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ABSTRACT
«

»

A MODEL AND A METHODOLOGY FOR DISTRIBUTED DEEUGGING,r

IOAKIM HAMAMTZOGLOU :

m_\ - ) . )

Reliability is one of the main motivations for the
development of distributed systems. Software rglioability is an
important, part of system reliability. One approach' to reliable
software is fault intolerance, whose objective is the preven’£1on
of fault occurrence. Fault intolerance'ddvocates tl'{e use of a
well-planed process for software development. Debugging’ is .an
esser:tial element of this process. Given t?hat/ we have evidence of
an error, debugging is the ac’ti\'/ity of diagnosing the causé of
"the problém and correcting the software to remove it. ‘

L4

Debugging in distributed systems poses new problens, due to
true concurrency, system cpmpl‘exity\ and lack of total control.
These problems make traditional debugging techniques inadequate

for distributéd programs. In this thesis, we discuss problenms

related to distributed debugging, and propose solutions in the .

framework of a model for distributed computations based. on
partial ordering; We present an approach for distribtited
debugging, based on the comparison of actual system behavior
ag.‘ainst its synchronizationsspecificétion. Finally, we propose
and discuss the use Qfl certain debugging tools, and present the

high level specifications of a distributed debugger.

o
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INTRODUCTION
’ ’ .\ -

~ % .

' .
1.1 Distributed Systemns.

]

A . recent trend in comphte:k systems is to distribute

computation‘among several physical processors. This trend is

_accelerated by technplogical' advances in the fields of

K]

mic;oelectrénics and communications. Although the amount ‘of
diséribufion varies over a wide spectrum, two schémes are usually
employed for building such systems. The-first results in gygtems
that compr;se seQeral'processors that share.memory and a clock;
Communication takes place through the shared meméry. These
systéms are knowh'as_tightly coupled systems. |

. The second scheme effects the so-called loosely coupled

systems, in.which processors do not share memoryf'*Instead, they

have their own local memories. Communication is achieved via
& ° ,

_message . passing, _tbfough various kinds of communication 1lines,

L)

~such as high-speed'buses, or telephone lines; Such systems are.

. usually referredﬂto as Distributed Computer Systems, or éimply

b}stributed Systems. This is the>kind of systems" we consider in

A

‘

this thesis. ' -
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There a‘ire four major reasons for building distributed

systéms: cdmputatiorg speed-up, resource sharing, increased

reliéi)ility, and communication. The first objective, that is
. ht ’ ’
computation speed-up,, can be achieved when - a particular

computation is divided into a number of concurrently exécuting
s .
subcomputations. = A distributed system allows us then to

distribute the computation among the various sites, to run it

concurrently. C s
¢ ® J .
This last observation iIntroduces the notion of a process.

Each subcomputation corresponds to a process. A distributed

-

‘system can be viewed then, as a collection of processeé that
communicate JWith each other. User processes share s.everal
resources (files, disl'cs‘,' pér'ipherals, etc.) which are managed‘ by
opgrating /system, or %server, p"rocesses.' We' have u;ssg '_hthis
particular model to .depict a distributed system: a %Jis a

collection of .concurrently executing, communicatin§ processes.

Increased reliability |is anotherfmotiv‘ation~for the

development of distributed systems. DCSs can provide _higher

reliability due to their potential to offer qreater_redundandy.,

o

Consequently, when one site fails the' remaining sites - can

potentie€ly continue operation. Reli/ability in cdmputer systems,

however, has two-aspects: Wardware and software reliability. The:

latter is one of the most costly performance characteristics to

assess,” and possibly the most difficult to guarantee.

-



1.2 Softwdre Reliability.

°
)

Reliability is one of the least precise' aspects of* software
scope. Quite a few software reliability Deasures have been
proposed, but they are still considered to bne in their

developmental stage. It is usually, the nature of software that

dictates special measures to ensure reliabilit)'f. For eXxample, -

software in an air traffic control system must not, under any
circumstances,” fail, or human life may be lost. On the other

‘hanag, lesxs critical "application software, such as an inventory
. o

control system, should not fail either, but the impact of failure '

is considerably 1less dramatic. Regardless of the application,
reliability is considered an essential szoftware“characteris’tic.f.

Software is increasingly considered a‘si a system ‘element.
The costs associated with a software failure are motivating
forces for well-plannﬂ ce\relopment. A great deal of software

5
failures can be ai:tributed 'to residual design faults. Two

approaches have been adopted in dealing with such faults: fault

isntolerance and fault tolerance. The former aspires to tﬁe )

development of errorless programs, while the latter is concerned

with acceptable goftware performance, in spite of the presence of

faults.'

' Both strategies have influenced softwvare engineering. The
fault intolerance approach has generated techniques that became
standard steps in the process of software developmen?\ on tne

’

other hand, fault tolerance research has produced facilities that
( Cs .
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4
are' embodied in mo’,c:lern programming enwironments. For example,
.testing and the)invariably following debugging, are considered
necessary and p;anned steps of fhé softwére development phase;
Likewise, backward error recovery {s a well-knowni method.,of‘

implementing software fault tolerance, that is incorporated in.

o

many computing environments. ..
2 o
A
There are, however, new issues that must \§e addressed,

before rollback/recovery and debugging are applied in distributed

computing. Such' issues, that mainly relate to debugging

distributed programs, are discussed in this thesis.

\7/ -

1.3 Distributed Debugging.

L)

Almost everyone who has. written, even simple programs, has

7learned:something about debugging them. The pfeggncg of program

errors is an accepted fact between programmers d users alike.
, : i

The release of flawless software is still/ considered as a

»

hopelessly optimistic endeavour.-—
{ ' .
Debugging is an integral parE of the software testing phase,

énd\can be described as the process. of detérmining the location

of errors and ’rémoving them. Finding the cause of a single

! *

failure may- consume many labour-hours. Therefore, debugging
should be of acute interest to anydde concerned with improving
programming productivity. .

In the literature the use of, terms, such as error, fault,

and bug, tends to be ﬁerplexed. . We present the following

~ ~ .
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k0 . . .
; » clarify their meaning(8]:

, exhaustive testing and debugging.

- : 5
definitions, offered in the IEEE Software Glossary, that help

Error: A conceptual, synéactic, or clerical discrepancy
which results in one or more faﬁlﬁs in the software.

| Fault: A specific manifestation of an error. A/éiscrepancy

in the software which can impair its ability to function as

intended. An error may be the cause of several . faults.

Finally, a software failure is described as the result of a
fault. in the above aefinitions, we discern the following causal
relationship: errors create faults that cause failures. We use
the term "bug®™ as a synonym for error. Following the above

[

clarification, we cS;-Eefine debugging as the process of locating
and removing errors, that have-man}festéd themselves by producing
faulté. Nobodyjclaims that debugging removes all the bugs that
.exist in a program. The number of discrete states, that’even
simple programs are capable of attaining, isAso eﬂormous, that it

is almost inevitable that undetected bugs will remain, even after

$
-

Debugging is stiil regarded an art, by many programmers.
b

.This is attributed mainly to the  fact that often, the external
manifestation- of the error (i.e. fault), and the internal cause
of the error (i.e. bug), may have no obvious relationship to each

other. Hence, debugging is described as "the poorly understood

mental process that connects a symptom to a cause of a software

14
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‘préglem" [22]. While this définition may sound true, and appeal
to common experience; we believe-thét if a more formal approach
‘is adopteé, debuggipg can become a more systematié task, and less
of a chaotic process. This is especially ;rue in distributed
computing. ‘

Distributed programming poses new problems with respect to

M '

debugging. They are caused by concurrency, increased complexity,
and absence of total control. Their solution requires a new
app;oactLQas traditional debugging methods are simply inadequate
for distribﬁted prograns. Discussion of any debugging method
inadvertently leads to the consideration of the debugging tools,
that will support it. Debuggers are tools incorporated in the
programming eﬁvironments, and therefore they are affected by

distribution. - ' . *

A\

1.4 Thesis Outline.

~In this thesis, we are moétly interested in the process of
debugging. The main focus of the thesis is to identify the
proklems of distributed debugging and propose a solution. " The
effectsﬁ of the proposed .debugging strategy in the debugging
.facility are discussed, acg high level specifications of a
distributed debugger are presented.

The practical experience, <that we .acquired from the

implementation of a distributed algorithm, is presented in

chapter 2. The algorithm is a rollback and recovery algoritﬁm

. L



further work, in thapter 7.

7

for DCSs. ‘The ‘main aspects of the algorithm are discussed, along

with the deeign of the Rollback and Recovery i(ernel (RRK), that
is the software package that implements the algorithm.. We also
describe the design and implementation of a distributed
application program,' that was used as a test-bed for the
performance evalua}:ion of the RRK. “

" The models that we have useci to represent a disvtributed
computation are presented in chapter 3. The main differences

between sequential and distributed debugging, the problems of the

latter, and their proposed solutions .are discussed in chapter 4.

. The features of a distributed debugger and their capabilities are

analyzed in chapter 5. A few example uses of the debugging
strategy and the tools of the debugger are offered in chapter 6.

We end the thesis, w1th our conclusions .and suggestions for

AN

o ."ﬁ
o




CHAPTER 2

THE ROLLBACK AND RECOVERY KERNEL

»
-~

Practical experience in the design and implementation of
distributed programs is not as mu'ch as we ffave for sequential
programs. In this chapter, we describe .the implementation of a
distributed aigorithm. Oour work was carried out as part of a
project that is aiming at the development of q’ fault tolerant
distribu,ted programming environment. - The implementation of the

rollback . and recovery algorithm' and its performance evaluation

were one”of the project objectives. An extended description'of -
the design, implementation, as well as\pefformance evaluation of-

the algorithI'n, appears in [18].

2.1 The Problem of Rollback and Recovery.

Increased systeim reliability is one of the motivations for

the development of distribut;.ed systems. One approach to‘uh\%gher

‘system reliability is fault tolerance. Fault tolerance can be

informally characterized, as a system's capability to continue
functioning, even at reduced capacity, in the presence of Q{xlts.
Distributed systems are intrinsically more complex than
| ~
8



9
conventional systems with centralized .control. This inherent
complexity makes them more susceptible to faults. g

A large class of system failures is due to design faults.
These errors are _difficﬁit to deal with as they are
unanticipated. UsuAIiy, fhey are handled Sy ‘discarding the
current system state and restoring tﬁe system to a previously
saved correct state. Rollback and Recovery (RR) [2], 'is a well

known method for preserving the integrity and consistency of

" fault-tolerant systems. The basic concept is that at various

intervals, the system records its state in stable storage
(checkpoints). When a fault is detected this previous consistent
state can be regenerated and the system resumes execution from
that point. 1In systems under centralized contrPI, it is easy to
arrange that a checkpoint of the systeﬁ state is established at
convenient poiﬁts in time. This cannot be achieved so easily in
distributed systems with decentralized control.

In distributed systems, there is no global clock.
Consequently, we cannot freeze all_processes simultaneously to
record the individual component states. Mbreover, single
processes can no longer be viewed in isolation. An error in one
process can possibly contaminate the state of other ﬁrocesses,
via mgééage passing. In other words, ‘errors spread in the
system. This results in the rollback of one process forcing the
rollback of other précesses too. Hence, in distributed systems,
we must identify, for all processes, a set of process states that

constitute a consistent global state. .This state is calledl
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recovery(line, and in case of:aﬁ error the whole system can be
rolled back to it.

There are 'twc: fundamental strategies for approaching the
problem of determining a reéovery line: the preplanned and the
unplanned. Distributed -rollback and recovery algorithms are
classified into twoycat.egories, depending -on which of the two
methods is uéed. I;n the preplanned strategy, checkpoints are
recorded according to ‘certain rules, that ensure that all‘
checkpoints belong to a hrecove;§ line. In the wunplanned
strategy, the syste;;tries to deduce a recovery line azpthe time
of rollback. Planned stra ies result in a clean systep
structure at the expensesz processing speed and generality of
communications. Unplanned stggﬁegies sacrifice ease of recovery
for speed and generality of communications.

2

Domino Effect.

N
E

A main disédvantage of the unplanned strategies is the so
.called , Domino Effect (DE). DE can be defir;ed ‘as the
uncontrollable rollback of all proéesses. . We can illustrate DE
with t}}g example of Fig. 2.1.1. 1In the example, two processes,
-namely p and ¢, NHave inde;ﬁenden‘tly takep a sequence of
checkpﬁints. The interleaving of messages and checkpoints leaves
no consistent set of checkpoints for p and q, except the initial
one (Xp,Yp). Consequently,  if p fails at the designated point,

both. processes have to be rolled back to the beginning of their

L4
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computation.u

,Fop‘time critical agplicatiops, that‘require a guaranteed
'ﬁrogress rate, DE is an unacéeptable behavior. DE %s also
undesirable in time consuming computations, where we cannot

afford fo restd£§$the-computation from thé beginning, each time a

14

)
B

fault occurs. 4270

2.2 The VIR Rollback:and Recovery Algori:hm.
» : \ . .

The ;VLR algorithm was developed by: Venkatesh, Li and
Radhakrishnén [253. It belongs to the preplanned category. The
algorithm makes use of.giobal information to coordinate the set
up of checkpoints. It places no restricti02 on the application
_program, to which its operation i; transparent. Hence, it can be
qhéracterized as a non-intrusive algorithm, as far as
checkpointiﬁg is concerned. It also ensu;es DE avoidance. The
comﬁufing ~<wﬂ§ronﬁent is regaféed by the algorithm as .a

collection of asynchronously communréating processes.

Communication is accomplished via reliable, FIFO channels. The

algnrithm is divngd in two logical phases: checkpointing and

rollwpack.

»

Checkpointing.

The algorithm establishes, on \behalf of the application

process, two kinds of checkpoints:

A -~

RS 4
Y
.



1 , 13
(1) Self Induced Checkpoints (SICs) which are’ established
following an explicit request from the application process‘ based

-

on its own local requirements.

1
e

(ii) Response Checkpoints (RCs) which are induced by
, .
information imported from another process. RCs are said to

belong to recovery lines owned‘'by other processes.

. . Ty

All checkpoints are labelled with the following tag: <owner
process-id, chckpnt-id>. ‘Each processl, counts its SICs with a
monotooicaly increasing counter. It also maintains ah N-element
vector, N being the number of processes, where’it keeps .the
number of the latest known checkpoint of every. other process.
This is called the Current ChecKpoint Vector (CCP), and it is
appended to -every ‘application message ' that is sent out by the
process. It represents global state information, as perceived by‘
that prooess; T | kN

Upon receiving a message process P; first strips the
Received Checkpoint Vector (RCP) and compares it with the local
CCP. Whenever there are differeoces, the proces; updates its CCP
as follows. If RCP(j) > CCP(j), for any-j, then CCP(j) is‘set to
RCP(j), and a ’ney RC is created gnd<_tagged.'with. ?he label:
<j,RCP(j)>: Procass Py is considered the owner of this RC.’ This

way a SIC causes the creation of a RC. On the other hand, when

»

=1 [}

1 1n the following, protess refers to the composition of the
application process and the VIR algorithm process.

’p 8
. .
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RCP(j) < CCP(j) this message intersects one, or more, recovery
lines, and is stored in all local checkpoints owned by Py and

having an ordinal number greater than RCP(j). If the process is

later rolled ‘back to any bf those checkpoints, this message will

wWbe playéd back. . ' .

