* National Library Bibliotheque nationale

of Canada du Canada

Acquisitions and Direction des acquisitions ot
Bibliographic Services Branch des senvices bibliographiques
395 Wellington Street 395, rue Wellington

Ottawa, Ontano Ottawa (Ontano)

K1A ON4 K 1A ON4

The quality of this microform is
heavily dependent upon the
quality of the original thesis
submitted for microfilming.
Every effort has been made to
ensure the highest quality of
reproduction possible.

If pages are missing, contact the
university which granted the
degree.

Some pages may have indistinct
print especially if the original
pages were typed with a poor
typewriter ribbon or if the
university sent us an inferior
photocopy.

Reproduction in full or in part of
this microform is governed by
the Canadian Copyright Act,
R.S.C. 1970, c¢. C-30, and
subsequent amendments.

Canada

AVIS

La qualité de cette microforme
dépend grandement de la qualité
de la thése soumise au
microfilmage. Nous avons tout
fait pour assurer une qualité
supérieure de reproduction.

S’il mangque des pages, veuillez
communiquer avec l'université
qui a conféré le grade.

La qualité d’'impression de
certaines pages peut laisser a
désirer, surtout si les pages
originales ont éteé
dactylographiées a l'aide d'un
ruban usé ou si l'université nous
a fait parvenir une photocopie de
qualite inférieure.

La reproduction, méme partielle,
de cette microforme est soumise
a la Loi canadienne sur le droit
d’auteur, SRC 1970, c. C-30, et
ses amendements subséquents.

A modeling technique for specification and

simuiation of digital systems

Luc Morin

A Thesis
in
The Department
of

Computer Science

Presented in Partial Fulfillment of the Requirements
for the degiee of Doctor of Philosophy at
Concordia University

Monuéal, Québec, Canada

March 1993

©L.uc Morin, 1993

' <% I National Library

of Canada

Acquisitions and

Bibhiotheque nabionale
du Canada

{irection des acquisitions ot

Bibliographic Services Branch des services bibliographiques

395 Wellington Street
Ottawa. Ontano Oltawa (Ontano)
K1A ON4 K1A ON4

The author has granted an
irrevocable non-exclusive licence
allowing the National Library of
Canada to reproduce, loan,
distribute or sell copies of
his/her thesis by any means and
in any form or format, making
this thesis available to interested
persons.

The author retains ownership of
the copyright in his/her thesis.
Neither the thesis nor substantial
extracts from it may be printed or
otherwise reproduced without
his/her permission.

395, rue Wellington

L'auteur a accordé une licence
irrévocable et non exclusive
permettant a la Bibliotheque
nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de sa these
de quelque maniere et sous
quelque forme que ce soit pour
mettre des exemplaires de cette
these a la disposition des
personnes intéressées.

L’auteur conserve la propriété du
droit d’auteutr qui protege sa
thése. Ni la these ni des extraits
substantiels de celle-ci ne
doivent étre imprimés ou
autrement reproduits sans son
autorisation.

ISBN 0-315-90925-0

B+l

Canada

ABSTRACT

A modeling technique for specification and
simulation of digital systems

Luc Morin, Ph. D.

Concordia University, 1993

In this thesis, a new logic modeling technique based on a mathematical
abstraction of analog circuits into logic models is proposed. Many approaches have
been used for the modeling of digital systems. They range from pure logic to real time
models. Mixed circuit-logic models with switches and strength factors are the most
popular in commercial simulators. All of these approaches are meant to provide
simple and unambiguous descriptions of the logic devices. However, except in their
specification of logic functions and simple timing specifications, they differ in other
aspects such as the definition of an event, the number of logic levels, the strength
factors, the modeling of wire capacitance and the processing of timing constraints and
timing violations. The lack of a consensus is the source of many compatibility
problems in modern integrated CAD systems where designers and customers need to
share information processed by computers. The objective of this work is to lay down
the foundations necessary for such a consensus.

The originality of the proposed approach lies in the mathematical formulation of
the abstraction mechanism. Precise hypotheses are used to define the logic devices.
Then strict construction rules are used to derive their logic models. Three aspects of
the logic models are separately considered: the transmission of information over
wires using logic events, the propagation delay and the transformation of continuous

time to discrete time.

iv

A new logic event definition called master-slave events and a new delay model
preserving continuity in the modeled logic signal and causality (cause-effect
relationship) in the scheduling of the logic events are proposed. Finally, a new graph
based algorithm called a Continuous Time Automaton (CTA) is described to model
logic devices and integrate the input timing constraints with the logic function. A CTA
is a finite state machine that processes the sequence of input events and transforms
the continuous change of state (continuous time) into a timed state sequence
(discrete time).

A prototype simulator was developed and CTAs for clocks, pattern generators,
gates, combinational circuits, flip-flops, tri-state devices and synchronous sequential
circuits are proposed. Without optimization, the performance of the prototype
simulator was comparable to many logic simulators for memory requirements, speed
and timing accuracy. This modeling technique provides a more accurate logic signal
representation, a better model for the physical phenomenon associated with
propagation delay and a systematic method to specify and process input timing
constraints. It is also easier to use than other logic modeling techniques and it closely
matches the engineering approach. On the negative side, the modeling technique is
limited to unidirectional signal. However it still permits the use of tri-state busses.
Because it accepts and generates analog signals, the proposed model easily interfaces
with other circuit models in mixed mode simulation.

This work should be useful to someone working on the specification, design,
simulation, formal verification and testing of digital systems. For instance, the new

modeling technique could be used for the development of primitives in VHDL.

Preface

This work was carried out over a period of five years. The ideas presented
here have evolved all along from simple hints to, hopefully, an acceptable and
applicable theory. The initial work was carried on metastability and was followed by a
study of the logic models used in hardware description languages and simulators. In
both cases, I was left with an odd feeling that something was incorrect. There were
numerous approaches for the modeling of digital systems, but none seem to be able to
justify its superiority on sclid grounds. This was confirmed in a paper by
M. R. Lightner where he stated that a formalism was yet to be developed for digital
elements and their interconnections.

Trying to develop a new formalism for logic model proved to be a difficult task,
chiefly because well established concepts had to be questioned and often rejected.
The idea of using a finite state machine came early on, but it took quite some time to
apply it to a simple buffer, to convince myself of the value of the approach and to refine
the concept. These ideas further evolved and became the logic model consisting of
classified interface ports, a timing specification, a continuous time automaton (CTA)
and a continuity-preserving delay model. Finally, the master slave event concept was
introduced to preserve the timing relationships, thus the causality, on the signal and at
the input ports. In order to use and exercise the models in some sort of design
environment, a hardware description language (HDIL), a data structure (HDIDS) and
a logic simulator have been developed.

The core of this thesis consists of three chapters. The formal framework and
the definitions are presented in chapter 2. The transmission of information over wires
is studied in chapter 3, then the models for logic signals and for propagation delays are
described. Finally, the concept of CTA is presented in chapter 4.

I would like to thank Dr. H. F. Li for his support and valuable criticism. This

work was carried out at the computer science department of Concordia University, and

vi

I would like to thank all the people who helped me in my work. This work was made
possible by the financial support of Université du Québec a Chicoutimi through a three
years scholarship. Finally, I would like to thank Michele and Jacynthe for their

personnal support.

vii

Table of content
ADDIeVIAtiONS. . cccii it vt bbb a s bbb as X
GHOSSATY ...ttt e certec st bt et s s a s sn bt r s st e s e s sbsane e saesasbeae s sbnsessntnsasnsnres Xi
Chapter 1 Introduction

1.1 Problem OVEIVIEW. ... ciriecnniceeeceeesinss s s sssrris e snecsnsbe e s ssssassssssasacsosns 1
1.2 Basic defiNItiONS...c.ciivvieeseeniecneneiressnnesnsiesstinte s eesess s ssscesesi e sssssssssssssess sssssens 3
1.3 DESIEN PrOCESS...oeeierierirerterinessisiier e siesiestesssssessesssasessiosiesessssnssssssorarsrassasnnens 5
1.4 Simulation and verification.........ccvereeeiicinniri s 6
1.5 The problem of modeling analog devices with logic models..............cu...e.... 10
1.5.1 Time invariance and logic simulationccccevieeriniiniiennnien, 12
1.5.2 Causality and logic SiMulation.......veiinieiriiniiieeninni e 12
1.5.3 Continuity and combinational devices........ccccuvvievuniiniiniiieeeiniiiiienicin 13
1.5.4 Continuity and sequential deviCesccvievininiirinniinieeniinnne 14
1.5.5 Continuity and changes of StAecccieeverrcrenniiisnteeniie e sreseeseeeae 14
1.6 Problems with current modeling teChniqUeS.........cccevvvmmeiviiiieiiinneniinnncneen 15
1.6.1 Signal representation problems........coeevieiiiniviiiniinnene. 16
1.6.2 Propagation delay model problems.......cccooiviiinnivniiiiiicncniniinecnne 18
1.6.3 Changes of state problemS......cccovivireiiiiniiniiricniie e 20
1.6.3.1 Device timing CONSIIANTS c.ciuivcriiereirseininiinaccnessniessssssessorosseseess 20
1.6.3.2 Signal timing CONSITAINLS ...ceivinivivieirieieianienininiennienesssinsesisssesens 21
1.6.3.3 Real time SYSIEIMS ..cciiviereeeririnrirssessaeennimesssiesnmnisisssessssnssnissesssnese 22
1.7 Proposed logic modeling teChNIQUEcovviiiemiienenniiniinrnce et ssesineeene 23
1.7.1 Step 1: What is a logic deviCe?.....ccmmniiiinnnininiinniineiniriineesins 24
1.7.2 Step 2: What is a logic model?evviiviiiiiiininninciniiniiicenne 27
1.7.3 Outline of step 3: Construction of logic models.........ccoceveeercnininnncnn. 30
F.8 SUMITIEITY vttt s st sr e sbe s r s sa b s s s sbassabsbebene e sen 30

Chapter 2 Formal framework
2.1 Mathematical PremisSes ...occuvriiiriectrsnnininiii it sessasrescssrieassesens 32
2.2 Signals and InfOrmMation..........cociiinieiiniieec e e 33
2.3 Signal transformation.........ccccniiecicnnni e 35
2.4 LOZIT BVENL..uiiiiiiticiiie ettt shnssetsssess s s e b sisbesb s s sassrsbess oo sosee 36
2.5 LOgIC SIENALccniiiciiiiiiientccnir e e s st s s s 37
2.6 Logic devices and digital SYStEmMSccovvmivevvininiriniinnitecsesisiaeeens 38
2.7 Logic SIMUIALOT....cc..ioicriinie sttt esr e senta b ess s s saes 43
2.7.1 Purpose of SIMULatioN.......coiiiireieninicniirie s iresee e one 43
2.7.2 Definition of a Iogic SIMUIAON...c.coiviiiinnieiiiennee s 45

2.8 CONCIUSION 1.vvvvireeeneeeririiersssessserseassseesesssrosssrsssssssessusssssansassssssesssnss s sesssnssonasasssses 45

viii

Chapter 3 Time model: logic signal and propagation delay
3.1 LOZIC EVENL SEL...uiiitiiiiieiiiititiincire e et ettt s s e s e 46
3.1.1 Master OULPUL EVENES .o..uiiiriinceeirenreiiesietsseneesrenseerressenaessseesesssseesesssseons 47
3.1.2 Slave INDUL @VENIS..coiicviiiiiririrereientrsireeniees et tenaresee s senrereraesssessseeoreareses D2
3.2 Delay Model..iiiiiiiiiiiiiiiiceie st n e 54
3.3 Simulation algOTIthIMS ..coeciieiiiiiriectecrre ettt e 58
3.4 Timing specification using master slave events........ccoccevvvvvivinernevencecveenns 60
3.4.1 Hardware linker and Electrical Rule Checking (ERC)...covevveercrvinnnnen. 61
3.4.2 Timing specification of @ Gateccvivvirveiiiricne e 61
3.4.3 Timing specification of a flip-flop.....cccvvviviniiiiic e 62
3.4.4 Timing specification of a 3-state buffer......c..ccccevvverveverevnenereneniiinnnne. 64
3.5 CONCIUSION c.veiteecreeireeeiiiitiere e rinrnreees e srente e erns st saesettotesmseansersssnsassssssessasensan 65
Chapter 4 State model: Continuous Time Automaton (CTA)
4.1 INTOAUCHON. .eeirierreereeeririrerressrrreerereneseesesesseonssnneessessneesacesensenssssinssessesnesensnsss 68
4.2 Current logic modeling teChNIQUES ...c.corireeviriecicrier et reee e 71
4.3 Overview of @ CTA ..ottt e s sase e 75
B.4 DefiNIIONS ..eccieeiereeeeirceeriinrirerectistesesneesteestossesessnecereeesseensesssamsesesisessssessmessesases 76
4.5 Exaniples of CTAS. ...ttt 80
4.5.1 The wait state transition: a CloCK....ocovveeciiniinin i 80
4.5.2 The logic functior: as an argument: a pattern generator (1)......c.cee.ee. 82
4.5.3 The state variables: a pattern generator (2).....cceceervvnieceerneencencnnns 83
4.5.4 The timing constraints and the undefined states: a counter................. 84
4.5.5 Undefined input logic events: @ Zatecvvvneriniinniiininnenieinne. 86
4.6 Construction of a CTA for a flip-flopccoeevriere it e 91
4.7 Circuit partitioning and event combinationcceveviniiiiiiivncnnene, 95
B.7.1 GALES ceuuieereerereereerieesrereestrteesee e e saeestsae saveebbessniasssssssesbesi s es st aesrnssesniss 96
4.7.2 Flip-flops and SSC....c.ccoviviiiiniininiiicnenr e 97
4.7.3 Combinational circuits (ROM)......cceiiniinniiininninnninei s 97
4.7.4 Tri-StAeS dEVICES. iuirererrrerereerreernrrsnnressesseessieessresstesssssnssisissseesseessssresses 98
4.7.5 Flip-flops and SSC with asynchronous inputs...........ccevveiieinincinnns 99
4.7.6 MOre about SSC ...ttt s s 101
4.8 CONCIUSION ..uteereeeeiece et e ettt e etee e et s e e b sb e sas s s sb b abme saas srasbe senis 102
Chapter § Implementation, results and comparative analysis
5.1 IMPlementation......ccocivriniiiiniiine s et e s b 103
5.1.1 Parameter eXtraCiON. ..cccivvininiirrentenrectestires s s snresnr e e st e e eaans 105
5.1.2 Linking algorithm and Electrical Rule Checking (ERC).......cc.ocveuuinnen. 107
5.1.3 Implementation of the logic simulator........cocoveviiniiiinnnnes 108
5.2 Simulation results and simulator performancesc.coccveevviinnicinniniiicnnnns 111
5.3 Comparative analysis ...t s s 113
5.3.1 Comparing abstraction mechanisms and conceptual models................ 113
5.3.2 Signal representation ... it st e s 117
5.3.3 Propagation delay models.......cccoiniiiiiiiinincin e, 120
5.3.4 Timing constraints and timed state SEQUENCE......cveieneinnieerinneneiennnns 122
5.3.5 Comparison of the outputs of a typical ateccovviiiinnineninnninenne, 125
5.3.6 Adequacy with engineering praCtiCeoeovvvuicrervvresnvieisiiinesieecinnn, 126

5.5 COMCIUSION 1vvuveneeeeeeerennenreeresessarseessansmsssssssssessessossssssessssassessssonssssiass asnsssnnssnsones 128

ix

Chapter 6 Conclusion

6.1 SUMITEITY coevieieenrie ettt st s sttt st s a s b ae et s e e e s e snabassa e s e s sanasraesrnsns 131

6.2 RESUIS...couiiieeriiitiiieieereeesteeesitese s e staessrrrnes e s saeesssesaseos seseasstsssesasnsn sanassesaseesss 133

6.3 FULUTE WOTK c.vvviiir e iteeceeinenireeseaeesstesneesssssseesnseesessssssiaesssaonssnsssastesssnessans 134
REFEIENCES ooorerecree i et es et ae e sa s et e s st e st sbae e s e s s abeebbesnssanubasbisssasbnsas 136
Appendix A Binary Decision Theorem (BDT) ..o, 142
Appendix B HDIL reference manual......coueeiiniiiniiniiecmieenieeen, 165
Appendix C HDIDS reference manual.......ccccivoevviiieerncececrneennessmencneeneesens 191
Appendix D CTA based logic models.....cveiiiviniiieiniccen e, 198

Appendix E Listings and simulation resultS.......ccccoieviiiinnneineninieenen. 220

ASC
BDT
CIF
CMOS
CPU
CTA
DDMS
DRC
DSP
ERC
HDIDS
HDIL
HDL
MITL
PLA
RAM
ROM
RTL
SSC
TA

VHDL
VHSIC
VLSI

\ bl c e
Asynchronous Sequential Circuit

Binary Decision Theorem

Caltech Intermediate Form

Complementary Metal Oxide Semiconductor
Central Processing Unit

Continuous Time Automaton

Design Data Management System

Design Rule Checking

Digital Signal Processing

Electrical Rule Checking

Hardware Description and Integration Data Structure
Hardware Description and Integration Language
Hardware Description Language

Metric Interval Temporal Logic

Programmzuble Logic Array

Random Access Memory

Read Only Memory

Register Transfer Logic

Synchronous Sequential Circuit

Timed Automaton

Temporal Logic

VHSIC Hardware Description Language

Very High Speed Integrated Circuit

Very Large Scale Integration

1.0 Basic definitions
Function

Continuous
Discrete
Quantized
Digital

Sampling

Quantization

Signal
Analog
Point
Discrete
Sample
Digital
Event

Interpolation function

Synchronous signal

Unique mapping of a set called the domain onto another
set called the range.

Function mapping real unto real.
Function mapping natural onto real.
Function mapping real onto natural.

Function mapping natural onto natural.

Transformation of the doniain set from real to natural.

Transformation of the range set from real to natural.

Abstraction used to represent the information contained
in a physical variable.

An analog signal is a continuous function of time. All
signals are analog.

Element of an analog signal.

A signal is discrete if it is completely described by a
discrete function and an interpolation function.

Element of a discrete signal.

A signal is digital if it is completely described by a digital
function and an interpolation function. The digital function
can map to a set like {0, 1} not necessarily related to
voltage thresholds.

Element of a digital function. An event describes the
assertion of a proposition, for example "crossing a
threshold, f(t)=Vy".

Function that describes how the analog signal is
reconstructed from the samples or the events.

Two digital signals are synchronized if any pair of events
taken from these signals are synchronized. Two events
are synchronized if the relation between their occurrence
is explicitly known.

2.0 Digital systems
inf ion
Layout
Mask

Wafer

Chip
Package

Pad
IOcircuit

Frame

Cell

Xii

Information related to the physical aspects, such as:
layout, mask, electrical parameters.

Geometric description of the integrated circuit produced
by the IC designer and used for mask generation.

Geometric description of the integrated circuit used for
the fabrication.

Unit for the production of ICs. There are many ICs
fabricated on one wafer.

Portion of the wafer cut and installed in & package.

Mechanical support for the chip. The package with the
chip forms the integrated circuit.

Metal area on the chip for bonding the external wire.

Refers to the interface circuit for the pad (protection
circuit for inputs and buffers for outputs).

Refers to the element of the layout delimiting the
boundaries of the chip.

Refers to a pre-designed function ready to be used within
a chip.

Electrical properties of the material

Structural information

Circuit

Element
Wire

Port

Technology independence

Refers to the surface resistivity or the normalized
capacitance for the various materials or elements
fabricated on a chip.

Information about the organization of the digital circuit,
such as:

This is the basic abstraction in digital system, the
physical world is discretized into elements and wires
which form the circuit.

The element is either a part, like a 68000, or another
circuit allowing for hierarchical description.

This is the abstraction of the conductor interconnecting
the elements in a circuit.

This is the abstraction of the point of connection on the
element. An element may have many ports.

A piece of information defined such that technology does
not affect its definition. Physical information is
technology dependent and structural and behavioral

3.0 Design process

Design

Specification

Solution

xiii

information are technology independent. For example,
the electrical model of a gate is technology dependent
since it would be different for CMOS and TTL gates. On
the other hand, the logic model is technology independent
since it would be the same for both technology.

This is the first phase in problem solving, the
specification is studied and a knowledge based model is
constructed. When there is enough detail in the model,
we assume a solution has been found. This part of the
problem solving process is rarely automated. It consists
in searching information in the design data base either
manually or with the help of design assistant programs.

The initial description of the desired digital system or
component.

This is the result of the design phase. A solution is a
knowledge based model, it is often imprecise even
contains contradiction which will be resolved with design
verification cycles.

Technology based model

Class of information, such as the extracted model,
normally processed with deterministic algorithm.

Knowledge based model

Synthesis

Implementation

Model
Actual hardware

Custom design

Class of information normally processed with non-
deterministic algorithm, such as the information during
the early phase of the design.

Automated process that takes a specification and
produces a solution or directly a circuit.

This is the second phase of the problem solving process.
Often automated, the implementation takes a solution
and produces either a model or the actual hardware.

This is the result of the implementation. The verification
consists in the simulation or the analysis of the model.

This is the result of the implementation. The verification
consists in testing the actual hardware.

Technique of implementation where most of the cells are
designed individually and specifically for the digital
system,

Standard cell

Gate array

Placement

Xiv

Technique of implementation where most of the individual
cells are common to many projects and are usually stored
in a library. The implementation consists in placing the
cells and connecting them.

Technique of implementation where the cells are already
placed. The implementation consists in connecting them.

Process, now automated, to find an optimum place for
each cell. The main criteria is the minimization of wire
length. There are many algorithms, usually beginning
with constructive placement followed by iterative
placement.

Constructive placement

Placement technique where the area is initially filled from
one end to the other.

Iterative placement

Routing

Route
Channel
Track

Global routing

Placement technique using pair-wise interchange to
optimize the initial placement.

Process of connecting the cells according to the netlist.
The routing consists in finding a channel(s) for each wire
and then assigning a track to the wire in the channel.

Sequence of channels used by a wire.
Region of the layout reserved for wires.

Each channel is divided in tracks.

Process of finding a route for a wire.

Channel routing

Silicon compilation

Process of assigning a track to a wire.

Automated process to create the layout based on a user
description of the desired function. The compiler
assembles the layout primitives or library cells to build
the desired circuit.

Structural compilation

Compilation based on the structural information, usually
the schematic diagram.

Behavioral compilation

Verification

Compilation based on the behavioral information.

This is the third phase of the problem solving process.
Once a model or the actual hardware is available, it must
be verified. Verification consists in simulation, analysis

XV

or formal verification on the model or test on the
hardware.

Simulation Process of exercising the model under certain operating
conditions. No comparison is made to the specification.

Analysis The model is analyzed and specific aspects of the
specification are compared to the value obtained with the
model. Timing analysis is a popular analysis technique,
where propagation delays are computed and compared
with the specified ones.

Formal verification The model is formally compared with the specification.
All aspects of the specification are verified.

Test Process of exercising the actual hardware.
Result Describe the results obtained from the verification phase.
Evaluation This is the fourth phase of the problem solving process,

where the results are analyzed and compared with the
specification and design decision or modification are
made.

Design/evaluation cycle Refers to the repetition of the design process. Many
cycles are usually required to obtain a system meeting
completely the specification.

Hierarchical design The design proceeds in step-wise refinement, from
system level down to circuit level or layout. At each
level, the design/evaluation cycles are repeated as
required.

4.0 Design environment

Design environment Computer based environment used by the digital system
designer. A design environment consists of a set of tools
and a design data base.

Design data base A generic term that refers to the information available to
the designer, including books, papers and colleagues.

Design assistant Since complete automation of the early phases of the
design is impossible, specific programs, called design
assistant, can be used to help the designer search the
design data base and guide him in his decisions.

Tool A program specialized in solving a specific task, like a
PLA compiler or a placement and routing program. If the
tool is used in the design phase it is called a design
assistant.

External integration

Internal integration

xvi
The tools in the design environment need to share
information. A well integrated design environment

allows the tools to share their information without human
intervention.

Refers to the sharing of the information through files.

Refers to the sharing of the information through active
memory.

5.0 Model and simulation (behavioral information)

Model

Electrical model

Timing model

Logic model

Port class

State (Q)

Logic state

Mathematical representation of a system intended to
reproduce its response to input stimuli. There are many
levels of models: circuit, switch, timing, logic, register
based.

Model describing the elements by equations relating
voltages and currents at the ports.

Simplified electrical model allowing fast computation of
the timing. Switch models with capacitances are often
used.

Model consisting of interface ports, a state, a state
transition function, an output function and a timing
specification.

For the purpose of modeling, each port is classified as
either input, output, asynchronous input, synchronous
input, bidirectional, high voltage input, clock ...

Whatever is required to allow the prediction of future
events without the knowledge of the past inputs.

Abstract state required to model the logic behavior (flip-
flop, registers ...).

Time related state variables

Continuous change of state

Set of state variables required to process accurately the
timing specification of input and output events, often used
to store the occurrence of past events.

Refers to a system whose model is characterized by an
infinite number of changes of state in a finite interval of
time.

Discrete change of state or timed state sequence

Refers to a system whose model is characterized by a
finite number of changes of state in a finite interval of
time.

State transition function (8) Describes the change of state based on the current state

and the current inputs.

Output function (A)
Time invariant load

Event set

Threshold based events

Signal based events

2-valued logic

Multiple-valued logic

Model extraction

Hardware linking

Discrete event simulation

Mixed-mode simulation
Timing specification

Timing constraints

Propagation delays

Timing violation

xXvii

Describes the output to be produced based on the current
state and the current inputs.

Characteristic of a load stating that it does not change
during the course of a simulation.

A set of propositions describing properties of a signal
that occur at specific instant. Logic events are often
propositions describing the crossing of thresholds.

Describes an event set based on fixed threshold
crossing.

Describes an event set based on certain properties of

d
the signal such as '£= 0.

Algebra based on the Boolean values 0 and 1, often
augmented by U (undefined) and Z (high impedance) for
simulation purpose.

Algebra based on more than two values. Values 0, X
and 1, augmented by U (undefined) and Z (high
impedance) are often used.

Process of computing the model based on layout
information.

Process of computing the logic model parameters such as
the propagation delay based on the interconnection
network characteristics such the wire capacitance.
Linking rules (fan-in and fan-out) are also verified during
hardware linking.

Simulation based on the discretization of time and on the
causality of real systems.

Simulation using mixed models, like circuit and logic.
Consist of:

Set of separation times between input slave events that
must be meet to insure proper operation of the logic
device.

Set of separation times between input slave events and
output master events that models the effect of RC
circuits.

Pair of events whose separation does not meet a timing
constraint.

Continuous Time Automaton

State machine used to transform continuous change of
state into timed state sequence.

Xviii
Constrained state transition

State transition in a CTA that requires a finite amount of
simulation time.

Unconstrained state transition

State transition in a CTA that might require zero
simulation time.

Constrained cycle Cycle in a CTA made of at least one constrained state
transition.

Unconstrained cycle Cycle in a CTA made only of unconstrained state
transition.

Constrained signal Logic signal made of a finite number of event in any

interval of time.

Unconstrained signal Logic signal made of possibly an infinite number of events
in a given interval of time.

Timed sequence of events Sequence of events describing a constrained signal.

Chapter 1

Introduction

Since the early days of digital systems, designers have been modeling logic

devices for various purposes. There was the simple approach using Boolean
equations, then the engineering approach leading to data books and the more recent
approach using logic models specified with hardware description languages like
VHDL. Even if logic devices are simple to understand and use, modeling them is not
so obvious because of:

» the complex relation between the logic function and the timing specification,

« the continuous nature of the analog circuits from which logic devices are built

* and indirectly, the need of unambiguous models for computer analysis and

simulation.

The design of very high speed integrated circuits requiring highly optimized
logic devices and the absence of simple but accurate models have placed a continuous
demand for research in this area. The objective in this chapter is to describe the
problem ot constructing logic models for analog devices and to outline the proposed

logic modeling technique.

1.1 Problem overview

The object of this thesis is to study the abstraction mechanism involved in
modeling an analog circuit at logic level. In particular, we wish to accurately model
glitches and fine timing details as required by modern technology. An abstraction
mechanism is comprised of :

» a set of axioms and hypotheses to define a level of abstraction (analog),

* a set of axioms and hypotheses to define another level of abstraction (logic),

tJ

* and a set of rules for the construction of a mathematical representation at one

level based on the other level.

The general problem is the lack of a consensus on the axioms, the hypotheses
and the construction rules for logic models leading to numerous and often incompatible
logic modeling techniques [28]. For example, the following problems have been
reported as sources of incompatibilities with VHDL models [32]:

* Logic level definition

* Signal strength definition

» Logic event definition

* Interpretation of timing specification

» Handling of unknown operating condition

In order to improve the logic model, each object used will be mathematically
defined and each step of the process will be mathematically formulated. The process
of finding a logic model for an analog circuit will be divided into three steps.

» Step 1: define the analog circuit properties that makes it a logic device.

» Step 2: define the characteristics of a logic mode! for that logic device.

* Step 3: construct the logic model.

The construction of a logic model is further divided into three parts:

* the transmission of information on wires,

* the propagation delays and

* the state.

In this chapter, current modeling techniques will be reviewed to illustrate the
importance of following the above steps. Then, the definitions for logic devices
(step 1) and logic models (step 2) will be given, followed by an outline of the proposed

modeling technique (step 3).

1.2 Basic definitions
It is necessary to begin our discussion about logic modeling with intuitive but

carefully formulated definitions for the objects that will be used.

» Wire: A wire is a physical element carrying the continuous voltages and currents
between the ports of analog devices or logic devices.

* Analog device: An analog device is characterized by a set of analog ports and
continuous functions. An analog port transfers the voltage and the current from
the inside to the outside of the device or vice versa. The device processes the
continuous voltages and currents at the ports according to some continuous
behavior specification.

* Analog circuit: An analog circuit is a network of analog devices connected with
wires. The relation between the voltages and the currents at the ports of the
analog devices and in the analog circuit are governed by Kirchhoff laws,

» Analog signal: An analog signal is a mathematical representation of the information
carried by a wire. It consists of a continuous function of time modeling the
voltage or the current.

* Analog model: An analog model is a mathematical representation of the behavior of
an analog device. It consists of set of analog ports, a set of continuous state
variables and a set of continuous equations describing how the state, the
voltages and the currents are related.

* Logic device: A logic device is characterized by a set of logic ports and a logic
function. A logic port is an analog port with the following restrictions: a logic
input port is sensitive to threshold crossing and a logic output port produces a
voltage compatible with the input ports. The device processes the continuous
voltages and currents at the ports according to some logic behavior

specification.

« Logic circuit: A logic circuit is a network of logic devices connected with wires. The
relation between the voltages and the currents at the ports of the logic devices
and in the logic circuit are governed by Kirchhoff laws.

* Event set: An event set is a set of labelled predicates describing an instantancous
property on an analog signal. For example, the binary event set is often
defined as:

{ label 0 : (v(t) = Vyj, and ?jtv(t) <0), label 1 : (v(t) = Vy and ((:tvm

>0))

* Logic event: A logic event is a tuple consisting of a label describing the event and
the time it happens.

* Logic signal: A logic signal is a time ordered sequence of logic events.

* Logic model: A logic model is a mathematical representation of the behavior of a
logic device. It consists of set of logic ports, a set of discrete state variables
anc a set of discrete and logic equations describing how the state, the input
events and the output events are related.

« Continuous time or continuous change of state: This is the characteristic of a model
whose state is a continuous function of time. This is also referred to as dense
time.

« Discrete time or discrete change of state: This is a characteristic of a model whose
state is a discrete function of tim:~ In discrete time, there is a finite number of
state changes in any interval of time,

» Timed staie sequence: A timed state sequence is a sequence of state changes in
discrete time.

e Timing constraints: The set of timing constraints is a set of real numbers used to
define an acceptable sequence of logic events that can drive a given logic device
(Ex: set-up time, hold time). Event separations are compared with timing

constraints to detect timing violations.

« Propagation delays: The set of propagation delays is a set of real numbers used to
model the delay between an input event and an output event in a logic device.

The propagation delays are used in simulation by a propagation delay model.

1.3 Design process

The objective of modeling in this thesis is to support the specification, the
analysis and specially the simulation of digital systems at logic level. Since these
constitute the major components in digital system design, it is therefore appropriate to
spend some time to review the design process. As illustrated in Fig. 1.1, the design
process is decomposed into two parts, design and verification. Design consists of

transforming a specification into a circuit and verification insures that the proposed

Spacification
of the problem

DESIGN & o T e VERIFICATION

‘Y

PRELIMINARY ‘_._____

DESIGN H EVALUATE

'
',
Yy

Description of . Results Results

R e i o

’
’
4
’
1]
[]
’
’
’
’ . [
’ the solution !
]
’
’
L
’
[}
’
[
’
]

»' | smuLation,
ol A

IMPLEMENTATION | ' Fgﬁbﬁ's‘ TEST
' VERIFICATION

- . e eMeeeeweweeeewwaeewneeeas

Modsl of
the circuit

Circuit

Fig. 1.1 Digital system design process

circuit meets the specification. Design/verification cycles are repeated as many times
as required until a cormrect circuit is obtained. Design generally begins with a
preliminary design followed by an implementation. In the preliminary design phase,
the specification is analyzed, a number of solutions are studied and one of them is
selected. In the implementation phase, the selected solution is realized. The design
checking then consists of an analysis, a formal verification or a simulation of the
model. Verification terminates with an evaluation phase, where the results are
analyzed and the design is modified as required. Design/verification cycles are carried
out at different levels. From a general specification a system architecture can be
derived, from a system architecture a register transfer model can be designed, and
with more design cycles, detailed circuits are obtained. In this thesis, we are
interested in the design and verification at logic level.

Until 1980, separate computer programs were used for solving specific
problems in the design process [1]. For example, different tools were used for layout
editing, physical rule checking, compaction, circuit extraction and simulation. Since
then, design environments have greatly evolved and usually provide an integrated set
of tools to support the designer in most phases of the design process [2]. The design
of digital systems at logic level, consists in using manually designed clements or
compiled modules (PLA, ROM, RAM, DSP, ...) and drawing the schematic diagram of
the circuit. This is normally followed by automatic placement and routing, model
extraction and simulation. In certain cases, the design might be reduced to writing a

high level dcscription and compiling it directly intoa chip [3].

1.4 Simulation and verification
Even though the trend in CAD systems is to automate synthesis [4], the nced
for effective verification tools is still strong. The tools are classified according to the

completeness of checking of a design against its specification:

« Formal verification tools: The extracted or computed model of the composite
system is compared with the requirement specification. Both the model
and the specification are described using a special description language
and the model is proved to satisfy the specification mathematically.
This is quite complex and is practicable for smaller systems.

 Analysis tools: The model is partially compared with certain requirements in
the specification. For example, timing analysis is often used to compare
the computed timing parameters of ihe model with the specified timing.

« Simulation tools: The model is exercised for a restricted set of inputs and the
simulation results are compared against the specification. The simulator
does not make any comparison.

Each of these tools relies on a good model, one that faithfully captures the

essential properties of the real system. Simulation tools are still the most popular.

They are classified according to the level of abstraction: device, circuit or logic.

Device simulation

Device modeling uses discrete elements to model the physical structure (two
or three dimensions) of a device and the simulation consists of predicting the current
and voltage distributions in the device [5]. This type of simulation is useful to
determine current concentration, to assert the circuit parameter values or to check the

precision of a circuit model.

Circuit simulation

Circuit models assume that the 3-dimensional continuous physical world is
discretized into elements and wires. The elements are modeled by a set of equations
describing the relationships among the voltages and currents of the piis. A
simulation of these elements involves in solving the set of network equations based

on Kirchoff laws [6, 7). Third generation circuit simulators have improved performance

by making use of space and time sparseness [8] and special circuit structure [9-11].
By using tabular models with adjustable precision, the simulation of a circuit can be
further speeded up [12].

The large digital systems to simulate and the quest for speed have forced the
designers to use simplified models. Since ouanly timing specification need be
determined, the simplified models were optimized to predict the propagation delays
(see Fig 1.2). Two approaches have been used: macro-models and switches. A
switch is a simplified model for a transistor and a switch based simulation ofien called
timing simulation consists in predicting the waveshape of signals by assuming that
the vo'tage at each port is the result of a network of resistors, capacitors and
switches. In the case of MOS circuits, the switch model is easily extracted from the
layout. Its interpretation is simple and the simulation results are reasonably accurate.
This probably accounts for its popularity [13-20]. The switch-level modeling
techniqne has also been applied to model bipolar logic circuits [21-23].

