, followed by the rule-based
expert system module. Results of classification are displayed textually in the control
panel message item (e.g. Fig. 4(a)). Results of feature extraction may be observed

in color graphical format as described in the next sub-section.

2.2.5 Viewing Structural Features

Once classification of the sample has been perlormed, the label of the *Classily™ but
ton changes to “Features”, and the extracted structural feature segments arve indicated
graphically by alternating the colour used to draw the points and/or line segments
(Fig. 4(b)). Individual features may then be sequentially selected and examined by
repeatedly clicking on the “Features”™ button. One such sequence of three features
is illustrated in Figure 4(c) through 4(e). Textual and numeric feature vector values
for the currently selected feature are displayed in the upper-left corner of the canvas.
The feature vector clements are described in section 3.3.4. Features are graphically

displayed in the following manner:

1. A yellow line segment joining the feature start and end points is drawn, illus-

trating the (rajectory and end point spread feature vector components.

N

A red line segment is drawn joining the feature aper point to the mid-point of
the line segment described in (1), illustrating the divection of concavily and aper

point of the feature.

3. The area enclosed by the strohe segment defined by the feature and the line
segment in (1) is filled in cyan, thus highlighting the degree of curvature of the

feature.

4. If the “Grid” control panel setting is “On”, normals in the form of dashed line

segments are drawn from the feature’s start and end points to the four sides
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is displayed on the pattern. (b) - (e) A composite sequence of displayed features.
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Figure 5: OLDRES pop-up frames. (a) The outputl options pop-up frame. (b) T'he
batch classification pop-up frame.

of the displayed bounding box. The @,y coordinate values normalized over the

range [0..100] are drawn where the normals meet the hounding hox.

2.2.6 Creating Output Files

OLDRES has the ability to generate useful output files in various formats from the
digit sample data. Five files containing the following types of information may be

created:

1. Raw Digit Points A graphics file in the PostScript language[2, 3] which depicts

digit sample data in the form of dots before filtering,.

o

Filtered Digit Points A PostScript graphics file illustrating post-filtered digit,

sample data in the form of dots.

3. CLIPS Facts A file containing extracted structural feature vectors in the form
of CLIPS facts.

4. Graphical Features A PostScript file which graphically illustrates the stioke

segments used to calculate feature vectors.

5. TEX Features A file containing the textual and numeric feature vector clements
formatted as a INTX table[30].
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The output options pop-up frame, shown in Figure 5(a), is used to select which of
the five types files to create for digit samples. It is brought up by clicking on the
control panel push button labeled “Output”. Unlike all the other selection items in
OLDRES, the “Create Files for Sample” item on the panel of this pop-up frame is
an inclusive setting. Hence, any combination of the five oplions may be chosen. The
“I"ile Name Prefix” text field allows the user to specify the base name of files. A
separate disk file is created for each of the selected file types, each with a unique file

name suflix.

2.2.7 Batch Classification

Clicking on the control panel button labeled “Batch” brings up the batch processing
pop-up frame (Fig. 5(b)). Here, a desired range of samples from the currently active
database can be selected for classification in batch mode. Two numeric fields are
provided to specily the lower and upper bound sample for the run. The “Go” push
button is pressed to initiate processing. A thermometer-like gauge tracks the progress
of the batch run as it progresses. During batch classification the drawing canvas is
used to display two tables, - confusion table and a performance table (see Fig. 6(b)).
Their format is explained in section 5.2. The tables are continually updated after
cach sample is processed during the batch run. Various colours are used in order to
facilitate their interpretation. For example, numbers in the diagonal of the confusion
table  correct classifications - are green. Rejections are indicated in yellow, and

other non-zero entries represer ting misclassifications are in red.

2.3 System Implementation

The OLDRES system implementation is written entirely in the C programming lan-
guage, except for the digit classification knowledge base which is written in the CLIPS
version 1.3 expert system language. It was developed on the Siun SPARCstation plat-
form under the SunOS 1.1.1 (UNIX) operating system running the X Window System,

version 11, release 1. The system involves approximately 5000 lines of C code and
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Figure 6: (a) Drawing a digit sample with the mouse. (b) OLDRIES during batch
classification.

3000 lines of CLIPS code. Using SunOS shared libraries, the OLDRES exceutable
image is 393K bytes in size, and uses about 1.7 Mbytes of virtual memory space at

run-time.! Test results were obtained on a Sun SPARCstation 2 with 32 Mbytes of
RAM.

2.3.1 The CLIPS Expert System Shell

CLIPS (C Language Integrated Production System) is a forward-chaining rule-based
expert system shell developed by NASA at the Lyndon B. Johnson Space Center.
Based on the Rete pattern matching algorithm[14] and written entirely in C, it is one of
the fastest and most portable expert system shells available[34]. The CLIPS language

is syntactically similar to LISP and provides rich pattern matching capabilities.

Yas reported by the UNIX “ps” (process status) command.
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'Ihe rule-based classification module is implemented as an embedded CLIPS run-
time module and linked into the OLDRES executable image. This is achieved by
first loading the knowledge base into CLIPS, and then issuing the CLIPS command
(rules-to-c). This results in the translation of the KB into seven C source files,
which when compiled and linked with a CLIPS run-time function library, produces

the run-time module.

2.3.2 The XView Toolkit

The OLDRES graphical user interface was created using XView version 2.0 toolkit.
XView (X window system-based Visual/Interactive Environment for Workstations)
is a user interface toolkit to support interactive, graphics-based applications running
under the X Window System? It provides a collection of pre-built user interface
objects (e.g. push buttons, pop-up menus, scrollbars, etc.), the appearance and func-
tionality of which comply with the OPEN LOOK Graphical User Interface (GUI)
specilication [47, 48], This is the GUI standard for UNIX System V Release 4 sup-
ported by Sun Microsystems Inc. and AT&T. XView was developed by Sun as the
X-based successor to its SunView toolkit. SunView is Sun’s dated proprietary window
system which ra's only on Sun hardware. In contrast to the network based X Window
System, SunView is kernel based, thereby restricting graphical display of applications
to the local display of the machine which they are running on. XView is being freely
distributed in source form, hence it has been ported to run on many UNIX worksta-
tion platforms, including Digital Equipment Corporation’s DECstation line running
the Ultrix operating systemi, IBM’s RS/6000 running AIX, and IBM-compatible PC’s

under LINUX, among others.

2.3.3 User Interface Objects

XView is an object oriented toolkit based on the following fundamental principles of

object-oriented programming:

o Objects are represented in a class hierarchy

9], p. xxiii
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Figure 7: Hierarchy of OLDRES GUI objects.
o Objects are opaque data types.
e Objects have attributes which can be set by message passing functions,
e Objccts may have callback procedures that are triggered by events.

XView objects include both visual and non-visual objects. Some examples of visual
objects are frames, pancls, buttons, and scrollbars. Non-visual objects maintain state
information which affect the display of visual objects. For example, screen, server,
and font objects. Static sub-classing with chained inheritance is used such that all
objects of a particular class inherit properties from its parent class, or superclass.
Figure 7 shows the hicrarchy of user interface objects in the OLDRES system.
The base frame is the parent, or owner object of the panel and canvas sub-windows
which it contains. It is also the parent of the application’s two pop-up sub-frames,
and the frame icon. Both pop-up sub-frames contain a child panel and cach of the

three panels is in turn the parent of numerons panel item objects,

2.3.4 XView Application Programmer’s Interface

All user interface objects visible on the OLDRES base frame are created immediately

at program start-up. Creation of the output options and batch processing pop-up
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frames and their descendant objects are delayed until the first attempt to access
them is made. This contributes to faster system startup, and conserves memory
since one might not always use the pop-up frame services during every session with
OLDRES. User interface objects aie created and managed using the X View applica-
tion programmers interface (API) functions. The XView toolkit API consists of six
pritmary generie C functions.
1. xv_init() Establishes the connection to the server, initializes the event dis-
patcher and the Resource Manager database, processes any passed attributes,
and installs a default error handler. The return value is a handle to the X server

object being used. attrs is a variable length sequence of attribute-value pairs,
terminated by a NULL.

Xv_server
xv_init(attrs)
<attribute-value list> attrs;

te

xv_create() Creates an object. owner is the handle of the parent object.
package specifies the type or class of object to be created. Any attributes
of the object not specified in the attrs list will assume default values. The re-
turn value of the function is a handle to the newly created object. This handle
can then be used to reference the object in subsequent calls to xv_destroy(),
xv_get (), and xv_set(), or as the ovner in calls to xv_create().

Xv_object

xv_create(owner, package, attrs)
Xv_object owner;
Xv_pkg package;

<attribute-value list> attrs;

3. xv.destroy() Destroys an object.

int
xv_destroy(object)
Xv_opaque object;
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4. xv_find() Finds an object that meets certain criteria; or if the object doesn’t
exist, creates it. This is the default behavior which can be defeated by specifyving,
the attribute-value XV_AUTO_CREATE, FALSE in attrs.

Xv_opaque

xv_find (owner, package, attrs)
Xv_object owner;
Xv_pkg package;

<attribute-value list> attrs;

5. xv_get() Gets the value of a single attribute.

Xv_opaque
xv_get(object, attr)
Xv_object object;

Attr_attribute attr;

6. xv_set() Sets the value of one or more attributes,

Xv_opaque
xv_set(object, attrs)
Xv_object object;

<attribute-value list> attrs;

In general, an XView application must first call xv_init () to initialize the system,
and then xv_create() to crcate the application’s top level window, or base frume.
This is the application’s root object. From here, one or more sub-windows are created
within the base frame as child objects of the base frame. Optionally, pop-up sub-
frames containing sub-windows may also be created. Frames are free floating windows
which may overlap cach other. Frames do not exist by themselves; they contain suby-
windows which are bound by the frame and filed within it, i.c. they do not overlap

one another. XView provides the following types of sub-windows:

Canvas Sub-windows A basic planar drawing surface onto which graphics can he

rendered. A single canvas window is used in OLDRES.
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Text Sub-windows An area where a sequence of ASCII characters may be displayed
and edited using the built in editing facilities. OLDRES does not use any text

windows.

Panel Sub-windows A control area where buttons, controls and settings are dis-

played. Three such windows are used in OLDRES.

TTY Sub-windows A terminal emulator in which arbitrary command line or screen

based applications can be run. No T'TY windows are nccessary in OLDRES.

Objects specific to cach sub-window class are then created. Notification callback
procedures and select input cvents are registered, after which the application calls
the xv_main loop() function to initiate the dispatching of events. The user then
generates keyboard and mouse events asynchronously, which are then delivered to the
application’s registered callback functions for processing. Event processing continuous
until the quit condition is signalled,? at which point xv.main.loop() returns and the
program cxits gracelully by using xv_destroy.safe() to shut down the frame object

and all its descendants.

2.3.5 Colour Graphics

For efficiency reasons, the recommended method for rendering graphics under X is
XIib[15]. The Xlib function library is the lowest level API to X, on top of which all
higher level toolkits are built. However, toolkits are the preferred choice for managing
higher level user interface objects such as windows, menus, scrollbars, etc. OLDRES
makes use of the following Xlib calls for management and display of color graphics in
the drawing canvas sub-window: XClearArca. XClearWindow, XDefaultGC, XDraw-
Line, XDrawLines, XDrawPoints, XDrawRectangle, XDrawSegments, XDrawString,
XFillPolygon, XQueryFont, XSetBackground, XSetFont, XSetForeground, XSetLin-
cAttributes, XSet Window Background, XTextWidth.

3OPEN LOOK specifies this to be the responsibility of the window manager program.
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2.4 The Control Module

The control module consists of a number of user interface callback functions, various
disk input/output (I/O) routines, interfacing code for the feature extraction and
classification sub-systems, as well as miscellancous utility lunetions for maintaining
system state information.

A single callback function is assigned to handle all control panel buttons, while
another function handles inputting of user drawn patterns in the canvas window.
All other interactive panel items (i.e. everything except the control panel message
item which is output only) have their own private callbacks attached. Collectively,
the callback functions maintain internal system state buffers, manage user interface
objects, and execute processing actions requested by the user.