)
Rollback and Recovery.

When a fault is diagnosed, process Pj identlifies ‘the xﬂost'

recent of its SICs‘, say k, that precgdes the occurrence of the

fault. It lvads the state saved in that SiC, deletes all later

checkpoints, and‘loads all messages saved in that checkpoint to
its input buffers. It then sends out a ;pecitic message‘ <i, k>,

called recovery message, 'to all its output channels, to inform

other processes of its intention to rollback. This process is

I

the initiator o‘f the rollback. . The application .process is then
. ; \

allowed jto ;ésume execution. When another process; sy Pj ’

4

receivesg ‘recovery message, it searches fc;r‘ its r¢p RC, owned by

Pij, wher¢ r is tt:e first integer gr'eateru.than, or equal ti.o, k.
If such a checkpoint exists, then process P4 will participate in
the rollback. This process performs thg same’ actionl‘ a;- the
initiatér, the only difference being that it does not send .the

recovery message to the process thz‘st informed it about the

rollback.

hj

Another thing that must be -taken care o&,.'h purging all

/ . \ <
prerollback messages. Those pessages wvere the result of

S - 4

LY
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computations ‘that preceded the fault  and will be redone. To

~

Lv:ecpénize such messages each process sets its input channels,
except the one on which it was informed about rollback, Ito
cautious state. . While a channel is on cautious state, "the
Jrocess examines the RCP of arriving messdages and purges those
-for ‘which RCP(i) =2 k. When the pr ss receives thei recovery
. message <i’,k> on that channel, it res:gz it to tne’nomal state.
. A final remark concerning the rollhack phase or the
algorithm, stens from the observation that in large DCSs it is
probable " that ‘more., than one’ processes initiate rollback
independently The VLR algorithm takes care of this situation,
[by defining thero called Effective Recovery Line (ERL), whlch

-

1dent1fres the checkpoint to which each process must be rolled
rx

. back, 9\5 well as theé set.of messages that should be played back.

- o N

S B T
2.3. The Application Program.-

+ To evaluate the performance of a RR algorithm, a distributed

’ application program ‘is needed to provide the required testing
ground. The program;, used in our case, is a simple simulation’
game, ‘ based- on | the “well known "Game of Life" proposed by
J. H Ccnway [13] The basic concep't of th‘e game 1is the simulation .

>  of the lives of cellular automata, that 1ive ;nd die following
few simple rules. - The game is - normally ;]}.:ayed in a two-

ernsional grid. Each grid location called a cell, or a pixel,

can be either dead or alive. The game was modified to yield a

b
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-distributed version, called "N-life".

Q

In "N-life" the grid is partitioned into several adjoining .

regions, whose control is dlstributed over several processes.
Each process controls the 11ve and death of cells in its own

region(s), communlcatlng with its neighboring processes, to

i
-

import and export information concerning boundary cells.
Patterns generated in one region can be expanded to cover othor
regions too, or they can migrate to other regions retaining their
form,_ and thus travel through the grid, since, wrap around
conneotions.are employed.

The communication patterns -of the ogram c¢an be easily
maniépla%ed by changlng the initlal patterns and modifyinq the
task a551gnment to different processes Hence, many difterent

message passing behaviors can be realized. This is a worthwhile

feature of the aSblication program, that allowed the evaluation

_.of the algorithm perfofmance under variable communicat ior®

behaviors.

4

Implementation. ) - N

' ’ .¢

Implementing "N-life" proved a worthy experience@ahd offerad
valuable insight in the problems of distributed programming. -The

pfogram .of this algorithm is straiqhttoiﬁard and |{ts

synchronization requirements are simple. The algoritﬁﬁ can be

classified as "loosely synchronous", since processes must

normally synchronize ghrough var fous itarationo.f
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The ' program is partitioned into 'a set of identicai
procésses, distributed over the physical systeh._ be-simplicity
there is one process per systenm node.'aThe number of éfocesses
depen?é on the selected partition of the grid and the particui#r
task assignment that is exercised. A process can be»re;ponsiblé
for up to three different regions. Both the number of proceséé:/f*:
and the topqlogy of process interconnection remain static during
a particu;ar execution of the program.

Each process is compos’ed/of fwo cémmuriicating" layers. The
inner layer is‘responsi?le for the éomputation of the algo}ithm
on every iteration, based on /the grid image of ‘ths/p\revious
iteration. The outer layer is responsible for the communication
.of the process with other processes. It sends all poundafy
infogmation to neighbor-processes, so that they can calculate the
algorithm in thelir own regions.” It also receives any incoming
messages and forwards them to the inner layer.
. Communication between processes can be realized in different
modes, which include: éeqding out the value of every boundary
pixel agja separate message, packing up groups of cells in one
message or even communicating asynchronSgsly, only when there are
iive boundary cells. When the last -mode is used, processes'thht
must communicate at a certain iteration, must be synchronized.
This may result in tempéraryrblockiné of faster processes, tﬁat
have to wait for slower ones. The interaction between. processes

ensures deadlock avoidance, by forcing every process to send out

any information at the beginning of an iteration, and then wait

-4

5
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“for incoming infofpation. |
The sjstem that. was used for . the implcmcntation, wvas a
_petwork of tyélve sun 3/50M-4 workstatidhs, connected through an

Ethernet LAN. ' The OS was an enhanced version of 4.2BSD Berkeley

UNIX, and  inter-node communication was realized through the

' "socket" primitive of the internet domajin. The code is written

14

in C programming lanéuage:

r

. 2.4 ThejRollbaéﬁ and Recovery Kernel.

2.4.1 Design. : . - ’ L !

[4

The desién and implementation of the Roliback anq.nccovcrf
IKernel'(RRK) demoné;}ated°hov tricky distributed proqraﬁﬁing can*‘
be. The Emplementatidﬁ of even simple ana vcl}-écy;lopcd
algorithms revgalé a 1ot’ of the .iﬁpliyatxéns ot process
synchfoniiation. - The aléofithm, in its development phase, was
2conceiqu as part of the existing’ 05 gdtnil. Although the flnalv‘
implementaéion does not conform to the original v%cu, ve retained
‘the name kernel, to refer to the software that implrements the VLR
algorithm. | '

The RRK must offer its services to user processes, while  at
the sane time it must be transparent . tp' then. " There exist
" several &lternatives in dcuighinq‘-uch n‘Ioftu‘ri’pack;qo.‘ Throo'
'‘different ways of ' incorporating the RRK in the systemn vere

N a
,/ 9
.
.

considered:
(] 4



1. The first approach is to have the RRK as a part of the

‘ 0S. It would be aqded to the UNIg‘communication layer, where it
would have\easy access to all messages'transmitted through the
LAN. This approach would regqlt in minimal overhead and
transparency from application processes. 6h the other hand, it
would require modification of the UNIX source code, a major
undertaking which was deferred togg lat‘l stage. ~Moreover, this
approach is not flexible for the experimental comparison of many
RR algorithms.

2. The second alternative is to have the RRK as a separate
process on each system dode. This would allow the RRK to offgr
its services to all appliéation processes running Sn that node.
This "approach would lead to a very comp‘ ex design, since the
1nterprocess communlcatlon would have \fo be redirected through
'the RRK process. Such a modlflcation would be hard to hide from
the application progesses. Additienally, * certain UNIX
constraints (such as number of filefgfécriptors thatna process
can maintain at any time) would limit the RRK support to a small
number of processes.

3. The lasﬁ approach that was considered and finaliy
adopted, was to include the RRK to the cod; of each application
process. The RRK is considered by the apélication process as a
communication sup?ort package, that offers new communication

primitives. This is not an ideal design, since it is not ggbust.

In case of a major system fault, that causes the abortion of the
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application ptrocess, the RRK is lost ﬁoo. It is, poﬁovor,
sufficient for the purpose of evaluating thg performance of the
algorithm. Moreover, once onough‘experience has been accumulated
and the .RRK has taken its final form, it can be moved to the 0S
layer.
- The Rﬁx can be easily incorporated in the application
process. The usaer accesses the RRK,' through call of certain
communication and checkpointing-primitives. The interface of iho
RRK with the application is clearly defined, and it. is thqtonly
thing the appIication programmer should be familiar with in order
t6 make use of the kernel. The RRK makes certain assumptions
about the application program. The number of processetf as well
as their interconnection topology, should romai;Q static
throughout execution. Furthermore, every‘abplicaiion process has
a unique identification number. All this information should be
made known to the RRK. . |

The RRR package is ‘partitioned into two modules: the
checkpointing/module and the rollback module, Fig. 2.4.1. The
interaction of the two ﬁodul;s is briefly outlined in the
following. Incoming messages are received by the rollback
module, and filtered for.existing control messages. If a message
is not a control message, it is forwarded to the checkpoint
module, througﬁk the Igput Channel~ Bu(ters (ICBs) . When ‘an
exp}icit read request is made from the abplication process, the

checkpoint module extracts the first message from the ICB and

processes it, performing &)l .the' actions dictated by the VLR
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algorithm; Finally, it delivers the application message to the
application process. All outgoing messages pass through the
checkpoint moduybqtthat\atampl thenm with the local ccp ngtor.‘

. The checkpoint module contains certain functions that-lﬁsg
be rewritten, Wwhen a new application program is used with the
RRK. Tﬁese are mainly the functions that save and'tcltor; the
application proces; state. Which information exactly constitutes
the process state is,‘apparenfly, application dependant. The
applicatién programmer‘is responsible for writing and optimising
those functions, respecting the Rzij/guideliptl. The other

alternative, would be a "brute force" olution, whereby the whole

s

process” state is saved with evéry_checkpoint. This approucﬁ in
. ) p )

{

obviously not econopical.

2.4.2 PFunctional Description.

. The RRK can be regarded as an intermediate layer, between
the 0S communication layer aﬁd the application program layer. It
provides the apﬁz}Eetion process with primitives for creating
SICs and handling interprocess communication. It also
establishes RCs, based on the nessage oxchangc'pattorq. Finally,
it can initiate, upon request, rollback to a particular recovery
\Adine. ‘ v ‘

The services oftered by the RRK can be divided into two

broad categories:
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* ' ¢

(i) Services available to the application process, through
explicit use of communicating and{checkpointing primitives. ‘

N

(ii) Operations which are performed by.the RRK tfansparently

and hence cannot be called from the application code.
4

e
.

The first category correSponés to checkpointing functions, while
the second to rollback functions. ' : S

\

RRK interfaces.
~

= ‘" The RRK interacts explicitly wlth the appllcation process
and the Error Detection Module (EDM), and impllcitly with the 0S,
via system calls.\ The RRK's interaction with the application
process is perf;rmed through explicit calls to three
communication primitives and one SIC primitive. 1Its interaction
wiéh the EDM is achieved witﬁ software signals, thagirép%esent
the detection of. an error. This latter interface must be
redefined more clearly, when a sophisticafed EDM is developed.

1

Detailed descfiption. .

The RRK operates as a buffer layer, whose function is to

.'intercept all messages. More precisely, message exchange between
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~

a4
. * -
two application processes is realized in the following manner:
. 1. The sender process delivers, to its own RRK layer, an
Vs
application message. I
2. .The RRK appends ¢to this message some RRK internal

information, creating an RRK-message.
‘3. This message is forwarded to the'0S for transmission through
the LAN.

ra
4. The message is received, at the destdnation node, by the
receiver's RRK. )
5. Tpe RRK‘strips the information, that was attached to the
message. Based on that information, it performs some operations
invisible:to the application process.
6. Finally, the receiver's RRK delivers the application messagé

3

to the application process.

The RRK introduces a new type of messages, the control

messages. ' Control messages are invisible to application

\ _processes. They inform the RRK abouf initiation of a rollback to
3 a sarticular recovery line. They also help the RRK identify and
discard obsolete messages after rollback. Althouéh the
processing of application messages is performed in FIFO order,

control messages are proceﬁsed‘ as soon as they arrive. This
preferential handling ensures that information concerning
rollback is spread quickly though the system, and processes do

not lose time performing redundant computations.

/
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RRK services.

il

The RRK provides primitives for process interaction and

4

checkpoint creation. It enables an application process to:
' L)
., — Create SICs.

- Send and receive application messages.

- Chéck the ICBs, for the existence of awaiting messages.

In addition, the RRK performs the following operations, without
explicit request: . .

- Creates RCs. '

- Saves messageé, that cross established recovery iinesz
Finally;_when the RRK is informed about a rollback the foliowing
actions are taken:

- Rollback'the application process. \&“/“

s . © N\

- Inform other processes about rollback.

- Discard obsolete messages, after rollback.

o

2.4.3 Implementation.

In its present form, the RRK is implemented as a set of

-
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passive routines; it is‘pot an Fctive task. The RRK éodc ia run
on behalf of the calling process, which is the active task. As
far as the 0S is concerned, the RRK is part of the application
process. The functions of the RR# are activated thrbugh calls
from the’application code, as a result of a message receipt, or
as a result of a signal from the EDM.

The primitives offered by the RRK are: 'k;ead, kwrite,
kselect and chckpnt. The first three perform the same actions
with the UNIX primitiveé read, write and‘selec?, respectively.
Actually, those UNIX primitives must be replaced in the
application code, by their RRK namesakes,‘when the RRK is used.
The last function, namely chckpnt is called from the application

code, whenever a SIC must be created.

Future directions.
As it was mentioned at the beginning of this chapter, the
experimental work that was presented here, is part of an ongoing

project. We are in the process of upgrading the phyaisal system

that was used. These changes will bring about modifications, but~
mainly on implemenfation aspects of the RRK. Hence, addition of
local stable stores to the currentlyid;skloss workstations,
result in. aJI.terai:ions in the commuigication sublyctcmland, th
checkgpinting operations. Finally, it would be desirable td”ési;
the RRK into the communication layer, in view of a more robd;t

and efficient implementation. -
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'2.5. Global Systeni Information and Distributed Debugging.

-

_ The experience ‘wé\h?ve with distributed programming is far -
less than that of sequential programming. The task of
synchronizing a varying number of processes was proved to be
harder than expected. The intricacies of synchronization may
become the source of frustr'a\ting situations, especially du;:ing‘
debugging. . l

Approximatély eight months were spent for the design and
implementation of the application program and “the RRK. Almos/i:
fifty per 'c'ent, of thi‘s 't°in;e, was devoted to debugging and
:testing. For dek;ugging we relied\ on 'existing tools, s{mh as
conventional 'sequent'ial\ debuggers, .which proved inefficient for
distributed softx‘dare. The -notions of global state and messag‘e
passing are- ;unknown to sequential programs aund hence to
convenj:ionél debuggers. Furthermore, o0ld concepts such as
breakpoints and single-step execution, take on new meaning in the

context of distributed K programming. Imi:leinenting even simple

_distributed programs reveals the need for a more formal approach

to distributed debugging.
The VLR algorithm is an exampie'in the use of global,system’
: >

information for a particular application, namely rollback and
recovery. Important events for RR are creations of che‘bkpointé.
The CCP represents each process' local picture of the system.

state.  With every incoming. message a process collects
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3
s

information and updates its local picture. This information

. e

serves the purpose of tracking down messagé dependené&es'from N
checkpoint cre;té events. It dflows the coofd}natioq - of
checkpointing and identi%icaéion of messages that will be resent,
should a rollback occur.
The use of global information can be ’qxtended to other
applications and distributed debugging is a suitable candidate. .
- In distributed debugging, we must redefine the concepts of
program state and e*ecution history. The same basic idea, of
attaching information to messaées in order to track down evént
dependencies, can be employed. We need, however, information of
finer granularity to be able to mark everyﬁéignificaht ‘event.