Macro-models are used to model a group of transistors performing a logic
function. The electrical behavior of the output stage is modeled in detail using
controlled sources, resistors and capacitors [24-26]. The objective is to be able to
connect logic devices to analog circuit, perform a simulation and improve the accuracy
compared with a simple logic model with only a propagation delay. As shown in
Fig. 1.2, macro-models are also used in hybrid circuit-logic simulators [36-38]. The
macro model of a logic device is similar to an operational amplifier which is modeled
using Thevenin equivalent and transfer function instead of transistors. Switch and
macro based simulations are useful to simulate circuit whose complexity wnuld make
an analog simulation too costly.

As shown in Fig. 1.2, hybrid models use macro-models, switch networks or
strength factors or a combination of these. Hybrid models combine the speed of logic

simulation for the internal operation of the devices with the accuracy of analog

sippow jo uoneayissel) 1 314

uonejnwis
21607
les
uooniisuy
lejsuel}
le)sibey
suiyoew
elels
oiboj
Aejep
wejsuon
Buwny
pue
21801
{epow
o160

yibueiis
pue
01607

uoneINIS
0160(-un2.410

PUQAK

uonejnuis

wnono

Wiomjeu
youms

Yyoums
pue
o160

sjepow
PUGAH

|epous
o1oep

unono
lind

pliom

feed

10

simulation for the interconnection network and the special devices. The major problem
with hybrid simulation is that network equations based on Kirchoff laws need to be

solved, but again this is a trade off between accuracy and speed.

Logic simulation

The next level up in the abstraction is the logic level. Ar analog level, the
device state is a continuous function of time and at logic level, the device state is u
discrete function of time. Basically, continuous time is discretized. The definition for
logic models will be given in the next section, but we can safely say that a logic model
consists of a logic function, a state and a timing specification. Since the subject of this

thesis is logic simulation, we will review all of the related topics at the proper time.

1.5 The problem of modeling analog devices with logic models
The construction of logic models b:gins with analog circuits. It is therefore
essential to understand the behavior of analog devices and systems. The usual model
taken from classical system theory will be used. The system S in Fig. 1.3 represents
a logic device. For simplicity, imagine it is a logic buffer. It is driven by an input signal
up(t) and produces an output signal vp(t). The input and output signals are
parameterized using the continuous parameter p.
Assumptions: 1. S is a continuous, causal and time invariant system.
2. up(t) is a function dependent on the continuous parameters p and t
(time). Varying p generates a family of parameterized input
signals.
3. vp(t) is the output of S for a given up(t).
More formally, the system has a state s € X and is modeled by a continuous

function @:

11

System S

uy () vp ()

Fig. 1.3 Logic device

X: {slsisastateofS } 2 =RxRxR .. xR= RmM
X is the set of all state variables.
Up = {up(t) | up(t) is a parameterized input function }
Each element of Up is a function of the parameter p and the time t:
up(: RxR-R
¢: TxUpxR - R

The function @ maps a state, s € Z, at time t=0, an input function
up(t) € Up on the interval [0, t], and the time, t € R, into the value of

vp(t) at time t.
vp(t) = @ (s, up, t)

The devices used in digital systems are continuous, causal and time invariant.

While constructing a logic model, it will be required to decide whether or not these

12

properties should be preserved. In the remaining of this section, these properties will

be defined and studied with respect to logic devices and logic simulation.

1.5.1 Time invariance and logic simulation

A system is time invariant if, given the initial state at to and the input signals
beginning at tg, the resulting changes of state and the output signals after ty will
always be the same for any tg. More formally, since vp(t) = @ (s, up, 1) is the
response of the system S on the interval [0, t], then if the initial state at time T is
also s and if the input signal is simply time shifted up(t-T), then v;(t-T) will be the
response on the interval [T, t+T].

Time invariance is easily preserved in a logic simulator. Given any initial time,
a logic simulator normally produces the same results for the same initial state and the

same input signals.

1.5.2 Causality and logic simulation

A system is causal if any changes at the inputs always precede its effect on
the state and the outputs. More formally, vp(t') may depend on up(t) Vt < t' but does
not depend on up(t) Vt2 t'. Causality is the essential justification for modeling
propagation delay.

Whether it is analog or logic, a simulation always consists of predicting the
future given the state of the model at current time and the inputs. Analog simulation
is based on the sample-and-hold principle, the state and the outputs at the next time
step are all evaluated simultaneously. The time step is very small and the prediction
is based on the linearization of the set of differential equations that describe the
circuit. Causality is always preserved since all voltages and all currents and therefore
all changes of state are computed for the same time interval.

Logic simulation is event-driven and the simulation algorithms are based on

the cause-effect principle: event X causes event Y. The new state and the outputs

13

are evaluated sequentially, not simultaneously. Thus causality is crucial and
establishing causality in the logic model and handling timing relationship and causal
events efficiently and accurately are the key t. satisfactory logic simulation. Since the
event occurrences depend on the event definition, the selection of an event set will be
critical to the success/effectiveness in logic simulation. Otherwise, management of
time advancement poses an inefficiency problem in simulation.

Preserving causality in the logic model simply requires a strictly positive
propagation delay model. With negative propagation delay, an input event X arriving
at time tx would produce an output event Y at time ty < tx, meaning that the output
signal for t > ty, depends on an input signal at time tx > t. According to the definition,

such a model does not preserve causality.

1.5.3 Continuity and combinational devices

A system is continuous if a small change at the inputs produce a small change
at the outputs. Mathematically, given a function f(a) and a limit a=lim ap where ap
describes any convergent sequence of values for a, f(a) is continuous at a if
lim f(ap)= f(a) [27]. It is quite simple to verify if continuity is preserved in a logic
model. Specifically, the model of the system in Fig. 1.3 is continuous in p, if for a small
change in the parameter p, there is a small change in the output.

For example, assume the system S is a buffer and its model is a constant
propagation delay with a single parameter (tp). Suppose now that a small pulse of
width p is applied as the input up(t) and that transitions times are zero. As shown in
Fig. 1.4, this delay model preserves continuity since for any small changes in the
parameter p (pulse width) there is a small change in the output. In section 1.6, signal

representations that do not preserve continuity will be examined.

14

Small change Small change
in input pulse width in output signal
> 'p >
IN ouT
o »
1 1
tot
to + tp

Fig. 1.4 Preservation of continuity with
a constant propagation delay model

1.54 Continuity and sequential devices

Many logic devices are modeled using logic states (flip-flop, register, random
access memory). The binary state of each logic variables depends on some past input
condition. For example, at the rising edge of the clock of a D flip-flop, the state
variable and the output take the value of the input (0 or 1). Because of the continuous
nature of the devices, all intermediate values are possible, perfect binary decision is
not possible in continuous systems. The BDT (Binary Decision Theorem) is
presented in Appendix A. This is also called the synchronization problem or the
metastability problem.

The problem is solved by either allowing sufficient decision time so the
probability of having an intermediate value is near zero or else by considering as
unacceptable the input conditions that produce intermediate values. This has led to
timing constraints like set-up and hold times. Either of these approaches should be

used when modeling logic devices with logic state.

1.5.5 Continuity and changes of state
In a continuous system, the state variables are continuous and they change
continuously. When modeling a logic device, it is not desirable to keep track of

continuously changing state variables. A logic model is characterized by discrete

15

events and changes of state. Discrete changes of state are often refered to as a timed
state sequence. In a timed state sequence, there is a finite number of changes of state
in any time interval whereas in continuous change of state there is theoretically an
infinite number of changes of state in any interval of time.

Modeling the continuous change of state with a timed state sequence
effectively transforms continuous time into discrete time. This is a major issue in the
modeling of logic devices and the solution is not simple. In simulation, a logic device
can effectively be driven by arbitrary input signals that can change an infinite (very
large) number of times in any interval. For example, a counter limited to 10 Mhz
might be driven by a 100 Mhz clock in a given circuit. This causes a continuous
change of state in the modeled device. The problem is to process the theoretically
continuous stream of input events and generate a timed state sequence.

This summarizes the key points that must be considered when constructing the

logic models for analog circuits.

1.6 Problems with current modeling techniques

In this section, the current modeling techniques will be reviewed to illustrate
various problems. When possible, a probable cause related to some theoretical
aspect of modeling causal, continuous and time invariant systems will be suggested.
Problems are grouped into three areas:

+ Signal representation problems

+ Propagation delay modei problems

* Changes of state problems

All of the problems described here are caused by the desire to preserve
accuracy in modeling continuous signals and fine timing details using logic simulation.
The complexity and the performance of modern digital designs require such accuracy

and therefore these problems are quite real.

16

1.6.1 Signal representation problems

The objective in modeling the signal on a wire is to accurately describe the
transmission of the information from one device to another. At analog level, this
information is modeled with the node voltages and the branch currents. At logic level,
the information is modeled with logic events describing logic signals. Various models
for signal representation will be next examined.

The simplest model consist in a list of logic events describing when the signal
changes to zero or one based on the crossing of a fixed common threshold. This model
is inadequate for modern designs where wiring capacitances have a non negligible
impact on the speed performance. In MOS circuits, the transition times are significant
and can not be neglected. As illustrated in Fig. 1.5, such an event definition
introduces important timing errors. These errors may cause incorrect changes in the
modeled logic state of the receiving circuits and may require negative propagation
delays.

Threshold based logic events do not model the transfer of information
accurately because the analog signal is not properly described. Using multiple

thresholds is not sufficient either to properly model the analog signal. As shown in

U2
Uo Input
ort
Output P Vth2
port
u1
Input
Bor 1 vthi
Fixed Vthok e cc e ceecc e - —_—
threshold = m = 4 = = = = = e = e = e —— e _,_,.._;./'f'
Vth1 -------::;:—_—:a—-i- ! N
¥ . . + 4 T b’
Simulated svent is 100 late for U1 : Simulated event is too early for U2

Simulated event

Fig. 1.5 Timing errors with a common fixed threshold
for input and output events

17

Fig. 1.6a, glitches in the X range or in the 0 range are not described by the sequence of
threshold based events X1X0. Fictitious events as in Fig. 1.6b have been proposed
[30] to simulate the crossing of the threshold for events within either ranges. The
processing of such events is difficult since the chronological order is not maintainted.
For example, the sequence of events for the signal in Fig. 1.6b is XXX1X00X and
should have been XXX1X0X0{30}. Minima and maxima have also been combined
with threshold based events [30] as in Fig. 1.6c. Mixing minima and maxima with
threshold based events in such manner is not necessary. In fact minima and maxima
are the basis of the new event set proposed in chapter 3.

Ezch of the problems described above seems to be associated with a poor

representation of the signal or some missing information about the signal. To solve

]

(c) Using minimas and maximas

Fig. 1.6 Modeling analog signal with threshold based events

18

the problem we propose to use the analog signal in a detailed form to transmit the
information between logic devices. In chapter 3, a logic event set will be defined to

describe analog signals.

1.6.2 Propagation delay model problems

Propagation delays are used in logic simulators to model the passage of time.
They are interpreted as the delay between the input events and the resulting output
events. When using the constant delay model, the occurrence of an output event is
computed by adding a value (tp) to the occurrence of the input event. Unfortunately,
real devices rarely behave in a simple fashion. Tbe propagation delay for low to high
transitions are different from that for high to low transitions; the propagation delays
depend on things such as which input is causing the event, if the receiver device
ignores glitches and so on. Therefore, more elaborate delay models have been used
and they include inertial delay [29-31, 47-50], transport delay [31, 48, 49] and spike
delay {29] models. These models modify the output signal by replacing or removing
events to model a specific behavior or to insure logical consistency in the produced
signal. For example, a 1 event following another 1 event will be removed. The
popular inertial delay model will be used to illustrate this.

Inertial delays are often used to model the effect of cither a large capacitive
load or a large internal capacitor that filters out narrow pulses. As illustrated in
Fig. 1.7a, pulse 'a’' does not produce an output event since its width is smaller than the
propagation delay. The problem with inertial delay is related to the transmission of
information. Suppose that inertial delay is used to model a large load capacitance.
Then the actual output signal might resemble the signal shown in Fig. 1.7c. The pulse
a was removed but it could actually be seen by a receiving device with a lower
threshold. Such problems have been described in section 1.6.1. In this case, the

receiving circuit and not the transmitting circuit should decide on the removal of the

19

t =2
a) Input A wa
twb=6
a b w
v o
4 6 10
Output A
‘p.a . b
v T —_
| l
Actual $ i)
| 1
Vth —————— O cn o o @, b
Pad
1 v P —— ¥ ¥

Fig. 1.7 Inertial delay model

event. This is clearly a failure to model the transmission of information between
devices.

The fundamental problem is that these delay models are combining three
aspects of the behavior that should be separately modeled: transmission of
information (signal model), propagation delay and logic state. The modeling of a large
wire capacitance is associated with the signal while an internal capacitance would be
part of the device logic model. The internal capacitance might produce a pure
propagation delay or a logic state. In this thesis we will demonstrate that modeling
these aspects separately will improve the model for the transmission of information
between logic devices and will result in simpler or at least more consistent logic
models.

Another aspect that will be considered is the preservation of continuity. Even
if it is not obvious how this will improve logic models, we believe that since all logic
devices are continuous, it is wise to preserve this property. Unfortunately, inertial
propagation delay models do not preserve continuity. This is demonstrated in Fig. 1.8
where a small change in the input pulse width produces a large change in the output

waveform. In fact this is not possible in the real world, continuity commands that as

20

_Sn]all change)
in input pulse width inertial delay Large change
5 : .l < \ in output signal
IN P ouT
o
1oty T t +1p
(no pulse)

Fig. 1.8 Absence of continuity in the
inertial delay model

t1 — to, the difference between the output waveforms gets smaller. This model

clearly fails to reproduce the correct behavior.

1.6.3 Changes of state problems

As discussed in section 1.5.5, a logic model must perform the transformation of
continuous changes of state into a timed state sequence. This is accomplished by
adding timing constraints, for example, by limiting the clock period of a counter or the
width of a reset pulse. These constraints add to the constraints associated with
binary decision described in section 1.5.4. In this section, we will analyze how the
following modeling techniques have succeeded at doing the continuous time to discrete
time transformation:

- device timing constraints

- signal timing constraints

- real time formalism

1.6.3.1 Device timing constraints

The most popular logic modeling technique uses timing constraints such as
set-up and hold times to define the acceptable sequences of input events. A typical
simulator will compare the simulated event separation with the requirement and
output a message in case of violation (29, 31, 48]. The transformation of continuous

change of state into a timed state sequence is often not performed. For example, in

21

many logic models, the state of a flip-flop does not change to undefined in case of a
timing violation. In the modified inertial delay model [29], some sort of transformation
to a timed sequence of events is performed by replacing many close events by an
undefined value.

Use of device timing constraints is basicaily correct for transforming continuous
time into discrete time. The remaining problem is the absence of a systematic
mecharism to construct a model that processes timing constraints and at the same
time performs the transformation of continuous change of state into a timed state
sequence. Since violation of timing constraints affects the state of the device they
must be verified as part of the device model and not as an external check on the logic

signal.

1.6.3.2 Signal timing constraints

In their quest for better logic models, designers have also used multiple
thresholds to identify glitches directly on the signal. The signal voltage range is then
divided into three (0, 1, X). It was demonstrated in section 1.6.1 that multiple
thresholds events do not preserve continuity and do not easily model continuous
signals. In addition, events defined using multiple thresholds require a more complex
delay model and a more complex logic function and are therefore difficult to process.

For example, multiple thresholds lead to multiple-valued logic [42]. Table 1.1
shows the AND function using 2-valued logic while table 1.2 shows the same function
using 6-valued logic. Each entry in table 1.2 is a sequence of three consecutive

events based on two threshold dividing the signal range into three values (0, 1 and X).
AND | 0 | 1

0 0 0
1 0 1
Table 1.1 AND function using 2-valued logic

22

AND 0,000 | (1,1,h) | 0.X,1) | (1.X.0) | (0.X,0) (1.X,1)
0,0,0) { (0,0,00 { (0,000 | (0,0,0) | (0,0.00 | (0.0,0) (0.,0,0)
(1,1,1) | 0,0,0) | (1,L,) | OX, D | (1.X.0) | (0.X,0) (LX,1
0.X,1) | (0,0,00 | (OX.1) | (O.X,1) | (0.X,0) | (0,X,0) 0.X,1)
(1,X,0) | (0,0,00 | (1,X.0) } (0,X,0) | (1,X.0} | (0.X,0) (1L.X,0)
0,X,0) | (0,0,0) | (0.X,0) | (0.X,0) | (0.X,0) | (0.X,0 0.X.0)
(L,X,1) | (0,0,00 | (L.X.1) | (OX,1) | (1,X,0) | (0,X,0) (LX.1)

Table 1.2 AND function using 6-valued logic

Multiple-valued logic can be done for simple gates but then predicting the
behavior of complex devices becomes quite complicated and no simple answer has
been provided yet. Multiple-valued logic is the result of multiple-thresholds und
significantly complicates the processing of events. It will be shown that 2-valued
logic is sufficient even to process glitches.

Using multiple thresholds is probably the worst approach; the transformation of
the continuous change of state into a timed state sequence is performed on the signal
instead of the device state and the logic function gets very complex. Even with single
threshold, use of signal timing constraints to identify glitches on the signal is not

necessary.

1.6.3.3 Real time systems

Computer scientists have studied the modeling of real time systems which
should include logic systems and have attacked the problem in a more formal way.
The basic approach consists of including time into first order logic with the objective of
proving timing properties such as the safety of a control system. In temporal logic
(TL) (53], the operator "eventually (0)" has been added to propositional logic to
define real time properties. Time constrained version of temporal operator have been
used to more accurately describe the system's behavior. For example, in metric

interval temporal logic (MITL) [54], the operator Q{2 4) would indicate eventually

23

between 2 and 4 unit of time. Another approach called timed automata (TA) [55, 56]
uses artificial variables called clocks to time the change of state. Whereas all of these
techniques aimed at formal proofs, TA is also well suited for simulation, since a
mechanism is implicitly used to increment time.

There are two aspects to discrete time abstraction: (1) is the model capable of
processing continuous time? and (2) does it perform the transformation into a timed
state sequence? TA is capable of processing continuous time and can perform the
transformation if the designer does construct a correct automaton. Unfortunately, TA
are general purpose and are difficult to use. For example, TA does not distinguish
timing constraints from propagation delays. We beleive they should be separately
modeled and processed.

As such, there is no particular problem with TA. They are simply incomplete to
deal with the whole modeling problem addressed here because the relation between
TA and continuous systems is not clearly formulated. A modified TA will be proposed
in chapter 6. The new TA, called Continuous Time Automaton (CTA), is specially
designed to process timing constraints and transform continuous time into discrete

time.

1.7 Proposed logic modeling technique

Buasically, the discrete nature of logic signals and devices does not blend easily
with the continuous analog world they have to capture. As mentioned by M. R.
Lightner [33], irnportant theoretical work is still required to formalize the hypotheses
and axioms for the abstraction of analog circuits to logic models. Even if logic
simulation with timing specification has been an active area of research [34-39], very
little work has been done to define a better formalism [30, 40]. Most researchers are
concerned with simulator efficiency (timing accuracy, speed and memory

requirements). Our objective is to define such a formalism while maintaining timing

24

acwuracy and simulation efficiency. Such a formalism will improve the accuracy in the
signal representation and provide a more realistic delay model and a systematic

technique to process timing constraints.

1.7.1 Step 1: What is a logic device?

In analog circuit simulation, the elements are described by a set of equations
relating the voltages and the currents at the interface ports and the simulation
consists of solving the network equations based on Kirchhoff laws. The abstraction of
an analog circuit to a logic circuit consists of grouping the analog devices and
partitioning the circuit into logic devices and wires. Even though Kirchhoff laws could
be used to model part of the logic circuit as in hybrid siinulation, it was decided not to
use them in the logic model. Each group of analog devices must meet three
hypotheses to be considered a logic device. Meeting these hypotheses also insures
that Kirchhoff laws are not required. Therefore, a logic device is an analog circuit

designed to meet certain criteria. The first hypothesis specifies the type of input port:

Input port hypothesis

Input ports are threshold sensitive

or in general sensitive to certain events.

This corresponds to the usual assumption made by digital system designers.
A logic device will react only when a threshold is crossed. The effect might be a
change of state or a change on the output signals. The second hypothesis specifies

the type of output port:

25

Output signal hypothesis

Output ports generate signals that do not normally
linger around the threshold voltages of the input ports

or in general that produce events compatibles with the input ports

The thresholds are simply crossed, otherwise, the signal is not considered an
acceptable logic signal. Even if this might seem fuzzy for now, this hypothesis
enforces the device hypothesis by further limiting the class of analog circuits that are
considered logic devices. In general, these two hypotheses indicate that, for logic
circuits to operate as specified, the output signals must be compatible with the
thresholds of the input ports connected to it. In simpler term, since the logic devices
are sensitive to threshold, the output signals must neatly traverse the thresholds.

The third hypothesis specifies how output ports are connected to input ports:

Network hypothesis

A wire always consists of a unique output port

driving one or more input ports forming a time invariant load.

The output port might change with time.

This is the basic hypothesis that allows a designer to model a device without
using Kirchhoff laws. This is restrictive, but it actually corresponds to the engineering
practice. For example, devices specified in data books [43, 44] including standard
cells for integrated circuit design [45] are all described assuming the network
hypothesis. According to this hypothesis tristate devices are logic devices, but open
collector devices and switches are not. Bus resolution function ¢ ied by

VHDL [31] would be limited to tristate busses and signals. Obviously, our 2ctive

is not to decide what can or can not be simulated. We merely describe what is
theoretically considered a logic circuit.

These hypotheses make no reference to the signal representation. In fact, logic
devices also process analog signals. As shown in Fig. 1.9, an analog simulator uses
differential equations for the devices to compute the analog signals. A hybrid
simulator uses logic models for the internal operation of the device and difterential
equations for the interface part of the devices to compute the analog signals. A logic
simulator uses a logic model for the devices and also computes the analog signal. In

section 1.6.1, we have demonstrated that trying to define logic signals without

A

: o, i
A A A CAIm A
A A
A A (A (A][
A L
(a) Analog devices and analog signals (b) Hybrid devices and analog signals
(analog simulation) (hybrid simulation)
A
L A L
A A
L

(c) Logic devices and analog signals
(logic simulation)

Fig. 1.9 Classification of simulators

27

reference to analog signals leads to problems in the simulation. Allowing logic models
to process analog signals is a key point in our approach and it will lead to logic events

describing analog signals.

1.7.2 Step 2: What is a logic model?

The next step is to define a logic model for the logic device defined in step 1.
The difference between an analog model and a logic model lies in the representation
and the processing of the time and of the state changes. In an analog model, the time
and the state changes are continuous whereas in logic models, they are assumed
discrete.

During an analog simulation, multiple input events or waveforms are processed
simultaneously, the time progresses continuously and the output events or waveforms
are generated simultan=cusly. During a logic simulation, multiple input events are
processed sequentially. State changes and output events are computed and predicted
separately for each input event. Intuitively, a logic simulator processes the input
signals as follow:

« The input events are derived from the analog input signals using the input

event set definition.

» For each input event, the simulator waits some time corresponding 1o the
input delay.

» Then the simulator processes each input event and produces a change of
state if required. In general, a single input event may produce a sequence of
state changes.

« Based on the input event and the new state, output events are generated
after some time corresponding to the output delay.

In the general case, input and output delays are arbitrary, therefore the

chronological order of the predicted state changes and output events might not be

28

preserved and might become difficult to process. For example, assume a device X
with a state S and two input ports A and B. If the input delay on port A is smaller
than the input delay on port B, then the change of state Sp might occur before the
change of state Sp even if the event on A occurs after that on B. With complex
devices, not preserving the chronological order in the changes of state might be
difficult to model. To simplify the construction of logic models, the analog circuits will
be partitioned such that the input and output delays are grouped and associated with
each output. As shown in Fig. 1.10, the input delays are reduced to zero and the
delays are inserted at the output.

The conceptual model of Fig. 1.10 is based on two rules. The first rule

indicates that the input delay is zero:

A —
s
State model rule

In a logic model the change of state is simultaneous

with the input event causing it.

lnpyt Output

) logic logic
signals signals

computed used to
from reconstruct

analog Zero the analog
signals delay signals

using outputs

thresholds

Fig. 1.10 Conceptual model of a logic device

29

This rule insures that the chronological order of the changes of state is
preserved with respect to the input sequence of events. This rule also indicates that

delays must be associated with outputs. The second rule concerns the delay model:

Delay model rule

The propagation delay model for each output must preserve continuity

This is required to prevent problems such as those described in section 1.6.2.
According to these rules, a logic circuit consists of logic devices connected as in
Fig. 1.11. This conceptual model for logic circuits suggests how simulation will
proceed. First, input events are computed using the analog signal and the input
threshold. Second, the logic model is used and a change of state is computed. Then, if

required, a continuity preserving delay model is used to compute the output events.

@ Logic input ports: analog to logic signal conversion
Logic output ports: logic to analog signal conversion
% State madel (no input dalay)
@ Delay model (output delay)
@ Analog signal

Fig. 1.11 Partitioning an analog circuit into logic devices

30

The output events which are defined differently from the input events, are then used to

reconstruct the analog signal.

1.7.3 Outline of step 3: Construction of logic models

This third step is the core of this thesis. It is assumed that the analog circuit is
partitioned into logic devices according to the conceptual model of Fig. 1.11. In step 3,
a logic model is constructed for each logic device. The logic model construction
process will match the conceptual model by clearly separating the modeling of the

transmission of information, the propagation delays and the state changes.

1.8 Summary

In this chapter, the problem of modeling analog circuits with logic model was
described. Basically, a better mathematical formalism for the description of the
objects and the logic modeling process is required. In particular, modeling the
waveform of the signal seems essential and preserving continuity, causality and time
invariance should be considered.

Abstraction hypotheses for logic devices and construction rules for logic
models have been formulated in section 1.7.1 and 1.7.2 . The remaining problem is to
follow a mathematically formulated process and construct logic models according to
the conceptual model of Fig. 1.11. This conceptual model divides the logic model into
three parts, each with a specific modeling objective:

+ A logic signal model to accurately model the transmission of information

between logic devices.

« A propagation delay model to accurately model the delay between changes of

state and output events.

+ A state model to accurately model the changes of state and the

transformation of continuous changes of state into a timed state sequence.

31

These correspond to the research objectives of the work described in this
thesis. Chapter 2 describes the formal framework that supports logic modeling. The
framework is a mathematical definition of the objects that will be used: logic events,
logic signals, logic devices and logic simulator. It is based on simple mathematical
premises and on the classical system theory. Modeling of transmission of information
and the delay model are studied in chapter 3 and the state model in chapter 4.
Chapter 5 includes a summary of the results and a comparison with other modeling
techniques.

This thesis should be useful to those interested in the specification, design,

verification, simulation, testing and formal verification of digital systems.

Chapter 2

Formal framework

The first step to a better formalism is to examine the mathematical premises
and define the objects we want to use: logic events, logic signals, logic devices and
logic simulators. In this chapter, the mathematics of functions and basic information
theory principles are reviewed and applied to define logic signals and logic events.
The definitions emphasize the importance of relating logic signals to analog signals.
Then, the discrete event system model developed by B. P. Zeigler {48] is used and
adapted to define logic devices and logic simulators. This formalism is based on the
classical system theory where inputs, outputs, states, state transition functions and

output functions are the constituents of the model.

2.1 Mathematical premises

The mathematical concept of functions is reviewed. To make things simple, it
is assumed that functions can map to or from the set of Natural (N) or the set of Real
(R) numbers. Fig. 2.1 shows the four possible function types. In signal processing
theory, distinction between the different types of functions lies in the continuous (R)
or discrete (N) nature of the domain and the range. The range can be either
continuous or discrete (quantized) and the domain (time) can be continuous or
discrete leading to the following functions:

Continuous function;: {f: R ->R}

Discrete function: (f: N>R}

Quantized function: {f: R-->N}

Logic function: {(f: N-->N}

33

Continuous. _ _ Continuous
time scale ~~, -~ " value scale
: RS
\ .
J 4 continuous
- ~
d ~
’ -
r'd /_\/ \
4 - A Y
'l \\
/ \ ’ N
’ N ’ .
e / s .
glscreto' .——. Sampling *y" Quantization \, .-~ 'Quantized
me scale RA R “ PR value scale
' y AN ’ ‘. s . '
[L > ’ N N ’
’ N £ 0 ¥
\ N * quantized ‘
Y ~_ 17 ——
< - \
¢ o \
[1 —_— - \
' of— -— ‘
! \
[} \~ ’ 1
.‘ _ S ‘, '
~ Sampling AR

Fig. 2.1 Classification of mathematical functions

As shown in Fig. 2.1, there are also two fundamental operations that can be
used to transform these functions:
Sampling: transformation of the domain set from real to natural

Quantization: transformation of the range set from real to natural

2.2 Signals and information
In signal processing theory, we are concerned with the information carried by a
signal. A signal is a function of time representing a physical variable, like a voltage,

and the information it carries is defined as the part of the signal that cannot be

34

inferred. Without going into lengthy mathematical discussion about the measure of
information carried by different signals, we can define the three types of signals
generally encountered. Since all signals are continuous functions of time, we must

define them by giving the properties that differentiate them.

Signal Information content
Va(t) A R A
Analog
signal
» t » R
vy t) A KA
Discrete o ° . .
signal .
p t I —
v, () N
Logic . o e
signal
¥ » t . v —p N

Fig. 2.2 Classification of signals

The three types of signal shown in Fig. 2.2 are:

Analog signal: An analog signal is a continuous function of time, f(1) : R = R.
All signals are analog. The information is carried by points (1, /(1)).

Discrete signal: A signal is considered discrete if it can be approximated by a
discrete function, sk : N — R, and an interpolation function. The
interpolation function is used to reconstruct the analog signal between the

samples. For example, an exponential function is used for interpolation in

35

Fig. 2.2. The information is carried by samples (n, s,), where n is used as a
time index, instead of the real time value.

Logic signal: A signal is considered logic if it can be approximated by a logic
function, ex : N — N, and a known interpolation function. For example, line
segments are used for interpolation in Fig. 2.2. The information is carried by
events (n, e,), where n is used as a time index, and e, is an event. Notice
that the definition of logic signals will be slightly modified to be used in
simulation, see section 2.5. Once it is established that the signal is a logic
signal, only events need to be processed, the interpolation function is only

required to reconstruct the analog signal.

2.3 Signal transformation

As mentioned, the definition given for discrete and logic signals should be
interpreted as properties that an analog signal must have in order to be "modeled"” as
a discrete or logic signal. According to the definition, the output signal vy(t) in Fig. 2.3
is a logic signal since it can be approximated by a sequence of events and an
interpolation function. In this case, the interpolation function will depend on the output
characteristics of the buffer. The buffer is therefore a device that transforms an analog

signal into a logic signal.

vi(t)

v |: et A . .t

14 B 2 t3

Fig. 2.3 Buffer

36

Similarly, the output signal vy(t) in Fig. 2.4 is a discrete signal since it can be
approximated by a sequence of samples and an interpolation function, here an
exponential function. Even if a clock is required to control the sampling instants, it
does not determine the nature of the output signal. The nature of a signal depends on
its information content: a list of samples for discrete signals and a list of events for
logic signals.

vi(t) vo(t)
clock clock

I |
> [N\
' DT—/ I —1 |> - A >

; s t1 12 13 t4 15

Fig. 2.4 Sample and hold

Signal transformation will not be discussed further, it is more related to

information theory than logic simulation.

2.4 Logic event

A logic event is a tuple (n, e;) where n € N is the time index corresponding to
the R and e, € E is the event. The event set E which is a subset of N. For a single
threshold based logic signal, the event set E for binary signals is:

E=1{0,1} where 1: [((v()=VTp) and (v(1)>0)}

0: [(v(h=VTn) and (v(1)<0)]
and v (1) is the first derivate of v(t).

The 1 event occurs when the signal crosses the threshold while rising and the
0 event occurs when it crosses the threshold while falling. For two-threshold logic
signals, the event set would be:

E={0X, X1, 1X,X0} where X1 : [(v()=VThy) and (v(1)>0)]

37

1X: [(v()=VThH) and (v (1)<0)]
0X: [(v()=VThL) and (v(t)>0)]
X0 : [(v(h=VTnL) and (v (t)<0)]

The above event sets illustrate events based on threshold crossing. Notice
that an event is not necessarily the crossing of a threshold. In general, an event is the
assertion of a predicate. For example, the following predicates define the events for
minima and maxima:

m : [(v(©)=0) and (v(t)>0)]

M : [(v (t)=0) and (V(t)<0)]

2.5 Logic signal
A logic signal maps a natural number, the time index, to an event. It follows
that many logic signals may have the same index at different times, for example n=1
might correspond to t=35nsec for a signal and to t=10nsec for another. A global time
index could be used, but using a real time scale (R) is preferred. This will allow
analog, discrete and logic signals to coexist in a simulator. The new definitions based
on a real time scale are:
Analog signal: f(1): R > R maps time (te R) to point (fe R)
Discrete signal: s(t): R — R* maps time (t € R) to sample or nil (s € R
R'=RuA
Logic signal: e®): R— E+ maps time (t € R) to event or nil (e e E+)
E'=EUA
All signals map the same continuous time scale. This modified definition for
signals has been used by B. P. Zeigler for discrete systems [40]. Analog signals map
into a continuous variable, while discrete signals map into a sample or nil (A) if no
sample exists. Similarly, logic signals map into an event when there is one or else to

nil (A). The interpolation function has been removed from the signal definitions, it

38

does not carry any information and is normally a known parameter in the simulation.
In the case of discrete and logic signals the analog signal could be reconstructed if an
interpolation function is used instead of nil (A). If the event set is E = {0, 1} then the
augmented event set for simulation is E* = {0, 1, A} and a binary logic signal would

map the time to 0, 1 or A.

2.6 Logic devices and digital systems

In chapter 1, we presented three hypotheses that define the logic devices
class. This class of devices process the information carried by logic signals as defined
in sectivn 2.5. In this section, a more formal definition for logic devices and digital
systems is given. Digital systems are instances of a larger class of systems: discrete
event systems. In the literature, a discrete event system refers to a system which is
driven by events. It should not be confused with discrete systems which are
characterized by discrete signals. Discrete event systems have been studied for a
long time, and there are many references on the subject of discrete event system
simulation. Axiomatic definitions for discrete event system modeling and simulation
have been developed. B. P. Zeigler [48] proposes such a formalism where the
models are constructed by defining levels of abstraction based on the amount of
details in the models. This technique is directly applicable to digital systems and the
resulting formalism for digital systems will be described in this section. The
application is straightforward and merely consists in using names and abbreviations
corresponding to the digital systems nomenclature. The five levels of abstraction are:

- Level 0. Observation Frame

- Level 1. Input/Output Relation Observation

- Level 2. Input/Output Function Observation

- Level 3. Logic Device

- Level 4. Digital System

39

- Level S. Hierarchical Digital System
For simplicity, the logic elements are assumed to have one input and one

output. Generalization to multiple inputs and outputs is straightforward.

Input/Output Observation Frame (Levels 0, 1 and 2)

For simplicity, levels 0, 1 and 2 have been combined. Assuming both input and
output use the same event set E* as described in section 2.5, the observation frame
is:

O=<TE"™> where: T =R is the time

Et = {0, 1, A} is the event set

The input and output logic signals are defined as functions of time T as:

o:T—-E* Input logic signal w(t)

p:T—- E Output logic signal p(t)

The set of all input and output logic signals are denoted Q and R, therefore

o) e Qand pt) € R.

Logic Device (Level 3)
A logic device processes the logic signal defined in the observation frame and
is defined as:
LD=<T,E", Q §A>
where: <T, E*> is an observation frame
Q is the state
9 is the state transition function
A is the output function
The above abstraction corresponds to the model used in classical system
theory. A system is completely described by an initial state, a state transition
function and an output function. The state Q is not necessarily a logic state, like the

state of a flip-flop, it includes any information required to uniquely predict the future

40

behavior for any input logic signal. Given an initial time t; € T and a final time te T,
the state transition function maps the state gje Q at t; and the input logic signal e Q
in the interval <tj, tp> into a new state qr=0(q;,w)e Q at ty.

3:QxQ—->Q

The output function maps the state gje Q at t; and the input logic signal we Q
in the inteival <t;j, t> into an output logic signal p = A(g;,) € R on the same interval.

