I*I Nationai Library
of Canada du Canada

Bibliothéque nationale

Canadian Theses Service  Service des théses canadiennes

Ottawa, Canada
1A ON4

NOTICE

The quality of this microform s heavily dep=ndent upon the
quality of the original thesis submitted for microfilming
Every effort has been made to ensure the highest quality of
reproduction possible.

it pages are mussing, contact the university which granted
the degree.

Some pages may have indistinct print especially if the
original pages were typed with a poor typewriter ribbon or
if the university sent us an inferior photocopy

Reproduction in full orin part of this microform is governed
by the Canadian Copynght Act, R S.C 1970, c. C-30, and
subsequent amendments.

NL-339 {r 88/04) ¢

AVIS

La qualité de cette microforme dépend grandement de la
qualité de la thése soumise au microhilmage Nous avons
tout fait pour assurer une quahté supérieure de reproduc
tion

Sl manque des pages, veuiliez commumiquer avec
Funiversité qui a contéré le grade

La qualité d'impression de certaines pages peut lusser a
désirer, surtout si les pages originales ont été dactylogr.
phiées a l'aide d'un ruban usé ou si Funiversité nous a fan
parvenir une photocopie de qualté inféricure

La reproduction, méme partielle, de cette microforme et
soumise a ia Loi canadienne sur le droit d'auteur, SRC
1970, c. C-30, et ses amendements subséquents

18

Canadia



A Knowledge-Based, Event-Driven, Real-Time Operating System

for an ISDN Personal Workstation

Zenon Slodki

A Thesis
in
The Department
of

Electrical and Computer Engineering

T T
/

/

Presented in Partial Fulfillment of the Requirements
for the Degree of Master of Electrical Engineering at
Concordia University
Montréal, Québec, Canada

June 1990

© Zenon Slodki, 1990



National Library
of Canada

Bibliothéque nationale
du Canada

ivl

Canadian Theses Service  Service des théses canadiennes

Ottawa, Canada
K1A ON4

Canadia

The author has granted an irrevocable non-
exclusive licence allowing the National Library
of Canada to reproduce, loan, distribute or sell
copies of his/her thesis by any means and in
any form or format, making this thesis available
to interested persons.

The author retains ownership of the copyright
in his’her thesis. Neither the thesis nor
substantial extracts from it may be printed or
otherwise reproduced without his/her per-
mission.

I'auteur a accordé une licence irrévocable et
non exclusive permettant a la Bibliothéque
nationale du Canada de reproduire, préter,
distribuer ou vendre des copies de sa thése
de quelque maniere et sous quelque forme
que ce soit pour mettre des exemplaires de
cette these a la disposition des personnes
intéressées.

L'auteur conserve la propriété du droit d’auteur
qui protége sa thése. Nila thése ni des extraits
substantiels de celle-ci ne doivent étre
imprirnés ou autrement reproduits sans son
autorisation.

ISBN 0-315-59162-5

ied



iii

ABSTRACT

A Knowledge-Based, Event-Driven, Real-Time Operating System
for an ISDN Personal Workstation

Zenon Slodki

The concept of a personal computer is evolving as communications and computers
merge. A growing demand in telecommunications is to provide access to external
databases. This is being addressed with the development of the Integrated Services Digital
Network (ISDN). To support such a service, improved processing is required from
personal computers. A key type of processing necessary to manipulate copious amounts
of information is the symbolic proc ssing that is part of a knowledge-based system.

Another application of computer communications is autonomous control of the
home environment. By communicating with the electronic equipment within the home,
control of these devices is possible. This capability requires well developed interfacing
support from the computer.

In this thesis, we propose an operating system for an ISDN Personal Workstation
that will meet the above mentioned demands. The opecrating system is described in detail
and a version of it is implemented for our Experimenial ISDN Personal Workstation. The
operating system architecture is event-driven in order to support autonomous control. The

architecture also incorporates a knowledge-based system and provides real-time support.




Acknowledgements

I would like to thank my thesis supervisor, Dr.Tho Le-Ngoc for his guidance
throughout this research and for his advice and constructive criticism during the
preparation of this thesis.

I would also like to thank Mr.Robert Rourke for his assistance, support and
friendship throughout my graduate studies. The countless discussions over coffee were
invaluable to my research.

I would also like to acknowledge the financial support provided in part by Canada
NSERC grant A5987 , Québec FCAR grant ER-0106, and my graduate scholarship from

NSERC.



To Lisa and to my parents



CHAPTER 1

1.1

1.2

1.3

CHAPTER 2

2.1

CHAPTER 3

3.1

3.2

vi

Table of Contents

Introduction . .

Example Operation .
Research Contributions . .
Thesis Outline . .

Software Architecture Requirements of the
ISDN Personal Workstation .

Workstation Interface Primitives . .
Real-Time Systems .

Hard Real-Time .

Soft Real-Time .

Scheduling Control .

Structure of an Event-Driven, Real-Time
Operating System . .

The Layered Organization of the Operatmg
System Architecture . . .o

OS Event Processing . .

The Hard Real-Time Support (HARTS) Layer .

Device Drivers . .
Dedicated Processors .

The Interpreter Layer .

10
10
12
12
16

18

20

21
23
26
27
29

30



3.5

35.1
352
353

3.6

3.6.1
3.6.2
CHAPTER 4

4.1

4.2
42.1
422
423

4.3
43.1
4.3.2

4.4
4.4.1

4.4.2

vii

The High-Level Operating System Schedular
(HALOS) Layer . . ..

Prioritizing Information . .
Scheduling .
Interface Between HALOS and the KBS .

The Centralized Operating System Interface
(COSI) Layer . . .

Device Independent 1/O . .

COSI Architecture .

An Experimental ISDN Personal Workstation .

Experimental Hardware Setup . .

PC Architecture .

1SP188 ISDN Basic Access Product Overview .

Experimental Software Setup .
iRMX Operating System Overview .
Tailoring iRMX .

Software Organization .

Interrupt Systems . .

iRMX Interrupt System . .

DOS Interrupt System .

Parallel Data Link Control (PDLC) Overview .

PDLC Hardware Description .

PDLC Software Description .

32

34

36

38

38

39

40

46

47

47

48

49

52

53

57

58

62

66

67



443

4.5

CHAPTER 5

5.1

5.2

53

REFERENCES

APPENDIX 1

APPENDIX 2

APPENDIX 3

APPENDIX 4

APPENDIX 5

viii
lustration of PDLC Operation .
ISDN Implementation .
Conclusions . .
Summary .
Conclusions . .

Suggestions for Future Studies .

System 120 Real-Time Performance Measurements . .

Program Listing: 1/O First Level Job .
Schematic Diagrams: The PDLC and Interrupt
Generator . C e e e e e
COSI Token Definitions .

Program Listing: An Experimental ISDN Personal
Workstation . . e e e e e

70

72

74

74

75

76

78

81

84

89

94

98



R A g a kTR T W s
-

o W NN o <

e en g wrr o e e

R SRS A P

— R

Figure 1
2

3

10
11

12

13

14

15
16

17

ix

List of Figures

Centralized Workstation Interfacing . .

Interrupt Latency Versus Disabled Interrupt Duration .

Interrupt Latency in a Non-Real-Time System .
Interrupt Latency in a Hard Real-Time System .

The Layered Structure of the Workstation
Operating System . .

Stages of an OS Event .

Flow of OS Events Through the Operating System . .

The Three Stages of Device Driver Processing
in HARTS .

Hierarchical Scheduling used by HALOS .
System Level View of the ISDN Workstation .
Hardware View of the Implementation Model .

Experimental Workstation’s Operating System
Layered Organization .

Synchronization Diagram of the Operating System . .

The iRMX Interrupt System for a Systcm 120
Computer . . R .

The DOS Interrupt Systern for an IBM XT Computer . .

Abstract View of PDLC .

Software View of PDLC .

15

16

22
24

25

27

KX

47

54

55

59
63
66

68



Figure 18
19

20

X
File Reception using PDLC .

File Transmission using PDLC .

ISDN Implementation using PDLC . .

71

71

72



Table 1

Xi

List of Tables

iRMX Operating System Layer Characteristics .



BIOS
BRI
CCITT
COSI
CPU
CS
EIOS
EOB
ES
HALOS
HARTS
HI

H/W
1/0
ICU

ID

IDT

1P

IRR

ISDN

xii

List of Abbreviations

- Basic Input/Output System

- Basic Rate Interface

- International Telegraph & Telephone Consultative Committee
- Centralized Operating System Interfaces
- Central Processing Unit

- Code Segment

- Extended Input/Output System

- End Of Buffer

- Expert System

- High-Level Operating System Schedular
- Hard Real-Time Support

- Human Interface

- Hardware

- Input/Output

- Interactive Configuration Utility

- Identifier

- Interrupt Descriptor Table

- Instruction Pointer

- Interrupt Request Register

- Integrated Services Digital Network



xiit

ISR - In-Service Register

KBS - Knowledge-Based System

LAN - Local Area Network

MBX - Mailbox

NT - Network Terminating Equipment

OS - Operating System

OSI - Open Systems Interconnection

FC - Personal Computer

PDLC - Parallel Data Link Control

PIC - Programmable Interrupt Controller (8259A)
PPI - Programmable Peripheral Interface (8255A)
RAM - Random Access Memory

ROM - Read Only Memory

S/W - Software

TE - Terminal Equipment

UDI - Universal Development Interface



CHAPTER 1

Introduction

The integration of computers and communications is a result of the shift from the
so-called commercial-industrial society to the information society [1]. Today, there are
approximately 600 million telecommunication subscribers worldwide [2]. Data communi-
cation currently accounts for 10% of network traffic in North America and is increasing
at the rate of 30% a year [2]. To meet this growing demand for data communications, a
unified, global digital telecomn.unications network known as the Integrated Services
Digital Network (ISDN) has evolved [3].

Modern communications needs no longer are confined to voice services, rather,
they now include a wide variety of data requirements. ISDN integrates voice and data
services through one digital communication facility [3]. Users’ communications needs do
not only extend outside the boundaries of their homes but also within. There is an
increased demand for the ability 10 communicate with electronic equipment within the
home so that control of these devices can be possible [4]. A new type of system is needed
that will support the user’s computer and communication needs. In this thesis, we propose
a new operating system architecture for such a platform. Collectively, we call this an
ISDN personal workstation.

ISDN is currently in an initial implementation stage. Consequently, only modest
uses have been made of the ISDN network. To exercise the current voice and data
services, ISDN terminal designs normally comprise a personal computer, an ISDN access
card, and a telephone [5]. These ISDN terminals satisfy current use of ISDN capabilities

but as future applications evolve, we feel that terminals will no longer be adequate.



2

The purpose of our ISDN personal workstation is to overcome the shortcomings
of current ISDN terminals. With the increased popularity of information services, future
ISDN applications will be very information intensive. This will require decision making
support for user applications. These types of applications could not easily run in current
ISDN terminals with conventional operating systems. This stems from the fact that the
architecture of conventional operating systems does not provide the framework needed
for these information-based applications.

Thus, the design of our ISDN personal workstation is motivated by the following
two fundamental features that users will expect from the workstation:

1. the ability to exploit ISDN information services

2. the ability to support autonomous control of the local environment in an
intelligent home of the future.'

Let us now examine how these two motivations influence the design architecture.

ISDN provides the workstation with a gateway to both information and communi-
cation services, from which stermn our strongest motivations. Widespread access to these
services is made possible by the fact that ISDN will have service access points based on
the Open Systems Interconnection (OSI) reference model’. With common protocols

internationally standardized, users of ISDN can expect access to a network of various

! The Consumer Electronics Bus standard (CEBus) and the Smart House standard define
communication protocols for the residential market in the United States [4,6].

2 The International Telegraph & Telephone Consultative Committee (CCITT) have defined
standards for ISDN implementation based on the OSI reference model. These standards include
definition of protocols, services and network functions [7,8,9].



3

commercial third-party services. One very important type of service will be information
retrieval applications using huge databases. An example illustrating this kind of service
will be given in section 1.1.

Then why is the feature, of exploiting ISDN information services, such an impor-
tant consideration in the design of the workstation? Certainly its usefulness to the user is
obvious. The answer lies in the fact that this feature necessitates special processing
requirements. A problem-solving, information-based application running on a workstation
will have access to copious amounts of information via the ISDN. However, when the
amount of knowledge/data to be processed is very large, heuristics must be applied to
define a restricted set of knowliedge/data to use in the problem solving [10,11]. In order
for the workstation to effectively run information-based applications that use heuristic
processing techniques, the operating system must incorporate a software architecture that
deals with abstract information.

The second motivating feature in the design of the workstation is to provide the
user with primitives for autonomous control. A computer that supports autonomous
control can use its local environment without the user’s direct intervention. The local
environment defines the physical boundaries which the workstation can access and/or
exert control over. We identify two types of autonomous control that the workstation
should provide the user:

1. remote digital control via ISDN

2. autonomous multitasking.



4

Since ISDN provides the workstation with communication services, the potential
for remote control exists. ISDN creates this potential because it can provide an
economical and easily established digital channel'. Two computers can use the channel
to exchange the command and telemetry information needed for remote control. A user
would take advantage of this ISDN-based remote control by accessing home status
information and initiating control functions from another station. Clearly, the architecture
of the workstation must include facilities for centralized control of the interconnected
devices in its local environment to achieve autonomous remote control.

Autonomous multitasking, the second type of autonomous control, is the name
we use to define a special class of operating system services. It is a conglomeration of
capabilities that permits control applications to execute on their own. These control
applicatioas would normally require some user intervention if they were running on
personal computers with a regular multitasking operating system. However on this
workstation, operating system support permits completely unattended operation. For
instance, the user could run a workstation application that transfers a large file across the
ISDN late at night. In section 1.1, this capability is highlighted with an example of a
problem-solving application that gathers large amounts of information through the ISDN
without disturbing the operator.

To support autonomous multitasking services, the workstation requires more than

just a centralization of control devices. Rather, provisions are needed in the software

! The CCITT defines the D-channel in ISDN basic rate service as a 16 kbit/s, packet
switched, common access channel. The D-channel is intended to carry signalling information for
circuit-switched channels and telemetry [12].




5

architecture for a set of high-level primitives to exploit these devices. When teamed-up
with a set of real-time primitives, this architecture gives workstation users a platform
capable of concurrent, intelligent problem solving.

By examining the motivations behind the design of the workstation, we have
identified two key requirements for its software architecture. One requirement was
architectural support for heuristic processing of the information available through
ISDN third-party services. The second was a provision in the software architecture for
managing centralized control in order to have an autonomous control facility. A soft-
ware architecture built around a knowledge-based system (KBS) provides a solid

foundation to achieve these goals.

1.1 Example Operation

The purpose of this example is to illustrate how we envision the workstation will
be used and to emphasize its architectural requirements. This example will serve to clarify
subsequent discussious of operating system requirements.

We have sclected a real estate application to demonstrate the practicality and
strength of a knowledge-based system being used in a non-trivial, knowledge/data-
intensive situation. The ISDN personal workstation makes it possible to support KBS
applications with its communication, display, computing and control facilities. Features
of the workstation we wish to highlight in this example include: rule entry, autonomous

multitasking and access to external data bases via ISDN.



Rl A

(futuristic office scenario)

You have been advised that your department is being relocated to a new city.

Lacking the time to personally look for a new home, you make use of a real estate expert
system application which is available on your new ISDN personal workstation. After
loading the software into the computer, you begin your search.

The expert system application (provided by the local real estate company) comes
equipped with the knowledge of how to access all the necessary real estate information.
Using ISDN, the data on these external data bases is readily accessible. Before the search
can begin, you must use the workstation’s knowledge-acquisition utility, to enter new
rules. These rules will augment the existing selection criteria to reflect your own
specifications.

After entering a trial set of rules, you run the expert system application for a short
time to obtain som: feedback. In the meantime, the autonomous multitasking operating
systzm frees you to work on any other application. Once a few candidate houses have
been identified, you are notified of the progress. You can now verify the rule set with the
workstation’s explanation utility which elucidates the application’s decision process. In
addition, you can visually examine the houses using graphic images of its exterior and
interior displayed on the workstation’s high resolution monitor. Also, relevant information
such as property value, taxes and utility expenses can be reviewed. Afler this review, you

may want to modify or add rules to the set to improve the selection process.



7

Satisfied that all relevant information has been included in your personal rule-set,
you permit the expert system application to run autonomously until it is ready to present

the best available candidates. In the meantime, you begin another application.

1.2 Research Contributions

The purpose of my rescarch was to propose a knowledge-based, event-driven, real-
time operating system architecture for an ISDN personal workstation. The design of the
operating system architecture has been motivated by the features that were discussed in
the introduction. The architecture differs from conventional personal computer operating
systems because it supports a knowledge-based system and the capability of autonomous
control. In developing this new operating system architecture, the following relevant
contributions were made:

1. We extended the basic error detection and reporting capabilities of traditional
operating system device independent /O software [13]. In our proposed operating system,
we defined an autonomous exception handling capability that allows error-tolerant
autonomous control applications to run,

2. We broadened the concept of device independent I/O [13] to include all
operating system services. This provided the necessary interfacing support needed by
the .owledge-based system.

3. We provided a soft real-time, event-driven environment for applications by
forming a hierarchical scheduling organization. Through this scheme, we were able to

add a high-level scheduler that would intelligently control the lower-level conventional



]

scheduling mechanism. As a result, our operating system can provide both multitasking
and multi-inferencing support.

4. We applied the idea of symbolic processing, used in network management
systems for fault isolation [14], to the workstation operating system. A layer in the
operating system is used to perform the symbolic processing necessary for event
interpretation. This processing is necessary to support the workstation’s autonomous
control capability.

5. We applied the event-driven structural organization used in network manage-
ment and control systems [14,15] to the organization of the workstation operating system.
We did this so that our workstation could support the autonomous control of its local
environment. The main feature that an event-driven organization provides is the ability
to deal with unpredicted changes in state of the local environment. This involves making
events capable of starting new applications.

In the course of implementing our experimental ISDN personal workstation we
developed a general purpose, bidirectional, high-speed, parallel data bus hardware and
software ruodule that provides a layer 2 communication link to the workstation. In
addition, this module also provides a frame routing service for incoming messages so that
multiple logical access can be provided. This module was used to provide a high-speed,

digital communication link between two separate platforms.



1.3 Thesis Qutline

Having identified the motivations behind the design of our ISDN personal
workstation in the Introduction, Chapter 2 will discuss the architectural requirements of
the operating system'. After this, Chapter 3 will present our operating system architecture
in detail and demonstrate how the requirements have been met. In Chapter 4, we will
present our experimental ISDN personal workstation architecture to demonstrate a
possible implementation of the architecture discussed in the previous chapter. In Chapter
5, we summarize our research work, present our conclusions and suggest related aspects

and topics for further studies.

' Reference [ 16] contains a discussion of the ISDN personal workstation’s knowledge-based
system requirements, architecture and experimental implementation.



CHAPTER 2

Software Architecture Requirements of the

ISDN Personal Workstation

The features motivating the design of the ISDN personal workstation were
identified in the previous chapter. We will now examine the software architecture
requirements needed to deliver these features.

In Chapter 1, we showed that a software architecture built around a knowledge-
based system is necessary to support our two fundamental design features. The first,
exploiting ISDN information services, requires heuristic processing [17]. This requirement
can be satisfied by the heuristic processing capability of a knowledge-based system [18].
The architecture of the ISDN personal workstation’s KBS is covered in reference |16].

The requirement for the second feature, autonomous control, is covered in this chapter.

2.1 Workstation Interface Primitives

Workstation interface primitives are necessary in the operating system so that the
local environment (i.e. the workstation itself as well as the devices connected to it) can
be controlled. Control of the local environment is possible through either the user’s direct
intervention (user shell) or from an autonomous control application (a knowledge-based
system). In either case, the same set of workstation interface primitives is required.

A common interface standard supports the idea of centralizing access to all
workstation interfaces through one common access point in the operating system as shown

in Figure 1. This structure facilitates the addition of third-party products to our system



1

as well as the modification of low-level device interfaces. A reason why the workstation
primitives should not be directly implemented in a KBS is because the operating system
can better deal with the procedural knowledge necessary for controlling devices. The
operating system will isolate the complexities of the device-level workstation interfaces
and provide access through intelligent primitives. These primitives must be sufficiently
austract so that complex controlling commands can be easily specified.

Because workstation interfacing is centralized, the set of abstract primitives

permits the definition of a single, unified workstation language that can be utilized

autonomous
control interfacing
application layer device driver
inference . device
engine abstract level
interface 0S interface {evice driver
requests
requests layer q
user >
shell .
abstract device
interface !evel
requests interface gevice driver
> requests

Figure 1 Centralized Workstation Interfacing.



e

[

ool

12
throughout the entire workstation environment. The reason why we call the language
unified is because it uses only one set of primitives. The workstation language has fea-
tures similar to those found in interpretive BASIC where the same syntax is employed in
system calls and applications [19]. However unlike BASIC, the workstation language can

be easily used to perform complicated control functions because of the underlying sct of

abstract primitives.

2.2 Real-Time Systems

An important aspect of autonomous control is the ability to execute applications
at a pre-specified time (real-time scheduling). Therefore, operating system support of
timing constraints and ability to handle timing exceptions are crucial in our system.
Before we specify the workstation’s real-time requirements, we will first discuss the
characteristics of real-time computing.

Real-time systems have been divided into two categories: hard real-time and soft
real-time [20]. We make a further distinction between the two categories by stipulating

that hard real-time systems are interrupt driven systems.

2.2.1 Hard Real-Time

Hard real-time systems support the critical processing requests made by hardware
devices. The requests are made to the host computer via hardware interrupts. These
requests demand prompt, uninterrupted service. The implied timing constraint associated

with these requests is that processing should begin within a reasonable amount of time.



13

We will now determine what is a reasonable amount of time by examining interrupt
latency.

Hard real-tiine operating systems are characterized by their maximum interrupt
latency. In general, interrupt latency is the time that elapses between the instance a
hardvrare device makes an interrupt request to the point that its interrupt service rcutine
begins [21]. In other words, how long the device must wait before being served by the
host computer.

A unique characteristic that distinguishes hard real-time operating systems from
conventional (non-real-time) operating systems is that their interrupt latency is bounded.
The reason why this delay must have an upper limit is because most devices can only
wait a short amount of time for service. In a hard real-time system, the response time is
viewed as a crucial part of the correctnes, of the software [22]. For such systems, if
service begins late, then frequently the computational results will be incorrect. For
example, consider an ISDN access device receiving data into a fixed size buffer at a
continuous rate of 64 kbit/s. Once the buffer is full, the device notifies the host computer.
If the host computer’s response time is greater than the transmission rate, then the data
in the buffer becomes corrupted. An operating system supporting such hardware, must
guarantee that its timing constraints will always be met. The only way an operating
system car. start 1o make such a commitment is if its interrupt latency is bounded.

Interrupi latency consists of the time it takes the interrupt support hardware to
process the device request and the time required for the computer to accept the interrupt

request and start the interrupt service routine. There is one other critical factor which



MU

T s - -

14

affects interrupt latency and distinguishes a hard real-time operating system from a
conventional operating system. This factor is the contiguous length of time that interrupts
are disabled by an operating system’s kernel during system calls.

To illustrate this point, a graph of the interrupt latency as a function of the
maximum amount of time that interrupts are disabled by an operating system is shown
in Figure 2. This graph shows that after accounting for the unavoidable hardware related
delay in servicing interrupts, (the step at t,), the interrupt latency becomes a linear func-
tion of the time that interrupts are disabled. In a non-real-time operating system, this
could be of unbounded duration (shown as dashed line). However in a hard real-time
operating system, the kernel is designed with the constraint that, during system calls, it
cannot disable interrupts for a contiguous length of time that exceeds t. This feature

guarantees that there will be an upper limit on latency (T)).

Interrupt /
Latency y

Ty

t, t,
Max. Length of Time that Interrupts are Disabled

Figure 2 Interrupt Latency Versus Disabled Interrupt Duration.



15

P

There is a common misconception that swift average response time makes a

computer system a hard real-time system [23]. The incorrectness of this misconception

Py e A3

can be easily seen in the graphs of Figures 3 and 4. In these graphs, the probability
density functions (PDFs) of the interrupt latency are shown. For the system with fast

response time and an ordinary operating system (Figure 3), the graph shows that, on

average, the interrupt latency is small --just like the hard real-time system (Figure 4).

R U R 12

However, there is a non-zero probability of having a large interrupt latency that would

result in a long response time. This possibility makes it a non-real-time system.

e e e

PDF of interrupt Latency

Probability

/

Figure 3 Interrupt Latency in a Non-Real-Time System.

Interrupt Laiency

So what kind of devices can be supported by a hard real-time operating system?

[ORE

Any real-time device can, as long as the maximum interrupt latency of the operating

system is acceptable to it (i.e. our reasonable amount of time). If this maximum delay is

E:
§
3
4
&




16

not longer than the device’s timing deadline, then the device is guaranteed proper
response time from the operating systein. Conversely, if the maximum interrupt latency
of the operating system exceeds the response time demanded by a hardware device, the

implicit iming constraints of the device are not met.

PDF of Interrupt Latency

Probability

interrupt Latency

Figure 4 Interrupt Latency in a Hard Real-Time System.

2.2.2 Soft Real-Time

Soft real-time systems support the non-critical, time dependent processing
requirements of real-time software applications. In addition to being logically correct, a
real-time program must have its timing constraints satisfied [24]. There are two types of
real-time processes: periodic and sporadic {20]. A periodic process needs to be scheduled
(i.e. becomes ready) at regular intervals while a sporadic process may become ready at

any time [24].




17

A real-time process explicitly specifies its processing requirements in terms of
actual timing parameters (timing constraints). The timing constraints can be either
absolute (time-of-day) or relative (deadline specified with respect to the time a process
starts) [24]. A soft real-time operating system must endeavour to schedule these processes
so that they can meet their iming constraints. However, unlike in a hard real-time system,
the operating system cannot guarantee that it will meet all timing deadlines. Consequently,
failure to meet timing constraints results only in a non-critical error condition called a
timing violation.

Timing violations are dealt with by the operating system through the use of
exception handlers. The operating system must be able to detect a missed deadline and
then schedule an exception handler to initiate a recovery action. Possible actions include:
notifying the user about the problem and either halting the process or rescheduling the
process using new timing constraints defined in the exception handler [24]. The exact
recovery plan will depend upon the nature of the application.

Soft real-time operating systems are characterized by their time-based process
schedulers. Various scheduling strategies for a uni-processor preemptive scheduling
environment have been defined [20,22,25,26,271. In general, the scheduler does not only
attempt to meet the timing constraints imposed by software, it must also try to maximize
utilization of the CPU [28]. Consequently, not all of the timing constraints in the system

can be met. Performance evaluation criteria for schedulers typically include the number

of missed deadlines, the degree of processor utilization and scheduling st2bility [27].

PEIRCCERIPAEVIEIUNS + 15T ST T PR RVEREN TS, <

€ait s ok s Leannd oA e



L ar:

18

In order to formulate a scheduling strategy, the scheduler requires initial timing
parameters from the software it runs [26]. In general, the timing parameters include: the
acceptable maximum and minimum amount of delay time before starting execution, the
estimated maximum execution time of a computation, and the latest time in which
execution should be completed [24]. In order for the scheduler to receive these paramet-
ers, the programmer needs a mechanism to communicate them to the scheduler.

Since the ISDN personal workstation must support both hard and soft real-time

scheduling, its architecture incorporates the real-time characteristics outlined in this

section.

2.3 Scheduling Control

A consequence of autonomous control is the need to support directly connected
external devices. Some of these devices may have hard real-time processing demands. The
devices with such demands would need real-time device drivers. To meet these demands,
the workstation requires an operating system kernel with a bounded interrupt latency that
is small enough to satisfy the real-time devices. Built on such a kernel, the real-time
device drivers would be capable of supporting these devices.

The soft real-time requirements stem from the workstation’s autonomous control
feature. A mechanism for specifying timing constraints that control application execution
are needed. In addition, a means of dealing with timing violations is also essential.

Another aspect of autonomous control is the ability to execute multiple concurrent

applications autonomously. The operating system must provide a mechanism to assign



19

priorities to applications to deal with a workstation which may run more applications than
available processors. The operating system’s dynamic prioritizing mechanism must take
into account several factors before forming a scheduling priority. A main factor should
be the user’s specified importance of the application so that it will receive an appropriate
amount of service time.

In the next chapter, these workstation operating system requirements will be

addressed and an architecture will be proposed.



T TTAEEERT

CHAPTER 3

Structure of an Event-Driven, Real-Time

Operating System

The desire to have a workstation that can autonomously control its local environ-
ment led us to use an event-driven operating system architecture. This design approach
has been used effectively in network management and control systems [14,15]. In these
systems, events are viewed as a problem-related change in state of their communication
network. Network events result in the generation of alarm messages that signal the
presence of a problem. These alarms are then processed by a control center to determine
causal and temporal relationships and severity [15]. After this, the error problem becomes
well defined and undergoes system-initiated diagnostic processing. Thus all processing
initiation depends on the arrival of events, hence the term event-driven.

Similarly, the notion of an event is essential in the design of our own operating
system. We broadly define an operating system event (OS event) as the awareness that
an unpredicted change in state of the local environment has occurred. Examples of OS
events are commands issued by the user, the arrival of an incoming ISDN call or a signal
from an alarm system connected to the workstation. In each of these cases, the operating
system could not know in advance when these incidents would occur.

Not all external activity is considered to be OS events. When it is under direct
software control, external activity does not represent an unknown state change. For
example, we would not consider the consequences of an application using the ISDN con-

nection (i.e. change in channel utilization) to be an OS event. The software would



21

certainly know the consequences, and any hardware activity would be predictable.

For the operating system to be event-driven, it must be able to detect unpredicted
changes in state of the local environment and use this information to start applications.
To do this, the operating system must rely on interrupts to notify it of any such changes.
As a result, the operating system must have the ability to process interrupts to the point
of understanding their implied processing requirements. Subsequently, it must also be able
to act on such requests.

Our operating system must also support the autonomous control requirements
imposed by KBS applications. For these needs, the operating system provides an abstract
set of primitives which the applications may use. In fact, this operating system

requirement contends with the need for it to be event driven.

3.1 The Layered Organization of the Operating System Architecture

The requirement that our workstation supports both OS events as well as KBS
application processing has l.d to a single operating system architecture with a dual set of
primitives'. The combined, hierarchical organization of our operating system into a
layered structure is depicted in Figure 5. The operating system has two distinct sections
corresponding to OS event and application processing functions.

The layers situated in the upper half of the operating system diagram, shown in

Figure 5, have primitives that provide services to applications and thus these layers are

' In an operating system context, primitives are defined as abstract services supported
by the operating system [29].



22

HALOS
Event-Driven Front End

Inference Experiment

Application
Proceasing
.................. Nuc
Real \leus/TIime
Time Device
D.D { Drive
Event
Interpreter
P Processing

Figure § The Layered Structure of the Workstation Operating Systena.
called the application processing section. Access to these services is the same as in
conventional operating systems in that applications depend on the support offered in lower
layers of the hierarchy.

The application processing section is organized into five functional layers. The top
layer is an event-driven schedular called the High-Level Operating System Schedular
(HALOS). The second layer corresponds to the Knowledge-Based System (KBS) archi-
tecture that supports expert system applications [16]. Services in the third layer provide
a centralized access to all workstation interfaces. This layer is called the Centralized
Operating System Interface (COSI) layer. The fourth layer includes the device drivers
needed for both real-time and non-real-time hardware support. This layer is called the

Hard Real-Time Support (HARTS) layer. At the core of this diagram is the hard real-



23
time, multitasking KERNEL layer.