Important events related to progess synchronization are send and

receive evehts. Using information about those events, we can

completely characterize patticular states in the execution of
sequential processes. Moreover, compiling such local .informatian’
from the constituent processes can help reconstruct the syg@em

execution history and identify particular sygtem states.

.
- A

The use of system-wide information "and formal process

¥

. syncﬂ}onization requirement specification are the backbone of the

distributed debugging étrg;egy, ' that we propose in the next
. ' ' v
chapters. e . >
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. CHAPTER 3 -
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MODELS FOR DISTRIBUTED COMPUTATIONS

4

+ v

. Models are necessary for the analysis of complex systems.

They suppress irrelevant information, and thus offer the

- simplicity’ and abstractness that are necessary, in order to-

handle sich systems. In this chapter we discuss the two models,

. that we used to'represent a,distributea computation: the épace

- )

Time:-model and the Pomset model. 1In the beginq&ng, we state some
assﬁmptions‘ we have made, concerning the operating

{
characteristics of the distributed system,

3.1 Model of the Distributed System.

4

4
We depict a‘-disﬁributed system as a .colléction of

) Yoy : . .
concurrently executihg processes.: There are-certain assumptions,

1 .regagding ‘the operating characteristics ~of the distributed

i

systems we have considered, whigh are:

L



3.2 The Space-Time Model.

i. Processes communicate only via message passing, through
point-éo-pbint unidirectional channels.
ii. Processes have at their disposal two kinds of

communication primitives: send and receive.

\ LN

-

iii. Channels introduce a finite, variable and i)ositive
mesSage delay. -

o

[y

iv. Messages are delivered in a FIFO manner.
L} %
Assumption (iii) implies that channels are reliable. it

also enforces the cause and effect relationship between the

sending and the receipt of a message.

>

The Space-Time (ST) model, or diagraﬁl, is a graphic ﬁodal.
It is similar to the model presented in [1). An ST diagram
displays the two aspects of a distributed computation: the
spafigl (vertical axis) ;né the temp9ra1 (horizontal axis).
, Each system process is represented by .an éedge, called a

process'edge. A process edge also depjcts the progression of the

*

l The two ‘terms, ST-model and ST;diaqram, are used
interchangeably. : . )

<
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process gxequgion along the time axis. Send or receive events,
-executed b'y‘ a process, are marked on itsn edge as event nodes.
Edges conﬁécting two event nodeé, on two :?ifferent process lines,
represent the»' transmiss&on of a message, and are cailed channel
edges. The process that executes the send event is referred to
as the sender process, énd.the process that executes the receive
event is the receiver. ‘ .

The ST diagram of a simple computation, in the DCS of Fig.
'3.g.la, is .shown in Fig. 3.2.1b. There are three processes,

namely Py, Py and Pj. The pattern of the interprocess

communication, during a certain time interval, is depicted
' ’

’

explicitly in the ST diagram.

From an ST 'diagrém, like the one in .Fig. 3.2.1b, we can
easily deduce ‘any precedence relationships between events. It is
obvious that events in a process are t.otally~ordered.’ Mat;:l}ing
send and receive events are directly related due to causality.
Moréover, applying transitivity, we can extract any ‘exist‘.ing
precedence felationshi_ps between comparable events. Two e\;ents
that ére not coﬁparable _(i.‘e. ‘neithér precedes the other) are
considered concurré;'lt. )

“The ST model is‘ eépec_ially useful, when we want to
f1lustrate the interproce’ss‘ communication that took place during
a particular execution. Eyent nodes shc;y the exact ‘instants in
time, at which the events oécurred. In other.“words, the ST
diagram gives a very .clear picture of "what actually happened".

o

|
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Fig. 3.2.1b: ST diagram of a computation

32°
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This attribute makes the ST diagram a valuable tool during the
_testing and debugging phase of a ’sy;tie;n.

. " ° on the other ‘hand,‘ there afe some weaknesses in the ST
modél, - the ,maiQ one being the wéy concurreﬁcy "is expressed.
Concurrency is not represented in a simple and obvious manner,
and it has- to be deduced indirectly/. Events on a single process
are totally ordered, with respect to tixpe. While this is true
for sequeritiél processes, it is not always the case for composite

' processes., In such proceséeg the ST diagram exercises an

arbitrary serialization of concurrent events. Concurrency cah
\ .

also be present in sequential brocegses when the synchronization

requirements specifications are specified. Some synchronization

events can be characterized as concurrent by the desigher. An ST

diagram fails to describe those events and therefore ‘it is not

practical as a specification tool.

° .
»

3.3 The Pomset Model.

3

The éofnset model was introduced by V.Pratt .in ([19] and
refined by the same author in [20] .and [21]. It is an attempt to
establish a formal ;nodf-zl for concurrent processes, using the
of partial ordering. The model is general and can be
d to many .different applicatjions. In the following,. we
first present its formalism and proceed yith its interpretation

in the case of distributed computations. 1In other words, in the

-

-

) o) Py
- L

o
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termiﬁology' of formal 1language theory, we figbt in;roduce its
syntax and then its semantics.

We beéin with an informal discussion of the bas concepts.
The basic idea behind the model is the realization that:

) X
"A fundamental concept in a process-oriented model of computation
ig variety of behavior.. A popular way to model variety is with’
sets: a progfém, or process, is modelled as a set of its pbssible

behaviors" [20].

Pomsets\reﬁresent the diffegent behaviors of a process. Th;
Qofd pomseﬁ‘is an abbreviation from the words Partially Ordered
Mui}iset. We can intuitively grasp the concept of a poﬁset,v
generaiizing on the notion of a string. A string 15 a set of
symbéls from an-alphabet; :More precisely, we can define a string
as a finite linearly ordereqénmltiset. The £erm multiset is
used, instead of 'set, because multiple oécurrencés of the same
symbol ar§ allowed. For example, the string 011010 is a multiset
thgt containsvmultiple occurrence%/of the symbols 0 and 1, A
pomset can be regarded as a naturél generalization of a‘ftring,
where linear order is r;placed with partial order and the word

finite is omitted.

/
A language is a set of strings. By analogy, a process is a

set of pomsets.  Another characteristic of the model, is the
natural and straightforward way in which process composition can

be performed. The process that is realized by a system of
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processes 1is the intersection .of the utilizations of its
constitﬁent processes: The utilization is an aﬁplication
dependeAt concept that adds to the process the knowledge of. its

1nteractLon with the other processes of the systen.

3.3.1 D&finitions. '

| 5

A labelled partial order (lpo) is a 4-tuple'(V,z,s,u) where:

(1) V is a vertex set, typically modelling\events.

\

(ii) 'S is ‘an alphabet, modelling actions.
(iii) < is a partial order; with e £ f typically interpreted

as event e preceding event f in time.

(iv) :u is a labelling function, ‘u : Vv ~+.E,' assigning
symbols to vertices.

A pomset is defined as the isomorphism class of an lpo.
Isomorphism class means that the identities of the vertices are
not important and they can be treated as ,anonymous points. A

: ‘process is defined as a set bf pomsets. The Pomset model is a
mathematically oriented modelt\\én algebra of pomset operations

has been defined in [21]. Below, we cite the definitions of few

_operations, which are important to our discussion. They are:
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Concurrence: The concurrence of two pomsets p: [V, E S+ and
p':[V',E',<',u'] is the pomset p||p':[VvV',ZvE',sv<',pvu'). In
other words, the concurrence p||p' denotes the process consisting

of two concurrently eiecuting processeQ.

Concatenation: The concataration p:p', or simply pp', is as
for concurrence except that instead of <v<' the partial order is

taken to be <v<'v(VxV'). This forces every event of p to precede

every event of p'.
. ¥ : ’ .
Prefix: A pomset g is a prefix of a pomset p, written qsyp,
when g is obtainable from p by deleting a subset of the events of

J B .
p, provided that, if event u is deleted and u<v, then v is also

deleted.

.
)

Colocation: If pomset events are.labelled with location id,
such as~port id or process id, then all events with the same

labels are said to be colocated.

3.3.2 Model Interpretation.

A process is characterized by the set of itg alternative
behaviors. Process behavior is a sequence of events, where the
ordering of events conforms to a partial temporal ordering. The

events, we consider, are the primitive send and receive events,
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observed along the interface ‘of the process with the rest of the
system. Additional information -about the represented events can
be incorporated in the model by anndtating the pomsets. More
precisely, colocated sv‘ents can be labelled with identical tags,

)

that identify the particular port (i.e. channel-end) that is
.associated. with each even£. Alternatively, events can l;e tagged
according to the type of messages tb which they are related.

Processes can be composed hierarchically to form a composite’
process. The process that is realized by combining two or more
processes, is represented by its own set of alternative, behaviors
(i.é. another set of pomsets). The events, contained in the
pomsets, are events observed at the interface of the system of
the composed processes with the rest of the world. Events
related to the exchangg of messages among composed processes, are
considered intérnal events of the composite process and are
omitted from its pomsets. The restriction of the composite
pfocess behavior to any of the composed processes must correspo’n_a-
tcz a valid pomsets for those processes. Process composition can
Se extended to any set of processes, the final result being an
entire system considered as just another process.

yThe above discussion is illustrated with the following
example. Imagine again the system of three interconnected
processes of Fig. 3\.2.1a. Each process communicates with the
other two processes through unidirectional chanfiels. Assume that

process P, sends méssages to both P, and P3, and then receives

their responses “in the order they arrive. This pattern of

[
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ifnessage exchange of process P;, is repeated throughout system
execution. If the order in which P; sends out its messeges to Pz‘

: and Pj is not specified the following pomset represents a valid

behavior for process Pj:

'Bli (87 ¢ 83 i (r2 ll I‘3) ] °

where event 1labels denote the. channels to which events are
related. _ Another possible valid behavior, for process Pj, is

- given by the following poﬁset:

By: [s3 ¢ 83 7 (rp |l r3) )

If we assume, that process Pl executes an interleaved sequence of

the above two behaviors, then it |is characterized by 'the

following: . N
Py: w8 ( B1* || By* ) R

\\" where the symbol r (prefix closure) makes the ptocess abortable -
by permlttlng ‘it to get only part of the way through its
computation. The symbol S indicates serialization of colocated

events. = Let us further assume that process P, is characterized

i

N - : o P2 [ rllr) i s 1t | ‘

N B

bY'the fcllowing behavior. .
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In other words, P; waits two messages from P; and P3, and then
N » ﬂ
sends its response to P;. Finally, 1let process P3 be
characterized by the following straightforward behavior:
P3:[r1:sz;sl]*
Suppose we want to compose processes Py and P, into one compogite

process. We can then obtain'a‘pomset that .characterizes this

e

_ process, by composing the behaviors of P; and PZ. The. derived

s

pomset is:
__ Pi@Pp: [ (s3 i r3l) || r3? 1*

where the symbol "w!" indicates process composition; and
superscripts denote distinct ports.
The above process pomsets have been giyen in the generator

space. In other words, the actual pomsets that can be possibly

" observed would consist of an a priori unknown number of

répetitions‘of those generators. The ruleé.for composing ﬁomsetg
generators to yield the accurate pomsets, corréspond to fhe usual
operations that can'be performed on pomsets, as described in
[21]. L |

. As we can see from the above example, concurrency is

inherent in distributed systems. It becomes almost ubiquitous.

during fhe systém design phase. Even a% the level of sequential
k . :

9
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.‘.puncesses, events can be specified as concurrent dufing design,

either because they depend on unstable environment paryneters
(recei'pt of messages over channels with variable messagé delay),
or because the designer does not want to impose any limitations.
on the implementation, for example strict ordering of identical
events at different poi‘ts.

The main strength of the Pomset model, lies in its ability
to express and model concSXQency in a very simple ang Ffficieﬂé
manner, that can be clearly understood by both the designer and
the implementor of a distributed algoritﬁm. It provides ualso a
straightforward solution to the problem of p;roc=e.ss composition.
These properties make it. a useful specificatién tool in the hands

of the system designer, who can specify system processes in a

precise and elegant way. Its capability for system specificatioh
. A ’
) 4

can be useful in distributed debugging.
3.4 Comparison of the Two Models.

" The two models are equiva\\lent in the case of a network of )
communicating sequential processes, .in the sense that the same
gavént relationships can be expressed in bdth. . There is a direct
correspondence from cuts in the ST mo.gfgl‘ to pomset prefixes in
thg Pomset model, as shown in [24]. When, however, we pf:tempt a
hierarchical process composi;:ion in a system of sequential
processes, 'the ST model loses its .comprehensivenesé, since. it
fails to represent concurrency in composite processes. ﬂ

\ ‘.'

Y
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. Another slight difference bet‘ween the two models, 1is the
variation in the‘notion of time. In the Pomset model émpl:xasis is
given to the precedence relat/ionshipé between events. It is the
sequence of events that is' important, not. the exact time
ordering. In the ST model, on the other hand, a more precise
representat‘ion of .event timing is usually o:'u'\ccrporatecl in the

diagram. The peculiarities of each model make them useful for

different applications.



DISTRIBUTED DEBUGGING
C).

“

L]

Most i:rograms, at some stage: of theif'aevelopment contain —
errors. Debugging :is the process of locating tﬂe source of
program errors that manifest their presence by generating faults.
Faults lead either to poor program performence, or to incorrect
results. In this chapter, we first presént the-basic ideas of
sequent:.al debugglng and briefly describe its methods. Then we
introduce dlstrlbuted debugglng and its problems. We point out
the inherenb 1nadequac1es that.n make conventional‘ 'debfxggin(;
methods inefficient rfor d,istributedq progfams. -Final‘ly, we
propose our strategy for distributed debugging. , From this

>

informal discussion we establish the need for tools that }hould \
be offered by - dlstrlbuted debugging facility; These features,

along with an outli_ne of the distributed debugger, are presented

in the next chapter.

4.1 Sequential Debugqging. o B 1 .
The means of software defect removal are several, depending
on the software - development stage at which they were introduced.

» -
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L \
Any of the following techniques can :Eelp\ designers, or

programmers, femove flaws. [8]: requirements reviews, design

rev1ews,,code rev1ews, static Sna1y51s, functional tests, ‘etc.
Furthermore other methods, such as program -verification, or
‘structured programing, can help ‘in reducing‘the number of bugs in
prégrams. However, even with these techni;ues bugs-*will still
remain and debugging will still be needed. .

Deougging sequential programs has been practiced and

mastered since the dawn of the computer age. Although it is well

understood the definite and general guide to debugglng has yet (\\

to be written, nor is it Iikely to be. The reason rs that even
though & lot of_ debugging techniques and methods exist, intuition
remains 'still by far, the most widely used debugging tool.

No matter how improvised debugging. might be, there is

@

"COmmonality to the debugging procedures- followed by, programmers.

.

‘The programmer tries to 1solate the area of the bug and
eventually locate it. The program 1nput is chosen among//ne most

1mportant or, even better, among those ﬁﬂat are already known to
produce faLﬂures. In other words, a test-case is selected. Then
the program is ekecuted, and its execution flow is checked‘nsing
existing debugging tobls, équ as-breakpointsﬂand probes.’ %Ezfs
method is besed on the implicit assumptlon, that any control o§er
the marious program objects ‘(program variébles, data structures,
etc.) can be inserted at breakpoints. This is possible,'since

instructions are executed sequentially, and program behavior is

9
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not affected ‘by ‘the amount of time that e‘l&;;sed between the
' execution of two consecutive instructions.