A:Qx Q- (Y,T)

Digital Systems (Level 4)

Based on Zeigler's approach, each component is influenced by others and the
information about who influences who is contained in the influencer set. The influencer
set is an important aspect of event driven simulation. During simulation this set is
used to schedule the components to be simulated when an event is produced. In
Zeigler's nomenclature, a typical network is described as:

N =<D, (34}, {Ia}, {Zg} >

Where D is the designation set containing the names of all components. For
each component de D, there is a system model (Sq), a set of components influencing
the component d (I3)and an interface map (Zq) describing how the output from the
components in Ig affect the component d. Basically, there is a set of components
<D, {Sq} > and a coupling scheme < {Ig}, {Zg} >. The coupling scheme as defined
by Zeigler does not transpose easily to digital systems, so we propose a slightly
different definition for digital systems where the coupling scheme is based on ports
and wires. A digital system is a set of logic devices, a set of ports and a set of wires

carrying logic signals. as depicted in Fig. 2.5.

41

Digital system

Legend:
- One to one relation

o +- }

1 Logic devices One to many relation

—_—
]

Ports

t
Wires } - Logic signals

Fig. 2.5 Digital system basic data model

Devices have ports which are connected with wires to form a network, called
the digital system or circuit, as in Fig. 2.6. More formally, a digital system (DS) is a
network of logic devices (LD):

DS =< D {LDyg} {P4} {W} >

D is the designation set containing the name of all logic devices. For each
device named d there is a logic device model LD (level 4) and {LDy} is the set of all
logic devices, one for each device name in D.

LDg=<T,E", Q,§ A > for device d

P4 is the set of port names associated to device named d. {Pg} is the set of all

Pg. {W]) is the set of wires as usually defined in digital systems.

| . .
. c .
Wi deD dx Py A wire Wi is a subset of ports.
alli W; = nil A port appears only once in any wire.

For example, the digital system of Fig. 2.6 is composed of three devices and

two wires and is described as:

42

w2
ut u3
Wi

U2

Fig. 2.6 Typical digital system

DS=<D {LDg} {P4} {W} > where:
D= {Ul,U2, U3}
(LDg4} = {LDy), LDy3, LDys}

{N4} = {Pu1, Pu2, Pu3)

Pui ={1,2)
Pyz = {1}
Py3 = (1, 2}

(W} = {W, Wy}
W = {U1#2, U2#1, U3#l1}
W, = (Ul#1, U3#2)

Hierarchical Digital Systems (Level 5)
Although it is not critical for simulation, the formalism for hierarchical construct
is important for digital systems. A hierarchical digital system is:
HDS =< TR (DS} {LD} >
Where: TR is a tree
(DS} is a set of digital systems, the interior ports of TR

(LD} is a set of logic devices, the leaf ports of TR

43

2.7 Logic Simulator

2.7.1 Purpose of simulation
Without reviewing all theories about simulation, it is interesting to question
ourselves about its purpose in general and the usefulness of logic simulation in
particular. As discussed in [40], a model is supposed to help answer certain
questions about an object, see Fig. 2.7. For digital systems, the questioner is the
digital system designer, the object is a specific digital system and the model is the
abstracted object, the model of the digital system. The simulation is the action of
exercising a model. The usual questions asked by the designers are:
Does it meet the specification?
What is its behavior?
What is the critical path?
What is the worst case timing?
Does it work in the worst case condition?
Are the glitches harmful?
The usefulness of a model abstraction is formulated as follows:
Abs 1is a useful abstraction for answering the question Q7 about the object Obj if:
(1) Q7 is appliczble to Abs
The question is meaningful when applied to the model. For example,
questioning about the area of a circuit is not applicable to a logic model.
(1i) Abs is valid for Q7 with respect to Obj
The answer obtained using the model is applicable to the object itself,
i.e. Abs is a valid model of Ob;j.
(iii) space/time (Q?, Abs, Procedure) < spaceftime (Q?, Obj, Procedure)
It is cheaper to use the model than to use the object itself, which may

not een be available.

44

Designer
Q?

I

Design decision making system

I

Simuilation

M
o
d
8

| -Abs-

» Model
-World- n
Uncontrollable part g

(inputs, outputs,
specification, technology...)

Fig. 2.7 Simulation environment

In general, multiple objectives imply multiple models. For example, digital
systems can be modelled for area, power dissipation or functionality. The logic model
described here is a model for answering questions about functionality. Modeling and
simulation are part of the general decision making process, Fig. 2.7, where the

designer uses the model (Abs) to help him take design decisions about the object of

the design (ODbj).

45

2.7.2 Definition of a logic simulator

In Zeigler's nomenclature, a logic simulator is a discrete event system

(DEVS). A DEVS is a machine Mpg defined as follows:

Mps =<DS§, S, t3 >

Where: DS is the digital system.
S is a scheduler.
t, is the time advance function.

Actually a discrete event simulator is a simple machine. The time advance
function t; selects the next event to be simulated and determines the wire or the
signal on which it occurs. Then, the scheduler S calls all logic devices connected to the
wire. The algorithm for Mpg is:

algorithm SimulateDS(tpax)
repeat

ta (CurentTime,CurrentEvent,CurrentWire) ;

{Increases the CurrentTime, returns

the next event to be simulated
and the wire on which it occurs}

S(CurrentWire);

{calls each LD4q for which

3Ji such that a port d#i € CurrentWire)

until time>tpay
end SimulateDS

2.8 Conclusion

In this chapter, the objects of logic simulation have been formally defined: logic
events, logic signals, logic devices and logic simulation algorithms. The formal
framework presented in this chapter describes the link between information theory,
logic model and discrete time formalism. All of these aspects have been discussed in
the past, but to our knowledge they have never been integrated in a single formalism.
Even if most of the concepts discussed here are quite simple and generally well
known, having them formally defined should prove to be very useful for the

construction oi logic models.

Chapter 3

Time model: logic signal and
propagation delay

According to the conceptual model described in chapter 1, the construction of

logic models breaks down into signal modeling, propagation delay modeling and state
modeling. This chapter discusses the modeling of signals and propagation delays
while state modeling is the subject of chapter 5. The objective in modeling the signals
and the propagation delays is to accurately predict the occurrences of the logic events.
This chapter therefore studies the handling of time. The logic signals model the
transmission time between devices and the propagation delays model the processing

time within the devices.

3.1 Logic event set

As discussed in chapter 1, it seems that unless the analog signal is used, the
transmission of information between logic devices is not accurately modeled. The
logic event set must therefore contain the information to reconstruct the analog signal
and also the occurrences of the threshold crossings for all the associated input ports.
To do so, separate event definitions are required for input and output ports. Output
events describe the analog signal while input events are associated with the crossing
of the input thresholds. Independent of variability of threshelds, both input and output
event sets have the same universal logic abstraction:

E={0,1,U,Z)

The set includes two basic events (0 and 1), an undefined event (U) and a high
impedance event (Z). Even if the event labels might look similar to others in use,

they are defined rather differently.

47

3.1.1 Master output events

The output event set definition is based on piecewise linearization shown in

Fig. 3.1. The dotted signal v(t) is approximated by the signal v,(t).

Basic events (0 and 1)

The dotted signal v(t) in Fig. 3.1a is the analog signal we wish to model. The
event set is designed to minimize the error when reconstructing the analog signal
using the logic events, even in the range bounded by the two thresholds VL and
VihH. In order to obtain an accurate model of the analog signal and prevent problems
described in section 1.6.1, each signal will be characterized by transition times (ttLy
and ttyr) and logic levels (VL and Vy). The transition times are defined between V|
and Vy. These parameters should be computed to reduce the error in the line
segment approximation of the analog signal near threshold crossing. Normally, the
logic levels are VL. =0v and VyH=5v and are not related to the device thresholds.

The events are defined as the comers of the signal v,(t). More formally, if VE

is slightly above Vi, and VI-I is slightly below Vg, the master output eve.ts are

defined as follows:

1 01 0 1 0t 0 valt) vit)
VH i 'V Cod » e
VthH . . B\
V211 [Y AN INUpNpREPRPEPEE, W £ [P S
Vthi ' e :
» ')
V==t ———l L t
t1 t2 13 t5 t6t7 t8
a) master events i 1! 1
' 1 1 ! |
)) 1)
! I i“i | i
LW W 51617 18°

b) slave events

Fig. 3.1.

Basic

events (0 and 1)

a8
Levent: [(va(=V])and ¥,(t)>0)]

or [(V] <va(D)<Vp) and (¥,(0=0) and (v 4()>0))

0 event : [(v(t)=Vjp) and v 4(1)<0)]

or [(V] <va()<Vp) and (v4(H=0) and (V4(1)<0)]

According to the above predicates, an event occurs if the signal leaves the
lower level (t], t5) or the upper level (t2, t4, tg) or when a maximum or a minimum is
dvy

reached (3, ts, t7). In short, points on the signal vy(t) where T 0 are crucial. The

logic signal definition of section 2.5 stipulates that a logic signal consists of a
sequence of events and the logic signal in Fig. 3.1a is composed of the following
sequence of events:

(1, t1) (0, 2) (1, 13) (0, t4) (1, t5) (O, tg) (1, t7) (O, ty)

If we wish to reconstruct the approximated signal v,(t) we need the
interpolation function. Because of the network hypothesis about time invariant loads,
the interpolation function can be computed most of the time before logic simulation
once the load is known. As discussed in section 1. ' is a severe limitation but it
seems necessary to prevent the explicit use of Kirchhoff laws. In this case we
assume that the interpolation function consists of one or two line segments
characterized by VL, Vy, ttLH and tryr. The transition times are defined between
VL and Vy. For close events (t2-t3, t4-ts, ts-tg, tg-t7), the interpolation is a straight
line with a slope corresponding to the transition time. If the events are far apart
(t1-t2, t3-tg4, ty-tg, tg-...), the interpolation between two events uses two line
segments. The first line segment joins the first event to a logic level (Vi or V) with
a slope corresponding to ttLH or trHL. Then the second line segment is horizontal

and joins this point to the second event.

49

The line segment approximation and therefore the interpolation function used in
the analog signal reconstruction correspond to the approximation generally used by
designers [43-45). The use of simple transition times and voltage levels instead of a
more complex approximation is necessary to keep the definition as simple as possible
and to help standardize the event definition. Master events are designed to describe
the analog signal, therefore there is no problem in describing the signal of Fig. 1.6.
The sequence of events would be described using 2-valued logic as follow:

(1,0) (0, 1.2) (1, 1.7) (0, 5) (7, 1) (0, 7.5)

Undefined events (U)

Even if the basic events are sufficient to model a clean switching signal, the
construction of a complete logic model will require undefined events in order to handle
an analog signal of arbitrary shape. An undefined event indicates the beginning of an
envelope during which the signal can take any value as shown in Fig. 3.2a.

An undefined event is followed by either a 0 or a 1 event, indicating the end of

the envelope. Since the boundaries of the envelopes are basic events, the predicates

~Zp v(t)
va (1)
» t

13 t4

for defining the undefined events are the same.

VH

-

a) master events : : :
| i |
t 1

) Y/

1 t2' t3' t4'

b) slave events

Fig. 3.2 Undefined events (U)

50

High impedance events (Z)

The high impedance state allows more than one output to drive a line at
different time. This is frequently used to time-multiplex many signals on a single wire
or a group of wires called a bus. During simulation we must verify that only one
device drives the line at any time. A special event is required for this purpose. An
open event (Z) occurs when an output starts to behave like an open circuit. The exact
time is usually independent of the characteristic of the wire and depends on the driver.
This is why most manufacturers[51-53] define the occurrence of the open event as the
time at which the signal changes by 10%, when pulled high or low. This translates
into the following predicate:

Z event: [v(t)=0.5] {In a pull-up test circuit}

or fv(t)=4.5] {In a pull-down test circuit}

We propose a more general definition similar to the definition used for basic

events:
Z event: [(va()=V]) and (¥ 4()>0)] (In a pull-up test circuit)
or [(va(t)=V;{) and (Vv,4(t)<0)] {In a pull-down test circuit)
1 0
+5v Ve :
Vc
R
Vo >t
0 -L t1 t2
CL=0 A 0
3-states
device l-_- vo - i
1 ‘ A >t
13 t4

Fig. 3.3 High impedance events (Z)

51

The test circuit in Fig. 3.3 is similar to the circuits used by most manufacturers
and will not be discussed further. We simply suggest that the comer of the line
segment approximation of the signal should be used instead of the voltage thresholds
of).5v. and 4.5v. The comer is technology independent and indicates more precisely
when the output changes to high impedance. The difference between these two

definitions is illustrated in Fig. 3.4.

Typical signal Impedance
being pulled high begins to change

* /
. /
|
10% b e J 7,
{

Fig. 3.4 Comparing manufacturer specification (+) with
the proposed event definition (¢)
for for high impedance event (Z)

>

Fig. 3.5a illustrates a signal driven by three different devices. The sequence of

master events is: (1, t1) (0, t2) (Z, t3) (0, t3) (U, ts5) (Z, t5) (1, t7) (O, t3)

1 0o Z 0 U Z 1 0 % High impedance

|) 3 7/ //A Undefined
Vth -~ 3=~ ////////////// --------
: 7 7 1

I
I
) ., : : . ¥ |
t1 2 13 t4 15 té t7 18 !
.) I V4 -~ . ! V4
. IR o Y] 7 i
Driven by: device #1 device #2 " device #3 |
a) master events | : : |
: I
| 1 1 [| | I
1o I | i
7/ MR/
t A . A .

' t2' 13 4 t5
b) slave events

t7 8’

Fig. 3.5 Timed-multiplexed signal

During a simulation, driving conflict would be detected by directly comparing

the occurrences of events, for example t3 with t4 and tg with t7. Detecting bus conflict

using signal based events should be no more difficult than using threshold based

events.

3.1.2 Slave input events

Logic devices are threshold sensitive by hypothesis and by design and the
input slave events are used to accurately model the event arrivals at each input port.
Both input and output events are logically identical, their logical values in a Boolean
equation are the same.

Fig. 3.6 illustrates how master events are associated with output ports and

slave events with input ports. During simulation, the device U0 produces the master

— TTL device
Vthi Ut
X — CMOS device
b vth2| w2
‘ U3
N -
Vth3
X A
Mo S3 51 82
Vth2 / « Master event
\~ ___________
Vthior|-===meaa- ‘7/ + Slave event (scheduled)
vtha.?[TTTTT T
e >
t0 3 t1t2

Fig. 3.6 Master and slave events

53

event M0 and the slaves events S1, S2 and S3 are computed using the logic voltages
and the transition times of the signal and the input thresholds. The master events are
used by the simulator to compute the slave events and the simulator schedules the
simulation of each receiving device based on the slave events. Each device will be
simulated at the correct time, U3 first, then Ul and U2. Therefore, the problems
illustrated in Fig. 1.5 are automatically taken care of. The transmission of information
problem associated with inertial delay models is also teken care of. The smaller pulse
in Fig. 1.7 (a) will be seen by any devices with a smal] threshold and will not be seen
by the devices with a large threshold; therefore information is properly transmitted
from the output port to the input ports.

The master-slave event concept might be interpreted as a mere extension of
threshold based events using transition times and we agree that some simulators
have obtained similar results. We assert that it is more than an extension, the
transmission of information between devices must be modeled separately from the
logic device and the use of analog signal is essential to model fine timing details even

at logic level. The definitions for the slave events are:

Basic events (0 and 1)
The basic slave events are the classic textbook events defined as the crossing
of a threshold. More formally, they are defined as follow:
1 event : [(v(t)=VTh) and (v (1)>0)]
0 event: [(v(t)=VTh) and (v (1)<0)]
where: v (t) is the first derivate of v(t).
The signal in Fig. 3.1b shows the sequence of slave events corresponding to

the top signal.

54

Undefined events (U)
The undefined slave events (U) are computed like the basic slave events since
the undefined event envelope boundaries are basic events. The signal in Fig. 3.2b

shows the sequence of slave events corresponding to the top signal.

High impedance events (Z)

High impedance slave events (Z) are logically identical to undefined events
and are converted at the input port into undefined events. There is no high impedance
slave event. This is reasonable since the signal can take any value as soon as it
becomes high impedance. The occurrence of the slave undefined event is equal to the
corresponding master high impedance event. The signal in Fig. 3.5b shows the
sequence of slave events corresponding to the top signal. The sequence of slave
events is: (1, t1") (0, t2") (U, t3) (0, t4") (U, t5") (1, t39 (0, tg"). The undefined event at

tg was removed since it follows an undefined event.

3.2 Delay model

The sole purpose of a delay model is to delay a sequence of logic cvents in a
manner that corresponds to the actual behavior of the logic device. The delay model is
a one input and one output model. According to the conceptual model of section 1.7.2,
the analog circuit is partitioned such that the propagation delays are associated with
the output ports. Changes of state are simultaneous with the input events and the
delay model describes the delay between any change of state and a given output port.

Many types of propagation delay models are being used: constant delay (tp),
inertial delay [29-31, 47-50], transport delay [31, 48, 49] and spike delay [29]. Even
if these models work in practice, in a sense they do not mudel propagation delay since
some events are removed and not delayed. In addition to the propagation delay
model, transmission time and part of the logic state and the logic function are

combined into these adhoc models.

55

The question is therefore: what are the characteristics of an adequate
propagation delay model? In simple term, the propagation delay model should add a
delay to each event of the input logic signal without removing any and without
changing the order. In the proposed model, the removal of events or their replacement
by undefined events is considered a logic function and is not part of the delay model.
Theoretically, this means that the input sequence of events must be continuously
mapped into an output sequence of events. Said otherwise, continuity must be
preserved in the delay model.

It was demonstrated in section 1.5.3 that the constant delay model (tp)
preserves continuity and is therefore an adequate delay model. The problem begins
when tpLy # tpyL. A popular solution is to use an inertial delay model, but it was
also demonstrated in section 1.6.2 that the inertial delay model and other similar
models do not preserve continuity. We shall now descrite a propagation delay model
where tpH # tpyL Which preserve continuity.

The proposed delay model is illustrated in Fig. 3.7. It uses two parameters,
tpLy and tpyr which are the usual propagation delays for separate logic events. The
actual propagation delay used during simulation will be computed using tpLH and tpyL
corrected according to Fig. 3.7 if the events are close. If events are far apart, the
user's specified values tppy and tpyL are used. If the separation with the preceding
event is smaller than tg (Equ. 3.1), a correction is computed as follow. The largest
propagation delay is not corrected (Equ. 3.2) and the smallest propagation delay is
augmented according to Equ. 3.3. Notice that tpp g and tpyp are reversed if tpyy is
larger.

t8 = (tPLH - tPHL) /K Equ. 3.1

tPLHs = 'PLH Equ. 3.2

tpHLs = tPLH - K (CurrentTime - LastEventTime) Equ. 3.3

56

Simulated propagation delays _ tpLHs
A
tpLH
r tPHLs
t PHL qem—_————— - Y
1
t # Event

separation

Fig. 3.7 Continuity-preserving delay model

To maintain the chronological order, K must be smaller than 1. Fig. 3.8 shows
an example of a buffer using this delay model with K=0.5. Table 3.1 summarizes the
computations. Notice that no events are removed and that the chronological order is
preserved. This example should be sufficient to demonstrate that the proposed delay
model is a continuous mapping of the input sequence of events and therefore is an
adequate propagation delay model. Other models could be developed to more closely
match the actual behavior of logic devices, but this was not investigated. The model

proposed here should be adequate to guide in the development of other models.

=3 tyu =15
IN ouT
tpHL =1 tHL = 1.5
"] 1] L
1 i,
2 4 10 12 14 16 1820 22 24 26 28 30 32 34 36 38 40 42 44
ouT A /_ —_—
v \ /\ /\ v '*'# AIL.../-»
2 4 10 12 14 16 1820 22 24 26 28 30 32 34 36 38 40 42 44

Fig. 3.8 Example of a continuity-preserving delay model

57

Input event | Separation | Computed | Computed Putput event
value| time time tpLH tPHL time
1 2 - 3 5
0 7 5 1 8
1 9 2 3 12
0 13 4 1 14
1 18 5 3 21
0 20 2 2 22
1 26 6 3 29
0 27 1 2.5 29.5
1 28 1 3 31
0 29 1 2.5 31.5
1 30 1 3 33
0 36 6 1 37
1 37 1 3 40
0 38 1 2.5 40.5
1 39 1 3 42
0 39.5 0.5 2.75 42.25
1 40 0.5 3 43

Table 3.1 Propagation delay computations
As described in section 3.1, a logic signal might also include undefined events
(U) and high impedance events (Z). Undefined events use basic events (0 and 1) to
define envelopes, therefore the same delay model can be used. Fig. 3.9 shows a
propagation delay model for an output signal that includes high impedance events. As

for the delay model in Fig. 3.7, if events are separate, the user's defined value are

Simulated propagation delays tPLHs
tpLH r
tPHLs
tpzs
tPHL Je e =
t PZ e —m——_——— §
H Event
tg separation

Fig. 3.9 Continuity-preserving delay model

58

used (tpLH, tpHL and tpz) and as the separation between events gets smaller. a
correction similar to Eqn. 3.3 is computed.

The remaining question is: how do we model the physical phenomenon
associated with inertial delay? This phenomenon is modeled either using a logic state
and a logic function if it is due to an intemal capacitance or with the master-slave

event mechanism if it is due to external wire capacitance.

3.3 Simulation algorithms

The logic models discussed here will be primarily used within a discrete event
simulator. The formalism for discrete event simulation was described in section 2.7.
In this section, the simulation algorithms wi"! be reviewed in light of the new master
slave event concept. As discussed earlier, event driven simulation and algorithms for
it are based on causality, and preserving timing relationships is one of our main
objectives. In an event driven simulator, events are separated into past events and
predicted events. The simulation begins by selecting the next event from the
predicted events and simulating all devices that receive this event. The simulation of
a device consists in computing the new component state and the predicted output
events based on the current state and the current event, as illustrated in Fig. 3.10.

The current event is then moved in the past event list and the simulation
continues with the next event. If causality is preserved, the current event will only
affect predicted events. Otherwise past events might be changed which would require
backtracking the simulation in time up to the last unmodified event. Backtrucking is
expensive since it requires restoring the state of all components, and it is best to
avoid it.

Data structures like the event list and algorithms used in the simulator are
well known [55] and will not be described. In the prototype simulator, a simple time

ordered list of events was used. More efficient algorithms could be used, but our

59

w1 Logic
Device (LD) > P
i
State at
current time
0 Y
: >
w, &
p A
P t
Past events Current event Predicted events

Fig. 3.10 Typical input and output signals

objective was to demonstrate that the proposed model is working, not to improve
simulation efficiency. Therefore, only the changes in the simulation algorithms due to
the master slave event concept will be presented. The most significant changs makes
the simulator event list a list of slave events. The discrete event simulator processes
the event list as follows:

algorithm simulate(SimulationTime)
begin
while CurrentTime<SimulationTime
CurrentEvent =NextEvent (SimulatorEventList);
Set!CurrentTime);
{Simulate the device associated
with the current slave event}
case DeviceType of

gate: (The device is a gate)
begin
Depending on the CurrentEvent, the port on which
it occurs, the separation time with previous

60

events and the device state do
begin
PerformChangeOfState;
GenerateOutputEvents;
end
end

end (while)

end (simulate)
The procedure GenerateOutputEvents will produce the output events if
necessary and will call the following procedure to insert the master event into the
desired signal, compute the slave events and insert them into the simulator event list:

algorithm Insert (MasterEvent,OutputSignal)
begin
Insert the MasterEvent 1in the list of master events of
the OutputSignal.
for all input ports connected to the OutputSignal do
begin
Compute{SlaveEvent);
Insert (SlaveEvent,SimulatorEventList);
end
end (Insert)

The procedure Insert (SlaveEvent, SimulatorEventList) is used to insert
the new event at the appropriate place in the list so the function
NextEvent (SimulatorEventList) can easily obtain the next event to simulate.
Except for the use of slave events, these algorithms are similar to any event driven

simulator algorithms and will not be discussed further.

3.4 Timing specification using master slave events

Even though logic device modeling is the subject of the next chapter, it is
appropriate now to discuss the timing specification of simple devices to illustrate how
the concept of master slave event can be applied to commercial devices. The
specification of a logic device consists of input ports, output ports, states, state
transition function, output function and timing specification. The timing specification

includes timing constraints and propagation delays. In ti.s section, we will give

61

examples of timing constraints and propagation delays based on the proposed event
set. Discrete CMOS gates and flip-flops from Motorola [44] will be used because
their published specifications are reasonably complete. This should demonstrate that
the master-slave event concept is practical and in effect leads to simpler device

specifications.

3.4.1 Hardware linker and Electrical Rule Checking (ERC)

In this thesis, we have made a fundamental assumption about time invariant
loads. As it will be shown with examples in this section, propagation delays are not
load independent but once the load is known, they become time invariant. The process
of computing the timing specifications for a given load is called hardware linking.
Hardware linking is a simple technique used by designers and well documented in
data books [43-45]. This process is straightforward and the logic model examples
given in the following sections will illustrated it. While linking logic elements, such
constraints as current drive capability and limits on transition times can also be

verified. Hardware linking is also refered to as Electrical Rule Checking (ERC).

3.4.2 Timing specification of a gate
The timing specification of the CMOS 2-input nand gate (MC14011B) consists

of propagation delays and transition times. The following specifications and typical

values have been extracted from the data sheet. Cp is the load capacitance.
tTLHm = tTHLm = (1.35 nsec/pF) CL + 33 nsec
Typ: 100 nsec
tPLHm = tPHLm = (0.90 nsec/pF) Cr + 80 nsec
Typ: 125 nsec
Motorola specifies timing constraints and propagation delays between 50%
points and transition times between 10% and 90% points. Assuming that thresholds

are effectively at 50%, simple arithmetic can be used to translate the manufacturer's

62

IN
A
50%
IN
— ouT : |
o 1
1= CL tpHL L tpL | =
50pF ouT A ""h' PLH ,q_..l.
T - -
- Wi
Input transition = 20 nsec 50% ' WA
Tm= 25°C) : :
e Master event : N H : \
-+ Slave event oy ¢
tTHL —pi @ tTLH —y g—

Fig. 3.11 Timing specification of the MC14011B

specifications into signal based event specifications. The resulting definitions and test

conditions are given in Fig. 3.11 and the new timing specifications are:

t
LK = tTHL = T(‘ig“‘ = (1.69 nsec/pF) CL + 41 nsec

Typ: 125 nsec

1t
tPLH = tPHL = PLHm - 5 —5g = (0.05 nsec/pF) CL + 47 nsec

Typ: 50 nsec

Because the propagation delay for signal based events is measured at the
beginning of the transition time instead of at 50%, the dependence on load capacitance
is almost reduced to zero (0.05 nsec/pF). Using master-slave events is therefore an

improvement.

3.4.3 Timing specification of a flip-flop

The timing specification of the CMOS D flip-flop (MC14013B) consists of
propagation delays, transition times, setup time, hold time, clock high time and clock
low time. The following specifications and typical values have been extracted from the
data sheet:

tTLHm = (3.0 nsec/pF) CL, + 30 nsec

Typ: 180 nsec

tTHLm = (1.5 nsec/pF) CL + 25 nsec
Typ: 100 nsec

tpLHm = tPHLm = (1.7 nsec/pF) Cp + 90 nsec
Typ: 175 nsec

tsym = 20 nsec

tyDm = 20 nsec

tHm = 125 nsec

tLm = 125 nsec

63

The resulting definitions and test conditions are given in Fig. 3.12 and the new

timing specifications are:

FILH = %ﬂl = (3.75 nsec/pF) CL + 37.5 nsec

Typ: 180 nsec

t
tTHL = J(‘;—‘;-"- = (1.88 nsec/pF) CrL + 31.3 nsec

Typ: 100 nsec
ITLHmHTHLm

1 1
tPLH = tPHL =PLHm - 7 3§ 3 = (0.3 nsec/pF) CL + 73 nsec

—F

+

Master evert
Slave evant le—tH

tL

Fig. 3.12 Timing specification of the MC14013B

50%
D Q 1 1
L c ! !
50pF | - >
! tsu H—uq—bl tHD
50%
Input rransition = 20 nsec : | :
T - 25°C L {]
,l " r—P»

64

Typ: 175 nsec
tsu =tsum = 20 nsec
tHD = tHDm = 20 nsec
tH = tHm = 125 nsec

tL =tLm = 125 nsec

Again, the propagation delay dependence of the load is greatly reduced. The

timing constraints tsy, typ, tg and t; are defined between input slave cvents as

required for signal based events.

3.4.4 Timing specification of a 3-state buffer
The timing specification of the CMOS 3-state buffer (MC14503B) consists of a
propagation delay and a transition time for the data input and propagation delays for
the control input. The following specifications and typical values have been extracted
from the data shee::
tTLHm = tTHLm = (0.5 nsec/pF) Cr + 20 nsec
Typ: 45 nsec
tPLHm = tpHLm = (0.3 nsec/pF) Cp + 50 nsec
Typ: 75 nsec
tpHzm= 75 nsec

tpLzm= 80 nsec

tpZHm= tpZLm = 45 nsec
The resulting definitions and test conditions are given on Fig. 3.13 and the new
timing specifications are:

t
tTLH = UTHL = T(’igm = (0.63 nsec/pF) CL + 25 nsec

Typ: 56 nsec

1t
tPLH = tPHL = {PLHm - 3 —T(-)[:-g-{ﬂ = (-0.01 nsec/pF) Cr. + 38 nsec

IN

65

+5v C
Cc
RL
1k ,
ouT !
. ; —>
oL t tpzl la—>

'j':' sopF OUT

input transition = 20 nsec
T = 25°C

¢ Master event
+ Slave event !

Fig. 3.13 Timing specification of the MCI14503B

E- ——

Typ: 38 nsec

0.1
tPHZ= tPHZm" g '1LHm = 68 nsec

0.1
tPLZ= tPLZm- g {THLm = 73 nsec

tpzH= tpZL = tpZHm = 45 nsec

Here, the propagation delay is virtually independent of the load. The
definitions for high impedance events are slightly different with the proposed
definition, and 1/8 of the rise time should be removed to compensate for the time it

takes to reach 0.5v or 4.5v.

3.5 Conclusion

In this chapter, a time model was developed for logic devices. The basis of the
model is the new master-slave event definition. This event definition provides a
simple and natural means of describing the logic signals since it is related to the
analog signal. For instance, the event definition is easily applied to commercial
devices. One key aspect is to separate the input events from the output events

leading to two time models. The master-slave event concept models the

66

logic devices and a new propagation delay model is proposed to describe the
processing time within the device. This new propagation delay model preserves
continuity and does not remove any events nor changes the sequence of events being
delayed. We claim that the sole purpose of a propagation delay model should be to
delay events. In this sense, inertial delay models and similar models are not true
propagation delay models.

This carefully formulated time model should be useful to anyone working on the
specification, design and verification of digital systems. The 30 year old fashion of
specifying logic events using threshold crossing is not adequate for modern CAD
systems and the proposed event definition could replace it. Although the capability to
reconstruct analog signals and the use of individual thresholds are more complicated
to process, they provide a way to neatly interconnect any logic families with analog
devices. This is an important advantage in modern CAD systems and in a rapidly
changing technology. If widely accepted and used, the proposed event definition would
improve the compatibility of the specification of logic devices and systems between

the designers and the various simulators and CAD tools.

Chapter 4

State model:
Continuous Time Automaton

As mentioned by M. R. Lightner [33] some time ago, important theoretical
work was still required to formalize the hypothesis and axioms of the circuit to logic
abstraction. About logic signals he says: "The transition from continuous signals to
discrete signals is obviously of key importance in producing a viable model. It is
surprising that such a small amount of work has been done in examining this
transition." About digital elements he continues: "Although many people have
constructed discrete models, there is very little work that has been done in providing a
formal framework in which to construct discrete models." And finally about
interconnection models, he states: "To the best of the author's knowledge, no one has
carried out a systematic study of alternate impedance assumptions to develop a
theoretical understanding of the problem. ... In summary, for the simplest case the
interconnection of discrete elements is well understood. However, for the more
complex cases that arise from modern technology careful theoretical development of
solutions has not taken place and reasonable, but ad hoc, approaches are presently
being used.”

We believe the approach presented in the previous chapters provides an
answer to these remarks. The proposed formal framework clearly describes the
abstraction of analog circuits into logic devices and logic models, the relation between
analog signals and logic signals and the impedance assumptions that characterize the
interconnection of logic devices. The next step and the object of this chapter is to

study the abstraction of continuous change of state into a timed state sequence.

68

4.1 Introduction

The construction rules leading to the conceptual mode! of Fig. 1.10 allow us to
separate the modeling of time from the processing of the timing constraints and the
logic function. In chapter 3, we have established how time is modeled, the master-
slave events concept models the transmission time between devices while the
propagation delay models the processing time. The remaining problem is to determine
how the logic function and the timing constraints should be used to compute the neat

state and the output events.

The premise: zero processing time

Since the logic model must meet the state model rule, simultancous input
events generate simultaneous changes of state and also simultaneous changes on the
zero delay outputs. The zero delay outputs are the niodeled output before the
propagation delay is applied (see Fig. 1.10). Therefore the state model we are looking
for is punctual in time and does not take any simulation time. This is represented by a

dot (*) in Fig. 1.10.

The problem: modeling the device state

In order to predict accurately the behavior of a device, each device model in the
simulator must remember everything relevant that has happened. In logic system this
means remembering the effect of past events. In Fig 4.1, remembering whatever
significant has happened for the signal A is quite easy as nothing happened. For
signals B and C, it would be advisable to have a few state variables in the device logic
model to remember the necessary past. But for signal D, it might be impossible or
impractical to remember the necessary information. This is the problem associated

with continuous change of state.

69

Current time

K i

. A : i
. A s r_I: :
oA _‘V///////%: .

:1— Infinite number of events

Fig. 4.1 Examples of input signals in event driven simulation

An infinite number of input events in a small interval of time could drive the
device into an infinite number of changes of state. Even if an analog model with a
theoretically infinite number of changes of state could be used, a logic device as a
discrete device is more efficiently modeled using a timed state sequence.* ‘fThe
problem is to relate the timed state sequence with the continuous sequence of input
events.

The answer is simple and has been used by designers ror decades: add timing
constraints to restrict the number of input sequences of events to those that the
device has been designed to process. For all other subsequences, the state and the
outputs of the device are simply assumed to be undefined. Basically, the set of all
sequences of input events on a finite interval, is divided into a subset of sequences
having a finite number of events in that interval leading to normal operation and a
subset of sequences that might have an infinite number of events leading to abnormal

operation. Associating all abnormal sequences with an undefined state is the key to

* Refer to the definitions given in scction 1.2,

70

generating a timed statz sequence. The infinite number of events is defined with
respect with the highest speed of operation of the device. For example, a sequence of
input events changing at 100Mhz and driving a device designed to operate at 10Mhz
is considered an infinite number of events on a finite interval. During the simulation
time interval, the finite number of events will drive the device state through a finite
number of state changes, called a timed state sequence, and the infinite number of
events will also drive the device into a finite number of state changes since the device
state will remain undefined. Therefore a finite number of states is sufficient and a
finite state machine can be used to transform continuous change of state into a timed

state sequence.

Timing violation , undefined staic and undefined events

Input sequences of events are classified as acceptable or unacceptable
depending on whether they satisfy timing constraints or not. A timing violation or a
safety violation is defined as a timing condition on the sequence of input events that
leads to undefined or unsafe behavior, for example not meeting set-up time. Since the
undefined state is required to obtain a timed state sequence, it is therefore an

essential part of all logic models and processing of undefined events is mandatory.

Objective
In summary, the objective is to develop a systematic mechanism:
« to process the continuous sequence of logic input events,
» to transform the continuous change of state into a timed state sequence,
« to integrate the processing of timing constraints with the logic function,
« to process undefined states and undefined events and
« to produce zero delay output events,

This mechanism is called a Continuous Time Automaton (CTA).

71

4.2 Current logic modeling techniques

Before we begin our discussion about the construction of logic models, we will
examine two approaches closest to CTA: the logic simulator SAMSON [30] and real
time system model based on timed automata [55]. In chapter 1, we have reviewed
some of the problems associated with current modeling techniques. We shall now
study the basic principles causing these problems. These two representative
approaches will be analyzed w'th respect to the following objectives:

« modeling the transmission of information between devices,

» modeling the processing time in the devices (propagation delay) and

» modeling the transformation of continuous change of state into a timed state

sequence.

Logic simulator, SAMSON

SAMSON is one of a few logic simulators that was developed with some
formalism. It uses both timing constraints on logic devices (like set-up time and hold
time) and timing constraints on the logic signals (muitiple thresholds describing
glitches and hazards) to perform the discretization of time. Logic model construction
is usually a top-down process in which fine timing details are added to the logic
function. In SAMSON, a bottom-up approach where precise abstraction steps are
applied to simplify the circuit model and to construct the logic model is used.
Unfortunately, t.is bottom-up approach was not sufficient and resulted in event
definitions, logic models and simulation algorithms similar to all other logic
simulators [33]. To correct this problem ad hoc techniques such as inertial delay have
been used. This has led to peculiar models such as the model of a gate in
Fig. 4.2 [30].