The procedures in the lower half of the diagram shown in Figure 5, preprocess OS
events and hence are called the event processing section. OS events must be preprocessed
because, initially, the operating system has no knowledge concerning their meaning. From
the operating system’s point of view, OS events are not correlated with any previous
activity. Before they can be acted upon, they need to be interpreted.

The difference between the event processing and the application processing
sections is that layers two and three are now replaced by a single event interpreter layer.
The event interpreter determines the meaning of incoming requests and passes this

information up to the event-driven front end.

3.2 OS Event Processing

Previously, we defined an OS event as "the awareness” of an external activity. We
now extend this definition to include the movement of this knowledge through the event
processing section of the operating system. In this context, an OS event proceeds through
three states (Figure 6). We say that the duration of an event is bounded by the interrupt
that starts it , and the point where the operating system has mapped it into a well defined
request.

We define a request as the information that a hardware device provides the
operating system in order to get an application started. For example, if a home monitoring
system detected an intruder, then an interrupt signal along with other information (like

sensor identification and status codes) would be sent to the workstation. The information



24

Interrupt HALOS Polls
Acknowledgement Event Queues
| /
18t stage 2nd stage 3rd stage
|
Chenge in |
State —l Z Processing Mesaage Tokesn
State State State
|
Local |

Environment

| Device Driver Interpreter Event Queues
Processing Processing

Operating Systam Environmant

Figure 6 Stages of an OS Event.

would then be processed to identify the request (e.g. differentiate a burglar alarm from
a fire alarm). The identified request would then result in the scheduling of an application.
In the event of a burglar alarm, the application could then make an ISDN phone call to
the police. To see how our operating system maps OS events into a request, we will
examine in depth the three states of an OS event.

The flow of OS events begins with the acknowle:igement of an interrupt request
by the operating system. The first stage of an OS event is device driver processing, where
the immediate real-time demands of the hardware are met. After this initial processing
(e.g. receiving data into a buffer), the OS event becomes a message (stage 2) which the

interpreter processes as shown in part b of Figure 7.



25

O User

- »|Shell
X.—... Device ®

Drivers
COosI
D {Both KBS
m Real- * Appl.
Time
. &
Non-
Cl
Time) Event
Inter-
Queves

2

preter

=
d e Hl HALOS

...........

Event Trace a m 5 token C token
mesgsage L@
Kernei Timer

Figure 7 Flow of OS Events Through the Operating System.

Stage 2, or the message state, is analogous to the alarm messages that arrive in
network management and control systems [15]. The processing that the interpreter
performs is to recognize the message and translate it into a standardized format we call
a token'. This processing stage is comparable to a network manageraent system that
determines the relationships and severity of alarm messages. In our system, the token is
then placed into an appropriate event queue as shown in part ¢ of Figure 7, at which time

the event enters the third and final stage.

' We define a token as a symbolic representation for a particular service supported
by the workstation’s operating system.



26
The last stage ends when HALOS retrieves the token. At this point, the notifica-

tion of an unpredicted change in state has been transformed into a well defined applica-
tion request which is ready to be executed. This is similar to the diagnostic state of a
network management system [15]. At this point, HALOS prioritizes the complete set of
new requests and is ready to start an application.

Those applications started by HALOS can make use of the COSI layer of the
operating system. COSI provides an intelligent, standardized interface so that applications
interact with the workstation interfaces at an abstract rather than the more complicated
device level. We will next examine in detail each layer of the operating system architec-

ture.

3.3 The Hard Real-Time Support (HARTS) Layer

As in all operating systems, our architecture has a set of programs, typically
interrupt driven, to control hardware devices. These programs are usually called device
drivers and are organized in a layer above the kernel. But unlike most other systems, our
workstation supports hardware devices with hard real-time requirements'. Therefore, our
device driver layer has been designed with the needs of hard real-time in mind.

The device driver layer of our operating system is entitled HARTS. Both hard
real-time and non-real-tim¢ device drivers make up this layer. All device drivers in
HARTS are divided into three independent routines. In order for these routines to provide

hard real-time support, the underlying kernel must guarantee a maximum interrupt latency.

Y Hard real-time has been defined in section 2.2.1.



27

3.3.1 Device Drivers
A device driver concists of three separate routines shown in Figure 8. Each routine
provides a different degree of real-time processing. This division in processing is due to

the va-ious timing constraints that hard real-time devices have, which can be ranked into:

critical, immediate, and ordinary classes.

Interrupt DeV'gguﬁt:‘r;pon

interrupt Service

Handler Routine ‘

CPU vector Routine A A
Device 1o handier ical immediate ordinary
INtOrrupt e ———————— critica - class pommadp  ammmng class

Signal class @

(all Interrupts disabled) ‘i

(higher priority
interrupts enabled) (ail interrupts enabled)

communication is vis: semaphores A
matiboxes KA

shared regions ﬁ

Figure 8 The Three Stages of Device Driver Processing in HARTS.

Any device with a critical timing constraint, requires that its processing begins as
soon as its interrupt signal becomes acknowledged. The amount of acceptable delay is
limited to the interrupt latency of the kemel. Critical processing must not be interrupted,
therefore all interrupts need to be disabled during this time. The routine that does this
class of processing is called the interrupt handler routine of the device driver. Since all
interrupts are disabled in an interrupt handler, the amount of time spent in these routines

must be minimized so that other high-priority devices can get serviced in time.



TR

' 28

A processing classification with a more lenient timing constraint is the immediate
class. For this class, the permissible delay in completing processing is larger. The
completion delay includes the time that might be spent waiting if preempted by a higher
priority device. The interrupt service routine of the device driver is responsible for this
processing. An interrupt service routine may be preempted by an interrupt from a higher
priority device since, at this stage, higher priority interrupts are enabled. These interrupts
are enabled during an interrupt service routine so that the operating system may satisfy
any new critical processing requirements.

The final ranking of timing constraints defines a class that permits an even larger
overall service time. This class of processing, called ordinary class, is performed by the
device support routine of a device driver. During ordinary class processing, all interrupts
are enabled so that any device with a new processing request can be serviced by
preempting the device support routine. Even a device havir 5 a lower priority can precmpt
a device with a higher priority during ordinary processing.

Hard real-time devices can have timing constraints in each of the three classes. For
these requests to be processed efficiently, all three classes must be supported by our
operating system. For instance, if ordinary constraints were processed by a higher ranking
class, such as an interrupt handler, then interrupts would needlessly be disabled. As a
result, during this processing time, no new device requests could be serviced. This ineffi-
cient implementation would increase the chances of violating a critical timing constraint
in a pending device request, thus decreasing the number of real-time devices the operating

system could support.



29

Device driver processing logically progresses through each of the three routines.
The amount of processing done at each stage depends on the hard real-time requirements
of the device. If there is no processing required at a particular routine, then the next
routine is started immediately. At the end of a device support routine, if the device

interrupt signified the start of an OS event then an interpreter stage would begin.

3.3.2 Dedicated Processors

Another consideration in the HARTS architecture is the use of dedicated
processors to support certain devices. The dedicated processor approach involves
establishing a processor and local memory on a separate board, exclusively for a single
device. We specify three instances where the type of processing required by a device is
better served by the dedicated processor approach rather than having the workstation do
all of the processing.

The first instance is when the volume of processing required by the device is so
high that it would degrade the performance of knowledge-based applications. The second
instance occurs if the hard real-time support (maximum latency) of the workstation is
insufficient for a device. The last instance arises if the nature of the device processing is
better suited for a special-purpose processor. For example, using a signal-processor for
video, or a micro-controller for ISDN communication involves a special-purpose
processor.

We defined a general protocol for the interface between dedicated processors and

HARTS. The dedicated processors should reside inside the workstation, connected to its



30

1/O backplane. The workstation, therefore, requires an I/O backplane that can support such
boards. The boards should have their own operating system kemel that can communicate
with the workstation operating system through a high-speed interface. To minimize the
processing load this would present to the system, the interface involves setting up data
in some type of dual access memory (e.g. Dual-port RAM), and then signalling the
workstation to rapidly read it using direct memory access (DMA).

The dual access memory protocol for dedicated processors allows them to move
data directly into the workstation. In all other aspect, these boards will interface to
HARTS as standard devices that use interrupts to signal a HARTS driver. This driver will
perform any necessary ordinary class hard real-time processing which may lead to the

start of an OS event.

3.4 The Interpreter Layer

In order for our operating system to support event processing, it must be able to
process OS events to the point of understanding their implied application requests. The
layer of the operating system which performs the symbolic processing [10] required to
determine the meaning of a device interrupt is called the interpreter layer. This type of
symbolic processing is similar to that used in network management systems for fault
isolation [14]. In network systems, the meaning of alarm messages must be determined
50 that a program can be run which finds and corrects the problem-causing component,

Device drivers obtain preliminary information about an OS event during HARTS

layer processing. This information is then forwarded to interpreters as was shown in




31

Figure 6. Hence, the last two steps of device driver servicing of OS events involves
placing any new available information into a shared memory location and then signalling
an interpreter. Upon receiving a device driver signal, an interpreter knows that it has an
OS event message and retrieves it.

In the workstation operating system, each source of an OS event (user, ISDN,
centralized controller) has an associated specialized interpreter. Interpreters process the
information (message) obtained in the previous device driver stage. The messages
represent predefined operating system commands. A command would typically be a
request to start a particular application.

The interpreter parses each message to extract the information needed to
understand the command. Next, using a look-up table containing a list of all possible
commands, the message is translated into a standardized format called a token. The token
identifies, for the operating system, what application should be run by the front-end as
a result of the OS event.

Messages from the user are translated into commands by a natural language
processor (user interpreter). Messages from devices, such as an ISDN access card, are
processed by a device (ISDN) interpreter. For example, an incoming ISDN call provides
the ISDN interpreter with a message containing information imbedded in a packet. This
message includes such things as line activity (ringing), channel identification, caller
identification, etc.

Interpreter processing is completed when the token is placed into the event queue

asiociated with the interpreter. In this example, the token might specify that an ISDN



32

voice call application should be started. The event queues serve as the interface between
the interpreters and HALOS. HALOS does not wait for any signal from the interpreters

to retrieve a token from an event queue instead, it periodically checks the queues.

3.5 The High-Level Operating System Schedular (HALOS) Layer

In all multitasking operating systems, the amount of service that users receive is
decided by its scheduling mechanism. Normally, a scheduling mechanism only works at
the level of individual processes. Its job is to decide which processes should run next by
adhering to either a priority or a first come first serve algorithm. A distinguishing feature
in our operating system is that we add a further layer of scheduling above the conven-
tional scheduling mechanism.

The addition of a high-level schedular, called HALOS, into the ISDN workstation
architecture forms a scheduling hierarchy. Figure 9 illustrates this hierarchy. Conventional
scheduling of processes and KBS problems' is performed by the kernel and inference
engine respectively. Situated on top of the hierarchy, HALOS controls the scheduling of
all applications® by manipulating the conventional schedulers.

The kernel of any multitasking operating system is composed of routines that

provide memory and process management to the rest of the system. The key component

! A problem is an instance of a heuristic computation running on the inference engine
of the KBS. For a detailed discussion on how the workstation’s KBS treats problems, see
reference [16].

* An application request is a general computational request for either a KBS or a non-
KBS program.



33

process identifier

priority value J KERNEL

Application HALOS
Request token

(application id.,

timing primitives,

importance value)

goal identifier
priority value KBS

Figure 9 Hierarchical Scheduling used by HALOS.

of process management, in such kernels, is the process schedular. A process schedular
maintains the illusion of concurrent processing by rapidly switching one processor among
several processes [29]. The decision of when to switch, and which process to schedule
next, depends on process priorities and the scheduling algorithm. Also, the process
schedular ensures that the software context is saved during a context switch so that a
process can be continued again at a later time.

In our operating system, the kernel has such a priority-based, preemptive process
schedular. The kernel schedules processes according to their assigned priorities using the
round-robin algorithm [13]. Preemption is required so that newly arrived, higher priority
requests do not have to wait until a lower priority process blocks. Preemption is normally
implemented by giving running processes a time quota. When the time quota expires, the

running process is exchanged with another ready process.



34

In addition to the kernel, there is also a schedular for the multi-inferencing
inference engine. Instead of scheduling processes, this schedular schedules problems for
the inference engine. It is also priority-based and preemptive. The architectures of the
inference engine and its schedular are given in reference [16].

As we indicated, our application schedular controls both the process and the
problem schedulers. The application schedular receives application requests and decides
the order in which each application should start executing. The schedular assigns a
dynamic priority to the requests, as will be explained in section 3.5.1. After this, either
the process schedular or the problem schedular manages the actual execution of the
individual applications.

The reason for using a hierarchical scheduling organization is to provide a soft
real-time' event-driven environment for applications. The mechanism by which HALOS

achicves this will be presented next.

3.5.1 Prioritizing Information
Since both the kernel and inference engine have priority-based schedulers, the
means by which HALOS can exert some control is by assigning a dynamic priority to
application requests. HALOS’ prioritizing function takes into account two types of
information: predetermined data and dynamic operating system state information.
Predetermined data is defined by the application programmer and consists of three

specifications. The first specification is the importance of the application (expressed

! Soft real-time has been defined in section 2.2.2.



35

numerically) relative to other applications. Through this data, the programmer communi-
cates how each application is ranked.

The second specification consists of soft real-time parameters (timing primitives).
The timing primitives define constraints such as: the maximum and minimum acceptable
time before starting an application, an approximation of the maximum execution time of
an application, and the latest allowable completion time. By supporting these timing
primitives, HALOS provides an environment which facilitates the writing of soft real-time
applications.

Finally, the last specification depends on where the application will run. For KBS
applications, the name of the starting goal' is expressed. For other appl%cations, a process
identifier is given. This specification is stored in the header of every application file.

The dynamic operating system state information consists of two values. The first
value is the time-of-day. The second value defines the system load. This value indicates
the number of processes in each priority level for all the possible states (running, ready,
blocked, sleeping, suspended).

The dynamic operating system state information is used by HALOS to calculate
a new application’s dynamic priority. The current load condition of the operating system
must be known in order to accurately p:edict application performance. A high-level
schedular must know this because, only through a proper knowledge of performance can

such prograwmer specifications as importance and timing primitives be met.

! The initial goal is the first rule processed by the inference engine, and is used to
start KBS applications [16].



B al o ot o

L E e e AR

L ANT T W Ve e

36

HALQOS calculates a dynamic priority, using current state information, to ensure
that each application will receive a sufficient amount of processing to meet its soft real-
time demands. The calculated dynamic priority also reflects the relative importance speci-
fied by the programmer.

Since there may be a wide distribution in the workload, a simple static priority
method based on an average workload is unsatisfactory. Under heavily loaded conditions,
there would be a high likelihood that timing violations would occur. Therefore, a dynamic
prioritizing function based on up-to-date load conditions is used. This method ensures that
a predictable performance level is maintained while attempting to optimize throughput.
To illustrate the use of dynamic priorities, we will present HALOS’ dynamic prioritizing

function.

3.5.2 Scheduling

There have been many different scheduling algorithms proposed for soft real-time
systems. The earliest deadline scheduling algorithm is a proven optimal dynamic priority
scheduling algorithm [27]. In this algorithm, processing requests are scheduled in the
order of their run-time duration with the constraint that all deadlines must be satisfied.
This results in a provably optimal turnaround time (i.e. it produces a minimum average
response time) [13].

In spite of its optimality, the earliest deadline algorithm is not used in practice
because a direct application of it leads to practical problems that are not readily overcome

[27]. One of the practical problems is knowing the stochastic run-times of processing



37

requests in advance. Also, the algorithm assumes that all processing requests are simulta-
neously available [13]. Neither of these problems can be: overcome in the workstation
architecture, therefore we must seek an alternative solution. The prioritizing function used
in HALOS is a non-optimal but simple method, proposed by Tanenbaum, called the ad
hoc method [13].

In our system, the dynamic priorities are assigned to application requests so that
the closer a timing deadline is to being missed, the higher its priority becomes. Whenever
there are no imminent timing deadlines, assigned priorities are directly proportional to the
static priorities set by the programmer. Therefore, under this condition, the ad hoc method
operates as a conventional priority-based schedular.

Dynamic operating system state information is an estimate of the operating system
load. With this information, the schedular is able to decide whether it will accept a soft
real-time application request. If it appears that the timing deadline of a new application
cannot be satisfied, the operating system rejects the request, but may try running it later.
This ensures that resources are not wasted on an application that cannot finish on time.
Processing bandwidth is thus conserved which improves the performance of the system
and also reduces the risk that the timing requirements of applications currently running
on the system will be violated.

To receive new application requests, HALOS periodically checks the event queues
for new tokens which were placed there by the interpreters. The period is set at one
second because this is the timing resolution that we selected for our operating system’s

soft real-time support. During these checks, the entire group of ready to run application



38

requests are prioritized. The advantage of prioritizing in groups is that the relative

importance (within the group) of each request can be compared.

3.5.3 Interface Between HALOS and the KBS

The workstation operating system provides both multitasking and multi-inferencing
capabilities. For multitasking, HALOS directly starts the non-KBS applications, likewise,
for multi-inferencing of KBS applications, HALOS must interact with the inference
engine’s facility for external control.

To start a problem, HALOS sends the inference engine the predetermined
information (application header) and its calculated dynamic priority value for that KBS
application. The inference engine’s problem schedular uses the dynamic priority to
determine how much relative symbolic processing each KBS application will receive. In
reply to the HALOS request, the inference engine’s faciliyy for external control returns
a unique problem identifier.

This internal identifier permits HALOS to make enquiries about the state of each
inference and control them (start, stop, suspend). By manipulating these control primi-
tives, HALOS can ensure that all soft real-time requirements are met for all applications

running on the workstation.

3.6 The Centralized Operating System Interface (COSI) Layer
The COSI layer of our operating system was developed to satisfy the workstation’s

requirement for control. An abstract set of primitives that both the KBS and user shell



39

could use for autonomous and regular control was needed. To meet this requirement, we
followed an approach analogous to the idea of device-independent I/O (input/output)
which is used in standard operating system designs [13]. In particular, we established a
set of sufficiently abstract nrimitives so that complex controlling commands could be
easily specified through software. In addition to this, we provided these primitives with
autonomous exception handling capabilities to autonomously deal with the occurrence of
error conditions. Lastly, we devised a unique method of obtaining service from COSI to

satisfy the KBS’s need for a centralized access.

3.6.1 Device Independent I/0

Device-independent 1/O is a layer of software that controls low-level device
drivers and provides higher-level software with a set of abstract I/O primitives [13]. The
selection of abstract I/O primitives provided by a device-independent I/O layer is up to
the developer’s discretion [29]. A criterion normally used is to choose primitives that will
be commonly needed. The primitives in such a layer serve two purposes.

The first purpose is to provide device abstraction so that devices are easier to use
[29]. For instance, the ability to access data from a hard disk is made easier by the
operating system’s support of a primitive such as read. Rather than have to worry about
things like controlling a disk motor, head positioning, and formatting information, the user
can rely on the abstraction provided by the read primitive.

The second purpose of device-independent 1/O software is to provide a common

method of access so that all similar I/O operations are specified with the same command



40

[29]. For example, an operation such as open applies to devices ranging from files to data
connections. Exploiting this conceptual similarity, a single function call defines each class
of I/O operation while additional parameters specify the device. This common access sim-
plifies I/O operations for programmers.

A device-independent I/O layer serves one other purpose, it provides basic error
detection and reporting [13). This service is needed by the operating system so that
reliable 1/O operations are possible.

With these concepts in mind, we now examine how the COSI architecture builds

on the idea of device-independent I/O.

3.6.2 COSI Architecture

COSI provides centralized access to workstation interfaces in a manner conceptual-
ly similar to device independent YO software. The access point to COSI is a shared
memory region. When control of an interface is required, a request is sent 10 COSI The
request is a pointer to the data region where additional information for specifying the
request is located. The data region contains information such as the type of service
needed, relevant parameters, and exception handling specifications.

The need for such a centralized access point stems from the fact that expert
systems have difficulty supporting procedural knowledge. As a result, the expert system
software relies on the operating system (through COSI) to provide it with procedural
processing that is easy to access. In addition, this lack of procedural knowledge also

requires that COSI's interface primitives be abstract and that the set of primitives



41

encompass all of the KBS’s interface demands.

An intelligent set of workstation interface primitives is provided by COSI.
Similarly to the way device-independent I/O software makes access to information on a
hard disk easy, COSI extends this use of abstraction to all workstation interfaces.

For example, consider an expert system application which needs to obtain
information from an external database, such as the current value of the Canadian dollar
at the Montreal Stock Exchange. The request to COSI would identify the operation (data-
base query), the location of the database (MSE), as well as the search topic (value of
Canadian dollar). COSI would satisfy this request by issuing a series of specific
commands to the communication interface software.

In this example, an ISDN data call would first be established between the
workstation and the database location. A command to the ISDN access device would be
sent specifying that a D-channel, packet-switched call should be made. Next, the search
topic would be transmitted in a packet to the database. Once the requested information
wis received, the ISDN D-channel connection would be terminated. The new information
would then be retumed to the application through the shared data region.

An important feature of our workstation is its support for autonomous control. To
achieve this, we must exploit the primitive error detection and reporting capabilities of
the workstation’s device-independent /O software. Building on these basic error
mechanisms, COSI extends the operating system’s exception handling capabilities so that

unsupervised execution is reliable.

X,



42

The implementation of autonomous exception handling centers on the ability of
devices to detect and report error conditions. Because of this ability, COSI is able to
autonomously respond to exception conditions by starting particular routines that take
corrective action. These routines are called autonomous exception handiers. There are two
types of exception handlers: defaulr and custom.

Default exception handlers, as the name implies, are automatically available any
time a request is made to COSI. By providing this, COSI removes the programming
burden of explicitly specifying exception handlers for each request. Exception handlers
are needed in our system to allow application programmers to write error-tolerant
autonomous control applications. Without default handlers, programmers would have to
write a large number of additional routines to deal with each possible exception condition.
For situations where a particular default handler is deemed inappropriate, a programmer
may override COSI's exception handler. Thus exception handling in COSI is both
powerful and flexible.

Custom handlers can bypass some or all of COSI’s default handlers. To accom-
plish this, the programmer would modify the handlers that are called for particular error
conditions that should not use the default handlers. Consequently, when one of these error
conditions occurs, the custom handler is started instead of the default. With this facility,
the programmer may tailor COSI’s exception handling mechanism to meet special system
requirements. The importance of error handling is illustrated in the following example.

Consider an autonomous ISDN file transfer application that uses a floppy disketie

to store the data. One of the default handlers for storing data on a floppy disk can recover



43

from an overloaded disk condition. If a shortage of disk space occurs during this
unsupervised file transfer, then the default handler is activated. The exception handling
routine closes the primary data file on the floppy diskette, then opens a secondary file on
a hard disk to receive the remainder of the file transfer. Without autonomous exception
handling, this application would have halted due to the error condition and left the costly
communication channel open. Hence, the COSI architecture is providing crucial

autonomous exception handling support so that autonomous control is obtainable.



CHAPTER 4

An Experimental ISDN Personal Workstation

We developed an experimental ISDN Personal Workstation to demonstrate a
possible implementation of the architecture proposed in Chapter 3. The experimental setup
consisted of both off-the-shelf and custom software and hardware components. The
criteria for selecting these components were based on adhering to the requirements and
capabilities of our proposed workstation architecture.

In Chapter 3, we showed that the operating system of an autonomous multitasking
workstation must be event-driven and multitasking. Furthermore, to implement an event-
driven architecture, we needed strong interrupt support. The multitasking criterion
eliminated all single tasking operating systems as potential candidates. The operating
system we chose was the iRMX 11.3 286/386 operating system' because it satisfied both
criteria.

For purposes of flexibility and future expandability, we wanted a platform that
supported the popular Industry Standard Architecture (ISA) expansion slot interface. This
interface would allow us to either build or purchase hardware modules for the worksta-
tion. Figure 10 illustrates how the workstation could be used to support various applica-
tions. In this figure, solid boxes represent developed applications and dashed boxes
correspond to possible future applications.

We also required our workstation to support CPU intensive symbolic processing

applications and therefore needed a CPU with sufficient processing strength. A platform

"iRMX is a copyright of Intel Corporation.

ki adhba




45

which supported the ISA bus architecture and could run the iRMX operating system is
the Intel System 120. In the System 120, processing is done on a 32-bit 80386 micropro-

cessor and an 80387 numerical coprocessor, which meet our CPU requirements.

HOST Computer

[ ]
| Wireless | §
Communication i
| Modula

- s - -

Dats Acquisition|
ang Control
Module

HOST
Bus |
| Module |

P T

video Msil !
| Module \

ISON
Proceasing
Module

—

Figure 10 System Level View of the ISDN Workstation.

We required an ISDN Basic Rate Interface (BRI) [12] connection for the
workstation, This necessitated hardware and software corresponding to OSI layers 1 to
3. Further, we wanted the processing of layers 2 and 3 to be done on a separate card to

preserve CPU bandwidth. The card which met most of the requirements was the ISP188



46

ISDN Basic Access Product'. This card has an on-board 80188 microcontroller and
private memory space that is used to run the ISDN software.

The main disadvantage of the ISP188 product was that it required a single tasking
operating system environment (i.e. DOS) to run on. This left us with the problem of
integrating the ISP188 ISDN product with the System 120. We solved this problem by
running the ISDN board in DOS on an IBM PC and then linking the two computers with
a digital connection.

To implement the digital connection, we developed a Parallel Data Link Control
(PDLC) sofiware and hardware product. PDLC provides communication facilities that

allow the host computer (System 120) to obtain ISDN services from the ISP188 product

in the IBM PC.

4.1 Experimental Hardware Setup

The major block in our experimental setup is the ISDN Personal Workstation
which comprises a System 120 and an IBM PC. These two platforms are integrated using
our PDLC as depicted by the left block in Figure 11. The other block is the ISDN NT
simulator, which is used to simulate and end-to-end ISDN information exchange for the
workstation. The workstation is connected to the NT simulator through an ISDN S-bus

[30] interface.

' ISP188 ISDN Basic Access Product is a copyright of DGM&S Inc. and Intel Corp.



47

PDLC-bus | S-bus
Qzﬁl PDLC I | ISDN l'

|

| [
| |RMX 120 Piatform 1BM PC Platform |
| |

18M PC Platform

Figure 11 Hardware View of the Implementation Model.

4.1.1 PC Architecture

The IBM PC architecture is an open architecture largely because it extends its
internal system-bus [31] to a set of expansion slots. These expansion slots allow
additional peripheral boards to be added to the system. The electrical signals used by the
system-bus are well defined which permits third-party developers to build boards that can
easily integrate into the architecture. Following the ISA expansion bus standard, many

feature boards have been developed for this architecture.

4.1.2 ISP188 ISDN Basic Access Product Overview

The ISP188 ISDN BRI hardware and software product that we used simulates an
end-to-end (TE-to-TE) type of information exchange as though an intervening network
were present [32]. The package consists of two ISA expansion cards and accompanying
software designed for an IBM PC DOS platform. With these two cards, a connection
between a terminal equipment (TE) [30] and a network terminator (NT) [30] can be

simulated.



PR

48

One board implements the TE element of the ISDN reference configuration model
at the S reference point [30]. The second board simulates NT functions for only a single
ISDN S-bus connection. Both boards interact with the PC host system through an on-
board shared memory location. Their DOS device driver controls the interface to these
memory locations. During initialization, the boards are downloaded with 80188 binary
software that provide up to ISDN layer 3 protocol support for NT or TE functions.

The ISP188 ISDN Basic Access Product also supplies an application library for
user application software written in the C language. Some of the functions provided by
this application library include: connecting and disconnecting calls; transmitting and
receiving data; controlling handset operations; and obtaining ISDN connection status

information. From these basic library functions, we developed our own ISDN workstation

applications.

4.2 Experimental Software Setup

We implemented the ISDN Personal Workstation as a distributed computer system
that uses two operating systems. All application processing is performed in the iRMX
operating system on the System 120. ISDN processing, however, is performed in DOS
on the IBM PC. In this section we will discuss the iRMX operating system, the layered
organization of the workstation operating system, and the implementation of the major

layers.



49
4.2.1 iRMX Operating System Overview

The iRMX 11.3 286/386 Operating System that we used in our implementation
uses an 80286 or 80386 processor in protected virtual address mode. It is an object-
oriented, multitasking operating system with a pre-emptive, priority-based schedular [33].
For equal-priority tasks, it uses round-robin scheduling with time quotas. Intel designates
iRMX as a real-time operating system because it supports hardware interrupts which can
preempt the kernel within a maximum interrupt latency. In section 2.2 of this thesis, we
defined this class of service as hard real-time. The value of the maximum interrupt
latency was measured to be approximately 76.9 ps. Appendix 1 lists our test measure-
ments.

The iRMX operating system consists of seven layers, each of which provides
features that can be used in an application [33]. When establishing a system configuration,
all layers are optional except for the nucleus layer. The caveat is that some of the
remaining six layers require services from the other layers of the operating system. This
sometimes necessitates the inclusion of additional layers in the complete system. We list
these dependencies as well as the memory requirements of each layer in Table 1.

We will next briefly describe each system layer. The complete description of
iRMX can be found in references [34,35].

(i) Nucleus

The nucleus layer is the core of the operating system and is responsible for task

management. Some of the features provided by the nucleus include: multitasking; pre-

emptive priority scheduling: round-robin time quota scheduling; memory management;

i naia ]

PR TS ST

<

- e AT

s S

%u} .



50

as well as intertask communication and synchronization using mailboxes and semaphores.

Building on these features, the rest of tre operating system is established.

Table 1. iRMX Operating System Layer Characteristics {36].

System Layer

(ii) Basic /O System (BIOS)

Code Size

Layers (KB) (KB)
1. Nucleus none 34 2
2. BIOS 1 97 0.108
3. EIOS 1,2 19 0.016
4. UDI 1,2,3,5,7 9 0.032
5. Application Loader 1,23 10 0.1
6. System Debugger 1 35 1
7. Human Interface 1,2,3,5 84 0.224

The BIOS layer contains device drivers for reading from and writing to periphe-

rals, as well as the ability to buffer I/O. The BIOS also contains commands for using the

iRMX file system and provides access to peripherals through a standard device driver

interface.




51
(iii) Extended /O System (EIOS)

The EIOS layer provides services similar to the BIOS, with simplified calls that
give less explicit control of device behaviour and performance. The EIOS also permits
multiple access to a shared device through a logical name. This supports sharing of
devices in a multitasking environment.

(iv) Universal Development Interface (UDI)

The UDI layer provides a standard set of system calls which allow applications
to run on any operating system supporting the UDI standard. For example, many of the
C-286 libraries depend on the UDI layer.

(v) Application Loader

The application loader can load object files into memory from secondary storage
under the control of the operating system. It can load non-relocatable code into fixed
locations, relocatable code into dynamically allocated memory locations, and load files
containing overlays.

(vi) System Debugger

The system debugger is used to debug applications and give a view into the
system itself.

(vii) Human Interface (HI)

The HI layer allows multiple users to develop applications, maintain files, run
programs, and communicate with the operating system. It consists of a set of system calls,
a set of commands, and a command line interpreter. Commands are available for file

management, device management, and system status.



4.2.2 Tailoring iRMX

The iRMX operating system can be tailored to meet specific memory and
performance requirements. We tested the idea of reducing the size of the operating system
by removing non-essential layers. We also tested the idea of making an application
program part of the operating system so that it is loaded during boot-up.

To customize the operating system, we used the iRMX Interactive Configuration
Utility (ICU) [37]. With this utility, we modified the default definition file. This file
contains the following information: initialization parameters; selected operating system
layers; selected device drivers; and, the name of our application job. The software for the
target system is stored in the load file so that the bootstrap loader can use it during
system initialization.