Disk I/O duties performed by the control module include the veading in of se-
lected digit samples from the databases, and the formatting and writing of output
files selected via the outnut options pop-up frame. Colour graphics are rendered onto
the drawing canvac - ".g the Xlib functions mentioned in the previous section. Coor-
dinate system transformations are also required here to map the digitizer tablet data
from the databases onto physical screen pixels in the dynamically resizable canvas
window.

This completes the presentation of the OLDRES system architecture and graphical
user interface. The OLDRES feature extraction and rule-based classification modules

will be explained in the next two chapters.




Chapter 3

Extraction of Structural Features

The structural feature extraction method presented in this chapter is extremely simple
and cfficient, both in theory and in its implementation. The basis for definition of
its feature space is that of funclional attributes which humans use to differentiate
difficult cases [57]. Thus the goal is to identify and describe characters using high-
level primitives in much the same fashion as a human might do when presented with
the image of a character and asked to claborate on its structural composition. The
feature extraction process consists of segmenting strokes into one or more descriptive
subcomponents, which at the highest level, compose the character. For example,
the character ‘5’ may be described as having three major structural components; a
horizontal bar, a vertical bar, and a curve with its concavity facing leftward. Relative
positioning, size, connectivity, and directional information are also required to more

precisely specify the inter-relationships among the major components.

3.1 Input Data

Data for a single character is input to the feature extraction system as a sequence of
one or more strokes. Fach stroke is in turn composed of a sequence of (z,y) coordinate
value pairs. Coordinate pairs, or points, are obtained from an input device, such as
a digitizer tablet [56], by sampling the (z,y) position of a locator with respect to

the origin of a reference plane at constant, discrete time intervals. The origin of the

24
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reference plane is assumed to be the lower left-hand corner, with values of . tncreasing
to the right, and values of y increasing upwards. Hence, &+ and y are non-negative
integers. Sampling of points for each stroke is initiated asynchronously by an input
device pen—down event, and terminated by a pen-up cvent.

If we use the coordinate pair (F, I?) to indicate the end of each stroke!, we may
represent an entire input character as a lincar array of coordinate pairs C (i) = (&, 1),
where ¢ = 1,2,..., N, and N is the number of points, including end of stroke indi-
cators, which compose the character. This is the representation of input characters
used by the system.

Based on the stroke data for each character, four values are maintained for size
normalization purposes (discussed in the next section). These values are h,umy Ymin,
Tinazs Ymaz- They are the minimum a and y, and maximum x and y coordinate values,

respectively.

3.2 Definitions

3.2.1 Size Normalization

We wish to extract features from completely unconstrained input characters. By this
we mean that there are no assumptions made as to where the character is positioned,
what the size of the character is, how skewed it is, etc. Obviously we must impose
some basic constraints, such as that the character must be drawn somewhere within
the boundaries of input device, and it must be drawn large enough that pen movement,
and direction changes can be reasonably detected by the resolution of the input device.
Therefore, in order to allow for input characters to be completely unconstrained, we
must normalize our measurements with respect to the size of the character currently
under consideration [7].

We define the bounding box of a character as being the smallest rectangle that
fully encloses all points which compose the character. Hence, it is the rectangle defined

by the diagonally opposite vertices (Tminy Ymin) and (Zmazs Ymar) (s Figure 8).

Making sure that (E, E) is unique with respect to all valid (z, y) coordinate pairs
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Figure 8: The bounding box of a character.

We define the size of a character as being the length of the diagonal of its bounding

box, or more formally as

size = \/(.rmar = Tmin)? 4+ (Ymaz — Ymin )%

Henceforth, when we speak of lengths of line segments, and distances between points,

we mean Fuclidean distances of the type \/(:1,1 — z9)? + (y1 — y2)?, where the line

segment end points, or the two points, are given by (z1,y;) and (z2, y2).

3.2.2 Discrete Directions

For the purposes of the extraction process, as well as for the description of the re-
sultant features, the range of possible Jdirections over two dimensions is divided into
sixteen equal sub-ranges. The names and arrangement of these discrete direction
classifications are given in Figure 9. Therefore, given any two ordered pairs of points,
the slope, Ay/Axr, so defined dictates the classification of the direction defined from
the start point to the end point. Henceforth, when we speak of direction, we are
referring to the sixteen possible discrete directions given in Figure 9.

Also, when we refer to the direction at point C(j), we mean the discrete direction

defined from the point C(j—1) to the point C(j), for some index j into the character

data array CC. Positive rotations are defined to be clockwise.
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Figure 9: The sixteen discrete directions.
3.3 The Feature Extraction Process

3.3.1 Filtering the Input Data

It is noted that due to the consiant sampling rate used in the data input process,
it is possible to infer certain temporal propertics of stroke segments from inter-point
distances, e.g. pen spced and acceleration. Iowever, since our objective is Lo extract
structural features, we do not consider such temporal characteristics, and in fact filter
out the basis for their determination. The only temporal aspect exploited is the data
point sequence. Input characters tend to be composed of many more point samples
than are actually required to structurally represent the character. Therefore, in order
to increase the efficiency (speed) of the algorithin, extrancous points are filtered out
such that the distance between neighboring points is greater than or equal to some
threshold value [51]. The two opposing factors in determining this threshold level
are (1) to minimize the number of points needed to represent the character while
(2) maintaining sufficient stroke smoothness for the algorithm to perform well. “This

minimum inter-point threshold distance was experimentally determined, and set. to
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Figure 10: Examples of input data filtering. (a) The number of points is reduced
from 195 to H4. (b) The nuber of points is reduced from 171 to 58.

be 3% of the size of the character. Values higher than this did not yield a sufficient

degree of stroke smoothness. Examples of pre- and post-filtered data are given in

Figure 10.

3.3.2 Identifying Raw Features

(Given our initial representation of the character as a linear array of C(¢) = (=, i),
where 7 = 1,2,..., N for N composite coordinate pairs, the process of identifying

features proceeds iteratively, and is summarized by the following four steps:

I. Given the starting point of the current feature F; as the index ¢ into C, find the
end point of F, as the index i€ into C such that the structural segment between
the points C'(74) and C(i€) does not violate the constraints imposed on features,
but the structural segment between the points C(¢5) and C(i¢ 4 1) does violate

these constraints.,

o

If (i + 1) = N, the current feature F, is the last feature of the character.

3. I the point C'(¢¢ + 1) is not an end of stroke indicator, set the start point index

-

1H of the next feature Foy to i€,

1. 10 the point C(i€+1) is an end of stroke indicator, set the start point index i5t!

of the next feature Foqy to i+ 2.
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The constraints which stipulate whether a structural segment is a valid feature or not
are discussed in the following section.

Each feature is thus uniquely identified by its start and end points, ('(7,) and ('(i,),
with connected features of the same stroke sharing a common point (the previous
feature’s end point is the next feature’s start point). The result of this process is
to segment each stroke into one or more raw features. These features are placed in
an ordered list, the elements of which are the feature vectors that describe the input
character.

Connected raw features may subscquently be combined according to a set of preset
rules in order to minimize the number of features required to deseribe the character.
The need to aggregate {catures and the rules which permit connected features to be

combined are discussed in Section 3.4.

3.3.3 Constraints Which Define Features

The determination of a fcature end point C(7,.) given a start point ('(4,) is performed
in a sequential, point by point fashion. We define the first dircction of a feature as
the direction at point C(i, + 1) (i.c. the discrete direction defined from che point
C(i,) to the point C'(7, +1)). Initially, the rotation of the feature is undefined. Then,
starting with the index / = i, + 2 into the character data array €, we proceed with

i =17+ 1 until any onc of the following four constraints is violated:

1. end of stroke constrainu: The point ('(¢) cannot be (1, I4) (i.e. the point
representing end of stroke). This is obvious, a feature cannot span multiple

strokes.

2. smoothness constraint: The directions at the points C'(¢ — 1) and /(1) must,
either be the same or adjacent directions (adjacent directions share a common
boundary). For example, the Upper North Fast is adjacent to the direction

Right North, whercas Lower North Last is not, see Fig. 9.

3. rotation constraint: The rotation of a feature becomes defined on the first

occurrence where the direction at point C'(2) is not the same as the direction at
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point C'(z —1). If the direction at C(7) is the next clockwise direction from the
direction at C'(7 — 1), the rotation of the feature is said to be positive, otherwise
the rotation is negalive. Subsequent changes of direction from C(i — 1) to C(2)

must maintain this same rotation.

4. direction constraint: The total number of cumulative contiguous discrete
directions traversed by the feature must be no more than eight. Recall that we
have sixteen cirenlarly contiguous directions, hence this constraint ensures that

a curved feature will have an arc of less than 180°.

Once we encounter a constraint violation at the point C(7), we define the feature’s
end point. by setting ¢, = i — 1, since the point C(i — 1) was the last point which
did not violate any constraints. Finally, we define the last direction of the feature as
being the direction at point C(i,).

The procedure described in this section merely identifies the set of points which
constitute a feature. The descriptive attributes which we use to characterize features

are delined in the next section.

3.3.4 Calculation of Feature Vectors

Given the start point ('(75), and end point C(i.) of a feature, the following eight
structural and geometric properties may then be calculated to describe the feature

(refer to Iig. 11).

I. end point spread: The length of the line segment § = Z‘(z’,)C(ie), defined by

the feature’s start and end points.

[ £

. apex point: The point C(iy) on the feature such that
Vil(iy, <i<ia)Alia <i<ie)]: La(C(in),8) > La(C(3), S),

where L, (p.1) is the length of the normal from point p to the line I. In other

words, the point along the feature which is farthest away from line segment S.

3. apex depth: The length of the normal from the apex point C(z,) to the line

segment S
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C(iy)

C(is ) S C(i, )

Figure 11: A sample feature.

4. length: The sum of the distances between cach successive pair of points along
the entire fcature. -
fe—

Y D(CGH),CE+1)),

1=t,

where D(p1, p2) denotes the distance from the point py to the point p,.

5. degree of curvature: Defined as | minus the end point spread divided by the
length of the feature. Indicates the relative amount of curve closure, 0.0 being,

a perfectly straight line, 1.0 being a completely closed loop.

6. direction of concavity: The discrete direction defined from the aper point

C(is) to the mid-point of the line segment S.

7. trajectory: The discrete direction defined from the feature start point (/(7,)

to the feature end point C'(i,).

8. rotation: The rotation indicated by rotating from the feature’s first dircclion
through its intermediate directions to its last dircelion. Can he cither positive,

negative, or undefined (i.e no rotation, the first and last directions are the same).
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3.4 Rule-Based Aggregation of Features

3.4.1 Justification

The feature extraction algorithms implied in the previous sections perform best when
curved segments have smooth, gradual, and definitive direction changes, and con-
nected -traight segments form crisp vertices with minimal rounding. In reality how-
ever, these characteristics are often unattainable due to the imprecision of, and noise
introduced by the input device, the digitization process itself, as well as unsteadiness
of hand of the writer [52].

Spurious points which single-handedly interrupt an otherwise consistent rotation
over a larger segment cause premature termination of a feature during the sequen-
tial, point by point process of feature identification. The application of various pixel
averaging smoothing techniques [51] to the input data was attempted in order to
circumvent the problem of premature fe ature termination. However, in order to ap-
proach the degree of stroke smoothness required over widely varying sizes of input
characters, these methods tended to obscure otherwise desirable and detectable fea-
ture boundarices.

In the presence of moderately noisy input data, such as that obtained from a
digitizer tablet or from a mouse, the problem of premature feature termination can
be solved by aggregating selected pairs of features into one. Using a set of heuristic
rules to compare two connected features, we may select appropriate candidates which
when combined would form a larger more representative segment. In the presence of
high quality input data, the feature aggregation process is unnecessary due the fact
that the raw extracted features are already optimal. An optimal set of raw features
which requires no aggregation can occur in practice, albeit rarely.