This model does not follow a state space approach, the state is not well

identified and the state transition and the output functions are not clearly defined. In

Input Qutput
avents events
Logic Null event Race Delay Inertial
— ¥ function [P filter filter ! model » fiter >

Fig. 4.2 Classical logic model for a gate

addition, the transition of continuous change of state into a timed state sequence is
not performed since there is no undefined state. This model mixes the logic function,
the delay model and the transmission of information. We believe a state space model

where each aspect is separately medeled should be used.

Real time systems and Timed Automaton (TA)

A timed automaton is a state machine whose change of state is also controlled
by time. This is accomplished using artificial signals called clocks which are
automatically and simultaneously increased to simulate the passage of time. These
clocks are reset and tested as required in the automaton to implement timing
constraints and propagation delays. For example, on exiting a given state, the clock x
is set to zero and in some other state the automaton waits until x is 20. TA are used
to prove timing properties such as the safety of a control system and also to model
logic devices.

Timed automata are designed to parse "timed languages”. A timed language is
a sequence of events where each event consists of a label taken from an alphabet and
an associated real time value. A TA has an initial state and an accept state indicating
that a particular instance of the timed language is accepted. More details on TA can

be found in [55]). We will now describe how TA can be used in simulation.

73

The TA of a buffer is shown in Fig. 4.3. This TA was modified for simulation
purpose. Initial and accept states have been removed since a simulation can start and
end in any state. The TA for the buffer operates as follow. Suppose the initial state
is S1. The buffer remains in state S1 until A is set, at which time the clock X is reset.
While in state S2, the clock increases automatically and when it equals 3, B is set and

the state changes to S3. The TA state changes from S3 to S4 then to S1 in a similar

fashion if the input returns to zero. This TA models a buffer with tpp y=3 and tpyy_=1.

tpLy =3
tpHL =1

Fig. 4.3 Timed Automaton for a buffer

A TA is a general purpose tool and the user is left with the problem of
designing the automaton using clocks to detect timing violation such as not meeting a
set-up time and to model the propagation delays. The conceptual model of a TA is
shown in Fig. 4.4. This model combines the logic function and the logic state with the
processing of timing and propagation delays. This makes TA difficult to use if fine

timing details need be modeled. Separating the modeling of time (propagation delay

74

Input - TA Output
logic with delay IOQIg
signals signals

Fig. 4.4 Conceptual model of a Timed Automaton

and transmission time) from the behavior as per the conceptual model of Fig. 1.10
should make the construction of CTA for logic devices simpler. TAs are good at
parsing timed languages, but are difficult to use to model logic devices because it
assumes that all variables have been synchronized with a hypothetical high speed
clock. Problems associated with continuity like simultaneity of events, metastability
or coherence in the individual bits of a state variable® are not explicitly considered.
Glitches and hazards associated with a continuous sequence of input events are not
considered either.

For example, the TA for the buffer in Fig. 4.3 does not model undefined events,
close events or timing violation. It only models the propagation delay and it is already
complex for a simple buffer. A TA does not distinguish normal sequences from
abnormal sequences, the user is left with the complicate task of doing everything
simultaneously: process the continuous sequence of input events including undefined
events, process the timing constraints using undefined states including error recovery,

produce a timed state sequence, integrate the logic function and model the propagation

* See appendix A.

75

delay. Even if it might be possible to construct a TA for a buffer, we believe that a
simpler mechanism will be more appropriate. The CTA is a simplified TA with strict

construction rules.

4.3 Overview of a CTA

A CTA is an event driven state machine. Each event arriving at any input port
of a given logic device is processed by the CTA. In a TA, the machine remains in the
same state until the corresponding Boolean expression becomes false. The machine
then changes to the state with a true Boolean expression. A change in a Boolean
expression is initiated by an event and in CTA, the event terminology is preferred.

A typical CTA is shown in Fig. 4.5. The change of state is initiated by any
event arriving at one of the device input ports. Then a Boolean expression (A, B, C or

D) is used to decide on the next state and on the action to take (W, X, Y, Z).

— ——A/W

s” TS

A Y

"
1

“BIX_ !

-

D/ Sscry L’

- -

-
Dl

Fig. 4.5 Typical state transitions

A Continuous Time Automaton (CTA) differs from a TA in many respects:

« it does not process propagation delay, it only processes timing constraints,

« except for a wait statement, it does not use explicit clocks,

« it must systematically process undefined state and events,

« it must include an error recovery mechanism, an error state is the result of a

timing violation.

76

« it does not include the logic function except us an argument and
« it must transform the continuous change of state into a timed state sequence.

A CTA is designed to work at a lower level than a TA.

4.4 Definitions

Fig. 4.6 is an expanded view of the conceptual model of Fig. 1.10. A CTA
based model consists of input ports, output ports, a state Q, a logic function (state
transition function and output function), device model arguments and simulator
arguments. Here are some definitions associated with logic models:

« Port class: Ports are classified according to their function in the finite state

machine. For example, a flip-flop has input ports, output ports and a clock.

CTA. Timing constraints and propagation delays are specified between
classes of ports.

« State: The state includes the CTA state, the logic state, the predicted events
and the time related state variables. The logic state is user defined and
captures steady state effects. The time related state variables are built in
the simulator to capture the recent past and include the occurrence of the
last event for each class of events. Notice that the state variables are not
necessarily discrete values (N); for example the occurrences of last events
for each class of ports are continuous state variables (R).

« State transition and output functions: The state transition and output functions
include a user defined logic function and the CTA itscelf. The state machine
takes the timing constraints and the user defined logic function to decide on
the next state. Other time related state variables, like the occurrence of

the last event in each class, might also be updated.

77

Simulator Device model Simulator
arguments arguments arguments
Input Timing Logic state Propagation Transition times

thresholds constraints and fogic function delays and logic levels

1 L ¥ | B I

] i I ' |

) I '] I

i i I) i

i i] ! !

| * ' i

] ' i

]] !

]) I

|] |

] | ‘

]

\J ¥

inputs ports State Output
transition function
function ()

(8)

'y

Fig. 4.6 CTA based logic model impiementation

Delay
modael

Output ports

»

¢ Delay model: The delay model takes the propagation delay arguments and

computes the occurrences of the output events.

Because the change of

state is a timed state sequence, the delay model is based on a finite set of

arguments.

» Device arguments: The device model uses the timing constraints, the

propagation delays, the logic states and the logic function which includes

the state transition function and the output function as arguments. Timing

constraints are associated with the state transition function and are

specified between input slave events.

The propagation delays are

78

associated with the delay model and are specified from input slave events
to output master events.

» Simulator arguments: The logic simulator that manages the events takes the
input thresholds, the output transition times and the output logic levels as
arguments to model the transmission of information between logic devices.
Simulation can be speeded up by using default values and tolerances can be
used on each parameters for worst case simulation. The definition of these
parameters is based on the line segment approximation of the analog signal
shown in Fig. 3.1 and examples are given in section 3.4.

As shown in Fig. 4.5, a CTA is a directed graph made of states and state
transitions. The terms associated with CTAs are defined in this section.

« CTA state: This is the basic state of a logic device or a discrete device. The
CTA state represents the current condition as required to model the
behavior. Each CTA state is given a specific name.

» CTA state transition: These are the arcs describing the possible changes of
state. There are two types of state transitions. The first one is initiated by
input events and the second by wait events. In the first type, the boolean
expressions in Fig. 4.5 (A, B, C and D) have been divided in two
expressions. The result of evaluating these expressions are anded to
control the state transition. In the fist type of state transition, a three part
label is attached to each arc (X:Y/Z). The first part (X) is the Boolean
expression controlling the state transition. It might use the user defined
logic function and is a function of:

- the class of the port carrying the current event,
- the current values at the input ports and
- the current logic state.

The second part (Y) is a Boolean expression describing a test on a timing

79

constraint and also controlling the state transition. For example, tgy would
indicate that the set-up timing constraint is met and FU- would indicate a
timing violation. The third part (Z) describes the function to perform with
this state transition. It might describe a change of logic state or an output
event.

» Wait state transition® This is the special state transition that controls the state
duration from which the transition originates. Wait 10 would mean that the
machine would enter the state and remain in this state for at most 10 units
of time. There is at most one wait state transition for each state.

« State transition time: It corresponds to the time at which the state transition
occurs. Since the change of state is simultaneous with the input event or
the wait event, then the state transition time will be equal to the occurrence
of the input event causing the change of state.

« State duration: The state duration is the time during which the machine is in a
given CTA state. It is the difference between the state transition times of
the last incoming state transition and of the next outgoing state transition.

» Constrained state transition: Given a current state resulting from an incoming
state transition at tj. A constrained state transition at tp is a state
transition that causes the state duration (t3 - t}) to be lower bounded (not
Zero).

« Unconstrained state transition: Given a current state resulting from an incoming
state transition at t;. A constrained state transition at tp is a state
transition that might cause a zero state duration (tp - t} = 0).

e Cycle: A cycle is any close path in the CTA. A cycle is described with a
sequence of state transitions starting in a given state and ending in the

same state.

80

» Constrained cycle: In a constrained cycle, the sequence of state transitions
contains at least one constrained state transition.

» Unconstrained cycle: In an unconstrained cycle, the sequence of state transitions
consists of unconstrained state transitions only.

» Constrained sequence of events or timed sequence of events: A constrained
sequence of events is a sequence of events having a finite number of events
in a finite interval of time. Finite should be interpreted with respect with
the operation of the circuit being modeled, as a sequence of events leading
to normal operation.

« Unconstrained sequence of events or continuous sequence of events: An
unconstrained sequence of events is a sequence of events having an infinite
number of events in a finite interval of time. Infinite should be interpreted
with respect with the operation the circuit being modeled, as a large number

of events leading to abnormal operation.

4.5 Examples of CTAs

In this section, the operation of CTA based models and most features of the
CTA will be illustrated with examples. The next section will describe how to

construct a complete CTA.

4.5.1 The wait state transition: a clock

This first example will illustrate the basic operation and the use of a wait state
transition. As shown in Fig. 4.7a, a clock is a simple device with one output. The
simulator uses a specification for each part. The language HDIL (Hardware
Description and Integration Language) described in Appendix B is used and the

specification of a typical clock would look like:

circuit CLK1Mh
interface {Note this is a comment)
X: bit (output 0.5n 0.5an O 5)

81

(tTLH, tTHL. VL. VHI
(delay 1n); {tp)
implementation clock {(CTA to be used)
(timing 0.5u 0.5u) {CTA timing constraints)

(tr, ty) {Clock low and high time)
end CLK1Mh

The language provides the support to enter the required arguments used by the
simulator and the CTA itself. The first part (interface) lists the interface ports,
the simulator arguments and the delay model with its arguments. There is one output
(X) of type bit. The corresponding output waveform is controlled by tTLH. tThL. VL
and Vy. The delay to be used between the internal change of state and the output is
also specified. Even if there are no inputs, the conceptual model requires a delay for
each output The second part (implementation) indicates the CTA to be used
(gate) and its arguments. Two timing arguments are used to control the clock

frequency (tL and ty). A typical clock signal is shown in Fig. 4.7b.

X &
\ / 1
H [}
x |— i —
! P-plag t > 'y »l
(a) Symbol (b) Typical output signal
waitt | /1
waittly /0

(c) Continuous Time Automaton

Fig. 4.7 Model of a clock

82

The CTA of Fig. 4.7c models the behavior of a clock. It consists of two states
named zero and one and two state transitions. Each state corresponds to the state of
the output signal. The CTA starts in a state determined during initialization. The
label associated with the state transitions indicates how much time will be spent in
each state (wait tp or wait ty) and the new value of the output. In this example, the
machine leaves the state zero after t; and the state one after ty. The output is set to
0 (.../0) when leaving state one and to 1 (.../1) when leaving state zero. This machine
obviously produces a timed state sequence since there is a finite number of changes of
state for any interval of time. There is only a constrained cycle in this CTA.

The CTA based model is designed to be easily used in an event driven logic
simulator. In such an environment, the device model or the procedure that implements
it is called for each new input event or when the wait time has elapsed. This diagram
is easily translated into the following procedure:

algorithm SimulateClock
begin {This procedure can only be called
to process a wait event
since there are no inputs)
case CTAstate of
zero: CTAstate=one;
insert(.i,0utput);
one: CTAstate=zero;
insert (0, output) ;
end.

The procedure insert (value, signal) inserts a master event of value on the

signal using the propagation delay model and computes the slave events.

4.5.2 The logic function as an argument: a pattern generator (1)

The following example is an extension of the clock CTA. It illustrates how a
logic function is used as an argument in a CTA. For simplicity, the pattern generator
shown in Fig. 4.8a has only one output. The specification of a typical pattern

generator looks like:

State wait t p Afunction

(a) Symbol (b) Continuous Time Automaton

Fig. 4.8 Model of a pattern generator

circuit PatGen
interface
X: bit (output 0.5n 0.5n O 5)
(tTLH. tTHL. VL. VH!
{(delay 1n);{tp}
implementation Pattern (CTA to be used)

(timing 5u) {Timing constraints)
(tp) (Period}
(functicn

(out X (not X)))
end PatGen

Notice how the logic function is specified separately from the timing
specification. When using CTA, there is no need to integrate the timing specification
into the logic function: these are two separate arguments. This pattern generator
simply produces a clock of 100 kHz.

As shown in Fig. 4.8b, the corresponding CTA is very simple and has only one
state and one state transition. On each state transition, the function is used to
compute the new logic state and the new output. This single output pattern generator
can be easily expanded to multiple outputs by adding output ports and by modifying

the function.

4.5.3 The state variables: a pattern generator (2)
This example illustrates the use of a simple state variable. When evaluating
the logic function, the current signal values are used. Therefore, in the pattern

generator circuit, if the propagation delay is larger than the period, the current value of

84

the signal X might remain 1 for more than one period. A state variable can be used to
solve the problem. The specification of such a pattern generator looks like:

circult PatGen2
interface
X: bit (output 0.5n 0.5n O 5)
(tTLH, tTHL. VL. VH]
(delay 20n);(tp)
variable

A: bit (IFV 0); (IFV: Initial Forced Value}
implementation Pattern (CTA to be used)
(timing 5Sn) (Timing constraints)
{tp) {(Period)
(function {Logic function}
(set A (not A))
(out X A))

end PatGen2

Because of the conceptual model assumed, there is no delay between the
changes of CTA state and the change in the logic state variable. The variable changes
as soon as the set function is executed. The operation of the CTA is the same as for
the pattern generator described in section 4.5.2. The variable A will change on each

state transition and the output X will equal the variable A delayed by 20n.

4.5.4 The timing constraints and the undefined states: a counter

The preceding examples do not have inputs, therefore no input timing
constraints are required. This example illustrates the use of timing constraints and
the need of a undefined states. The CTA for the counter is similar to the CTA of a
flip-flop. For simplicity, the processing of undefined input events is omitted and will

be described in section 4.6. The specification of the counter shown in Fig. 4.9a is:

circult CounterDiv3
interface
C: bit {clock 2.5); {The signal C is a bit of class
VTh clock. It therefore has an
input threshold.}
Q: word2 (output 0.5n 0.5n O 5)
(tTLH., tTHL. VL. VH)
{(delay 1n);{tp}
varilable
A: word2 (IFV 0); (IFV: Initial Porced Value}
implementation SSSC (CTA to be used:
Simple Synchronous Sequential Circuit
without processing of undefined

clock events}
(timing 5n Sn) {Timing constraints)
{ty ty)
(function {Logic function}
(case A
0 (set A 1)
1 (set A 2)
2 (set A 0)
)
(out Q A)
)
end CounterDiv3

This is a two bit divide-by-three counter. There are two outputs (Q.0 and
Q.1), a clock (C) and a two bit state variable (A). According to the definition of port

class in section 4.4, there are two classes of ports: clock and output. The timing

o]
- > C Q.o0p— + -|l- L
1]‘ j :‘
State Qip— - tL ’h tH »
(a) Symbol (b) Input timing constraints

c1nLnd&§;:—-_—_——__""“~\\\\

(c) Continuous Time Automaton
Simple Synchronous Sequential Circuit.(SSSC)
without undefined events processing

Fig. 4.9 Model of a counter

86

constraints t_ and ty are shown in Fig. 4.9b and limit the operating frequency to
100MHz.

The CTA of Fig. 4.9c consists of four states. Two states (clockO and clockl)
are used for normal operation. The state names simply indicate the level of the clock
signal. A clock signal meeting the timing constraints will make the CTA cycle
between states clockO and clockl. When in state clockO, if the clock rises and the
timing constraints t is met, the logic function is executed (Cl:ti/function). Then, if
the clock falls and the timing constraint ty is met, the CTA state changes to clock0
and nothing else happens (CO:tH/-). A "-" indicates no change. This is a constrained
cycle since it is made of two constrained state transitions. A constrained state

transition is indicated by a solid arc. If a timing constraint is not met, the CTA state

changes to one of the undefined state clockOirregular or clocklirregular (CO:T}T/U or
Cl:_tf/U). When in these states, the logic state variables and the outputs are all
made undefined {.../U). If the clock signal continues to be too fast, the machine cycles
between the two undefined states (CO:-t—H—/- and CO:-E{"/-). These are two
unconstrained state transitions indicated by a dotted arrow. When cycling between
the two undefined states, the logic state does not change (.../-). Even if this cycle is
unconstrained, because the logic state does not change, the continuous change of

state is transformed into a timed state sequence. The only way to return to normal

operation is to meet the timing constraints (CO:ty/- or Cl:ty /function).

4.5.5 Undefined input logic events: a gate

In this section, the CTA for a gate is described. This complete example will be
used to illustrate how the CTA processes sequences of input events including
undefined events. A gate is a combinational circuit with one or more inputs and one
output (see Fig. 4.10a). A gate behaves properly, meaning that no hazard or glitch is

produced on the output for separate input events. According to the conceptual model

87

of Fig. 1.10, the gate combines the input events into one sequence of output events.
In the case of a gate, the logic function argument is used to combine the events and
then the resulting signal drives the CTA. The specification of a typical two inputs
nand gate looks like:
clrcuit nand2
interface

A B:bit (input +3,0);

{(VThl
X: bit (output +0.5n +0.5n +0 +5)

{€rLhs trun, Voo Vi)
(delay2 +2n +3n);{tpuy, tpuw)
implementation gate (CTA to be used)
(timing +0.1n) {(Input timing constraints}
(functioit?iut X (nand A B))) {Logic function)

end nand2

For a gate, there are two classes of ports: input and output. Each input port
has a threshold (V1) and each output port has two delay model arguments (tpppy and
tpHL) and four waveform related arguments (tTLH, tTHL. VL and Vyj). The delay
model (delay2) is a continuity-preserving delay model as described in section 3.2.
The CTA gate requires two arguments: an input *iming constraint, the minimum
separation time (tg), and a logic function.

What distinguishes the CTAs is the set of timing constraints. As discussed
previously, all logic models, even a simple gate, must have timing constraints to
perform the transformation of continuous time into discrete time. The input timing
constraint for a gate (ts) describes the minimal separation between the input events
that insures correct operation of the gate. A gate is not designed to process long
sequences of very close events. Our intuitive model of its behavior excludes such
sequences. The separation time can be set to some small value, like a third of the
input transition times. Another aspect that distinguishes the CTA of a gate from

another CTA is how the logic function argument is used. For example, in a gate the

function is used before the change of state to determine if one is required and in a

88

—{ X0
— X1
Y —
—{xn
(a) Symbol

1 0 10 1 0
— A —
+ + + + +
] \]\] -

(b) Typical sequence of input events

- Constrained state transition
—— =~ Unconstrained state transition

- - om - an -
- —— - e

' — (]
1051V ‘f
! ’ A) \ 1
/
: /7 , P ‘ N [N . \\ :
waitts/o !)/ e hN " b waitts/
! fU:-/- . Sa UL !
- \A .
irregular1

_ 0"

-

{¢) Continuous Time Automaton

Fig. 4.10 Model of a gate

89

counter the function is used on each positive edge of the clock. A CTA therefore
characterizes a class of behavior based on a set of timing constraints and a logic
function.

In the proposed model, the CTA has been designed to accept separate events
or pair of close events. Sequences with more than two close events will cause a
timing violation and generate an undefined output. An input sequence of events that
would go unchanged through the CTA is shown in Fig. 4.10b. Notice that this
sequence is the result of evaluating the function on input events. It drives the CTA
which modifies the sequence if necessary to obtain a timed state sequence. The CTA
of Fig. 4.10c models the behavior of a gate. The CTA starts in a state deternuned
during initialization. The format of the label associated with each arc is
X:TEST/ACTION. In the case of a gate, X indicates the result of evaluating the
function for each input events. For example, t0: ... indicates that the function
evaluates to 0.

The CTA consists of 7 states. Two states (normal) and normall) are used for
normal operation. A sequence of separate 0 and 1 is acceptable and will make the
CTA cycle between normalQ and normail states. For example, when in state normal()
(i.e. function = 0 or fO: ...), if the input event makes the function changes to |
(i.e. function = 1 or fl:...) and the separation time is met, the output becomes |
(fl:tg/1). This is a constrained cycle. The proposed gate CTA also accepts isolated
pulses. For example, when in state - yrmal0 if the timing constraint is not met, then
the CTA state changes to pulse0 indicating that a short pulse has been received

(fl:Ts-/l). Cycling through normalQ and pulse0 is an acceptable sequence consisting

of separate pulses and it is a constrained cycle. On the other hand, if from the state

puise0 a second close event is received, then the state changes to irregular) and the

output is made undefined (fO:E/U). If the input events continue to be close, the CTA

will cycle through states irregular() and irregularl, without changing the output

90

(fO:-/-, f1:-/-). The only way to end a cycle where the output remains undefined is to

allow the gate to settle (wait tg). The cycle between ..regularQ and irregularl is an
unconstrained cycle but since the output does not change, the result is still a timed
state sequence.

The CTA must also process undefined input events. In the case of a gate, if
the function evaluates to undefined the state becomes undefined as well as the output
(fU:-/U). Exit from the undefined state goes through irregular states to insure a timed

state sequence. This condensed diagram ca. be easily translated into the

SimulateGate procedure as follow:

algorithm SimulateGate
begin
if not a wait event
begin
NewValue=function{inputs);
if NewValue<>LastValue then
{Perform a change of state only if
begin the output changes, else do nothing.)
case CTAstate of
normalld: case NewValue of
l: if separate
then CTAstate=normall;
insert (1,output);
CTAstate=pulsel;
insert (1,output);
{Accept two close events)
U: CTAstate=zundefined;
Insert (U,output);
normall:
pulse0l:
pulsel:
irregularo0:
InsertWaitEvent (tg);
irregularl:
InsertWaitEvent (tg);
undefined:

{Evaluate logic function}

else

end
else (it is a wait event}

case CTAstate
irregularo0:

irregularl:

end

of

CTAstate=normal0;
insert (0, output);
CTAstate=normall;
insert (1, output);

LastValue = NewValue;

end.

91

The function separate verifies that the separation time between input events
is larger than the specification ts. The simulator keeps track of the time of the last
event for the class of input ports and the separation time is measured between the
current time and this value. The procedure insert (value, signal) inserts a master
event of value on the signal using the propagation delay model and computes the
slave events. The procedure InsertWaitEvent (time) inserts a wait event at

CurrentTime + time.

4.6 Construction of a CTA for a flip-flop

The first step to obtain a logic model is to understand the fine details of
operation of the device. One could start by classifying the interface ports, identifying
the logic states and defining the logic function. Then the behavior of the device must
be examined to determine exactly how the device will react to all sequences of input
events and timing constraints should be defined between classes of ports.

Once the behavior of the device is well understood, we can start the
construction of the state machine. The process is decomposed into three phases:
normal operation, timing violations and undefined inputs. The process will be
illustrated with the construction of the CTA for a flip-flop. A D type flip-flop as in
Fig. 4.11a is used. The following HDIL listing describes the D flip-flop:

circuit FF7474

interface
D :bit (input 2);
{Vr)
C :bit (clock 2);
{vr)

Q :bit (output 0.5n 0.5n 0 5)
(trLu, Cryn. Vi, Vy)
(delay2 2n 3n);
(tpru, tpun)
implementation DFlipFlop {CTA to be used)
(timing 5n 5n 0.5n On)
(tL, ty tsu tHD)
(function (out Q D))
end FF7474

92

The D flip-flop has three ports: an input D, an output Q and a clock C. As for
the gate, input ports have threshold arguments and output ports have waveform
related arguments and propagation delay model arguments. As illustrated in
Fig. 4.11b, the flip-flop is characterized by four timing constraints: tp and ty specify
the minimum low time and high time of the clock and tsy and typ specify the set-up
time and the hold time for the input D with respect to the clock. The logic function

reduces to Q=D. We are now ready to construct the CTA for the D flip-flop.

Normal operation

The first step consists in creating a state machine for acceptable sequences.
The part of the CTA that process acceptable sequences for a flip-flop is illustrated in
Fig. 4.11c. There are three states corresponding to the clock signal: clock0, clockla
and clo.” 1b. Let's suppose the clock of the flip-flop is 0 and therefore the CTA state
is clock0. Events arriving on the D input do not affect the flip-flop (D-:-/-). If the
clock signal changes to 1 and the set-up and the low times are met, the state changes
to clockla and the value of D is transferred to the output Q (Clitsyt/D). Now the
clock is 1 and no changes on the input D is allowed for the hold time period (wait typ).
Once the hold time has elapsed, the state changes to clocklb, where the clock is still
one but now the D input can change (D-:-/-). The cycle ends if the clock changes
back to 0 and if the high time is met, the output does not change (CO:ty/-). This
completes the description of normal cycles for a flip-flop. Each of the cycles in
Fig. 4.11c are either constrained cycles or else they do not affact the state. Therefore

this part of the CTA produces a timed state sequence.

Timing violation
The next step is to decide what to do with timing violations. The processing of
timing violations for the flip-flop is shown in Fig. 4.11d. For clarity, all arcs

associated with normal operation have been removed. There are four cases to

—{D Ql—
—pC
(a) Symbol
Stable
\/ \
D + +[
N\
tSU —P» ﬁr'-‘_ {HD
- J 1\
c + + +
\ h | W,
| i)
< L rg—-tH !
[
i
@ 1 X
]
— k_ tPLH, tPHL
(b) Timing constraints and propagation delays for a flip-flop
e T ™\
' \ c11sUTD
D-:-/- ﬂ “

waittHD/-

(c) CTA of a flip-flop: normal operation

Fig. 4.11 Model of a flip-flop

94

--_____CO:m/-“—‘-

_-’

- -

(d) CTA of a flip-flop: timing violations

@ a‘rDU :tSUtL/U.~~ ‘CU:-/U'-- @

') ':’-~ -
cu:-/U . .'~~~
': ”’ \‘ ,,' §~~\
\ ' Xeiot- 2 ~
\ [\ I P4 \
. 4 1
\
L}
'
1
T/ b
¢ - ™ -~]
CO:-I- - -
CU:- oo Teel
'. " \~~ s~~~
[] ’l s‘\ \\
' Cu:-/-
\~
. -
irreguiar
.C1DU :tSUtU"-------_--———

() CTA of a tlip-flop: undefined inputs

Fig. 4.11 Model of a flip-flop (continued)

95
consider: set-up time or low time not met when in clockQ (C1: tgytL /U). clock or data

changing when in clockla violating hold time (CO:-/U and D-:-/U) and high time not

met when in clocklb (CO:-H{-/U). Two new states are used {clockOirregular and

clocklirregular) and in each case the output is made undefined (.../U). The CTA will

keep cycling through these two states until the clock has settled (CO:tyi/- or
Cl:tgutL/D). Most of these state transitions are unconstrained but since the logic

state and the output remain undefined, the machine produces a timed state sequence.

Undefined inputs

The last step is to process undefined inputs. Undefined D input is easily
processed since D never affects the state unless the clock is rising and the set-up and
low times (tsy, t.) are met. As shown in Fig. 4.11e, two arcs from clock() and
clockOirregular have been added to process this case (Clpy:tsytpL/U and
Clpu:tsut/-). If the clock becomes undefined, the state changes to clockU and the
CTA will exit from this state only if the clock changes to 0 for at least ti_ or to 1 for at
least ty. This is accomplished by going through the irregular states.

The complete CTA for a flip-flop integrating Fig. 4.11c, d and ¢ is given in
Appendix D. As for the gate, the translation of this diagram into a procedure is
straightforward. Notice that since synchronous sequential circuits (SSC) have a
similar behavior, their CTA will be almost identical. Furthermore, this CTA can be
used to model the behavior of complex devices such as microprocessors. We are

currently working on the model of the 68000 microprocessor.

4.7 Circuit partitioning and event combination

The conceptual model of Fig. 1.10 and 1.11 assumes that input events are
simultaneously combined, that the change of state is simultaneous to the input events
and that zero delay output events are generated by the CTA. The requirement about

simultaneous event arrival leading to simultaneous state changes suggests that a

96

logic model acts as an event combiner and that the circuit should be partitioned
accordingly. This brings back a well known problem about distinct propagation delays
on inputs, as in the gate in Fig. 4.12a. This section describe the problem and how to
model the event combination. Event combination with CTA will be discussed for
gates, flip-flops, combinational circuits, 3-state devices and synchronous sequential

circuits with and without asynchronous inputs.

4.7.1 Gates

When the state model rule (see section 1.7.2) is verified, the input ports are
said to be "time aligned" with respect to their effect on the device state. For example
in the case of gates, all input ports are assumed to be time aligned and the input

events are combined using the logic function. It is therefore assumed that the gate is

X0 |
h = Y
F— xi
— t pxoc = 7 nsec
> e
2 nsaec t pX1C = 5 nsec

(a) Non simultaneous arrival of events having
effect at the same time

A tp=5nsec
—L_ X0
'r— X1 Ttp=2nsec B Y
—:-l
> e
2 nsec -

(b) Simultaneous arrivai of events having
effect at the same time

Fig. 4.12 Modeling multiple input gate with
different propagation delays

97

a perfect combiner. The multiple emitter transistor of a TTL gate or the common signal
of a MOS gate performs the event combination. In real gates, event combination is
not perfect, very close events might not be combined as expected. The separation
time (tg) used in CTA automaton of the gate in Fig. 4.10, indicates the limit to the
capability of a gate to combine close events.

To illustrate the time alignment problem, let's use a 2-input AND gate with
different propagation delays for the two inputs as shown in Fig. 4.12a. In this case,
the inputs do not have simultaneous effect on the state and the device can not be
modeled using a single logic model. The problem is easily resolved by using two logic
models. As shown in Fig. 4.12b, the logic model A with a propagation delay of 2nsec
is used to time align the signals X0 and X1 to insure that the logic model B meets the

state model rule.

4.7.2 Flip-flops and SSC

In the case of a flip-flop, the input D and the clock C must be combined.
Events on D and C are assumed to be time aligned and have simultaneous effects on
the state. The limit to the capability of a flip-flop to combine these events is modeled
by the set-up and the hold-times. Violation of these constraints leads to an undefined

state. The same technique is applied to SSC.

4.7.3 Combinational circuits (ROM)

In a general combinational circuit such as in Fig. 4.13a, the propagation delay
might be different for each input. In addition, a single input transition does not
necessarily imply a single output transition and the so called static and dynamic
glitches are produced. Because of their internal organization, ROMs are particularly
affected. ROMs are often modeled using an access time that defines how long the
outputs are unstable following any change on the input address lines. It is assumed

that all inputs are time aligned and an undefined period or envelope is used to model

98

w1 X0
—] X1
. Y e
—1Xn
(a) Symbol
X0 I | |

X1

aw B .

(b) Typical signals

Fig. 4.13 Event combination in combinational circuits (ROM)

the variation in propagation delays. The undefined time is also used by the CTA to
discriminate acceptable sequences of events. This is illustrated in Fig. 4.13b where
each ir.put event produces an undefined event and the combination of close events
simply extends the envelope. The width of this envelope (ty) is a measure of the
capability of a combinational circuit to combine events. The CTA for combinational

circuits is given in Appendix D.

4.7.4 Tri-states devices

Tri-states devices are often used in logic circuits. They consist of some logic
function with an enable line that controls the output high impedance state (see
Fig. 4.14a). In answering the question how the enable input (E) is combined with the
other inputs we observe that the propagation delays are often different. The proposed

model is shown on Fig. 4.14b and consists of three devices: one that combines the

99

—1 X0
X1
) v b—
\ t pxy = 100 nsec
Xn
—E t pEY = 10 nsec
(a) Symbol
B
3-state
E control ©
CTA t pxXy = 95 nsec
Ideal
2 3-states t pEe = S5 nsec
X0 bufter
X1 Logic t pyy = S nsec
c'é%txt y t peY = 5 nsec
3(n o]
(b} Model

Fig. 4.14 Partitionning tri-states devices

logic inputs (A), one that process the enable signal E (B) and an ideal 3-state buffer
that combines the outputs e and y (C). Notice how this corresponds to the designer's
intuitive view of a tri-state devices and how each device meets the state model rule.

The CTA for the 3-state control circuit (B) is given in Appendix D.

4.7.5 Flip-flops and SSC with asynchronous inputs

The circuit to be modeled is a flip-flop with an asynchronous reset as pictured
in Fig. 4.15a. The question is: How are the clock (C) and the reset (R) combined?
First, if the propagation delays from clock to output and reset to output are different,
the model must be broken-up as in Fig. 4.15b. The models for each devices including
their CTAs are given in Appendix D. The device A combines the D input with the C

input and the device B combines the reset signal with the output of the device A (cq)

100

A B
—D Qr— D cq cq Q
—>C R > C R
t pcqQ=3nsec tpCeq =2 nsec t pcaQ = 1 nsec
t pRQ= 1 nsec t pRQ = 1 nsec
(a) Symbol (b) Model

(c) Timing constraint

Fig. 4.15 Event combination for asynchronous input

which is time aligned with the reset (R) to insure that device B meets the state model
hypothesis.

Next, we need to determine how cq and R are combined. It is assumed that
the reset overrides the clock. There is a conflict if the reset is removed and if the input
cq simultaneously forces a 1. To resolve this conflict, a timing constraint similar to
hold time must be added: the reset line must not move to zero while the clock is rising
and the data is one. This timing constraint between c¢q and R is called the release
time (tr) and is shown in Fig. 4.15c. The CTA for the device B is given in

Appendix D.

101

4.7.6 More about SSC

In the next example, we will study how the inputs are combined with the clock
in a SSC. In a simple flip-flop and in a simple SSC (Moore type), the outputs only
depend on the change of state which in turn is controlled by the clock. Combination of
the clock and the inputs has been discussed in section 4.6. In the case of a more
complex SSC (Mealy type), the state variables must also be combined with the
inputs. Since the propagation delays from input to output and from clock to output are
probably different, the circuit must be separated into two parts (see Fig. 4.16a). The
first part can be modeled as in section 4.6 and the second part as a gate or a
combinational circuit. Each circuit meets the state model rule and combines the input
events accordingly.

In a typical SSC, the propagation delay of the input decoder is such that the

clock signal arrives at the flip-flops approximately at the same time as the next state

Current Qutput ——» Output
‘ state decoder puts
Inputs

State
D>

(a) The outputs depend on the inputs

New Current Outpur >
state I state decoder Outputs

Inputs — State

decoder 5 @I

(b) The state decoder delay is too long

Fig. 4.16 Partitionning a SSC

102

signals and therefore the set-up and hold times describe a period around the clock
transition. If on the other hand, the state decoder delay is longer, it will be necessary
to separate it as in Fig. 4.16b to make sure that the new state signal is time aligned

with the clock signal.

4.8 Conclusion

In modeling logic devices with CTA, we have been able to clearly formulate the
mechanism to transform continuous change of state (continuous time) into a timed
state sequence (discrete time) and formally justify the existence of timing constraints
and the necessity of an undefined state. The mechanism meets the objectives
enumerated in section 4.1. It processes the continuous sequence of input logic events,
a timed state sequence is obtained, the processing of timing constraints is well
integrated with the logic function, the undefined states and the undefined events are
systematically processed and zero delay output logic events are generated.

CTAs are easy to implement and use. A CTA is a finite state machine and is
therefore easily translated into a computer program. In addition, since the CTA and
the processing of the timing constraints are hidden, the user only needs to fill a
template with the required arguments (timing constraints and logic function) to create
a new part. Therefore, very few CTAs are required to model thousands of logic parts

and the validation of CTA based models is simplified.