The function of the bootstrap loader is to load a target system into RAM from
secondary storage so that it can begin executing. The iRMX operating system divides the
bootstrap loading process into three stages.

The first stage resides in ROM and determines the bootstrap device and the name
of the file to load. It contains a set of minimal device drivers used by the first and second
stages so that the bootstrap device containing the system can be read. The last function
performed by the first stage is to load part of the second stage and transfer control to it.

The second stage is non-configurable, application-independent software. Once it
loads itself into RAM, it then loads the third stage and relinquishes control to it.

The third stage loads the application job and then switches the CPU into protected

virtual address mode. After this, the application is started.



53

In Appendix 2, we provide the program listing of our test application job. The test
application is classified as an //O First Level Job because it is loaded during initialization
and has access to system calls above the BIOS layer. The starting address of the
application is specified under the task entry point parameter of the ICU. This information
is used by the nucleus 10 obtain the selector and offset of the initial task, as well as its
data selector, and the starting address of an optional custom exception handler.

Through this experiment, we demonstrated how to customize the operating system.
Our tailored operating system consisted of the nucleus, BIOS, EIOS, and debugger layer,
as well as the application job. The achieved reduction in size was from 330 KB (when
all layers were included) to 220 KB. The remainder of our implementation work used the
full iRMX operating system because it facilitated development. However, any final

application system could clearly be made into a customized operating system.

4.2.3 Software Organization

The layer organization of the experimental workstation’s operating system is
shown in Figure 12. This drawing illustrates the integration of the iRMX operating system
with the theoretical event-driven architecture presented in Chapter 3'. The shaded regions
represent iRMX operating system layers. We used iRMX to implement most of the lower

layers of the theoretical architecture and custom implemented the top three layers.

' Note that only the most important layei+ .re shown and that we excluded the Application
Loader, HI, UDI, and System Debugger layer from the diagram.



54

\%/ g

E]. glgmants of tHMX Q8

HARTS8 * HINTS + POLC ¢ ISON
+ E108 « 8108

Figure 12 Experimental Workstation’s Operating System Layered Organization.
The theoretical HARTS layer comprises the two iRMX 1/O layers and two custom
modules. The first module is called Hardware Interrupt Support (HINTS). The HINTS
software is used to support the hardware interrupt generator that we built to simulate OS
events. The schematic diagrams for this hardware is provided in Appendix 3. A detailed
description of the second module (PDLC/ISDN) will be made in sections 4.4 and 4.5.
Before discussing the top three layers that we implemented, let us examine their

syne ronization diagram shown in Figure 13. In this diagram, all the tasks which make
up our implementation of the experimental operating system architecture are shown along
with the message passing system. All mailboxes, semaphores and task switching facilities

are provided by iRMX.



55

OS Events System 120
— “lIAsrdware — — — — — — — —
interrupts _-'
HINTS | e HALOS | IBM PC #2
ISDN
| HALOS External Requests MB8X [N/ = l NT
ES New [N/ ISDN Application
Goals MBX KAcos! Action RARequests MBX |
& Enquiry MBX
A\ cOs! Screen P s S-bus
Control SEM. |\SON l PC #1
= R, |
espons
cos! POLC T | m | %%Lg TE
ransmit -
[- B2Rrequest MBX ' Ser
L 4
CosSINA  cosi (A ommem '
Response to Application PDLC
Enquiry MBX Results MBX PDLC

bus ~ |

Figure 13 Synchronization Diagram of the Operating System.

In the synchronization diagram, he software is organized into six functional
blocks: HINTS, HALOS, ES, COSI, ISDN, and PDLC. These blocks implement the
major concepts developed in Chapter 3. However, all the features that were defined are
not implemented in this scaled-down experimental setup. The pseudo-code for the
experimental implementation of the COSI, ES and HALOS blocks of the operating system
will be discussed next.

COSI provides the knowledge-based system with intelligent workstation interface
primitives. The ES obtains ISDN services by sending a token specifying the desired
service to COSI. COSI processes the request by sending other token(s) to the ISDN

software. The pseudo-code for COSI is shown below:



Loop forever

56

1. Wait at the WCOSISCOMMANDSDMB mailbox for a token specifying
the desired service.

2. Based on the value of the token (desired service), branch to the correspon-
ding routine.

3. Perform the requested service. Send a semaphore unit to WCOSISREADY-
$1US when control of the screen can be returned to the ES.

3.a.

3.b.

End loop.

If the requested service is an ENQUIRY then place the reply in
WCOSISRESPONSESDMB mailbox.

If the requested service is an ISDN ACTION then send appropriate
command(s) to the ISDN software through the WISDN$COM-
MANDSDMB mailbox. If necessary, wait for a reply to the
command at the WISDN$STATUS$SDMB mailbox.

The pseudo-code for the ES running in autonomous mode is given below. The

pseudo-code d:scribes the operating system’s point of view of the ES task. For a detailed

explanation of the symbolic processing the ES performs, we refer you to reference [ 16].

1. Wait at the WESSCOMMANDSDMB mailbox for a goal identifier.

2. Repeat until the problem identified by the goal is solved.

Do one of the following:

2.a.

2.b.

2.c.

Process rules.

Request information from the operating system by sending an
ENQUIRY token to COSI in the WCOSI$COMMAND$DMB
mailbox. Wait for a response to the ENQUIRY at the WCOSI-
SRESPONSE$DMB mailbox.

Request ISDN oriented service from the operating system by
sending an ACTION token to COSI in the WCOSISCOMMAND-
$DMB mailbox. Wait for a semaphore unit at the WCOSI-
$READY$1US semaphore to regain control of the screen.



57

HALOS provides application scheduling for the workstation operating system. In
autonomous mode, OS events are identified and then corresponding knowledge-based

system applications are started. The pseudo-code for HALOS is shown below:

Loop forever

1. Wait at the WHALOS$COMMANDSDMB mailbox for an application
request.

2, Based on the application request, start the appropriate knowledge-based
system application by sending the GOAL identifier to the WES$SCOM-
MANDS$DMB mailbox in the ES task.

End loop.

The remainder of this chapter will discuss the implementation of the PDLC
functional block and explain how it was used by the ISDN block. Before we can do this,
we must begin with an examination of how the iRMX and DOS interrupt systems work

since the manner in which these operating systems handle interrupts greatly influences our

implementation.

4.3 Interrupt Systems

Fundamental to efficient processor utilization in a computer system is interrupt
processing. An interrupt signal is the mechanism by which an external device can notify
the operating system about an event [34]. Unlike in a polling system, to the host computer
an interrupt system is completely asynchronous. Interrupts occur only when a peripheral
has something to communicate with the host. As a result, computing resources ar: not

wasted on performing synchronous checks. Instead, on demand attention can be oitained



58

from the host processor by generating an interrupt request.

A well supported interrupt system provides applications with a great deal of
flexibility to control multiple external activities. In the case of device drivers, all higher
level applications can perform computations involving external devices without stopping
periodically to poll them. This flexibility facilitates development of large, complicated
applications.

Next, we will examine the interrupt systems of the System 120 computer running

iRMX and then, the IBM PC running DOS.

4.3.1 iRMX Interrupt System

The iRMX interrupt system consists of both hardware and software components.
The hard ware components comprises two 8259A Programmable Interrupt Controller (PIC)
[38] and an 80386 microprocessor. The software components are the operating system and
the user’s interrupt programs. We will explain the iRMX interrupt system by following
the sequence of events involved when a hardware interrupt occurs'. The entire interrupt
system is illustrated in Figure 14.

(1) When an external device, such as the hardware component of the PDLC
receiver, requires processing attention from the CPU, it raises the voltage level on its
physically assigned interrupt request line of the PIC. Each PIC has eight prioritized inputs

(levels) which are expanded through cascading. The PDLC’s request is laiched in the

' In addition to the hardware interrupts, there are also software interrupts and trap interrupts,
which will not be covered in this discussion. We will use the terms hardware interrupt and
interrupr interchangeably to refer to external hardware interrupts.



59

Interrupt Interrupt
IRQO 8259A 80386 IDT Handler Task
(2) (5) 8ol jotts (6) (7)
— INT INTR —l m‘:fr'rtum
— 1 INTA (3 INTA J—- M Signal
e (4) A3A1O Inge”up[
@‘DO..DT D0..D7 5L E.‘g'} =
Master IDTR
() pc  CFY |
Application
Task
PDLC
Receiver

Figure 14 The iRMX Interrupt System for a System 120 Computer.

PIC’s interrupt request register (IRR) then fed through priority-resolving logic into the in-
service register (ISR). The IRR stores all the interrupt levels that are requesting service
(pending) while the ISR stores the interrupt level which is presently being serviced.

(2) The PIC next sends the interrupt request to the CPU using the INT output pin.

(3) The CPU then acknowledges the interrupt request by sending two acknowledge
pulses to the PIC using its INTA output pin. The first pulse latches the IRR and causes
one of its levels to be strobed into the ISR. The second pulse requests an 8-bit pointer
value called an interrupt vector.

(4) Upon receiving the CPU’s second acknowledgement pulse, the PIC sends the
interrupt vector to the CPU. The interrupt vector is the interrupt number identifying which

device requested service.



60

(5) The CPU then accesses a section of memory, known as the Interrupt Descriptor
Table (IDT). It uses the interrupt vector to calculate the index (address offset) into the
table. On the System 120, the IDT is stored in base RAM and contains pointers to
routines called Interrupt Handlers. Pointers are entered into the IDT either when
configuring the operating system device drivers or dynamically by executing the
Set$Interrupt [35] system command.

(6) After the interrupt handler’s pointer (selector and offset) has been obtained
from the IDT, the CPU begins executing it. The CPU first pushes the instruction pointer
(IP), code segment (CS) and flag register onto the stack before starting the interrupt
handler routine. While the interrupt handler is running, the 80386 automatically disables
all other hardware interrupts. For this reason, the interrupt handler should not exccute for
longer than 54.93 ms [39] otherwise the time interval of the system timer interrupt will
be exceeded.

The interrupt handler is limited to the types of iRMX system calls it can issue.
Only five interrupt-related system calls are permitted. Therefore, if either the processing
time of the interrupt request is not small or if non-interrupt related iIRMX system calls are
required, then the interrupt handler must invoke another routine called an Interrupt Task
with the Signal$interrupt system call.

(7) The interrupt task waits on its interrupt semaphore queue until it is signalled
by its corresponding interrupt handier. The Signal$Interrupt [35] call re-enables higher
priority interrupts. Its own interrupt is also enabled as long as the number of interrupt

requests has not reached its queue size limit. Since higher priority interrupts are enabled,

3



61

an interrupt task can be made to run as long as needed, but keeping in mind that lower
priority interrupts are still disabled. The interrupt task is also free to use any iRMX
system call that it needs. The interrupt task’s processing is complete when it again returns
to wait on its interrupt semaphore queue.

(8) When the interrupt task blocks on this interrupt semaphore queue, control
returns to a ready application with the highest priority. In our example, this application
is the interrupt handler which completes its final processing by issuing an Exit$Interrupt
and an interrupt return (IRET) command.

When the operating system receives the Exit$Interrupt [35] command, one of two
actions takes place. if the operating system needs to re-enable the interrupt level at this
time, it sends a non-specific end of interrupt instruction to the PIC. This informs the PIC
that processing for the last interrupt is complete. The other possible action occurs if the
operating system needs to re-enable lower priority interrupts. RMX would then send a
command to the PIC to unmask all of the interrupt levels.

(9) The last instruction executed by an interrupt handler is the IRET command.
When the IRET command is issued, the pre-empted application’s IP, CS and flag register
are removed from the stack. By restoring the old flag register, all interrupt requests from
the PIC to the CPU are unmasked because this necessarily is the state prior to starting the

interrupt handler.

et gan o e LI LA

2 gyt



4.3.2 DOS Interrupt System

The DOS interrupt system also consists of both hardware and software compo-
nents. The hardware components are the 8259A PIC' and the 80x86 microprocessor. The
software components are the operating system and the user’s interrupt program. We will
explain the DOS interrupt system by following the sequence of events involved when a
hardware interrupt [31] occurs. The difference between the two operating systems stems
from the fact that DOS operates its processor in real address mode while iRMX operates
80286 and 80386 processors in protected virtual address mode. The entire interrupt system
is illustrated in Figure 15.

Steps (1) through (4) are identical to the ones discussed in the iRMX Interrupt
System section.

(5) The CPU uses the interrupt vector as an index into a table in low memory.
This table contains IPs and offset values of Interrup. Service routines. The particular
pointer associated with the current interrupt being serviced is obtained from the table.
New pointers are entered into this table using DOS interrupt 21h function 25h (Set
Interrupt Vector) {40].

(6) Next, the CPU pushes the IP, CS and flag register onto the stack then begins
executing the interrupt service routine. When this routine starts running, all interrupts in
ihe system are disabled. Control over enabling and disabling interrupts is available

through two microprocessor instructions. All interrupts are enabled using the STI

' In an IBM XT type of computer, only one PIC is present. However, in an IBM AT class
of computer, there are two PICs present.



63

Low  Interrupt
Memory Service

IRQO 8258A 8088 Table  Routine
0000
m‘ (2) ip lotis (6)
INT INTR
= L
——1 INTA INTA (5) :
1 (4) A2.A9Q
—00..D7 ——+D0..D7 EOI
IRQ7] oFF RET
Master  cpy
(1 PIC (7)
Restore Application
from Stack
PDLC
Receiver

Figure 15 The DOS Interrupt System for an IBM XT Computer.

instruction and disabled using the CLI instruction. It is important to minimize the duration
that all interrupts are disabled otherwise certain vital system interrupts will be missed.
Before completing its processing, the interrupt service routine sends an end of interrupt
instruction to the PIC then does an IRET command.

(7) The IRET command restores the pre-empted application’s IP, CS and flag
register from the stack. The previously pre-empted application then continues executing
once again.

From an application point of view, the main difference between the iRMX and
DOS operating systems is the degree of support provided for interrupt processing. In
DOS, almost every step is performed without informing the operating system. In iRMX

however, the operating system provides much support to facilitate interrupt processing.



]

Our implementation uses both interrupt systems.

4.4 Parallel Data Link Control (PDLC) Overview

The Parallel Data Link Control (PDLC) is our custom, bi-directional, high-speed,
parallel data bus hardware and software product. It is used to provide a layer 2 (data link
layer) communication link between the System 120 and the IBM PC ISDN server.

The hardware component of our point-to-point custom digital communication
system provides layer 1 (physical layer) services. Error-free data communication as well
as byte-by-byte acknowledgement assures that data is never corrupted or overwritten.
Consequently, PDLC layer 2 software can expect the layer 1 hardware to provide it not
only error-free communication, but also guarantee that data will never be lost or out of
order.

The type of data link layer services provided by the PDLC can be classified as
unacknowledged connectionless service [17]. This class of service, commonly used in
LAN:Ss, is appropriate when the error rate is very low and high-speed communication is
required [17].

Our layer 2 protocol uses the byte count method [33] to demarcate each frame. We
define two types of possible frames: header frames and buffer frames. Header frames
range from one to three bytes long and are the default traffic on the bus unless otherwise
specified. Header frames carry commands, status information, and parameters such as the
size of buffer frames. A buffer frame must follow an appropriate header frame but is not

part of the same frame structure. The byte count method is very simple and requires a



65

minimal amount of overhead. It is adequate for our needs and reliable because of the
underlying capabilities in our layer 1 hardware.

Flow control is achieved on the PDLC through a combined hardware and software
technique that relies on a backpressure [33] effect to throttle the flow of data. The
hardware buffer, which is directly connected to the parallel data bus, can hold only one
byte at a time. The hardware buffer will not issue a clear to send handshaking signal to
the transmitting source until its new byte gets removed. Since the transmitter must wait
for this signal before strobing the next byte of data, an overrun error will never occur in
the hardware. Because the data link layer controls the rate data is removed from the
buffer, flow control is attained by applying backpressure on the transmitter via the
hardware. As a result, PDLC completely controls the rate of data flow.

In addition to layer 2 services, PDLC also provides a frame routing service for
incoming messages. This routing service is necessary because multiple logical access to
the PDLC is possible. We have defined the following three command/address tokens:

1) non-file ISDN function status

2) ISDN file transfer reception

3) externally initiated ISDN functions.

Using these tokens, PDLC software notifies the appropriate task by mailing the
header frame to it. As a result of this routing service, more than one logical PDLC user
is possible. This idea is similar to the multiple logical connection services defined for the
OSI Transport layer [17]. An abstract view of the PDLC layer that illustrates its

separation into router software, data link software, and physical layer hardware; is shown



e et AN B oy T e S Aw

in Figure 16.

66

System 120

ISON
Flle Service Router

Layer 2

Layer 1

ISDN PDLC
Non-lile Software
Services

|

PDLC
Software

POLC
Hardware

iIBM PC

ISDN
Server

HALOS
External
Requests

Figure 16 Abstract View of PDLC.

4.4.1 PDLC Hardware Description

The physical layer support for our PDLC software is provided by our PDLC

hardware board which is designed for an industry standard XT/AT bus. It is mapped into

1/O locations 03A0 to 03AFh. The design is based on the capabilities of a chip called the

8255A Programmable Peripheral Interface (PPI) [34].

We programmed the PPI to operate in mode 1 (strobed input/output). In this mode,

fully interlocked handshaking signals are provided for each 8-bit input and output port.

The handshaking signals support byte-by-byte acknowledgements which ensure that data

is never overwritten. Balance resistors are used to terminate every bus line to improve its

transition time. The complete PDLC hardware schematics showing how these handshaking

signals are connected are located in Appendix 3.



67

The bus connection interface was designed so that the PDLC boards in the System
120 and the IBM PC ISDN server would be identical. On the System 120, the receiver
and transmitter ports are interfaced to the main processor using hardware interrupt lines.
On the IBM PC, the receiver is interrupt driven while the transmitting software uses a
polling technique. The complete PDLC hardware system provides high-speed, error-free,

digital communication between the two computers.

4.4.2 PDLC Software Description

The PDLC software is interrupt driven in order to give maximum utilization and
flexibility to the system. Central to the design are the data structures used for the
transmitter and the receiver. The PDLC software elements are shown in Figure 17.

Common to both the transmitter and receiver are the ring buffers which store data.
Each ring buffer has two index pointers, one for entering data into the buffer and one for
removing data from the buffer. By having two independent pointers, the ring buffer can
be simultaneously accessed (i.e. data added and removed). The ring buffers are imple-
mented as linear arrays with wrap around indices.

Associated with each ring buffer is an End of Buffer (EOB) index pointer. The
EOB index is used by the transmitter/receiver interrupt handler to determine when all the
necessary data has been sent/received. With it, the interrupt handlers can quickly check
the circular buffer without worrying about counters and pointer wrap-around. This
technique of using an EOB index simplifies and minimizes the processing performed in

each interrupt handler.



68
HALOS CMD MBX | STROBE
m ACK]|
| =
ISDN CMD MBX ' :}8 bits
@ I EOB index B8US
ISDN Receive Intr. Sem. Raceive | Ras
Interrupt Task Interrupt
— — — — — . _Hendler
ISON RESP MBX | |
Data IN Data OUT ACKO
| |
ITransminer MBX l READY
I @ ® 8 bits C
| EOB index l BUS
Transmit |ntr. Sem, Jransmit  =—pA7s=
I interrupt l
Interrupt Task Handler

Figure 17 Software View of PDLC.

In addition to the ring buffer, the PDLC receiver also has a three byte array called
a header. This data structure must be used to receive new commands rather than the ring
buffer itself because we wanted the ability to receive new commands without waiting for
the previous data to be processed and cleared by a high-level task. Also, since the
command information needs to be mailed among tasks, this data structure minimizes
unnecessary data movement.

To know when to use the header array rather than the ring buffer, the interrupt
handler uses a global variable indicating the receiver mode. We have defined three modes

that the receiver can be in: STATSREQ, BUF$REQ, and EXT$REQ. The first byte of



69

every header frame defines the next mode of the receiver and is storzd in the global
varinble. This variable defines a command/address value that is used to route received
frames.

After an ISDN command has been sent, the receiver will be in STAT$REQ mode.
In this mode, the receiver may receive a frame which wiil change its mode to BUF$REQ
or EXT$REQ. If however, it is a standard reply (STAT$REQ), the mode will not change.
In STATSREQ mode, status values from previous commands are received in header
frames and are then mailed to the ISDN task.

During a file transfer, the receiver is in BUFSREQ mode. The header frame
contains the mode identifier and upcoming buffer size. The buffer size is used to calculate
the EOB index. The receiver interrupt handler receives data until the EOB value is
reached. Next, the receiver interrupt task mails the header information to the ISDN task.
This technique allows the ISDN task to independently remove the data from the ring
buffer while more new data arrives. In the case of a multiple buffer file transfer, this
entire sequence is repeated for each buffer.

The last type of frame is used to notify the operating system (HALOS) of
externally initiated ISDN functions. During this type of transfer, the receiver would be
in EXT$REQ mode. For example, an incoming ISDN call would send a header frame
containing the mode as well as the ISDN service required. The header frame would then
be mailed to HALOES for scheduling.

When a task wishes to transmit data using the PDL.C, it must first load all the data

into the transmitter ring buffer. Once this is done, it mails the size of the loaded data to



70

the PDLC transmitter task. Thi- task then calculates the transmitter EOB index and
enables the interrupt handler to begin sending.

Our design of the PDLC transmitter permits another task to load its data into the
ring buffer while a transmission is in progress (recall that the ring buffer has two
pointers). Thus the next data transmission will be ready to start as soon as the interrupt
handler completes the current one and receives the updated EOB value.

For a more detailed description of the software, the reader is directed to the token
definitions in Appendix 4 and the source code listing in Appendix 5. Next, we will
illustrate the activity sequence of the relevant tasks during a file reception and trans-

mission example.

4.4.3 Hlustration of PDLC Operation

In the following diagrams, we show the sequence of activity which occurs during
a file reception in Figure 18, and transmission in Figure 19.

The figures are drawn as timing diagrams where a high level represents a running
task and a low level represents a blocked task. The up arrows on the dashed line represent

data entered into a ring buffer while the down arrows represent data removed from a ring

buffer.



71

receives buller

Handler |_| |_|

recelves
3 byte Header

malls
celcuiates EOB Header
sots mode to buffer resets mode

to status

. e nmn

Task

ngh does receives
something Header
Level removes
buffer data

Task

Figure 18 File Reception using PDLC.

transmils transmits
Handler ll bulfer buller

Task

_'g_mllm = — A IHH it

High| toads | loads ( loads next

29 e somatning butfer buffer while L——

Level current one I8
being transmitted

Task

Figure 19 File Transmission using PDLC.



4.5 ISDN Implementation

The ISDN application software running on the System 120 communicates with the
DGM&S TE binary software on the IBM PC through a peer-to-peer connection using the
PDLC. This arrangement is shown in Figure 20. The System 120 and the IBM PC ISDN
Server both contain PDLC hardware and software that supports communication between
the higher layer ISDN programs.

Full control of all ISDN applications is maintained by the System 120 but actual
ISDN access take place on the IBM PC ISDN server. Using the PDLC, commands and
data are sent to the server. The server returns status values and data from the ISDN to the
System 120 in the same manner. This distributed computing is not perceived by the end

personal workstation user.

System 120 IBM PC ISDN Server IBM PC
Virtual
ISDN Connections TE?%?{:&SI‘)! S--loop DGM&S
i : = = NT Binar
-BUFREQ o
PDLC ~EXTREQ PDLC
t j (Used to test the
1SDN workstation)
Physical Link

Figure 20 ISDN Implementation using PDLC.



73
This ISDN application illustrates a possible use of our PDLC. It shows how PDLC

may be used to manage the communications required in distributed computing. Any

application with a similar digital communication need could exploit this protocol.



CHAPTER §

Conclusions

5.1 Summary

In Chapter 1, we defined the two motivating features behind the design of the
ISDN Personal Workstation. We felt users would expect these features from the
workstation:

i) the ability to exploit ISDN information services

(i) the ability to support autonomous control of the local environment in an

intelligent home of the future.

From these features, it was evident that the workstation’s operating system
architecture would have to support heuristic processing and manage centralized control.
In this chapter, we also listed our research contributions.

In Chapter 2, we examined the software architecture requirements needed to
support the autonomous control capability. The two requirements were:

(1) Workstation Interface Primitives: which are centralized, abstract, and

can control the local environment.

(ii)  Scheduling Control: which supports both hard and soft real-time applica-

tions and deals with timing exceptions.

A discussion of both hard and soft real-time systems was also presented.

Chapter 3 described the proposed operating system architecture. The architecture
not only supported standard application processing, but was also designed to be event-

driven so that the local environment could be autonomously controlled.



75

The layers of our operating system were explained by first describing how OS
events were processed. Next, we examined in detail the functions and design of each
operating system layer.

In Chapter 4, we described our experimental ISDN Personal Workstation which
demonstrated a possible implementation of the architecture proposed in Chapter 3. We
also explained the iRMX and DOS hardware interrupt systems and discussed the

implementation software. In particular, we described the design and use of our PDLC.

5.2 Conclusions

The most important conclusions that we can state, based on our research into
operating system design and real-time systems, are as follows:

(i) Autonomous control requires an event-driven operating system design.

Because of the nature of autonomous control, operations are typically asynchro-
nous. We found that an effective design for dealing with asynchronous operations was the
event-driven approach used in network management and control systems. The design of
our workstation operating system followed this approach. In our architecture, the HARTS,
Interpreter and HALOS layers perform OS event processing. These layers transform OS
events into well defined application requests that can then be scheduled by the operating
system.

(i)  Autonomous control requires workstation interface primitives that

have autonomous exception handling capabilities.



76

In order for unsupervised execution to be feasible, not only must devices detect
and report error conditions, but also there must be software that autonomously responds
to these exception conditions. We implemented this idea in the COSI layer of our
operating system. COSI provides both default and custom autonomous exception handler
capabilities. With these, the application programmer can write error-tolerant autonomous
control applications on the workstation.

Our experimental ISDN personal workstation demonstrated that the operating
system architecture that was presented in Chapter 3 is feasible in the real-world. Our work
also showed that most currently available off-the-shelf components are suitable. However,

a few problems in integrating the components must be overcome when not using a

conventional operating system.

5.3 Suggestions for Future Studies

The following list is a suggestion of implementation work that could be under-
taken:

(i) Expand the ISDN application support on the workstation. The next DGM&S
ISP188 software release will have an incoming ISDN call capability. Provisions for this
capability have already been made in our implementation of the operating system. Packet-
switched application support could also be added to the existing ISDN circuit-switched
services.

(ii) Design an interface for either the Consumer Electronics Bus Standard or the

Smart House Bus Standard so that the workstation could be integrated into an intclligent



77

home environment. These in-home communication standards have been developed so that
controllable devices can be networked and controlled by a centralized computer. In this
home environment, full use of the workstation’s autonomous control features would be
possible. The feasibility of such an interface design has already been proven by the
development of our PDLC.

(iii) Implement soft real-time scheduling and programming support in the
workstation operating system. This feature is essential for autonomous control capabilities
and will be needed in future workstation applications.

(iv) Integrate the ISDN board directly into the workstation architecture. To do
this, source code must be purchased and device drivers written for the iRMX operating

system. These device drivers would then constitute a segment of the HARTS layer.



[1]

(2]

(3]

(4]

(5]

[6]

(7]

[8]

[10]

(11]

[12]

[13]

[14]

78

REFERENCES

N. Shimasaki et al., "An Overview of ISDN - Toward Modern Communications,”
NEC Res. & Develop., Special Issue on ISDN, 1987, pp.3-18.

C.L. Wong and R. Wood, "Implementation of ISDN," Telesis, BNR, Vol.13, No.3,
1986.

S.N. Pandhi, "The Universal Data Connection," /EEE Spectrum, Vol.24, No.7, July
1987, pp.31-35.

G. Hanover, "Networking the Intelligent Home," IEEE Spectrum, Vol.26, No.10,
October 1989, pp.48-49.

J. Chatterley, B. Newman and R. Wellard, “The ISDN PC: A Flexible Voice Data
Workstation," /[EEE Globecom ' 86, 1986, pp.1504-1508.

Y. Langhame and G. Meade, "Smart Buildings: An Emerging Reality?," 1EEE
Canadian Review, No.6, Dec. 1989, pp.6-9.

CCITT, Integrated Services Digital Network (ISDN), VIlIth Plenary Assembly
CCITT Recommendations of the Series I Red Book, Vol.3, Fascicle 111.5, 1985.

W. Stallings, ISDN an introduction, Macmillan, New York, N.Y., 1989,

A.S. Tanenbaum, Computer Networks, Prentice-Hall, Englewood Cliffs, N.J.,
Second Edition, 1988.

B.W. Wah, M.B. Lowrie, and G. Li, "Computers for Symbolic Processing," Proc.
of the IEEE, Vol.77, No.4, April 1989, pp.509-539.

C.V. Ramamoorthy and B.W. Wah, "Knowledge and Data Engineering," 1EEFE
Trans. on Knowledge and Data Enginee No.1, March 1989, pp.9-15.

CCITT, ISDN User-Network Interfaces, Interface Structures and Access Capabili-
ties, CCITT 1.412 Recommendations, Vol.3, Fascicle 111.5, 1985, pp.132-138.

A.S. Tanenbaum, Operating Systems Design and Implementation, Prentice-Hall,
Englewood Cliffs, N.J., 1987.

T.E. Marques, "A Symptom-Driven Expert System for Isolating and Correcting
Network Faults," /JEEE Communications Magazine, Vol.26, No.3, March 198§,
pp.6-13.



[15]

[16]

[17]

[18]

[19]

[20]

[21]

122]

(23]

[24]

[25]

126

(271

79

M.T. Sutter and P.E. Zeldin, "Designing Expert Systems for Real-Time Diagnosis
of Self-Correcting Networks," IEEE Network, Vol.2, No.5, Sept. 1988, pp.43-51.

R.D. Rourke, Programming an ISDN Intelligent Personal Workstation: An
Architecture and Language, M.A.Sc. Thesis, Concordia University, June 1990.

D.A. Waterman, A Guide to Expert Systems, Addison-Wesley, reading, Mass.,
1986.

F. Hayes-Roth, D.A. Waterman, and D.B. Lenat, Building Expert Systems,
Addison-Wesley, Reading, Mass., 1983.

B. Gates, "The 25th Birthday of BASIC," BYTE, McGraw-Hill, New York, N.Y.,
Vol.14, No.10, October 1989, pp.269-276.

A.K. Mok, Fundamental Design Problems of Distributed Systems for the Hard-
Real-Time Environment, PhD Dissertation, Massachusetts Institute of Technology,
May 1983.

D. Vanderlin, "Toward a Real-Time Executive Standard,” UNIX World, Vol.§5,
No.4, April 1988, pp.75-81.

E.D. Jensen, C.D. Locke and H. Tokuda, "A Time-Driven Scheduling Model for
Real-Time Operating Systems," IEEE Proc. Real-Time Systems Symposium, 1985,
pp.112-122.

J.A. Stankovic, "Misconceptions About Real-Time Computing," IEEE Computer,
Val.21, No.10, October 1988, pp.10-18.

I. Lee and V. Gehlot, "Language Constructs for Distributed Real-Time Program-
ming," JEEE Proc. Real-Time Systems Symposium, 1985, pp.57-66.

D.W. Leinbaugh, "Guaranteed Response Times in a Hard-Real-Time Environ-
ment," IEEE Trans. on Software Engineering, Vol.SE-6, No.1, Jan. 1980, pp.85-
89.

C.M. Woodside and D.W. Craig, "Local Non-Preemptive Scheduling Policies for
Hard Real-Time Distributed Systems," IEEE Proc. Real-Time Systems Symposium,
1987, pp.12-24.