Occasionally, scemingly straight and relatively smooth segments yield multiple
raw features (Fig. 12(a)(b)(c)). This may happen when the trajectory of a straight
segment is very close to a boundary between two discrete directions. Discrete direction
classification of successive point pairs along such a secgment may oscillate back and
[orth between the adjacent discrete directions, even though the difference between

their actual slopes is minimal. This in turn violates the constraint on features that
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Figure 13: An example of an exceedingly jittery input character, (a) 316 original data
points. (b) 64 data points after filtering. (c) 27 raw features extracted. (d) 12 features
after aggregation.

they must have a single rotation, thus preventing the entire segment from being,
identified as a single raw feature. The feature aggregation stage rectifies this problem
however, and the entire segment is reconciled into one feature (Fig. 12(d)). 1f input.
characters are exceedingly jittery however, the sensitivity of the feature identification
process and the limits of the feature aggregation rules cannot yield a set of features

to adequately represent the character (Figure 13).




CHAPTER 3. EXTRACTION OF STRUCTURAL FEATURES 34

3.4.2 Method of Aggregation

Heuristics

T'wo features are said to be connected when they share a common point. Specifically,
the ending point of one feature is the starting point of another feature, C(il) = C(:2).
Feature aggregation takes two such connected features, and merges them by setting
the start point of the new merged feature to be the start point of the first feature, and

the end point of the new merged feature to be the end point of the second feature,
C@l)=C) Ciy') = C(id).

The creation of a new aggregated feature is not subject to the constraints imposed
on raw features defined in Section 3.3.3, but rather their creation is governed by a set
of fealure aggregation rules. These arc four prioritized heuristics which compare two
connected features and decide either for or against their aggregation.

Fach of the four rules has a unique level of priority. Allrules at higher priorities are
attempted before considering the aggregation of features by rules at a lower priority.
T'his scheme implements a conflict resolution strategy for cases in which a feature is
doubly connected, and could be justifiably aggregated with either of its connected
peers. But, the decision should be made one way or the other based on the level of
confidence we have that the resulting aggregated feature will in the long run, minimize
the number of features, while maximizing the appropriateness of representation of the
structural features for the actual character. Higher priority rules take precedence over
lower priority rules because we have more confidence in their aggregated results. The
requitements for aggregation of features are thus relaxed as rules descend in priority.

The next section lists the four heuristics for feature aggregation in a pseudo-rule
format. We note here that the symbolic expressions used in the pseudo-rules are
actually implemented as numeric comparisons or other procedures on the descriptive
properties caleulated for each feature as described in Section 3.3.4. For example, the
expression (feature-1 isstraight) really tests if the degree of curvature of feature-1 s
less than or equal to a threshold value, namely 0.05. The threshold levels for numeric

tests have been experimentally determined and contribute to the heuristic nature
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of the aggregation process. The numeric thresholds and procedures for determining

truth values are listed following the four pscudo-rules.

Rules for Feature Aggregation

Rule 1: [Combine-Same-Rotations |

Purpose: Aggregates features which have the same rotation.
The not-expression prevents straight lines from
being aggregated, unless one or both of them is small.
Priority: 1, highest
If: (feature-1 and feature-2 are connected)
and (feature-1 and feature-2 have the same rotation, not undefined)
and not ( (feature-1 and feature-2 are both straight)
and (feature-1 and feature-2 are both not very small))
and (feature-1 and feature-2 are smoothly connected)
and (feature-1 and fcature-2 do not over-rotate)
and (feature-1 and feature-2 do not potentially intersect)

Then: (aggregate feature-1 and feature-2)
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Rule 2:

Purpose:

Priority:
If:

and

and

and

and
and
and
Then:

Rule 3:

Purpose:

Priority:
If:
and

and

and

Then:

Combine-Curve-and-Straight

Aggregate a curved feature with a straight feature.

The block of or-expressions prevents a curve and

straight line of opposing rotations from being aggregated,
unless the straight line is small or very straight.

2

(feature-1 and feature-2 are connected)

(feature-1 is curved)

(feature-2 is straight)

( (feature-1 and feature-2 do not have opposing rotations)
or (feature-2 is small)

or (feature-2 is very straight))

(feature-1 and feature-2 are smoothly connected)
(feature-1 and feature-2 do not over-rotate)

(feature-1 and feature-2 do not potentially intersect)

(aggregate feature-1 and feature-2)

Ig)mbinc-Straight-LinesJ

Aggregates straight segments with the same trajectory.

The second block of or-expressions prevents straight
lines of opposing rotations from being aggregated,
unless one of them is small or extremely straight.

3

(feature-1 and feature-2 are connected)

(feature-1 and feature-2 are both straight)

( (feature-1 and feature-2 have the same trajectory)

or (feature-1 and feature-2 have adjacent trajectories)

or (feature-1 and feature-2 have second adjacent trajectories))

( (feature-1 and feature-2 do not have opposing rotations)
or (cither feature-1 or feature-2 is small)
or (cither feature-1 or feature-2 is extremely straight))

(aggregate feature-1 and feature-2)

36
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Rule 4: lCombine-Tiny-Feature

Purpose: Aggregate tiny features with their connected neighbors
Priority: 4, lowest

If: (feature-1 and feature-2 are connected)

and (feature-1 is tiny)

Then: (aggregate feature-1 and feature-2)

Symbolic Rule Expressions
o feature-1 and fealure-2 are connecied: 1, of feature-1 = i, of feature-2,
o feature is curved: degree of curvature > 0.05.
o fealure is straight. degree of curvature < 0.05.
o fealure is very siraight: degree of curvature < 0.02.
o feature is extremely straight. degree of curvature < 0.01.
o fealure is small: i, — 15 < 5, i.e. feature has 5 or fewer points.
o feature is very small: 1. — i, < 3, i.c. feature has 3 or fewer points,
o fealure is tiny: i, — 1, = 1, i.e. feature has 2 points.
e opposing rotations: positive and negative.

o adjacent trajectories: Any 2 of the 16 discrete directions which are connected,

i.e. share a common boundary.

o second adjacent trajectories: Any 2 of the 16 discrete directions which are sep-

arated by one discrete direction.

o feature-1 and feature-2 are smoothly connecled: The first direction of feature-2
is either equal to, or an adjacent direction to the last direction of feature-].

Additionally, if one of the features is a curve with a defined rotation, the first
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direction of feature-2 may also be the second adjacent direction on the rotation

side of feature-1's last direction.

o featurc-1 and fealure-2 do not over-rotale: the trajectory of feature-2 is less
than cight direction away from the trajectory of feature-1 when rotating in the
direction indicated by feature-1. i.e. the trajectory of feature-2 is less than the

opposite direction of the trajectory of feature-1.

o feature-1 and fealure-2 do not polentially intersecl: The line defined by the
last. direction of feature-2 does not intersect the line segment defined by the
start and end points of feature-1. Also the line defined by the first direction of
feature-1 does not intersect the line segment defined by the start and end points

of feature-2.

Method of Inference

The inference process for selection of features to aggregate is an exhaustive linear
scarch. Successive passes over the feature list are performed at each priority level,
starting with the highest level. During cach pass, the rule at the current priority level
is attempted against cach pair of connected features. If at the end of a pass over the
feature list, there has been at least one feature aggregation, we reset to the highest
priority level for the next pass. If there has been no aggregations at the end of a pass,
we lower the priority level by one for the next pass. Once we complete a pass over the
feature list at the lowest priority level with no resultant aggregations, the inference
process is halted.

This is a simple, albeit inelegant method of inference, but due to the small number
of data items (raw features) which we are dealing with, usually no more than ten, it is
adequate. The extra overhead needed to implement a more elaborate strategy is not
necessary. We can however realize an increase in speed by taking advantage of short-
circuited logic and arranging rule expressions so that the simplest, most discriminating
expressions come before more detailed less discriminating ones.

The next chapter will discuss how the features are used to classify digits.



Chapter 4

Rule-Based Classification of Digits

In this chapter, we present the OLDRES digit classification knowledge base (NB),
the function of which is to determine a list of possible identities for the input sample
based on the extracted structural features. This list is then passed back to the control
module which will decide the final outcome reported by the system. The conclusion
will either be that the input sample represents one of the digits 0.9, or that the
sample has been rejected as un-classifiable.

In the approach taken here, we attempt to recognize individual characters purely
on the basis of their shape. Hence, the system must have knowledge as to what
shapes constitute valid digits, and which do not. Knowledge about which structural
patterns do not represent valid digits is not directly built in to the system. Rather, a
rejection by failure scheme is used wherceby after considering the input features, if a
classification cannot be made with a high cnough confidence level, we conelude that
the sample is not one of the digits 0..9 (i.c. we conclude “reject”).

The knowledge which the system possesses to classify digits is represented by lop-
level structural components. The KB contains a set of structural prolotypes for cach
digit expressed in terms of these top-level components. Fach prototype describes
a particular variation of a digit using from one to three top-level components. For
instance, a ‘1’ can be described as being composed of one component (a simple vertical
bar), two components (a vertical bar with a hat on top, like an upright harpoon),

or three components (a vertical bar, a hat, and a horizontal bar as a base). Thus,

39
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Figure 14: Facts and inferences for asserting classifications.

multiple prototypes for cach digit are incorporated into the KB to account for the
diversity of writing styles which occurs in the general population.

Given this internal representation of valid digit shapes, the recognition process
becomes one of labeling the input features, either individually or in groups, as being
suitably representative of one or more top-level digit components. Once all appropri-
ate labels have been inferred, they are collectively matched against prototypes in the
KB, the outcome of which is a list of possible identities for the input sample. The
weighted proportion of a sample’s features attributable towards a specific classifica-
tion is used to calculate a degree of belief, or certainty factor, associated with that
classification. I'igure 14 shows the facts and inferences involved in asserting digit
classifications. All of these facts will be described in detail in the remainder of the
chapter.

The next section presents a general overview of the digit classification KB, after
which CLIPS integration procedures are discussed, and the rule base control strategy

is explained. Section 4.4 then proceeds with a detailed discussion of the KB rule
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Figure 15: Components of the rule-based classification systen.

groups. In section 4.5, the chapter concludes by claborating on the knowledge ac-
quisition and refinement procedures employed in the development of the knowledge

base.

4.1 Overview

The OLDRES digit classification knowledge base is implemented as an embedded,
run-time CLIPS expert system module. The CLIPS environment supports the clas-
sic forward-chaining, rule-based system paradigm, where rules are of the form if
conditions then actions. Figure 15 illustrates the three main sub-systems of this
environment, namely the rule base, the fact base, and the inference engine. Based on
the existence or non-existence of facts in the fact base, the inference engine selects
a rule whose left-hand-side (LIS) conditions are satisfied, and fires it. When a rule
fires, the actions specified on its right-hand-side (RIIS) are performed. "This process,
called the recognize-act cycle[16], continues until some desired conclusion is reached,
or there are no more fircable rules (i.c. no more rules whose LIS conditions are satis-

fiable). In our case, the inputs to the system are the structural features representing
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the input sample, and the outputs are possible identity classifications for the sample.

The KB consists of 93 rules, 14 fact templates, and 4 fact blocks, represented in
the form of the three primary CLIPS knowledge constructs, defrule, deftemplate, and
deffacts [4]. ‘The fact templates serve as an aid in the KB verification and validation
(V&V) process. By defining the structure and allowed slot values for all valid facts
used throughout the knowledge base, it is possible to use automated tools to assist
in the detection of some KB anomalies. Three of the four fact blocks contain digit
prototype information defining known digit patterns in terms of top-level components.
There is one fact block cach for prototype groups consisting of one, two, and three
top-level components. The fourth fact block contains sixteen facts describing the
inter-relationships of the sixteen discrete directions used by the system (i.e. which

directions are opposite to one another, which directions are adjacent to one another).