Chapter 5

comparative analysis

In the preceding chapters, a new logic model has been proposed. The objective

of the work is to clarify the abstraction used and to improve the model correctness
when modeling logic devices. As it will be demonstrated in this chapter, the resulting
simulator is not faster or less memory hungry than comparable simulators. It is a logic
simulator compatible with other logic simulators. The question is then: How is the
modeling technique better or at least different for simulation? The object of this
chapter is to answer this question and compare important aspects in the abstraction
mechanism, the simulation process and the simulation results with other simulators.
The comparison is made with respect to the initial objectives:

« modeling the transmission of information between devices,

» modeling the processing time (propagation delays) and

« modeling the transformation of continuous time into discrete time.

Then, implementation issues and hardware description languages are
compared to assess the advantages and the disadvantages of our approach. Finally

the relationship with engineering practice is studied.

5.1 Implementation

The proposed modeling technique was tested with a logic simulator. The
simulation process is shown in Fig. 5.1. Our approach to modeling and simulation
closely matches common engineering practice. First, the logic model parameters of
the devices being modeled are extracted and the logic models are computed and placed

in a library. A library model is similar to a data book specification, the model

104

Device
to model

| Parameter
1 extraction
\

- -- Tee - 2
Circuit Library ot
structure logic mudels
-~ Tm— -
- -
- - - -
o= inae T _

i Linking
t and ERC)
\

Logic
model

Logic
simulation

Resutlts

Fig. 5.1 Simulation process

parameters are expressed with respect with the source and the load. Examples are
given in section 3.4. A linking algorithm including Electrical Rule Checking (ERC) is
then used to ensure that the connections between the devices satisfies certain rules
(e.g.: fan in and fan out). The logic model arguments (tpLH, tPHL, ...) for the actual
sources and loads are computed. The sources are characterized by the input signal
transition times and logic levels and the loads are characterized by the required input
currents or the input impedances.

This is where our implementation begins. It is assumed that the logic model

has been computed for a fixed and time invariant load and only the simulator is

105

implemented Even though parameter extraction and linking is not implemented, the
corresponding algorithms will be reviewed in this section to demonstrate that our
approach can use existing algorithms. Then a simulator based on the proposed

modeling technique is described.

5.1.1 Parameter extraction

The first problem in any simulator is to obtain a mode. that faithfully represents
the real device. In the case of a logic model using a CTA, the following parameters
must be computed:

+ input thresholds

* input timing constraints

» propagation delays

* output transition times

+ output voltages levels

Logic model extraction consists of computing these parameters based on
electrical parameters, such as capacitances, resistances and transistor characteristics.
Computing the logic model from the electrical circuits is a difficult task if no information
about the logic function is available [63] and generally it is assumed that the logic
function is known. Many analysis techniques [57-64], have been developed to extract
the logic model parameters, like propagation delay, set-up time and so on. A logic
model extraction program analyses the network of transistors and capacitances and
computes the charge or discharge characteristics. It then evaluates the propagation
delay and other parameters. Parameters for logic models can also be obtained by
simulation or by test by exercising the model or the actual circuit respectively. The

logic model can also be parameterized for different sources and loads if necessary.

Simulated

106

These parameters are similar to the parameters used in many logic simulators,
therefore their extraction should not cause any particular problem and CTA based logic

models and simulators should integrate easily into a CAD system.

Tolerances on the parameters

As in all logic simulators, the problem of interdependence of parameters still
exists in our model. For example, the output transition times of the NAND gate in
Fig. 5.2 (Real C) might be different depending on which input causes the output event.
Propagation delays and transition times at the output not only depend on the output
load, but also on the input signals. Keeping track of these relations during simulation
is needlessly complicated and contradicts the objective of logic simulation which must
be fast. Therefore, instead of keeping track of the complex relations between the
parameters, typical values with tolerances are used, see Fig. 5.2 (Simulated C).

Tolerances are used by manufacturers of logic devices [43-45] and in most logic

At \ /

Real

C__/ \ /__\

W (7% 7 e

Min Max
Fig. 52 Use of tolerances on propagation delays and transition times

107

simulators. Since logic devices are designed to minimize these dependencies, this

model is acceptable in most cases.

5.1.2 Linking algorithm and Electrical Rule Checking (ERC)

We now briefly discuss the operation of a hardware linker. A linker has two
functions: verify the linking rules and deparameterize the logic model.
Deparameterizing the logic model involves computing the parameters (propagation
delays, transition times, ...) for the actual sources and loads. For TTL, this is simple
as the propagation delay and the output transition times normally do not depend on
the loads. For CMOS, they are often approximated by a linear function of the load
capacitance. Examples are given in section 3.4.

The linking rules describe the conditions required for an element to operate
properly. For example, the linking rules for TTL [43] and discrete CMOS [44-45] are
as follow:

TIL

Given: IiL = Required input current for low level

Iig = Required input current for high level
C; = Input capacitance
IoL = Output drive capability for low level
Iog = Output drive capability for high level
CL = Specified maximum load capacitance
Cw = Wire capacitance

Rules for each output:

IoL, > Z I, for all inputs connected to it
Iog > Z iy for all inputs connected to it

CL > Cw + Z C; for all inputs connected to it

108

Given: Ci = Input capacitance
CL = Specified maximum load capacitance
Cw = Wire capacitance
Rules for each output:
CL > Cw + Z C; for all inputs connected to it
The hardware linker algorithm is:

algorithm link
begin
for all outputs of all elements
begin
check rules; (violation to the rules indicates
an improper use of the device}
compute logic model parameters;
end
end

Parameter extraction, linking and ERC will not be discussed further. These are

important implementation issues but are well known [43-45].

5.1.3 Implementation of the logic simulator

This section describes the implementation of a CTA based logic simulator
using master slave events and a continuity preserving delay model. The
implementation could have been done using a simulator based on VHDL. This was
not done for two reasons. First, when we started this work, VHDL simulators were
not easily available and second, VHDL seemed too complex for our simple task.
Today, a subset of VHDL could certainly be usec -.nd the required translators could be
written. In this section, we will briefly describe the hardware description language,
the simulator interface and the simulator organization. Simulation algorithms have

been described in section 3.3 and logic device models in chapter 4.

109

Circuit description

Implementation of a logic simulator requires some means to input the circuit
and the logic device model descriptions. A hardware description language was
designed for this application. Using a custom language gave us some flexibility
compared to a predefined language like VHDL. The language definition was changed
to follow the continuously evolving requirements associated with the development of
our new model. The resulting language is simple and precise and the specification can
be translated into VHDL. The language is called HDIL (Hardware Description and
Integration Language), so named to reflect its support of all phases of the design
(compilation, linking and simulation) in an integrated environment. The language
syntax is described in appendix B. One of the main characteristics of HDIL is its
ability to describe views of different abstractions, including schematic, layout and

simulation while maintaining the structural integrity between views.

Simulator interface

The need for a fast interactive design environment requires that most tools
share the information through memory rather than through a file. To ease th¢ sharing
of information through memory, a Hardware Description and Integration Data
Structure (HDIDS) has been defined. Each data element in HDIDS matches a
syntactic construct in HDIL. Two simple procedures "parse” and "unparse” are used
to translate HDIL circuit description (file) into HDIDS (memory) and vice versa. This
leads to a strong resemblance between HDIL and HDIDS. The description of HDIDS
is given in appendix C.

The use of HDIL and HDIDS is illustrated in Fig. 5.3. A circuit description
(HDIL) is parsed and a data structure (HDIDS) and a symbol table are created. The
simulator then uses the circuit description, performs a simulation and returns the state

and the signal waveforms as different views attached to the circuit description.

110

HDIL description
(file)

Symbol HDIDS description
table (active memory)

View 1: Circuit description Vi L L

View 2: Circuit state
View 3: Logic signals m

Fig. 5.3 Simulator environment

Simulator organization

As described in chapter 2, a logic simulator is an event driven simulator which
uses the circuit description and the device models to predict the circuit behavior for a
desired period of time from an initial state. Since a real circuit starts by itself, it was
decided for simplicity and also for curiosity to make the simulator self starting without
external events. Qbviously, for practical reasons, signal sources are included.
Nevertheless, the basic operation of the logic simulator does not require external

events and its operation breaks down into three algorithms:

Algorithm build
This algorithm takes the circuit description (HDIDS) and creates the
data structure required by the simulator. Typically, records are created
to store the various pieces of information: signals (wires), devices,

nodes, state, logic function, timing constraints (tgy, typ) and

propagation delays (tpLy, tPHL).

111

Algorithm initialize
This algorithm computes the initial values of the output nodes. It uses
the logic function and the initial values of some nodes given by the user.
During initialization, events are inserted in the predicted event list to
allow the simulation to start if the initial forced value (1IFV) is different

from the initial computed value ICV).

Algorithm simulate
This algorithm schedules the calls of the procedures that simulate

various devices and computes the slave events.

5.2 Simulation results and simulator performances

The objective here is to verify the simulator algorithms based on master slave
events and the device modeling procedure using CTA. This is accomplished by
simulating circuits similar to the circuit in Fig. 5.4. The circuit is used to test the CTA
for gates and consists of a self starting waveform generator circuit (Ul to Ul0) and
the gate to verify (Ul1). The verification consists in running a simulation with
different propagation delays for U1l to U6 in order to verify all branch conditions in the
CTA. The results of the simulation are shown in Fig. 5.5.

The prototype simulator was written in PASCAL and run on a SUN
workstation. A small circuit was simulated and the simulator processed 1500 slave
events/sec. In the simulated circuit, the processing one slave events requires the
evaluation of ten functions (not, and, or, ...). The listing of a typical test circuit and the
simulation results are given in Appendix E. Obviously, the statistics presented here
are based on longer simulation time. Considering that the functions are interpreted
and not compiled and that no defautt values have been used to compute the slave
events, there is plenty of room for improvement and 10k events/sec should be

achievable. This is obviously on the low side for a logic simulator and is similar to

112

iICVat
rveo £
IFVa0

S1 s2 S3 S4

S5 Sé S7
> >

us us

.Y

S10
""""" []
]
1 S12
]
]
L L]
Fig. 5.4 Typical simulation circuit
In
st 4
Slave nr] | 1
svents ++ ¢+ ++ +
AL Ll | >
20 30 8.0 8.4 16.0 t
23
Out
S12 A 7 .
Master
events % |-|
7] | >
40 50 6.0 100 10.4 18.0 t

43

Note: 1. Propagation delay is 2.0 and separation time is 1.0
2. For clarity, transition times are not shown

Fig. 5.5 Simulation results

113

logic simulator using transition times. Improving simulation speed was not our
objective, we were more concerned with theoretical aspects. The memory
requirements of a typical circuit are 260 bytes/device, 460 bytes/wire and 34

bytes/slave event. This is comparable to most logic simulators that use between 100

and 1000 bytes/device.

5.3 Comparative analysis

As shown in the previous section, the simulator performance is modest. The
proposed modeling technique improves the global picture of a digital system in the
form of a logic model abstraction. In this section we will bring up the characteristics of
the proposed logic modeling technique that improves this picture. Having a more
rigorous picture of a digital system is essential in a modern CAD environment where a
large amount of information is shared by the clients and the designers and where

computers are used in all phases of the design.

5.3.1 Comparing abstraction mechanisms and conceptual models

Logic modeling begins with an analog circuit. The abstraction mechanism as
defined in section 1.7 corresponds to the engineer's intuitive view of digital systems.
The three hypotheses state that logic devices are unidirectional, that input ports are
threshold sensitives and that the logic signals are switching signals. We all have a
clear picture of what is a logic device, but constructing a logic model for it is not as
clear. The Fig. 5.6 shows some of the basic conceptual models used in the
construction of logic models. Each model will be analysed with respect to the three
modeling objectives related to signal representation, delay model and timed state

sequences.

Hybrid model
Hybrid models combine the best of two worlds. Fast simulation speed is

achieved by using logic functions to model the internal behavior and timing accuracy is

114

obtained using an analog model for the connections. Included in this category are the
macro based models {24, 26], the switch based models [13-23] and their variations
such as the current limited switch model [24]. Commercial mixed-mode simulators
such as PSPICE [52] use A to D and D to A interfaces for their logic components. In
hybrid model, Kirchhoff laws are used to solve the network equations. Hybrid models
are clearly superior to master slave events in modeling the transmission of information
between devices as they allow time varying loads. In suinmary, hybrid models are
interesting for time varying loads but must be used with an appropriate logic model.
Either of the device models in the Fig. 5.6 can be used with the wire model of
Fig. 5.6a. The passage of analog signal to logic signal and vice versa is critical and
the proposed master slave event definition is well suited as its purpose is to model
the analog signal. For instance, the definition of master events which indicates a

change in the output signal closely resembles the closing of the switches in Fig. 5.6a.

Classical logic model

Most logic simulators use the conceptual model of Fig. 5.6b or a simplified
version of it. Modern logic simulators like SILOS [29], Verilog [48], SAMSON [30]
and VHDL based simulators [31, 32, 41, 49, 50] supports the full conceptual model
including inertial and similar delay models and strength factors.

In such simulators, the delays are included in the logic function. For example, a
typical VHDL statement looks like:

portA <= 0 after 10ns;

Thus, the propagation delay model combines events from many logical
statements executed at different times and sometimes some events have to be
removed in order to preserve the consistency of the logic signal. In addition, part of
the behavior associated with the transmission of information on wires, such as the

effect of a large capacitance, is also integrated in the delay model. This is the function

115

Device model Wire model
) +5v
Logic *
model # _]_:
e o e - o - b -
N
GND

(a) Hybrid model

Device model Wire model
_ Inertial Strength | ==
) delay factors ¥
1 Logic
function . . t
with delay (with logic
function)

(b) Classical logic model

Device model Wire mode!
. CTA
Master
:eu';e slave
Pure y events
= logic
function

(c) Proposed logic model

Device model Wire model

TA

Logic
function
with delay

(d) Timed autornaton

Fig. 5.6 Comparisons of conceptual models

116

of inertial delay or similar delay models. The conceptual model is ambiguous since
some of the delay are part of the logic function and part of the logic function is
performed by the propagation delay when combining the events.

The classical logic model is an ad hoc model where the logic function, the
propagation delay and the transmission time model have been mixed up. The resulting
model is inaccurate for close events. It does not preserve continuity, does not
preserve the timing relationships between events from different logic statements and
is far from a state based. In that respect, the CTA based logic model with master
slave evenis is far superior as it elegantly and properly separates the modeling of

state and the logic function from the propagation delay and from the transmission time.

Proposed logic model

The proposed conceptual model is shown in Fig. 5.6¢. The three modeling
objectives are met. The concept of master slave events models the transmission of
information between devices for time invariant loads. The continuity preserving delay
model is a pure delay model in the sense that it only delays the events without
removing any. And the CTA integrates the timing constraints and the logic function
and does not include any delay. Finally, the CTA has been designed to transform the
continuous change of state into a timed state sequence. This model clearly separates
the logic function, the propagation delay and the modeling of the transmission of
information between devices. If time varying loads are used, the model can easily be

interfaced with analog models as in hybrid simulation.

Timed automaton model

The conceptual model of the TA is shown in Fig. 5.6d. All aspects are included
in a single state machine. As demonstrated in section 4.2, there are two problems
associated with TA. First, combining the timing constraints, the propagation delays

and the logic function makes TA difficult to use. Second, TA are not meant to model

117

the fine timing details associated with continuous devices. TAs are designed to
formally describe the high level behavior of real time system. TAs alone are not
adequate for low level modeling. Transmission of information between devices can not
be accurately handled in a TA. Continuous function can not be used to model the
propagation delays. And TAs are difficult to use to integrate timing constraints and

generate a timed state sequence.

§.3.2 Signal representation

For any level of modeling, from analog to behavioral, we ought to adequately
model the transfer of information frorn one component to another. Two cases must be
considered: time varying load: and time invariant loads. In the general case of time
varying load, it is necessary to resolve the Kirchhoff Laws and compute the voltages
and the currents. In the case of time invariant load, the waveform of the signal can be
computed with "logic level” accuracy for most output ports without solving the
Kirchhoff laws. In this section, various signal representations will be analysed with
respect to the objective about the modeling of the transfer of information between logic

devices.

Analog simulator
At analog level, the transfer of information is accurately modeled, at least
compared to a logic model. Analog models and Kirchhoff laws are used to accurately

compute the voltages and the currents between devices.

Hybrid simulator: Verilog and SILOS (Time varying load)

Verilog [48] and SILOS [29] support logic models with a simplified analog
model of the interconnections. This type of model is often used for dynamic MOS
integrated circuits to model network of switches and to compute signal contention and
node voltage decay. Each port is modeled using driving strength (supply, strong, pull

and weak) and each node is characterized by a charge storage strength. In Verilog,

118

the charge storage strength is large, medium or small and in SILOS, the actual
capacitance value is used.

These are simplified analog simulators for logic circuits with time varying
loads. If only time invariant loads are used, this technique is needlessly complex. For
instance, digital system designers use higher level (time invariant load) logic models

[4:-45].

Mixed-mode simulation; PSPICE and ELOGIC (Time varying load)

When it is required to connect a logic model to an analog model, special
interface circuits are usea. The logic states (0, 1, U or Z) are converted to analog
signal using Boolean-Controlled Switches (BCS) and resistances. The circuit used by
PSPICE is shown in Fig. 5.7. An improved version of this circuit called the Voltage-
Controlled Switch (VCS) has been used in ELOGIC [51]. In the VCS, the sources
and the impedances depend on the actual output voltage. In these mixed model
simulators, the information is adequately transferred to the analog part of the circuit,

but the problem remains the same within the logic part of the simulator.

+5v
--------)L
Logic é Analog
circuit # 1 circuit
-------- T
GND

Fig. 5.7 Mixed mode simulation: Typical D/A interface circuit

Current-limited switch

An interesting approach [25] has been used in a switch level simulator where
each transistor are replaced by a switch controlled current source. The basic model is
shown in Fig. 5.8. Each node is driven by current sources and the resulting voltage is

piecewise linear and is computed without numerical integration. This technique

119

directly leads to master slave events in the case of a unique source driving a time
invariant load. Such a model could be interfaced easily with the proposed modeling

technique to handle time varying loads.

N -
- —

Output \&J} @ Output

port port
@

iH-

Input
port

Fig. 5.8 Current limited switch model

Classic logic models (time invariant load)

Most logic simulators only generate a logic signal based on thresholds. As
discussed in section 1.6.1, the transmission of information between logic devices is
not accurate because the input and output events have the same definition. We have
demonstrated that by using output events to describe analog signals and input events
to describe the crossing of input thresholds, the transfer of information is adequately
modeled. It is wrong to patch a logic model in order to take into account the effect of
wire capacitances as in inertial delay. The concept of master slave events does it

simply and elegantly.

Mixed-mode simulution: SAMSON (time invariant load)

In SAMSON [30], a formalism is used to model the information on the signal.
The model incorporates threshold crossing, minima and maxima. A typical signal is
shown in Fig. 5.9. The signa! states are Rising, Falling, Low and High. There are two

problems with this approach. First, the input and output events have the same

120

definitions leading to problems similar to those described in section 1.6.1, and second,
there is redundant information leading to inefficiencies in the simulation. Master/slave
events can describe the signal of Fig. 5.9 using only two events (0 and 1), thus

leading to much simpler logic functions and propagation delay models.

Fig. 5.9 Signal model in SAMSON

Summary

Many acceptable techniques have been developed to model the transfer of
information in analog simulation, in switch simulation and between logic models and
analog models. Unfortunately, when modeling the transfer of information between
logic devices, threshold based events are alway used even when they do not work
well. To our knowledge the concept of master slave events where output and input

events are separated is the first two-valued (single threshold) defininition that

adequately models the transfer of information between logic devices.

§.3.3 Propagation delay models

The objective of a delay model is to accurately model the propagation time of a
device. In multiple inputs and multiple outputs devices, propagation delay exists in
each input-output pair. In practice, it is assumed that input events are merged at
some space point and that the delays are separated between input and output delays.
Furthermore, it is assumed that the input delays are zero, leading to conceptual model
of Fig. 1.10. If the input delays are not zero, most simulators will provide the

necessary feature to solve the problem. In Verilog [48], MIPD (Module Input Port

121

Delay) can be used and in VHDL [49], intermediate signals are added with the
appropriate delay. This has been described in section 4.7.1.

As shown in Fig. 5.6b, the propagation delay is usually attached to the logic
function. For example, here are three typical statements;

G3 .AND/N 92572234 AB3
SILOS [29) G3 is declared as an and-gate
/N indicates normal strength
tpLH=9 and tpyL=7
A and B are the inputs
AND #10 G3 (A, B, OUT) Verilog [48] G3 is declared as an and-gate

#10 is the delay
A and B are the inputs

OUTG3 <= A . B after 10n; VHDL [49] #10 is the delay
OUTG3 is the output of G3
A and B are the inputs

In such a case, when two or more statements with different propagation delays
control the same output, the delay modeler might need to remove some events to
ensure the consistency of the signal. As discussed in section 1.6.2, this has led to
delay - models such as inertial delay.

With master slave events, it is possible to isolate the delay function and a pure
delay model was described in section 3.2. One of the characteristics of this delay
model is to associate the delay model to an output port, thus allowing separate

specification of delay and logic function, as demonstrated below below:

circuit and2
interface
A B: Dbit (input 3,0);
{(Vh)
OUT: bit {(output 0.5n 0.5n O 5)
{(€reHs ErhL, V. Vi)
-—> (delay2 2n in);
(tpLu. tpu)
implementation gate (CTA to be used)
(timing 0.1n) {Input timing constraints)
{ts)
-—> (function (out X (nand A B))) (Logic function})

122
end and2
In this model, the integrity of the output signal is always maintained since the
delay model preserves continuity and events are always processed in the proper

chronological order, independent of the actual propagation delays.

5.3.4 Timing constraints and timed state sequence

Chapter 4 has established that timing constraints and undefined states were
required to obtain a timed state sequence. Obtaining a umed state sequence is not
normally a modeling objective in other simulators. However, it is necessary to handle
continuous sequences of events and, as described in section 1.6.3, timing constraints
are used. We shall now illustrate how they have been implemented in other

simulators and how they differ from our approach.

Timing constraints and processing in Verilog

The Verilog language [48] provides the necessary features to insert event
definitions such as @posedge, @negedge and @(event description). Event
descriptions may include Boolean expressions and one of the following: r for rise, f for
fall or (xy) for a change from x toy. Finally, the following system tasks are available:
setup, hold, width, period. skew, recovery, setuphold and nochange. These system
tasks are used to verify specific timing constraints. All the features required to
generate a timed state sequence are supported and, as in most logic simulators, the
timing constraiats arz only monitored. They do not influence the device state and are
not used to generate a timed state sequence.

As shown in chapter 4, timing constraints directly affect the device state.
Timing violation should produce undefined state and error recovery should be modeled.
The transformation to a timed state sequence is partially obtained through the inertial
delay, but it is not adequate since an undefined state is not syste used. In
SILOS, a modified inertial delay model called spike delay is used. Ths niodel replaces

close events with an undefined event but it is still an ad hoc technique.

123

In conclusion, none of the reviewed simulators provide a systematic technique

to process the timing constraints and generate a timed state sequence.

Timing constraints and processing in VHDL
In VHDL, a device model is a process activated by an event arriving at one of
the input ports, called sensitivity channel, and deactivated with wait statements like:
wait on "signal-list”, wait until "condition” or wait for "time-expression”. Here are
two process examples:
and_process process
begin
wait on A, B;
OUT <= transport A and B after 20n;
end process
or_process process (A, B) (Sensitivity list}
begin
OUT <= A or B after 20n;
end process
VHDL also provides attributes and assertion statements to help program the
detection of timing violations. The following is the model of a flip-flop including a
process to check the timing violations:

entity TFF 1is

generic
(tPLH, tPHL : Time := Ons;
tH, tL : Time := Ons;
tSU, tHD : Time := 0Ons);
port
(D,C : in Bit := '0';
Q : inout Bit := '0');
begin
Check_tSU_tHD_tH_tL:
process

if not C'Stable and C='1l' then
aggert D'Stable(tSU)
report "Violation of set-up time*
severity Warning;
end 1if;
if not D'Stable and C='l' then
assert C'Stable(tHD)
raport *Violation of hold time*
severity Warning;
end if;
if not C'Stable and C='1' then
agsgert C'Stable(tl)
report 'Violation of low time*

124

saverity Warning;
end if;
if not C'Stable and C='0' then
assgert C'Stable(tH)
report *“Violation of high time"
severity Warning;

end if;
end process;
end tFF;
architecture behavior of TFF is
begin
if C='l1'and not C'Quiet then
i1 aot Q = '0* and D = '0' then
Q = 0 after tPHL;
if not 9 = '1* and D = *'1' then

Q = 1 after tPLH;
end BEHAVIOR;

Later on, in the circuit description, a device would be defined as follow:
G3 : TFF;
generic map (0.5ns, 0.5ns, S5ns, Sns, 0.5ns, 0.5ns);
port map (Dataln, Clock, Dataout);
Again timing violation are only detected and not used to generate a timed state

sequence.

Timing constraints and processing in HDIL
Here is the corresponding listing of a flip-flop model in HDIL:

circuit DFF

interface
D :bit (input 2);
{Vp)
C :bit (clock 2);
{Vp)

Q :bit (output 0.5n 0.5n O 5)
{€rLhs Erun, Vi, V)
(delay2 2n 3n);
(tpLu, tphr)
implementation DFlipFlop {CTA to be used)
(timing S5n 5n 0.5n On)
(tL tH tsu tHD)
(function (out Q D))
end DFF

The VHDL description of the flip-flop illustrates the flexibility and the
expressiveness of VHDL. But it also illustrates the problems associated with the

described model. The VHDL description of a D flip-flop is a text book description and

125

is often used. The HDIL description with the underlying CTA model does more than
its VHDL counterpart:
 Timing violations in HDIL are used by the CTA to transtorm the continuous
change of state into a timed state sequence.
» Undefined states and undefined events are processed and timing violation
recovery is built in the CTA.
+ The logic function is much simpler when the propagation delays and the timing
constraints are separately taken care internally.
« HDIL does not need to support any time related attributes or functions like
C'Quiet, C'Stable(tH), wait,after or transport. The sensitivity list
used in VHDL models is also built in the CTA.

The VHDL model of a D flip-flop including a CTA would be more complicated.

5.3.5 Comparison of the outputs of a typical gate

The Fig. 5.10 shows the output signals of a typical gate using difterent logic
models. The signal A is the input signal of a simple buffer and the signal B is thc
actual output signal. The transmission line delay model simply delays the input signal
and generates the signal C. This signal does not resemble the actual signal. An
inertial delay model would produce the signal D if the distance between the transitions
is smaller than the propagation delay. Again this model does not give any indication
of the ringing problem of the actual signal. With the CTA logic model, the signal E
clearly indicates the problem by replacing some events by an undefined envelope.
Finally, by using master events and waveform information the signal F is produced.
This signal quite accurately provides the useful information associated with the actual

signal.

126

A

input signal I | | l I I l
B

actual output __/_/\/

C

with transmission I l I | I l
line delay

D

with inertial
delay

withECTA ﬂ Y

F

with CTA and EW
master events

Fig. 5.10 Comparing various gate models

5.3.6 Adequacy with engineering practice

One of the most interesting characteristics of the HDIL-CTA combination is
the correspondance with the engineering practice. The proposed model seems to be a
simple formalization of modeling technique used by engineers. For example, the
formalism used justifies:

« the need for all the information in data books,

« the need of transition times in logic models, as used by engineer for decades,

« the intuitive undefined state for unacceptable input sequences,

« the use of undefined events

« the separation of the logic function from the timing specification, as it is done

in data books.

Modeling many devices
By separating the specification of propagation delays and of timing constraints

from the logic function, the problem of modeling logic devices is greatly simplified. In

127

addition, it appears that only a few CTAs are needed in order to model useful devices.
Up to now, we have developed CT As for:

s gates

« combinational circuits (ROM, PLA)

« 3-states devices

« edge triggered flip-flops

« synchronous sequential devices

« synchronous sequential devices with asynchronous inputs

The construction of logic models for most devices consists in using or
combining one or more of the above CTAs and adding the logic function. Although we
have not done so, it would be interesting to construct the CTAs for devices such as:

» asynchronous sequential devices

< communicating sequential processes and communication interfaces [65]
« serial interface, such as RS-232

» parallel interface, such as VME

« neurons [66]

« self-timed systems [67]

» delay insensitive systems [68]

e Q-modules [69]

A CTA is therefore used for a class of devices that possess the same timing
behavior. This class of devices can include complex devices. The CTA of a CSS is

currently being used to model the 68000 microprocessor (70].

Model compatibility

The design of digital systems now requires the use of a variety of CAD tools.
At logic level, it is essential that the interpretation of the specification of a system or a
device be precise. There is incompatibility if the specification is incomplete or its
interpretation ambiguous. Incompatibilities reported in VHDL logic models [32] are
caused by logic level definition, logic event definition, signal strength, interpretation of

timing specification and handling of unknown operating conditions. Unfortunately, the

128

only solution to the compatibility problem is to establish a standard for logic models.
Here is a list of the features that should make the proposed event definition and the
CTA acceptable candidates for standardization.
» The underlying formalism.
» Simple definitions for propagation delays and timing constraints.
» Simple two-valued logic (single threshold events).
» Glitches are both described and processed.
» Capability to mix different logic families and analog circuits.
s Clearly formulated mechanism (CTA) to transform continuous change of state
into a timed state sequence.
» Small set of primitives (CTA).
* Built-in processing of timing constraints hidden from the end user.
* Separate specifications for propagation delays, timing constraints and logic
function.
+» Systematic processing of unknown conditions.
* Acceptable performances (accuracy, speed, memory requirements).

» Model parameters similar to the one in use today.

5.5 Conclusion

If we consider the logic level of modeling abstraction as defined in chapter 1,
the combination of master slave events, continuous time automaton and continuity
preserving delay model is a more formal and rigorous approach than the classical logic
models. Inertial and similar delay models and logic models only monitoring timing
constraints are patches added to the logic function that bears little resemblance with
the continuous, causal and time invariant system they want to model. TA is a neat
high level formalism but it is not adequate for modeling continuous causal and time

invariant systems if fine timing details need be modeled. The proposed modeling

129

technique is a better and more accurate model than classical logic models and TA and

is easy to use. A summary of its key points follows.

Accuracy

» Because of the use of mater slave events, the timing accuracy in modeling the
transmission of information between devices is better than logic models with
and without strength factors.

» Timing accuracy in the device model is similar to the timing accuracy in other logic
simulator since the same parameters are used.

* Close events and the resulting behavior are more accurately modeled with CTA and
continuity preserving delay model than with other delay models including TA.

e The correctness and the completeness in modeling the behavior under timing
violation is improved compared with the other logic models and TAs. Although
it is possible to construct adequate models with the actual tools, it has never

been done.

Speed

« The simulation speed is slightly reduced compared to classical logic simulators. The
processing of master slave events is comparable with the processing of
strenght factors.

» The processing of timing constraints are as efficiently handled with a CTA than with
monitor functions or TA.

» The processing time of logic functions is the same in all simulators and depends on

the implementation.

Ease of use
 The logic model parameters used are similar to the parameters used by engineers
and compiled in data books.

« The small number of primitives built in the simulator simplifies their validation.

130

» Factorization of the propagation delay, the timing constraints and the logic function
greatly simplifies the construction of logic models for many parts.

In conclusion, master slave events, continuous time automata and continuity
preserving delay models represent an interesting alternative for classic threshold
based logic models. The resulting logic model is more accurate than classic models in
modeling fine timing details and we believe that the more rigourous model proposed
should be better in the long term for the specification, the analysis, the formal
verification and the testing of digital systems. In this chapter we have tried to
demonstrate that using the proposed modeling technique is practical and

advantageous compared to current modeling techniques.

Chapter 6

Conclusion

In this thesis we have studied the problems associated with the modeling and

the simulation of digital systems. Both theroetical and practical aspects have been
considered and a new modeling technique based on master slave events and
continuous time automaton is proposed. The new modeling technique neatly
integrates:

« the transmission time between logic devices

» the processing time (propagation delays) and

« the timed state sequence.

We shall now conclude by reviewing the results and suggesting new research

directions.

6.1 Summary

A digital system is a continuous, causal and time invariant system and
preserving these properties while constructing logic models is necessary to model fine
timing details. The problem of modeling digital systeins begins with the definition of a
logic circuit and then the description of a logic model for it.

The three hypotheses about input port, output port (logic signal) and logic
network describe how to partition an analog circuit into logic devices. In short, a logic
device is sensitive to threshold crossing.l A logic signal neatly traverses the threshoid
and a logic network consists of logic devices connected with ideal wires carrying logic
signals. In order to avoid using Kirchoff's laws in the analysis or the simulation of

logic circuits, it is necessary to assume time invariant loads. According to these

132

hypotheses, time varying loads, like switch networks, are analog circuits and have not
been consideied.

Fig. 6.1 summarizes the key ideas proposed here for the construction of logic
models. First, analog signals are transformed into sequences of slave logic events
using input thresholds. Input events are then combined and processed using a CTA.
Processing of the events consists in using timing constraints to transform continuous
change of state into a timed state sequence and generate master output events as
required. Then, for each output signal, a continuity-preserving delay model is used to
generate the sequences of output master events which are used to reconstruct the

analog signals.

Input Output
nodes nodes
[~ ~ ~. ! P
Analog J Input slave events | ___ _"> \ Output master events { Analog
signals preserving timing P, P preserving continuity signals
relationships | _ -~ ’ =
o - -’ P
Ld
A
Event combination, Continuity-
logic function, timing constraints preserving
and CTA (instantaneous) delay model

Fig. 6.1 Typica! logic mnodel for a logic device

On the surface, this model might seem very similar to the models used in
existing logic simulators, but because of the rigorous abstraction process that
preserves the relation with the physical reality, it differs on many important aspects:

« Use of analog signals is mandatory in logic simulation to model the fine timing

details associated with continuous systems like glitches.

« Use of distinct definitions for output and input events is also necessary.

Output events are used to describe the analog signals while the input

133

events are used to accurately model the event arrival time at each input
node.

» The transformation of continuous change of state into timed state sequence
absolutely requires input timing constraints and undefined state. Thus
the processing of undefined events is mandatory.

* CTA seems the most appropriate tool to transform continuous time into
discrete time. It neatly integrates the timing constraints with the logic
function while hiding their processing from the end user.

+ A continuity-preserving delay model is preferable to inertial and transport

delay models to properly describe close events on an analog signal.

6.2 Results

The usefulness of the above theoretical results has been demonstrated through
a prototype simulator. Use of signal based master slave events and CTA resulted in a
simple and efficient 2-valued (single threshold) logic simulator capable of processing
glitches. The CTA hides the processing of timing constraints and logic function from
the end user, thus simplifying the construction of logic models. Few CTAs are
required to model most logic devices making it an interesting candidate for primitive
models in VHDL. Because of its sound theoretical basis, CTA based logic simulators
clearly outperform threshold based simulators using adhoc timing constraints by
providing a simple and accurate solution to most modeling problems. To our
knowledge no other logic simulator preserves the continuity in the delay model and the
signal mode! while using a simple mechanism to perform discrete time abstraction.
The resulting simulator is comparable to logic simulators using transiticn times as far
as memory requirements, speed and timing accuracy are concerned. This modeling
technique provides a more accurate logic signal representation, a better model for the

physical phenomenon associated with propagation delay and a systematic method to

134

specify and process input timing constraints. It is also easier to use than other logic
modeling techniques and it closely matches the enginering approach. On the negative
side, the modeling technique is limited to unidirectional signal. However it still
permits the use of tri-state busses. Because it accepts and generates analog signals,
the proposed model easily interfaces with other circuit models in mixed mode
simulation. It was also demonstrated that CTA based models are easily extracted

and should reduce the compatibility problems in modern CAD systems.

6.3 Future work

We hope that we have provided enough cvidence of the importance of the
theory presented here and enough hints on how to use it to allow the continuation of
this work elsewhere. Both theoreticians and practitioners could benefit from using our
approach which has a clear abstraction that bears a close resemblance to the physical
reality, in particular, the causality among events and their timing relationships.

The master slave event concept is technology independent, produces simpler
timing specifications and is therefore more appropriate than threshold based events for
the specification of logic devices. Designers and manufacturers of logic devices,
standard cells or discrete devices, will benefit from using master slave events.

Even if model extraction, mixed mode simulation, worst-case specification and
logic simulation are directly affected, the most interesting avenue is the application of
CTA to other devices such as: microprocessor, RAM, serial busses (RS-232),
parallel busses (VME), communication protocol interfaces, communicating sequential
processes, delay insensitive devices, networks and more. We are currently using
CTAs to model neural networks and the 68000 microprocessor.