Most of tod&y's conventionall'debuggers offer more or less
the same featurés, which among ofhérs include:‘execution under
. the control of the debugger, single stepping, position or event

breakpointiné, continue ‘ after breakpointiﬁg, ‘stack tracing,
p;inting and changing the value of a yariab;e. These functions,
by themse}ves;’ are only mechanisms for «manipulating//software.

sThey,do not show what is wroné with the progfam, nor do they aid

~ the user by s{:aj:ing ﬁow tpey can be used. It fs the debugging
s;rategy that directs the programmer to their use\

4.2 Distributed Debugging. | . o

Distributed sgftware, like all software, is'prone to errors.
Débugging distributed pfograms is less well understood than
sequential debugging, because distributed systems, algorithnms,
) ;;rogramm‘ing‘ languages‘, and their abstractions are not ~as well
- understood as sequentiai ones. The existing debugging methods
are usually ad hoc and tailored to a particular applf&ation, or
tied éb a .specific programming environment. bistributéd
debugéing .is .usually considered an extension of cénvqntional

éebuggiﬁg; and is looked at as an implementation problem, rather

than a conceptual one. We believe, that existing debugging

1 conventional debuggers are debuggers used for sequential
programs, as.opposed to debuggers for distributed programs.

o
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techniques .are inefficient ‘for distributed programs. New
methodologies .should be developed, that take into accounf the

idiosyncracies of distributed systems.
Problems in Distributed Debugging. ) £

PCSs share some charaéteristice not to be found .in
. :

centralized systems. fhese properties will necessarily affect
debugging and can be attributed to the following factors:
- Presence of multiple asynchronous processes: Aﬂgistributed

systenm is made up of.a collection of asynchronously communicating

processes, executing concurrently on different processors. The

.

result is a system haviﬁg many loci of control, an element that

makes DCSs harder to understand and more prone to errors.
- Time management: DCSs have no global clock. The lack of a

common clock reference makes it impossible to impose a total

ordering in‘the sequence of events occurring in’ the system. At .

most, we can accurately recreate the sequence of events that took
place locally' in sequentlal processes. Rep;oduc1ng the exact
sequence ef events is of tantamount importance in debugging.

- Variable message delay: Commupicaﬁien channels introduce
delays that can vaty depending on several factors, such as the
nature of the channel, the channel trafflc, etc. ’Variable delays

]
\\cé_\b “;aetermlnlsm, in the sense that the orderlng of

3 . .
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events, even on éequential processes, may change“pvor different
executions.

' ‘= Finally, DCSs tend to be rather large, i.e. with a large
number of processors and processes. Largeness, not exclusively a
property of DCSs, makes systees too complex for anyone ;t6
. compreheﬁd how a particular change will affect other parts of th;
system.

The above aspects of DCSs introduce new problems in #the
debugging process. Fami&iar éoncepts, like program stata,
breakpointing, aﬁd single step execution need redefinition, since
they ar% no longer valid, or useful, in distributed environments.
For eﬁample, whaﬁ if the notion of program state and can one be
recordeqz?'Or can we d;e the concept of Sreakpoiﬁting iﬁ DCSs,
and how do we go about setting breakpoints across more than one
process? Obviously, we should answer guestions like these} before
we propose any debugging tools. .4

‘ Typically,  DCSs are debugged today as follows: each process
in the c:’ys/tém_]is run‘thrdugh a conventional debugger, .gnd the
output each debugger is dispiayed on a separate terminal [12).
Sometimes, ad?itional debugging tools are added, nugh ‘a8
monitoring interprocess communication. Although, nobody arbuol

‘that such tools may be useful, the problep remains, as with

sequentiil debugging: debugging tools are just mechanisms for

P
+

2 An illustration of the problems of global states in DCSs,
their classification, and algorithms for their recording {s
presented in [4]). '

-~ L
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manipulating software, that do not support the user on how to use

them. The underlying philosophy is missing.
4.3 Error Classification.

Since debugging -is‘ concerned with locating and removing

software errors, it is only natural that we want to know more

‘about errors. Quite a few efforts to define and classify bugs

have been made, based'on the belief that the more we know about a
problem the better we can fashion a solution. Error taxonomies
are usually bound.to a particular model.

Hence, in sequential programs, errors are mainly related to
the particular stage of software development at which they were
introduced. Consequently, we can have requirement bugs,. design
bugs and code bﬁgs (8]. FOn the other hand, in distributed

systems errors are usually divided in ‘component bugs and design
v i 5

bugs. This distinction results from the view that a DCS is made

up' of compoﬁent processes, that are "glued" together by the
design. Component bugs are further divided, depénding Jon whether
they generated wrong results, or were genérated at a wrong time
[9].

The above error distinction of DCSs can be vague. For
example, a component bug can be regarded as a design bug, when
another level of abstractl_ion is employed. 1In our study, we have
used Pomsets’ to model DCSs. In this context, we ‘adopt‘ the

following error classification. Errors, whose occurrence can be

L
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identified as a violation of ‘the pomset, that -pdcitios the
focéss .behavior,' are called synchronization errors.
Alternatively, bugs which do not result in any pomset violations
are consi&ered as computational errors. This classification fits
nicely into our model, and expands smbothly to oncoﬁpass

hierarchical process composition.

It can be argued that pomsets do not always contain the same

amount of information7 since annotation can be used. However,
they always include the events that ‘are necgdsary to fully
deségibe process synchronization. Hence any errors thafmcannot
be linked to those events, do not influence process interaction.

We feel that this argument, justifies the above classification.

4.4 Debugging Strategy.

LY Distributed programs have two facets: the sequéntial and the

synchronization. Consequently, there are- two 'aspects in

distributed debugging: isolating and removing computational -

errors and doing the same for synchfqnization errors. The first
task, namely the removal of computational bugs, 'is the easier
one. It resembles seéuential debugginq, something that
programmers are well familiar with. Methods and tools for
conventional debdgging are better developed and understood. The
new element in distributed programming is the synchronization

aspect of processes. Although, we do not underestimate the

importance of conventional debugging, we feel that  emphasis

.

d



49
should be put in dealing with the synchronization behavior of
processes. In the following, we will concentrate on debugging of
synchronization errors. .

We are proposing a debugging strategy that focuses the

programmer's attention at the interaction 1level of process
activity. The "interesting" events’at this level are send and
receive events. These events provide the information that is
necessary to the programmer, in his attempt to gain an
understanding of the errors, or at least to perceive where the
implementation and the expected/behavior differ.
, Producing correct distributed softwére is a camplicated
é;ogéss, that begins with the algorithm design phase, winds its
way through software design, and ends with implementation,
debugging and testing. The common factor in all phases of this
devg%opment should be tﬁe Synchronization Requirements
Specification (SRS). SRS is producea by the algorithm developer,
refinedlby.the software;designer and used by the programmer.

Our basic premise is that debugging should be based on a
. comparison of the actual process3 behavior against formal process
‘specifications. The tools for specifying and depicting process
behaviors, are the two models presented in chapter two. More
precisely, the Pomset model is suitable for expressing process

specifications; on the other side, the ST model is more efficient

3 In the following, the term "process" refers to any
process, be it sequential or composite.
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in depicting actual event occurrence, and therefore 'IOtl
~appropriate in describiné.actual process behavior.

' The use of the two models allows for a set of coherent
solutions to the problems of distributed debugging, that were
outlined in the previous sections. The concept of a "“cut"
suggests an anéwer to the questions of breakpointing and step
execution, while a process state corresponds to what is referred
to as "characterization computation"™ [24) in the ST diagram, or

as a pomset prefix in the Pomset model.

D?scussion of the Debugging Process.
. A .
The synchronifation. requirements of a process arée fully
defined using the Pomset model, while actual process behavior {s
illustrated the ST diagram, which generally corresponds to a
barticular serialization of a pomset. ‘During, testing and

debugging, process behavior should be checked against {ts

specifications. Synchronization errors cause .faults that are .

manifested as violations in pomset specifications.

The comparison of process behavior to process lpncigicatién,
can be performed at any level of abstraction the proqrammef deens
necessary: sequential process level, composite process level
(black box debugging), or even system level. ﬁiornrchicol
process composition allows the programmer to 'conc-ntrn;o in

suspected interactions and overlook irrelevant ones.

PR



51

Another advantage of specifying the synchronization
requirements of a process, is that their availability enables the
user to esee\ states in the synchronization behavior of a
process. Cons er;tly, he can dc;fine a pomse‘l:qprefix that should
be passed by/a process (or a system); under ’;B)ér execution.
Since pomset prefixes correspond to pomset cuts, ,defining a
prefix is tantamount to describing a consistent pomset cut. The
progfammer may command the debugging facility, to suspend
execution, once the pre defined prefix is observed. Stated it
briefly, a breakpoint in sequential debugging, corresponds to a
pomset prefix in distributed debuggyﬁg.

Failure of a process to reach a specified consistent cut may

hint at the presence of errors. It should be noticed however,

that due to the presence of non determinism in the execution of

‘parallel programs, this is not always true. In the Pomset model,

a process is described' by a set of pomsets, rather than by a
single pomset. Hence, specifying a prefix in a particular pomset
does not ensure, that the prefix is reachable in all possible
process behaviors. The alternative is to define a complete set
of prefixes, one of which must be reached. If .such a set,. that
accounts for all possible process behaviors, can be defineqd,

failure of the process to reach one of the prefixes indicates the

~
s

existence of errors.
Once a process has been suspended along a consistent cut,
the user can check the sequence of events, that led to the cut.

By comparing against the specifications, he can determine whether
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it is a valid (i.e. according to specifications) sequence or not.
The user can also examine the program state, by exerciéinq
application specific gloBal invariants, across a consistent
global cut. A global invariant can be informally defined as a.
property satisfied by all processes throughout execution.
Sometimeé, process group invariants can be also defined.
Invariants are used to reveal the presence of faults ‘that have
not yet caused any observable discfepancies in program behavior.
Applicatfb; specific invariants a;e mainly aimed at debugging
computational errors. "While their use may sound like érror
detection, it should be understood that in concurrent programs,
testing and debugging are not, really distinct phases. An error
in a DCS can spread quickly through the systém, and by the time
the programmer observes a fault, critical information in the
systém may have been lost. , |

After the cut the program can resume execution, until it
reaches ‘the next breakpoint. 'An alternative mode of execution is
to execute a process up to its next event. This mode corresponds
to single step execution of coﬁventional debugging, and allows
the user to have a tighter control during execution, and possibly
monitor interprocess communication. It can be aréued, tth‘this
moée effects a transformatiBn in the semantics of unblockiné
communication primitives: We believe, however, that the
semantice Are not changed, since ; process s8till continues

execution after a send event, without wajiting for the receiver's

acknowledgement. From the above discussion it becomes evident

-ty
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that the debdgging facility (i.e. . debugger) should provide
kertain tools to support debugging. These tools are discussed in

the next chapter.
4.5 Probe Effect.

The term Prob; Effect (PE) is used to descfibe behaviors
observed when delays are introduced into éoncurrent programs with
synchronization errors [10]. PE is manifested through altered
program behaviors. It can result in masking of synchronization
errors. The PE is apt to be a side effect, when concurrent
programs are executed with debuggers, and therefore it should be
taken into account in the design of. the debugger. in the
following, we attempt a characterization of PE without offering
any solutions:to the problems it introduces in the debugger's
design.

When the debugging operations interfere with the execution
of a certain process, the behavior of other processes can also be
influenced. The overhead introduced by‘the debugger cangiask
synchronization errors, .the result being concurrent prbgrams that
do not work unless tﬁey are being debugged. For PE not to be
observed, ,the debugger's presence should be made transparent to

the debugged program. As a debugging side effect, PE is
| primaﬁiif due to channel probes, that aid monitoring of message

exchanges between processes. In_this case, PE can be described

¢
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as the effect of the channel probe on tﬁe delivery of -a message.
through fhe channel. Possible conéequeﬁces are:

- Delay in the delivery of a message.

v : :
. = Change in the contents of the message.

The second consequence is easily avoidable, with proper design
and implementation, although the user maf intentionally wish to
change tﬁe éontents of the message for testing purposes. PE is
primarily ﬁ:psed when it induces an extra delay to message
delivery’, the reason for that being that in a parallel program
the reiative speeds of concurrent processes. can influence the
results of the computation.

A possible scenario, thaf illustrates the above argument is
the following. Imagine a regeiver process that has to choose, in
a non deterministic way, among a set of messages sent by a group
of sender processes. When one of the sending processes is
delayed, some communications may be ahiited in time. This may
result in a change in the set. of alte;natives considered by the
receiver process. The flow ot’ program execution will-
consistently follow certain paths, while eluding others. As a
result, possible errors in the synchronization bchavio; of
processes can bg masked out during the testing/debugging phaoo‘ot
the proyram. Tﬁese errors will be revealed later, wlien the
program executes in another env&%onment, without the debugger's

presence.
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We can characterize delay, on message delivery due to PE, as

A

. follows. Let the delivery delay on channel i be Dj. Assume that

it exhibits the same characteristics on all meésages transmitted
through the‘channei. Then, we can ideﬁtify three different kinds
of delay: ‘
a. Dj is a finite Kapdom variable, independent of any other
.delay D5 . .

b. Dj and Dy are related.

c. Dj is infinite.

The first kind is the most usual in practice.- It corresponds to

Py

the given example. The second condition can also occur, because
the underlying implementations of the probes share .internal
logical/physical resources. Hence, Dj and D4 can be related

through some common process, that unfairly serializes the message

handling on channels i and j.  Fer example, the probes' on

channels i and j may both need to aceess a comnon database to
record messages for monitoring reasons. If the arbiter process,
that regulates access to the database, imposes an arbitrary
serializatibn on simultaneous- requests from th% probes, the
second kin’Lb of delay will result. The third condition is met

when the probe is shut off, or has mismatch behavior with reépect

- to the process being probed, something we can detect and rectify

easily. Alternatively, the. user's intervention in program

execution can result in an infinite channel delay. The uéer may

- "
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wish to exercise certain execution ordering, that leads to
process incompatible send-receive confditions and eventual

[ 4 -

deadlock. o ' )

-
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CHAPTER -5

THE DISTRIBUTED DEBUGGER®:

In this chapter, we present some of the important features
of the distributed debugging facility that we propose. The

discussion focuses on issues that were introduced in the previous

chapter. Solutions are pfésentedlat_a conceptual, rather than an -

implementation level. We discuss only the abstractions of the
debugger, while a lot of low level details are omitted. Emphasis
is placed in the tools for4 debugging synchronization errdts,
although the distributed ‘debugger should also‘;contain‘
conventlonal tools, used in sequentla; debugglng ; ’ E o

| In the first three sectlons, /f’present the tools that
'should be ofgkred by the distributed debugger, and discuss issues
related to their use. The suggested tools 1p egerc1se_the
debugging strdtegy that we advocate. 1In the next two sections,

« ~

we attempt a general and brief description of ‘the basic structUre
» .
of the debugger, and present 1ts high level spec1f1cat10ns

Related work is presented in the last section 5% the chapter

57

4



5.1 cChannel Counters.

t
*

As it was pointed out in the previous chapter, an-impggtaﬁt
tool in distributed debugging is the ability to set breakpoints
across ﬁany processes. We claim, that positional breakpoiptg‘of;' }
sequential prograﬁ;, correspond to popsét prefixes in distributed
programs. They can also be dépicted as consis£ent cﬁts,in the ST
diagramlof a DCS. The difference ig that, pomset prefixes can be-
defined a priéri, while ST diagram cuts can be defined only a “

posteriori, that igﬁgfter execution. Hence, it is mainly bomset
prefixes that are ﬁsefullfor setting program breakpoints.’