4.2 Interfacing with the CLIPS Environment

4.2.1 Initialization

During OLDRES start-up and initialization, the following three CLIPS C functions
are called:
init. clips();

init_c_rules_1();
reset clips();

init_clips() initializes the embedded CLIPS run-time system. init_c_rules_1()
loads the rule module ‘1’ This rule module ID corresponds to the ID supplied to
the (rules-to-c) function when it created the C source files for the knowledge base.
reset_clips() performs an analogous function to the (reset) CLIPS environment
command; it clears the agenda and fact list, then asserts all facts listed in the deffacts

statements into the fact list.
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4.2.2 Input

Once the feature vectors representing the input sample have been determined, this
information is then passed into the CLIPS fact base by the OLDRIES control module
via multiple calls to the CLIPS supplied C function assert(). This function accepts
as an argument, a single formatted text string representing the desired fact. to assert.
There arc three fact structures used to assert facts representing the input sample in

the KB. They are the sample, point, and feature facts and are described now.

number <integer>)
database <symbol>)

(sample (
(
(number-of-features  <integer>)
(
(

number-of-strokes  <integer>)
total-length <real>)

)

The sample fact contains information about the input sample as a whole. Only one
sample fact is asserted per digit sample. The number and dalabase slots serve to
uniquely identify the input sample, il possible.  If the sample did not come from a
database (i.c. a user drawn sample), an appropriate marker is placed to indicate this.
The number-of-features slot indicates the number of structural features which have
been extracted from the input data. A corresponding number of fealure facts are
asserted into fact base. The number-of-strokes slot indicates the number of distinet,
strokes which compose the input sample. The total-length slot is the sum total of all

the length slot values of all the features of the current sample.

ID <symbol>)
type  <symbol>)

(point (
(
(stroke <integer>)
(
(

X-coor <real>)
Y-coor <real>)

)
In the point fact pattern, the ID slot is an identifier which serves Lo distinguish it from
other point facts. The typeslot is a categorical attribute which can take on one of two

values, terminatoror hinge. Each stroke has exactly two terminator points, one ot the
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beginuing of the stroke, and one at the end (i.e. the pen-down and pen-up points).
A hinge point is a common point shared between two successive features of the same
stroke (i.e. the end-point of one feature = start- point of the next feature). For an
input sample with Ny features and Ny strokes, the number of point facts asserted is

(N; + N,).

(feature (1D <symbol>)
(start-pt-1D  <symbol>)
(end-pt-ID  <symbol>)
(trajectory  <symbol>)
(concavity  <symbol>)

)

(rotation <symbol>
(length <real>)
(spread <real>)
(depth <rcal>)

)

In the feature fact pattern, the ID slot is an identifier which distinguishes it from
other feature facts, The start-pt-1D and end-pt-ID slots indicate the point fact ID of
the start-point and end-point of the feature. The remaining seven slots, trajectory,
concavity, rolation, length, curvature, spread, and depth, are the computed values for
the feature vector components, as described in the previous chapter.

Once all the sample, point and feature facts have been asserted into the fact base,
execution of the knowledge base is triggered by calling the CLIPS C function run().
This transfers control to the CLIPS inference engine. An integer value specifying how
many rules to fire is the only argument to this function. A value of -1 is used for our
purposes which causes the inference engine to continue firing rules until the agenda

is exhausted (i.e. there are no more fireable rules).

4.2.3 Output

Output is passed from the knowledge base via a user defined function. CLIPS provides
for the use of user-defined functions on both the LHS and RHS of rules. Hence, we
define a function (report-result) to CLIPS, and use it on the RHS of a rule to pass

data back into the OLDRES control module. The function takes two arguments:



CHAPTER 4. RULE-BASED CLASSIFICATION OF DIGI'TS 15

ulo Base
Phases

Classitications

Features

Cleanup

Figure 16: The six phases of execution for rule-bated digit recognition.

(report-result <identity> <confidence-level>)

The <identity> parameter specifics one of the digits 0..9, while <conlidence-level> is
a measure of how certain we are that this classification is correct. This certainty level
is expressed in the form of a real number over the range 0 to | with 1 representing,

absolute certainty.

4.3 Controlling the Execution Phase

For each input sample, execution of the rule base proceeds sequentially through six
phases, namely, filter, label, classify, report, cleanup, and hall. These phases are
illustrated in a cyclic fashion in Figure 16 because the KB naintains its state from one
input sample to the next. The state is maintained by not performing a reset before
processing cach sample. Hence exactly one cycle is performed in order to classify
each digit sampie. If the system was organized as a lincar processing scquence, a
reset would be necessary before cachi new sample is processed, thus re-asserting each
of the four deffacts fact blocks - 68 facts in total. ‘The cyclic phase structure allows

us to avoid this overhead altogether.
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[ Rule-Group | Number of Rules | Function |

Filter 2 Purge features determined to be noise

Label 82 Label features as digit component primitives
Classify 4 Match primitives to top-level digit prototypes
Report 2 Report inferred classifications
Cleanup 2 Purge inferred facts from the fact-base
Control 1 Select currently active rule-group

Table 1I: Breakdown of rule-group size and function

The rule base is partitioned into discrete, non-overlapping sub-sets, or rule groups,
corresponding to cach of these phases, except for the halt phase which has no rules
associated with it. To supervise the execution of these rule-groups, there is a single
control rule, the sole purpose of which is to affect phase changes. Rules such as this
which specify how other rules are to be used are called meta-rules [58]. Table 1 gives
size and function information for each rule group. This sequentially phased, rule

group control strategy is realized by the use of a phase fact:
(phase (current <symbol>))

Since the inference engine matches LHS rule patterns from first to last, we can achieve
the desired effect by making th~ first pattern on the LHS of every rule a literal phase
fact. For example:

(defrule FILTER-rule

{phase (current filter))
(<pattern-2>)

(<pattern-N>)
=>
(<action-1>)

(<action-M>)

)

In this way, pattern matching attempts will only proceed on those rules whose phase

fact corresponds to the current phase. During each phase, satisfiable rules in the
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current rule group continue to fire at the discretion of the inference engine. When
there are no more applicable rules in the current rule group, the control vule will fire
and change the execution context to the next phase. This is guaranteed to happen
because the LIS of the phase control rule is always satishied. It is guaranteed to
happen at the right time because the rule has a lower salience level (- 100) than all
other rules in the rule-base, which have the default salience level of 0. Therefore,
cven though the control rule is always on the agenda. always in a fircable state, the
inference engine will only exccute it when there are no other rules of a higher salience
left on the agenda.

The fact block declaration for phase sequencing, and the phase control rule are
shown in Figure 17. Note the use of the procedural (if  then) construcet on the RIS
of the phase control rule, the consequent of which is to execute the CLIPS function
(halt). Recalling that the expert system was originally invoked by a call to the C
functicn run(), this will cause that function to return, hence returning control to the
OLDRES control module. This active detection and stoppage technique s required
to break an otherwise cyclic inference chain. in order to implement phase control in
a single rule, we must circularly link the assertion of phase facts, i.e. (phase-alter
(current halt) (next filter)). That is to say, at the end of processing for a given sample,
we must reinitialize the phase fact in preparation for the next sample to bhe processed.
But, if this was performed unchecked, the continuously fircable nature of the control
rule would result in an endless loop.

The phase control rule and phase scquence facts also serve as a simple example of
how dynamically bound variables are used as ficld constraints during pattern matching
(refer again to Figure 17). The first LHS pattern of the control rule simply declares
its salience level in relation to other rules. No pattern matching takes place on this
pattern. In pattern two of the rule, the phase pattern, the unbound single field
variable “?p” occurs for the first time in the slot named current. Hence it is treated
as a wild card and will match any single value in that slot. Given the fact block in
Figure 17(a), the fact (phase (current filter)) matches this pattern, so the value filler
is bound to variable “?p”. The “<-" operator binds the facl address of the matched

phase fact to the variable “?Fph” for subsequent use on the RHS of the rule. In the
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(deffacts phase—sequence—information
(phase-atter (current filter) (next 1label))

(phase-after (current label) (next classity))
(phase-after (current classify) (next report){
(phase-after (current report) (next cleanup))
(phase-after (current cleanup) (next halt))
(phase-after (current halt) (next filter))
(phase (current filter))

(a)

(defrule CONTROL-change-phase

(declare (salience -100))
?Fph<- (phase (current ?p))
(phase-after (current 7?p)
(next ?np))
=>
(modity ?Fph (current ?np))
(it (eq 7p halt) then
(haltg)
#if DEBUG
(printout t "CONTROL-change-phase" crlf)
#endif
)
(b)

Figure 17: (a) The phase sequence fact block. (b) The phase control meta-rule.

third pattern, phase-after, “7p” is also used in the slot named current. Since “?p”
is already bound at this point, it acts as a field constraint, thereby restricting the
current slot of the fact matching this pattern to have the value filter as well. The
nert slot in this pattern introduces a new unbound variable “?np”. Since this is the
first occurrence of “7np”, it is treated as a wild card and will match any single value.
The fact (phase-after (current filter) (next label)) matches this pattern (i.e. its field
values satisfy the field constraints of the pattern), hence binding the value label to
the variable “?np”. Thercfore, the facts

(phase (current filter))

(phase-after (current filter) (next label))
satisfly all the patterns on the LHS of the rule, and it becomes instantiated based on
these two facts (i.e. placed on the agenda)

On the RHS of the rule, we change the value of the slot named current of the fact

specified by address “?Fph”, to the value bound to the variable “’np”. (i.e. (phase
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(current filter)) becomes (phase (current label)). The value bound to *7p™ is then
checked, if it is halt, the inference process is stopped.

This ability to bind variables dynamically, pattern-match against them, and use
them on the RHS allows for us to write more general, and therefore fewer rules than
would otherwise be possible. Without this capability, for example, one would need

to write N rules for N possible phase transitions.

4.4 Knowledge Base Rule Groups

4.4.1 Filtering Rules

There are two filtering rules, the purpose of which is to purge features considered to be
noise. One rule deletes tiny features which occur at the beginning or end of a stroke.
Such features are often the result of hooks al the end of a stroke or hesitance on the
part of the writer at the beginning of a stroke. The other filtering rule deletes tiny
isolated features which constitute a stroke unto themselves. Such noise results from a
rapid pen-down-pen-up succession with minimal intermediate lateral pen movement.,
These also are usually caused by writer hesitation, or when the pen-tip just grazes
the writing surface during reloc ation of the pen in preparation for the next intended

stroke.

4.4.2 Labeling Rules

By far, the majority of rules in the digit classification knowledge base are labeling
rules. There are eighty-two of them. These rules embody the specific detailed criteria
for determining which features, cither individually or in combinations, represent the
appropriate top-level components of specific digits. Table 2 lists the forty-seven labels
used in the knowledge base. These labels were determined heuristically by trial and
error, and were influenced primarily by the types of features resulting from the feature
extraction system. Some digits have more possible labels than others. This is mostly a
result of certain digits having more structural variability than others, but also reflects

the need for increased labeling precision with some forms in order to differentiate
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| Digit [ Labels |
I hase-of-1, hat-of-1, stem-of-1
2 left-curve-of-2, base-of-2
} top-bar-of-3, angle-bar-of-3, top-curve-of-3, bottom-curve-of-3, frill-of-3
4 stem-of-4, angle-bar-of-4, middle-bar-of-4, top-curve-of-4, up-stem-of-4
h vertical-har-of-5, top-bar-of-5-rightward, S-curve-of-5,
top-bar-of-5-leftward, bottom-curve-of-3, top-right-curve-of-5
6 bottom-curve-of-6, right-curve-of-6, top-right-curve-of-6, bottom-loop-of-6
7 stem-of-7, middle-bar-of-7, top-bar-of-7, top-hook-of-7
8 top-loop-of-8, bottom-loop-of-8, S-curve-of-8, Z-curve-of-8, top-hook-of-§,
top-right-curve-of-8, top-left-curve-of-8, bottom-right-curve-of-8,
stem-of-8, bottom-left-curve-of-8

9 stem-of-9, top-loop-of-9, closed-hook-of-9

0 loop-of-0, left-curve-of-0, right-curve-of-0, over-rotation-of-0
| or 7 | hat-of-1-or-T

Table 2: Top-level structural component labels.
structurally similar digits.