L. Sha, J.P. Lehoczky and R. Rajkumar, "Solutions for Some Practical Problems
in Prioritized Preemptive Scheduling,”" IEEE Proc. Real-Time Systems Symposium,
1986, pp.181-191.



[28]

[29]

(30]

[31]

[32]

[33]

[34]
[35]

[36]

(37]
[38]

[39]

[40]

[41]

[42]

[43]

80

I. Lee, R. King and R. Paul, RK: A Real-Time Kernel for a Distributed System
with Predictable Response, MS-CIS-88-78, Dept. of Computer and Information

Science, School of Engineering and Applied Science, University of Pennsylvania,
Oct. 1988.

D. Comer, Operating System Design, Prentice-Hall, Englewood Cliffs, N.J., 1984.

CCITT, ISDN User-Network Interfaces: Layer 1 Recommendations, CCITT 1.430
Recommendations, Vol.3, Fascicle 1115, 1985, pp.141-177.

L.S. Eggebrecht, Interfacing to the IBM Personal Computer, Howard W. Sams &
Co., Indianapolis, Ind., 1985.

DGM&S, ISP188/ISDN Basic Access Product Binary Manual, Mt. Laurel, N.J.,
1989.

Intel, Extended iRMX I1.3 Introduction, Installation and Operating Instructions,
Vol.1, Santa Clara, Calif., 1988.

Intel, Extended iRMX I1.3 User Guides, Santa Clara, Calif., 1988.
Intel, Extended iIRMX I1.3 System Calls, Vol.3, Santa Clara, Calif., 1988.

Intel, iRMX 11.3 Operating System Product Desription, Santa Clara, Calif., Feb.
1988.

Intel, System 120 Software User's Guide, Santa Clara, Calif., 1988.
Intel, Microprocessor and Peripheral Handbook, Santa Clara, Calif., Vol. 1, 1989.

IBM, IBM Technical Reference for Personal Computer AT, Boca Raton, Florida,
1984.

R. Duncan, Advanced MS DOS, Microsoft Press, Redmond, Wash., 1986.

W. Stallings, Data and Computer Communications, Macmillan, New York, N.Y.,
Second Edition, 1988.

Intel, Microsystem Components Handbook, Vol. 11, Santa Clara, Calif., 1984,

Intel, OEM Boards and Systems Handbook, Santa Clara, Calif., 1986.



81
APPENDIX 1

System 120 Real-Time Performance Measurements

The interrupt latency of the System 120 was experimentally measured as referred
to in section 4.2.1. To obtain these results, we used the iRMX operating system in a
configuration that included all the system layers. We measured the time interval between
the hardware interrupt generator causing a pulse signal, to the interrupt handler executing
its first instruction. These experimental values are divided into three groups according to
the type of background environment and are given in Table 1.1.

The group 1 consisted of only the interrupt handler and interrupt task running on
the operating system. The group 2 consisted of the interrupt software as well as a
background environment of ( 1, 5, 10, 20, 50, 70 ) tasks having equal priorities. Each task
continuously sent then immediately waited to receive a semaphore unit. The iRMX system
calls: SENDSUNITS and RECEIVESUNITS were used. The group 3 measurements
consisted of a background environment of 5 tasks which continuously sent then immedi-
ately received mailbox data of 128 bytes. The iRMX system calls: SEND$DATA and

RECEIVESDATA were used.



Table 1.1. System 120 Interrupt Latency Measurements.

Interrupt Latency in (js)
GROUP: 2
Test # 0 1 5 10 20 50 70
1 15.0 15.3 14.3 14.3 24 .4 19.0 27,71 71.6
2 14.3 14.3 15.0 14.3 15.0 14.3 15.01} 14.3
3 15.0 13.7 15.0 14.7 15.0 27.0 26.7) 15.6
4 14.3 14.7 21.7 16.3 24 .4 15.7 26.3144.9
5 14.7 21.7 17.7 17.0 27.0 14.7 14.3114.0
6 14.7 16.3 22.3 23.0 25.4 14.3 15.7] 66.9
7 14.3 17.3 23.0 15.0 14.3 14.3 15.71] 54.3
8 15.0 14.7 16.0 15.0 15.3 14.3 18.01]13.6
9 14.0 14.3 16.3 24.3 15.0 27.0 14.9} 16.6
10 14.3 14.3 24.3 15.7 14.3 18.4 14.3|37 0
11 15.0 16.7 23.7 17.7 14.3 15.3 14.3]58.9
12 14.3 17.7 20.3 14.0 13.7 14.3 13.7119.6
13 14.0 15.7 15.0 14.3 15.0 15.0 14.31] 32.6
14 14.3 17.7 14.0 25.0 24.0 17.0 28.4) 32.3
15 14.3 14.7 19.7 24.7 15.0 14.3 16.04 15.0
16 15.0 18.7 14.3 16.3 14.3 19.0 16.01] 75.6
17 14.3 15.0 29.0 15.0 27.0 15.0 16.3] 15.0
18 14.3 27.7 15.7 16.7 23.0 14.3 14.3 4?.9“
19 15.0 14.0 19.3 13.7 16.7 15.0 25.0 36.3”
20 14.3 14.3 14.3 26.0 14.0 17.7 16.3 1 68.9
21 15.0 15.3 14.3 13.7 13.7 14.7 13.7176.9
22 14.3 14.3 18.0 20.3 16.3 15.3 22.4114.3
23 14.0 15.3 15.0 15.7 16.73 15.0 14.3 ] 35.6
24 14.0 14.7 14.3 15.3 15.0 15.0 15.0] 56.6
25 14.0 14.3 23.0 15.OJ 16.0 14.7 15.7117.5 |
TYPICAL | 14.5 16.1 18.2 17.3 17.8  16.4 11/.4 37.9!‘
MINIMUM | 14.0 13.7 14.0 13.7 13.7 14.3 13.7 13.6"
MAXIMIM | 15.0 27.7 29.0 ‘?6.0 27.0 27.0 28.4 76.9H




83

The experimental results showed that the maximum interrupt latency is 76.9 |is.
As expected, the results showed that the smallest interrupt latency is obtained when there
are no background tasks active. The results also demonstrated that when there are
background tasks, then the number of active tasks does not influence the interrupt latency.
The interrupt latency is most affected by the particular system call that the background
tasks are performing. Hence, for the same system call, an increase in the number of
background tasks does not produce a corresponding increase in the interrupt latency. The
experimental results showed that the mailbox system calls internally disable the interrupts
for a longer duration than do the semaphore system calls.

Our experimental results agreed with the specifications provided by Intel in Table

1.2.

Table 1.2. Intei Real-Time Performance Results'.

Interrupt Latency (to handler) iRMX 286 Execution Time (us)
Minimum 15.0
Typical 19.0
“ Maximum 93.0

" The interrupt latency measurement is based upon the interrupt level zero. The back-
ground environment included two tasks performing job management primitives and an
active interrupt task at level four. The operating system was configured with only the
Nucleus layer. [43]



84
APPENDIX 2

Program listing: /O First Level Job.
The I/O First Level Job that we wrote to test the idea of tailoring the iRMX
operating system is included in this appendix. A discussion of the results is given in

section 4.2.2.



85

== S SRR EEomomo=SE R E S SN S E S S @& E ;R = & I @& OI® o R

= Project : ISDN Personal Workstation =

= Sub-Project : Sample I/0 First-Level Job =

= File : ioljob.c =

= Author : Zenon Slodki, Robert Rourke =

= Start Date : 05 Apr 1989 =

= Update : 20 Apr 1990 =
*/

/* This program uses only the Nucleus, Bios and Eios layers as well as
some PLM support routines. No C I/0 is used because the UDI layer
would then have to be included as well.

*/

#include "/lib/cc286/stdio.h"

#include "/lib/cc286/udi.h"

#include "/lib/cc286/rmx.h"

/*
* Other declaration of C functions to be used
*/

extern char *udistr();

extern unsigned strlen{);

extern alien unsigned interr():
extern alien unsigned wrterr{);

/* PLM routines */
extern alien unsigned *Hex2ascii():
extern alien unsigned *Hex2dec () ;

#define LF "\n\r¢"
#define RMXIOJOB 0

#ifdef RMXTIOJOB
alien ZENROB ()
#else
main ()
#endif
{
char MessRMX[5];
char Mess[25];
char MRMX[5];
char *Msg0 = "A log cf your input is being kept on file.
\n\r";
char *Msgl = "ZenRob Operating System
\n\n\r";
char *Msg2 = "C:\\ZenRob>";
char *Msg3 = "Bad command or file name: ";
char *Msg5 = "\n\rYEAR:";
cher *Msg6 = "\n\rHOUR :MINUTE:SECOND:;";

byte inarray(80];
token coScomm, coSconn, ci$conn, hd$conn;
word BYTEW, byte$r, k, status;

/*
* A structure to recieve the time from the BIOS system

*/

struct Date_struct

{
char seconds;
char minutes;

char hours;



86
char days;
char months;
unsigned years;
Vi
struct Date_struct date;

byte datestr(18];
byte msg[l5];

#define cr 13
#define 1£f 10

msg[5) = cr;
msg{6] = 1f;
msg[7] = 1f;
datestr([15] = cr;
datestr[16] = 1f;
datestr(17] = 1f;

/* associate physical device name to logicil connection name */
/* physical device is the default console: terminal & keyboard */
rqSlogical$attach$device (udistr (MessRMX, " :CO:"),udistr (MRMX, "CON"), 1,
&status);
if (status != 0 )
interr( status );

/* obtain connection token associated with logical connection */
co$conn = rg$sSattach$file(udistr (MessRMX,":C0:"), &status);
if (status !'= 0 )

interr ( status );

/* open connection for both input and output, no buffers */
rqSsSopen({coSconn, 3, 0, &status);
if (status !'= 0 )

interr{( status ):;

/* associate physical device name to logical connection name */
/* physical device is the serial port 1: terminal consocl */
rqSlogical$attach$device (udistr (MessRMX, " :7C:") ,udistr (MRMX, "COM1"), 1,
&status);
if (status != 0 )
interr( status );

/* obtain connection token associated with logical connection */
coScomm = rg$sSatrach$file(udistr (MessRMX,":CC:"), &status);
if (status != 0 )

interr( status );

/* open connection for output, no buffers */
rq$SsSopen{coScomm, 2, 0, &status);
if (status != 0 )

interr ( status );

ciSconn = coS$conn;

/* obtain connection token associated with logical connection */
hdSconn = rqg$s$attach$file(udistr (Mess,":SD:user/zen/hdcopy”), &status);
if (status != 0)

wrterr{ status );

/* open connection for output, 4 buffers */
rg$sSopen(hdSconn, 2, 4, &status):;
if (status != 0 )

wrterr( status );

(=P R

[ N



87

/* display message on console */
BYTEW = rg$s$write$move (co$conn,Msgl,strlen(Msgl),sstatus);
if (status != 0 )

wrterr( status );

/* wiite message to file on the hard disk */
BYTEW = rqg$sSwriteSmove (hd$conn,Msgl,strlen(Msg0),&status);
if (status != 0 )

wrterr( status );

inarray[0]1=0;
while (inarray([0] != 'E’) {

/* display prompt on console */
BYTEW = rg$s$writeSmove (co$conn,Msg2,strlen (Msg2),&status);
if (status != 0 )

wrterr( status );

/* read user’s console input */
byte$r = rg$sS$read$move(ci$conn, inarray, 80, &status):;
if (status != 0 )

wrterr( status );

/* write user’s console input to a logging file "hdcopy" */
BYTEW = rg$s$writeSmove (hdSconn, inarray , byte$r, &status);
if (status != 0 )

wrterr( status ):;
BYTEW = rg$sS$writeSmove hd$conn, LF,2,&status);
if (status !'= 0 )

wrterr( status ):

/* write user’s console input to the console output device */
BYTEW = rqg$sS$write$move (coSconn,Msg3,strlen(Msg3),&status);
if (status != 0 )

wrterr{ status );
BYTEW = rg$sSwrite$move(co3conn, inarray, byte$r, &status);
if (status !'= 0 )

wrterx( status );
BYTEW = rqg$sSwriteS$move(coS$conn,LF,2,&status);
if (status != 0 )

wrterr( status );

/* get the time from the 0S */
rgSgetS$globalsStime (&date, &status);
if (status != 0 )
wrterx( status );
/* write the system date/time to a serial connected debugging terminal */
BYTEW = rg$sS$writeSmeve (coScomm,MsgS, strlen(Msgb),&status);
if (status != 0 )
wrterr ( status );
BYTEW = rgSsSwriteSmove (coScomm, Hex2dec((int)date.years,msqg),8, &3tatus);
if (status != 0 )
wrterr( status );
BYTEW = rg$sSwriteSmove (co$comm, Hex2ascii((int)date.years,msg),8,
&status);
if (status !'= 0 )
wrterr( status );

Hex2dec ((int) date.hours,datestr);

Hex2dec ((int)date.minutes, & (datestr[5]));
Hex2dec ((int) date.seconds, & (datestr([10]));
datestr[0] = ’>';



88

datestr(5] ~ *:’;

datestr(10) = 7 :7;

BYTEW = rgSsSwriteSmove(coScomm,Msgé,strlen (Msgb), &status);

if (status != 0 )
wrterr{ status );

BYTEW = rqS$sSwriteSmove(co$comm, datestr,18, &status);

if (status != 0 ) ‘
wrterr( status ); i

i
3
i
4
3

k = 0;

while (k < 25) {

BYTEW = rg$sswriteSmove(co$conn, Hex2dec(k,msg),8, &status);
k = k+1;

}

} /*end while */

/* close connection for writting */
rg$s$close(hdSconn, &status):
if (status != 0 )

wrterr( status );

/* open connection for input, 4 buffers */
rg$sSopen {hd$conn, 1, 4, &status);
if (status !'= 0 )

wrterr( status );

byteSr = 80;
while (byte$r == 80) ({
/* read message from file on the hard disk */
byteSr = rg$sSread$move (hdSconn, inarray, 80, &status);
if (status != 0 )
wrterr( status ):
BYTEW = rg$s$writeSmove(coS$conn, inarray, byteSr, &status);
if (status != 0 )
wrterr( status );
} /*end while */

/* close connection */
rq$sSclose (hd$conn, &status);
if (status != 0 )

wrterr( status );

rg$logicalSdetachS$Sdevice (udistr (MessRMX,":CO:"), &status);
if (status != 0 )
interr( status );

rq$logicalSdetachSdevice (udistr (MessRMX,":CC:"), &status);
if (status != 0 )
interr( status );

rgSexit$ioS$job( 0,NULL, &status);
if (status != 0 )
interr( status );

} /*end file*/



89
APPENDIX 3

Schematic Diagrams: The PDLC and Interrupt Generator.

The schematic diagrams for the PDLC hardware and the interrupt generator (also
called ISDN Mouse or HINTS), are included in this appendix. Functional description of
these devices are provided in Chapter 4. The PDLC board used in the System 120 differs
from the one in the IBM PC because it contains ISDN Mouse support. The ISDN Mouse
consists of two switches that are connected to two workstation interrupt request lines. The
control circuitry on the board permits either interrupt to be disabled through software. We
built the ISDN Mouse to simulate externally connected hardware devices generating OS

events.



Y
v
-
ii_-
H . J
- -
s -4
s <
:
sl -
- L .
- .
3 -
H v
- ol
- -
. = -
- o -
- & o -
” om .
a = .
- -
> o~ - -
- -
H
» .o Y
: e
223 3 |3
o = o o
H s 1]
.- ¢ |4
" o -k, -
® o4 of: |4
- o |3
H
]
[ -
- *d
x
-
.
-
:
-
-
by
. ©
H
s ©
:
H
s °
.
HE :
H
I o :
= - :
H
: v
-
¢ -
.
:
.
-
:
-

90



91

T T L] { ] 1 L) J | 3 . 1 T

Ll el I

L ARALL | L § L | Yy SE9y§
8a 3000 ;803 duvr @ (XX NF ] 1deg

AiisgBaInn ¥V 1Q30000D

17718
-aa |

RI-RRREK |

b T -

e in ¥ iu

AVYHHY HOL1lIMS 3 1O0ON3H

(GeQIARE 6! NO WM ) B1QYD aNi 10X
GNY ‘801030200 INi O rR2G e IR
8L t€u0dei1gE0C 1800 §NGIEO e ini ‘'Iidw

1R3-1 B

W0 123u%03 1nOwd

L EA AL ) 334

MmUT 141
Lagl L]

LR 5 1811 RE

$3

==
-”M” |
[
dinge sn
.
EX-TY

=
o
-
]
-
-
-
-
-
L
-
|
ﬂ




%

- AA >
-

¢

N

bELEERR
85858

M 0 o W o o ~] &Y
o of =i nd o of =

s UL

‘I J:T:THH:THJ

noertng

NIVERSIYY
8 cComp fag!
i, 2iadst
T 1
Ser

Fei de able 1stertaes
AT IIEETY) Hew
A datverva Cenndeieo XYY X ek
i 1

CONCORD:IA v

Bept
Diims

YOG +82




93

1 1 Y I T 1 Y = Y I X ) 1 T » o X
v LA, Sl At ML S AL LA L S
r't) te 2100 148 .
7180 588,100 02000 b abene 8,0
LELEY
ereYer—T—Y
Sey N02,8ep 003 3 0@ _
440000400 VIREDIREY _
+ - _
M 3} ™ [ITR 1T I
(13 L . tar
cod _ e
1 e (o) ves jij
i iX]
" 28 prover——vr <
e
137
e _
vee Y LT T
r0d 1124 ] _
. esd v
sma '
(2]
(11 HFE —
ve .
1) ove . m
“ ¥{ e -
“ HH H |
- we b AT}
H - ve It
‘s wa [ _
* Vesss _
4%
—Il' ' —
i
LIRS B A4
3 _
L <L TV —yy] @8 ¢
4 —
ie »0s
EH = = I
e
. Tﬂ.u R ~
td
n I
"
-
{ Ham |
1
3
(L : _
hd ]ﬂiﬁji _
I - 1
o
00 03101 1
O OV-0We 1+ ssaveiqenris g 24 84 ceR POV
T T ¥ I () T . T I} T — 1 T T —




94
APPENDIX 4

COSI token definitions
The COSI tokens that are used in our experimental implementation are listed in
this appendix. These are the tokens through which the expert system accesses operating

system services.

COSI TOKEN Description:

Classification: ES Tokens

Category: Gencral

TOKEN 78
Function: Reply with a floating point value to an expert system enquiry.

Classification: ISDN Tokens

Category: General

TOKEN 1106
Function: Obtain and display ISDN connection status information.

TOKEN 1107

Function: Determine whether an autonomous voice call can be made by returning the
ISDN connection status information for the voice channel. CRN = 0
signifies a free channel.

TOKEN 1108

Function: Determine whether an autonomous data call can be made by returning the
ISDN connection status information for the data channel. CRN = 0
signifies a free channel.



95

TOKEN 1109
Function: Determine whether an autonomous file transfer call can be made by

returning the ISDN connection status information for the file transfer
channel. CRN = 0 signifies a free channel.

Category: Voice Call

TOKEN 1211
Function: Make an ISDN Voice Call.

TOKEN 1212
Function: Accept an incoming ISDN Voice Call.

TOKEN 1213
Function: Disconnect an ISDN Voice Call.

TOKEN 1214
Function: Reject an ISDN Voice Call.

TOKEN 1218
Tunction: Make an ISDN Voice Call and give full handset control to the user as well

as the ability to disconnect the call and obtain ISDN connection status
information.

TOKEN 1251
Function: Toggle handset microphone (ON/OFF).

TOKEN 1252
Function: Toggle handset earpiece (ON/OFF).

TOKEN 1253
Function: Increase handset earpiece volume.

TOKEN 1254
Function: Decrease handset earpiece volume.

Category: Data Call

TOKEN 1321
Function: Make an ISDN Data Call.



TOKEN 1322
Function: Accept an incoming ISDN Data Call.

TOKEN 1323

Function: Disconnect an ISDN Data Call.

TOKEN 1324

Function: Reject an ISDN Data Call.

TOKEN 1325

Function: Ask the user for a data string then transmit it.

TOKEN 1326

Function: Receive a data string and display it for the user.

TOKEN 1327

Functicn: Make an ISDN Data Call and ask the user for a data string then transmit

it.

Category: Keyboard Conversation Call
(not implemented)

TOKEN 1431
Function: Make an ISDN Keyboard Conversation Call.

TOKEN 1432
Function: Accepi an incoming ISDN Keyboard Conversation Call.

TOKEN 1433

Function: Disconnect an ISDN Keyboard Conversation Call.
TOKEN 1434
Function: Reject an ISDN Keyboard Conversation Call.

TOKEN 1435
Function: Enter the Keyboard Conversation mode.

TOKEN 1436
Function: Enter the Keyboard Conversation mode.



97
Category: File Call

TOKEN 1541

Function: Make an ISDN File Call.

TOKEN 1542

Function: Accept an incoming ISDN File Call,

TOKEN 1543

Function: Disconnect an ISDN File Call.

TOKEN 1544

Function: Reject an ISDN File Call.

TOKEN 1545

Function: Ask the user for a file name then transmit the file.
TOKEN 1546

Function: Ask the user for a file name then receive the file.
TOKEN 1547

Function; Make an ISDN File Call then transmit a default help file.
TOKEN 1548

Function: Make an ISDN File Call then transmit a default file used for person

identification expert system.



98
APPENDIX §

Program Listing: An Experimental ISDN Personal Workstation
The source code listing of the programs in our Experimental ISDN Personal
Workstation are included in this appendix. The software is divided into three groups. The
first group consists of the programs that run on the System 120 (pp.99-150). The second
group consists of the programs that run on the IBM PC ISDN Server (pp.151-165). The
last group consists of the programs which run on the IBM PC that simulate an ISDN NT

terminal (pp.166-179).



+ —rorTy

System 120 Software Listing

/*=================z======
= Project ISDN Personal Workstation
= Sub-Project RMX CONSTANTS
= File rmxconst.h
= Author Zenon Slodki
= Start Date 22 Mar 1990
= Update 11 Apr 1990

*/

/* classification of internal priority levels */

#define LOWSPRIORITY 150

#define MEDS$SPRIORITY 100

#define HIGHSPRIORITY 80

#define SPURSPRIORITY 50

#define INTASPRIORITY 44

#define INTBSPRIORITY 42

#define TRANSPRIORITY 40

#define RECVSPRIORITY 98

/* classification of internal interrupt levels */

#define SPURSLEVEL 0x27

#define INTASLEVEL 0x24

#define INTBSLEVEL 0x23

#define TRANSLEVEL 0x22

#define RECVSLEVEL 0x58

/* classification of mailbox types */
#define DATASTYPE 0x0020 /*

#define MSGSTYPE 0x0000

/* classification of semaphore types */

#3define FIFO 0

#define PRIORITY 1

#define NOSINITIAL 0

#define SIZESONE 1

#define ONESUNIT 1

/* General declarations */

#define DATASSEG 0

#define STACKSPTR oL /*
#define STACKSSIZE 9000
#define NOSFLOATS 0

#define WITHSFLOATS 1

#define ONESOUTSTAND 1 /*
#define SELECTSOFNIL 0

#define LF printf("\n")
#define FALSE 0

#define TRUE 1

#define FOREVER OxFFFF
#define NOWAIT 0

#define BURSTSSIZE 100

#define FILE 64K 20

#define NIL 0

/* PDLC declaratiors */

#define WRCHSBUFSSIZE 9000
#define WTRHSBUFSSIZE 9000
#define HEADSSIZE 3

/* temporal scope
/* max transmission sizet/

99

P BN K B A AF

FIFO Data mailbox */
/* FIFOMessage mailbox */

/* FIF0 semaphore type */
/* Priority sem. type */
/*initially empty queue */
/* one unit size */

/* value of one unit */

/* use own data segmaernt */
stack alloc. */
/* bytes */

/* no flt.pt. instrue, */
/* has flt.pt.instruc. */
one unack. int
/*refers to calling tank*/

*/

/* temporal scope */

*/



100

/* possible states of the global variable WRCTSMODESGLB */
#define READY $MODE 0

#define BUFFERS$MODE 1

/* possible header data classifications */
fdefine STATSREQ 0
#define EXTSREQ 1
fdefine BUFSREQ 2

/ *

end file rmxconst.h */



oo sac b A

/* = = = = = = o o= t—3 = = = = = = == = = = == = == = = o= = == - = o - - .
= Project ISDN Personal Workstation -
= Sgb*Project Initializatiod =
= File init.c =
= Author Zenon Slodki =
= Start Date 21 Mar 19990 =
= Update 01 May 1990 =

*/ = = - _-_— e, = s == o= -_ = = = = I = = = = = = = o = w = = = = ™

#include "/1lib/cc286/stdio.h"

#include "/1lib/cc286/udi.h"

#include "/1lib/cc2B86/rmx.h"

#include ":home:init/rmxconst.h”

finclude ":home:init/harts.hx"

#include ":home:init/halos.hx"

finclude ":home:init/es.hx"

#include ":home:init/cosi.hx"

tinclude ":home:init/isdn.hx"

#include "“:home:pdlc/pdlc.hx"

extern void wait():;

J¥ = = = & = e e = - e - — e e e e = e = = _—— e . m = - -

- Function main

- Input none -

- Qutput none -

- Action Create all layers of the 0OS and interfaces -

- Date 21 Mar 90 -

- UpDate 01 May 90 -

. e e e e = e e e = = _- . = . = = = - - - - - e = e e = -k

main ()

{

word status;

hartsSconstructor() ;
isdn$constructor();

cosiSconstructor();
halos$constructor();
pdlc$Sconstructor();

esSconstructor ();

/* main task is no longer needed */
rg$suspend$task {SELECTSOFNIL, é&status):

}

void wait ()

{

print £ ("\nPress Carriage Return to Continue.\n");
getchar();

}

/*

end file init.c */

101




102

/* - = = | I = ”s = = = = = = = m = == = = = = = = == = = = = = = t—3
= Project : ISDN Personal Workstation =
= Sub-Project : HARTS =
= File : harts.h =
- Author : Zenon Slodki =
= Start Date : 09 Feb 1990 =
- Update : 23 Maxr 1990 =

*/

/* function declarations =*/
void install():;

void intatask() ;

void intbtask() ;

void spurtask():;

void debounce$intal();

void debounce$intb{():;

] *
end of file harts.h */

/*=================================
= Project : ISDN Personal Workstation =
= Sub-Project : HARTS =
= File : mouseint.hx =
= Author : Zenon Slodki =
= Start Date : 13 Feb 1990 =
= Update : 23 Mar 1990 =

*/

/* 8255 PPI definitions */

¥define PORTA 0x3A0

#define PORTB 0x3Aa1

#define PORTC 0x3Aa2

#define PORTSCT Nx3A3

/* 76543210*/

#define RUNSMODE Uxd4 /*10110100*/

#define OUT$MODE 0x80 /*1000000C*/

tdefine INTSA 9 /*00001001*/

#define INTSB 5 /*00000101*/

#define SETSPC6 0x0D /*00001101*/

#define RSTSPC6 0x0C /*00001100 %/

#define SETSPC7 0x0F /*00001111*/

#define RSTSPC7 0x0E /*00001110%*/

/* Assembler function declarations */

extern void intahand () ;

extern void intbhand () ;

extern void spurhand () ;

extern void output () ;

/*

end of file mouseint.hx */



103

= Project : ISDN Personal Werkstation -
= Sub-Project : HARTS =
= File : harts.c =
= Author : Zenon Slodki ne
= Start Date : 09 Feb 1990 -
= Update : 01 May 1990 =

*/ _ - = -_— =k = == = B O = = B = - = = - = = - - % = 2

#include "/lib/cc286/stdio.h"

#include "/lib/cc286/udi.h"

#include "/lib/cc286/rmx.h"

#include "/user/zen/init/rmxconst.h"

#include "harts.h"

#include "mouseint.hx"

/* o m e e m e e e e e e e e e m = e o= = e e - - -
- Function :  harts$constructor -
- Input : none -
- Output : none -
- Action : creates the HARTS layer task -
- Date + 21 Mar 90 -
- UpDate : 22 Mar 90 -
- e m m me e W e e = e e = - - e m e e o e em e o e - . e = */

/ *

Supports bhardware interrupts from the ISDN Mouse.

*/

/* Function declarations */

extern void WHARTSSTASK () ;

void hartsS$constructor()
{
word status;

/* create HARTS layer of the workstation operating system */
rgScreate$Stask (HIGHSPRIORITY, WHARTSSTASK, DATASSEG, STACKSPTR,
STACKSSIZE, NOSFLOATS, &status):

} /*end harts$constructor()*/

[ = 0 = = e m e L e = e e s e mm e e s .= - e e e - e e = =
- Function : WHARTSSTASK -
- Input : none -
- Output . : none -
- Action : Create all interrupt tasks and semaphores ~
- Date : 09 Feb 90 -
-~ UpDate : 01 May 90 -

- e ee e W o e o e e w T e e = e am m e e e e e e o e e o e = t/

/* debouncing semaphore tokens for both hardware interrupts */
token bounceS$sems$A;
token bounce$sem$B ;

void WHARTSSTASK ()
{
word status;

printf("\n HARTS initialization. \n"):



104

/* create semaphores used to signal debouncing support routines */
bounce$sem$SA = rqScreate$semaphore (NOSINITIAL, SIZESONE, FIFO, &status);
bounces$sem$B = rqScreate$semaphore (NOSINITIAL, SIZESONE, FIFO, &status);

/* create debouncing support routines */
rqgécreate$task (LOWSPRIORITY, debounce$inta, DATASSEG, STACKSPIR,
STACKSSIZE, NOSFLOATS, &status);
rgScreateStask (LOWSPRIORITY, debounce$intb, DATASSEG, STACKSPTR,
STACKSSIZE, NOSFLOATS, &status);
/* program 8255 PPI */
install ();

/* create the interrupt handler for spurious interrupts (short signals) */
rgScreate$task (SPURSPRIORITY, spurtask, DATA$SEG, STACKSPTR,
STACKSSIZE, NOSFLOATS, &status):;

/{* create the interrupt handler for ISDN Mouse switch A */
rqScreate$task (INTASPRIORITY, intatask, DATASSEG, STACKSPTR,
STACKS$SIZE, NOSFLOATS, &status);

/* create the interrupt handler for ISDN Mouse switch B */
rgScreate$task (INTBSPRIORITY, intbtask, DATASSEG, STACKSPTR,
STACKSSIZE, NOSFLOATS, &status);

while ( FOREVER ) {
rqg$suspendS$task ( SELECTSOFNIL, &status);
} /*end while*/

} /*end WHARTSSTASK () */

/*_....-._.....___-.._.._.....--.___-. _______ - - -
- Function : intatask -
- Input : none -
- Qutput : none -
- Action : Mouse interrupt A support task -
- Date : 09 Feb 90 -
- UpDate : 22 Mar 90 =
e e e e o e e e e m e e e e e m = m e = .- - - %/
/t
Supports ISDN Mouse Int A handler.