. In ST diagrams, cuts are described by their charaqte}ization
comgutation, which amounts to the computat&oﬁ performed by every
process up to the point of the cut. ST diagram cuts also
correspond .to pomset prefixes, as shown in [24]). The execution

( .of a prefix (i.e. the events that constitute the prefix), of of

‘the characterization computation, results in a process reaching

a pérticular state. The state of the system along the ST diagram

cut comprises the set og\gll component‘process stgtes, alohg with

R the states of all chanﬁ;}s:‘ From the preceding discussion
follows that, in order for Nhe uSef to be -able to’ set
breakpoints;-the debuggeg should, enable him to define consistent

pomset prefixes. ‘One vay. of accomplishi"ng' this is by use of

? ¢ 4 ;'
Channel Counters.: . /s . ' .
P / * hY
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5.1.1 Description of Channel Counters.
|

Accordipg to the adopted model of a DCS, processes
communicate(via message passing, thrﬁugh un}dirgctional point-to-
point channels. The aebugger coﬂsists of a central site, the
master site, and local node processes, the node debuggers (seé
section 5.4) Every node debuggef maintains one counter for every
channel-end, or port, of the procesé it controls. Channel
counters, of the sanme applicz}ion process; are called local
channel counters. Counter .values inérement monoﬁgnically and
originally are set torzerd. They may be }eset to zero, if the
user wisheﬁvso;‘at breakpointsl. A counter is incremented every .

time a message leaves from, or arrives at, the corresponding
channel-end. : o //(//,

There are two kinds of ‘counters: éolorless and colored.. The
former ére incremented with every message sent, or received, from
he associaﬁgd channel-end. The latter qéunt messages of a
particular color. “Message colors correspond ‘to event labels of
annotated pomsets. \The number andj the kinds of colors  are
parameters, defined at the geginning of thg debugging session by
-the programmer. The debugger determine§ the color of a message
by looking up a particular message field. Message cqlors help

the user concentrate in a subset of process interactions. a

< - | A
1 Messages that are in transit (i.&. have been sent, but
not received) at breakpoints should be taken into actount, before
resetting counter values. Otherwise, counter values might not be

consistent anymore.

'
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. The value of each counter represents the channel state at
tﬁat end. Because colo;le;s counters increase their values with
each message, they define unique channel statés. On the other
‘hand, colored counters. change .values with messages of a
particular color only, and coésequéntiy, they défine classes of
¢hannel states, rather -than unique states. A set of local
channel counter values, defines the gynchronizéiion state of that
process. The usefulness of channel‘countersiin describing pomset
prefixes is expressed in the following-lemqa:
Lemma 5.1.1: For every pomset prefix, there is a set of channe}
counter values, that is necessarily associated with it.

L 4

Proof: The truth of the lemma is inferred, by observing the

following. Every pomset prefix consists of évents, send and
receive, assoéiated with channellénds, or ports. Events
associated with a particular port are colocated events. If we

céu?t all events, observed at a particylar port, and assign their“
number as the corresponding counter:s value,-gnd do the same for
all sets ofwcoloqated“events in the brefix, then this set of
channel counfer values is associated with the particular pomset
prefix, Q.E.D.
Actualfy, the lemma c;n be generalized for any pomset, since
every pomset' can be considered as a prefix of another pomset.

The counters can be either loghl counters, when we consider

pomsets of sequential processes,' or counters belonging to

i
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separate sequential processes, ip the case of composite
pfocesses. _ ?

The: lemma asserts that_*a pomset' prefix can be fully
expressed in terms of channel counter valugs. However, not all
valué; are always necessary, Or even ﬁsefulq in specifying a
prefix to the debugger. Consider the following pomset generator
that characterizes a sequential process.: /l

-~

b: [s1 7 83 7 (rl ll r2)]*

where subscripts indicate distinct channel-ends. The prefix that
comprises the first two send events, can be expressed-in terms of
counter values as: - e

CCl = 1 ND CC2 =‘l

If we observe, tﬁbugh,‘that event s, should nof happen before 51;
then we realize that the céunter value for port one is redundant.
Stated differently, when CCj t;ggs ihe.value 1, ccl_spéuld also
have the value of 1, and. hence it i; sufficient to specify the
value for CCp jn order to describe the pgrﬁicular prefix.

This last remark introduces the use of colored counters,
which keep track of events with a particular label (i.é. colbr).
Definition: The a-restriction of a pomset p, is thé pomset
derived from_p, by deleting all elements of p that do not have

o~

t



the label «a.
Lemma 5.1.2: For every pomset restriction, there is a set of
color-sensitive countér values of the same label, that |is

necessarily associated with the restriction.

Proof: A pomset restriction can pe considered as one-label
'annotated pomset. 1Its events can be ﬂumbered by color-sensitive
counters of the same color. Hence, lemma 5.1.1 implies the truth
of lemma 5.1.5; Q.E.D.

A pomset prefix can be‘defined by the restrictions, that
correspond to the labels of its .last event(s)2 and its concurrent
events that are not included in the prefix. Consequently, it ean
be expreésed in terms of the values of the-colored counters, that
correspond to the labels of those restrictions. This is the’
minimum set of counter values, required-to define a pomset prefix
unambiguously. In the pomset prefix shown in Fig. 5.1.1,'the

corresponding channel counter values are:

- 4

4

f. \ ) CCI/l = 1 AND 'CCI/Z = 0/

&«

where I stands for Input.

2 The labels of all concurrent events, that either’ precede
or follow the cut, should be considered.
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Fig. 5.1.1: Pomset brefix and corresponding values

of channel counters .
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5.1.2 Use of Channel Countérs.
v ;

The programmer observes : symptoms of an error (i.e. a
fault) and decides to sus'pend execution once a particular prefix
is observed. He can sbecify the corresponding breakpoint by
defining a set of counter yalues. If th? breakpoint corresponds
to a unique prefi); that should always be observed during
execution, then fai1u1;e to reach it reveals the existence of
synchronization errors. It is usually the case though, that such
"a;bsolute" prefixés are rare in DCSs, due to non-determinism
present during the execution. Normally; the programmer should
specify a class’of prefixes, any of which could be passed under
F:orrect .execution. .This is u‘s-uallly realited by partial
definition: values for some of the counters are specified, while
for the rest "don't care" value are assumed. Alternatively,‘
multiple prefixes can be also defined by disjunction.

. Once a specified prefix is péssed the debugger suspends
' process execution. The proérammer. can then examine the internal
states of the constituent processes, invoke global ‘invariant
tests, or examine the sequence of event occurrence (see following
sections) that led to the cut. The execution path should be
checked against process spe_cification. From a breakpoint the
"system can resume execution. N

An example that illustrates how counter values define

,

breakpoints, is given below. Imagine a fully connected three

process DCS, similar to that of Fig. 3.2.1a. Process P, is

’
£
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characterized by the pomsets that can be generated by the

following generators::

/

Pyt [ (sy || s3) 7 (x3 || xr3) 1*

Different prefixes can be defined in the pomset shown in Fig.
O

5.1.2. Thé corresponding sets of channel counter values, fhéty

specify each prefix are (CC stands for Channel Counter) : <

Prefix 1: CCyj5 =1 and CCj3 =0

]

. Prefix 2: CCyp5 = CCy3 =1 and CCyy = CC3q =0

.

Prefix 3:.CCy; =1 and CC3y = 0

Actually, the counter valqés need not be ones and zeros only.
They could be aﬁy integer values ﬁ and N-l, reséectively. In‘
prefixes 1 and 3, we define values for some of the counters of
process gl' The rest assume a "don't care" value. When P; is
suséended, say after prefix 3 1is passed, the values of
unspecified counters can élso be examined. In this case, they
should have the values: CCjy° - C€yq and CCy3 = CCj3;. Any
deviation from these values would signify the pfesence of
synchronization errors. The point, however, is that the values
of those counters are not necessary for the specification of the -
prefix. ]

The above prefixes are defined in P;'s pomset only. We can

also define prefixes for any composite process, such’as Py®P,.
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' Fig. 5.1.2: Ponmset prefixes
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Let us assume that process P, is characterized by the following

behavior:

Pa: [ (ry || r3) ¢ sy 1%

Then process PyoP, is characterized by the pomset generator:

PjoPy: [ (s3 7 r3l) || r3? 1* YK" ;

3

where superscripts indicate that the two receive eventg «of. the

same label are observed at different ports. Prefixes that we can

define in this pomset are shown in Fig. 5.1.3. "~ They éorrespond
\ »

to the following sets of values:

I ’ e

Plefix 4: CCq;

1 and CC3p =0 : .
Prefix 5: CCy3 = CC35 =1

In the case of the composite process PjoP,, we can perceive how

non determiniéﬁ may alter the execution péths of a process. The

counter values corresponding to prefix 4 define oniy one prefix,

that might not be reached during execution. The counter values

for efix 5 are more general (actually théy represent a set of ‘

prefixes) and they describe prefix 4 too.
The presence of: synchronlzatlon errors in the implementation
of processes can cause problems in the operatlon of the debugger.

These problems are discussed in the next section.

fi\!,\.
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5.2 Process Termination Conditions.

Process termination problems may arise when the distributed
debugger is instructed to suspend the execution of a ‘set of
processes after a pre specified prefix. is passed. Itx is then
possible, that the operation of the debugger interferes with the
execution of the applicaéion processes, creating pathological
situations, such as process starvation. Two reasons can be the
cause of such problems. Either the programmer spfcifies a non

consistent cut, or synchronization errors alter process

2

behaviors. We rule out the first case, since it presupposes an
error on the programmer's.part. The second sc;‘lariq, however, is
likely to occur. o ' -

Before g&ving-an example we should describe the pfoc‘edure"
followed by the debugger, in suspending the execution of a set of
processes after a specified prefix.” The user inputs the channel
counter values that define the prefix, at the c;',entral site. The
values are then "projected" to node debuggers. The projection of

°

a prefix definition to a node debugger, consists of the set of

. 1 4
values for locally maintained counters. For every counter for

which no value is specified the debugger assumes a_ "don't care"
value.
A local debugger reports to the central site when:

1. - Its local process is suspended, or

. / - ,\



4

"2. The specified condition is irreversibly violated.

PEARN *,

The cohditions fo; the suééension of a local prosgaﬁ\.arg
discussed below. :Violation of a specifieé condition occurs, 'when
a‘couﬁ;er exceeds its specified value, while. at least one ?ther
local counter has not reached “its own, value. The central
debugger compiles the informétion received from node debuggefs,

and declares success, . or failure, in reaching the specified -

state.

4

The following’ examplii demonstrates how synchronization
4

: . . ©
errors can cause process termination problems for the debugger,
) . ’

Fig. 5.2.1. - Two processes Pi and P, are connected as shown in

the figure. The pomsets that specify the two;processes are:

/ .
Plzya‘; b and” sz c ;d

Let us now assume, that there are synchronization errors in the

implementation of P,, and its actual synchronization behavior

' /
corresponds to the pomset: . . ‘ )

 Ppr'cj c g d . T S

N

/
¢ , Y
In other words, P, expects two mgssages from P;, before yielding

its own response in channel d. The programmer, witjout

suspecting the existing error, specifies the following péefiges

4 . ~ © W K Lo
. ’ : . , \\
‘ : ' Lo
|
- . | )

o o ' { | t\“ o |
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in theé process pomsets: . V

Ll

i
=

Pyt CCq = 1 & CCp

;o , Py: CCc =1 & CCq =1

]

Process P; will meet the specifie!d condition, after’ it has

received and sent- its first message. Consequently, the local
y

debugger that controls P, will suspend its execution. This will

leave process PZ waltlng, ad 1nf1n1tum, for a second message.
Process P, canngt be suspended, " because' it has not passed the
specrfiled prefix. Aév this point, “the debu( er' s operation

l:z‘ecomes overt to an 'appllcatlon process, because of the

debugger's interference with program execution (i.e. suspension
‘ @

of Pj). Process P; will infinitely block for a second receive

_event. The example depicts one possible scenario for process

-termix;a‘tion» problems. It bfcomes clear that any debugger

'
spec:.flcatlons should take into account 51tuat10ns s:1m11ar to the

-

one presented in the example.
When a local debugcjer suspends a process, it changes the

process status from "running" to "blocked" and the st:aths ‘of -its

chafmels to "dead". The debugger sends a fnessage to' all “dead" .

outpu't‘ ‘channels, that notifies other node debuggers of the status

_chahge. Likewise, vany ‘node debugger ypon, receipt of such a

), R

_message marks the .correspc_)nding channel as "dead". Messages

arrivimy at the input channels of a suspended process can be

saved .in buffers, ,.and replayed whén the process ' resumes
, . N ‘4 . - . ‘ -

\



execution.

A" local debugger should then suspend its process, in-‘th'e.

following casesy
.

’
1. The process satisfies the specified condition.

L .=

o /:

" 2. The process attémpts a receive’event on a dead channel.

L 4

3. The process does not show any s‘ighs of activity for a

\

ceFtain amount of time.

>

’The first case corresponds to the successful .reaching of the
defined prefix. It occurs when every counter attains the
required value. The/o’2her two cases correspond to failu)res to
reach the pre defined prefix. More precisely, the second
condition revealk a process behavior not accounted for in process

speci%ications, - provided of course, that the ‘specified cut was

consistent. The third case prevents endless "ha_nging" ‘of the

*

debugger, in case of pathological process behavior, such as

infinite looping, sudden death, etc. It ghould be pointed out,

that this last. condition is int:luded\as a precaution . feature,

P

,againgt faulty proce,ss'l\ implementation rather than.opossible

debugger side-effects. The debugger does introdute a definite
; ,

. N
pve.gr:head in process execution, but it does not nodify process

-

y . 1
o behavior, as far as its liveness and safety requirements are

concerned. This condition can be implemented as “a time ofit

-~
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mechanism, and ensures that the debugger always returns control .

to the user, even at the presence of prdéess implementation

errors.

»
,

It is evident, that suspending a process’'is a decision taken
locally by a node debugger. No cooperation between. node
debuggers is required, éxcept to disseminate infbrmation
regarding change of proceés status.

<

5.3 Timestamps. ' »

’

. o Y
The gist of the propoééd debugging strategy, is the

compafison of actual process behavior against process
specifications. This implies, that the debugger should provide
some‘means for recbrding t£e sequence of events, executed by eaph
process. An important problem related to event recording is the

identification of concurrent events, among events of a composite

process, or events of different procesges. Simple event

‘recording on sequéntial processes -is clearly . inadequate for
b} ~ M :

identifying concurrency. | : .
&
Another major issue in xdistributeq debudgging,  is the

reconstruction of the exact sequence of event occurrence -that
took place. It has been - pointed out many times, that non
determinism in Deés, may change the sequence of events over
different executions. Therefore even though, a systemwrehches
the same prefix twice, the execution paths that were folloﬁed may

»

be different. An example is shown in. Fig. 5.3.1. The shown ST

o
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Fig. 5.3.1: ST\diagram cuts corfesponding to

' the same channel counter values

‘

>
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diagram cuts are characterized by the same set of CC values:
"Pp: CC15 =1, Pyt CCyp3 =1 AND C€C3p =1, Pg: CC3p = 1

Obviously, the evént sequences that led to each cut are

different. It is possible that synchronization, or even

computational, errors are masked out and cannot be robserved under .

certain event ' sequences. Intermittent presence of errors can
. -
cause a lot of frustration and delays during debugging.