Theoretical research in timing analysis and formal verification will certainly
benefit from the specification mechanism for logic devices proposed here. For

example, use of CTA leads to a timed state sequence which in turn produces timed

135

constrained sequence of events. It will be interesting to study the relation between
timed state sequence and constrained sequence of events. It will also be interesting
to study how timed constrained sequences of events are combined depending on

whether they are mutually constrained as in SSC or asynchronous systems.

Reterences

General

(1]

(2]

(3]

[4]

A. R. Newton, "Computer-aided design of VLSI circuits," JEEE Proceedings,
Vol. 69, No. 10, pp. 1189-1199, Ocotber 1981.

A. R. Newton and A. L. Sangiovanni-Vincentelli, "CAD tools for ASIC design,"
IEEE Proceedings, Vol. 75, No. 5, pp. 765-776, June 1987.

A. C. Parker and S. Hayati, "Automating the VLSI design process using expert
systems and silicon compilation," [EEE Proceedings, Vol. 75, No. 6, pp. 777-
785, June 1987.

"Special issue on the future of Computer-Aided Design", JEEE Proceedings,
Vol. 78, No. 2, February 1990.

Device modeling and simulation

(5]

"Special issue on numerical modeling of processes and devices for ICs
(NUPAD 1), JEEE trans. on CAD, Vol. 7, No. 2, 1988.

Circuit simulation

(6]

(7]

[8]

(9]

L. W. Nagel, "SPICE2:A computer program to simulate semiconductor circuits,"
ERL memo ERL-MS520, University of California, Berkeley, May 1975.

W. T. Weeks, A. J. Jiminez, G. W. Mahoney, D. Mehta, H. Qassemzadeh and T.
R. Scott, "Algorithms for ASTAP - A network analysis program,” [EEE Trans.
on Circuit Theory, Vol. 20, No. 11, pp. 628-634, Nov. 1973.

G. D. Hatchel and A. L. Sangiovanni-Vincentelli, "A survey of third-generation
simulation techniques,” /EEE Proceedings, Vol. 69, No. 10, pp. 1264-1280,
October 1981.

A. R. Newton and A. L. Sangiovanni-Vincentelli, "Relaxation-based electrical
simulation,” IEEE trans. on CAD, Vol. 3, No. 4, pp. 308-330, October 1984.

{10] B. Hennion and P. Senn, " A new algorithm for third generation circuit simulators:

The one-step relaxation method”, 22nd Design Automation Conference, 1985.

137

[11] B. D. Ackland and R. A. Clark, "An event driven timing simulator for MOS VLSI
circuits", IEEE International Conferenece on Computer-Aided Design,
ICCAD 89.

[12] C. Visweswariah and R. A. Rohrer, "Piecewise approximate circuit simulator”,
IEEE trans. on CAD, Vol. 10, No. 7, July 1991.

Switch/circuit simulation

[13] R. Byrd, G.D. Hachtel, M.R. Lightner, and M. Heydeman, "Switch level
simulation-models: Theory and algorithms," in Computer Aided Design, A. L.
Sangiovanni-Vincentelli, Ed. Greenwich, CT: JAI press, 1985.

[14] J. P. Hayes, "A unified switching theory with applications to VLSI design,” IEEE
Proceedings, Vol. 70, No. 10, pp. 1140-1151, October 1982,

[15] D. Adler, "SIMMOS: a multiple-delay switch-level simulator,” In the
proceedings of the 23rd Design Automation Conference, pp. 159-163, 1986.

[16] Z. Barzilai, D. K. Beece, L. M. Huisman, V. S. Iyengar and G. M. Silberman,
"SLS - a fast switch-level simulator,” IEEE Trans. on CAD, Vol. 7, No. 8, pp.
838-849, August 1988.

[17]) C.Roy, L.-P. Demers, E. Cerny and J. Gecsei, "An object-oriented switch-level
simulator,” In the proceedings of the 22nd Design Automation Conference, pp.
623-629, 1985.

[18] I Spillinger and G. M. Silberman, "Improving the performance of a switch-level
simulator targeted for a logic simulation machine," IEEE Trans. on CAD, Vol. 5,
No. 3, pp. 396-404, July 1986.

[19] D. Tsao and C.-F. Chen, "A fast-timing simulator for digital MOS circuits,"
IEEE trans. on CAD, Vol. 5, No. 4, 1986.

[20] T. J. Schaefer, "A transistor-level logic-with-timing simulator for MOS
circuits," In the proceedings of the 22nd Design Automation Conference, pp.
762-765, 1985.

[21] I N. Hajj and D. Saab, "Switch-level logic simulation of digital bipolar circuits,”
IEEE trans. on CAD, Vol. 6, No. 2, 1987.

[22] R. Kao, B. Alverson, M. Horowitz and D. Stark, "Bisim: A simulator for
Custom ECL Circuits", IEEE International Conferenece on Computer-Aided
Design, ICCAD 88 .

(23] D.G. Saab, A. T. Yang and I. N. Hajj, " Delay Modeling and Timing of Bipolar
Digital Circuits", 25th ACM/IEEE Desing Automation Conferentce, 1988.

138

Macro-model/circuit simulation

[24] M. D. Matson and L. A. Glasser, "Macromodeling and optimization of digital
MOS VLSI circuits,” IEEE trans. on CAD, Vol. 5, No. 4, pp. 659-678, October
1986.

[25] G. Ruan, J. Vlach and J. A. Barby, "Current-limited switch-level timing
simulator for MOS logic networks," [EEE trans. on CAD, Vol. 7, No. 6, 1988.

[26] L. M. Brocco, S. P. McCormick and J. Allen, "Macromodeling CMOS circuits for
timing simulation", JEEE trans. on CAD, Vol. 12, No. 12, December 1988.

Logic simulation

[27] "Fundamentals of mathematics, Vol. I1I-Analysis," Edited by H. Behnke, F.
Bachmann, K. Fladt and W. Siiss, Translated by S. H. Gould, The MIT press,
1986.

[28] VLSI Systems Design staff, "1987 survey of logic simulator,” VLSI Systems
Design, February 1987, pp. 71-86.

[29] SILOS II User's manual, SIMUCAD Inc.,Union City, 1990.

[30] K. A. Sakallah, S. W. Director, "SAMSON: A mixed circuit-logic-level
simulator,” in Computer Aided Design, A. L. Sangiovanni-Vincentelli, Ed.
Greenwich, CT: JAI press, 1985.

[31] D. R. Coelho, "The VHDL handbook", Kluwer Academic Publishers, Boston.

[32] D. R. Coelho, "VHDL: a call for standards”, Proceedings of the 25th Oesign
Artomation Conference, 1988.

[33] M. R. Lightner, "Modeling and simulation of VLSI digital system", Proc. IEEE,
vol. 75, no. 6, pp. 786-796, June 1987.

[34]) H.-Y. Chen and S. Dutta, "Timing model for static CMOS gates", IEEE
International Conterence on Computer-Aided Design (ICCAD-89).

[35] D. Overhauser, 1. Hajj, "Tabular macromodeling approach to fast timing
simulation including parasitics”, IEEE International Conference on Computer-
Aided Design (ICCAD-88).

[36] A.-C. Deng, "Piecewise-linear timing delay modeling for digital CMOS circuits",
IEEE transactions on circuits and systems, Vol. 35, No. 10, Oct. 1988.

[37] J. P. Caisso, E. Cerny, N. C. Rumin. "Interconnection delays in hierarchical timing
simulation”, IEEE International Symposium on Circuits and Systems, 1989.

139

[38] M. Bafleur, J. Buxo, J. P. Teixeirsa, I. C. Teixeira, "A logical timing simulator for
CMOS circuits based on an accurate formulation of the propagation delay”,
European Conference on Circuit Theory and Design, 1989,

[39] C. Zukowski and D.-P. Chen, "Variable reduction in MOS timing model", IEEE
International Conference on Computer Design (ICCD-88).

[40] B. P. Ziegler, "Multifacetted modelling and discrete event simulation," Academic
Press, 1984.

[41] L. M. Augustin, "Timing models in VAL/VHDL", IEEE International
Conferenece on Computer-Aided Design, ICCAD-89 , Los-Alamitos.

[42] J. P. Hayes, "Digital Simulation with multiple logic values”, IEEE trans. on CAD,
Vol. 5, No. 4, April 1986.

[43] TTL data books, Texas Instruments Inc., 1984-90,
[44] CMOS data book, Motorola Semiconductor Products Inc., 1988.
[45] 2-um CMOS Standard Cell data book, Texas Instruments Inc., 1986.

[46] J. Wyall et al., "Waveform bounding for VLSI timing," Proc. IEEE Intl. Conf. on
Comp. Des., IEEE, New-York, 1983.

[47] R. A. Saleh, A. R. Newton, "Mixed-Mode Simulation", Kluwer Academic
Publishers, 1990.

[48] "Verilog-XL reference manual”, Vol. 1 & 2, Cadence Design System Inc., 1991.
[49] James R. Armstrong, "Chip level modeling with VHDL", Prentice-Hall, 1989.

[50] R. Lipsett, C. Shaefer, C. Ussery, "VHDL: Hardware Description and Design”,
Intermetrics Inc., Kluwer Academic Publishers, 1989.

[51] Dwight D. Hill and David R. Coelho, "Multi-level simulation for VLSI design”,
Kluwer Academic Publishers, 1987.

[52] "PSPICE Circuit Analysis”, MicroSim Corp., 1991.

Real time systems

(53] E. A. Emerson, "Temporal and modal logic”, In the Handbook of Theoretical
Computer Science (J. Van Leeuwen, ed.), Volume B, North-Holland, 1990.

[54] R. Alur, T. A. Henzinger, "Real-time logics: Complexity and expressiveness”,
in Proc. of the S5th Annual IEEE Symp. on Logic in Computer Science, 1990).

[55] R. Alur and D. Dill, "Automata For Modeling Real-Time Systems"”, 17th
ICALP, Lecture notes in Computer Science 443, Speinger-Verlag, 1990.

140

[56] J. C. Mitchell, "Logic column 1: Time for logic", Computer Science Department,
Standford University.

Model extraction

(57] F.-C. Chang, C.-F. Chen and P. Subramaniam, "An accurate and efficient gate
level delay calculator for MOS circuits,” In the proceedings of the 25th Design
Automation Conference, pp. 282-287, 1988.

[58] M. Boehner, "LOGEX - An automatic logic extractor from transistor to gate
level for CMOS technology," In the proceedings of the 25th Design Automation
Conference, pp. 517-522, 1988.

[59] S. H. Hwang, Y. H. Kim and A. R. Newton, "An accurate delay modelling
technique for switch-level timing verification,” In the proceedings of the 23rd
Design Automation Conference, pp. 227-233, 1986.

[60] D. G. Saab, A. T. Yang and I. N. Hajj, "Delay modeling and timing of bipolar
digital circuits,” In the proceedings of the 25th Design Automation Conference,
pp- 288-293, 1988.

[61] J. J. Cherry, "Pearl: A CMOS timing analyser,” In the proceedings of the 25th
Design Automation Conference, pp. 148-153, 1988.

[62] T. Tokuda, K. Okazaki, K. Sakashita, I. Ohkura and T. Enomoto, "Delay-time
modeling for ED MOS logic LS1," [EEE trans. on CAD, Vol. 2, No. 3, pp. 129-
134, July 1983.

[63] R. E. Bryant, "Boolean analysis of MOS circuits," IEEE trans. on CAD, Vol. 6,
No. 4, pp. 634-649, July 1987.

[64] J. K. Ousterhout, "A switch-level timing verifier for digital MOS VLSI," [EEE
trans. on CAD, Vol. 4, No. 3, pp. 336-349, July 1985.

Special devices

[65] C. A. R. Hoare, "Communicating Sequential Processes", Prentice-Hall, 1985.

[66] J. J. Horpfield, "Neural Networks and Physical Systems with Emergent
Computational Abilities”, Proc. of the National Academy of Sciences, vol. 79,

pp. 2554-2558, 1982.

[67]) C. Mead and L. Conway, "Introduction to VLSI systems", pp. 242-261,
Addison-Wesley, 1980.

[68] C. E. Molnar, T. P. Fang and F. U. Rosenberg, "Synthesis of delay-insensitive
modules,” Proc. 1985 Chapel Hill Conf. VLSI, Chapel Hill, NC, May 15-17, pp.
67-86, 1985.

141
[69] F. U. Rosenberg, C. E. Molnar, T. J. Chaney and T. P. Fang, "Q-modules:
Internally clocked delay insensitive modules," /EEE Trans. on computer, Vol. 37,

No. 9, pp. 1005-1018, September 1988.

[70] M68000 microprocessor user's manual, Motorola, Prentice-Hall, 1989,

Appenalix A
Binary Decision Theorem (BDT)

Although synchronization of asynchronous inputs in a Synchronous Sequential
Network (SSN) is not per se a modeling problem, it is nevertheless an important
problem in digital system. It is necessary to understand it in the development of
complete models for latches, flip-flops and synchronous sequential circuits. The
formal approach used here allowed us to demonstrate a simple theorem about binary
decision. The theorem does not change the well known truth about the impossibility of
reliable synchronization, but it is simpler and more general than previous metastability

theorems.

1.0 Introduction

The synchronization of asynchronous inputs in SSN has haunted digital system
designers for decades. It is now a relatively well known problem, but its effects are
still underestimated. In asynchronously interacting SSN, the system's reliability
depends directly on the synchronizers. The synchronization problem can be resolved
at three levels. One can take care of the problem by special design techniques like
self-timed systems [l], delay insensitive systems [2] or Q-modules [3]. These
approaches assume some communication protocol between circuit elements. The
resulting circuits are correct by construction and the synchronization problem is
eliminated. The synchronization problem can also be resolved at digital circuit level as
seen in [4]. Typical successful circuits for solving the synchronization problem are
variations of the stoppable clock {5, 6]. For fixed clock systems, it is demonstrated

that the use of redundancy, masking [7] and schmitt trigger [4] to reduce the

143

probability of synchronization failure is not effective. For the special case of
synchronizing two systems with clocks of approximately equal frequency, the problem
has been successfully resolved {8]. Finally, the last approach is to design better
synchronizers [31].

In studying the synchronization problem, researchers have identified what is
believed to be the fundamental problem-maker: metastability. Metastability
describes the behavior of a bistable device, like a flip-flop, that sits between two
stable states for a prolonged period of time. Since a binary decision is associated with
the stable states of the device, metastability leads to indecision. The metastable
state of a synchronizer might then cause the failure of the sub-system using the
signal, leading to what is called a synchronization failure. Synchronization failures
might be caused by flip-flops if the set-up and hold time requirements are not met.
Although the probability of a device entering a metastable state is extremely small, it
is not zero. Therefore, reducing the failure rate is a prime concern in designing
synchronizers.

The problem of synchronizing asynchronous inputs has evolved around
metastability, so most of the past research has been devoted to it. In the early days,
a heuristic approach was used and the hard-to-reproduce problem was merely
observed and described. During this time, the metastable behavior was not well
understood. For example, it has taken some time for people to accept the fact that
perfect synchronization is impossible [9]. That was the dark age of metastability; it
was controversial, subtle and elusive. In 1976, Couranz and Wann were the first to
shed some light on this problem [10]. They explained the metastable behavior of
bistable devices using a SUP (single unstable pole) model. Single pole instability is
not the only model, nor is it very precise; but it does provide enough insight to predict
metastable behavior. Chaney and Molnar [11] have observed sinusoidal

metastability which can only be explained using a pair of unstable poles.

144

Nevertheless, the SUP model has been used by all subsequent authors. Couranz and
Wann used a probabilistic medel to explain the escape from the metastable state, but
a simpler deterministic model was proposed soon afterwards [12]. The deterministic
model is now widely accepted and used for the analysis and prediction of the MTBF
(mean time between failures), a failure being characterized by an undecided output
logic level (in the 'x' range), after a bounded decision time. The understanding of this
phenomenon has evolved from the measurement of the metastable behavior[11-13],
to simple analytical model, [10, 14-19], and finally to complex optimized models
[20-22]). Early work on metastable behavior was focussed at TTL, ECL and tunnel
diode flip-flops while most of the recent work has been done on MOS. Even if the
problem was well understood, the avoidability of metastable behavior or the
possibility of deciding on real value remained unanswered. In 1981, Marino[23],
presented theoretical proof of the unavoidability of metastable behavior in bistable
devices used as synchronizers.

Since then, better test setups have been used, and more data publishied on the
metastable behavior. One especially interesting set-up was used by Rosenberg and
Chaney([24]. They designed a complete IC including the device under test and the test
set-up. They have shown that the evaluation of T, can be done precisely, from
external measurements. Basically, T is a measure of the ability of a synchronizer to
escape from the metastability region. Data from various sources have been compiled
by Chaney[25]. In his compilation, the SUP model is used and the model parameters
for the various synchronizers reviewed are also compared.

In this appendix, the theoretical aspects associated with metastability are
reviewed and a new theorem is proposed about the impossibility of taking a binary

decision in continuous systems.

145

2.0 Analysis of the metastability phenomenon

Metastability has always been associated with digital synchronization. In fact,
it is a purely analog phenomenon. Metastability is a name given to the behavior of
bistable devices under certain driving conditions. In this section it will be defined as
such and an example of a typical metastable circuit will be analyzed. Metastability is
a general behavior of all systems with two or more stable states. A stable state is
the result of an unstable characteristic, in the linear system sense, and a nonlinearity,
usually the saturation of a component. A simple linear system definition of
metastability is:

"A system is metastable at a time ty, if the state of the system at tx is

part of a metastable solution. A metastable solution is a state

trajectory for a specified input and an initial state which cancels the

a A

/
e > 1

A
d
— t
< —t— >
Metastable Switching to a

stable state

Figure 1. Examples of metastable behavior

146

unstable poles of the system. The initial state is called the metastable

condition."

The metastability phenomenon manifests itself in various forms. Fig. 1
illustrates four types of metastable behavior. The signal of Fig. 1a corresponds to the
classic text book example as observed in flip-flops [29]. The signal on Fig. 1b
illustrates sinusoidal metastability as described in {11] Metastability is not
necessarily undefined, Fig. 1c or simple, Fig. 1d.

A more general definition will be given later. The hysteresis comparator of
Fig. 2 is a bistable device and is therefore subject to metastaiility. Metastable
conditions and the corresponding solutions have been computed analytically for three
type of inputs: constant, ramp and exponential. Analytical results are given in Table 1,

and numerical examples in table 2.

Rb
9k
AP -
Ra
1K Fix
Vi Vo
A
Vo
‘5
Notes: 1. A = 1000
» Vi

2. A*Ve is limited to . 0.55
tVsat (5 volts) 0.55

Fig. 2 Hysteresis comparator model
and DC characteristic

Input signal

Metastable condition

147

Metastable solution

vi(t) Voo (initial state) vo(t) Vo
A Va0
Vio T:i—;Vio Va0 "?0"
Vio m;T Voo m
Vip + mjt Ai[l_ko - (1_‘&0)2] Voo + mgt —s(l-+ :2(-)-
Ai
mg = -l':-A—O'mi

AjV; \Y
Viget/T ' lqr Voo et —2(%

I-Ao-T S+T

Table 1. Metastability for constant,

Input signal

Metastable condition

mp and exponential inputs

Metastable solution

vi(t) Voo (initial state) vo(t) Vo
0. 10 Voo
0.1 S = 11 VOO S
0.1 0.1 10 197 Voo My
0.2-0.1t S 37 T899 Mo =17 Voo + myt e -;-2(-
0.1 Vo0
-t - R . AU
0.2e¢ e] 1.8 M s+1

Table 2 Numerical results, simple waveforms

The input signals in Table 2 produce simple linear metastable solutions that

can be easily predicted. In fact, metastability can be very complex to analyze. To

illustrate this, the hysteresis comparator of Fig. 2 has been exercised using a more

complex waveform. A simple simulation has given the results of Table 3 and Fig. 3.

In this simulation, the hysteresis comparator rises in a ramp, saturates and

148

desaturates. Note that at l.6usec it gets out of metastability, because of the limited

accuracy (16 digits) of the simulation.

Input signal Metastability condition Metastable solution
vi(t) Voo (initial state) vo(t) Vo
10 488 .
0.5-0.5t forO<t<5.57(-77x5g + 1.484204884E-6| See Fig. 11
-0.05 for t > 5.5/7
Table 3 Numerical results, complex waveform
o
£ '—11 ! T T, ST e
.?./ tt —/“ LN ' Vi
0 "—-'.,c-— oe! ..Vo
2% - AVe
e
6
¢ ' 2 3 4 5 $ >
Metastable
Fig. 3. Metastability of complex waveform
This forces us to define metastability in more general terms.
Metastability

"A system S is metastable at a time ty, if the state of the system at tx

is part of a metastable solution. A metastable solution is a state

trajectory for a specified input and initial state leading, at t—yeo, to the

output being in the x-range. The initial state is the metastable

condition ."

149

3.0 Practical problem description

A major design problem for synchronizers is the reduction of the failure rate.
We will first explain the design requirements of a synchronizer and the notion of
synchronization failure. The problem definition given here is based on a generally
accepted behavioral model and follows the idea proposed by Marchegay [26]. A
typical synchronizer is shown in Fig. 4.

There are two inputs, the clock C and the asynchronous signal D,, and one
output, the synchronized signal D;. The two input signals interact asynchronously

modelled roughly by operating frequencies f and fy. The synchronizer is expected to

Cc
* Master events
4+ Slave events
C
|
4
: >
! :
L
Da >ty P
: 4-r+r4'!
S >
! Px oy oz
Response for x
Ds
T DD S O OSSOSO Res o(nsetto;a){)l)
B T, TS rrer ey 4 metastable
)(; T A T ! 44. i f\. -
! : : :
- ty g
tu Response for 2

Fig. 4. Synchronization problem

150

provide a defined logic level (0 or 1), within a bounded decision time after D, is
sampled (clocked); otherwise, a synchronization failure has occurred. Fig. 4
illustrates the output signal for three different input timings. During the decision
period, the signal is allowed to have any value, but it must settle to a known logic
level afterwards. The middle waveform illustrates a synchronization failure.
3.1 Uncertainty interval and delay

In the following discussion, the slave events are used for inputs and a range of
slave events are used for the output to model the devices that might use the
synchronized signal. Two useful parameters associated with logic signals in
synchronous systems are now defined. For any digital signal in a synchronous
sequential system, there is a time interval during which an undefined signal (value in
the x range) might cause a failure in the device using the signal. The delay from the
system clock to the beginning of this interval is defined as the uncertainty delay, t4,
and the length of the interval is the wncertainty interval, ty. In the case of a

synchronizer, L..ere are uncertainty delays and uncertainty intervals at the input, D,

and at the output, D, respectively lubelled with t:,, tlu, t((), and t?, in Fig. 4. At the

output of a synchronizer, the uncertainty delay and uncertainty interval represent the
interval during which use of Dy by a receiver may cause a failure. The uncertainty
delay is often called the decision time, since it corresponds to the time allowed for the
synchronizer to decide on the input signal. At the input, the uncertainty interval

represents the interval during which synchronizer failure may occur. Of course, the

. . 0 0 . . . i
output uncertainty interval, t,, and delay, ty, and the input uncertainty interval, t,, and
i .
delay, ty, are inter-related.

3.2 Coherence fault
When a synchronous signal is used by more than one sub-system, as

exemplificd in Fig. 5, the uncertainty interval of this signal depends on the uncertainty

151

intervals of all the sub-systems. A cohierence fault may arise when the receiving
subsystems do not see the same logic value. To avoid such a fault, the equivalent

uncertainty interval and delay for the signal Dg can be derived:

min| i
tg = [t:,j] (N

tw= i |tgj+ity| -ta (2)

o max/|.i i] o
j

i i
where tg; and t,; are the input uncertainty delay and interval for subsystem j.

In summary, to avoid synchronization failure, the synchronizer ensures that the

output signal never traverses the undefined x region during the uncertainty interval.

Sub-System
#1

Sub-System
#2

Sub-System
#3

Ds 4 i i

S < B :
-— 1 >

Fig. 5. Coherence faults

152

3.3 Mean time between failure
The MTBF of a synchronizer is given by [69]:
1

MTBF = = 3)
tu fc fd

Hence the reliability of a synchronizer depends on the frequency of interactions
fcfd and the input uncertainty interval t:,. The obvious approach to improve the MTBF,

. L . i
is to reduce the input uncertainty interval of the synchronizer, t,.

4.0 Theoretical problem: Unavoidability of metastable behavior
An important theoretical question is: "Can the probability of failure of a
synchronizer be reduced to zero?' Many researchers had suggested that
metastability could not be avoided, but it took some time before convincing proofs
were published. The problem was studied in detail by Hurtado and Elliot [27], Marino
[23] and Kleeman and Cantoni [28]. Marino proved that metastable behavior is
unavoidable when bistable devices, such as flip-flops, are used as synchronizers.
Marino's hypotheses and conclusions are reviewed in this section. Marino first
assumes that the decision element satisfies four axioms regarding the system
operation. These axioms together state that the decision element is a continuous,
causal and time invariant system and that it possesses states which are sufficient to
predict future behavior. In addition there are four important hypotheses, restricting the
type of system to which his conclusions apply.
H1. The decision element is a bistable device (or multi-stable), like a flip-flop
H2. For the decision element, there exists a common input idle range. An input
idle range is a range on the input signal(s) such that if the input(s)
varies within it, the logic state will not change. It is common if the same

range is valid for both logic states. For example, if the inputs of a SR-

153

latch are in the range from 0 to 0.8volt, then the latch will keep its state,
this is a common input idle range since the range is valid for both logic
states.

H3. The decision element is driven by a family of switching waveforms, for
example, a set of pulses of varying width, generated by different
asynchronous input timing.

H4. Some members of the family of switching waveforms induce a '0' decision
and others a 'l' decision. For example, short pulses don't set the latch
and large pulses do.

In addition, Marino bases his analysis and proof on evaluating the state of the
decision element rather than the output signal. It is assumed that the state is
representative of the decision. The basic conclusion is that the logic state could
always be undefined for any period of time. Even if these conclusions are useful in
some areas, they cannot be generalized to the binary decision problem. It will be
demonstrated that there exist decision elements using bistable devices not meeting
the above hypotheses.

Under these conditions, it was proven that metastability could not be avoided.
The assertion is insufficient, as it does not address the overall synchronization
problem. Moreover, it only covers bistable devices (multi-stable indirectly), assumes
the existence of a common idle range and uses a specific family of waveforms. These
hypotheses weaken the result significantly. Kleeaman and Cantoni [74] have
generalized H3 to all waveforms having the topological property of connectivity, but
this is still insufficient.

Counter-example

Here is an example where Marino's proof does not apply and where a more

general model is required. In the example shown in Fig. 6, Marino's hypotheses are

not met and yet it is a digital synchronizer built around a bistable device. The circuit

154

consists of an analog sampler, a waveform control circuit and an hysteresis
comparator as a decision element. The capacitor is reset to zero before a sample and
the family of waveforms that drive the decision element are shown on Fig. 6 This
circuit is obviously capable of decision, since for certain sampled values the output is
-5v (L) and for some others it will be +5v (L}).

The hypothesis H2 concerning the common input idle range cannot be applied.
No common input idle range to the synchronizer can be defined. The family of

waveforms is simply not composed of switching waveforms like those in Marino's

element

Cc
Synchronizer
R R b
]
t
]
]
' Vs
D " b I Q
' :
\ Sampler '
' - Decision :
! '
:)

t = 0 correspond to the clock's rising edge

Fig. 6. Example of a synchronizer not
meeting Marino's hypothesis

155

paper. In addition, the metastable solution for this family of waveform can not be
distinguished from the normal logic state. Therefore Marino's theorem does not apply.

More formally, Marino has first defined a region of attraction, A(L;, u), for each
logic state Lj, as the states for which any input u eventually bring the system to the
state Li. Marino has then defined a region of indecision (RID) as the set of system
states X, minus the sets A(L;j, u).

RID(Ly, Liu) =2 - (A(Lo. u) VAL u)) (4)

Or in simple terms, the above equation divides the initial state space X of the
decision element in three parts. For the stable state 0, there is a region of attraction,
the set of states called A(Lg, u): similarly, for the state 1, there is a set of states
called A(Lp, u). The region of indecision consist in all the states being in neither set,
In our example, it happens that the region of indecision (metastability) is the same as
the region of attraction toward 0. Thus RID(Lg, L1, u) € A(Lg, u), which contradicts

equation (4).

5.0 Binary decision theorem (BDT)

It was just demonstrated that Marino's conclusions do not apply to all systems
and an example of a circuit not meeting all hypotheses was given. Our approach is to
construct the class of binary decision problems, and prove that the class cannot be
solved. Then instances from the class are examined: decision on real value,
synchronization and existence of metastability.

In digital systems, binary decisions are often required, for example in the
synchronization of asynchronous inputs in synchronous systems or in arbiter circuits.
A binary decision element is a device that possesses two stable states corresponding
to the decision outcome. In general, the output of a decision element indicates the

decision by taking the appropriate value (0 or 1). The binary decision problem is:

156

Given some input parameter on which a decision must be made, a binary
decision element and an output variable to indicate the decision, a binary

decision is obtained if the output variable range is such that for some values of

the parameter the range of the variable is Ry and for the other values the range

is Ry and that the ranges Rg and Ry do not overlap, even at the boundaries.

The question is: Can we construct a binary decision element?

The Binary Decision Theorem (BDT) proves that if the parameter is
continuous and if the decision element is a continuous, causal and time invariant
system, then indecision is always possible.

Since all devices are continuous, causal and time invariant, the binary decision
problem will be studied with the model shown in Fig. 7. The system S represents the
decision element. It is driven by the input signal up(t) and the decision appears on the
output signal vp(t).

Assumptions: 1. S is a continuous, causal and time invariant system as defined

in [23].

System S

v, (t
Yp U function: p U

¢

state space: &

- s w oo o e

Fig. 7. Logic device

157

2. up(t) is a function dependent on the continuous parameters p and t
(time). Varying p generates a family of parameterized input
"waveforms".

3. vp(t) is the corresponding output of S for a given up(). In
particular, from causality, we assert that vp(t") may depend on
up(t) Yt < t' but does not depend on up(t) Vet

The device § must make a binary decision based on the arbitrary parameter p
and the outcome of the decision must appear in the output variable v. The decision at
time t' is based on the input up(t) for time up to t' and appear at the output as vp(t').
The range of the output variable must consist of two non-overlapping sub-ranges.
The continuous range of the output variable is divided into three sub-ranges: O-range,
l-range and X-range. For a given up(t) € Up, a decision is obtained if
vp(t) € O-range or vp(t') € 1-range and indecision occurs if vp(t') € x-range.

The question we wish to answer: Can we prove that the x-range is
necessarily non-empty? The proof is divided in three parts: mathematical premises,

system model and the theorem itself.

1) Mathematical premises: The mathematics of continuous functions will be required
in the proof. We will state the pertinent theorems without proof]30].

Theorem A. Continuous function on compact space

Let M be a compact space, i.e. a bounded closed set in a Cartesian R", and f a

continuous function, then the image f(M) is also compact.
Theorem B. Continuous function on compact connected space

In addition, if M is connected, then f(M) is also connected.

158

Theorem C. Continuous mapping

If a real continuous function on a connected space has an interval for its image,

then, between any two of its values, o and B, it assumes every intermediate

value y (o <y < B).

2) System model: The model assumed in the proof is the system model used for

continuous physical system. It has a state s € £ and is modeled by a continuous
function ¢, or more formally:

Zz{slsisthestateofS} Z =RxRxR .. xR=Rm

Each Real element (R) in X is a c¢r .tinuous state variable.
Up= {up(t) | up(t) is a parameterized input function }
Each element of Uy is a function of the parameter p and the time t:
up(t): RxR+ -R
@: ZxUpxR* - R

The function ¢ maps an initial state, s € Z, an input motion up(t) € Up
on the interval [0, t], and the time, t € R*, into R, the value of vp(t) at

time t.
vp() =@ (s, up, 1)
3) Theorem: the Binary Decision Theorem (BDT) is:

"For an arbitrary t', if 3 po, py such that vp,(t') € O-range and vp,(t') € l-range,

then V xe x-range, 3 px such that vp, (t)=x."

159

In other words, if there are inputs which lead to O and 1 decision at any time ¢,
then any output value in the x-range (indecision range) is also possible at time
t' due to some other input waveform. Notice that the theorem only assumes

hypotheses H3 and H4 used in Marino's proof.

Proof - Since we are only interested on the mapping of the parameter into an
output value at time t, nothing need be assumed about the initial state and the

actual t. So, for all initial state s € Z, and for any time t € R*:

1. pe R, and the range of p is a bounded connected space, by hypothesis.
2. vp= (s, up, t) is a continuous function, according to the system model.

3. The image f(p) is an interval, by hypothesis.

4. 3 po, p1 such that vp(t') € O-range and vp,(t) € I-range, else there is no

decision.

Since f(p) is a real continuous function having an interval for its image, by

theorem C, between any two of its values, vp,(t) and vy, (U), it assumes every
intermediate value vpx(t') € x-range and v,(t') < vpx(t') < vp (U'). Therefore,
V x € x-range, 3 px such that vp, (t')=x.

Q.E.D.

6.0 Application of the BDT

Here a few instances of the class of binary decision problem are reviewed.
6.1 BDT and Decision on Real Value (DRYV)
Suppose the object of the decision is the initial valuc vy(0) (relative to t') and

Up is the set of all possible signals such that up(0) forms a continuous range by

160

varying p. Clearly there are inputs up,(t) and up,(t) that lead to vpo(t) and vp (1) in

the 0 and 1 ranges respectively, else no decision is required. Then from BDT, we get:

DRV: V x € x-range, 3 px such that vp, (t')=x, and indecision is inevitable.

It means there is an input function up, (t) such that vp, (t)=x for all x in the

x-range. The above scenario is illustrated in Fig. 8.

Parameter
range
Family of parameterized
up (t) input functions
-
Output signal
v () 4
b —
1
X
0
e

Fig. 8. Decision on Real Value (DRYV)

6.2 BDT and synchronization

Synchronization deals with digital events and is defined as follows. On an
asynchronous signal, the events can occur at any time with respect to a reference
event (clock). On a synchronous signal there exists an empty uncertainty interval in
respect to the reference event during which no events will occur. A perfect
synchronizer would generate a synchronized signal from an asynchronous signal. The
synchronization problem is formally analyzed using the BDT as follows.

Returning to the synchronization problem previously introduced (Fig. 4), the

signal Dy corresponds to uy(t) ana ihe signal Dy to vp(t). The occurrence of the clock

161

uy (©
i p .
T 11 arameter range -
vp) :
v e
'm...lJ;J + +{'.qQ-;... t

Fig. 9. Formal model for synchronization

event (reference event) is assumed to be at t=0. The object to be decided on is the
delay between the occurrence of the clock event (t=0) and the occurrence of an
asynchronous event on u,,(t), as shown in Fig. 9.

So in this application of the BDT, we treat p as the parameter representing the
variations of the delay. Accordingly, if by varying p, we get vy(t') in the O-range for
some p=pg and in the 1-range for some p=py, and if Vy, separates the () and 1 ranges,
then:

V Vi, 3 px such that vy, (1)=V Ty
SYNCHRONIZATION:

Therefore, 3 px such that there is an event at t=t'.

Because BDT is valid for arbitrary t', this further implies an output event can
occur at any time. Therefore an empty uncertainty interval cannot be produced and Dy
cannot be synchronized with respect to the reference event.

6.3 BDT and the existence of metastability

According to the definition of metastability given in section 2, a metastable
solution exists if the output can be in the x-range at t—eo. In the BDT, the value of t'
can be arbitrarily large; therefoe, the output can be in the x-range at t—eo and there

exists a metastable solution.

7.0
(1]

(2]

(3]

(4]

[5]

(6]

(71

(8]

(9]

(10]

[11]

[12]

[13]

[14]

[15]

162

References

C. Mead and L. Conway, "Introduction to VLSI systems"”, pp. 242-261,
Addison-Wesley, 1980.

C. E. Molnar, T. P. Fang and F. U. Rosenberg, "Synthesis of delay-insensitive
modules," Proc. 1985 Chapel Hill Conf. VLSI, Chapel Hill, NC. May 15-17, pp.
€7-86, 1985.

F. U. Rosenberg, C. E. Molnar, T. J. Chaney and T. P. Fang, "Q-modules:
Iniernally clocked delay insensitive modules," /EEE Trans. on computer, Vol. 37,
No. 9, pp. 1005-1018, September 1988.