*

/

void intdtask ()
{

~rord status;
extern token bounce$sem$A;
extern token WHALOSSCOMMANDSDMB ;

/* 1Install the interrupt handler into the IDT and specify that this
task will be the interrupt service task for the interrupt handler.
Specify that no outstanding interrupt requests are allowed for
the IRQ12 handler. */

rq$set Sinterrupt (INTA$LEVEL, ONESOUTSTAND, intahand, DATASSEG, &status) ;

while( FOREVER ) {
rg$wait $interrupt {INTASLEVEL, &status);
rqg$sendSunits (bounce$sem$r, ONESUNIT, &status);
rq$send$data(WHALOSSCOMMAND$DMB, "EVENTS$A", 8, &status);
} /*end while*/
} /*end intatask()*/



b s 3

/*—_-—-. _______ - e = e e = ™ em e = e m m e en e w - -
- Function : intbtask -
- Input : none -
- Output : none -
- Action : Mouse interrupt B support task -
- Date : 09 Feb 90 -
- UpDate : 22 Mar 90 -
- - em e W Em mm m @ m e W W an e W e e = W e an W B e e m e e e - _...i/
/*

Supports ISDN Mouse Int B handler.
*/
void intbtask ()
{

word status;

extern token bounce$sems$B;

extern token WHALOSSCOMMANDSDMB ;

/* Install the interrupt handler into the IDT and specify that this
task will be the interrupt service task for the interrupt handler.
Specify that no outstanding interrupt requests are allowed for
the IRQ11 handler.

*/
rg$setSinterrupt (INTBSLEVEL, ONESOUTSTAND, intbhand, DATA$SEG, &status);

while( FOREVER ) {
rg$wait $interrupt (INTBSLEVEL, &status);
rg$sendS$units (bounce$sem$B, ONESUNIT, &status);
rg$sendS$data (WHALOSSCOMMANDSDMB, "EVENTS$B", 8, &status);
} /*end whilex*/
} /*end intbtask()*/

/* o T e T T T I I
- Function spurtask -
- Input : none -
- Cutput : none -
- Action : Traps spurious interrupts on the slave PIC -
- Date : 13 Feb 90 -
- UpDate : 23 Mar 90 -

e em = e e e = e e e m e e e = m am e e o e e = e o = = - - a/
/*

Spurious interrupt handler for the slave PIC.

*/

void spurtask ()

{
word status;

/¥ Install the interrupt handler into the IDT and specify that this
task will be the interrupt service task for the interrupt handler.
Specify that no outstanding interrupt requests are allowed for
the IRQ15 handler.

*/
rg$setSinterrupt (SPURSLEVEL, ONESOUTSTAND, spurhand, DATAS$SEG, &status);

while ( FOREVER ) {
rqgSsleep (200, &status);
rqg$wait $interrupt (SPURSLEVEL. &status);
} /*end whilex*/
} /*end spurtask()*/




- = em e e e e e mh mm G e e M e A mm e e en == e

Function
Input
Qutput
Action
Date
UpDate

install

none

none

initializes the 8255 PPI
15 Jan 90

21 Mar 90

- e e aw e o ae e e

- e e e a = e e =

*/

106

This procedure initializes the PPI to mode 1 and enables interrupts.
However, the interrupt vector is not loaded and the PIC is not enabled.

void install({()

{
/*

/ﬁ

/*

/*

set PPI to mode 1
output {PORTSCT,

enable interrupts
output (PORTSCT,
output (PORTSCT,

*/
RUNS$SMODE) ;

*/
INTSA) ;
INTSB) ;

initialize debounce circuitry for Int B */

output (PORTSCT,
output (PORTSCT,

initialize deboun
output (PORTSCT,
output (PORTSCT,

} /*end install()*/

- e e e m = e e =

Function
Input
Output
Action
Date

This task renables the flip-flop for IRQl12

void debounce$intal)

(

word
extern token

while( FOREVER

RSTSPC6) ;
SETSPC6);

ce circuitry for Int A */
RSTSPCT);
SETSPC7);

debounce$inta

none

none

debounces interrupt A
16 Feb 90

05 Apr 90

status;
bounce$semS$a;

)

printf(™\aInt A Ready\n"); */
rgSreceiveSunits (bounce$sem$A, ONESUNIT, FOREVER, &status):
rqg$sleep (100, &status):

output (PORTSCT, SET$SPC7);

} /*end while*/

} /*end debounce$inta()*/

(interrupt A).



107

J* = = 0 = e e e m e e ke e e e e e e m e o m = — = e e == =
- Function : debounce$intb -
- Input : none -
- Output : none -
- Action : debounces interrupt B -
- Date : 16 Feb 90 -
- UpDate : 05 Apr 90 -

/* This task renables the flip-flop for IRQ11l (interrupt B).

void debounce$intb ()

{
word status:;
extern token bounce$sem$B;

while( FOREVER ) |{
/* printf ("\aInt B Ready\n"); */
rqSreceive$units (bounce$sem$B, ONESUNIT, FOREVER, &status);
rg$sleep (100, &status);
output (PORTSCT, SETSPCE);
} /*end while*/
} /*end debounce$intb()*/

/*
end file harts.c */




108

/*ﬂ=52=============================
= Project : ISDN Personal Workstation =
= Sub-Project : Parallel Communication Protocol =
= File : pdlc.c =
= Au*t.hor : Zenon Slodki =
x Start Date : 28 Mar 199C =
= Update : 01 May 1990 =

*/

#include "/lib/cc286/stdio.h"”

#include "/lib/cc286/udi.h"

#include */lib/cc286/rmx.h"

#include “"pdlcint.hx"

#include "/user/zen/harts/mouseint.hx"
#include "“/user/zen/init/rmxconst.h"

/* Used to test custom parallel communication boards developed by ZenRob
in the interrupt mode of operation.

*/

/* _________________________________
- Function : pdlc$constructor -
- Input : none -
- Output : none -
- Action : Create all interrupt tasks and mailboxes -
- Date : 28 Mar 90 -
- UpDate : 01 May 90 -

/* mailbox token to transmitter task interface */
token WTRTSCOMMANDSDMB;

/* Function declarations */
extern void WTRTSTASK() ;
extern void WRCTSTASK()

void pdlc$constructor()
{

extern token WTRTS$SCOMMANDSDMB;
word status;
wait{):

printf ("PDLC constructor\n");

/* create interface to WTRT$TASK */
WTRTSCOMMANDSDMB = rqg$create$mailbox (DATASTYPE, &status):

/* create transmitter task */
rgq$createStask {TRANSPRIORITY, WTRTSTASK, DATASSEG, STACKS$PTR,
STATKSSIZE, NOSFLOATS, &status);

/* create receiver task */
rchreateStask(RECVSPRIORITY, WRCTSTASK, DATASSEG, STACKSPTR,
STACKSSIZE, NOSFLOATS, &status):

} /*end pdlcS$constructor()*/



109

J¥ = o e e m e e e e e e m e e e e e e e e m e . = e - = = =
- Function : WRCT$TASK -
- Input : none -
- Output : none - ‘
- Action : Supports Interrupt Handler for the receiver - 1
- Date : 28 Mar 90 -
- UpDate : 11 Apr 90 -

_________________________________ 2/
/* This task supports the receiver interrupt handler. It first installs

the handler and then performs the deta processing whenever the handler
signals it that it has data.

*/

void WRCTSTASK()

{

extern word WRCTSMODESGLB;
extern char WRCHSHEADSGLB{3];
extern token WISDNSRESPONSESDMB;
extern token WHALOSSCOMMANDSDMB;
extern word WRCTS$BUF SEOB;
extern word WRCHSBUFSIN;

extern word WRCTSCOUNTSGLB;
word recv$size;

word status;

/* 1Install the interrupt handler into the IDT and specify that this
task is the interrupt service task for the interrupt handler.
Specify that no outstanding interrupt requests are allowed for
the IRQS5 handler.

*/

WRCTS$SMODESGLE = READYSMODE;

rg$set$interrupt (RECVSLEVEL, ONESOUTSTAND, WRCH$STASK, DATASSEG, &status);

while( FOREVER ) {

/* wait for the interrupt handler to signal you that a character is
in £he buffer.
*/

WRCTSCOUNTSGLB = 0; /* reset header pointer */
rq$wait $interrupt (RECVSLEVEL, &status);

$ifdef TESTING
printf ("WRCHSHEADSGLB: %u, %u, %u \n",WRCHSHEADSGLB[O0],
WRCHSHEADSGLB [1],WRCHSHEADSGLB[2]);

#endif

switch( WRCHSHEADSGLB([0] ) {
/* i.e. response (status) to a previous command */
case STATSREQ:
rgS$sendSdata (WISDNSRESPONSESDM3, WRCHSHEADSGLB,
HEADSSIZE, &status);
break;

/* external request processing */
case EXTSREQ:
rg$send$Sdata (WHALOSSCOMMANDSDMB, WRCHSHEADSGLB,
HEADSSIZE, &status):
break;



110

/* buffer processing */
case BUFSREQ:
/* access bytes 2 and 3 */
recv$size = * (int*) &WRCHSHEADSGLB{1]:;
# fdef TESTING
printf ("BUFSREQ: recv$size %u \n", recv$size);
¥endif
WRCTSBUFSEOB = (WRCHSBUFSIN + recv$size)
$ WRCHSBUFSSIZE;

WRCTSMODESGLB = BUFFERSMODE;
rq$wait$interrupt (RECVSLEVEL, &status);
WRCTSMODESGLB = READYS$MODE;

rquendeata(WISDNSRESPONSESDMB, WRCHSHEADSGLB,
HEADSSIZE, &status);
break;

default:
printf ("WRCTSTASK: unknown request -> %u \n",
WRCHSHEADSGLB([0]) ;

} /*end switch*/
} /*end while*/
} /*end WRCTS$TASK () */

- Function : WTRTSTASK -
- Input : none -
- Output : none -
- Action : Supports Interrupt Handler for the trancmitter-
- Date : 28 Mar 90 -
- UpDate : 11 Apr 90 -

_________________________________ */
/* This task supports the transmitter interrupt handle:r. It first installs
the handler and then performs the data processing whenever the handler
signals it that it no longer has data.
*/

word msgSsize;

void WTRTSTASK ()

{
awcern bLyie WTRHSBUFSRING[WTRHSBUFSSIZE];

extern token WTRTSCOMMANDSDMB;
extern word WTRTSBUFSEOB;
extern word WTRHSBUFSOUT;
word status;

/* 1Install the interrupt handler into the IDT and specify that this
task is the interrupt service task for the interrupt handler.
Specify that no outstanding interrupt requests are allowed for
the IRQ5 handler.

*/

rg$set$interrupt (TRANSLEVEL, ONESOUTSTAND, WTRH$TASK, DATAS$SEG, &status);
while( FOREVER ) |

/* wait for a transmission request */
rqSreceive$data (WIRTSCOMMANDSDMB, &msg$size, FOREVER, &status);



111

WTRTSBUFSEOB = (WTRHS$BUFSOUT + msg$size) % WTRH$BUFSSIZE;

#ifdef TESTING

printf (§WTRHSBUFSRING [WTRHSBUFSOUT]) ;
#endif

/* wait for the interrupt handler to signal you that the data buffer
has reached the EOB marker */
rgSwaitSinterrupt (TRANSLEVEL, &status):

} /*end while*/
} /* end WTRTSTASK */

/* _________________________________
- Function : error_hand -
- Input : error code, procedure seg & offset -
- Output : none -
- Date : 24 Jan 90 -
- UpDate : 26 Jan 90

_______________________________ _..-A/
/* This procedure displays the error condition and the segment and offset
of the procedure in trouble.
*/
void error_hand(error_code, proc_seg, proc_off)
int error_code;
int proc_seg;
int proc_off;
{
char temp;
printf ("ERROR HANDLER CODE: %u\n", error_code);
printf{"CS: %u, IP: %u\n", proc_seq, proc_off);
dgSexit( error_code ):
scanf ("%c", &temp) ; /* indefinite wait */
} /* end error_hand */

/*

end file pdlc.c */



/* = = = = = = = = = = = == = = = = = = = = = = = = - = = = = = - =
= Project : ISDN Personal Workstation =
= Sub-Project : HALOS =
= File : halos.c =
= Author : Zenon Slodki =
= Start Date : 22 Mar 1990 =
= Update : 01 May 1990 =

*/

#include "/lib/cc286/stdio.h"
#include "/lib/cc286/udi.h"

#include "/lib/cc286/rmx.h"

#include "/user/zen/init/rmxconst.h”

2
- Function : halosSconstructor -
- Input : ncne -
- Output : none -
- Action : creates the HALOS layer task -
- Date : 21 Mar 90 -
- UpDate : 23 Mar 90 -
_________________________________ */

/*

Event-driven application schedular.

*/

/* Function declarations */

extern void WHALOSSTASK() ;

/* interface mailbox to HALOS for EXTERNAL requests */
token WHALOS SCOMMAND$DMB ;

void halosS$constructor ()

{
extern token WHALOSS$SCOMMANDSDMB;
word status;

/* create interface to HALOS layer */
WHALOSSCOMMANDSDMB = rg$createSmailbox (DATASTYPE, &status);

/* create HALOS layer of the workstation operating system */
rqScreate$task (LOWSPRIORITY, WHALOSSTASK, DATASSEG, STACKSPTR,
STACKSSIZE, NOSFLOATS, &status);

} /*end halosSconstructor()*/

YA A T I T T
- Function ¢ WHALOSSTASK -
- Input : none -
- OQutput : none -
- Action : Schedules applications -
- Date : 22 Mar 90 -
- UpDate : 01 May 90 -
_________________________________ */

char event [30]:

void WHALOSSTASK()

{

word num$bytesSrecv;
word status;

extern token WHALOS $SCOMMANDSDMB;

112



.
3
3
3

L
4

113

extern token WESSCOMMANDSDMB ;
word one=1;
word two=2;

while( FOREVER ) {
num$bytesS$recv =
rqSreceiveS$data (WHALOS SCOMMAND SDMB, sevent [0}, FOREVER, &status) ;

if( num$bytesSrecv != 8 )
printf ("HALOS: Mailbox received -> %d \n", numSbytesSrecv);

switch( event [6]) ) {
case 'A’:
rg$send$Sdata (WES SCOMMANDSDMB, &one, 2, &status);
brear;
case 'B’:
rg$sendSdata (WESSCOMMANDSDMB, &two, 2, &status);
break;
default:
printf {"HALOS: unknown token -> %c \n", event[6]):
} /*end switch*/

} /*end whilex*/
} /*end WHALOSSTASK() */

/%
end file halos.c */




114

/*=====~_—===========================

= Project : ISDN Personal Workstation =
= Sub-Project : COSI =
= File : cosi.c =
= Author : Zenon Slodki =
- Start Date : 22 Mar 1990 =
= Update : 01 May 1990 =

*/ S - - - - S ) B

#define RMXON

#include "/lib/cc286/stiio.h"

#include "/lib/cc286/udi.h"

#include "/lib/cc286/rmx.h"

#include "/user/zen/init/rmxconst.h"

#include "/user/robert/koola/hi.hx"

#include "/user/robert/koola/huminter.h"

/* _____________________ - e e e e e me e e e = e
- Function : cosiSconstructor -
- Input : none -
- Output : none =
- Action : creates the COSI layer task -
- Date : 21 Mar 90 -
- UpDate : 01 May 90 -
_____________________________ - - - %/

/*

Centralized, abstract interface primitives provider. */

/* Function declarations */

extern void WCOSISTASK() ;

/* interface mailbox to COSI for ACTION and REQUESTS tckens */
token WCOSISCOMMANDSDMB ;

/* interface mailbox to COSI for floating point replies */
token WCOSISRESPONSESDMB;

/* semaphore indicates when the ES can continue processing after sending
a command to COSI */
token WCOSISREADYS1US;

void cosi$ce nstructor ()

{
extern token WCOS I SCOMMAND $SDMB ;
word status;

/* create command/request interface to COSI layer */
WCOSISCOMMANDSDMB = rg$create$Smailbox (DATASTYPE, &status);

/* create response interface to COSI layer */
WCOSISRESPONSESDMB = rqgScreateSmailbox (DATASTYPE, &status);

/* create control access to ES layer */
WCOSISREADYS$1US = rg$create$Ssemaphore (NOSINITIAL, ONESUNIT, FIFO,
&status):;

/* create COSI layer of the workstation operating system */
rgScreate$task (LOWSPRIORITY, WCOSISTASK, DATASSEG, STACKSPTR,
STACKSSIZE, WITHSFLOATS, &status);

} /*end cosiSconstructor()*/



115

J* = = = = e e e e e e e m e m e e m e e e e e e o e o e m e =
- Function WCOSISTASK -
- Input none -
- Output none -
- Action Provides abstract interfaces. -
- Date 22 Mar 90 -
- UpDate 01 May 90 -
_________________________________ */

word action;

word rep_ stat;

void WCOSISTASK()

{

word num$bytesS$recv;

word status;

word tok$val;

extern token WCOSI$SCOMMANDSDMB;

extern token WISDNSCOMMANDSDMB;

extern token WISDNS$STATUSSDMB;

float answer;

word reply=0;

extern word crn_voice;

extern word crn_data;

extern word crn_file;

while( FOREVER ) {

numSbytesSrecv =

rgSreceive$data (WCOSISCOMMANDSDMB, &action, FOREVER, &status);
if ( numSbytes$recv !'= 2 )
printf ("COSI: Mailbox received -> %d \n", numSbytesSrecv);

#ifdef TESTING
printf ("ACTION: %u \n", action):;
#endif

switch( action ) {

/* enquiry to COSI */

case 78;

/* reply to the expert system */

answer = 79.8;

printf ("External request from ES token: 79.8\n");
rg$sendsSdata (WCOSISRESPONSESDMB, &answer, 4, &status);
break:;

case 1107:

/* obtain Voice call connection status information */
tokSval = 07;

rg$send$data (WISDNSCOMMANDSDMB, &tokSval, 2, &status);
rg$sleep(120, &status);

answer = (float) crn_voice;

rg$send$data (WCOSISRESPONSESDMB, &answer, 4, &status);
break;

case 1108:

/* obtain Data call connection status information */
tokSwval = 07;

rg$send$data (WISDNSCOMMANDSDMB, &tokSval, 2, &status);
rg$sleep (120, &status);

answer = (float) crn_data;

rg$send$data (WCOSISRESPONSESDMB, &answer, 4, &status);
break;



116

case 1109:

/* obtain File call connection status information */
tok$val = 07;

rg$sendSdata (WISDNSCOMMANDSDMB, &tok$val, 2, &status);
rqgSsleep (120, &status);

answer = (float) crn_file;

rqgssend$data (WCOSISRESPONSESDMB, &answer, 4, &status);
break;

/* action to COSI */

case 1l:

/* action taken by COSI is to shut down system */
printf ("About to shut down system.\n");

printf ("\n\a\aACTION taken: gracefull EXIT\n"):;
tokSval = 0;

rg$sendSdata (WISDNSCOMMANDSDMB, &tok$val, 2, &status);
/* let the expert system continue processing */
rg3send$units (WCOSISREADY$1US, ONESUNIT, &status);
break;

case 101:

/* action taken by COSI */

printf ("TANK identified: T54/T55\n"):
printf("\n\a\aACTION taken: ENGAGED with HESH\n"};
/* let the expert system continue processing */
rgSsend$units (WCOSISREADYS1US, ONESUNIT, &status);
break;

case 102:

/* action taken by COSI */

printf ("TANK identified: T62\n");

printf ("\n\a\aACTION taken: ENGAGED with APFSDS\n"):
/* let the expert system continue processing */
rg$send$units (WCOSISREADYS$1US, ONESUNIT, &status);
break;

case 103;

/* action taken by COSI */

printf (“"TANK identified: T80\n");

printf ("\n\a\aACTION taken: RETREATE\n");

/* let the expert system continue processing */
rg$sendSunits (WCOSISREADYS$1US, ONESUNIT, &status);
break;

case 151:

/* action taken by COSI */

printf ("TANK identified: LEOPARD\n");

printf ("\n\a\aNO ACTION taken\n");

/* let the expert system continue processing */
rg$send$units (WCOSISREADYS1US, ONESUNIT, é&status);
break;

/* general ISDN services */

case 1106:

/* obtain ISDN status information -v- */

tokSval = 06;

rq$sendSdata (WISDNSCOMMANDSDMB, &tok$val, 2, &status);
rg$sleep (200, &status);

/* let the expert system continue processing */
rgS$sendSunits (WCOSISRERDYS$1US, ONESUNIT, &status);
break;



117

/* ISDN Voice services */

case 1211:

/* let the expert system continue processing */
rg$sendSunits (WCOSISREADYS1US, ONESUNIT, &status);

/* make a voice call -a- */

tok$val = 11;

rg$sendSdata (WISDNSCOMMANDSDMB, &tok$val, 2, &status):
break;

case 1212:
/* let the expert system continue processing */
rg$sendS$units (WCOSISREADYS$1US, ONESUNIT, &status):

/* accept a voice call */

tokSval = 12;

rqg$sendSdata (WISDNSCOMMANDSDMB, &tok$val, 2, &status);
break;

case 1213:
/* let the expert system continue processing */
rg$sendSunits (WCOSISREADYS1US, ONESUNIT, &status,;:

/* disconnect a voice call -b- */

tokS$val = 13;

rqg$sendS$data (WISDNSCOMMANDSDMB, &tok$val, 2, &status):
break:;

case 1214:
/* let the expert system continue processing */
rg$sendS$units (WCOSISREADYS1US, ONESUNIT, &status):

/* reject a voice call -c- */

tok$val = 14;

rgSsendSdata (WISDNSCOMMANDSDMB, &tokSval, 2, &status);
break;

case 1218:
ask_quest ( HIQST_ PHONE_NUMBERS );
/* make a voice call -a- */
tokSval = 11;
rgq$send$data (WISDNSCOMMANDSDMB, &tokSval, 2, &status);
while( reply != 13 ) {
switch( (int) ask_quest ( HIQST VOICE_ACTION ) ) {
case 1:
/* disconnect a voice call -b- */
reply = tok$val = 13;
rg$sendSdata (WISDNSCOMMANDSDMB, &étokSval, 2, &status);
break:;
case 2:
/* adjust increase volume -u- */
tokS$val = 53;
rg$sendSdata (WISDNSCOMMANDSDMB, &tokSval, 2, &status);
break;
case 3:
/* adjust decrease volume -u- */
tokSval = 54;
rg$sendSdata (WISDNSCOMMAND$DMB, étok$val, 2, &status);
break:;




118

case 4:
/* toggle earpiece -t- */
tokSval = 52;
rg$sendsSdata (WISDNSCOMMANDSDMB, &tokS$val, 2, &status);
break;
case 5:
/* toggle microphone -s- */
tok$val = 51;
rg$send$data (WISDNSCOMMANDSDMB, &tokSval, 2, &status) ;
break;
case 6:
/* obtain ISDN status information -v- */
tokSval = 06;
rq$sendSdata (WISDNSCOMMANDSDMB, &tok$val, 2, &status) ;
rgSsleep (200, &status);
break;
default:
printf ("Unknown reply \n"):
break;

} /*end switch*/
rqg$sleep (60, &status);

} /*end while*/

reply = 0;

/* let the expert system continue processing */
rg$sendSunits (WCOSISREADYS1US, ONESUNIT, &status);
break;

case 1251:
/* let the expert system continue processing */
rg$send$units (WCOSISREADYS$1US, ONESUNIT, &status);

/* toggle microphone ~s- */

tok$val = 51;

rg$sendSdeta (WISDNSCOMMANDSDMB, &tok$val, 2, &status):;
break:;

case 1252;
/* let the expert system continue processing */
rg$sendSunits (WCOSISREADYS1US, ONESUNIT, &status);

/* toggle earpiece -t- */

tokS$val = 52;

rg$send$data (WISDNSCOMMANDSDMB, &tokS$val, 2, &status):
break;

case 1253:
/* let the expert system continue processing */
rg$send$units (WCOSISREADYS$1US, ONESUNIT, &status);

/* adjust increase volume =-u- */

tokS$val = 53;

rq$send$data (WISDNSCOMMANDSDMB, &tok$val, 2, &status);
break;

case 1254:

/* let the expert system continue processing */
rg$send$units (WCOSISREADYS$1US, ONESUNIT, &status):

/* adjust decrease volume -u- */

tok$val = 54;

;quendeata(WISDNSCOMMANDSDMB, &tok$val, 2, &status);
reak;



119

/* ISDN Data services */

case 1321:

/* let the expert system continue processing */
rg$sendS$units (WCOSISREADYS$1US, ONESUNIT, &status):

/* make a data call -d- */

tok$val = 21;

rg$sendSdata (WISDNSCOMMANDSDMB, &tok$val, 2, &status);
break;

case 1322:
/* let the expert system continue processing */
rg$send$units (WCOSISREADYS$1US, ONESUNIT, &status);

/* accept a data call */

tokS$val = 22;

rqg$send$data (WISDNSCOMMANDSDMB, &tokS$Sval, 2, &status);
break;

case 1323:
/* let the expert system continue processing */
rg$send$units (WCOSISREADYS1US, ONESUNIT, &status);

/* disconnect a data call -e- */

tokSval = 23;

rg$sendS$data (WISDNSCOMMANDSDMB, &tokSval, 2, &status);

rqSreceive$data (WISDNSSTATUSSDMB, &rep_stat, FOREVER,
&status);

break;

case 1324:
/* let the expert system continue processing */
rqg$sendSunits (WCOSISREADYS1US, ONESUNIT, &status);

/* reject a data call -f- */

tokS$val = 24;

rgSsendSdata (WISDNSCOMMANDSDMB, &tok$val, 2, &status);
break;

case 1325:

/* send data string -g- */

tok$val = 25;

rg$send$data (WISDNSCOMMANDSDMB, &tokSval, 2, &status);
rq$sleep( 1000, &status );

/* let the expert system continue processing */
rg$sendSunits (WCOSISREADYS1US, ONESUNIT, &status);
break;

case 1326:

/* receive data string -h-~ */

tokS$val = 26;

rg$sendSdata (WISDNSCOMMANDSDMB, &tokS$val, 2, &status);
rqg$sleep( 1006, &status );

/* let the expert system continue processing */
rg$send$units (WCOSISREADYS$1US, ONESUNIT, é&status);
break;



120

case 1327:

/* automatically send a data string */

/* make a data call -d- */

tok$val = 21;

rqg$send$data (WISDNSCOMMANDSDMB, &tok$val, 2, &status);

/* send data string -g- */

tocSval = 25;

rgisend$data (WISDNSCOMMANDSDMB, &tok$val, 2, &status);
rqSsleep( 800, &status );

/* disconnect a data call -e- */
tokS$val = 23;
rg$send$data (WISDNSCOMMANDSDMB, &tok$val, 2, &status);

rg$receive$data (WISDNSSTATUSSDMB, &rep_stat, FOREVER,
&status);

/* let the expert system continue processing */

rgS$sendSunits (WCOSISREADYS1US, ONESUNIT, &status);

break;

/* ISDN Keyboard Conversation services */

case 1431;

/* let the expert system continue processing */
rg$sendSunits (WCOSISREADYS$S1US, ONESUNIT, &status);

/* make a keyboard call -i- */

tokS$val = 31;

rg$sendSdata (WISDNSCOMMANDSDMB, &tokS$val, 2, &status);
break;

case 1432:
/* let the expert system continue processing */
rg$sendSunits (WCOSISREADYS$1US, ONESUNIT, &status);

/* accept a keyboard call */

tokS$val = 32;

rg$sendSdata (WISDNSCOMMANDSDMB, &tokSval, 2, &status):
break:;

case 1433:
/* let the expert system continue processing */
rg$sendSunits (WCOSISREADYS1US, ONESUNIT, &status);

/* disconnect a keyboard call -j- */

tokSval = 33;

rgS$sendSdata (WISDNSCOMMANDSDMB, &tok$val, 2, &status):
break;

case 1434:
/* let the expert system continue processing */
rg$sendSunits (WCOSISREADYS1US, ONESUNIT, &status);

/* reject a keyboard call -k- */

tok$val = 34;

rg$sendSdata (WISDNSCOMMANDSDMB, &tokSval, 2, &status);
break;



case 1435:

/* keyboard talk -1- */

tokSval = 35;

rg$sendS$data (WISDNSCOMMANDSDMB, &tok$val, 2, &status):

/* let the expert system continue processing */
rg$send$units (WCOSISREADYS1US, ONESUNIT, &status);
break;

case 1436:

/* keyboard talk -m- */

tokSval = 36;

rg$sendS$data (WISDNSCOMMANDSDMB, &tokS$val, 2, &status);

/* let the expert system continue processing */
rg$send$units (WCOSISREADYS$1US, ONESUNIT, &status);
break;

/* ISDN File services */

case 1541:

/* let the expert system continue processing */
rg$send$units (WCOSISREADYS$S1US, ONESUNIT, &status);

/* make a file call -n- */

tokS$Sval = 41;

rg$sendSdata (WISDNSCOMMANDSDMB, &tokS$val, 2, &status):
break;

case 1542:
/* let the expert system continue processing */
rg$sendS$units (WCOSISREADYS$1US, ONESUNIT, &status);

/* accept a file call */

tokSval = 42;

rg$sendSdata (WISDNSCOMMANDSDMB, &tokS$val, 2, &status);
break;

case 1543:
/* let the expert system continue processing */
rg$sendS$units (WCOSISREADY$1US, ONESUNIT, &status);:

/* disconnect a file call -o- */

tokSval = 43;

rg$sendS$data (WISDNSCOMMANDSDMB, &tokSval, 2, &status);
break;

case 1544:
/* let the expert system continue processing */
rg$sendSunits (WCOSISREADYS1US, ONESUNIT, &status);

/* reject a file call -p- */

tokSval = 44;

rg$sendSdata (WISDNSCOMMANDSDMB, &tokSval, 2, &status);
break;

case 1545:
/* let the expert system continue processing */
rg$sendSunits (WCOSISREADYS1US, ONESUNIT, &status);




/* file transmit -gq- */
tokS$val = 45;

122

rgSsend$data (WISDNSCOMMANDSDMB, &tok$val, 2, &status):

break;

case 1546:

/* let the expert system continue processing */

rg$send$units (WCOSISREADYS1US, ONESUNIT,

/* file receive -r- */

tokSval = 46;

rg$sendS$data (WISDNSCOMMANDSDMB, &tokS$val,
break;

case 1547:

&status);

&status);

/* let the expert rcystem continue processing */

rgS$sendSunits (WCOSISREANYS1US, ONESUNIT,

/* make a file call -n- */
tokSval = 41;
rg$send$data (WISDNSCOMMANDSDMB, &tok$val,

/* predefined file transmit -gq- */
tok$val = 48;

rg$sendS$data (WISDNSCOMMANDSDMB, &tok$val,
rg$sleep( 1200, &status );

/* disconnect a file call -o- */

tokSval = 43;

rg$send$data (WISDNSCOMMANDSDMB, &tokSval,
break:;

case 1548:

&status);

&status);

&status);

&status);

/* let the expert system continue processing */

rg$sendSunits (WCOSISREADY$1US, ONESUNIT,

/* make a file call -n- */
tokSval = 41;

rg$sendSdata (WISDNSCOMMANDSDMB, &tokS$val, 2,

/* predefined file transmit -gq- */
tok$val = 49;

rg$send$data (WISDNSCOMMANDSDMB, &tok$val, 2,

rg$sleep( 1200, &status );

/* disconnect a file call -o- */
tokSval = 43;

rq$sendS$data (WISDNSCOMMANDSDMB, &tokS$val, 2,

break:;

default:

&status);

&status) ;

&status)

&status);

printf ("COSI: unknown token -> %u \n", action);
/* let the expert system continue processing */

rg$send$units (WCOSISREADYS1US, ONESUNIT,

} /*end switch*/

} /*end whil

e*/

} /*end WCOSISTASK()*/

/*

end file cosi.c */

&status);



/*=‘.======================n====I=l=-l:

= Project ; ISDN Personal Workstation
= Sub~-Project : ISDN

= File : isdn.h

= Author : Zenon Slodki

= Start Date : 22 Mar 1990

= Update : 12 Apr 1990

*/
/* function declarations */

int call isdn_dial();

void call 1sdn voice_accept();
int call 1sdn dial dlsconnect(),
int call isdn_voice_reject();
int call isdn connect(),

intc call isdn_ _connect_accept () ;
int call isdn connect _reject ();
int call isdn dlsconnect(),
void send isdn _tranosmit ()

void call isdn_ _transmit () ;

void call file _transmit ();

void send file _transmit ()

void call” 1sdn receive_wait () ;
void send_lsdn_recelve(),

void call file_receive_wait():
void send file recelve(),

void call isdn_ _audio_vol();

void call isdn _mute mlc(),

void call” 1sdn mute ear(),

int Qend_Command(),

void display file():

void call_isdn_status();

void get_ isdn_status{();

/*

end file isdn.h */




124

/* = = = = = = = o= = = = == == = = = == = = = = = = == = = = = = = = =
= Project : ISDN Personal Workstation =
= Sub-Project : ISDN =
= File : isdn.c =
= Author :  Zenon Slodki =
= Start Date : 22 Mar 1990 =
= Update : 01 May 1990 =

*/

#include "/1lib/cc286/stdio.h™

#include "/1lib/cc286/udi.h"

#include "/lib/cc286/rmx.h"

#include "isdn.h"

#include "/user/zen/init/rmxconst.h"
#include "/user/zen/harts/harts.h"
#include "/user/zen/harts/mouseint.hx"
#include "app.h"

#include "/user/zen/pdlc/pdlcint.hx"

/* Global variables */
int crn_voice = 0;

int crn_data = 0;
int crn_second = 0;
int crn_file = 0;

int main_choice = 0;
byte bfr([BURSTSSIZE+5];
byte auto$file = 0;

/*::.’:::============================
= Project : ISDN Personal Workstation =
= Sub-Project : Parallel Communication Protocol =
= File : ring.c =
= Author : 2enon Slodki =
= Start Date : 05 Apr 1990 =
= Update : 10 Apr 1990 =

*/

/i ____________ - e e e e = e e e e e e e m e e = m e -
- Function : Send$Byte -
- Input : data byte -
- Output : none -
- Action : Prepares the data for transmission on the PDLC-
- Date : 05 Apr 90 -
- UpDate : 11 Apr 90 —/

- e e e e e i e e e m e em e em am mm e wm mm em e e e me = am e m e = *

/* This function places one byte in the transmitter interrupt handler’s
ring buffer and updates the output pointer.
After this, the number of bytes of data to be transmitted is mailed to
the transmitter interrupt task.