Inferring Primitives

We wish to attach these labels to features individually, in connected pairs, and in con-
nected triples, thereby abstracting the structural features into higher-level descriptive
components, or primitives. To represent these primitives, facts of the following struc-
ture are used:

D <symbol>)

(primitive (
(start-pt-1D  <symbol>)
(
(

end-pt-ID  <symbol>)
weight <number>)

)

The 11 slot is, as usual, an identifier to distinguish it from other primitive facts. The
start-pt-1D and end-pt-1D slots specify the ID of the start and end point facts for
the primitive. The weight slot is the sum total of the lengths of all the features from
which the primitive has been inferred. Figure 18 illustrates this concept for a primi-

tive derived from three connected features. Each primitive is unique in its elemental
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Fnturoulur',«? '

Primitive
LivLi+2

Figure 18: A primitive derived from three connected features. Py links indicate
starting points, P. links indicate ending points

composition. That is to say, for any given sct of features, only one promlive fact is
asserted. Individual features however, can be an element of more than one primitive,
For example, given the threc features in Figure 18, we may assert primitives based

on the following sets of features (Feature has been abbreviated to ['):

{F‘l}a {F‘H-]}’ {1;13'-!-2}’ {F‘u "i+1}a {F‘H—la l"t-l»'l}a {"'H I"x-{—la l"l+2}

Primitives are not necessarily constructed for every possible set however. Some com-
binations may not be useful or representative of a desired shape.  But, for cach
individual feature, we automatically assert a corresponding primitive (i.e. for cach
F,). There is a rule which does just this. Composite primitives on the other hand are
only asserted simultancously and in conjunction with the inference of an appropriate

label. This is explained further in the next subscction.

Inferring Primitive Labels

The process of determining labels for primitives involves detailed pattern matching

against feature vector components and end-point positions. Therclore, primitives are
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(defrule LABEL-bar-diagonal-top-right-downward
(phase (current label))
(point (ID 7pt)
(Y-coor 7yt &:(> ?yt 0.80))

(feature (start-pt-ID 7?pt)
(end-pt-ID ?pb)
(curvature 7c &:(<= ?c 0.10))

(direction upper-south-wvest | lower-south-west)
(length 71 &:(> 71 0.20))
) (1D ?id)
(point (ID 7pb)
) (Y-coor 7yb &:(> ?yb 0.20))
=>
(assert (label (name hat-of-1) (primitive-ID ?id)))
(assert (label (name angle-bar-of-3) (primitive-ID ?id)))
(assert (label (name angle-bar-of-4) (primitive-ID 7id)))
(assert (label (name vertical-bar-of-5) (primitive-ID ?id)))
#if DEBUG
(printout t "LABEL-bar-diagonal-top-right-downward: " ?7id crlf)
; #endif

Figure 19: Sample rule to assert single feature primitive labels.

labeled as representing top-level structural components according to their position,
size, shape, and orientation. Labeling information is asserted using the following fact
structure:

(label (name <symbol>)
(primitive-1D  <symbol>)

)

The name slot contains one of the top-level labels from Table 2. The primitive-1D
slot. contains the 1D of the primitive to which the label is attached. Figure 19 shows
a sample rule for labeling a single-feature primitive. In this rule, four labels are
asserted for the primitive in question. This is because when considered in isolation,
the primitive could reasonably be any one of the labeled top-level digit components.
Henee, the labels-to-primitives relation is many-to-one. We do not need to assert
a primitive fact here as all single-feature primitive facts get asserted by a separate,
single rule. IFigure 20 shows an example of a labeling rule for a compound-feature

primitive. Note that in this rule, as in all compound-feature primitive labeling rules,
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(defrule LABEL-two-part-wavy-base
(phase (current label)¥
(point (ID ?7pbl)
(X-coor ?xbl &:{(<= 7xbl 0.25))
(Y-coor 7?ybl &:(<= ?ybl 0.31))

(feature (start-pt-ID 7pbl)
(end-pt-ID 7pbm)

(rotation positive | undefined)

(direction lower-north-east | upper-east !
lower-east | upper-south-east )

(length ?11)

(1p ?id1)

)
(feature (start-pt-ID 7?pbm)
(end-pt-ID ?pe)

(rotation negative | undefined)

(direction right-north | upper-north-east |
lower-north-east | upper-east |
lower-east | upper-south-east )

(length 712)

(1D ?id2)

)
=>
(bind ?cid (format nil "Ys-Ys" ?id1l ?71d2))
(assert (primitive (ID ?cid) (weight =(+ 711 ?712))
(start-pt-1D 7pbl)
(end-pt-ID 7pe)))
(assert (label (name base-of-2) (primitive-ID 7cid)))
#if DEBUG
(printout t "LABEL-two-part-wavy-base: " ?cid crlf)
, #endif

Figure 20: Labeling rule for a compound-feature primitive.
we assert both a label fact, and a primitive fact.

Inferring Primitive Connectivity

The final function performed during the labeling phase is to determine connectivity
information of primitives. In order to consider the input sample as a whole, we need
to know which primitives are connected (sequentially) to cach other and which are

not. This information is represented by facts of the following structure:
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(primitives-connected (status <boolean>)
(ID1I  <symbol>)
(ID2  <symbol>)

)

These facts are concluded on the RHS of two rules. One which asserts for sequentially
connected primitives, and one which asserts for non-connected ones. In order to infer
connectedness, the former rule sitnply matches the end-pt-1D of one primitive to the
start-pl-1D of another. Connected primitives are used to infer the overall shape of an
entire stroke. The latter rule which asserts facts for non-connected primitives, only
considers features belonging to different strokes. We are not interested in finding
non-connected primitives belonging to the same stroke. This is because we use non-
connectedness specifically as an indication that primitives do not belong to the same

stroke.

4.4.3 Classification Rules

Once all the appropriate primitive, label, and primitives-connected facts have been
asserted, the classification phase commences. During this stage of processing, subsets
of the primitives are matched against the fact base of known top-level digit prototypes
to infer digit identity classifications for the input sample. As mentioned in section
1.1, a collection of single, double, and triple component prototypes are used for this

purpose. The fact structures for these top-level prototypes are as follows:

(one-primitive-prototype (digit  <symbol>)
(label-1  <symbol>)

)

(two-primitive-prototype (digit <symbol>)
(label-1 <symbol>)
(connected-1-t0-2 <boolean>)
(label-2 <symbol>)
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(defrule CLASSIFY-two-primitives
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(phase (current classify))
(sample (total-length 7wt))
(label (name ?labell)
(primitive-ID ?primi))
(primitive (ID ?priml)
(weight ?w1))
(primitives-connected (status ?Zcncti-2) (ID1 ?primi)
(ID2 “?prim2))
(label (name ?label2)
(primitive-ID ?prim2))
(primitive (ID ?prim2)
(weight 7w2))
(two-primitive-prototype (digit ?digit)
(label-1 ?labell)
(connected-1-to-2 ?cnct1-2)
(label-2 ?label?2))
=>
(assert (classification (character-ID ?digit)
(certainty =(/ (+ 7wl ?7w2) 7wi))))
#if DEBUG
(printout t "CLASSIFY-two-primitives " ?7digit
" ;" ?labell "(" ?primi ") " ?7label2 " (" ?prim2 “)" crlf)
?endif

Figure 21: Classification rule for two primitive prototypes.

digit
label-1

connected-1-t0-2

connected-2-t0-3

(
(
(
(label-2
(
(

label-3

<symbol>)
<symbol>)
<bhoolean>)
<symbol>)
<boolean>)
<symbol>)

For each of these three protot:pe classes, the digit slot contains the identity of the

numeral for which the prototype describes (i.c. ‘0°..°9%). The label-N slots indicate

the top-level component labels for the prototype, while the conneeled-M-Lo-N slots

specify whether or not the label-M primitive is connected to the label-N primitive,

Given a set of valid digit descriptors represented in this fashion, we use a total of

three rules to match inferred primitive labels to these prototypes. One rule concludes

identity classifications for each of the one, two, and three component prototypes. The

classification rule for two component prototypes is shown in Figure 21. These rules
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also compute an associated certainty fa~tor (CF) for each classification. The CF is
simply a percentage mecasure of the total length of the sample represented by the
primitives under consideration. This is calculated by summing the weight slot values
of the one, two, or three primitives, and dividing by the total weight of the sample -
the weight slot value of the sample fact. In other words, it is the total length of all the
features contributing to the classification, divided by the total length of all features
of the sample. Hence, if the primitives supporting the instantiation of one of these
three classification rules are collectively derived from all the features of the sample, a
CIF of 100% will be concluded. A fourth classification rule is used to purge redundant
conclusions since it is possible Lo infer a given digit identity more than once. In this

case, the conclusion with the highest CF is retained while the others are discarded.

4.4.4 Reporting Rules

The report rale group consists of only two rules. The first is used to report inferred
classifications back to the OLDRES control module, the second is used for debugging
purposes. Classifications and their associated certainty factors are passed back into
the control module by means of a CLIPS user-defined function on the RHS of the
first rule. Only high confidence classifications are passed back however, those with
certainty factors of 80% or higher. This threshold value was experimentally deter-
mined. The control module then sorts the returned values and concludes the identity
with the highest CF. If two or more identities are tied for the top spot, we conclude
rejection. The debugging rule is used to skip over samples which have been marked
as bad samples by the developer during the knowledge acquisition phase (discussed

in section 4.5).

4.4.5 Cieanup Rules

Once the reporting phase has returned all classifications to the OLDRES control
module, the cleanup phase begins. Here, we retract all facts which were asserted
over the course of processing the current input sample. These include the externally

asserted feature, sample and point facts, for which there is one rule, and the internally
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deduced label, primitive, primitives-connected, and classification facts, for which there
is another rule. Recalling that the KB maintains its state from processing one sample
to the next, retraction of these facts is necessary in order to prepare the fact base for

processing of the next digit sample.

4.5 Knowledge Acquisition

This section describes the steps followed during the iterative process of acquiring,
modeling, implementing, and testing the knowledge which went into the digit clas-
sification knowledge base. The facilities provided by the OLDRES graphical user
interface (GUI) were an integral and vital part of the knowledge acquisition and re-
finement process. Without the availability of these services built-in to the system,
development of the rule base would have been much more time consuming, more te-
dious, and less effective overall. A training database composed of one-thousand digit
samples was used for system development. This set of cases is the basis from which
the knowledge base was created. More details about the training set are given in
Chapter 5.

Once the general concept was decided upon for attempting to recognize digits
based on their structural composition, a rule-based expert systems approach was
selected for the implementation because it allows for the formalizing of qualitative
haeuristics in a modular and casily extensible fashion. First, preliminary coneeplual
m. dels [6] were drawn up in a mostly graphical fashion. These informal designs were
basically bubble graphs with links showing simulated inference nets and external
interfaces. The inputs for these designs were already Jecided upon as being the
outputs from the structural feature extractor, which was developed beforechand. ‘This
laid the groundwork for the basic KB structure. A few approaches were considered
and some quick prototypes were created to test out the feasibility of the designs. A
crude form of rule-induction was attempted, along with a design that used short,
single-rule inferenc: chains of the form fealures — classifications. Thewe designs met
with limited success in the prototyping stage, and were eventnally abandoned i favor

of the present architecture which proved to be more flexible.
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Having determined a working model for the rule base which abstracts feature

veetors up Lo descriptive top-level components, the process of incrementally expanding

the capabilities of the KB was done in a seven stage spiral-like progression. At the

outset, the system had no primitive labeling rules, and no digit prototypes with

which to match the labels against. Therefore, no classifications could be made and

all samples were rejected. So, starting with first sample of the training set (i.e. sample

I of 10G0), we iterate through the following seven steps:

ot

0.

Load the current sample into OLDRES and extract the structural features.
View the resuits and decide if the sample is good. If so, proceed to the next
step. H not, mark it as a bad sample and repeat this step for the the next
test case. Marking a cample a< bad is a subjective judgement where it is felt
that cither the sample is not generally representative of a valid formation for a

particular character class, or its identity is ambiguous.

Make necessary additions and/or modifications to the KB for it to correctly

recognize the current sample.

Rebuild the entire system, thereby incorporating the new knowledge gained
from the current test case. Syntactic errors in the KB are found at this stage.

If any occur, return to step 2.

Run the KB through the automated checking tool CRSV! in an attempt to

detect possible semantic errors. If any are detected, return to step 2.

Load the current sample once again and attempt to recog nize it. If it is not clas-

sified correctly, examine the rule-trace debugging output and return to step 2.