L. Kleeman and A. Cantoni, "Metastable behavior in digital systems," IEEE
Design and test of Comp., December 1987, pp. 4-19.

Y-P. W. Lim and J. R. Cox, "Clocks and the performance of synchronizers,"
Proceedings of the IEE-purt E, Vol. 130, pp. 57-64, 1983.

D. M. Chapiro, "Globally-asynchronous locally-synchronous systems
reliability,” Ph. D. Dissertation, Standford University, 1984.

L. Kleeman and A. Cantoni, "Can redundancy and masking improve the
performance of synchronizers," /[EEE Trans. on computer, Vol. 35, pp. 643-646,
1986.

W. K. Stewart and S. A. Ward, "A solution to a special case of ihe
synchronization problem', /EEE Trans. on computer, Vol. 37, pp. 123-125, 1988.

E. G. Wormald, "A note on synchronizer or interlock maloperation,” /EEE Trans.
on computer, Vol 26, pp. 317-318, 1977,

G. R. Couranz and D. F. Wann, "Theoretical and experimental behavior of
synchronizers operating in the metastable region," /EEE Trans. on computer,
Vol. 24, pp. 604-616, 1975.

T. J. Chaney and C. E. Molnar, "Anomalous behavior of synchronizer and arbiter
circuits," [EEE Trans. on computer, Vol 22, pp. 421-422, 1973.

B. Liu and N. C. Gallagher, "On the metastable region of flip-flop circuits,"/EEE
Precedings, Vol. 65, pp. 583-585, 1977.

G. Elineau and W. Wiesbeck, "A new J-K flip-flop for synchronizers,” /EEE
Trans. on computer, Vol. 26, pp. 1277-1279, 1977.

D. J. Kinninment and J. V. Woods, "Synchronization and arbitration circuits in
digital systems," Proceedings of the [EE., Vol. 123, pp. 961-966, 1976.

S. T. Flannagan, “Synchronization reliability in CMOS technology,” [EEE J.
Solid-State Circuits, Vol. 20, pp. 880-882, 1985.

[16]

[17]

(18]

[19]

(20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

163

W. Fleischhammer and O. Dortok. "The anomalous behavior of Flip-Flops in
synchronizer circuits," I[EEE Trans. on computer, Vol. 28, pp. 273-276, 1979,

H. J. M. Veendrick, "The behavior of Flip-Flops used as synchronizers and
prediction of their failure rate',” IEEE J. Solid-State Circuits, Vol. 15, pp. 169-
176, 1980.

A. Albicki and T. A. Jackson, "Simulation of NMOS flip-flops under
asynchronous inputs,” In the proceeding of the IEEE 1983 Custom Integrated
Circuit Conference, Rochester, pp. 239-242.

N. A. Hossri, P. Marchegay and G. Lacroix, "Formulation of the uncertainty
graph of a CMOS bistable circuit," Modelling and Simulation & Control, Vol. 8-2,
1986.

H. J. M. Veendrick, "Design aspects and reliability of a synchronizer made in
MOS technology,” 1In the proceeding of the Fifth European solid state circuits
conference - ESSCIRC 79, Southaimpton, England.

T. A. Jackson and A. Albiki, "Reduction ot the probability of synchronization
failurec in NMOS systems through proper Flip-Flop design,” In the proceedings
of the Sixth Biernal University/Government/Industry Microelectronics
Symposium, 1985, Auburn.

J. H. Hohl, W. R. Larsen and L. C. Schooley, "Prediction of error probabilities for
integrated digital synchronizers,” IEEE J. Solid-State Circuits, Vol. 19, pp. 236-
244, 1984.

L. R. Marino, "General Theory of Metastable Operation,” IEEE Trans. on
computer, Vol. 30, pp. 107-115, 1981.

F. Rosenberg and T. J. Chaney, "Flip-flop resolving time test circuit,"” IEEE J.
Solid-State Circuits, Vol. 17, pp. 731-738, 1982.

T. J. Chaney, "Measured flip-flop responses to marginal wiggering,” IEEE Trans.
on computer, Vol. 32, pp. 1207-1209, 1983.

P. Marchegay, P. Nouel, E. Gamier and G. Lacroix, "Coherence faults of the
random access sequential network,” In the proceeding of the FTCS 13th annual
international symposium on fault-tolerant computing (IEEE), 1983, Milan.

M. Hurtado and D. L. Elliot, "Ambiguous behavior of logic bistable systems,”
Proceedings of the 13th annual Allerton conterence on circuit and system theory,
University of Illinois at Urbana-Champaign, Oct. 1975, pp. 605-611.

L. Kleeman and A. Cantoni, "On the Unavoidability of Metastable Behavior in
Digital Systems," /EEE Trans. on computer, Vol. 36, pp. 109-112, 1987.

W. L. Fletcher, "An engineering approach to digital design,” Prentice-Hall,
Englewood Cliffs, N.J., 1980.

164

[30] "Fundamentals of mathematics, Vol. Ill-Analysis," Edited by H. Behnke, F.
Bachmann, K. Fladt and W. Siiss, Translated by S. H. Gould, The MIT press,
1986.

[31] L. Morin and H. F. Li, "Thedesing of synchronizers: A review", IEE Proceedings,
Vol. 136, Pt. E, No. 6, Nov. 1989,

Appenelix

HDIL reference manual

The Hardware Description and Integration Language (HDIL) is a language for
circuit description. The simple syntax of HDIL and the general purpose LISP like
constructs make it easy to learn and use in small research and development projects.
The language is supported by a powerful schematic editor, PADS-LOGIC |1]. Using
"parse” and "unparse" procedures, a circuit description can be loaded into inemory and
stored into an HDIL file. HDIDS (Hardware Description and Integration Data
Structure) is the format for the data representation in the memory and is described in
appendix C. This trio (HDIL, HDIDS and PADS-LOGIC) forms a universal front end
for the construction of design tools. The programmer can use this front end and
implement his algorithms directly on validated data in active memory. Even if they
were designed for circuit description, this front end can be used for the description of

any graph made of objects connected with arcs.

1.0 Introduction

This language has three important characteristics. First it includes features to
support the three phases of design: hardware compilation, hardware linking and
hardware simulation. This is accomplished by a syntactic construct called
"SystemCall" that captures the names of the software tools used in the design. This
is important for configuration control of the designs.

Second HDIL was designed to be used with schematic editors, all abstractions
used in schematic diagrams are supported by HDIL. The language is based on

elements, nodes and wires and general purpose symbols are used to allow the

166

description of complex or repetitive circuits. Off-page connections and buses are
easily handled, but busses are not currently supported by the parser.

And third, the perfect match between HDIL and HDIDS allows both internal
and external integration. Internal integration is particularly interesting in a CAD
system for rapid exchange of information between tools through memory.

Basically HDIL and HDIDS support the structural information like elements,
nedes, wires and hierarchical circuits using specific syntactic constructions. The
structural information is used to link various aspects or views of a digital circuit. For
each view, such as the layout, the schematic diagram, the electrical modei or the logic
model, general purpose LISP like syntactic constructions are used to insert the
required information. The structural information in HDIL and HDIDS acts like a

common skeleton that maintains the coherence between each view of the design.

1.1 Data model and definition

The data model on which the language is based, is similar to the data model
used in most systems, see Fig. 1. An object in a digital system is a circuit. A circuit
description includes an interface and an implementation to describe either hierarchical
circuits or logic devices. A hierarchical circuit is made of elements and wires. An
element is an instance of a circuit and wires are composed ot wiring nodes. A wiring
node is used to describe the connection to the node of an element. Each wire and each
node carries a signal of a declared type.

A system call indicates the type of information contained in the circuit
description or the CAD tool that will process it. For example, system call indicates
which tool will compile the circuit, which tools are used to edit the layout, which tool
will link the circuit and compute the effects of the wire capacitances and loads and

which tool, or more precisely which model is used during the simulation. The

167

parameters are general purpose LISP like data structures used to insert any

information required during the design process.

INTERFACE

Circuit L Information

type ————g Nodes K T type (signal)

4 Parameters

IMPLEMENTATION

Syste.n calit ——% Paramete[s
g omET e e T EessE s mE- i
l - 1
1 Elaments = { Circunt 1
1 type '
' '
1 '
] 1
l i .
— '
X Wiring nodes{
] E 1
1 '
f 1
! | Information :
;ﬁ Wires I '] type (signal) X
]
\ |
! <] Parameters ,
: .
']

For hierarchical circuits

Fig. 1. Data model

1.2 Design philosophy

The design philosophy for hardware description languages is the same as for
programming languages. The design of HDIDS and HDIL was greatly inspired by
papers from N. Wirth [2] and C.A.R. Hoare [3]. N. Wirth has well summarized his
and our philosophy as follow: "A language should be simple, and that simplicity must
be achieved by transparence and clarity of its features and by a regular structure,
rather than by utmost conciseness and unwanted generality”. Even if the design of a

HDL is more complicated because it must describe a real object, many ideas have

168

been imported from software programming languages. The CAD system and the
language should also be designed to work with each other [4] and provide a coherent

design environment.

2.0 Language description

2.1 Simplicity, transparence and clarity

Simplicity has been achieved by defining a language with syntactic construct
matching the designer's view and by using a simple and regular structure. A typical
hierarchical circuit is organized as foilow:

circuit xxx

symbol

...... {symbol declaration statements}
typre

..... {type declaration statements}
interface

...... {node declaration statements}
variable

...... {variable declaration statements}

implementation SystemCall
...... {SystemCall parameters}

circuit CircuitX

...... {cirxcuit description,
end CircuitX
circuit Circuity

...... {circuit description}
end Circuity
circuit Circuitz

...... {circuit description}
end Circuit?

alemant
...... {element declaration statements}
wire
...... {wire declaration statements}
end xxx

If the circuit is a device, the description becomes:

circuit xxx

...... {symbol declaration statements}

169

type

..... {type declaration statements)
interface

...... {node declaration statements}
variable

...... {variable declaration statements}

implementation SystemCall {Model of the device}
...... {SystemCall parameters}

and xxx

The description of a circuit is enclosed by the key words circuit and end
followed by the circuit's name. A circuit consists of three parts, the interface nodes,
the state variables and the implementation with declaration statements for symbols
and types. There is a system call associated with the implementation. Symbol
statements declare the symbols used in the description of the circuit. A symbol is
nothing more than an identifier or a name given to an object in the circuit. It can be
used for replacing string and list of symbols or to defined structured symbol. As the
above listing shows, the language has an easy to understand structure. Here are a
few examples for the various types of statements:

Node statements, used to declare all interface nodes:

abc : bit; {declares nodes a, b and c}

LISP like functions used for the description of parameters:

(out ¢ (nand a b)) {declares a 2-inputs nand function}

Element statements, used to declare all elements:

Gl G2: nand2s4; {declares the elements Gl and G2 as
circuits of the type nand2s4}

Wire statements, used to declare all wires:

reset : G1l#1 G2#3; {declares a wire connecting
node 1 of element Gl with
node 3 of element G2, the
name of the signal is reset}

170

2.2 Schematic diagram and hierarchical constructs

The language directly supports graphical representations like schematic
diagrams. The Fig. 2 is the schematic diagram corresponding to the circuit description
on the next page. This example also illustrates how the language supports the
hierarchical structure of digital circuits. In this example, multiple levels of
implementation are used. A printed circuit board, NandBoard, is a circuit implemented
using 2 PCBcompiler, a program that performs placement and routing at board level.
The NandBoard is composed of one element, the NandIC. The¢ NandIC element is an
integrated circuit with one element, the NandChip. The NandIC is constructed using a
PackageCompiler. Finally the NandChip is constructed using an ICcompiler that

performs the placement of the four cells.

iIC1
CHIP1
A ; 101
! 1 2‘__]1_ G1
nputCell 3 '?3 s 3 3 c
2 102 2 OutputCell
B 2 ‘
1 2 ——J_NandCeII
InputCel
NandChip
NandiC
NandBoard

Fig. 2. Example of a hierarcl ‘<al circuit

171

circuit NandBoard
interface
a b c: bit;
implementation PCBcompiler

circuit NandIC
interface
1 2 3: bit;
implementation PackageCompiler

circuit NandCHIP
interface
1l 2 3: bit;
implementation ICcompiler

circulit NandCell
interface
1 2: bit;
circuit InputCell
interface
12 3 : bit;
external ‘"Library"
circuit OutputCell
interface
1 2 3 : bit;
external “"Library"

elaement
Gl: NandCell:
I01 I02: InputCell;
I03% OutputCell;

wire
G1l#1 I014#2;
G1l#2 I1I0242;
G1l#3 IO3#1;
IO1#1 1;
I02#1 2;
I03#2 3;
end NandCHIP
element
CHIPl: NandChip;
wire
CHIP1l#1 1;
CHIP1#2 2;
CHIP1#3 3;
end NandIC
element
IC1l: NandIC;
wire
ICl4#1 a;
IC1#2 b;
IC14#3 c;

end NandBoard

172

2.3 Compilation, linking and simulation
The following fictitious example illustrates how the language can be used for
the three phases of design. The schematic diagram of a simple clock circuit made of

three inverters is given in Fig. 3.

CHIP1
. N 3 33 101
2 1 2 1 2 2
! clk
InverterCell InverterCell InverterCell OutputCell
ClockChip

Fig. 3. Clock chip circuit

The corresponding listing, before hardware compilation would look like:

circuit Clock
node
clk: bit;

implementation ChipCompiler (data +3);
circuit InverterCell
interface
1 2:bit;
implementation GateCompiler
(data +2) .
(fuaction (out 2 (not 1)))
end InverterCell
circuit OutputCell
interface
1 2:bit;
implementation IOcellCompiler
(data +2)
(function (out 2 1))
end OutputCell

element
Gl G2 G3: InverterCell;
IOl: OutputCell;

wire
Gl#2 G2#1;
G2#2 G34#1;
G3#2 IO1#1 G1l#1;
I0O1#2 clk:
and Clock

173

The above listing is the source file for the compilation phase. In a typical
design environment, the user would draw the schematic diagram and the above file
would be automatically generated. This listing describes how to construct the chip
clock. First, the InverterCell must be produced. Tc generate the InverterCell, the
GateCompiler is used. The GateCompiler reads the function not, counts the number of
inputs, and reads the arguments for the size of the transistors, here +2. With this
information, the GateCompiler generates the layout for the InverterCell and produces
its linkable model. Then, the OutputCell must be produced. Let us suppose it is a
manually designed cell stored in a library. Therefore the 1OcellCompiler reads the
parameters +2 which tells which cell to fetch from the library. The layout and the
linkable model are simply copied. After compilation of the two cells, the circ;iit clock

will be modified as follow:

circuit Clock

implementation ChipCompiler (data +3);
circuit InverterCell

-——> implementation GateCompiler (data +120 +30 +90);
end InverterCell

circuit OutputCell

—-———>> implementation IOcellCompiler (data +160 +10);
end OutputCell

end Clock

The new information required by the ChipCompiler has been added. For the
InverterCell, information like the cell width (+120) and the positions of the input and
output pins (+30 +90) are required. For the OutputCell the coordinates of the input
pin (+160 +10) are required. Once all the cells have been compiled, the chip can be
compiled. The ChipCompiler will read its parameter (+3) to determine the frame for
the chip. Knowing the frame which is used, all pad positions are Faown and the

OutputCell can be placed. The size and shape of the usable area on the chip is also

174

known and placement and routing of the three instances of the InverterCell and the
CutputCell can be done. In most IC technology, wire capacitance is important and
must be computed during chip compilation. After compilation, the following model will

be available.

ecircuit Clock
interface
clk: bit:
implementation DeviceLinker

circuit .nverterCell
interface
1:bit (data +0.9e-12); {Input capacitance}
2:bit (data +0.3e-12); {Output capacitance]
implementation
(function (out 2 (not 1)))
end InverterCell

circuit OutputCell
intaerface
1: bit (data +0.4e-~12); {Input capacitance)
2: bit (data +12e-12); (Output capacitance}
implementation
(function (out 2 1))
end OutputCell

element
Gl G2 G3: laverterCell;
I01l: OutputCell;

wire
Gl#2 G2#1 (data +0.3e-12); {Wire capacitance]
G2#2 G3#1 (data +0.7e-12); {Wire capacitance}
G3#2 IO#1 G1l#1 (data +0.le-12); {Wire capacitance}
I0#2 clk (data +0.9e-12); {Wire capacitance}
and Clock

The link phase consist in calling the appropriate linker to compute the effects of
the wires and the loads on the model. To do so, information like input and output
capacitances and wire capacitances are required. In the above listing, input and output
capacitances are located in node statements and wire capacitances in wire
statements. After linking, a complete logic model will be available. Because each
instances has different loads, new circuit types are created with different propagation

delay. The circuit description becomes:

175

circult Clock
iuterface
clk: bit;
implementation
circuit InverterCell_ 1
interface
1:bit;
2:bit (delay' +5e¢-9); {Prop. delay}
implementation gate
{function (out 2 (not 1)))
end InverterCell 1

circuit InverterCell_2
interface
1l:bit ;
2:bit (delay +12e-9); {Prop. delay}
implementation gate
(function (out 2 (not 1)))
end InverterCell 2

circuit InverterCell_ 3
interxface
1l:bit;
2:bit (delay +7e-9); {Prop. delay}
implementation gate
(function (out 2 (not 1)))
end InverterCell 3

circuit OQutputCell
interface
1: bit;
2: bit (delay +15e-9); {Prop. delay}
implementation gate
(function (out 2 1))
end OutputCell

element
Gl: InverterCell_1;
G2: InverterCell 2;
G3: InverterCell 3;
ICl: OutputCell;

wire
Gl#2 G2#1;
G242 G3#1;
G3#2 I0#1 G1l#1;
I0#2 clk;

end Clock

2.4 Handling of special tools
The following example shows how HDIL can be used with a tool that does not

accept HDIL syntax. The circuit is a ROM containing the program of a microcontroller.

176

cizcuit ROMcircuit
interface
Data: byte;
Address: byte; (For a 256 bytes ROM)
Enable Read Write:bit;
~=>implementation 6805assembler (use "SourceFile"™ "ListFile")
aend ROMcircuit

In this example, the SourceFile contains the assembly language listing of a
program for the 6805 microprocessor. During compilation, the 6805 assembler first
assembles the SourceFile and determines the ROM content. Then it generates the
layout and the linkable model. This might be useful in integrating existing tools not

using HDIL format.

2.5 Complex circuits description

The following example illustrates how a complex and repetitive circuit can be
described using HDIL. The Fig. 4 is a simple systolic array whose internal function is
unknown. The corresponding listing is:

circuit SystolicArray
symbol
a b: structure 1 2 3;
c: structure 1 2 3 4 5;
SMl: struct. e 1 2 3 stxucture 1 2 3;
intexface
a.l a.2 a.3: bit;
b.1 b.2 b.3: bit;
c.lec.2¢.3 c.4 ¢c.5: bit;

implementation
circuit cell
symbol
direction: in out;
a b c: structure direction;
interface
a.in a.out b.in b.out c.in c.out: bit;
implementation

element
SM1.1.1 SM1.1.2 SM1.1.3: cell;
SM1.2.1 SM1.2.2 SM1.2.3: cell;
SM1.3.1 SM1.3.2 SM1.3.3: cell;

177

ajduexa Aesse d1j0)sdg p andiyg
S o €0 c? 10
S
mnod
omnad 1000 noq|
v 1ed e
€CINS
—— UIQ ume
€ U t
9
S s
1nod 1n0d
=] woe 1noq —1 jno® 1n0Q
v o2 4 v 1e2]
ceEINS €2 INS
— L] ure e UIQ ure
€ L) i € uw 1
° 9
S S P
nod oY nod
=1 1noe inoq ——1 inoe 1noq| 1 inoe noq
v 1183 I ie3 4 v 113 2
. LCINS 22INS .
£9q uig ure —4 v ure —J sans ge
€ ud € ut ' € uo '
9 o _m
S c
1163 1no3
-] Inoe noq =1 inoe 1nog|
¥ 83 2 v 1189 2
. 1ZINS)
N n wq ure — cm.n— NS ure N e
€ wd 1 £ (] .
K B
S
S
1nod
° Flﬂl noe noq
ot 1185 e
e 1'q LLINS e e
nw-xw-es € € uq w :
Ty
aoeusul

uonejusws|duw

178

wire
a.l SM1.1.1#1;
a.2 SM1.1.2#%1;
a.3 SM1.1.3#1;
b.1l SM1.1.1#3;
b.2 SM1.2.1#3;
b.3 SM1.3.1#3;
c.1l SM1.1.3#5;
C.2 SM1.2.3#%5;
c.3 SM1.3.3#5;
c.4 SM1.3.2#5;
c.5 SM1.3.1#5;

SM1.1.145 SM1.2.2#6;
SM1.1.2#5 SM1.2.346;
SM1.2.1#5 SM1.3.2#6;
SM1.2.245 SM1.3.346;
SM1.1.1#2 SM1.1.24#3;
SM1.1.2%#2 SM1.1.3#3;
SM1.2.1%#2 SM1.2.2#3;
SM1.2.2#2 SM1.2.3#3;
SM1.3.1#2 SM1.3.2#3;
SM1.3.2#2 SM1.3.3#3;
SM1.1.1#%#4 SM1.2.1#1;
SM1.2.1#4 SM1.3.1#1;
SM1.1.2#4 SM1.2.2#1;
SM1.2.2#4 SM1.3.24#1;
SM1.1.3#4 SM1.2.3#1;

SM1.2.3#4 SM1.3.3#%1;
end SystolicArray

The above listing illustrates' the flexibility of structured symbols. For large

arrays repeat statements will be added.

3.0 Formal definition
In this section HDIL is formally defined. The following abbreviations are used:
- bold words are terminals symbols
- < > are used to indicate non-terminals symbols

- 2 to 4 letters are used as general prefix for non-terminals symbols:
Lexical analyzer related
id identifier
int integer
dec decimal integer
hex hexadecimal integer
ch character integer

real real number
exp exponent

suf
str
esc
cmt
let
dig

real number suffix
string

escape sequence
comment

letters

digits

hexd hexadecimal digits

std
spc
prt

standard characters
space characters
printable characters

esch escape characters

Symbol processing related (not implemented)

tkn
itm
pt
mg

P

cir
imp
ele
wir
sym
als
ssy
nod
var
fct
exp
Sys

token
item
repeat
range

r_rel

circuit
implementation
element

wire

symbol

alias

structured symbol
node

“rariable
function
expression
system call

- letters used as a qualifier suffix:

s
d

1
sts
st

indicates plural
declaration

list

statements
statement

3.1 Lexical anaiyzer

3.1.1 Characters set

HDIL uses the standard ascii character set.

179

Hexadecimal

00
01..06
07

08

09

0A

0B

0C

0D
CE..10
11

12

13
14..19
1A

1B
1C..1F

20
21..2F

30..39
3A.40
41..5A
5B..60
61..7A
7B..7E
TF
80..FF

3.1.2 Special symbols

Single character:

Characters pair:

Paired characters:

Reserved words:
circuit
symbol
type

implementation

end

ASCII Key Escape code
<NUL> ctrl-@ \0O
ctrl-a to ctrl-f \01 to \06
<BEL> ctrl-g \a
<BS> ctrl-h \b
<TAB> ctrl-i \
<LF> ctrl-j \n
<VT> ctrl-k \v
<FF> ctrl-1 \f
<CR> ctrl-m \r
ctri-n to ctrl-p \OE to \10
<XON> ctrl-q \11
ctrl-r \12
<XOFF> ctrl-s \13
ctrl-t to ctrl-y \14 to\19
<EOF> ctrl-z \1A
<ESC> ctrl-| \1B
ctrl-\ ctrl-] ctrl-A \1C to \IF
ctrl- _
<SP>
characters ! "#9$ % &' \" \
() * + s T . /
numbers Oto9
characters :;<=>7@
letters AtoZ
characters [\] A _° A\
letters atoz
{1}~
 \7F
\80 to \FF
y i NS H+-ROII() <>
. << >>
O 10 <>
alias
structure repeat
variable interface
element wire

external

180

181

3.1.3 Predeclared identifiers
Predefined macro-symbols
yA U
Build-in types
bit byte sbyte word16 word32 sword16 sword32
Predifined system calls
gate CC SSC 3SD ASC flipflop AR

Predefined functions
input output hvinput hvoutput
not and nand nor xor xnor
set out in table defunc timing
if exe case defcyc data

3.1.4 Comments
Comments are enclosed in braces {}. Any printable characters <prn> or space

characters <spc> are allowed.

3.1.5 Token syntax
The lexical analyzer recognizes special characters (, .:; #[] ()), character

pair (..), identifier <id>, integer constant <ct>, real constant <real> and string <str>,

as follow:
<id> --> (<std>l)
<int> --> <dec> | <hex> | <ch>
<dec> --> (-l+)<dig>*

<hex> --> $<hexd>t
<ch> --> ‘(<prt> | <esc>)"
<real> --> (<dec> .<dig>* <exp>)

<exp> --> <sufch>

182

| (elE) (-l4+)?<dig>+)

<str> --> " (<prt> | <esc>)*"
<esc> --> \<esch> | \'$ <hexd><hexd>
<cmt> --> { (<prt> | <spc>)*}

<prt> --> char (21 ..7E)

<std> --> <let> | <dig>

<let> --> a.zlA.Z

<dig> --> 0.9

<sufch> --> alflpinluimiKIMIGITIPIE
<hexd> --> <«dig>| AIBICIDIEIF

<esch> --> alblitinlivifiri\l']"

<spc> --> <SP>1| <BS> | <TAB> | <LF> | <VT>l| <FF> | <CR>

Legend:
I --> choice
() --> zeroorone
() --> oneormore
() --> zeroor more

Where required, white space <spc> separates the tokens. An identifier is a
sequence of letters, digits or underscore, beginning with any one of them. This
language is case sensitive. There are three types of integer constant: decimal,
hexadecimal and character. A decimal integer consists of a sequence of decimal digits,
preceded by a sign (+or-). An hexadecimal integer consists of a dollar sign (3)
followed by a sequence of hexadecimal digit. A character integer consists of one to
four character enclosed in simple quotes. The escape character backslash (\) can be
used to enter non-printable characters, the quote or the backslash. Real numbers
must also begin with a sign and are composed of a mantissa and an exponent. The

mantissa consists of one or more decimal digits followed by a dot and zero or more

183

digits. The exponent consists of a suffix letter (a, f, p, n,u, m, K, M, G, T, P, E) or

begins by the letters e or E, foliowed by an optional sign and a sequence of decimal

digits. The following suffixes are accepted:

Suffix Name Exponent
E exa 18
P peta 15
T tera 12
G giga 9
M mega 6
K kilo 3
m mili -3
u micro -6
n nano -9
P pico -12

f femto -15
a atto -18

3.2 Language syntax and semantics

3.2.1 Circuit organization

<cir> --> circuit

external

--> circuit

end

<imp> --> implementation <sys>

<idp>
<symd>
<typd>
<nodd>
<vard>
<str>

<id;>
<symd>
<typd>
<nodd>
<vard>
<imp>
<idy>

<cird>
<elel>
<wirl>

{circuit name}
{symbol declaration}
{type declaration}
{node declaration}
{variable declaration}
{library name}

{circuit name}
{symbol declaration}
{type declaration}
{node declaration}
{variable declaration}
{implementation}

{system call}
{circuit declaration}
{element list}
{wire list}

A circuit begins with the word circuit followed by its name <id;>, the symbol

declaration, the type declaration, the node declaration and the variable declaration. If

184

external follows, the circuit description is stored in the library named string <str>.
Otherwise, the implementation follows and the circuit description terminates with end
followed by the circuit name <idy> The implementation begins with
implementation and a system call. If the circuit is a device, the system call
describes the model. In the case of a hierarchical circuit, the circuit used are declared
in <cird>, followed by the list of element <elel> and the list of wires <wirl>

describing how the circuit is constructed.

3.2.2 Symbol declaration

<symd> --> il
--> symbol <symsts> {symbol statements)

<symstsi> --> <symst> ;
--> <symst> ; <Symstsy>

<symst> --> <id> : <ids> (list of identifiers}
--> <id> : <ints> (list of integers}
--> <id> : <reals> (list of reals)
--> <id> : <strs> (list of strings)
--> <sym> <als> {alias symbols)
--> <sym> <ssy> {structured symbol}

<als> --> alias <syms>

<ssy1> --> structure <ids>

--> structure <ids> <ssy2>

Symbols are names given by the user to ease the circuit description. There are
three types of symbols: simple and structured. A simple symbol is a single identifier,
test for example. A structured symbol consists of identifiers scparated by dots such
as a.2.3. Simple symbols do not need to be explicitly declared, they are declared at
the time they are first encountered. ‘Structured symbol must be declared prior to their
use. So before using the symbol a.2.3, it is necessary to declare the following
structured symbol:

a : strxructure 1 2 3 structure 0 1 2 3 4;

185

Once declared, a structured symbol can be used as any simple symbol. Symbol
declaration begins with symbol followed by symbol s:~tements <symsts>. There
are three types of symbol statements: macro definition, structure definition and alias
definition. A macro definition declares an identifier as a macro replacement, for
example:

aymbol
state: reset run 3top wait;
BegAddr: $100;
library: "\usr\vlsi\lib";
esc: '\1A';

Each time an identifier corresponding to a macro definition is encountered, it is

replaced by its definition. Structured symbols are declared as follow:

symbol
a : structure 0 1 2 ;
a.2 : structure on off; {structured symbols

a.2.on and a.2.0ff are created}
Data : structure 0 1 2 3 4 5 6 7;

This allows multiple access to the same object. For example, CPUbus.Data.3
accesses the same object as Data.3. In addition, it is possible to access the same
object with different names using alias declaration. In the following declaration, the
symbols on the right are alternate names for the object declared on the left. This is
specially useful in hierarchical circuits description.

symbol
reset alias x.r x.y.reset;

3.2.3 Type declaration

<typd> --> il
--> type <typsts> {type statements)

<typsts|> --> <typst> ;
--> <typst> ; <typstsy>

<typst> --> <id> : <int> <int> {range of values, integer type)
--> <id> : <ids> {enumerated}

186

Type declarations are used to define the type of nodes and tle type of
variables in a circuit. A type stalement begins with the name of the type <id>,
followed by either two integers or a list of identifiers. Both are integer type, in the
first case, the two integers indicate the range of values and in the second case the list
of values is given. If the enumerated type is used, each identifier in the list is given a)
constant value starting at +0. The range of values is limited to 16 bits. If the first
number is negative, two's complement is assumed, otherwise, unsigned numbers arc
used. In addition to the listed values, nodes and variables can take the undefined
value U and nodes can take the high impedance value Z. The following are valid type
declarations:

bit: +0 +1; {a variable of type bit
can take the value +0 and +1}
boolean:false true;

letter:'A' '2°; {range of integers from 65 to 90}
byte:+0 +255; {unsigned byte}
long:50 SFFFF {word}
state:begin undefined halted stop: {range +0 to +3
encoded as: begin= +0
undefined= +1
halt= +2
stop= +3}

3.2.4 Node and variable declaration

<nodd> --> interface <nodsts> {node declaration)

<nodsts;> --> nil
--> <nodst> <fcts> ; <nodstsy>

<nodst> --> <syms> : <id> {id is a predefined type}

Each symbol on the left is declared as an interface node of the type declared on
the right side. The type of a node defines the values the signal can have. Information
like input capacitance can be inserted using function <fcts>. The following are valid
node declarations:

no-de
a : bit; {a can take the values 40 aid +1}

187

dl d2 d3 : byte; {dl d2 and d3 can take
a value between +0 or +255}
next : state; {next can take the values

begin, .1defined, halted and stop}

The types bit, bytes and state must be declared types. The declaration could
have been done anywhere before, signal type declarations are global. The directions
of the nodes are not explicitly stated. The information about whether a node is an
input or an output is added using <fcts> if desired. A node can be connected to many
outputs, conflict are detected at simulation time.

Except for the keyword variable, the declaration of variables is similar to the
declaration of nodes.

<vard> --> nil
--> variable <varsts> { variable declaration}

<varsts;> --> nil
--> <varst> <fcts> ; <varstsy>

<varst> --> <syms> : <id> { predefined type}

3.2.5 Circuit declaration

<cird> --> nil
--> <cir> <cird>

In a hierarchical circuit description, the circuit consists of elements connected
with wires. Each element is a circuit that must be declared and the circuit declaration

gives the list of the circuits used.

3.2.6 Element list

<elel> --> nil
--> element <elests>

<elests1> --> <elest> ;
3

--> <elest> ; <elestsy>

<elest> --> <syms> : <id> {list of elements: circuit name)

188

The element list begins with element followed by the element statements
<elests>. [Each statement <elest> declares the symbols on the left as elements of
the type specified on the right. For example,

element

Gl G2 G3:nand2s4;

declares G1, G2 and G3 as elements of the type nand2s4. The type nand2s4

must be a declared circuit. The declaration could have been done anywhere before,

circuit declarations are global.

3.2.7 Wire list

<wirl> --> nil
--> wire <wirsts> |

<wirsts}> --> <wirst> ;
’

--> <wirst> ; <wirstsp>
<wirst> --> <nods> <fcts> {list of nodes}
--> <sym> : <nods> <fcts> {wire name: list of nodes)

<nods> --> <nod>
--> <nod> <nods>

<nod> --> <sym> {node name of current circuit}
--> <sym> # <sym> {circuit name # node name}

The wire list starts with wire followed by wire statements. A wire statement
<wirst> consists of an optional signal name <sym>, a list of nodes <nods> and wire
information <fcts> like wire capacitance. The list of nodes defines the nodes
connected to the wire. The nodes consists of an element name and a node name
separated by #. The element must have been declared. A connection to an interface

node can also be specified. For example,

wire
test : Gl#2 G3#1 4;

189

declares a wire connecting node 2 of G1, node 1 of G3 and interface node 4 of the
current circuit, test is the optional signal name. Wire names are useful for off-page

connections, supply lines, grounds and busses.

3.2.8 System call, function and expressions

<sys> --> il
--> <id> <fcts> {name and parameters}
<fcts> --> nil
--> <fct> <fcts>
<fct> --> (<id> <exps>) {LISP like function}
<exps> --> nil
--> <exp> <exps>
<exp> --> <sym> {symbol: node or variable}
--> <int> {integer}
--> <real> {real})
--> <str> { string}
--> <fct> {function}

A system call corresponds normally to a tool or a model in the CAD system. A
system call <sys> has a name <id> and optional parameters <fcts>. The name must
be an existing system call. The flexible LISP like construct makes it possible to insert
all kind of information, like electrical capacitances, propagation delay and logic
functions. Here is a list of acceptable functions:

(data +2 =3 +2e-12)
(initial +0)
(event +1 +1.2e-12 +0 +l.4e-12 2 +1.6e-12)
(if <exp> <fct> <fctd>)
(case <exp>
vall <fct>
val2 <fct>
vall <fct>)
(exe <fct> <fct> <fct>)
(table (input <variables or nodes>) (output <variables or nodes>)

....... tabular information.......)
{input ...)
{(output o)
(clock ...)

(set <variable> <exp>)
tout <node> <exp>)

190

3.2.9 Symbols and identifiers

<syms> --> <sym> {list of symbols)
--> <sym> <syms>

<sym> --> <id>
--> <id> . <sym>

<ids> --> <id> (list of identifiers}
--> <id> <ids>

<ints> --> <int> {list of integers}
--> <int> <ints>

<reals> --> <real> {list of reals)
--> <real> <reals>

<strs> --> <Str> {list of strings)
--> <S> <strs>

Symbols are the basic naming abstraction in HDIL. Most object, like node,
element or wire, are named using symbols. A symbol is either an identifier or a
structured symbol composed of identifiers separated by dots. All structured symbols
must be declared.

3.3 References

[1] The PADS-LOGIC user manual (Version 2.0), CAD SOFTWARE, INC.
119 Russell Street, Suite #6, Littleton, MA 01460,

[2] N. Wirth, "On the design of programming languages,” In the proceedings of IFIP
Congress, pp. 386-393, 1974.

[3] C. A. R. Hoare, "Hints on programming language design," In the proceedings of
the Sigact/Sigplan Symposium on Principles of Programming Languages, 1973.

[4] C. Ghezzi and M. Jazayeri, "Programming language concepts," John Wiley &
Sons, pp. 256, 1982.