*/

word one=l;

void Send$Byte( dataS$byte )

byte dataSbyte;

{

extern byte WTRHSBUFSRING [WTRHSBUFS$SSIZE];
extern token WITRT$COMMAND SDMB;

extern word WTRHSBUFSIN;

word status:

WTRHSBUF $RING [WTRHSBUF$IN] = dataSbyte:



125

/* wrap around index */

WTRHSBUFSIN +=1;

if ( WIRHSBUFSIN == WITRHS$BUFS$SIZE )
WTRHSBUFSIN = (;

/* send size of data to be sent to the transmitter interrupt task */
rg$send$data (WIRTSCOMMANDSDMB, &one, 2, &status);
} /* end Send$Byte */

J* = = = m & & . e e o m e m .- - e e e e e e — -
- Function : Sends$Word -
- Input : data word -
- Output : none -
- Action : Prepares the data for transmission on the PDLC~
- Date : 05 Aapr 90 -
- UpDate : 11 Apr 90 -

______________________ - - - e = w = = = = */

/* This function places one word in the transmitter interrupt handler’s
ring buffer and updates the output pointer.
After this, the number of bytes of data to be transmitted is mailed to
the transmitter interrupt task.

*/

word two=2;

void Send$Word( dataSword )

word datasSword;

{

extern byte WTRHSBUF $RING [WTRHSBUFS$SIZE] ;
extern token WTRTSCOMMAND SDMB;;

extern word WTRHSBUFSIN;

byte *data$byte;

word status;

dataSbyte = (char*) &dataSword;

/* load LSB data */

WTRHS$BUFSRING[WTRHSBUFSIN] = dataSbyte[0];

/* wrap around index */

WTRHSBUF3IN +=1;

if ( WTRHSBUFSIN == WTRHS$BUFSSIZE )
WTRHSBUFSIN = 0;

/* load MSB data */

WTRHSBUFSRING [WTRHSBUFSIN] = dataSbyte[1l];

/* wrap around index */

WTRHSBUFSIN +=1;

if ( WITRHSBUFS$SIN == WTRHSBUFSSIZE )
WTRHSBUFSIN = 0;

/* send size of data to be sent to the transmitter interrupt task */
rg$sendSdata (WITRTSCOMMANDSDMB, &two, 2, é&status):
} /* end Send$Word */

J* = = = = = e e e m e e e = = e o — e = = e e e e e e e e = -
- Function : Send$Buf -
- Input : data buffer pointer -
- Output : none -
- Action : Prepares the data for transmission on the PDLC-
- Date : 05 Apr 90 ~
- UpDate : 09 Apr 90 -

——————————— —-——-———--——..——--—....—-*/



126

/* This function places a string in the transmitter interrupt handler’s
ring buffer and updates the output pointer.
After this, the number of bytes of data to be transmitted is mailed to
the transmitter interrupt task.*/

void Send$Buf( dataSbuf )
byte *data$buf;
{

extern byte WIRHSBUFSRING [WTRHSBUFSSIZE] ;
extern token WTRTSCOMMAND SDMB;

extern word WTRHSBUFS$IN;

word buf$size;

word raw$size,i;

word status;

buf$size = strlen (dataSbuf) + 1; /* does not count the \0 */

if( (rawSsize = buf$size + WTRHSBUFS$SIN) < WTRHSBUFSSIZE } {
strncpy (§WTRHS$BUF SRING [WTRHSBUFSIN), datas$buf, bhuf$size);
WTRHS$SBUFSIN = raw$size;
}
else
/* wrap around index */
for (i=0; i<buf$size; it++) {
WTRHS$BUFSRING [WTRHSBUFS$SIN] = dataS$buf{il:
WTRHSBUFSIN +=1;
if ( WTRHSBUFSIN == WTRH$BUFSSIZE )
WTRHSBUFSIN = 0;
}

/* send size of data to be sent to the transmitter interrupt task */
rgSsendSdata (WTRTSCOMMANDSDMB, &bufS$size, 2, &status) ;
} /* end Send$Buf */

/* = = = = = = = = = = = a4 e = - - - - . = wm e e = e m = e o e = m
- Function : Send$NumS$Bytes -
- Input : data buffer pointer, data size -
- Output : none -
- Action : Prepares the data for transmission on the PDLC-
- Date : 07 Apr 90 -
- UpDate : 16 apr 90 -

e e e e e e e e e m e m e e e e e = . e e e - - */

/* This function places a number of bytes of data into the transmitter
interrupt handler’s ring buffer and updates the output pointer.
After this, the number of bytes of data to be transmitted is mailed to
the transmitter interrupt task.

*/

void Send$Num$Bytes( data$buf, data$size )
byte *datasbuf;

word data$size;

{

extern byte WTRHSBUFSRING [WTRHSBUFS$SIZE] ;
extern token WTRTSCOMMANDSDMB;

extern word WTRHSBUFSIN;

word raw$size,i;

word status:;

if( (rawSsize = data$size + WTRHSBUFS$IN) < WIRHSBUFSSIZE ) |
strncpy (§WTRHSBUFSRING[WTRHSBUFSIN], dataS$hbuf, data$size);
WTRHSBUFSIN = rawSsize;



else

/* wrap around index */
for(i=0; i<data$size; i++) {

}

#ifdef TESTING
printf ("data$size: %d, WITRHSBUF$IN: $d\n", data$size, WITRH$BUFSIN);

#endif

/*

WTRHSBUF SRING [WTRHSBUF SIN] = dataSbuf [i);

WTRHSBUFSIN +=1;

if( WITRHSBUFSIN == WTRHSBUFS$SSIZE )
WTRHS$BUFSIN = 0

/* send size of data to be sent to the transmitter interrupt task */
rqSsendSdata (WIRTSCOMMANDSDMB, &data$size, 2, &status):
rqSsleep(120, &status); */

$ifdef TESTING
printf ("RING: bfr sent\n");

#endif

} /* end Send$Num$Bytes */

/*

*/

Function
Input
Output
Action
Date
UpDate
This function
ring buffer.

Display$Buf -
none -
none -
Displays the data received in the ring buffer -
06 apr 90 -
11 apr 90 -

i I T TR S */

displays the latest buffer data that is in the receiver

void Display$Buf ()

{

extern byte

WRCHSBUF SRING [WRCHSBUF SSIZE] ;

extern word WRCTSBUF SEOB;
extern word WRCHS$BUF SOUT;
#ifdef TESTING
printf ("WRCHSBUF SOUT: %d, WRCTSBUF SEOB: td\n", WRCHSBUFSQUT,
WRCTSBUFSEQOB) ;
fendif

/*

end

while( WRCHSBUF$OUT != WRCTSBUFSEOB ) {

print £ ("$c", WRCHSBUF$RING [WRCH$BUFS0UT]) ;
/* wrap around index */

WRCHSBUFSOUT += 1;

if { WRCHSBUF SOQUT == WRCHSBUFS$SIZE )

}

WRCHSBUFSOUT= 0;

printf("\n"):
} /* end DisplayS$SBuf */

*/




/*..

/*

*/
/*

Function
Input
Output
Action
Date
UpDate

isdn$constructor

none

none

creates the ISDN layer task
21 Mar 90

- e we o O me ex e W ae e e @ e e e e

ISDN interface to access basic rate digital communication.

Function declarations */

extern void

/*
token
token
token

WISDNSTASK() ;

interface mailbox to ISDN for requests */
WISDNSCOMMANDSDMB ;
WISDNSRESPONSESDMB ;
WISDNSSTATUSSDMB;

void isdnS$Sconst ructor ()

{

extern token
extern token
extern token

word

WISDNSCOMMAND $DMB;
WISDNSRESPONSE $SDMB;
WISDNS$ STATUSSDMB;
status;

/* create interface to ISDN layer */
WISDNSCOMMANDSDMB = rgScreateSmailbox (DATASTYPE, &status);
WISDNSRESPONSESDMB = rg$createSmailbox (DATASTYPE, &status);
&status);

WISDNSSTATUSSDMB = rqScreateSmailbox (DATASTYPE,

/* create ISDN layer of the workstation operating system */
rgScreateStask (LOWSPRIORITY, WISDNSTASK, DATA$SEG, STACKSPTR,
&status);

STACKSSIZE, NOSFLOATS,

} /*end isdnSconstructor()*/

/*_

word
byte
byte
word

void WISDNSTASK ()

{

Functio.:
Input
Out put
Action
Date
UpDate

word
word

extern token

WISDNSTASK
none
none

Provides access to basic rate interface.

22 Mar 90

01 May 90
fnc:
mic_mode='\0" ;
ear_mode=’'\0" ;
ear_vol=5;

numsbyteSSrecv;
status;
WISDNSCOMMAND SDMB;

while( FOREVER ) ({
num$bytes$recv =

rqSreceiveSdata (WISDNS$SCOMMANDSDMB,
&status);

&fne,

FOREVER,

128

e e ke e m



if ( numSbytes$recv != 2 )
printf("ISDN: Mailbox received -> %d \n",
num$bytes$recv);
#ifdef TRACING
printf ("FUNCTION: %u \n", £nc):
#endif

switch{ fnc ) |{
case 0 : /* z */
Send_Command (’ z’,NIL, NIL);
break;
case 6 :
call_isdn status();
break; /* v */
case 7 :
get_isdn_status();
break; /* v */
case 11 :
crn_voice = call_isdn_dial();
break; /* a */
case 12 :
call_isdn_voice_accept():
break; /* not implemented */
case 13 :
crn_voice = call_isdn_dial_disconnect{);
break; /* b */
case 14 :
crn_voice
break; /*
case 21 :
crn_data = call_isdn_connect ( RATE_64K )i
break; /*d */
case 22 :
crn_data = call_isdn_connect_accept ();
break; /* not implemented */
case 23 :
crn_data = call_isdn_disconnect( crn_data ).
breal; /* e */
ca e 24 :
crn_data = call_isdn_connect_reject ( crn_data );
break; /* £ */
case 25 :
call isdn_transmit ( crn_data );
break; /* g */
case 26 :
call_isdn_receive_wait( crn_data );
break; /* h */
case 31 :
crn_second = call_isdn_connect( RATE_l6K )
break; /* i */
case 32 :
crn_second = call_isdn_connect_accept():
break; /* not implemented */
case 33 :
crn_second = call_isdn_disconnect ( cxn_second );
break; /* j */
case 34 :
crn_second = call_isdn_connect_reject (crn_second);
break; /* k */
case 35 :
/* call_key talk( crn_second ); */
break; /* 1 */

call isdn_voice_reject {):
*/

Q




/*

1

/r - - -

/* Make an outgoing voice connection.

}

case

case

case

case

case

case

case

case

case

case

case

case

case

36 :
call_key talk ( crn_second ):; */

break; /* m */

41 ¢
crn_file = call_isdn_connect ( FILE_64K );
break; /* n */

42
crn_file = call_isdn_connect_accept ();
break; /* not implemented */

43
ctn_file = call_isdn_disconnect( cxn_file );
break; /* o */

44
crn_file = call_isdn_connect_reject ( crn_file );
break; /*p */

45
call file transmit();
break; /* q */

46 :
call _file receive_wait();
break; /* r */

48 :
autoSfile = 1;
call_file transmit ()
autoSfile = 0;
break; /* q */

49
autoSfile = 2;
call_file transmit ()
autoSfile = 0;
break; /* q */

51:
call_isdn_mute_mic(
break; /* s */

52:
call_isdn_mute_ear(
break; /* t */

53:
call_isdn_audio_vol({ ear_vol=((ear_vol+tl)%10) );
break; /*u */

54:
call_isdn_audio_vol( ear vol={(ear_ wvol-1)%10)} );
break; /* u */

)

e

mic_mode={(mic_mode+l) %2) );

ear_mode=((ear_modetl) £2) );

default:

print £ ("ISDN: unknown token -> %u \n", fnc);

/*end switch*/

} /*end while*/

Function
Input
Output
Action
Date
UpDate

/*end WISDNSTASK()*/

call isdn_dial -
none -
call reference number -

Initiates an ISDN wvoice

05 Apr 90 -

__—_*/



int call_Isdn_dial{()
{
word sStatus;

#ifdef TRACING
printf("\n Making an ISDN Voice call. \n");
#endif

T W R OASR T TR R ey Rl

. /* command byte is ’a’ to make a voice call */
: status = Send Command(’a’, NIL,NIL) ;

: if ( status < 0 )
'— print £ ("Error - Make Voice Call : %d\n", status);
return( status );

} /*end call_isdn_dial() */

[* = wm m e e e m e m m e e e et e e m m e = e e =
- Function :  call_voice_accept -
- Input : none -
- Output : none -
- Action : Accepts an incomming ISDN voice call -
- Date : 05 Apr 90 -
- UpDate :

e S

/* BAccept an incoming voice connection is not implemented on the TE
since the NT cannot initiate a call. */
void call_isdn_voice_accept()
{
printf("\n Accepting an ISDN Voice call.*** \n");
} /*end call isdn_voice_accept*/

/* = = = = o s = e et = e e m e o e e e o= e — e e e e = e = -~
- Function : call_isdn_dijal disconnect -
- Input :  none -
- Output : clears call reference number -
- Action : Disconnects an ISDN voice call -
- Date : 05 Aapr 90 -
- UpDate : -
e e e e m m wr e e = mm e e e m = e e e am e e wm e e e mm e = = i/

/* Disconnect a voice call. */

int call_isdn dial disconnect ()
{

word status;

#ifdef TRACING
printf("\n Disconnecting an ISDN Voice call. \n");
#endif
/* command byte is ‘b’ to disconnect a voice call */
status = Send_Command('b’,NIL,NIL) ;

if( status < 0 )
| print f ("Error - Disconnect Voice Call : %d\n", status);
| return( 0 ) ;
} /*end call isdn_dial_disconnect*/




132

/*-—--—---——-——---——-——---—-—-— ——————

Function call_isdn _voice_reject -

Input : none -
- Qutput : clears call reference number -
- Action : Rejects an ISDN voice call -
- Date : 05 Apr 90 -
- UpDate : -
e . e - - - e T
/* Reject an incoming voice connection. x/

int call_isdn_voice_reject ()

{
word status;

#ifdef TRACING
printf ("\n Rejecting an ISDN Voice call. \n");
#endif
/* command byte is 'c’ to reject a voice call */
status = Send_Command {’c’,NIL, 6 NIL);

if( status < 0 )
printf("Error ~ Reject Voice Call : %d\n", status);
return( 0 });
} /*end call_isdn_voice_reject*/

Jh = = = = = = e = 4 e .~ oo - e e e e . e m e e -
- Function : call_isdn_connect -
- Input : rate adaption -
- Output : call reference number -
- Action : Initiates an ISDN data call -
- Date : 05 Apr 90 -
- UpDate : -
e e e e e e e . - - Y
/* Establish a data connection on the B-channel. * /
int call_isdn_connect ( rate )

int rate;
{

word status;

#ifdef TRACING
printf("”\n Initiating an ISDN Data call. \n");
#endif
if( rate == RATE_64K )
/* command byte is 'd’ to make a 64K data call */
status = Send_Command(’d‘,NIL,NIL);

else if ( rate == RATE_16K )
/* command byte is ‘i’ to make a 16K second data call */
status = Send Command(’ i’ ,NIL,NIL);

else if ( rate == FILE_64K )
/* command byte is 'n’ to make a 64K file transfer data call */
status = Send_Command{(’n’,NIL,NIL);

else
printf("Unknown rate specified\n");

if( status < 0 )
printf("Error - Make Data Call : 3%d\n", status);
return{ status );
} /*end call_isdn_connect*/



133

/* - e = em e m o e e e e = o em o = e owm = em e m e em e = mm e e e
- Function :  call_isdn_connect__accept -
- Input : none -
- Output : call reference number -
- Action : Accepts an ISDN data call -
- Date : 05 Aapr 90 -
- UpDate : -

....--_---__—--.-___.-_.._-....-—_..-___—*/

/* Accept an incoming data connection is not implemented on the TE
since the NT cannot initiate a call. */
int call_isdn_connect_accept ()
{
printf("\n Accepting an ISDN Data call,*** \n");
} /*end call_isdn_connect_accept*/

/*-———---—-——_-.—----_-—__...___—__..__
- Function : call isdn_connect_reject -
- Input : CRN -
- Output : call reference number -
-~ Action : Redjects an ISDN data call -
- Date : 05 Apr 90 -
- UpDate : -
__..—__..__..-_..-_._--___-__.._..--_...._-k/

/* Reject an incoming data connection. * /

int call_ isdn connect_reject( id )

int id;

{

word status;

#ifdef TRACING
printf("\n Rejecting an ISDN Data call. \n"});

#endif

if ( id == crn_data )
/* command byte is ff’ to reject a 64K data call */
status = Send Command('f’, NIL,NIL) ;

else if{ id == crn_second )
/* command byte is 'k’ to reject a 16K second data call */
status = Send_Command({'k’, NIL,NIL) ;

else if{ id == crn_file )
/* command byte is ’p’ to reject a file data call */
status = Send_Command(‘'p’ ,NIL,NIL) ;

else

printf ("Unknown CRN specified\n") ;

if ( status < 0 )
printf("Error - Data Call Reject : %d\n™, status):
returni0) ;
} /*end call_isdn_connect_reject*/

/X == = === m e = = e mo— me = e === = m = = e = - s = -
- Function :  call_isdn_disconnect -
- Input : call refernce number -
- Output : clear call reference number -
- Action : Disconnects an ISDN data call -
~ Date : 05 Apr S0 -
- UpDate : -

- r e e e mm e me e e m e e = e e e = e e m e e = = = =~ = %)



134

/* Disconnects a data connection. */
int call_isdn_disconnect( id )
int id;
{
word status;
word rep_stat;

#ifdef TRACING
printf("\n Disconnecting an ISDN Data call. \n");
#endif

if ( id == crn_data ) {
/* command byte is 'e’ to reject a 64K data call */
rep_stat = Send_Command(’e’,NIL,NIL);
rg$send$data (WISDNSSTATUSSDMB, &rep_stat, 2, &status);

}

else if{ id == crn_second )
/* command byte is ’'7j’ to reject a 16K second data call */
status = Send_Command(’j’,NIL,NIL);

else if( id == crn_file )
/* command byte is 'o’ to reject a file data call */
status - Send Command(’o’,NIL,NIL);

else
printf ("Unknown Call Ref. No. specified\n");

it ( status < 0 )
printf ("Error - Disconnect Data Call : %d\n", status);
return(0);
} /*end call_isdn_disconnect*/

/% — o et e e e e e e e e m e e e e e e e = e = = e e = -
- Function : send isdn_transmit -
- Input : none -
- Output : none -
- Action : Sends a string of characters -
- Date : 05 Apr 90 -
- UpDate : 01 May 90 -

- e e e m e m e e e e e o mm e e e e e e m m e e m e o oam m e = e */

/* Transmits the buffer of characters entered from the user interface. */
void send_isdn_transmit ()
{

word bfr lgth;

printf("Please enter data\n");
gets (bfr);

if ( strlen(&bfr[0]+1) < BURSTSSIZE )
bfr 1gth = strlen(&bfr(0)) + 1;
else
bfr_lgth = BURSTSSIZE;
#ifdef TRACING
printf("Length sent : %u\n",bfr_lgth);
printf("Bfr sent : %s\n", bfr});
#endif

/* send length of string */
Sends$Word( bfr_lgth );
/* send actual data string */



Y
s

Send$Buf ( bfr );
} /*end send_isdn_transmitx*/

/* _________________________________
- Function : call_isdn_transmit -
- Input : call reference number -
- Output : none -
- Action : Sends the command request for a data transfer -
- Date : 05 Apr 90 -
- UpDate : -

/* Sends the command request for a data string transfer. */
void call_isdn_transmit( id )

word id;
{

word status;

#ifdef TRACING

printf ("\n Transmitting command in ISDN Data call. \n"):
#endif

if( id == crn_data )
/* command byte is ‘g’ to transmit data on a 64K data call
status = Send_Command(’g’,NIL,NIL);

else if( id == crn_second )
/* command byte is ’1’ to transmit data on a 16K second data call
status = Send_Command(’l’,NIL,NIL);

else
printf ("Unknown Call Ref. No. specified\n");

if( status < 0 )

printf ("Error - Transmit Data : %d\n", status);
} /*end call_isdn_transmit*/

/X = o m e e e e e m e e e m e — e = e e e e m = - e - - - - - -
- Function : call file transmit -
- Input : call reference number -
- Output : none -
- Action : Sends the command request for a file transfer =
- Date : 05 Apr 90 -
- UpDate : 12 Apr 90 -

_____ —..—-_...._..._k/
/* Sends the command request for a data file transfer. */

void call_file transmit ()

{

word status:

#ifdef TRACING

printf ("\n Transmitting file command in ISDN Data call. \n");
#endif

/* command byte is ’'q’ to transmit a file on a 64K data call */
status = Send_Command(’q’,NIL,NIL):

if( status < 0 )

printf ("Error - Transrmit FILE TRANSFER : %d\n", status);
} /*end call_file_transmit*/

135

*/

*/



136

/¥ = = = = 0 - e e e e m e =t e e e s . e - e e .- = - - -
- Function : send_file_transmit -
- Input : aone -
- Output : none -
- Action : Sends the data file for a file transfer -
- Date : 05 apr 90 -
- UpDate : 01 May 90 -/
_________________________________ *
/* Transmits the buffer of characters specified by the user’s filename. */
void send_file_transmit ()
{
word numread;
FILE *fp; /* file pointer to open file */

byte filename([81]; /* name of file to open */
byte done;

if( tauto$file ) {
scanf ("%c", &done) ; /* clear buffer */

printf ("Please enter the name of the file to traasmit: ");

gets(filename);
}
else if( autoSfile == 1 )
strcpy(filename, "helpfile.dat");
else
strcpy (filename, "whofile.dat");

wvhile( (fp=fopen(filename, "r")) == NULL) {
printf ("Error opening file: %s\n",filename);

printf ("Please enter the name of the file to transmit: ");

gets (filename);
} /*end while*/

done = FALSE;

while( !done) {
numread = fread( (char*)bfr,sizeof (char),BURSTSSIZE, £p);
/* transmit buffer length */

#ifdef TESTING

wait (),

printf ("numread: %d\n",numread):;
¥endif

Send$Word (numread) ;

/* transmit buffer */
Send$SNum$Bytes (bfr, numread):

#ifdef TESTING

wait ();

printf ("ISDN: yes buffer has been sent\n");
#endif

if ( numread < BURSTSSIZE )
if( feof(fp) != 0 )
done = TRUE;
} /*end while*/

#ifdef TESTING

wait ();

printf ("about to close file\n"):
#endif



137

/* end of file when numread < BURSTSSIZE */
fclose(fp):
} /*end send_file_transmit*/

J* = = = e e e e e e e e e e m e m e mm m o= - - =
- Function : call_isdn_receive_wait -
- Input : call refernece number -
- Output : none -
- Action : Sends the command request to receive data -
- Date : 05 Apr 90 -
- UpDate : 06 Apr 90 -
_______________________________ - - %/

/* Receives the buffer of characters sent by the user. */
void call_isdn_receive_wait ( id )

word id;
{

word status;

#ifdef TRACING
printf("\n Transmitting receive command in ISDN Data call. \n"):
#endif
if( id == crn_data )
/* command byte is ’'h’ to receive data on a 64K data call */
status = Send Command('h’,NIL,NIL);

else if( id == crn_second )

/* command byte is 'm’ to receive data on a 16K second data call */
status = Send_Command('m’,NIL,NIL):

else
printf ("Unknown Call Ref. No. specified\n");

if ( status < 0 )
printf ("Error - Receive Data : td\n", status);
} /*end call_isdn_receive_wait*/

/¥ = = = = e o o D e e e e e m e e e e e e = e m e e o - -
- Function : call_file_recelive_wait -
- Input : call reference number -
- Output : none -
- Action : Sends the command request to receive a file -
- Date : 05 Apr 90 -
- UpDate -

/* Send the requesc command to receive a data file. */
void call_file_receive_wait ()
{

word status;

#ifdef TRACING

printf ("\n Sending the file receive command in ISDN Data call. \n");
#endif

/* command byte is ’'r’ to receive a file on a 64K data call */

status = Send_Command(’r’,NIL,NIL);

if( status < 0 )

printf ("Error - Receive FILE TRANSFER : %d\n", status);

} /*end call_file receive_wait*/



138

/ﬂ _________________________________
- Function : send_file_receive -
- Input : none -
- Output : none -
- Action : Receives the data during a file transfer -
- Date : 05 Apr 90 -
- UpDate H 12 Apr 90 :/
/* Receives tic file sent by the user. */
char header[HEADSSIZE];
void send_file receive()
{
extern token WISDNSRESPONSESDMB;
extern byte WRCHSBUFS$RING [WRCHSBUFS$SSIZE] ;
extern word WRCHSBUFSOUT;
FILE *fp; /* file pointer to open file */
byte filename[81]; /* name of file to open */
word bytecount,i;
word status;
wait {);

printf("Please enter the name of the file to receive: ");
gets(filename) ;
printf(*/n");

while( (fp=fopen(filename, "w")) == NULL) {
printf("Error opening file: %s\n",filename);
printf("Please enter the name of the file to receive: ");
gets(filename);
printf("/n");

} /*end while*/

/* receive one file buffer request */
rqSreceiveSdata (WISDNSRESPONSESDMB, header, FOREVER, &status);

while( (bytecount = * (int *) &header[1]) == BURSTS$SIZE ) {
fwrite { §WRCHSBUFSRING [WRCHSBUFSOUT], sizeof (char), bytecount,
fp):
for (i=0; i<bytecount; i++) |
/* wrap around index */
WRCHSBUFSOUT +=1;
if ( WRCHSBUFSOUT == WRCHS$BUFS$SSIZE )
WRCHS$BUFSOUT = 0;

/* receive one file buffer request */
rgq$receive$data (WISDNSRESPONSESDMB, header, FOREVER, &status);
} /*end while*/

fwrite( &WRCHSBUFSRING [WRCHSBUFS$OUT], sizeof (char), bytecount, £p):
for (i=0; i<bytecount; i++) |

/* wrap around index */

WRCHS$BUF SOUT +=1;

if ( WRCHSBUFSOQUT == WRCHSBUFS$SIZE )

WRCHSBUFSOUT = 0;

)
fclose(fp);
printf ("You have just received the following file:\n");
display_file(filename):

} /*end send file receive*/



139

[* = = = = = e e e o o o D et e e e e e e e e o e e e = e = -
- Function : display_file -
- Input : filename -
- Output : none -
- Action : writes the data file to the standard output -
- Date : 12 Apr 90 -
- UpDate : 90 -

_________________________________ */
/* Writes the data file specified by the user to the standard output
device */
void display file( filename )

byte Iilename(81]: /* name of file to open */
{

word numread,i;
FILE *fp; /* file pointer to open file */

if ( (fp=fopen(filename, "r")) == NULL) {
printf ("Error opening file: %s\n",filename);
printf ("Please enter the name of the file to display: "):
gets(filename);

1

while( feof (fp) == FALSE ) {
numread = fread( (char*)bfr,sizeof (char),BURSTSSIZE, fp)
for(i=0; i<numread; i++}
printf ("%c”,bfr(il):
} /*end while*/
printf("/n");
fclose(fp):
) /*end display file*/

/* _________________________________
-~ Function : call_isdn_audio_volume -
- Input : volume -
- Output : none -
- Action : Adjusts earpiece volume gain -
- Date : 05 Apr 90 -
- UpDate -
_________________________________ h/

/* Adjust earpiece volume gain. */

void call_isdn_audio_vol ( volume )
word volume;
{

word status;

#ifdef TRACING
printf(“\n Adjusting the Earpiece volume. \n");
#endif
status = Send Command{’u’,NIL,voiune);
if ( status < 0 )
printf ("Error - Adjust Volume : %d\n", status);
} /*end call_isdn_audio_vol*/



140

/t ---------------------------------
- Function : call isdn _mute_mic -
- Input : mode -
- Output : none -
- Action : Enables/Disables handset microphone -
- Date : 05 apr 90 -
- UpDate -
_________________________________ */

/* Enable/Disable the handset microphone. 0=ON, 1=0FF */

void call_isdn_mute_mic( mode )

byte mode;
{

word status;
#ifdef TRACING

printf ("\n Controlling the handset microphone. \n");
#endif

status = Send_Command(’s’,mode,NIL);

if( status < 0 )

printf ("Error - Mute Microphone : %d\n", status):

) /*end call_isdn_mute_mic*/

/t _________________________________
- Function : call_isdn_mute_ear -
- Input : mode -
- Output : none -
- Action : Enables/Disables handset earpiece -
- Date : 05 Apr 90 -
- UpDate : -
_________________________________ */

/* Enable/Disable the handset earpiece. 0=0ON, 1=CFF */

void call_isdn_mute_ear( mode )

byte mode;
{

word status;
tifdef TRACING

printf ("\n Controlling the handset earpiece. \n");
#endif

status = Send_Command(’'t’,mode,NIL);

if( status < 0 )

printf (*Error ~ Mute Earpiece : %d\n", status):

} /*end call_isdn_mute_ear*/

/A = e e e e e e e e e m e e e e e m m e m e e e e e e e m = -
- Function : Send_Command -
- Input : ISDN command, param BYTE, param WORD -
- Output : status -
- Action : Sends ISDN commands throuch the PDLC -
- Date : 05 Apr 90 -
- UpDate : 06 Apr 90 -
_________________________________ */

/* Sends ISDN commands through the PDLC. */
int Send Command( cmd, data_val, num val)
byte cmd;
byte data_val;
word num_val;

extern token WISDNSRESPONSESDMB;
extern word WRCTSBUFSEOB;



141

extern word WRCHSBUFS$OUT;
word requestS$token;
word status;

/* send the command */
SendS$Byte( cmd ) ;

/* receive parameters for certain function call commands */
if( (emd == 's’) || (cmd == 't") )

/* send the parameter data BYTE */

Send$Byte( data_val );

else if( (cmd == 'u’) || (cmd == "v’) )
/* send the parameter data WORD */
Send$Word ( num_val };

switch( emd ) {

case 'g’: case '1': send_isdn_transmit ()
case 'q’: send_f?igit;ansmit();
case 'r’: send_f?izi:éceive();
case 'z': exit(O?feak;

break;

} /*end switch*/

/* receive status information */
rgSreceive$data (WISDNSRESPONSESDMB, header, FOREVER, &status);
requestStoken = * (int *) gheader([11:

if ( header (0] == STATSREQ )
return(requestsStoken);
else if( header[0] == BUFSREQ ) {
printf ("Out of synchronization.\n");
Display$Buf ();
/* receive status information */
rgqSreceiveSdata (WISDNSRESPONSESDMB, header, FOREVER,
&status):
requestStoken = * (int *) &header{l];
return(requeststoken);
}
else
printf ("ISDN: unknown cmd returned %c\n", header([1]):

) /*end Send_Command*/

/* __________________________________
- Function : call isdn_status -
- Input : none -
- Output : none -
- Date : 31 Oct 89 -
- UpDate : 01 May 90 -

S - .- e e o m e e e = e = e e = e o e i/

/* Display the status of all connections using local information. */
void call_isdn_status()

{

int status;

if( crn_voice == 0 )
printf ("Voice connection is INACTIVE.\n");



else {
/* command byte is ‘v’ to obtain status information */
status = Send Command({(’v’,NIL,crn_voice);
if( status > 0 )
printf ("Voice connection is ACTIVE.\n");
else {
printf ("Voice connection is INACTIVE.\n");
/* update crn information */
crn_veice = 0;
}

}

if( crn_data == 0 )
printf ("Data (64 Kbps) connection is INACTIVE.\n");
else {
status = Send_Command(’v’,NIL,crn_data);
if( status > 0 )
printf ("Data (64 Kbps) connection is ACTIVE.\n");
else |
printf ("Data (64 Kbps) connection is INACTIVE.\n"):
/* update crn information */
crn_data = 0;
]

}

if{ crn_second == 0 )
printf (*Second data (16 Kbps) connection is INACTIVE.\n");
else |

status = Send_Command(’v’',NIL,crn_second) ;
if( status > 0 )

printf ("Second data {16 Kbps) connection is ACTIVE.\n");

else |

142

printf ("Second data (16 Kbps) connection is INACTIVE.\n");

/* update crn information */
crn_second = 0;
)

}

if( crn_file == 0 )
printf("File transfer data connection is INACTIVE.\n");
else |
status = Send Command(’v’,NIL,crn_file);
if( status > 0 )
printf("File transfer data connection is ACTIVE.\n"):;
else {
printf ("File transfer data connection is INACTIVE.\n");
/* update crn information */
crn_file = 0;
}

}

} /*end call_isdn_status*/

/R = = e e e m ke e e e o m e e e e e e e e = e e e e = e e e e =
- Function : get_isdn_status -
- Input : none -
- Output : none -
- Date : 12 Apr 90 -
- UpDate : 16 Apr 90 -

/* Display the status of all connections using local information. */



143

void get_isdn_status{()
{
int status;

if( crn_voice != 0 ) {
/* command byte is ‘v’ to obtain status information */
status = Send Command(’v’,NIL,crn_voice);:
if ( status <= 0 )
/* update crn information */
crn_voice = 0;

}

if( crn_data != 0 ) {
status = Send_Command(’v’,NIL,crn_data):
if ( status <= 0 )
/* update crn information */
crn_data = 0;
}

if( crn_second != 0 ) |
status = Send_Command(’v’,NIL,crn_second);
if { status <=0 )
/* update crn information */
crn_second = 0;

}

if( cxrn_file != 0 ) {
status = Send_Command(’v’,NIL,crn_file);
if ( status <=0 )
/* update crn information */
crn_file = 0;
}

} /*end get_isdn_status*/

/*

end file isdn.c */

DR o PP T e



name mouse

Project
Sub-Project
File
Author
Date
Update

Se %s Ne Sa he e cs N .