Perform a complete regression test of all the previous test cases tco see if the
modifications made to the KB for the current sample have adverszly affected
other test cases. If one of the previous test cases now results in a misclassifi-
cation, either revoke the KB modification just made and return to step 2, or
accept the new modifications as correct, set the misclassified previous test case

to be the current sample and return to step 2.

"Ihe CLIPS Cross-Reference, Style, and Verification utility
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7. Seek forward for the next misclassified test case, set this sample to be the current

sample and return to step 1.

This procedure is referred to as a spiral in the sense that the cycle proceeds to train
the KB on all ten digits at the same time, while ensuring that previous test cases
(those from inner cycles of the spiral) remain unaffected. In effect, we are building
the KB outwards in all directions. Since the occurrence of particular digits in the
training set is random, a relatively even mix of sample identities will be encountered
by training the system on the samples in the order that they occur in the database.
This is in contrast with the alternative approach of trainitg the system on only one
class of digit at a time before moving on to the next. Moreover, if we were to proceed
with a testing window consisting of only the current sample, new modiflications may
result in undesirable rule interactions which cause previously successful test cases to
fail. Thus, we could wind up thrashing, and locating the source of the problem could
e difficult.

In the next chapter, we shall present and review some experimental results from

the system.




Chapter 5
Results and Analysis

This chapter presents some sample results obtained from two data sets. The first
data set was used to train the system. This involved the development and refining of
the feature extraction algorithins, as well as the digit classification knowledge base.
The second data set was used as independent test cases for the purpose of assessing
systemn performance.

The system was trained on a first set of 1000 samples of the ten numerals 0 through
9. This balanced training set was obtained from ten individuals, all members of the
Department of Computer Science at Concordia University. A balanced set is one
which contains an equal representation of samples from each character class. A mix
of right and left-handed individuals were involved. Ten instances each of the ten
numerals were requested in a random order from each of the ten subjects, for a total
of one hundred samples per subject. To generate this training set, a Summagraphics
SummaSketch MM 1201 digitizer tablet and clectronic pen, interfaced to a personal
computer was used. Since the subjects did not have any prior experience with using
the digitizer tablet, they were given the opportunity to familiarize themselves with
the equipment by inputting a few practice characters. No special instructions or
constraints were imposed regarding the size, placement, orientation, complexity, etc.
of the characters. The data acquisition program running on the personal computer
instructed the subjects on which character to draw. In order to avoid biasing the

shape of the patterns, subjects were prompted using words rather than numerals.

60
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For example, “Please draw the digit *six’ ", instead of “Please draw the digit 6™.
The system was evaluated on a balanced test set of 2300 samples obtained from
23 other members of our department. These test cases were generated under similar
conditions as the training set, except that a few of the write:  were character vecog:
nition experts from our rescarch team. These individuals were asked to draw diflicult
and confusing samples in a varicty styles. The same data acquisicion hardware and

software was used to gencrate both data sets.

5.1 Structural Feature Extraction

This section gives some sample results of structural feature extraction by presenting
four samples of each of the digits 0 through 9. They were randomly selected from the
training set with the intention of demonstrating the diversity of writing styles present
in the database. For each sample, three instances of the pattern are displayed across a
single row, accompanied underncath by a tabular summary of the feature vectors. For
each row, the image on the left shows the original raw data points, while the center
image shows the filtered sample data points. The number of points is indicated just
to the right of each of these patterns. The number, order, and direction of strokes

)7

are indicated by marking the first point of cach stroke with a *I°, 27, ete. for the
first, sccond, etc. strokes. The right image of cach row displays the stroke segments
used in calculating the feature vectors. These segments are numerically marked for
cross-referencing into the included feature vector table just below cacli row of fmages.
This information was automatically generated using the facilities provided by the
OLDRES output options pop-up frame (Sec. 2.2.6). All 40 of these samples were

correctly classified by the system.




62

CHAPTER 5. RESULTS AND ANALYSIS

5.1.1 Samples of the digit ‘1’
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Feature Darection Concavity Rotation Length Curvature Spread Depth End Points
t upper-north-east right-north negative 040 001 0 40 0 02 (0 00,0 67),(0.97,1.00)
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1 lower-north-east upper rast positive 631 001 031 0 02 (0 23,0.77),(0.65,0 99)
2 left.south left-south undefined 080 001 079 0 02 (0 65,0 99),(0.51,0 03)
d upper west upper-west undefined 0129 000 029 001 (0 51,0 03),(¢ 00,0 05)
4 lower-east upper east negative 057 000 057 0 02 (0 00,0.05),(0 98,0 02)
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1 left <outh upper-south-west positive 134 0 50 067 043 (0.06,0 86),(0 02,0 02)
2 upper east upper wuth-east positive 060 004 058 006 (0 02,0 02),(0 98,0.09)
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5.1.3 Samples of the digit ‘3’
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“"-oo..u? ®eccceey o4
o'... .
'...oo o* : .
/'.‘ ~~-‘ 126 pis. AN S o, STpts.
%
c} 0.:
o .

.
~oe c.ot"'... ‘e *0g00q00° o

(H

Feature Direction Concavity Rotation Length | Curvature Spread Depth Ewd Ponta
1 lower.east upper-west undefined 048 om U 4R 001 (0 16,1 Q0),(0 ’K,0 91)
2 upper.-south.west upper south-west posiive 052 001 051 002 (0 BRO H)(0 10,0 48)
3 lower-south west upper-west positive 134 073 [T 0 4R (0 10,0 48),(0 01,0 07)

*.ﬁ e ®eo
) L4 .J.. .‘.
[}
.
*
*
- ‘..a
wate et 86 pis. s Yo, SHpis.
.
Y 1}
()
Q. L]
i d d
..
LS o . o
...0..00... .'oo..oc.'.
Feature Direction Concavity Rotation Length Curvature Spiead Depth End Vomts
1 nght-south lowrr-west poutive 038 071 028 041 (0 29,0 93 ),(0 $,0 %4)
2 lower south-west upper-west poutive 132 069 0 4] 047 (0 49,0 %4),(000,0 11)
FIT ave
L nay, o . e,
. L]
. .
L]
L]
1 . 1 .
~ LI *
-
0’ o
s o
!l'"“"«... 210 ps. semSee, . 69 pts
™ .
] .
. .
.
! : :
L]
'.. .C 0' “'
.‘. .C L] L]
. ) . .
*
®eecen*’ ®e0ean’

Feature Direction Concavity Rotation Length Curvature pread Depth kand l'um!n L
1 upper-north-east lower east positive 063 066 025 019 (6 3%,0 74),(0 64,0 9R)
2 lower-south-west upper-west postive 0 %8 029 041 016 (0630 98)(U 26,0 %2
3 lower-south.-west lower-notth west positive 111 0 RO 426 049 (26,0 %2),(h G 2)
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R LTS .
A7 R 1o s
. . .
. .
. .
. .
.
*’o’. .y . I ., e
. .
. ° T0ps. e, * 35pts
.« o .
. i . J
. . . K)
. .
. ) . . o'
.‘ . . .
'N. e .o. oe*
Feature ihrection Concavity Rotation Length Curvature Spread Depth End Points
1 upper east night south positive 042 004 041 005 (0 00,0 86),(0 62,0 98)
2 lowes-sonth weat lower-west positive 0 41 00s 0 39 005 (0 62,0 98),(0 21,0 60)
s lefs south lower west positive 098 085 0 44 035 (0 21,0 60),(0 05,0 05)
4 lower-north east upper-cast positive 076 003 074 005 (0 05,0.05),(1 00,0.60)
* L4 ‘ ’
5.1.4 Samples of the digit ‘4
] 1
L L ]
S .
L] .
S 2 . 2
. ' L] ¢
. . . .
. . -
O * .
. . . o)
o . 48 pts. R . 42 pts.
. .
“ . .o" “ L .0"
'o.. .s o %, .s *°° .
. .
. .
. .
. .
* .
. .

Festure Direction Concavity Hotation Length Curvature Spread Depth Find Points
1 lowel souih-east lower north-east negative 112 047 059 045 (0 35,1.00),(1.00,0 43)
2 feft.south upper-south west positive 069 000 0 69 001 {0 69,0 77),(0 30,0 00)

9 9
- o
| : o N
. . - .
. . e .
L . . .
e ®eo
*** M 5O s, Ay 34 pis.
L -
L]
. .
. .
. L]
o *
b4 L)
¥ 4 .
L]
Feature Ditection Concavity Rotation Length Curvature Spread Depth End Points
1 left south upper north-east negative 028 000 028 001 {0.15,0 89),(0 00,0 59)
2 lower east lower-west positive 036 001 0 36 001 (0 00,0 59),(0 84,0 52)
4 left wouth left-4outh une +fined 0 96 000 0 96 002 {1 00,1 00),(0 25,0 00)
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i)

A )
o °
() L]
N d ] By
L, Los** 176 pis ! § e * 052 pts.
o o o0
e @ .
L]
.
.
L d
L3
H
*
Feature Direction Concavity Rotation Length Cuarvature | Spread Depth TR Pomes
1 night-south left-south positive 0 81 0 00 0 R1 om (O O LU0 4000
2 lower-south-west upper-nosth east undefined [URAN om 0 N4 oo (0 W0 8H) (0 01,0 1K)
3 upper-east upper-cast negative 0 56 00} O 54 { 0 02 {0 01L,0 18) (990 04)
.l
l 2 P2
' : i
: '3
4 pts. }-‘.;40 pls.
. .
) s
i 3
] H
Feature Direction Concavity Rotation Length Curvature Hpread Depth kud l'uml_u_
1 left.south left-north positive 06} [i N} (I Y] 003 (02,1 00)(0010
2 upper-east lower-east positive 0 37 00, G 3% 00, (0 01,0 36),(097,049)
3 upper-north-west upper-north-west undefined 0 0% 0 00 006 000 (G 97,0 49),(0 90,0 %4)
4 night-south left-north undefined 071 000 073 00l (0 54,0 80),(0 76,00 iy
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5.1.5 Samples of the digit ‘5’

68

CJ L]
L] '.. L] ot
L] L]
L] . L]
L]
. L]
L] L]
L] *
”.. ?...
T 18 pts. $ 38 pts.
L] *
. I . .o
.I /‘ “ e LM
o Y o®
¢ s * .
L 4
A L
L *
L] *
A
" oo’
Feature Disection Concavity Rotation Length Curvature Spread Depth End Points
1 right-sonth teft-north undefined 024 0 00 024 0 00 (0 00,0 51),(0 07,0 24)
2 night-south lower-south-west positive 062 0 €66 021 020 (0 07,0.24),(0 19,0.00)
i lower-notth east left south positive 063 0 00 063 0.02 (0 01,0 53),(0 97,0 99)
o'.' ot *
o .
L] -
. .
* . *
Je Te
& P2
o L]
. L d
L] L]
| 57 | 35 pis
LS. . .
. pts x p
L] L]
e .
L] L)
L] L]
e .
L]
[ .
.. L]
3 - . .
"oco’. .'to..
Festuse Ditection Concavity Rotation Length Curvature | Spread Depth End Points
1 left-south lovrer-noith-west positive 0 82 039 0 50 024 (0 23,0 69),(0 00,0 08)
2 lower-notth east upper-south-west positive 050 0 00 049 0 01 (0 26,0 70),(0 97,0 99)
¢ .
12 .c‘... 1 .o® o*
.f weo * o 00
.' ..
o
59 pis s 41 pts.
[TY ALY
ey LX)
L) '.
) .
e
L] * ) .
hETY o® 4 %o g0 0
Feature Direction Concavity Rotation Length Curvalure Spread Depth End Points
1 lower- south-west upper-east negative 028 004 027 0.03 (0 23,0 84),(0 07,0 51)
2 lefs-south upper-weat positive 093 068 032 038 (0 07,0 51),(0 00,0 09)
\ uppes east lower north east negative 047 001 o4y 0.02 (0 32,0 82),(0.98,0 9B)
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1 |
('-uou""# oo e L -#

L]
! :
{ .
: L[]
$ .
3 .
.3 -’.u—-\‘ ]3()]3(5. : ...- 'oou.. 5“4!“3_
.
L]