As a solution to the ;pove problems, we propose the use of
timestaﬁﬁs that mark éiery event in the system. Timestamps have
nothing to do with the real time an e?ent occurred. They can be
‘descrlbed as logical tlmestamps that uniquely identify system
ev nts. Their use allows the user to infer \useful event

relationships, including dependency-énd concurrency. Fig. 5.3.2

shows an example of an hypothetical DCS ST diagram, - and the

T e

corresponding timestamps for every event.

5.3.1 Description of Timestamps.
The Timestamp Vector (TV) of any process.Pi has Njelements,
N being the number of processes in the system. Its elements are

integers, originally set to zero. They take on their values as

{

follows:

Yo

a. Element ej is incremented by 1 with every event of Pj.
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Fig. 5.3.2: ST diagram and event timestamps
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b. For every j € { 0,..N ) and j <> i, element ej is

incremented, only with the receipt of a message, iff:

- t
ej > ej, ‘ ﬁ

i.e. the value e;' in the received TV is greater than ey.

From (a) and. (b) we can understand how event relationships can be.

deduced from their TVs. When an event precedes another,

knowledge of the first should be reflected in the corresponding

"entry (i.e. the entry of the first event ‘owner's id) of the‘,;

second's TV. On the contrary, when no event shows ‘a dependency
on the other, we infer that two events are concurrent.

Each local debugger maintains its own copy of the Tv. A
node debugger counts the send and receive events executed by the
process it controls, by incrementing the - value of the TV element,
that corresponds to the id of{Fhis local process. The value of
any other element is equal to‘tbe ordinal numbef of the latest
event, known to'have been executed by the corresponding process.
Hence, the value of the ity element in a TV, indicates a
particular point in the synchronization behavior of process Pj,
as it iigpercelved by other processes. . 1

Using event timestamps, the ST diagram of a DCS can be

built. The following theorem guarantees its uniqueness:
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Theorem 5.1: If the whole history of timestamp values ‘on each
process is available, then there is only one ST diagram that can

be reconstructed. . °

Before we pfove the theorem, we establish the following lemmae:
Lemma 5.3.1: Every event in the ST diagram of a s§stem is
identified by a unique timestamp vector value.

: 1

%) .
Proof: Let E; and E; be two events, in a three-process DgS. Let
also ‘<iy, J3, kp> and <i;, 3j3, kp> be the corresponding TVs.

Then there are two possible cases:

be different from iz; by condition (a) in-timestamp definition.
That is, either i; < i, or iy > iy, Q.E.D.

°

-

ii. E; and E; belong to different processes, say Pj and Py

respectively. Lét E3 be the first event on process P5, that’
"Rnows" about E;, and let <ij, 3j3, k3> be its TV. In other

words, Ej is the first event on Py in whose TV: i‘j‘ = i7. The TVs
of E; and E; differ, since, at least, . j; < Jj3. Then, if Ep
precedes Ej, its:TV does not reflect E;, and therefore i, < ij.
Consequéntly, i, < i; and hence Ep's TV is dif»fgrent than Eq's.
If E; follows Ej then, the TVs of E; and Ez’ are different, since

jl <j3 < jz, Q.E.'D.

$ . v .
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i. E,, and E; belong to the ‘same process, say Pj. Then i; must -
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Lemma 5.3.2: Events on a sequential brOCess are totélly ordered.

Prbcf: We know that:

3

i, No two events can have the same TV value (lemma 5.3.1)..

ii. The element that corresponds to the owner process' id is

incremented by one, with evefy event (TV definition).

From the abbve, lemma 5.3.2 follows directly, Q.E.D.

-

Lemma 5.3.3: Send and receive events on a| sequential ‘process can

be distinguished by their timestamps.

Proof: [Let Ej and E; be two consdcutive e¥ents, on process Pj.

Let also <ijy, Jj, k3> and <ij, j / hp> be the corresponding TVs.

If E5 is a send event, then itg TV différs from El's, onl¥_in
that i, = i; + 1. No other elem can have changed value,

according to condition (b), in TV dgfinition. If’Ez is a receive

event, then it is the first. event/in whose TV, the corresponding

send event is reflected. Then, both, i; = #; + 1 and, say, jp >

j1, Q.E.D.’

In other words, a send event'é TV value differs from the TV
value of the previous event, only in the element corresponding‘to
the oﬁher process, which has been incremented by one. The

timestamp for a receive event, on the other hand, always reflects

.the tihestamp of the related send event. vIncidentaliy, we should’

noticseq, that'i/;jfg;yé event is the .first event that_"learns'

-

&

s
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gbout its matching send event. Onlyfevents that directly, or
indirectly, follow it may have a knowledge of the existence of

that send event in their Tvs. ,

7
¢

We can now prove theorem 5.1:
- Theorem 5.1 Proof: Given a set of TV values, .two conditions must

be satisfied in order to reconstruct the correct ST diagram:
i. Find the correct order of events on each process.

ii. Match-send and receive events correctly.
¥ ¢

<

iCondition (i) is guaranteed by lemma 5.3.2. We will prove
condition (ii), namely, that no two events (i.e. one send andlépe
réceive) can be wrongly matéhed, given the whole set of TV valﬁes'
on every process. Let €4 and E, be two réﬂated events, El being
a send event and E, its matching receive event. Assume that E;
and E; are not paired, and let E3 be the send event to which‘Ez
. is wrongly matched. Finally let <ij, ji, k1>, <iy, 3Ja, k2> and
<i3, J3, k3> be the corresponding TVs. ‘Then, in the resulting ST

'diagram, there are three pos‘ibilities for E; and Ej:

i. Ey; prededes E, or

ii. By folbzws Ey,. or
2

iiiu E; and E, are cancurrent.
'™

N, T-TR : ) ’
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‘i. Thi§ is impossible because, according to ‘lemma 5.3.3, E, is
the first event in whose TV, the ity element has the value of ij.

Hence the resulting ST diagram wouid either be wrong, or have

different TV values.

ii. This is also impossible, gince'El would have to be matched
with a receive event that follows E;. Then that event should be
the first to have a knowledge of E; in its TV, againhaccording to
lemma 5.3.3. But Ey's TV value already reflects E;, hence we

would bave a violation of lemma 5,3.3 in the resulting ST

e

iii.” Finally, El and E, cannot be concurrent since E;'s TV shows

diagram.

‘a dependency, from E,.
" From ki), (ii) aﬁa (1ii) we conclﬁdé that mismatchiné any pair of
events would result‘in a’ ST diagram with different timestamps.
Therefére, by matching only correct péirs the authentic ST
diagram 'is produced, Q.E.D. ‘ |

Below we present an algorithm for the constyuction of the ST
diégram, given fhe values of the recorded timestamp vectors. ‘The
ST diagram is constrﬁcted by one process that collects the
timqstamps'from all system processes. The crux of the algorithm
is thaé timestamps ganebe regardeq as N-digit integers. Hence,
each sequential process sends to the compi}er process a sorted

; « : N

N\
N
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(in ascending order) vector of integers. The compiler performs
A A

the following steps: / : ‘ a

o -, \

1. Mark event timestamps as send and receive (according to lemma

b ]

5.3.3).

! .
2. Merge all vectoxjs, and soft the resulting Sorted Timestamp
"Vector (STV) sin ascending order.

-

3. While the STV is not emi)ty do: .
. s

i. Match the first send event in STV (of any process Pj) with
the first receive event, not belonging to Pj, for which its itnh
timestamp element is equal to the' iyp elemer;t of the send event's

timestamp.

ii. Delete the’ma'{:ched pair of timestamps. ~'}\

Tr}gérem 5.1 guarantees that there- is only one" ST "diagram

that can be reconstructed, given the whélg set of TV alues ' on

each process. If, however, a limited number of timestamps (i.e.

a "window") is available for every process, we cannot guarantee a

unique ST diagram. This is exemplified in Fig. 5.3.3. If each

process saves only the three most recent TV values, both ST

~ : \ . :
diagrams shown in the figure can ke “reconstructgi. We can

~
reso],ve"this problem, if every node debugger, in addition to the

4
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1ast§ M TV values, saves.an extra TV vallue“:\ the one just preceding

- . \

the first of the M values.
o - A ] -,

S _ : °
5.3.2 Use of Timestamps.
. \ Fy

‘

-~

A copy of the TV is appended b§' the node debugger to évery

-

. outgoing message. * On the other end, when the d%bugger receives

an incoming message, it st§ips off the TV copy that was attached

pe-

by the sender. The receiver updates its own copy, by setting

ev'ery element with a 1lower value to hthe value of- the
corresponding element in ‘t'he x":aceiv-ed TV. 'Réceived TVs aré“aiso
re?:prded for later reference. Every node debugger saves all TV
inétances associated with the last M events, M beir;g' a parameter

dgfiﬁ”ed at the beginning of the wHebugging session by the

programmer. . .

AY

- ¢
Timestamps can be considered as a comp!énint to channel
\J

counters. They enable programmers to distinguish between traces
8

for the same cut, 'based on the sequence of events that led to

. , , \ .
that cut. When system execution is suspended the values of the
s

-

recorded TVs can be used to reconstruct the ST diagram of the

£y

system, in the window of the last M _events executed by every
f
process. Then the sequence of event occurrence can, be checked
against specification. Synchronization errors, denerate faults
. \ R

that can be pérceiVed as violations in the synchronization
. . ' ’

I

requirement.specification of a.process. °

, ®
/ -~
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5.4 Impléhentation Issues. e

<

- ~The distributed debugger is conceived as a distributed

N e e e

program that encapsulates the application program. On every node
of the system, where an application process is running, there is

a debugger,process3r that acts as a buffer process between ‘the
R . T ~
application .process and the communication subsystem. These

debugger processes are called node, or 1local, debuggers. The

node debugger spawns the application process, controls its

execution and intercepts all its messages. For simplicity, in -
the ensuing discussion, we assume one application process per .
node. On a separate node, called the central site, there is a

master debugger process. This rocess, called the master-
p

debugger,. provides the distributed debugger's user interface.

~ Every application process has a unique idenfification number
in the system,'by which it is 'known to the debugger. For the
present, we assume a fixed topology for the application program.
The status of an application process can be either "live" (i.e.
running), or "blocked" (i.e. §ﬁspended). The channels of a
process, whose status becomes blocked, change their status'to
"dead". A Dblocked process :neither sends nor receives any
messages. Messages arriving—at "dead" channels are saved in

"unlimited" buffers ‘and 'played back . when ‘the blocked process

resumes execution.

3 The term "“process" refers either to the application
process, or to the composite process, formed by the application
and the debugger processes.

W
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Node debuggers shog}d offér all the features of conventional
sequential debuggers. In addition, they should offer additional
tools geared for thé distributed environment. Hence a node
debugger intercepts messages of the 109a1 application process;
and processes their TVs. It should also record the contents of
messages, for later examinatién by the programmer.  Messages
could be saved ét one end, either thelsending or the receiving,
if we assume reliable.communication. The node débuggers help
also implement the so-called step execution mode. .fhis is.done?
bx requiring from the debugger, which spawﬁs and controls brocess
execution, to request the user's permission for the egecution of

every send or receive event. Once the permission is granted, the

debugger allows the process to continue. ' Node debuggers

communicate among themselves via control messgges.'
’ The central site ruhs on a node with no application
processes. Ip’ is at this site, thét the programmer issues
commdnds'to the debuggét and receives(any produéed'output. The
master debugger also commuqicates with node debuggers, §ia
' qontrol' méssages. It compiles any recéived information and
reports to the user. The programmer should also be able to
access, from the centyxal site, .the tools offered by ~local

debuggers. In this case, the centrarﬁg}te should act as a smart

ternminal, multiplexing output from different processes in

. R ! ~
separate windows.

-
The central site offers the capabilities of setting session

\

parameters (i.e. number and type of message colors, ST diagram

[l
Al
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window size, etc), defining breakpoints, granting permissions for
— —  the ®xecution of events in step mode. It is also tle compiler

procesé} fhat constructs the ST diagram of the systém. ‘Finaliy,
the ability to eétablisp recovery lines during eiecution—and to
request rollback to' a particuﬁar. recovery line; can be
incorporgted in th%smaéter deb&&ger's features.

|

5.5 .High Level Specifications of the Distributed Debugger.

»

)
2

In this section, we pr;:;nt the specifications for tﬁe main
— . modules of, thé‘ distributed debugger. The specification§b///
represént a first 1ével functional decompositien of‘the“gébugger,
and their purpose is to convey a feeling for its structure.

For the specification§"wé have used structure charts r17].
These are -hierarchical diagrams that define the overall

‘architecture of the program, biishowing its basic modules and

their interrelationships. The basic building block of a
‘structure chart is a module. Modules are represented by
rectangles of the type shown in Fig. 5.5.1. Eacﬂ'recta le has a
*descriptive name, that explains ;:he task tfxe module Bé?fb@“\‘

Open-circle arrows show data passing between modules, while

filled-circle arrows indicate control information passing. At
the upper right cdfner of Fhe rectangle, in a first level module,
the input to the module is indicated, 'and at the lower Tright
‘corner the output, if any. The épecifications for the debugger,

are shown in figures 5.5.2 through 5.5.4.
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«In (4] and [5], p. Bates et al.,.descrlbe a debugger for

dlstrlbuted systems, based on "behav1ora1 abstract1org' TheLr

. .
approach to debuggirg is similar to ours, in that it is based on

a comparison of the actual 'syst&em'behavior against 'a model of its
activity. tHowe\rer'," their method of desc}ibing the model of.’
system behavior is-'different. The programrr\er deflnés s:v.grnficant
system behavioral models in the Event Definition Language, or
EDL. EDL event définitions descx;j.be the type of evénts that may

. . . L
occur, and thejr attributes if they do occur. . Lower level event.

definitions n be combined, throdgh filtering and clustet¥ing, to
! . :

provide c‘!efinit'ions .for higher level events. '6nce the system
behavior has’ been de‘scribed the debﬁgger monltor"s the systen
behavxor, and compares it to the glven descrlptlon.

We feel that their model of a dlstrlbuted computatlon has
not been well defined. More precisely, EDL 1s K specifrcatlon
language that is_, close to the 1mplementatlon, and is not usefl;l
for design speoification. The usefulnegs ‘of a model lles in the
fact that it can be used by all system users, be they designers
or implementors. In this aspect, we feel that‘, EDL is not.a

comprehensive"tool for system specification, and thus thert is .

#

“the problem of communication between the designer and “the

L t

implementor. The proposed debugger. will accept models of system

] -

behavior, vull -detect systen mlsbehavmrs by comparing it to
4

actual behavior, and eventually suggest rudlmentary bug remedies
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to the user. Building the proposed debugger, however, may prove

a difficult task, since a lot of sophisticated coméonents must be

incérporaééd, such as the behavior monitor and the event
recognizer. /The latter requites a sophisticated algorithm for
the recognition of event océurfenqe, whose complexity can be

. unbounded. This algorithm cannot be easily distributed, and thus:

1
>

it can become the bottleneck of the systenm. o .