~

R e [

ISDN Personal Workstation

Hardware Interrupt and PPI Support
mouseint .asm

Zenon Slodki

13 Feb 1990

23 Mar 1990

— e - —— —

; declaration of external RMX Nucleus functions */
extrn rqgsignalinterrupt:far

ASSUME DS:support DATA, SS:STACK

STACK STACKSEG 400

LEVELA EQU 24H ;IRQ12

LEVELB EQU 23H ; IRQ11

LEVELS EQU 27H ; IRQ1S

PORTCT EQU 3A3H ;Port C 1/0 address
RSTINTB EQU OCH ;00001100

RSTINTA EQU OEH ;00001110
support_DATA SEGMENT rw public

errora DW 0

errorb DwW 0

errors DW 0

support DATA ENDS

_TEXT SEGMENT eo public
ASSUME ds:support_DATA, ss:STACK

; This is the INTERRUPT HANDLER for any spurious interrupts on the slave

PIC.

; The function of this handler is to signal its supporting interrupt task.

PUBLIC spurhand
spurhand PROC FAR

push bp
mov bp, sp
push ax
push ds

mov  ax, support_DATA

mov ds, ax

mov ax, LEV
push ax
lea ax,err
push ds
push ax

ELS

ors

put the address of the data
segment into data segment regq.
first parameter is the interrupt
level value

~e %o N n

; second parameter is the error
; status return pointer

call rgsignalinterrupt ; notify interrupt service task

pop ds
pop ax
pop bp
iret

spurhand ENDP

; This is the INTERRUPT HANDLER for the ISDN MOUSE Int A.

: The function of this handler is to signal its supporting interrupt task.

PUBLIC intahand

intahand PROC FAR
push bp
mov bp, sp

- b e T A



145

push ax

push dx

push ds

mov ax, support DATA ; put the address of the data
mov ds, ax ; segment into data segment reg.

; disable further INT A interrupts by reseting the interrupt hold
; flip-flop

mov al, RSTINTA

mov dx, PORTCT

out dx, al

mov ax, LEVELA ; first parameter is the interrupt
push ax ; level value

lea ax,errora

push ds ; second parameter is the error
push ax ; status return pointer

call rgsignalinterrupt ; notify interrupt cervice task
pop ds

pop dx

pop ax

pop bp

iret

intahand ENDP

This is the INTERRUPT HANDLER for the ISDN MOUSE Int B.

The function of this handler is to signal its supporting interrupt task.
PUBLIC intbhand

intbhand PROC FAR

~o we

push bp

mov bp, sp

push ax

push dx

push ds

mov ax, support DATA ; put the address of the data
mov ds, ax ; segment into data segment req.

; disable further INT B interrupts by reseting the interrupt hold
; flip-flop

mov al, RSTINTB

mov dx, PORTCT

out dx, al

mov ax, LEVELB ; first parameter is the interrupt
push ax ; level value

lea ax,errorb

push ds ; second parameter is the error
push ax ; status return pointer

call rgsignalinterrupt ; notify interrupt service task

pop ds
pop dx
pop ax
pop bp
iret

intbhand ENDP

; This procedure sends a byte of data to the specified port address. Both
; parameters are passed on the stack.
PUBLIC output
output PROC FAR
push bp



output ENDP

mov
push
push
mov
mov
out
pop
pop
pop
ret

_TEXT ENDS

END

dx, [bp+6]
al, [bp+8]
dx, al

dx

ax

bp

146



-

LYSE PRE YOI TR TR TH TR 1)

.y % e

147

name pdlcint

Project : ISDN Personal Workstation |
Sub-Project : Parallel Communication Protocol |
File : pdlcint.asm |
Author : Zenon Slodki |
Date : 29 Mar 1990 |
Update : 11 Apr 1990 !

|
-------------------------------------------------------------------- (]

declaration of external RMX Nucleus functions */

extrn rqgsignalinterrupt:far
extrn rgexitinterrupt:far
extrn error_hand:far

ASSUME DS:pdlcint_ DATA, SS:STACK
STACK STACKSEG 400

WRCHBUFSIZE EQU 9000
WTRHBUFSIZE EQU 9000

PORTA EQU 03AO0H

PORTB EQU 03AlH

RECVLEVEL EQU 58H

TRANLEVEL EQU 22H

HEADSIZE EQU 3

READYMODE EQU 0

pdlcint DATA SEGMENT rw public

’

.
’

Receiver buffer declarations

PUBLIC WRCHBUFIN

WRCHBUFIN DW 0 ; input pointer to receiver buffer
PUBLIC WRCHBUFOUT

WRCHBUFOUT DW 0 ; output pointer to receiver buffer
PUBLIC WRCHBUFRING

WRCHBUFRING DB WRCHBUFSIZE DUP(?) ; the receiver ring buffer
PUBLIC WRCTBUFEOB

WRCTBUFEOB DW 0 ; end of buffer pointer for recv,.
PUBLIC WRCHHEADGLB

WRCHHEADGLB DB 3 DUP(?) ; receiver header

PUBLIC WRCTMODEGLB

WRCTMODEGLB DW 0 ; receiver modes

PUBLIC WRCTCOUNTGLB

WRCTCOUNTGLB DW 0 ; byte counter for header

!,

.
.

Transmitter buffer declarations

PUBLIC WTRHBUFIN

WTRHBUFIN DW 0 ; input pocinter to transmitter buffer
PUBLIC WTRHBUFOUT

WTRHBUFOUT DW 0 ; output pointer to transmitter buffer
PUBLIC WTRHBUFRING

WTRHBUFRING DB WTRHBUFSIZE DUP{?) ; the transmitter ring buffer
PUBLIC WTRTBUFEOB

WTRTBUFEOB DW 0 ; end of buffer pointer for trans.
error DW O

pdlcint_DATA ENDS

_TEXT SEGMENT eo public



ASSUME

ds:pdlcint_DATA, s8s:STACK

148

; This is the RECEIVER INTERRUPT HANDLER which r¢ads the data byte from
; PORT A then places the data into a ring buffer. Next it signals the

; interrupt service task to complete the processiug.

PUBLIC WRCHTASK
WRCHTASK PROC FAR

push
mov
push
push
push
push
mov
mov
mov
in
cmp

jne

bp
bp, sp
ax
dx
si
ds

ax, pdlcint_DATA

ds, ax

dx, PORTA

al,dx

WRCTMODEGLB, READYMODE

BUFMODE

; header processing

mov
mov
inc
mov
cmp
je

jmp

si, WRCTCOUNTGLB
WRCHHEADGLB([si],al
si

WRCTCOUNTGLB, si
si, HEADSIZE

done

moreinfo

; buffer processing

BUFMODE:
mov
mov
inc
cmp
jne
Xor

not_wrap:
mov
cmp
je

si, WRCHBUFIN
WRCHBUFRING([si],al
si

si, WRCHBUFSIZE
not_wrap

si,si

WRCHBUFIN, si
si, WRCTBUFEOF
done

e %o e %o wo W,

e we W s

~e

e we e Ny we N

~e we

; the handler must send an end of interrupt

moreinfo:
mov

push
lea

push
push
call

jmp

done:
mov
interrupt
push
lea
push
push

ax, RECVLEVEL

ax
ax,error

ds

ax

rgexitinterrupt
fin
ax, RECVLEVEL

ax
ax,error

ds

ax

e %o Wy

~

.o

put the address of the data
segment into data segment reqg.
get port address

read data byte

determine how to interpret
data

get header pointer

store byte in header
adjust pointer

update header pointer
received complete header?

get buffer pointer

store byte in receiver buffer
adjust pointer

wrap around buffer pointer
not wrapping so jump

yes, reset buffer pointer

save updated buffer pointer
received complete buffer?

signal to the PIC

first parameter is the
interrupt
level value

second parameter is the error
status return pointer

send an end of interrupt
signal

first parameter is the
level value

second parameter is the error
status return pointer

[ L —



call rqgsignalinterrupt
fin:

pop ds

pop si

POpP dx

pop ax

Pop bp

iret

WRCHTASK ENDP

149

; notify interrupt service task

; This is the TRANSMITTER INTERRUPT HANDLER which sends the data byte from
: PORT B. It sends a byte at a time until the buffer becomes empty, then
; it notifies the interrupt task that the buffer has been completely sent.

PUBLIC WTRHTASK
WTRHTASK PROC FAR

LT PR PR 1

..~

~e

we “e we N

.
’

.
’

.
’

’
.
.

we we we w,

push bp

mov bp, sp

push ax

push dx

push si

push ds

mov ax, pdlcint_DATA

mov ds, ax

mov si, WTRHBUFOUT

cmp WTRHBUFIN, si

je intrans_error

Xor ax,ax

mov al,WTRHBUFRING([si]

mov dx, PORTB

out dx,al

inc si

cmp si,WTRHBUFSIZE

jne neg_wrap

Xor si,si
neg_wrap:

mov WTRHBUFOQUT, si

cmp si,WTRTBUFEOB

je last_byte
; the handler must send an end of interrupt

mov ax, TRANLEVEL

push ax

lea ax,error

push ds

push ax

call rgexitinterrupt

jmp fin2
last_byte:

mov ax, TRANLEVEL

push ax

lea ax,error

push ds

push ax

put the address of the data
segment into data segment reg.
get buffer pointer

empty buffer error check

send this byte
get port address
send data byte

adjust buffer pointer
wrap around buffer pointer
not wrapping so jump
yes, reset buffer pointer
update buffer pointer

is this the last byte?

yes, so signal$interrupt
signal to the PIC

first parameter is the
interrupt

level value

second parameter is the error
status return pointer

send an end of interrupt
signal

first parameter is the
interrupt

level value

second parameter is the error
status return pointer



150

call rqgsignalinterrupt ; notify interrupt service task
fin2:

pop ds

pop si

pop dx

pop ax

pop bp

iret

WTRHTASK ENDP

’

;
intrans_error:

call ip_load ; place the ip on the stack
ip load:

push cs

mov ax,1 ; error handler condition code

push ax ; return this value

call error_hand goto a C routine

_TEXT ENDS

END




hd ek ttiant

I Y

L MRATTEe

o WEIRATYACY # n

IBM PC ISDN Server Software Listing

PAGE, 132
NAME cint
] e e e (]
| Author : Zenon Slodki |
| Project : Distributed ISDN communication |
;| File : cint.asm !
;] Nate : 08 Dec 1989 |
: Update : 16 Apr 1990 |
i Version ;1 |
| |
0 T e btk bttt Dl [l
Description:

; This is a stand alone routine that sends data to the

H PC’s PPI using an interrupt handler and storing data in a

; circular buffer.

H These routines are based on ’‘talk’ by Ray Duncan, Advanced MSDOS.
o}

Macros
SCall MACRO DosFunct ; calls the Operating System

push ax
mov ah, DosFunct
int 21h
pop ax
ENDM

Write MACRO Char ; displays one character
push dx
mov dl, Char ; destroys DL
0s8Call 2
pop dx
ENDM

Wr_str MACRO Str_pnt ; uses DOS call to display string
push dx
mov dx, OFFSET Str_pnt ; DS:DX point to string
0S8Call 09%h ; Print String
pop dx
ENDM

OPort MACRO Port,Val
push dx
mov dx,Port
mov al,Val
out dx, al
pop dx
ENDM

IPort MACRO Port
push dx
mov dx, Port
in al,dx

pop dx
ENDM
H constants
LF EQU 0ah
CR EQU 0dh



152

End st EQU s’ ; DOS end of string

Pic mask EQU 21h ; port address, 8259 mask register
Pic_eoi EQU 20h ; port address, 8259 eoi instr. control
reg

Int_mask EQU 20h ; Mask for B259 IRQS (receiver)

Buf len EQU 9000 H

com_int EQU 0dh ; interrupt no. for IRQ5

; Port constants

.
’

Base_port EQU 03a0h
Port_A EQU Base_port + 0
Port_B EQU Base_port + 1
Port C EQU Base_port + 2
Port Ct EQU Base_port + 3
Run_mode EQU 10110100b ; port A input, port B output, Mode 1
Int A EQU 00001001b ; input interrupt enable for port A
Int’ B EQU 00000101b ; output interrupt enable for port B
Data_out EQU 90000001b ; determine when output buffer is
; available
; 76543210

DGROUP GROUP _DATA

_TEXT SEGMENT byte public ’CODE’
ASSUME cs: TEXT,ds :DGROUP

; Procedure replaces the IRQ5 interrupt vector with a custom
; interrupt handler and enables interrupts from the 8259.
PUBLIC _Install

Install PROC FAR
- push bp ; preserve bp in order to use the bp
mov bp, sp ; to access parameters on the stack
push ax
push dx
push ds
mov al,com_int ; get interrupt handler address
O0SCall 35h ; ES:BX = addres
mov intc_seg,es ; save segment
mov intc_offs,bx ; save offset
mov dx,offset int_han ; address of custom intrp. handler
push Ccs
pop ds
mov al,com_int ; interrupt number
OSCall 25h ; set address of the new custom interrupt
; handler routine for specified machine
; intrp
pop ds
in al,Pic_mask ; read current 8259 intrp. mask
and al,not Int _mask ; reset mask for this Com port
out Pic_mask,al ; write back B259 intrp. mask

; 1nitialize FF! to mode 1 and enable interrupts
OPort Port_Ct, Run_mode
CFore Port _Ct, Int_A
OPort Port_Ct, int_B



153

popr dx ; restore registers and return
pop ax

pop bp

ret

_Install ENDP

~e

~e

; Procedure restores the previous IRQ5 interrupt vector
; and enables interrupts from the 8259.

PUBLIC _UN_Install

_UN_Install PROC FAR

push bp ; preserve bp in order to use the bp
mov bp, sp ; to access parameters on the stack
push ax

push dx

in al,Pic_mask ; read current 8259 intrp. mask

or al,Int_mask ; set mask for this Com port

out Pic mask,al : write back 8259 intrp. mask

push ds

mov dx, intc_offs ; saved offset

mov ds,intc_seg ; saved segment

mov al,com_int ; interrupt number

0SCall 25h ; restore original addr. of intrp. handler
pop ds

pop dx ; restore registers and return

pop ax

pop bp

ret

_UN_Install ENTCP

; Procedure int _han is a custom interrupt handler for the secrial port
interrupt
; which places received characters into a ring buffer.

int_han PROC FAR
sti ; turn interrupts back on
push ax ; save all necessary reginters
push bx ;
push dx ;
push ds ;
mov ax, seg DGROUP ; put the address of the data soqgment  into
mov ds, ax ; the data segment register
mov dx,Port A ;
in al,dx ; read this character
cli ; clear interrupts for puinter
; manipulation
mov bx,asc_in ; get buffer pointer
mov [_Asc_bufitbxz],al ; store this character
inc bx ; adjust pointer
cmp bx,3uf_len ; wrap around buffer pointer
jne no_wrap ; no, Jjump
Xor bx,c« ; yes, reset buffer pointer
no_wrap:

- mov asc_in, bx ; save updated hbuffer pointer
sti
call rmz_delay ; Give rmz a chance tr catch jts hreath
mov al,20h ; send NEOI ter 8259

out Pic_eoi al ;



; restore all registers

pop
pop
pop
pop
iret
int_han ENDP

.
’

ds
dx
bx
ax

154

. wa w. w,

; exit interrupt handler

; Procedure Send Buf send a string of characters through the port.
; The string must terminate in a 0 (ASCIIZ).
; This terminating 0 byte is sent.

PUBLIC _Send_Buf

_Send__ Buf PROC
push
mov
push
pushf
push
push
push
push

H mov ax,

mov

mov
cld
mov
string_loop:
lodsb
or
jz
push
inner_loop:
IPort
and
jz
cail
pop
ObPort
jmp
end_string:
IPort
and
jz
call
Xxor
OPort
pop ds
pop
pop
pop
popf
pop
pop
ret
_Send_Buf ENDP

FAR
bp
bp, sp
si
ax
cX
dx
ds

seg DGROUP
ax, [bp+8]
ds, ax
si, [bp+6]
al,al

end_string
ax

Port_C
al,Data_out
inner_loop

out delay
ax
Port_B,al

string_loop

Port_C
al,bPata_out
end_string
out_delay
ax,ax

Port B,al

dx
cX
ax

si
bp

; preserve bp in order to use the bp
; to access parameters on the stack

pi.t the address of the data segment into

; put the address of the data segment into

; the data segment selector is after the
; offset on the calling stack
; the data segment register

; get starting address of the string
; get a character into the al register

; check for terminating O byte
; reached the end of the string

; Used as a necessary delay

; transmit the character byte
; continue with next character

;i Used as a necessary delay
; transmit the zero character byte

; restore registers and return

AT D 3 pan S

O P T



; Procedure out_delay used

out_delay PROC
push
mov
nop
dec
jnz
pop
ret
out_delay ENDP

uphere :

Se Se W

rmx_delay PROC
push
push
mov
mov
nop
dec
jnz
dec
jnz
pop
pop
ret
rmx_delay ENDP

gomere :
upmore :

; Procedure Buf stat test whether
; in the ring buffer. Returns al

NEAR
ax
ax,04fh

ax
uphere
ax

Procedure out_delay used as

NEAR
ax
bx
ax,01ffh
bx,0fh

bx
upmore
ax
g more
bx
ax

; if nothing waiting.

PUBLIC

_Buf_stat PROC
push
mov
mov
sub
pop
ret

_Buf_stat ENDP

.
’

.
.

Buf_stat

FAR

bp

bp,sp
ax,asc_in
ax,asc_out
bp

155

as a wait state generator

save all necessary registers
0fh good but 01 is too low

restore all registers

a wait state generator

; save all necessary registers

restore all registers

characters from the port are waiting

in the AX register if true else 0

preserve bp in order to use the bp
to access parameters on the stack

; Procedure Receive_Byte removes characters from the interrupt handler’s
; ring buffer & increments the buffer pointer appropriately. Returns
; character in AL.

.
!

.
’

.
’

.
’
.
!
.
v

!

.
’

PUBLIC _Receive_Byte
_Receive Byte PROC FAR
push bp
mov bp, sp
push bx
nc_chr: mov bx,asc_out
received
cmp bx,asc_in
je no_chr
xor ax,ax
mov al, [bx+_Asc_buf] ;
inc bx
cmp bx,Buf_len

.
+

preserve bp in order to use the bp
to access parameters on the stack
save all necessary registers

if no char waiting,loop until one is

clear the accumulator
store the received byte in AL



yes_chr:

jne
xXor
mov
pPop
pop
ret

156

yes_chr H

bx,bx ; reset ring pointer
asc_out, bx ; store updated pointer
bx ; restore all registers
bp

_Receive_Byte ENDP

.
.
’
’

Procedure Send_Byte sends one character through the port.

PUBLIC _Send Byte

__Send_Byte PROC

push
mov

push
push

wait_loop:

_Send Byte ENDP

IPort
and
jz
call
call
mov
QOPort
pop
pop
pop
ret

FAR
bp ; preserve bp in order to use the bp
bp, sp ; to access parameters on the stack
ax
dx
Port C

al,Data_out
wait_loop

out_delay ; Used as a necessary delay
out_delay ; Used as a necessary delay
ax, [bp+6]

Port_B, al ; transmit the character byte
dx ; restore registers and return
ax

bp

buffer and increments the buffer pointer appropriately. Returns word in

AX.

; Procedure Receive word removes 2 bytes from the interrupt handler’s ring

PUBLIC _Receive_Word
_Receive_Word PROC FAR

nothng:

push
mov
push
push
push
mov

mov

received

yes wrap:

dcone:

cmp
je

mov
inc
cmp
jne
xor

dec
jz

mov
jmp

pop
pop

mov

bp ; preserve bp in order to use the bp
bp, sp ; to access parameters on the stack

bx save all necessary registers

cx ;

dx H

cx,2 ; counter for 2 bytes

bx,asc_out ; if no char waiting,loop until one is

bx,asc_in ;
nothng ;
ah, [bx+_Asc_buf] ; store the received byte in AH
bx ;
bx,Buf_len :
yes_wrap :
bx,bx ; reset ring pointer
asc_out, bx ; store updated pointer
14
!

Ccx decrement byte counter

done second byte received

al,ah transfer the first byte into LSB
nothng wait for second byte

dx ; restore all registers

cx ;



157

pop bx :
pop bp
ret ;

_Receive_Word ENDP

; Procedure Send Word sends 2 bytes through the port. The LSB is sent
; first then the MSB is sent,

PUBLIC _Send_Word

_Send_Word PROC FAR

push bp ; preserve bp in order teo use the bp
mov bp, sp ; to access parameters on the stack
push ax

push dx

wait_here:
IPort Port C

and al,Dbata_out

jz wait_here

call out_delay ; Used as a necessary delay

call out_delay ; Used as a necessary delay

mov ax, [bp+6)

OPort Port_B,al ; transmit the LSB
wait_agn:

IPort Port _C

and al,Data_out

jz wait_agn

call out_delay ; Used as a necessary delay

call out delay ; Used as a necessary delay

mov ax, [bpt+6)

OPort Port_B,ah ; transmit the MSB

pop dx ; restore registers and return

pop ax

pop bp

ret

_Send _Word ENDP
TEXT ENDS

The data segment

~e e we)

_DATA SEGMENT word public ’DATA’

asc_in DW 0 ; input pointer to ring buffer
asc_out DW 0 ; output pointer to ring buffer
inte oifs DW 0 ; original content of IRQS
intc_seg DW 0 ; service vector

PUBLIC _Asc_buf
_Asc_buf DB Buf_len DUP (?)
"DATA  ENDS
END
/* end file cint.asm */



/ﬁ::::n::

=

158

= Name ZENON SLODKI =
= DATE April 16, 1990 =
= Description ISDN application software =
= File name teisdn.c =
= Version 2.0 =
= Function PC XT server for the TE 7
= - = = m= = = = = = = = - = = = = - m T == = = = = = = = = = = = = *
/* Based on DGM&S sample.c program. */

/* Include files */

/* for AT */

#include "c:\c\include\stdio.h"

#include "c:\c\include\sys\types.h"

finclude "c:\c\include\sys\stat ,h"

#include "c:\c\include\io.h"

#include "c:\c\include\conio.h"

#include "c:\bin\dgms\te\app.h"

#define LF printf ("\n")

#define FALSE 0

#define TRUE 1

ftdefine NIL ¢

/* ISDN TE modes */

fdefine STAT_REQ 0

¥define EXT_REQ 1

¥define BUF_REQ 2

kdefine BURST_SIZE 100

#define ZERO 0

#def ine NINE 9

#def ine FOUR 4

/* Global variables */

int status = 0;

int crn_voice = 0;

int  crn_data = 0;

int crn_second = 0;

int crn_file = 0;

int main_choice = 0;

int key_ talk = 0;

unsigned char bfr [BURST_SIZE+5);

/* External assembly language global variables */

extern char Asc_buf [9000];

extern void Install (void):

extern void UN_Install(void);

extern void Send_Byte(int):

extern unsigned char Receive_Byte (void);

extern void Send_Word(int) :

extern int Receive_Word(void);

/*_-.._.________ ______________ - e em ee me = -
- Function main -
- Input none -
- Output none -
- Date 19 Oct 89 -
- UpDate 30 Mar S0 -
. e e e e e e e e e e e - . e e e m e e e m e = - x/

/* Displays a menu from which the user selects an ISDN application. */

main ()



{
unsigned char lowb;

/* install device driver and program 8255 PPI */
Install();
printf("Installation is complete.\n");

while( TRUE ) {
if ( Buf_stat() ) |{
if( key_talk )
Receive_Talk Cmd () ;
else
Receive_Command() ;
}
if ( key_talk )
issue_receive_immed( crn_second );

} /*end main*/

/* - e e = = e = e - - m e Em e e Em e e e m e o e e e e e - - - = e -
- Function :  issue_isdn_transmit -
- Input : call reference number -
- Output : status -
- Date : 19 Oct 89 -
- UpDate : 06 Apr 90 -

- e e e e wm = m e e e e e o = - - . e e e o e = = - ...---.i/

/* Transmits the buffer of characters entered from the user interface. */
int issue_isdn_transmit( int id )

{

unsigned int bfr_lgth;

unsigned char bfr[BURST_SIZE];

int i;

bfr lgth = Receive_Word();
printf("Received buffer length: %d\n",bfr_lgth);
/* receive buffer characters until end of string character arrives */
i =0;
while( (bfr[i}] = Receive Byte()) != NIL) ({
printf("%c ",bfr(i];
i++;
} /*end while*/

status = isdn_transmit (id, &ébfr (0], bfr_lgth};

return(status);
} /*end issue_isdn_transmit*/

T - -
- Function : issue_isdn_receive -
- Input : call reference number -
- Output : status -
- Date : 19 Oct 89 -
- UpDate : 02 Apr 90

g

/* Receives the buffer of characters sent through the ISDN interface. */
int issue_isdn_receive( int id)

{

unsigned bfr_1lgth,i, j;

status = isdn_receive_wait(id, &bfr(0], MX_APP_DATASZ);
bfr lgth = status + 1;
/* to include the /0 character */



160

if( status > 0 ) |
bfr(status)] = '\0’;
printf("\tReceived : %~50s\n", &bfr(01);

Send_Word (bfr_lgth);
Send_Buf (bfr):
}
else {
printf("Error - Receive Data : %d\n", status);
Send_Word (status);

status = 0;
return(status);
} /*end issue_isdn_receive*/

/k..__.._.__..__..__.._..__..____..——_-—_..-—
- Function : issue_file_transmit -
- Input : call reference number -
- Qutput : none -
- Date : 26 Oct B89 -
- Uphate : 16 Apr 90

T T

/* Sends the buffer of characters corresponding to the file sent. */
int issue_file transmit( int id )

{

unsigned int bfr_lgth;

int i;

bfr_lgth = Receive Word():
print f ("Received bfr length: %u\n",bfr lgth);
while ( bfr_lgth == BURST_SIZE ) {
for(i=0; i<bfr 1gth; i++) |
bfr(i] = Receive_ Byte();
printf("%c",bfr{i));
} /*end for*/

status = isdn_transmit (id, &bfr(0), bfr_lgth);
bfr_lgth = Receive Word():
printf ("Received bfr length: %ul\n",bfr lgth);
} /*end while*/

for(i=0; i<bfr_lgth; i++} |
bfr(i] = Receive_ Byte();
printf ("%c",bfr(i]);

} /*end for*/

status = isdn_transmit (id, &bfr{0], bfr_lgth);
if({ status < 0 )
printf("Error - Transmit FILE TRM™NSFER : %d\n", status);
return{ status );
} /*end issue_file_transmit*/

I X v ea e o em wm e e e o ar mm am w em wm w m A e m e e e e e e owm S em o = e

- Function : issue _file_receive -
- Input : call reference number -
- Output : none -
- Date : 25 oct 89 -
~ Upbate : 12 Apr 90 -

e o e e m e e = e e e m e w m mm = om e e = m e e e = am m = = _..t/

/* Receives the characters of a file sent through the ISDN interface. */



16l

int issue_file receive( int id)
{

unsigned bytecount, i;

int 3=0;

int cnta,cntb;

bytecount = isdn_receive_wait (id, &bfr(0]}, BURST_SIZE);
if( bytecount < 0 )
printf("Error - Receive FILE TRANSFER : %d\n", status);

while ( bytecount == BURST_SIZE ) {
7
/* send length of received buffer */
Send_Word ( bytecount )

for (i=0; i<bytecount; i++) |
putc( bfr{i], stdout );
Send Byte( bfr([i] ):

for(cnta=0; cnta<5555; cntat+)
for(cntb=0; cntb<29; cntb++)