<

L] *
{r!
\ o. f)'
, .
L]
L]
, -
o .
.-'. o’
L] o* . [
. . .
®eosseo® ¢ 20 °
Feature Direction Concavily Rotation Length Curvatuse Spread Depth Fud Fomts
1 lower-south-west lower-south east negative 0 85 02 [ LR} 027 (0 86,1 O0Y(0 04,0 42)
2 left-south lower.west postive 120 074 0 o 44 (0 04,0 42)(0 00,007}

5.1.6 Samples of the digit ‘6’
1

-~ _.»‘*l
', /
87 pts. H s YT is. a5
i
., e J
- e WO '

-.u\

Feature Direction Concavity Rotation Length Curvature Spread Depth Fandd Points i
1 teft.-south lower.east negative 100 028 076 00 (0 97,0 99),(0 40,1 04}
2 upper-north.east lower-north-west negative 072 042 042 029 (0 40,0 04),(0 81,0 45)
a3 lower-south-west lower-east negative 0% [N 1) 047 018 (81,0 46),(0 7.0 04)

1 1
L] L4
. L
. .
* .
L] L)
. *
L] L[]
. L
L] L
. L]
L] .
. 51 pts. . 47 pls. 4
. « * * e ® * e
L] L L]
LR . o b )
. . . . .
'x] . ' 3
., . ., .
L] -
L] L ]
L ] L]
. L]
L] L]
.. * 'l *
L] L]
.. . ¢ L]
. . . .
e e’ o o'
Feature Direction Concavity Rotation Length Cutvature apread epth ke Ponts
1 left-zouth upper-east negative 1.8 023 0 90 0 2% (100,05 0h) (0 %% 102,
2 upper-north-west upper-south-west negative G 84 0.7 036 013 (0 %%,0 02), (1 40,0 31
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1
*
L] L]
. .
. L]
. .
L]
. 40 pts, . 36 pis.
. L]
¢ o °t ..: * o * .o
. 4 . .
. . * .. ] ..
- .O - L
. LIPRPAY 14 . ® 400
L o
* .
S .
Feature Inrection Concavity Rotation Length Curvature Spread Depth End Points
| lower-anuth east upper-north-east negative 128 0 46 068 0 42 (0 32,1 00),(1 00,0 31)
2 upper-sonth-west nght.south negative 064 014 055 012 (100,0.31),(0.12,0 00)
! !
” "O
96 ps. !‘ 2y 54 s
Yl
! .
[ ] ]
Feature Ditection Concavity Rotation Length Curvature Spread Depth End Points
1 lower-south-west upper south-cast negative 099 0.18 0.81 025 (1.00,1.00),(0 15,0 20)
2 loner-north-east upper-north-west negative 062 025 046 016 (0.15,0 20),(0 85,0 52)
a upper south-west vight.south negative 073 014 0.62 015 (0.85,0 52),(0 01,0 01)
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5.1.7 Samples of the digit ‘7
-l.. L1111} “]lil L1l 1) -l‘
¥ e e
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s 61 pts. H A6 pls.
(d J
{ {
Feature Duection Concavity Rotation Length [ Coisvature | Spread Depth e H‘II:Igl'ullll\
1 lower-east lower-west positine 063 0 00 061 1ol (00,1 00),(F oo )
2 lower-south-weat lower-south east negatine 1 05 008 007 018 (10008 (0 ool
]......ccnc... L ....on LI
- [ 3 Y .
.
N L]
*
L] L]
L] L]
L] L]
L] L]
L] .
* . ¢ B3 pls. . o * Y5, )
" g e 0 ° p n yo e o0 sy
aee & °, oo *
L] [
L] L]
L ] .
L] .
. L]
L] L
V4 .
Feature Direction Concavity Hotation l.ength Curvatuie Spread Depth el Pevuts
1 right-south lower-2outh-west posstive 113 040 0GR 046 {00009 (0 17000
2 upper-cast upper-cast undefined 067 000 067 000 FOOLOEEL o0y
|
h-—o-“..p °‘°uot. .ool.0
.
L]
[ .
& .
*
[ [
.
(] L]
L]
L] L]
.
K .
N 95 pts. ¢ 35p,s
. .
e .
2
L] ®
e -
.
’ i
.
(J \d
[ 4 ]
P .
L]
i .
Feature Direction Concavity Hotation Length Curvature Spread Depth boud Pointa
1 lower-cast upper-east negative 045 00t 044 002 (6 G0, 1 00) 01 08 8 4%)
2 left.south left.-south undefined 089 000 UL 00 (1 00,0990 47,0 43
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.
«* ateed
$ R
1l I
0 ’. 47 pls.
ot
% .
.' Y
*
L]
.
TFeatuae Ihiection Concavily Rotation length Curvature Spread ' Depth End Points
i lower north east lower south eaxt postive 040 016 023 010 (0 00,0 53),(0 41,0 81)
¢ upper north east lower north west negative 021 0 07 020 203 {0 41,0 B1),(0 64,0 98)
H left south upper easl negative 07T 00l 076 v 03 (0 64,0 98),(G 48,0 03)
4 lowes north east lowes-sonth west positive 069 0 00 0 68 012 (0 11,0 20),(1 00,0 72)
r . 3 ‘ ,
5.1.8 Samples of the digit ‘8
o o...
] H
L »
L] L]
* L]
'ol o*
i *
120 pts. $ % o 72 pts.
o, 0.,
o
IS}
.. .l
*
0 ) * [
.
S : .
ooy oeet®’ LTI L
TFeature Directoon Concavity Rotation Length Curvature Spread Depth End Points
1 upper south caat npper-south east negative 054 003 052 0 04 (011,0 68).(0 82,0 25,
2 lower norshewest lower-north cast positive 102 077 024 0 40 (0 82,0 26),(0 47,0 43)
b upper west lower <onth west negative T 32 0 89 015 0 50 (0 47,0 43),(0 20,0 45)
.,cﬁl o o ‘.l Q
." -
(' ot e, 4
L) .
. L3
. *
, [ -
..'a " .. . O..
L o . -
'.'.M" 163 pts K 68 pts.
...00 “~ . o® o.
. 0
4 e . .
'-°. * .e. .
1 . :
( j : ]
D) .
.. ..
\'-ouﬂ"’ MR Y R
Ferture Duedtion Concavity Rotation Length Curvature Spread Depth End Foints
1 upper wouth.west foser south eart negative 048 019 0 a9 010 (0 72,0 98),(0 09,0 72)
2 nght south loner ne th weat postive 108 [P 060 037 (009,0 72),(0 1%,003)
i uppes north easdt uppor east positrve 081 016 068 015 (0 15,0 03),(0 95,0 6%)
4 uppet north-west apper ~auth west negiytive 032 G 27 023 010 (0 95,0 65),(0 64,0 85)
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End “osuts

1
L]
.’.
'o' ‘e,
* .
L)
.’ ..
L] L]
. L]
: N
L] L] 7]
.
M~
e, ]
L]
..
: .
.
N .
. .
A
., .
LY PR L]

Feature Direction Concavity Rota ion Length Cugvature Spread Depth -
1 lower-south-west upper-south east negalive [Pl R 023 049 017
2 lowet-south-east lower-west positive 0 90 042 [{RP 02
3 night-north low~r-north.cast positive 0 66 n 28 047 0149
4 upper-north west upper-y eat negative 0 44 014 038 008

1 1
SN,
J
H )
] )
160) pts. 'M\m pts

( J

o
"c/

Feature Direction Concavity Retation Length Curvatute spieadd Depth
1 lower-south west upper south east negative 0L 020 040 URIA
2 right-north upper- west negative 0 8O () 66 029 012
3 left-south lower-east negative 091 0 5 042 012
4 teft north upper-south west negative 0w, 0 46 /KL 042

I

[ “i PNy 090 %)
(O 09,0 %0) (8 650 00)

O 65000 (0 7200
) (

bad Poants

{6 1T 098,00 3,10

!

(O 7T2,0457),(0 10,0 4N)

“R)

(O N NWK) (G ALy

(0 69041)00 0
(IR RTINS KT

L0y
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5.1.9 Samples of the digit ‘9’

74

] 1
80 pts. ( g2 pts.
p Ve’ J o
’
Feature Inrection Concavity Rotation Length | Curvature Spread Depth End Points
1 lowes sonth east lower-north-east negative 128 078 028 045 (0 57,0.96),(0 90,0 70)
2 lower north west upper south-west negative 0 48 017 040 on (0 90,0 70),(0 29,0 94)
3 nght south lower west positive 117 0.35 077 0 38 (0 29,0.94),(0 53,0 01)
..\l n.\l (1-\
% 00 prs. < 50 pts. 2
s Iy
j s
Feature Duection Concavity Hotation Length Curvature Spread Depth End Points
1 upper-south west lower south-east negative 067 0.3% 044 020 (0 78,0 87),(0 01,0 64)
2 upper east left north negative 072 G 28 052 021 (0 01,0 64),(0 99,0 84)
1 left aouth lower north-east negative 074 0 6l 073 0 05 (0 99,0 84),(0 63,0 02)
.......\l '...‘. ..1 ﬁ
. . *
. ! . L
. . L4
. : ° 3
. e . .o:
. « ® 4 o ® 2
. - » 3 - .
! . *79 pts. . . 59 pts.
‘ . L ] . . L ] L ]
LI . [P .
. .
. .
L L]
. .
) .
. o’ . °'.
. .
aate ® e ce o® Lo
j"v.\luxv Dnection Cotcavity Rotation Length Curvature Spread Depth End Pomnts
1 lowet south-west uppet-south-cast negative 078 022 0 61 019 (0 84,0 96),(0 07,0 44)
N lower north east uppe: west negative 072 011 0064 012 (0 07,0 44),(0 93,0 90)
o lomer south west uppet north west postive 107 015 091 026 {0 99,0 90),(0 u8,0 00)
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0% 0, e ¢ o
M .. l d ¢ - l
. . L™ . . »
L] L
L] L]
L] L]
.. ..q . . (
. PRal . L }
. . e .
. . A4 - . .
[ ] 1 ]
.I . * . . L]
*thee ® N ¢ a0’ N
- L ]
L] L]
. 72 pts. i 46 s,
. » AR
. L]
. L]
L] L]
* .
L] L]
L] L]
L] .
* L]
*
.. .
Feature Direction Concavity Rotation Length Cutvature | spread Depth End Porats
1 nght-south npper-cast negative 107 0 90 011 048 (0 94,0 91V),(0 98,0 81)
2 left-south rnight-+outh negative 07y 0 00 074 002 (0 98,0 #1),(0 4,0 02)
* L3
‘N°?
5.1.10 Samples of the digit ‘0
i |
R .
* L)
L]
. I I . oo
L] L] L] . L] L]
. . 0‘ . .
. L] . . . . .
Y - . . » . .
. . ¢ . . N )
A\l [ )
L L[] L] L]
L] .
. * » . . .
. . (]
66 pts 58 pts
. ol ! /i
- . .
) . . .
- .
. .
L4 .
. . . .
. . . .
. ° . .
. . A .
L[] . . [}
. . .
*
LA IR g 0"
Feiture Duection Concavity Hotabion [ Lengih Curvature spread iepth T T R Pants
1 left south lower north.east tegative 110 027 0xi 026 (G5 L uhyfh44.004)
2 left-north lorvor-sonth.west negative ‘1 12 063 n4n 42 (:1 .00 Sl 27,06n)
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(] L ]
Lo o o® \“ . ot
- ‘, . .o
. L] L]
. * . . ]
. < » .
. : . .
. . L} .
kd
L) L L] L ]
L]
. Y L] )
. S Jips . S SBps
Ad : . . ¢ .
'y g . . . .
- . L ] . L] -
. a . oo
. . . .
. . S .
L) . . L]
0. . . . .
AT LIPS
Ieatu e Direction Concavity Rotation Length Curvalure Spread Depth End Points
1 telt north lower-<outh west negative 093 042 0 54 028 (0.66,0 24),(0.38,0 87)
2 upper south east upper north east negative 146 068 047 062 (0 38,0 87),(1 00,0 48)
° . L[] * 0 .. . . * o @ ..
L) .
- L]
. L]
L] *
L] L]
1 hd 1 .
. S . S 9pts.
- L ]
. . . -
. . . .
: . : .
. . . 3
. . . .
'o. P . .
tegve® teg e’
Featme Ditec hion Concavity Rotation Leagth [ Curvature | Spread | Depth End Paoints
i upper north-cast lower-north-west negative 186 0 81 0 36 0 50 (0.11,0 55),(0 42,0 9¢)
el Lpered]
ee il cetnel,
. ° ., . . .
d L L] J L] .C
O . . . . .
. : . :
.’ o 55 pts " .53 pts.
. 4 . .
. * . *
. . . .
. . . .
. . * L]
.' L] '. L]
‘o0 ® Yeaet’
.“Ei l Darection Concasity Rotation Leungth Curvature Spread Depth End Points
1 N left .outh nppes east negalive 151 [t LY 0 64 040 (1.00,0 98),(0 66,0 21)
upper north weat uppes south-west negative 114 0 50 0 58 042 (0 66,0 21),{v 00,0 73)
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5.1.11 Observations

As can be observed from these images, the feature extraction system performed quite
well with respect to our goal of identifving major structural components. The filter
ing stage significantly reduced the effective number of points required to extract the
features while maintaining a good structural representation of the pattern. Desir
able straight and curved segments were identified with appropriate boundaries even
though the data were not smoothed. The feature vector elements, namely frajee-
tory, concavily, rotation, lcngth, curvature, spread, depth, start point and end pownl,
were found to be sufficiently expressive for on-line recognition of numerals. It is felt
that they are sufficiently general to be applicable to the on-line recognition of other

characters as well, such as the 26 letters of the alphabet.