’

Baiardi’ et al. pledent their method for distributed
debugging “in [3]. 'Thgifs is another“approaph based on the

_comparison of expected program behavior to actual behaviof. The

proposed debugger will accept the specifidation of a program and -

will be able to detect the presence of errors, by discovering

discrepancies in system behavior. Hence, the debu'géer is also
oriented towards automatic error detection. The debugger
‘suppc.)rts a specific concurrent language, called ECSP. While the
proposed model is general, the specific;tion lang\iage is tied to

ECSP, limiting the debugger's usefulness.

I’4

Another potential problem stems from the operation of -the.

debugger. - Node debuggers trap each request \:for process

communication made by their local process. They: check whether
N K M
the requested interaction conforms to process specification, and

—

~ they él.o. request permission "from those processes, whose

4
'

specir cation controls (i.e. contains) the particular

»

interéction! The application process is allowed to 'proceed,h only
when permission is. granted by the 1local debugger and a‘llﬂ

reduested processes. We believe that this mode of executi:on will

- . .
4
, o
.

v
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impose an unacceptable  overhead, and will confine to a high
degree the autonomy of process interactions.
M. Garcia et al. [11], present another approach to

concurrent debugging, using Petri nets’ to describe process

interaction. The debugger monitors system events and attempts to

recognize specified behaviors. A When a predefined behavior is
- . Iy

recognized, it respgnds by executing certain commands that have

been dictated by the user. the EDL [4] is used for the
' 5 , -
ddescription of expected behaviors. Petri nets are used for an

-~

off-line visual representation of recorded process interaction.

L

The debugger. is implemented: on a system that supports an

\ . ‘ ;
. encapsulation mechanism, called "object". An "object" comprises

v 1 -
a resource and 1ts appropriate operatlons. Events related to the

access of arp "object" are trapped by the debugger, and a log fJ.le

is updated. = Once exeécution is suspended a Petri net player is

v

called tpo analyze the computation.‘ The debugger was implemented

-

for a set of ‘concurrent processes on a‘single node.‘ As - the
authors: observe, problems of naming, rderlng of events, and time

‘stamping must be answered, before the method can be extended to

@
®

distributed systems. v oL

Bruegge and H‘i:bbard [6], propose a high-level debugging
mechanism,. called "denerelized Path Expressions". pPath
expressions were .originally intended for the synchronizatlon of

‘parallel processes. 'Their purpose is to restrlct the set of

“possible %avmrs of concurrently executmg programs, to those

.that are' appropriate. Although the authors discugs thelr-

]

.
-5 ’
- <
.
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s
suggestions iﬁ the framework of c;entralized systems, they also
propose the use of path ‘expressions for distributed"debugging.
The main idea is to regard the application program and the
debugger, as two concurrent activities that synchronize at places
specified by the path gxpression. A lot of their ideas have been
adopted in.[11].

Ed. T. Smith describes tools for messagé;-based communicating
processes, in [23]. Events of interest for his debugger are
sending and lrecei;q‘,ng—of messages.’ The event detection languagé
‘is simpier than” EDL,/ or Generalized Path .Expressio_ns, and

consists of boolean expressions, called triggers. However, his

work is intended for a multi processing programming environment,

)
{

which is radically different from ours.

-,

Finally, there are quite 5..few descriptions of debugging -
facilities, that have~been4 implemented for existing éxperimental
distributed systems, sfGch as )[‘7], (12}, [14] ‘and [15]. ‘They
discuss a lc;t of ‘impl"ément'é\tion— issues, but as the ‘described
systems are tied to the particular programmipg env:l.ronments , they

»

do not address any of the underlying problems of distributed

debugging.



DEBUGGING TWO DISTRIBUTED ALGORITHMS
~ .

In this chapter, we present a_few examples of distributed
debugging. Emphasis has been placed in providing exact process
specificétions, and showing how most of the synchronization
exrgrs generate faults that can be. perceived as violation§“of
those specifications.. The hypothetical errors might seem
t;ivégl, o? ad hoc; however,_we fee{ that they do serve the
purpose of highlighting the debugging method and the use of the
suggesfed tools; " The examples are .presented, for the sakg of
simpliciﬁy, in tﬂe trivial case of a three-process DCS. ‘Thgy can
be easily extended fof systems with 4 larger number of pro¢es§3§;:
The two algorithms that we discuss are a global state detection
algorithm. and a. network message-routing algorithm. We do not
claim, ‘that they cover -the whole range of possible distributgd
a;éorithms. " Nevertheless, wé‘ believe that they are typfcal

examples of a broad class of distributed algorithms.

” 101
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6.1 The VLR Global State Detection Mgoi'itfm. |
/

This algorithm ([16], provides the global. state of a
distributed system, even when the communication subsystem does
not guarantee ideal behavior. The VLR algorithm is not a user
appllcatlon, it offers its services to other user appllcatlons as

v

a utility of a distributed programming environment. It is

&

implemented by the global state kernel, a software layer between

the application and the communication subsystem layers. For our

purpose, we will ignore the implied application program and
consider the VIR as thé debugee. ’

First, we J.nformally present the VLR algorithm. The ensuing
discussion,’ focuses in the synchronization aspects of a VLR

)

process, rather th‘ari a}xy \internal actions that are di’ctated by_
the algorithm. A more formal discussion of the VLR algorithm can
be ‘also found in ‘[245. VLR was developed for a distributed
syétem expressed by the familiar mc;del, of a finite number °{f
identical processes, interconnected with logical point-to-point
channels. In thi.s case, each process is a global state kernel.
When a process wants to obtain the system state, it initiates a
global state recording.  We refer,go this p;:'ocess as the
initiator. o

The initiator sends a special marker message to all its
onutput channels, to inform other processes about a new global
state recording. Any process that receives a marker mess;\ge on

one of its channels, and decides that a new state recording is
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required, will propagate the same message, through its own output
channels, to other processes; However,"no marker messages are
sent to the initiator, or to the process, if any, from wﬁiqh it
was first informeduabout/that particular recording. Finally, thg
process will forward to the initiator a message conta;ning\the
recorded state.

In a fully connected three-process DCS, the behavior ofvany

of the three processes P;, P, or P3, is produced by the following

pomset generators:

By, T ry —> Ij -> sis

By : ¥y => s => (8;5 || r3° )1
By : é} =->+( Sj5‘|| ry ) *
By oz (55 || s3)=> (x5 || r3%)

where i,j € { 1,2;3 ) and i <> 3. The subscript in a send
(receive) event indicates the receiver (sender) process. In
other words, it associates an event with a particular port, at
which it is observed. The superscript répresehts an event label.
There are two types of event labels. Events marked with an "s"
are associated with the sending (or receiving) of state convé&ing
messages. Unmarked events are associaéed with marker messages.
As we have already mentioned, event lébelé correspond to message

colors,” and they can be identified by the debugger. Hence, the

1 The symbol "°*" dehotes that the marked event_will be
observed either once or not at all.
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debuggér maintains two cglor sensitive counters for each channel.

The synchroni25£ion behavior of a VLR procesg can be
expressed as‘the cqncurrent execution of pomsets produced by the
fir;t three pomset generatorsy preceded, or_ followed, by the

1

executionlof Bg. Symboliéally[ we have: ,
) | . /
w6 ( By* || Byt || B3* ; By | By i+ Byt || B2t || B3t ) /

. I . / '(
where =7 symbolizes the prefix closure, Fhat makes a procifg.
abortable b§ permitting it to get only part of the way thspﬁgh
its computation. The symbol §. indicates local 1linearization,
that enforces serialization of colocated events. 'Thyg is an
essential preconditicn for a sequential process, where /events at
;he same channel-end (part) are hecessarily' linearly ordered.
Notice, however, that local linearization does nyé contain any
information as to which of the possible pomsets/éach event comes
from. Finally, the "+" symbol, as a §6§erscript, ﬂmeans
indefinite concurrence. r / |

-

Let us imagine the following ergﬁé scenario for Pz}s
implementation: when P, learns of a new;étate recording, it does
not inform other processes about the new initiation of the
algorithm. Let us further assume,«tﬁat the programmer who tests
the implemgntation of the algor;thm, observes the following~
miébehévior: ;he algorithm is initiated once by process P, and
it terminatesicorrectly. Following that, a second initiation by

process P;, fails to terminate, because process P3 never responds

\
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with a state message. Although, the sequence of initiations mﬁx
seem fairly simple, we should keep in mind that, this is oﬁéerved

during the testing phase, when it is easy to control execution

v

parameters.

We will examine the possiﬂie debugging procedure in the case
of two systems: the familéar fully-connected DCS, Fig. 6.1.la and
a partially-connected DCS, Fig. 6.1.1b. Let us first look into
the simplerl case of the pa%kially coﬂnecfed DCS. The

. .

programmer's first reaction would be to suspect process P3. The

/ particular process interconnection modifies the possible

behaviors. Actually, the only possible pomsets are the
following: . -

Py : (ry || r3) 1 s35 & sal & (rp8-|| r3®)

Py : (s1 || s3) & (1% || r38) ; r1 ; s3l i s5;%

s .

Py : rp i s1'1 835 ; ra| i 515

The first suspicion is that P3 does not execute, for some reason,
its last event, s;®. Hence, the programmef’decides to suspend
execution and examine the state of P3, and the séquence of event
occurrence, just before the execution of P3's last send event.
For this reason, he performs—proce;; composition and chooses to
stop the system after the prefix that consists of the évents to
the left of the symbol "|", has been observed. If we t;anslate'

this prefix into channel counter values, we get:
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Pl : CC12 = 1
P, : CCa3 = 2 AND cCCS,,

Py ¢ CCy3

n.
o

]
N
o
Q.
Q
0
W
2
fl
o

)

Process P; will eventually: exe;:ute the specified prefix and it .
wil:l be suépended. Process P,, however, will skip evené s3, and
it will execute event s15. This wi)l be noted as a violation of
the specified cut, and P, will be blocked. Eventu;lly, process
) wil.l also be bloqked, since both its input channels have
be;:ome "dead", and consequently it can never reach the specified‘
cut. At this point, the programmer is informed of the failure to
reach the specif)se,d breakgoint. ‘ riaturally, he. requests
construction of the ST diagram of the execution up to this point.
Upon examin;':ntion of the ST diagram, the faulty behavior of
process Pé is revealed,‘ since it éxhibits the sequence:

P2 H .»o nrl ; sls. . e . N *

'

from which s3 is mi_ss‘ing. The programmer has now the first
indication of a‘ bug in P,. Subsequent tests’ will confirm his
suspicions and will direct him to a closer examination of P,.
Thé ensuing examination should reveal the bug in P5's code.

Let us now look in the caée of the fully-connected DCS. The

same bug, under the same test case, would cause an observable

misbehavior only in the case that a marker message from process °

1

~ P; fails to reach P3. Otherwise, even though process P, does not
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/

inform P; of the latest initiation by P;, P3 will eventuélly'fin?/

out directly from P;, and it will respond by sending back its
: . o

¢

state message.

Let's assume that process P3 never receives the messagg'from

Py. In this -case, the programmer observes again -tgét the

algorithm does not terminate, because P; never sends its state to
P1, the second }ﬁitiator. -&hé possible behaviors for .the three

processes are more complicated now: /
r/l -

I

P1:(B1I32|B3);B4
P : By 7 (By | By | B3)

v
'P3 ¢ (B; | By | B3)? (not complete).

wheré "|" denotes choice. The first suspicion is thaﬂgP3 fails
to respond to a state recording request. 1In othe: words, P
ﬁever executes the sls event. The programmer decidesato suspend
the process just bgfore the q}ecution/of fhat event. Sincg he

does not. know .in advance which béhavior each process will ‘
exhibit, he should now definé"a clgss of pomset{prefixes; rather
than a single'prefix. The specified prefixes for each proéess

correspond to the 4ollowing channel counter 'values:

Py : CCSyp’=1 AND CCyp =1 AND (CCj3 =1 OR CCi3 = 2)

Py : CCSy; = 1 - t

14

1 AND (CCp3 =2 OR CC3p

#
]

23 : CCS32 1)
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According to the specified counter values, P; is stopped after it

£

has initiated the. algorithm, P, after it has responded to P;'s

‘initiatioy, . and P53 Jjust before it sends its state message.

Evenfually, both P, and P, pass the specified prefix, while P3

I K
P

1t » . ! ~ . N
faii]l,%;;'jgsmce it never hears from any ‘of the other two processes.

By looking at the ST diagram that is( constructed the programmer

L]

realizes that P3; never received a message informing it of the.

-

initiation of the algorithm by P;. He can also discover the

 misbehavior of P, which exhibits the familiax sequence:

LR , !

P2 : -olrl‘: Slso--

a violation of B,. The programmer now, turns his attention to

process P,. ‘He has isolated the error that was responsible for

.the observed fault. . "

Incidentglly, we can display how elusive a synchronization
bug can be, by looking at Flg 6.1.2b. Here, process P, receives
a message from P3, before responding wit‘h‘a state message to the
initiator P;. Although, the two ST diagrams in Fig. 6.1.2a a.nd

6.1.21; differ only in the interchange of two events,  there is no.

’

violation in the specification of P,, in the second. diagram.

This demonstrates how non determinism can mask synchronization

errors, and why determining the exact event sequence is crucial

for debugging. It also shows that a bug shogld, somehow,
manifest itself before apy c'orrecting action is taken.

According, to ‘a second imaginable error scenario, when

<
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process'P3 is-informed about a state recording by a process oth;r
than the initiator, it insists on seﬁding a marker mesgéde back -
to that process. ‘¢his is an elusive bu%, because it does not
cause any observable‘failgres. Aétuélly, this error can even go
upnoticed, masked Sy inherent system nonde?:erminism,~ due to
variable channel delays. The\reéeiQing pfocess has‘no means of_
knowing, whether the sender was informed about the recording by

2

its own marker message, or by the initiator's marker message, in
- |

?hich Fése the extra message would be justified. fhis is an’
interesting example of the subFleties of distaibuted,programming
and the sometimes puzzling problems of distributed debuggijng. -
Since there are no Qp§ervablé misbehaviqfs, the programmer
has no reasons of suspecting the existenqemof an error. The oniy
debugging method that could pos;iﬂﬁy help in discovefing a’?ug of -
this nature, is to define a general breakpoint, stop. the system

3

and examine the ST diagram. It can be ‘rightly arqued that in

y

this case the ervor is discovered through testing, rather than

'debquing. A genefél breakpoinf is usually based on a’ particular

global invarian; thaf tﬁe values of the counters ghould conform
to. In the VLR algorithm,'it.isfeasy to deduce that the number
of the state mesafges that have been sent, should bg equal, aftgr
the compietion of a particular initiation of the algorithm, to
the number of the ﬁessages tgat have been receiv;d: ) Thih

observation leads-to the following prefix: each system process is

suspended after it has executed the ﬁyents that complete one, or

more initiations of the algorithm, no matter who the initiator

¢

4

i

- Y
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was. .The prefix is defined in every process, by two possible

sets of charlnel counter values:

e \_..,-/ LY

'+ CC%y/aNy = N QR CCSp/ayp = N

where O stands for Output and I for Input. N is any integer,

depending on how many initiations of the algorithm we want to

.

observe. The condition specifies that a process should be

gsuspended; when any output channel counter, for stgte messages,
~records the sending of N such message. This set of counter
.values corresponds to the pfocess having ‘responded to N state

recorditug reqﬁests. The ‘'values of the other counters are "“don't
- ’ v . . :
care'. - The alternative, is to suspend a process when the state

message Eounters, for all its input“”messadges, have the value of

N. This clearly signifies that this process was'the\igtiator,
e
for N times. - Again the values of the-rest of the counters are

"don't care". ‘We should point out, that one of the two.