'

bytecount = isdn_receive wait (id, &bfr (0], BURST_SIZE);

Send_Byte (BUF_REQ):
J

/* send length of received buffer */
Send_Word( bytecount );
for(i=0; i<bytecount; i++) |
putc( bfr{i],stdout );
Send Byte ( bfr[i] );
}

status = 0;
return{ status )/
)] /*end issue_file_ receive*/

[* = == = = ==~ - - - e e e e e e e = = e - =
- Funct ion : issue_receive_immed -
- Input : call reference number -
- Qutput : none -
- Date : 01 Feb 90 -
- UpDate : 02 Feb 90

f e mtm e e = mem - — - - i Y

/* Receives data if available through the ISDN interface without waiting.
*/

issue_receive_immed( int id)

{

int status, bytecount,i;

unsigned char bfr [30];

bytecount = isdn_receive_immed(id, &bfr{0j, 90):
if( bytecount < 0 ) {
status = isdn_disconnect{cin_second,0) ;
crn second = 0;
key talk = 0;
)
if ( bytecount ) | /*one or more bytest/
/* send length of received buffer */
Send Word( bytecount ) ;
for(i=0; i<bytecount; i+4) |



putc( bfr{i],stdout );
Send_Byte( bfr(i] );
} /*end for*/
} /*end if*/

} /*end issue_receive_immed*/

/*

Function : Receive_ Command
Input : ISDN command byte
Output : none

Date : 18 Dec 89

Upbate : 02 Feb 90

Receive_Command ()

{

unsigned char val;
unsigned char param;
unsigned int numval;

/* receive command */
val = Receive_Byte():

/* The following commands require a parameter of size BYTE */
if( (val == 's’) || (val == ‘t’) )

param = Receive Byte();
/* The following commands require a parameter of size WORD */
else if{ (val == ‘u’) | (val == 'v’) )

numval = Recelive_ Word():

/* perform the action specified by the command */
switch (val) {

case 'a’:
printf ("Voice LCial mode: %c\n",val);
status = isdn_dial ('\5', "546", "V", uLAW);
crn_voice = status;
/* send ISDN TE mode */
Send_Byte{( STAT_REQ )
break;

case 'b’:
printf ("Voice Disconnect mode: %c\n“,val);
status = isdn_dial_disconnect ("W");
crn_voice = 0;
/* send ISDN TE mode */
Send_Byte ( STAT_REQ };
break;

case ‘c':
printf ("Voice Reject mode: %c\n",val);
status = isdn_voice_reject();
crn_voice = 0;
/* send ISDN TE mode */
Send_Byte ( STAT_REQ );
break;

case 'd’:

printf ("Data 64K connect mode: %c\n",val);

162

status = isdn_connect (CALL_TYPE_TRANS,CHANNEL B,

ISDN_PLAN, "654", RATE_64K, "D") ;
crn_data = status;

/* send ISDN TE mode */

Send Byte ( STAT_REQ );

break;




case

case

case

case

case

case

case

case

case

Iel

Ifl

Ihl:

Ill:

m':

163

printf ("Data 64K disconnect mode: %c\n",val);
status = isdn_disconnect {crn_data, "E");
crn_data = 0;

/* send ISDN TE mode */

Send_Byte( STAT_REQ );

break;

printf ("Data 64K reject mode: 3%c\n",val);

status = isdn_connect_reject (CALL_TYPE_TRANS,0);
crn_data = 0;

/* send ISDN TE mode */

Send_Byte( STAT_REQ );

break;

printf ("Transmit Data 64K mode: %c\n",val):
status = issue_isdn_transmit ( crn_data ):
/* send ISDN TE mode */

Send_Byte( STAT_REQ )

break;

printf ("Receive Wait Data 64K mode: %c\n",val);
/* send ISDN TE mode */

Send_Byte( BUF_REQ )

status = issue_isdn_receive( crn_data );

/* send ISDN TE mode */

Send_Byte( STAT REQ ):

break:

printf ("Key Talk 16K connect mode: %c\n",val);
status = isdn_connect (CALL_TYPE_TRANS, CHANNFKL H,
ISDN_PLAN,"754",RATE_16K,0) ;

crn_second = status;

key talk = 1;

/* send ISDN TE mode */

Send_Byte( STAT_REQ );

break;

printf ("Key Talk 16K disconnect mode: %c\n",val);
status = isdn_disconnect {crn_second, 0);
crn_second = 0;

key_talk = 0;

/* send ISDN TE mode */

Send Byte( STAT_REQ );

break;

printf ("Data 16K reject mode: %ci\n",val);

status = isdn_connect_ reject (CALL_TYPE_TKAND, 0);
crn_second = 0;

/* send ISDN TE mcde */

Send Byte( STAT_REQ );

break;

printf ("Talk 16K mode: %c\n",val);

status = issue_isdn_transmit ( crn_second )
/* send ISDN TE mode */

Send_Byte{ STAT_REQ ).

break;

printf ("Talk 16K mode: %c\n",wval);
status = issue_isdn_receive( <rn_second );
/* send ISDN TE mode */




case

case

case

case

case

case

case

case

case

lnl:

'ul:

164

Send_3yte( STAT_REQ ):
break;

printf(“File 64K connect mode: %c\n",val);
status = isdn_connect (CALL_TYPE_TRANS, CHANNEL_B,
ISDN_PLAN,"657",RATE_64K,0):

crn_file = status;

/* send ISDN TE mode */

Send_Byte( STAT_REQ ):

break;

printf ("File 64K disconnect mode: %c\n",val):
status = isdn_disconnect (crn_file,0);
crn_file = 0;

/* send ISDN TE mode */

Send_Byte( STAT_REQ ):

break;

printf("File 64K reject mode: %c\n",val);

status = isdn_connect_reject (CALL_TYPE_TRANS,0);
crn_file = 0;

/* send ISDN TE mode */

Send_Byte ( STAT_REQ );

break;

printf(“File Transfer 64K mode: %c\n",val);
status = issue_file_transmit( crn_file );
/* send ISDN TE mode */

Send_Byte ( STAT_REQ ):

break;

printf("File Receive 64K mode: %c\n",val);
/* send ISDN TE mode */

Send_Byte( BUF_REQ );

status = issue_file_receive( crn_file );
/* send ISDN TE mode */

Send_Byte( STAT_REQ );

break;

printf ("Mute microphone mode: %u\n",param);
isdn_mute_mic(param):

status = 0;

/* send ISDN TE mode */

Send_Byte ( STAT_REQ ):

break;

printf("Mute earpiece mode: %u\n",param);
isdn_mute_ear(param);

status = 0;

/* send ISDN TE mode */

Send_Byte ( STAT_REQ );

break;

printf ("Volume adjust mode: %u\n",numval);
isdn_audio_vol (numval);

status = 0;

/* send ISDN TE mode */

Send_Byte ( STAT_REQ );

break;

printf("ISDN status mode: %u\n",numval);
status = isdn_status(numval);



165

/* send ISDN TE mode */
Send_Byte( STAT_REQ ):
break;

case 'z':
printf ("Graceful shu%down mode"):
UN_Install();
exit ( 0 );
/* send ISDN TE mode */
Send_Byte( STAT_REQ );
break;

default : printf ("Unknown transmission %d\n",val):
break;

} /*end switch*/

/* send status information back */
printf ("Returning the status word: %d\n",status);
Send Word( status );

} /*end Receive_ Command*/

/* _________________________ [ T S——
- Funccion : Neceive_Talk_Cmd -
- Inrut : ISDN command byte -
- output : none -
- Date : 02 Feb 90 -
- UpDate : 90 -
_________________________ - - = = = - =~
/* */

Receive_ Talk_Cmd()

{

unsigned char cmd;
unsigned char bfr(90];
unsigned int bfr_lgth;
int 1i;

/* receive command */
cmd = Receive Byte{):

/* The following directives require a buffer size parameter */
if( (emd == 'T') || (cmd == Q') ) |
bfr_ lgth = Receive Word();
if( bfr_lgth > 0 ) |
for (i=0; i<bfr_lgth: it++) |
bfr{i]) = Receive_Byte{):
putc (bfr(il, stdout) ;
} /*end for*/
status=isdn_transmit (crn_second, &bfr[0], bfr_1lgth);
if( cmd == Q' )
key_ talk = 0O;
]
else
printf("The bfr_lgth : %d\n", bfr_lgth);
printf("\n");
} /*end if*/
else
printf("Unknown command : %c\n", cmd);
} /*end Receive_Talk_Cmd */

/* end file teisdn.c */




166

IBM PC ISDN NT Terminal Software Listing

/‘=================================
= Name : ZENON SLODKI =
= DATE : April 11, 1990 =
= Description : ISDN application software =
= File name : appisdnt.c =
= Version : 2.1 =
==:=:=====-:===.-=====================*/
/* Based on DGM&S sample.c program. */
/* include files */
/* for AT */
#include "c:\c\include\stdioc.h"
fin-lude "c:\c\include\sys\types.h"
#include "c:\c\include\sys\stat.h"
tinclude "c:\c\include\io.h"
#include "c:\c\include\conio.h"
{include "c:\bin\dgms\te\app.h"
tdefine LF printf ("\n")
fdefine FALSE 0
{define TRULC 1
fdefine BURST_SIZE 100
/* data structures */
struct interr {
int intveael;
Vi
struct charerr |
unsigned char lowval;
char highval;
union dual |
struct interr x;
st ruct charerr h;
i
/* global variables */
int statuvs = 0;
int crn_voice = 0;
int  crn_data = 0;
int  crn_second = 0;
int crn_file = 0;
int main_choice = 0;
anion dual errcode;
unsigned char bf: [BURST_SIZE+5);
/ﬁ_._._..__.___.._-___ ______ - e e e e w a e ae ew em —
Function : main -
- Input : none -
- Out put : none -
- Date : 19 Oct 89 -
- UpDate : -
e e e e et et e e e e e e e e e — - - - - - = %/

/* Displays a menu from which the user selects an ISDN application. */
main ()
{
print_main_menu{();
while{ TRUE )
appmain_process();
} 7tend maint/



-«

J* = = = = e e o m e e e e e e e o e e e e oMo~ - - - -
- Function : print_main_menu -
- Input : none - -
- Output : none -
- Date : 19 Oct 89 -
- UpDate : 01 Feb 90 -
_________________________________ Al
/* Displays the top level menu selection of ISDN applications. L

print_main_menu()

{

printf(" 1 - Voice \n™);:

printf(" 2 -~ Data (64Kbps)\n"):

printf(" 3 - Keyboard Conversation (16Kbps)\n");
printf(” 4 ~ File Transfer\n");

printf(" 5 =~ Microphone & Earpiece\n"):

printf(" 6 -~ Status\n");

printf (" 7 ~ Read Notice \n");

printf(" 8 - Read DATA Connection Notice \n");
printf(" 0 ~ Exit Application\n");

} /*end print_main_menu*/

/* _____________________________ - - - -
- Function : print_subl_menu -
- Input : none -
- Output : none -
- Date : 19 Oct 89 -
- UpDate : 31 Oct 89 -

__.____A/
/* Displays the second level menu selection of ISDN applications. */
print_subl_menu()

{

printf(" 1 - Make Call\n");

printf(" 2 - Accept Call\n");

printf (" 3 - Disconnect Call\n");

printf(" 4 - Reject Call\n");

printf(" 5 - Send\n"):

printf (" 6 - Receive\n");

printf(" 0 - Exit tc Main Menu\n");
] /*end print_subl menu*/
J* = = e e e e e D e o f D e e e e e 2 e oo e o e e e
- Function : print_sub2 menu -
- Input : none -
- Qutput : none -
- Date : 19 oct 89 -
- UpDate : 31 Oct 89 -

/* Displays the second level menu selection of ISDN appliratinns. */
print_sub2 menu()
{
printf(" 1 - Mute Microphone\n");
printf(" 2 - Mute Earpiece\n"):
printf(" 3 - Change Microphone Volume\n");
printf(" 0 - Exit to Main Menul\n");
} /*end print_sub2 _menu*/

167




/' —————————————————————
- Function : appmain_process

- Input : none

- Output : none

- Date : 19 Oct 89

- UpDate : 31 Oct 89

/* */

appmain_process ()
{
if ( kbhit () )
process_keyboard main();
} /*end appmain_process*/

/h ______________________
- Function : appsub_process

- Input : none

- Output : none

- Date : 19 Oct 89

- UpDate : 08 Nov 89

/* */

appsub_process ()

process_keyboard_sub();
} /*end appsub_process*/

/i_.____.. _______________
- Funct ion : process_keyboard ma
- Input : none

- Cutput : none

- Date : 19 Oct 89

- UpDate : 02 Feb 90

/* * /

process_keyboard_main ()

{

scanf ("td", &main_choice);
putch{(‘\n’"});

switch( main choice ) {
case 0 : exit( 0 ); break;
case 1

print_subl menu();
appsub_process|();

break;

case 2
print_subl_menu();
appsub_process():
break;

case 3
print_subl_menu() ;
appsub_process{();
break;

case 4
print_subl_menu()
appsub_process|();
break;

case 5

print_sub2_menu();
appsub _process|():
break;

in

168



169

case 6 :
call_isdn_status();
break;

case 7
call isdn_read notice();
break;

case 8

call_isdn_read_confirm();
break;
default : printf("You entered an invalid selection\n"); break:;
}
print_main_menu();
} /*end process_keyboard main*/

/*_......_....._ ______________________ - - - -
- Function : process_keyboard_sub -
- Input : none -
- Output : none -
- Date : 19 Oct 89 -
- UpDate : 02 Feb 90 -
- e e e em e e e e = e e e e e e wm e e = an m em me e em wm wm - - - - &k

/* */ /

process_keyboard_sub()
{
unsigned int ch;

scanf ("%d", &ch);
putch (‘\n’);
ch = ch + main_choice*10;

switch({ ch ) {

case 10: case 20: case 30: case 40: case 50: break;

case 11
call_isdn_dial();
break;

case 12
call_isdn_voice_accept();

/* used just to indicate activity for STATUS function */

crn_voice = 16;
break;

case 13 :
crn_voice = call_isdn_dial_disconnect ();
break;

case 14 :
crn_voice = call_isdn_voice_reject ():
break;

case 21
crn_data = call_isdn_connect ( RATE_64K ) ;
break;

case 22
crn_data = call_isdn_connect_accept ();
break;

case 23 :
crn_data = call_isdn_disconnect{ crn_data );
break;

case 24 :
crn_data = call_isdn_connect_reject();
break;

case 25 :

call isdn_transmit( crn_data );
break;



170

case 26
call_isdn_receive_wait( crn_data );
break;
case 31
crn_second = call_isdn_connect ( RATE_16K );
break;
case 32
crn_second = call_isdn_connect_accept();
break;
case 33
crn_second = call_isdn_disconnect{ crn_seccnd });
break; B
case 34
crn_second = call_isdn_connect_reject();
break:
case 35 :
call _key talk( crn_second ):
kreak;
case 36
call key talk( crn_second );
break;
case 41
crn_file = call_isdn_connect ( RATE_64K ):
break;
case 42
crn_file = call_isdn_connect_accept ();
break;
case 43
crn_file = call_isdn_disconnect( crn_file );
break;
case 44
crn_file = call_isdn_connect_reject ();
break;
case 45
call_file transmit( crn_file );
break; -
case 46
call file receive_wait( crn_file )
break;
case 51:
call_isdn_mute_mic();
break;
case 5I:
call_isdn_mute_ear();
break;
case 53:

call_isdn_audio_vol();
break;
default : printf("You entered an invalid selection\n"); break;
} /*end switch*/
} /*end process_keyboard_sub*/

Jd e e o e o e e — e - — e e e e e e e e m e e e e e e o e - - - -
- Function : call_isdn_status -
- Input : none -
- Output : none -
- Date : 31 Oct 89 -
- UpDate : 10 Jan 90 -
e e e e e e e m et et et e e e e e e e e e — — m - - %/
/* Display the status of all connections. */

call isdn_status()

{



if( crn_voice == ()

printf ("Voice

else

printf ("Voice

if( crn_data == 0 )

printf ("Data

else {
status = isdn_ status(crn_data);
if ( status > 0 )

printf ("Data (64 Kbps)

else

printf ("Data (64 Kbps) connection is INACTIVE.\n"):

{

/* update crn information */
crn_data = 0;

}
}

if( crn_second == 0 )

printf ("Second data

else |
status = isdn_status(crn_second);
if( status > 0 )

printf ("Second data {16 Kbps) connection is ACTIVE.\n");

else

{

(16 Kbps) connection

connection is INACTIVE.\n");

connection may be ACTIVE.\n");

(64 Kbps) connection is INACTIVE.\n");

connection is ACTIVE.\n");

is INACTIVE.\n");

171

printf ("Second data (16 Kbps) connection is INACTIVE.\n");
/* update crn infcrmation */

}
}

printf("File transfer data connection is INACTIVE.\n");

if( crn

else {
stat
if(

crn_second = 0;

file == 0 )

us = isdn_status(crn_file);
status > 0 )

printf("File transfer data connection is ACTIVE.\n");:

else
/* u

}

{

printf("File transfer data connection is INACTIVE.\n");

pdate crn information */
crn_file = 0;

) /*end call_isdn_status*/

/*_

Function
Input
Output
Date
UpDate

call_isdn_read_notice

none
: none

: 02 Feb 90
: 90

call_isdn_read_notice()

{

char bfr{90];

status

= isdn_read notice(sbfr[0], 90):

if ( status > 0 )

printf ("CODE notice:

else

printf (*NO CODE notice.\n");

/* Displays any user information fields that are available. */

$tc\n",bfr(0});



172

} /*end call_isdn_read notice*/

T T
- Function : call_isdn_read_confirm -
- Input : none =
- Output : none -
- Date : 02 Feb 90 -
- UpDate : 90 -
_________________________________ */
/* Displays any user information fields that are available. */
call isdn_read_confirm()
{
char bfr(90]);

status = isdn_read_confirm(crn_data, &bfr(0], 90});

if( status > 0 )

printf ("DATA CODE notice: %c\n",bfr(0]):
else
printf ("NO DATA CODE notice.\n");

} /*end call_isdn_read confirm*/
/i _____________________________ - - -
- Function :  Display_status -
- Input : none -
- Output : nore -
- Date : 31 Cct B89 -
- UpDate : 05 Jan 90 -
________________________________ - x/

/* Displays the interpreted Layer 3 status code.

The error codes are not supported by DGM&S. Function not implemented.*/
/i
Display status{ int value )

{
printf("Display status: X\n",-value);

errcode.x.intval = -value;
switch( -errcode h.highval ) {
case -1 : printf("Invalid parameter error\n"); break:
cace -2 : printf ("Parameter conflict error\n"); break;
case -3 : printf("Illogical ~vent error\n"); break;
case -4 : printf ("Connection busy\n"); break;
case -5 : printf ("Connection failed error\n"); break;

case -6 : printf ("Disconnected\n"); break;

case -7 : printf ("Aborted\n"); break;

case -8 : printf("Shared memory send failed error\n"): break;
case -9 : printf ("Shared memory receive failed error\n"); break;

case -10: printf ("X.25 reference number not found\n"); break;
case -11: printf ("X.25 reference number in use\n"); break:;

case -12: printf("X.25 multi-frame not established\n"); break;
case ~13: printf ("X.25 window size exceeded\n"); break;
default

printf ("Highval error parameter not found:
$X\n",errcode.h.highval) ;break:;
1

switch( errcode.h.lowval ) {
case 16 : printf ("Normal\n"); break;
case 17 : printf ("User busy\n"): break;
case 18 : printf ("No user responding\n"); break;
case 21 : printf("Call rejected\n"); break;
case 22 : printf ("Number changed error\n"); break;



case 25 : printf("Call resumed\n"); break:;

case 26 : printf("Invalid destination address error\n"); break;
case 29 : printf ("Requested facility rejected\n"); break:

case 33 : printf("Circuit out of order error\n"); break;

case 34 : printf("No channel available error\n"); break;

case 35 : printf("Destination not obtainable error\n"); break;

case 42 : printf ("Network congested error\n"); break;

case 50 : printf("Requested facility not subscriber error\n"); break;

case 54 : printf("Incoming calls barred error\n"); break;

case 65 : printf("Bearer service not implemented error\n"); break;

case 66 : printf("Channel type not implemented error\n"); break:

case 68 : printf ("Message not implemented error\n"); break;

case §9 : printf ("Requested facility not implemented error\n");
break;

case 81 : printf("Invalid call reference number error\n"); break;

case 82 : printf("ID channel does not exist error\n"): break;

case 85 : printf{"Digit is invalid error\n"); break;

case B8 : printf ("Incompatible destination error\n"); break;

case 91 : printf ("Transmitting network does not exist error\n”);
break;
case 93 : printf("Mandatory missing error\n"); break;

case 97 : printf("Message is bad or not implemented error\n"}; break;
case 98 : printf ("Message is bad in call state error\n"); break;
case 99 : printf ("Information element bad or not implemented\n");
break;
case 100: printf("Bad information elemcnt error\n"); break;
case 127: printf ("Cause unknown error\n"); break;
case 255: printf ("TEI removed error\n"): break;
default
printf("Lowval error parameter not found:
$X\n",errcode.h.lowval) ;break;
}
] /end Display_status/

*/

/k_ ______ e e O
- Functicn : call_isdn_dial -
- Input : none -
- Cutput : call reference number -
- Date : 19 Oct 89 -
- UpDate : 05 Jan 90 -

. e e e e e e - - o = = e ew e e = e ...__..______..____ﬁ/

/* Make an outgoing voice connection. This function is not supported
on an NT workstation. */
int call_isdn_dial()
{
printf ("The NT workstation cannot initiate a voice connection.\n");
} /*end call_isdn_dial*/

J*¥ = = = = = - e - = = e e e = .- .- - - - — e = = e e e =~ =~
- Function : call_isdn_voice_accept -
- Input : none -
- Output : none -
- Date : 24 Oct 89 -
- UpDate : 89 -
_______________________ - = e e o e = e - ﬁ/
/* Accept an incoming voice conncction. */

call_isdn_voice_accept ()

l

static unsigned char volume;
static unsigned char routing;



/* set default volume at level 5 */
volume = 5;

174

/* set default routing for hadset since CPU option not available */

routing = 1;

status = isdn_voice_accept(volume, routing):
if ( status < 0 )
printf ("Error - Accept Voice Call : %d\n", status);
} /*end call_isdn_voice_accept*/

/t- _____ - e e e m e e Em e o e e e - - - . = e e = e = e
- Function : call isdn_dial_disconnect

- Input : none

- Output : clear call reference number

- Date : 19 Oct 89

- UpDate : 31 Oct 89

/* */

int call_isdn_dial_disconnect ()

{
status = isdn_dial_disconnect (0):
if( status < 0 )

printf ("Error - Disconnect Voice Call : %*d\n", status);

return(0) ;
} /*end call_isdn_dial_disconnect*/

/t-_.._____.._ ____________________
Function : call isdn_voice_reject

- Input : none

- Output : clear call reference number

- Date : 31 Oct 89

- UpDate : 89

/* Reject an incoming voice connection. x/

int call_isdn_voice_reject ()
{
status = isdn_voice_reject();
if( status < 0 )
printf ("Error - Reject Voice Call : %d\n", status);
return(0) ;
} /*end call_isdn_voice_reject*/

/!.._____......._ ____________________
- Function : call_isdn_connect

- Input : rate adaption

- Output : call reference number

- Date : 19 Oct 89

- UpDate : 05 Jan 90

- e e e e e em e am e w e o e em e s m e mm e wm e e e me am e am me m

/* Make an outgoing data connection. This function is not supported

on an NT workstation. */
int call_isdn_connect( int rate )

{

printf (“"The NT workstation cannot initiate a data connection.\n"):

} /*end call_isdn_connect*/



3
i
E

J* = = = = = m e c M m D e fm e e e m e e e e e m e e e e e - -~
- Function : call_isdn_connect_accept -
- Input : none -
- Output : call reference number -
- Date : 19 Oct 89 -
- UpDate : 31 Oct 89 -
_________________________________ \\/
/* */
int call_isdn_connect_accept ()
{
status = isdn_connect_accept (CALL_TYPE_TRANS, 0, 0);
if ( status < 0 )
printf("Error - Data Call Accept : %d\n", status);
return( status );
} /*end call_isdn_connect_accept*/
/% = = momm = e e e o e e e = e e e e = e = e e e = e = = =
- Function : call isdn_connect_reject
- Input : none -
- Qutput : clear call reference number -
- Date : 19 Oct 89 -
- UpDate : 31 Oct 89 -
_________________________________ i/
/* */
int call_isdn_connect_reject ()
{
status = isdn_connect_reject (CALL_TYPE_TRANS, 0);
if ( status < 0 )
printf ("Error - Data Call Reject : %d\n", status);
return(0)
} /*end call_isdn_connect_reject*/
J* = = = m = m e o e m e e e e e e e e e m e e e = = m e — e e
- Function : call_isdn_disconnect -
- Input : call reference number -
- Output : clear call reference number -
- Date : 19 Oct 89 -
- UpDate : 31 Oct 89 -
_________________________________ */
/* */
int call_isdn_disconnect( int id )
{
status = isdn_disconnect(id, 0);:
if( status < 0 )
printf ("Error - Disconnect Data Call : %d\n", status);
return(0);
} /*end call_isdn_disconnect*/
/% = m = e e e e e e o = e s e e e e = === = — - - - - - - - - -
- Function : call key talk -
- Input : call reference number -
- Output : none -
- Date : 01 Feb 90 -
- UpDate : 02 Feb 90 -
_________________________________ x/

175

/* Transmits the buffer of characters entered fromthe user interface,.

Connection is terminated when the user enters ".q" meaning quit.

call_key talk( int id )

{

unsigned char active_flag=1;
unsigned char line[90);

int status, i;

¥/




176

while( active_flag ) {
if ( kbhit () ) {
gets{line);
if( (line[0] == *.’) && (line(l] == 'q’') ) |
status = isdn_transmit(id,"Conversation
Over.\n\0",20);
crn_second = call_isdn_disconnect( id );
active_flag = 0;
}
else if{ (line[0] == '.’) && (line[l] == 'e’) )
active_flag = 0;
else
status = isdn_transmit(id, &line(0],
strlen(&line(0]) )
)} /*end if*/

/* no keyboard input */

status = isdn_receive_immed(id, &line(0], 90);:

1f{ status < 0 )

/* connection has been lost */
call_isdn_disconnect( id ):

else if( status ) |{
for(i=0; i<status; i++)

putc(line{i], stdout);

printf (*\n™);

}

} /*end while*/
} /*end call key talk*/

/i.. _____________________________ - - -
- Function : call_isdn_transmit -
- Input : call reference number -
- Out put : none -
- Date : 1% Oct 89 -
- UpDate : 10 Jan 90 -
_________________________________ */
/* */
call isdn_transmit( int id )
{
unsigned int bfr lgth;
char temp;
scanf ("%c",&temp); /* clear buffer */
printf ("Please enter data\n");
getsi{bfr);
/* bfr lgth = min( strlen(&bfr[0]), BURST_SIZE ); */
/* {ROURKE) assuming that min is a macro, 1 will replace this line

with the following code: */
if ( strlen{&bfr[0]) < BURST_SIZE ) bfr 1lgth = strlen(&bfr(0]):;
else bfr_lgth = BURST_SIZE;

status = isdn_transmit (id, &bfr (0]}, bfr lgth);
if( status < 0)
printf ("Error - Transmit Data : %d\n", status):
} /*end call_isdn_transmit*/



177

/* -------------------------------- -
- Function : call_file transmit -
- Input : call reference number -
- Output : none -
- Date : 26 Oct 89 -
- UpDate : 31 Oct 89 -
_________________________________ \\/
/* */

call file_transmit{ int id )

{

static unsigned int numread;

FILE *fp; /* file pointer to open file */

char filename({81}; /* name of file to open */

char done;

scanf ("%c",&done); /* clear buffer */

printf("Please enter the name of the file to transmit: ");

gets(filename);

while( (fp=fopen(filename, "r")) == NULL) |
printf ("Error opening file: $%s\n", filename);

printf ("Please enter the name of the file to transmit: ");

gets (filename) ;
} /*end while*/

done = FALSE;
while( 'done) {

numread = fread( (void*)bfr,sizeof (char),BURST SI12ZE,fp):

status = 1sdn_transmit (id, &bfr(0], numread);
if { status < 0 )
printf{"Error - Transmit FILE TRANSFER : %d\n",
if{ numread < BURST_SIZE )
if( feof(fp) '= 0 )
done = TRUE;
} /*end while*/
fclose(fp):
} /*end call_file transmit*/

J* = = = e e m e e e e e e e e e e e m e e o - = - - -
- Function : call_isdn_receive_wait

- Input : call reference number

- Output : none

- Date : 19 Oct 89

- UpDate : 31 Oct 89

/* */

call_isdn_receive_wait( int id )

{

status = isdn_receive_wait (id, &bfr([0], BURST_SIZE);
if( status > 0 ) {
bfristatus) = "\0’;
printf ("\tReceived : %-50s\n", &bfr(0]);
}
else if( status < 0 )
printf ("Error - Receive Data : %d\n", status);
} /*end call_isdn_receive_wait*/

status);




/ﬁ ———————————————————————————————
- Function : call_file receive_wait

- Input : call reference number

- OCutput : none

- Date : 25 Oct 89

- UpDate : 11 Apr 90

/* */

call_file receive_wait( int id )
{
int bytecount, i;

bytecount = isdn_rececive_wait(id, &bfr(0], BURST_STZE);
if( bytecount < 0 )
printf ("Error ~ Receive FILE TRANSFER : %d\n", status):

while( bytecount == BURST_SIZE ) ({
for (i=0; i<bytecount; i++)
putc( bfr(il], stdout });
bytecount = isdn_receive wait (id, &bfr[0), BURST_SIZE);
} /*end while*/

for(i=0; i<bytecount; i++)
putc( bfr(i], stdout );
} /*end call_file receive wait*/

/* _______________________________
- Function : call_isdn_audio_vol

- Input : none

- Output : none

- Date : 19 Oct 89

- UpDate :

/* */

call_isdn_audio_vol({()
{

static unsigned int volume;

printf ("Please enter volume (0-9)\n");
scanf ("%d", &volume);

status = isdn_audio_vol(volume);
if( status < 0 )
printf ("Error -~ Adjust Volume : %d\n", status);
} /*end call_isdn_audio_vol*/

/* _______________________________
- Function :  call_isdn_mute_mic

- Input : none

- Output : none

- Date : 19 Oct 89

- UpDate : 24 Oct 89

/* */

call_isdn_mute_mic()
{

static unsigned char mute;

printf{("Please enter mute mic (0=ON - 1=0FF)\n");
scanf ("¥d", &mute);

status = isdn_mute_mic (mute);

178

v
.
1
!
L
.

< e s B kb -

i

g
My e



e W

if( status < 0 )
printf ("Error - Mute Microphone : %d\n", status);
} /*end call_isdn_mute_mic*/

/* ______________________________
- Function : call_isdn_mute_ear

- Input : none

- Output : none

- Date : 31 Oct 89

- UpDate : 89

/* Y

call_isdn_mute_ ear()
{

static unsigned char mute;

printf ("Please enter mute ear (0=ON - 1=QFF)\n");
scanf ("3¥d", &mute);

status = isdn_mute_ear (mute);
if{ status < 0 )
printf ("Error - Mute Earpiece : %d\n", status);
} /*end call_isdn_mute_ear*/
/* end file appisdnt.c */

179