5.2 Rule-Based Classification

System Classification )
[Tdentity O[T T2 35678 T]9]Reject]

0 sTolofloTlojoJoJoloT]o 2
1 ol9olololololofololo 1
2 olof9folololololo]o 1

3 oloJolos|olololololo]| 1
4 0]0 oloslololololo] 5
5 olololololoslo]olofo| 1
6 0loJolojojofosfololo] 1

7 0olojJolo]lolololo|olo] »

8 ololoJolololololwm|iol 5
9 olofJolololofo]olo |9 6

Table 3: Confusion table for the 1000-sample training set

Table 3 shows the system performance on the training set in the form of a confusion
table. For each class of character ¢ in the left-most, column (labelled “ldentity” ), the
confusion table lists the number of cases where character ¢ is classified as character
J, where possible values of J are listed across the top row. (labelled “System Classi

fication”). The number of rejected samples for cach character class is also shown in
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the right-most column. The training was successful as indicated by the high values
along the diagonal of the table corresponding to correct classifications, and the zero
entries elsewhere indicating that no incorrect classifications were made. A modest
number of rejected cases for cach class of character was experienced. Samples of the
digit ‘9’ had the highest number of rejections at six, while only one sample was re-
jected in ecach of the ‘17, ‘2’ and ‘6’ character classes. These rejected cases are those
which were marked as bad samples during the training phase. Included in the bad
sample category were several cases of ambiguous characters where it was decided to
he cautious and allow the character to be rejected rather than training the system to
conclude it’s intended identity. Doing otherwise would likely increase the number of
misclassifications made by the system. There were also some patterns which yielded
unsatisfactory sets of features and thus were marked as bad samples. This was due

to noisy or rough input data as a resull of strokes drawn at high pen velocities.

r‘l)igilv Recognition | Substitution | Rejection | Reliability | Time | Samples
(%) (%) (%) (%) (msec.)

0 93.00 0.00 2.00 100 49.60 100
I 99.00 0.00 1.00 100 59.70 100
) 99.00 0.00 1.00 100 68.60 100
3 96.00 0.00 4.00 100 62.50 100
q 95.00 0.00 5.00 100 184.40 100
hH 96.00 0.00 4.00 100 166.10 100
6 98.99 0.00 1.01 100 48.18 99
7 95.05 0.00 4.95 100 114.75 101

G 95.00 0.00 5.00 100 129.30 | 100
4 91.00 0.00 6.00 100 88.60 100

[Overall | 96.60 | 000 | 340 | 100 | 97.24 | 1000 |

Table 1: Overall system performance on the training set

Table -1 presents some system performance measurements obtained for the training
set. The metrics used are the percentage rates for recognition, substitution, rejection,
and reliability, as well as processing speed. The recognition rate is the percentage
of all cases which are correctly classified; substitution is the percentage of all cases

which are incorrectly classified; rejection is the percentage of all cases which are
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rejected; reliability is the percentage of all classifications (i.e.  excluding rejected
cases) which are correct. Rows of the table list the calculated averages lor each
individual character class, in addition to the overall averages in the bottom row. On
the training set, we observe an overall recognition rate of 96.6%, no substitutions, and
a 3.4% rejection rate, yiclding 100% reliability. Processing speed (‘Time) measures the
total execution time for both the feature extraction and classilication computations
for a single sample. These values were obtained from the ITIMER _PROF! processes
interval timer under SunQOS 4.1.1 on a Sun SPARCstation 2 with 32 Mb RAM. The
overall average processing time of 97 msee. per sample corresponds to a rate of
approximately 10 characters per second, which casily accommodates normal human
writing speeds.

The training set of the digit ‘6’ contains only 99 samples due to a human error
which occurred at the time of data acquisition. One of the writers drew a seven when

they were actually prompted for a six.

System Classification

[Mdentity [ O T T J2 T3 T 456 [ 78 9 [Rejeet]
0 1987 0 | O 0 0] o I 01l o0 | 30
1 0 ;215 0 0o olo 7o L | o 0 4
2 1 o6t oo oo 1 [0 0 12
3 oo o0 j1s6folo o] olfl!]! 0 13
4 0] o010 0 {19497 0 o[0T o I 36
5 ol oo ol ofmolo]l ol o 0 A0
G 0] o]0 o o] 1 [186] 06 [0 37
7 0 210 0l o0 7] o0 20]oO0 0 27
8 1 oo ol ol ool ofms]o 84
9 0] o0]O o 26 ol o] 2 [ro] 50

Table 5: Confusion table for 2300-sample testing set

Tables 5 and 6 show the corresponding confusion and performance tables obtained
for the 2300 member test set. In the confusion table, we observe that the most

significant error is that of misclassifying ‘9’s as ‘5’. Six of the 230 samnples of the

U'This timer measures the elapsed process virtual time plus the thne the system spends running
on behalf of the process.
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Digit || Recognition | Substitution | Rejection | Reliability | Time | Samples
(%) (%) (%) (%) (msec.)
0 86.09 0.87 13.04 99.00 63.39 230
| 93.48 0.43 6.9 99.54 33.78 230
2 80.87 0.87 18.26 98.94 56.22 230
3 80.87 0.43 18.70 99.47 56.83 230
4 83.98 0.43 15.58 99.49 172.34 231
D 82.61 0.00 17.39 100.00 171.26 230
6 80.87 3.04 16.09 96.37 44.52 230
7 87.37 0.87 11.79 99.01 74.89 229
8 63.04 0.43 36.52 99.32 110.30 230
9 73.91 4.35 21.74 94.44 73.43 230

[Overali | 8130 ] 117 [ 1752 [ 9858 [ 85.74 | 2300 |

Table 6: Overall system performance on the testing set

character *9” were confused in this way. Observation of these samples shows that they
are border line cases which could be interpreted as sloppy five's.

On the test set, the system achieves an overall average recognition rate of 81.3%,
substitution rate of 1.17%, and rejection rate of 17.52%. The drop in recognition rate,
and its corresponding increased rejection rate compared to the training set suggests
that the training set is not representative of the writing styles experienced in the
test data, Upon comparison of samples from the training set with samples from the
test set which were rejected, we can conclude that this is in fact the case in many
instances. For example, the test set contained numerous samples of the character
07 written with a slanted straight line stroke crossing the circle, whereas these were
absent in the training data. This is not surprising since only ten writers were used
to formulate the training set [12]. Morcover, we can conclude that the training set
should be larger.  Another observation is that many of the testing samples which
the system rejected, barely missed being classified correctly due to a feature vector
value which was just bevond a threshold set in one of the labeling rules. Also, there
are a faiv number of very confusing samples in the test set. This is of course due to
certain writers being asked to input difficult and confusing patterns when the data

were acquired,
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Figure 22 shows three typical misrecognized samples. Figure 22 (a) is an example
of an ambiguons, or confusing pattern. The intended identity of this sample is ‘2°,
but, the system concluded 7 with a confidence level of 84%. The length of feature 1
is 84% of the total length of the stroke, and feature 1 was the only feature used in
this particular classification, hence the confidence value. The actual identity of the
sample shown in Figure 22 (b) is also ‘2’, but the system classified it as ‘0’ with a 90%
confidence level. Here features 1 and 2 form a large dominant loop, comprising 90%
of the total length of the stroke. Feature 3 makes up the other 10% of the tota] stroke
length but did not contribute toward this classification. This sample is definitely not
a typical well-formed *2°. The sample in Figure 22 (c) is a very skewed ‘6’, however
it was classified as an ‘8 with 100% confidence since all (both) features were used in
the classification. In this case, some rather lenient feature end-point threshold values
enabled feature 1 19 be labeled as “S-curve-of-8”. In some instances it is desirable
for a left-facing concavity to be labeled as “S-curve-of-8”. However, this is clearly an
undesirable label when consideied in conjunction with feature two, which mevits the
label “top-left-curve-of-8”, and thus results in the false positive conclusion.

The overall substitution rate of 1.17% is quite low, which translates directly into
the high reliability obtained: 98.58%. This is a benefit of the cautious approzch
to training which was adopted. As is evident from table 6, the average execution
times vary substantially among the character classes. This is because certain digits
are structurally more complex than others, and therefore are in general composed of
more points and yield more features. Iowever, the average execution times for the
training and the testing data sets are comparable, as expected. The 84 rejected cases
of the test set for the numeral '8’ present the highest rejection class. Examination
of these cases revealed that this character class demonstrated the highest structural
variability as can be seen in section 5.1.8. This is due to the lack of vertices and
because of the complexity of strokes for the numeral class ‘8’. The character class ‘1’
has the fewest rejected cases at only 14 out of 230, or 6.09%. As happened during
data collection for the training set., a human error occurred where one of the subjects

"y

1 when they were actually prompted to draw a *T’.

By

drew a

The svstem performance is good overall, and is quite robust with respect to not
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misclassifying digits of styles which differ from those which it was trained on.

5.3 Future Work

The experimental results oblained suggest the need to expand the training set to
improve the recognition rate with a corresponding lowering of the rejection rate. This
expansion of training will necessarily involve further relinements to the knowledge
base, specifically with the addition and modilication of primitive labelling rules (Sec.
4.4.2. Alternatively, a rule-inc uction approacl. is suggested to antomate the trainicg
of the classifier [36]. Other classification strategies such as neural networks could
be used to process the structural features obtained. A very useful extension would
be to handle both upper and lower cases of the 26 character alphabet, a formidable

undertaking,.



Chapter 6
Conclusion

To sighted humans, the process of chatacter recognition, and pattern recognition in
general, is an automatic reflex not gencrally considered to be a skill. However, it
remains a complex and challenging problem for computers. In an effort to develop
new methods to approach this problem, graphical user interface and rule-based expert
systems technology can be applied.

This thesis has described the design and implementation of OLDRES, a graph-
ical system for recognizing isolated samples of on-line digits. An overview of the
basic principles and relevant literature on character recognition, expert systems, and
man-machine communication was presented. The system automatically segments the
stroke data from which geometric feature vectors are computed. A hand-crafted rule
base classifies the patterns based on the feature vectors to recognize the digits. The
implementation offers a graphical development environment for further research in
on-line character recognition. The system was developed on the Sun SPARCstation
platform running the SunO8§ 4.1.1 (UNIX) operating system and the X Window Sys-
tem, Version 11, Release 1. A training data set of 1000 digit samples, and a testing
data set of 2300 digit samples obtained from a digitizer tablet were used. Some exper-
imental results were presented and discussed. Suggestion for further improvements

were given,

,.
2
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