-

alternative prefixes should always be ohserved, at one point or
. . A . ’ .
another during program execution. Consequently ip this ca seA,

failure of “the systen to reach the specified prefix would

indicate fault:_y -behavior.”’

-

' :
Once the defined prefix is observed, and system processes

®

have been suspended, the pi’oi;rammer ' commands the debugger to
construct and d'ispiay the ST ‘diagfam, using,t’hé recorded message

timestamps. Based on this the user can- compare actual process

behavior to pracess specifications. Assume ‘that the ST diagram



that is constructed is the one shown in Fig. 6.1.3. From this,

we can extract P3;'s behavior, as a Totally Ordered uultilit

A

(tomset) of events. In order for the derived tomset to éo a

valid process behavior, it should correspond to a linearization

of a possible proéess behavior. As ve can éee, the recorded

behavior for P, is:

ry => ry; -> s => 8,8

v
-«

which, if we replace i for 2 anfl j for 1, becomes:

N ry => ry -> gy => Sjs

- f
The underlined event is a clear violation of B3, which very

specifically focuses the programmer's attention to-a pa"t{‘t of Py's

A}

sequential code.

In both error scenarios, a judicious use of the channel

I

counters, along with the debugger's capability to reconstruct ‘the
. a i !
’ actual BT diagram, give the programmer enough @vidence about the
. ﬁs . ! i .

location of the errors. R
- 4

[ o
6.2 A Message Routing Algorithm. {
»

8 [ -
’
-
~-¢

- - 'J;'his'al'gorithm (1), ma{ntains message-routing tables for s

computer network in which"comu'nication links can fail and be

1

4 WU -

\
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©  repaired.’' Below, we discuss vox:y briefly the basic ideas of the

&

R
R
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Fig. 6.1.3 Reconstructed ST diagram for the

VLR algorithm {(scenario 2)
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aldérithm, before moying into the -characterization of a process

" by its synchronization behavior. The optimal routing of messages

in a network of computers, can be achieved if each computer has

the following information:
A

w

Its distance to every other computer:

Who its neighbors are.

. ®
.

The distance from each of its neighbors to every other
/ . W

computer.

-
'

Assuming a computer knows who its neighbors are, the remaining

Y

problem is that of computing the distances An additional

‘impllcatlon is that commun1cation links in the network can fail

i

and.be repalred. A’ computer is nptified when. a communication

line to one of its neighbors, fails or is repaired. Hence, every.

computer_ must, at all f}pes; maintain updated distance tables,

»

since'failurg or repair of the communication line to 'a node, can

‘aff:ct its minimum distance from other nodes.

\J

In the fully distributed version of the -algorithm, each

process’ indeperdently recalculates {ts distance tables, eve

‘time it receives information of a lire repair, line failure, or

&

" more recent valuds of distance tabinq, from any of its neighbors.

Distance tables, whose values are changed during & new

~ . s

calculation are eiportcd to all the noiqhbofl of the process.:

9

[} -
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The main disadvantage of the algorithm is that a process does not

know. when the algorithm has terminated and its distance tables

are correct. As a final remark we should notice that, at the

beginning, it is ,assumed that all communication 7lines have

failed. When the system 1is started, it must generate the

appropriate notifications for the working lines.

In thds algorithm, there are messages of three different
colorsl: d-meésages, that contain nev'r values fo‘distance tables;
f-messages, that inform a computer of a 1line failure; and
finally, r-messages, that inform of a line repair. As a result,
there is an ¥equal number of event labels, and color sensitive
message counters for each channel. Following the symbolism we
used in the previous section, the pomset generators that produce

all possible process behaviors, in an N-process system, are:

4

1

By rid > (5197 s |l ] s
- B riT - (59 7@ ]| s
By: riT => 539 > (5;9 || 59 ||...|] sx9)
where k is the number of a process' neighbors, at any time. This
implies that when the process is informed of the failure of a’
dommunicatiop line to another node, it is not considering this
n&de as a neighbor anfmore, until it is notified of the repair of
that }ine. This is the case in B;. The symbol "*" denotes that
thenmarked sequence of events mighf be eitﬁer executed or not,

depending on whether the rgceived distance~tables resulted in the
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computation of new values, that the process should export. The
complete specifications of any process can be defined as the

. ~
concurrent interleaving of the above three possible sequences.

.Symbolically: ,

B: w§ [(syT [|...|] sx¥) & (By* || B2% }I B3™))

+

where the process sends repair messages Fo all its neighbors, Jt‘
the initialization stage. - .

At this point, we should make a general observation. We+
feel that the presented algérithm is a typical example of a broad
category of similar algorithms, where a ff)ecific sequence of
events 1is triggered in a process, upon the receipt of a
particular message. The above giveﬂ process specifications can
accommodate different implementations. For example, we can
impose the restriction that a process fully 'responAd to a
message, before receiving any ne; messages. This would result in
clearly demarcated repetitions of the three possible sequences of
events. Such a restriction corresponds to a communication
protocol based on channel polling, performed only at specific
points in the process' code (i.e. after it has fully processed a
received message). On the other hand, process communication canb
be realized with interrupt-driven regeive events. Then a process
can receive a message as soon‘as it arrives, regardless of when

the message will be consumed, message consumption now being an

internal process event. This "asynchronous"” message reception
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leads to -a process behavidr, consisting of interleaved event

sequences. Bogﬁ behaviors are accounted for in the given -

specifications.

The possible behaviors of a proces's.' for a three-process

syétem are:
By: rid -> (s;9 || 549"
By: rjf -> 53¢

By: rif -> si9 -> de'

where i,j € (1,2,3) and i <> j. The process épécification is:
$

B: 76 [(s:F || s5T) 5 (By* || BV || B3™))

If we ,want our -specification to contain the spontaneous
" . notifications of line failures and repairs, we should include:

&
By: 54T and  Bg: st

in B.

Let us imagine that process ‘Pz contains a bug in its
implementation: wheh informed of a line repair, itxﬂoes not send
its distance tables to the recently connected neighbor. Since
the termination' criteria of the algorithm are not known, we
assume that the programmer constructs a test case,.where the

algorithm terminates after one exchange of d-messages. This can

*
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be achieved -by choosing suitable input values for the distance
tables. Hence, each process is expected to execute the
following: = | )

(siT || 85%) i [(xyT || r45)* || 849 || 849 *)

The programmer, however, notices that the algorithm does not
te;minate after the initial exchange of d-messages; rather
additional exchanges take place. After verifying once more the .
program fnput, 'to make sure that the algorithm should have
terminated, he suspects after checking the specifications, that
one of the pfocesées did not respond with the prgber number of d- -
messages. The reason for this could be, eiyher that a procosr)
did noi: receive the first two r-messages, or that it did. not
respond propeély. Therefore, '%he . programmer must proceed .,
cautiously, in order to isolate the bug, by ruliﬁg out on of the
two possible hypotheses.

First, he sets a breakpoint to mgke sure that each process

did receive the initial two r-messages:

CCfr/aLL = 1

This cut,” indicates that each process should be suspended after
the receipt of one r-message in every input channel. Since, each
process receives an r-message all processes will be stoppud. The

programmer can now discard the first hypothesis, that a process
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did not ‘receive an r-message. Consequently, he must verify that
each process sends out the correct number of d—meséages, that is
ﬁwo, in every output channel. J To check this, he sets ahot"_her
breakpoint, with the following expreﬁsioﬁ for the channel

counters of each process:

‘ccdo/arL = 2
. 2 !

That is, every process should be stopped after it has sent the
two 'anticipated d-messages in évery output char;nel. Processes Py
and P3 will eventu‘a'lly reach this cut. Proce‘s's 1;2 ne\.rer reaches '
the cut, because it sends only one d-message for each r-message
it received initially. After enough time L.Pz will also be
stopped. The ST diagram that can be constructed, Fig 6.2.1,
shows a .liveness violation on‘ behalf of P,. |

Again the important steps 1n the error 1o€:étion process were

the carefully provided specifications, and the exact use of the

channel counters.

\ . R ‘ ! ‘ ‘(@
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- [ j

\  r-messages - - * d-messages

{

4. Fig. 6.2.1: 'Reconstructed ST diagram for the

message routing algorithm
o




CHAPTER 7 ¢

* CONCLUSIONS

A 1lot of;attention is lately being paid to distributed
processing. The . development of distributed aréhitectures, and
languages, has ;ccentuated the need for an integrated set of
tools, to suppprt the development of reliable -software in such
environments. Development systems, and their impact on the
process of software ‘development in, distributed programming
‘environmentf.s, have become an area of intense research. This
thesis describes work QOne on two developme'nt tools, fé)r a
. distributed system viewed as a collection of message-based,
communicating processes. The described systems were a Rollback:
and Recovery Kernel and a distributed debugger. ]

In chapter 2, we discussed the problem of rollback in
distributed systems. The stimulus for that discussion was our
work on the design and implementation of the RRK. The resulting
RRK can be easily linked up to application programs, and still
perform quite efficiently. Throughout fhe implementation, apart

from attesting once more the lack of experience in distributed '

programming, we realized that a more formal approach should be

/

- 122.
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followed in desigring and implementing distributed- software
systems. -

Our work . on the implementation éf the RRK, served as the
impetus for studying the probiem of distriﬁuted debugging. . We,
ascertained that existing debugging methods and tools are
inadequate and iﬁefficient for dis@ributéd programming. We
disagree with some researchers, who have expressed the opi;ion
that distributed debugging is an a extension of its sequential
namesake, and hence, only an implementation problem.' We feel
that traditional debugging methods fall short in DCSs, due to new
problems related to true concurrency, increased complexity and
absence of tota} control. ‘

The new element in distributed programs is the concept of
synchronization. Therefore, we shifted ;ur attention = from,

computational errors to synchronization errors, even though we do

* not underestimate the importance of traditionai'debugging tools,

.as an aid in debugging the sequential part of distributed

programs.,

’

We = presented (chapter 3) two models for distributed
computations: the ST model and the Pomset model. The particulars
of each model determine their use: as a pictorial tool of "what
actually happened" for the ST diagram; as a specification tpol of
"what may happen" for the Pomset model. ' We advocate the use of
the Pomset model, as an appropriate medium for expressing process

synchronization requirements. We feel that its basic notions ot

r

" behavior as partiall& ordered sequence of events, and process as

&

®

4
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a set of alternative behaviors, can prove a feasible and viable

approach in the‘specification of distribufed‘systems.

Following the' discussion of the two models, we gave an
overview of the;difficdlties involved in distributed debugging,
and we described the method wé adopted to overcome some gf those
problems. Our approach is based on a comparison between
vexpected behavior" (i.e. design) an?, "actual behavior" (i.e.

f

"implementation). The main.argument for thisspremise, is that
synchronization errors manifest as violations in pomset
specifications. Synchronization spgcifications provide a common
ground for thié comparison. Their use allows for a "clear cut"
of what_information ié'needed_}n debuggihg, and what is not. 1In
other words, the fundamental elements in our debugging method are
synchronization requirements specifications, an@‘their comparison
against actual behavior. We'also considered the probe effect,
which is apt to be a side effect of the execution of concurrent
programs through:a debugger. We attempted a characterization of
probe effect,'without suggesting any solutions.

The end product of our discussion on distributed debugging

methodé, was the high 1level specification of a distributed

debugger. We described the tools that the' debugger should
pfovi@e, and gave examples on their use. The main tools are
meséage timestamps and channel counters. The former are

indispensable for the reconstruction ™ the exact sequence of
. event occurrence, without 1loosing any knowledge of event

*dependegcies. We proved that their use gdarantees' the
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construction of a unique ST diagraﬁt Changel counters help the
programmer ‘set distributed breakpoints, and verify the validity
of execution, by conf?rﬁing *t:hev.nexecm::lor{‘p of valid pomaet
prefixest We showed that pomséé prefixes can be expressed in
_terms of a set of “channel counter ’valﬁes, and that color
sensitive counters are useful for the description of particular
pomset cuts. Judicious use of these tool;) along with the
programﬁer's knowledge of the symptoms of the error, should help

him isolate, and eventually locate, synchronization bugs.

7.1 Suggestions for Future WOE}.

»

o

" As we have already stated, our work. was carried out in the
gepéral framework of the development of a distributed programming
environment. A distributed debugger is an essential development:

ot

tool of such an environment. Our work was the_fi;st step towards
that direction. We raised some issues and pr;bosed solutions.
The main venue for the continuation of the work described in this
thesis, is’the refinementuof the débugger épeciticaéions and its
.*implementation.
More précisely, we feel tpit a lot of attention should be
‘given to the integration of the debugger wlth/thé ofher.elements
of the enviropment: QS; communication subsystéh .and langyage

constructs. Incidentally, we believe that the development of

"sophisticated lani;uages is of vital impor.tpnce in the area of.

‘

G
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distribubed programming, - gnd it is clbsely related to the
development of debugging tools,

An impbrtant iesue in the operatibn of distributed debuggers
is their tra-ns’parency: and the phenomenon of Probe Effect (PE).
We feel thati ‘deeper analysis of the PE is re'quired. Its effects
on the debugger s transparency should be analyzed, as 'it may be
de51rab1e that measures be taken to ensure the debugger's
invisibility. o |

f[t is questionable whether the debugger should possess the
capability of rollback, since the sequence of 'event occurrence
can a-iways be reconstructed. It is ,not clear to us what the
additional advantages of s‘heh a fedture might be. In the case of
an afflirmative answer, however, the careful integration of the
debugger and the RRK software should be considered. . *

The incorporation of the debugger iwith traditional
sequential debuggers. is another problem that must be addressed.
The debugging facility must offer t;lest of the fea‘tures‘ of a
standard debugger, for seque.‘ntial process debugging. A° related
issue, is the proce551ng of the large volume of information, that
will 1nvar1ab1y be produced by the debugger. Questions of
storing Tresults, manipulating data,a'%and discarding obsolete
"inf'ormatiqn, should be answered before the debugger -

limplementat‘iog. becomes feasible.‘ Presentabpil\ity te the user is a
practical aspect of :-theé -same 'problem. °

' Considering systems with dynamic architecture would provide .

another possible research issue. , In our work we haye dealt with
N * “

2 ¢

=3

)
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systems of static topology, that is kﬁown at the beginning of t'ho.
execution. . Dynamic process geﬁeration and termination will bring
about déﬁugger‘reconfiguration ﬁroblems. |

ﬁg believe, .that further ;ork in éistributed pebuggers
should proceed along with related Qork in other areas otvthe
distributed processiné domain: architectureg, oper;tiné systems,
languages. Above all, gdditipnal experience with ¢!istributqd
programming ’is required. Afterhall, more experiar}ce in this
field can only n;otivate further 'wP(fk‘ for debuggers and other

development tools.
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