Appendix G

HDIDS reference manual

The Hardware Description and Integration Data Structure (HDIDS) is the
format of the information about a circuit when in active memory. Normally, an HDIL
circuit description is loaded from a file into memory using the parse procedure and
stored back into a file using the unparse procedure. There is a one to one
correspondence between HDIL and HDIDS. Having defined a standard format for in
memory information greatly facilitates and speeds up the transfer of information
between various CAD tools. HDIDS does not support symbolic information, all
symbols are stored in a symbol table which is constructed while parsing the HDIL
source file. The PASCAL type declaration for HDIDS follows and a C type declaration
is also available:

type
CizcuitPtr=~Circuit;
NodePtr="Node;
VariablePtr="Variable;
RangePtxr="Range;
WirePtr="Wire;
ElementPtr="Element;
WiringNodePtr="WiringNode;
LISPfctPtxr="LISPfct;
ExpressionPtr="Expression;
LibraryPtr="Library;
Library=
record
name :string;
next :LibraryPtr;
end;

Circuit=
record

Nbr:integer;
TypeList:RangePtr;
NodeList:NodePtr;
VariableList :VariablePtr;
ExtFlag:boolean;
LibName:LibraryPtr;
SysCall:SystemCallPtr;
SysCallArg:LISPfctPtr;

CircuitList:CircuitPtr;
ElementList:ElementPtr;
Wirelist :WirePtr;
next :CizcuitPtr;

end;

Node=
record
Nbr:integer;
Range:RangePtr;
Parameters:LISPfctPtr;
Next :NodePtr;
end;

Variable=
record
Nbr:integer;
Range:RangePtr;
Parameters:LISPfctPtr;
Next:VariablePtr;
end;

Range=
record
Min:integer;
Max:integer;
next :RangePtr;,
end;

Element=
record
Nbr:integer;
typ:CircuitPtr;
NodeList :WiringNodePtr:;
Next :ElementPtr;
end;

Wire=
record

Nbr:integer;
Range:RangePtr;
NodelList :WiringNodePtr;
Parameters:LISPfctPtr;
Next :WirePtr;

end;

WiringNode=
record
NodeOf:ElementPtr;
Node:NodePtr;
Wire:WirePtr;
NextE:WiringNodePtr;

192

193

NextW:WiringNodePtr;
end;

LISPfctPtr=
record
func:FunctionType;
Arguments:ExpressionPtr;
next :LISPfctPtr;
end;

ExpressionType=(NodeExp,VariabelExp, FunctionExp,
IntNumExp, RealNumExp, StringExp) ;
Expressi.n=
record
next :ExpressionPtr;
case typ:ExpressionType of
NodeExp: (NodVal:NodePtr) ;
VariabelExp: (VarVal:VariablePtr):;
FunctionExp: (fct:LISPfctPtr);
IntNumExp: (IntVal:integer);
RealNumExp: (RealvVal:real);
StringExp: (StrVal:string);
end;

The above type declaration also uses the following user defined and application
specific types:

type
FunctionType=(BUFFERfct,NOT£fct,NORfct, NANDfct, ERROREcCt) ;
SysCallType=(gate,CC, SSC, flipflop,AR);

FunctionType declares the functions type allowed in the data structure
statements. For each of these function types, there is a string to be used in the HDIL.
Corresponding to the above declaration, the following strings are allowed as function
names: buffer, not, nor and nand. SysCallType declares the type of system call
installed in a given design environment. Corresponding to the above declaration, the
following system call names are used in HDIL: gate, CC, SSC, flipflop and AR.
Current declared functions and system calls depend on the application.

A circuit is either a device or a hierarchical circuit. A device description does
not have the CircuitList, ElementList and WireList fields. The first field in the circuit

record, Nbr, is an identification integer. It is unique and automatically assigned by the

194

parser. The field ExtFlg, indicates when true that this portion of the circuit has not
been parsed and is still in a library file whose name is pointed to by the LibName field.
The last field (next) allows the construction of list of circuits.

The fields in HDIDS correspond to each part of the HDIL circuit description.
The Fig. 1 illustrates the LISP like functions and expressions data structures. The
LISP like structure allows the representation of simple arguments, lists of arguments,
generalized list of arguments, vectors and arrays of any dimensions. A simple
example is also given showing the relation between a LISP function in HDIL and its
representation in HDIDS. The LISPfct record has three fields, func contains the
function name, Arguments the LISP like list of arguments and next a pointer to the
remaining functions. Evaluating a LISP like function consists in applying the function
in the func field to the argument list pointed to by the Arguments field. Each argument
is computed by evaluating the corresponding expression. Evaluating an expression
consists in either reading the value of the interface node or a variable, using integer,
real or string values or recursively evaluating a function.

The Fig. 2 illustrates the data structure of a typical hierarchical circuit. The
Circuit record contains the following fields: Nbr, TypeList, NodeList, VariableList,
ExtFlag, LibName, SysCall, SysCallArg, CircuitList, ElementList, WireList and next.
The TypeList field points to the list of declared types. The NodeList field points to the
list of interface nodes for the circuit. Each interface node is a record composed of a
Nbr field, a Range field, a Parameters field and a Next field. The Nbr field is a unique
identification integer assigned during parsing. The Range field is a pointer to a Range
record. The Range record contains the range of values allowed for this interface node.
The range record is filled by the parser based on the type of the node. For example, a
byte type is stored as Min field set to 0 and Max field set to 255. The Parameters
field points to a LISPfct data structure which contains the node characteristic, for

example input capacitance or TTL fan-out.

195

The CircuitList field points to the list of all types of circuit used. The
ElementList enumerates all instances of circuits and the WireList describes how they
are interconnected. The ElementRecord has four fields. The first field, Nbr, is a
unique identification integer assigned during parsing. The Typ field points to the type
of circuit, the NodeList points to the list of wiring nodes attached to this elemért and
the Next field allows the construction of a list. The Wire record has five fields. The
Nbr field is a unique identification integer assigned during parsing. The Next field
allows the construction of a list. The Range field points to the range of possible
values for the signal. The Parameters field points to the LISPfct data structure
containing the parameter, like wire capacitance. Finally, the NodeList points to a list
of WiringNode record giving all nodes connected to the wire. A WiringNode record
has five fields. The NodeOf field points to the element to which it is attached. The
Node field points to the corresponding rode in the circuit. The Wire field points to the
corresponding wire. The field Next€ allows thc construction of the list of nodes for
each element and the field NextW allows the construction of the list of nodes for each
wire. For example, the list of wiring nodes for the first wire in Fig. 2 indicates that
E1-2 is connected to E2#1. An empty NodeOf field indicates a connection to an

interface node of the current circuit.

196

suoissasdxa pue suonduny Iyl JASIT 10j aimonns ejeq | 814

(121- (€92- A1@S) ((X0U) v INO) puey)

10,
X o :J0} ainruls eleq

piooe) ejqelep Of

xau fepsep edAjuoissesyx3

vV 10}
A 40} o
pioses sjqelieA O) Jou piode! 8poN oL
iXau sjuswnbiy ouny
az- oxd ! x3 L OX3 1 oxa
€ WU B s|qeLE onsun opo
IXau [epJep edAjuoissslyx] 1xau [ep8poN @dA|uoisseldx3
1xeu [epleey edA juoisserdx] peu 10} adAjuorssesdx]
_ |
1es no
1X8uU sjuawnbly ounj 1Xeu sjuawnbsy ounjy
= Tk |
tel- WNNIUE < Joioun 4 bonoun4y
xeu [eAl] edA)uolsserdxy xeu 10} ©dAjuoissesdx] >xau 103 edAjuoissesdx3y

pueu

1X6U SjueWINDlY ouny

197

‘digyyoo1) Jo SAIAH ¢ ‘31

xeu unouy Wewe(l enp welshs weisAg ewenag] Gi4ixg ejgeuep epoN edAj

INLD ZNED rn
\v S v) viy
1 [)
epop siejsuiered ebuey Ixep IqN
INED ¢NeO IN2O «,‘u/ _
I 4 A Y 1
~ ﬁ v v €
[3 i1 [)
8pON sielewesed efuey epN JqN
INCO ¢NeQ *‘K h
) . rd . 1
Vv Jn v v 2
| 181]
STAON NG epoN sieisweied abuey XN IQN
SHUON ONIHI INZO 2NZD r _
“ - v SIHIM
M3 e e j Y|* 6
11 1p O PON Sialeweied sbuey IxeN JgN
X X | 0o @
e 8 MNP
N N o
—_— — N
TOI / / [65)
..Ilud..._.m. | 1
m.._rz 2 hd 1 14 1 N 1 N i 1
eN 1517 dAtign xeN ism dAiiaN 1xeN i dAliaN IxeN isi
8PON 8pON 8poN 8poN 7
v ! 300N
xeN siejeweied ebuey IqN
109 M_d
10
™ linono| £ "~ Jinon Vit]o
Xeu 1aN Xau IXoN Xepyy UIN
1]
1 1] !
v SUON v es|ej v gﬂuﬂd
digoo01) s s isn Giyies e s s sn

19N

Appendix [D
CTA based logic models

The most interesting result in this thesis is the abstraction of continuous time
to discrete time obtained by the CTA. It was demonstrated that a few CTAs are
required to model most logic devices and some of them are described in this appendix.
Each CTA was carefully verified but it is always possible that another structure of
automaton might be better. The proposed CTAs constitute a working set that should
be exercised. Eventually, this should lead to an acceptable set of primitives that could
be integrated into VHDL to process timing constraints. A continuity preserving delay
model should also replace the transport and inertial delay models used in VHDL.
CTA based logic models have the advantage of integrating the timing specifications

with the logic function while hiding its processing from the user.

1. gate

Description

As shown in Fig. 1, a gate is a combinational circuit with one or more inputs
and one output. A gate behaves properly, i.e. no hazards or glitches are produced on
the output for separate input events. A gate is characterized by a logic function which
is evaluated to determine the new output. Even if the verification of the separation of
input events is not implemented in current logic simulators, it is necessary to specify a
minimum separation time in order to perform the continuous time to discrete time
abstraction. A gate is also characterized by its propagation delay. Notice that the
propagation delay model assumes discrete change of state which is obtained by the

CTA and the separation time. The gate class of logic devices includes buffers,

199

inverters and simple gates (and, or, nand, nor, exor and exnor). It also includes

combinational circuits with adequate cover term, for example X = B.C+A.C+ A.B,

where the term A.B insures a glitch free transition when C changes.

—1X0
—3X1

—{xn

Fig. 1. Typical gate

HDIL description
The description of a typical gate is:
circuit nand2
interface {Note this is a comment}
A B:bit (input +3,0);
{vr}
X: bit (output +0.5n +0.5n +0 +5)
{triys trHn, Vie Vul
(delay2 +2n +3n);{tpLu, tparl
implemaentation gate {CTA to be used}
(timing +0.1n) {Input timing constraints}
{tsg}
(function (out X (nand A B))) {Logic function}
end nand2
This description includes the list of interface nodes, the simulator arguments,
the type of CTA (gate), the device timing arguments and the logic function. For a
gate, there are two classes of signals: inputs (A, B) and output (C). Each class of

node has simulator arguments: thresholds (VTy) for input nodes, transition times
(tTLH, tTHL) and logic levels (VL, VH) for output nodes. The description also
includes the propagation delays (tpLy, tpHL), the input timing constraints (tg) and
the logic function (nand). If the propagation delays tpp.y and tpyy, are differents, a
continuity-preserving delay model such as the propagation delay model described in

chapter 4 must be used.

200

The separation time (t5) defines the input timing constraint used for the
discretization of the change of state. All events on input signals that cause a change
in the output must be separated by to. except for pair of 01 or 10 events. A typical
sequence of events that will be accepted by the CTA without changes is shown in
Fig. 2. The output becomes undefined if the function evaluates to undefined or if more
than two consecutives events are close (timing violation). Undefined (U) or opun (Z)
events are both ireated as undefined. The output returns to a normal state after a
delay equal to the separation time tg. Since tg indicates the separation time required
for adequate operation it seems natural to allow the same time to return to a normal

state.

1 0 10 1 0
—/ A —\
+ + + + +

S | —J\ | —

Fig. 2. Acceptable sequence of events for the gate CTA

Continuous Time Automaton

The CTA of Fig. 3 models the behavior of a gate. The basic function of the
automaton is to transform the continuous change of state into a discrete change of
state or a timed state sequence. The continuous streamn of input events is parsed and
divided into a finite number of sequences leading to normal behavior and an infinite
number of sequences leading to an unspecified or abnormal behavior. The CTA is
made of states and arcs and uses the timing constraint and the logic function as
arguments. Solid arcs indicates a lower bounded transition time and dotted arcs do
not have lower bound. Therefore cycles with at least one solid arc result in a timed
state sequence and since there is a unique undefined state associated with the dotted

cycles, cycles with only dotted arcs also result in a timed state sequence.

201

normal0 148/

Fig. 3. CTA of a gate

In the case of a gate the function is first evaluated and if the result is different
from the current output, a change of state of the CTA is performed. The separation
time argument (ts) is compared with the actual separation between the current and
the last change of state to determine if the input sequence leads to normal or
undefined behavior. Depending on the new value and the separation time, the next
state and the output events are computed. The delay model and the propagation delay

arguments (tpLH, tpHL) are then used to generate the output event, outside the CTA.

202

There are seven states in the gate CTA. In the remainder of this section, we
consider the input events as the result of evaluating the function. The normal0Q and
normall states indicate that separate 0 and 1 events have been received. The pulse0
and pulsel states indicate that a pair of 10 or 01 events separate from preceding
events has been received. The states irregularQ) and irregularl indicate that two or
more close 0 or 1 events were received. Finally, the undefined state indicates that the
result of evaluating the function is undefined.

Normal operation consists of cycles with at least one solid arc. There are three
such cycles. The first cycle between normalQ and normall consists of sequence of
separate 0 and 1 events. The cycles between normaalQ and pulse0 and also between
normall and pulsel are triggered by separated pairs of 01 or 10. While in pulse0 or
pulsel, if a second close event is received, the output is made undefined and the CTA
state changes to irregularQ or irregularl. In order to exit from this abnormal or
undefined condition, the input must be stable for at least tg. If a sequence of close 0
and 1 events are received, the CTA state toggles between irregularQ and irregularl
and the: output remains undefined. Finally, if the function evaluates to undefined, the

CTA state changes to undefined and will return to a normal state after tg (through

irregularQ and irregularl states) as soon as a 0 or a 1 event is received.

2. Combinational circuit

Description

A combinational circuit is a circuit similar to a gate, except that for each input
events, the output goes through an undefined state before it settles to its stable value.
As shown in Fig. 4, a combinational circuit has one or more inputs and one output. It
is characterized by a logic function, a propagation delay tp and a timing constraint tj.
Each change on the input generates an undefined period of length ty after tp. The

transformation of continuous time into discrete time is obtained by extending the

203

undefined period. This class of logic devices includes ROMs and most PLA: and

decoders. It also includes combinational circuits without adequate cover term, for

example X = B. C + A.C, where a change on the signal C may cause a glitch.

—q X0
—] X1

Fig. 4. Typical combinational circuit

HDIL description

The description of a typical combinational circuit is:

circuit dec
iAnterface
A B C:bit (input +3,0);
{vr}
Y: bit (output +0.5n +0.5n +0 +5)
{tteh, tran, Vi, Val
(delayl +10n);
{tp)
implementation CC
{timing +40n)
{tul
(function (out Y (or (and B (not C))(and A C))))
end dec

This description includes the list of interface nodes, the simulator arguments,
the type of CTA (CC), the device timing arguments and the logic function. As for a
gate, there are two classes of signals: inputs (A, B, C) and outputs (Y). The
description also includes the timing constraint (ty), the propagation delays (tp) and
the logic function (or ...). A typical sequence of events is shown in Fig. 5. The output
becomes undefined for each event on any input nodes and remains undefined if input

events are close. Notice that the output signal is time constrained.

1 0 1 0 101
1
Inout f \ 1 nr———
npu + + + + +4++
(Any node) __ ¢ \] —J u
l
I
|
l L] []
ol W o W)
————:—.' 9 L] L] ®
e
> -t

Fig. 5. Typical sequence of events for a combinational circuit

Continuous Time Automaton

The CTA of Fig. 6 models the behavior of a combinational circuit (CC). In the
case of a combinational circuit, each input event causes a change of state in the CTA.
The undefined time is used as input timing constraint to discriminate acceptable
sequences from unacceptable ones. An unacceptable sequence is a sequence of
events closer than ty; that will produce a continuous undefined output. Unacceptable
sequences are simply useless.

There are four states in the combinational circuit CTA. The normal state
indicates that the undefined period has elapsed and that the output is set to 0 or 1.
The pending0 and pendingl states indicate that the output is undefined and that a O or
a 1 event should be produced after tyy. The undefined state indicates that the function
evaluates to undefined.

Starting in the normal state, the function is first evaluated for each new event
and an undefined event is produced. The next state depends on the function new
value. If th= new state is pending0, a O event will be produced after ty, unless another
event is received. In such case, the function is evaluated and depending on the new

value, the next state will be pending0, pending1 or undefined. When in state pending0

205

or pendingl, the CTA waits ty from the time of the last event before producing the

pending event. This effectively extends the undefined period for close events.

'} -
4 undefined
~ fU:-/- !

!
?
[]
[
V4
: f1:f- 1 No:-
U \ -
]
[}
]

waittUn 7) \ ~ waittu/0
\ \
Vi 4
fu:3/- 10:-/- e
"4 - ponding" . 'o..,- -~ - \\
' @V e = P 1
N '
‘f1 /- ~ <f0:-/-*

-
hadl R

Fig. 6. CTA for a combinational circuit

Normal operation consists of cycles with at least one solid arc. There are two
such cycles: between normal and pending0 and between normal and pendingl.

Finally, if the function evaluates to undefined, the CTA state changes to undefined.

3. 3-state devices
Description

Many logic devices have a special output stage that allows the output to
become high impedance. A dedicated input signal is used to control the high

impedance state of the output. The model of a typical device with this capability is

illustrated in Fig. 7. As it is the case with real devices, like ROM, the enable line

206

B
3-state
— E control €
CTA
A Ideal
3-states
- X0 bufter
—4X1 Logic
circuit vy
CTA
—31Xn

Fig. 7. Typical 3-state device

does not interfere with the logic function and it is assumed that the logic circuit can be
separated from the 3-state control circuit and that a perfect 3-state buffer combines
the signals y and e. The logic circuit CTA performs the continuous to discrete time
abstraction for signal y and the 3-state control circuit CTA does the same for the
signal e. Since both signals y and e are discrete, their combination Y will be. The
CTA for the 3-state control circuit is described in this section. The ideal 3-state
buffer does not have timing constraints, it might have a propagation delay and it has

the following logic function:

y e Y

- 0 Z

- U 8]

0 i 0

1 1 1

U 1 U
HDIL description

The ideal 3-state buffer does not need a CTA and the following description is

used for the 3-state control circuit:

207

circuit 3_state_control_circuit
interface
E: bit (input +2.5);
{vr}
e: bit (output +1n +ln +0 +5);
{tTLy, trHi, Vie Vil
(delay2 +2n +3n);
{tpru, tpar)
implementation 3SE
(timing +5n +4n)
{tL, tnl
(function (out e E))
end 3 _state_control_circuit

There are two types of interface nodes: input (E) and output (e). The
description contains the usual simulator arguments for the interface nodes and the
timing specification arguments used by the CTA (3SE). In this case, the logic function
is simple but one could imagine two or inore signals anded to control the 3-state
output. If the propagation delays tpLp, and tpyy are differents, the delay model
described in chapter 4 must be used. The input timing constraints t;, and ty shown in
Fig. 8 are used for the discretization of time, being respectively the minimum low time

and minimum high time for the signal E.

E

] \
1 § I
e ty - tL i

Fig. 8. Ipput timing constraints on E

Continuous Time Automaton

The CTA for the 3-state control circuit is given in Fig. 9. The CTA uses the
input timing constraints tp and ty to differentiate acceptable and unacceptable
sequences of events. An acceptable sequence is simply a sequence where the signal
E is low for at least t, and high for at least ty. There are two normal states HiZ and
Enable corresponding to E=0 and E=1, one Undefined state for E=U and two irregular
states HiZirregular and Enablelrregular. The 3-state control circuit operates normally

with separate events and the CTA toggles between HiZ and Enable states. If either

208

tp, or ty is not met, the output is made undefined (U) and the next state is one of the
irregular states. The output will remain undefined as long as the timing specifications
are not met. The output also becomes undefined if the input is undefined. Following
an undefined input, the output will return to a normal state if the input returns to O or 1,

but after going through an irregular state. This adds a delay to let the device move out

of an undefined condition and insure the discrete change of state.

- ’ 4
Undefined i
- €V - B0 . .
~
- \

EU:-/-’ \EU:-/-

Enable HiZ
Irregular Irregular

Fig. 9. CTA for a 3-state control circuit

4. Flip-flops

Description
The flip-flop is the device that stores one bit of information. As shown in
Fig. 10, the flip-flop has zero or more inputs, one or two outputs and a clock.

Assuming an edge triggered flip-flop, the output changes on the rising edge of the

209

clock to a value determined by a function of the inputs (SR, D, JK) and the present
state. Flip-flops require stable input values at the clock rising edge and the clock

signal is limited to a specified frequency.

-t X0 Q p—
— X1
— xn o8l
—pC

Fig. 10. Typical flip-flop

HDIL description
The following is the description of a typical D flip-flop:

circuit Dflipflop

interface
D: bit (input +2,0):
{Vr}
C: bit (clock +2,0):
{Vr}

Q QB: bit (output +0.5n +0.5n +0 +5)
{trear tran, Vie Vil
(delay2 +2n +3n) ;
(tpLus tpnnl
implementation FlipFlop
(timing 5n 5n +0.5n +0n)

{tL ty tsy tHp!}
(function (exe (out Q D) (out Qb (not D))))

end Dflipflop

A flip-flop has three types of interface nodes: inputs, outputs and clock.
Simulator arguments are specified for the clock as for an input. The description
includes the type of CTA, the timing specification and the logic function. The logic
function describe how the new value of Q and Qb are computed. The timing
specification includes two specification to limit the clock frequency (t, and ty), the

set-up time (tsy) and the hold time (typ). Except for the use of master-slave

210

events, these definitior:s are similar to those normally used to specify flip-flops. This

is illustrated in Fig. 11.

Stable
Xi Y
MM

! 1!
tsu—h'_.ﬂ'r"‘_tHD

1
+

\
+
J IL—_—
tH p!

X

1
—p! g PLH tPHL

tL

[y '"J

Q-GB

.,_-__x-

Fig. 11. Timing constraints and propagation delays for a SSC

Continuous Time Automaton

The CTA of the flip-flop is given in Fig. 12. It consists of six states
corresponding to the state of the clock signal. In a normal cycle, the clock toggles
between 0 and 1 and the inputs are stable near the rising edge of the clock. Starting in
state clockO, if the clock goes to 1 and the set-up time (tsy) and the low time (t.) are
met, the CTA state changes to clockla, the function is evaluated and the output
events produced if required (Cl:tgytyp/f). Once in state clockla, the CTA waits for
the hold time (tgp) and then moves to state clocklb (waittyp). This effectively
checks the hold time. It is assumed that typ<ty. Then the CTA state changes to
clockO if the clock signal goes to O and if the high time is met (CO:ty/-).

If any of the timing constraints are not met, the CTA state changes to one of
the irregular states and makes the output undefined. The CTA will return to a normal
cycle if the clock events meets the timing constraints. Finally, the CTA state

becomes undefined if the clock signal is undefined (clockU). Most of the events on the

211

inputs do not have any effect (X-:-/-), cxcept in state clockla where an event on X
violates the hold time. If for any reason, a new value does not change the output, no
event will be produced. This will occur every time the function f evaluates to the same

value on consecutive positive clock edges.

___..-.CO:'/U—--

- - -
L. -

g
- Ci1 ASUtLY Cu:-U
u ces
4 -, -

-

SeCIASUIL- | L e
-~ COfAR-=="""

- ad R, -

Clyy ASUIL-e oo m e == "

-

Fig. 12. CTA for a flip-flop

212
5. Synchronous sequential circuit

Description

As depicted in Fig. 13, a Synchronous Sequential Circuit (CSS) is similar to a
flip-flop. The flip-flop does not have an explicit logic state whereas the the user can
specify one in a SSC. In addition, the SSC may have many outputs. A SSC is
classified as Mealy machine if the output depends on the inputs otherwise it is a
Moore machine. The SSC described here is a Moore machine and the output only
depends on the state. As discussed in chapter 4, Mealy machines require a separate
CTA for the output decoder. A SSC is composed of an input decoder, an output
decoder and a memory element. The SSC modeled in this section has synchronous
inputs, a clock and synchronous outputs. The inputs must be stable during state
change and the change of state occurs on the rising edge of the clock. In addition, the
output decoder might behave like a gate or like a combinational circuit. It is assumed
that it behaves like a gate and therefore the outputs will change without glitches.

Variations of SSC are described in chapter 4.

-t X0 YO }—
— X1 Y1 b
—1 xn vnl—
—pDC

State

Fig. 13. Typical synchronous sequential circuit

HDIL description

The following is a description of a synchronous sequential circuit.

by three circuit with two inputs and two outputs.

circuit div3
interface
UP RESET: bit (input +2.5);
{Vr}
C: bit (clock +2.5);
{Vr}
Q0 Ql: bit (output +1n +1n +0 +5);
{troir trane Vi Vgl
(delayl +2n);
{tp}
variable
count:0 1 2;

implementation SSC
(timing +5n +5n +2n +0n)
{t, tH tsu tup!}
{function
(case RESET

U (exe (set count U) (out Q0 U) (out Q1 U))
1 (exe (set count 0) (out Q0 0) {(out Q1 0))
0 (case UP

213

It is a divide

U (exe (set count U) (out Q0 U) (out Q1 U))

0 ()
1l (case count

N oG

)
end div3

(exe (set count U) (out Q0 U) (out Q1 U))
{exe (set count 1) (out Q0 1) (out Q1 0))
{exe (set count 2) (out Q0 0) (out Q1 1))
(exe (set count 0) (out Q0 0) (out Q1 0))

The SSC description is very similar to the flip-flop description. It includes

input nodes, output nodes and a clock. In addition, a SSC includes a state variable

(count). Notice that the function out is used for output and the function set is used for

state variables. The timing specification is identical to the flip-flop and so is its

processing.

Continuous Time Automaton

The CTA of the SSC is identical to the CTA of the flip-flop given in Fig. 12.

214
6. Asynchronous inputs in flip-flop

Description

While discussing event combination in a flip-flop (section 4.7.5), it was
demonstrated that a separate CTA was required to model the asynchronous inputs
such as the set and the reset inputs of a flip-flop. The first CTA that combines the
clock and the data inputs is similar to a SSC except for the output. As shown in
Fig. 14, a new output cq is used. The signal cq can take three declared values 0, SO,
S1 and the undefined value U. This signals combines the information of the flip-flop
inputs C and Xi. If the clock falls there is a 0 event on cq and if the clock rises, the
events on cq will either be SO, S1 or U, depending on the D input. In addition, the
signal cq is U if the clock is U or if there is a timing violation. The CTA for the first
part of the flip-flop (A) is similar to the CTA of a flip-flop.

_ A

v T TTT ! B
--: X0 :
L' X1

e

', '

! '

]
== Xn :

: | R oB
-—P'c :

L 1

Fig. 14. Model of a flip-flop with asynchronous reset

The device that models the combination of the asynchronous input (R) and the
special clock (cq) is shown in Fig. 14 (B). The operation of such a device is simple,
unless there is an overriding condition (R=1), the output Q is controlled by the special
input clock cq. As usual, if the input R equals to 1, it overrides the input cq and forces
a 0 on Q. It is extremely important to realize that the signal cq has been parsed by a

CTA and is therefore a timed sequence of events. Therefore, there is no need for any

215

input timing constraints on cq. Input timing constraints are required for the overriding
signal R and between R and cq. The description and the processing of these
constraints are described in this section. The device operation is illustrated in Fig. 16.
There are two timing constraints associated with the asynchronous reset (R). First,
the signal R must be active for at least tw and second, a release time (tR) is
necessary after the overriding input becomes inactive. During the release time, the

signal cq must not change to S1 or U.

q / \
+ + +
\ /\ ~
—tw »
q 0 St ! oE S1
] 1
T ke
] [] 1
5 A\

PLH—p1 lg— —B rg— tPHL

Fig. 15. Timing constraints and propagation delays
for the asynchronous reset (R)

HDIL description
This is the circuit that combines the special clock (cq) and the reset (R):

circuit ResetCircuit
interface
cqg: 0 S0 S1 (clock +2.5);
{Vr}
R: bit (input +2.5);
{Vr}
Q QB: bit (output +1ln +1n +0 +5);
{trras torne Vie Vil
(delay2 +2n +3n);
{tpLu, tpunl
implementation AR
(timing +20n +5n)
{tw tr}

216

(function (if R (exe (out Q +0) (out Qb +1))))
end ResetCircuit

The HDIL description includes the list of interface nodes, the simulator
arguments, the type of CTA and the device arguments. There are three classes of
nodes: overriding input (R), special clock (cq) and outputs (Q and QB). As
discussed earlier, there are two timing constraints (tw, tr) and two propagation

delays (tpLH, tPHL)-

Continuous time automaton

The CTA of Fig. 16 models the behavior of the asynchronous reset of a flip-
flop. There are five states in the CTA. The normal state indicates that the overriding
input is inactive and that the output is controlled by cq. As soon as an overriding
condition is detected (R1:-/0), the output is reset and the state changes to forcedO.

Once in forced0, the input cq does not have any effect (cq-:-/-). If the R input returns

to 0 and the pulse width is large enough (RO:tw/-), the state changes to releasingQ.

217

The CTA returns to normal if cq is either S1 or U and if the release time is met
(cqS1:tr/1 and cqU:tgr/U). While in state releasing0, if the clock is S1 or SU, the
timing constraint tg is violated and the state changes to irregular0. The state also

changes to irregularQ from forced0, when the reset is removed while the clock is

already undefined (ROcqu:-/U) or when the timing constraint tw is violated

(RO:W/U). The CTA returns from irregularQ state to normal state after tr (waittr).

From any state, the CTA state changes to undefined if the reset signal is U.

7. General Synchronous Sequential Circuit (GSSC)

Description

The SSC described in section 5 has synchronous inputs and synchronous
outputs. A synchronous input is an input that must be stable during an interval
determined by the set-up and hold times. A synchronous output is an output that
neatly changes, without producing glitches. The GSSC of Fig. 17 also has
synchronized inputs (SXi) and asynchronous outputs (AYi). Synchronized inputs

have been internally synchronized with one or more synchronization latches and can

-—t X0 YO p—
- X1 Y1 b
—— 3(n ’Yn e
-4 SX0 AY0 p—

SX1 AY1

-——>C

State

Fig. 17. Typical general synchronous sequential circuit (GSSC)

218

change without restriction with respect to the clock. The value at the edge of the clock
is used in the logic function.

The behavior of asynchronous outputs is similar to the behavior of a
combinational circuit. Every change in the output is preceded by an undefined period.
In a GSSC, it is also assumed that changes of state and output events occur on both
edges of the clock. This is illustrated in Fig. 18. The logic function must therefore
include references to the clock. The 68000 microprocescor is being modeled and it

uses the GSSC.

Stable Stable
\[— \/ \/ \/
Xi 4 + + +
iy I
tSU =~ '_.!'4'- HD1 tSuo-n - {HDO
[} \ —
(o} + + +
—h A)
| -—tl Did tH »!
state W X Y z
]
: |
! L] ! []
H 1
Yi ' X | X
+ o : °
]] I
— -
tPLH1, tP.:I; tPLHo, tPHLO

)
_.H 1’"“‘" —:-ﬂ: k—:uo
—») |&— P —» | 0

Fig. 18. Timing constraints and propagation delays for a GSSC

Continuous Time Automaton
The CTA for the GSSC is similar to the CTA of a flip-flop or a SSC where the

function is used on both edge of the clock and the clockO state is also divided into

219

clockOa and clockOb to verify the hold time on the falling edge. The use of GSSC to

model complex devices is still under development.

Appendix [E

Listing and simulation results

This appendix contains the listing of the simulation of two circuits. The circuits
were used to verify the simulator's performance in term of events/sec. Each listing
has two parts. The first part titled LISTING is the circuit description. The second
part titled EVENTS is the list of events computed during simulation. The list of
events is provided for each signal. A signal begins with its number (<1>) followed by
the initial forced value (IFV) and the initial cc:nputed value (ICV). For each signal
the master events (M) followed by the associated slave events (S) are given on
separate lines. Information like the event value, the type of event (‘'d'ummy, 'n‘'ormal
and 'i'rregular), the father event (signal number - slave event number), the time, the
node on which it occurred and the previous state of the corresponding device are
shown. The actual simulation performance was based on a much larger number of
events. The simulation proved that algorithms based on master slave events and

using continuous time automaton are possible and relatively efficient.

1.0 Simple clock made of three inverter

P 2 e R R L R R R R R R R R R R R AR R R 2222222 2222322222222 Rt 8323 2 s d 8 2 o R 8 &
LISTING
L 2 R R R R R R Rt it 222232 2 2223222222222 2222 2 R i R 83 R 2 a 22 s s gy
1 circuit clock
interface
model
implementation

2
3
4
S
6 circuit inverter

7 interface

8 node

9 a:+0 +1 (input +3,0 {threshold}):
10 b:+0 +1 (output +1,2e-9 +2,4e-9 {(rise and fall time});
11 model Gate
12 (timing +1,2e-9 42, 4e-9 +8,2e~9 +9,4e-9)

221

13 (lambda (set b (not a)))
14 implementation

15 end inverter

16

17 element

18 Gl G2 G3:inverter;

19 wire

20 Gl#b G2#a (IFV +1);

21 G2#b G3#a ;

22 G3#b Gl#a ;

23 end clock

clock= 0
sysclock= 183
event number= 8
clock= 0
sysclock= 183

ARRKKRAKRRAA A Ak hkhhhkhkhhkhhhkdkkhkkkhhhhhkdkhkhArkkhkkhkkdkddkkhkkhkdkhdkkhhkkkhkdkhiikrk

EVENTS
I R I R332 232222 sX2232222 22333232822 2 2222222 st h st ids)

<1> IFV = 1l ====a= ICV = 0
nbr value typ father time node previous state
M 1 d
S G2#a
M 0: 0 s 0 Gl#b
S 1: 960 G2#a FSMstate = 0
M 3: 1 n 2 - 3 6240 Gl#b
S 4: 6960 G2%a FSMstate = 1
tl = 960
M 6: 0 i 5- 6 12240 Gl#b
S 7: 13200 G2#a FSMstate = 0
<2> IFV = IU ===== ICV = 0
nbr value typ father time node previous state
M 0 d
S G3#a
M 1: 1 n 0- 1 2160 G2#b
S 2; 2880 G3#a FSMstate = 0
M 4: 0 i 3 - 4 8160 G2#¥#b
S 5: 9120 G3#a FSMstate = 1
tl = 2880
<3> IFV = IU ===== ICV = 1=
nbr value typ father time node previous state
M 1 d
S Gl#a

M 2: 0 n 1 - 2 4080 G3#b

X w
[T

222

5040 Gl#a FSMstate = 0
1 i 4 - 5 10320 G3#b
11040 Gl#a FSMstate = 1
tl = 5040

2.0 Ten clocks made of one inverter

each having ten functions to evaluate

I E AR R RS SR AR RE R R RAR Rt s st iR Rt 222 X RS R SRS

LISTING

(2222220322 2Rt sttt st it Rt s s XA SRR RRRRRSR YR R R R

wLoJdand WP

10
11
12
13
14
a))))

NN

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

circuit clockl

interface
model
implementation

circuit inverter
interface
node
a:+0 +1 (input +2,5 {({thresholdl}):
b:+0 +1 (output +1,0e-9 +1,0e-9 {(rise and fall time}):
model Gate
(timing +1,0e-9 +1,0e-9 +0,5e-9 +0,0e-9)
{tpl tpo tsep tmin}
(lambda (set b (not (not (not (not (not (not (not (not {not (not (not

implementation
end inverter

element
Gl G2 G3 G4 G5 G6 G7 G8 G9 Gl0:inverter;

wire
Gl#a Gl#b (IFV +1);
G2#a G2#b (IFV +1);
G3#a G3#b (IFV +1);
G4#a G4#b (IFV +1);
G5#a GS#b (IFV +1);
Gé6#a G6#b (IFV +1);
G7#a G7#b (IFV +1);
G8#a G8#b (IFV +1);
G9#a G9#b (IFV +1);
Gl0#a Gl0#b (IFV +1);

31 end clockl

clock= 0
sysclock= 166
event number= 82
clock= 16666
sysclock= 183

L2 S S22 222220t R 2222 222 a0 a0 R RR R st 2 i s 2 8RR RS RSEE ERY]

EVENTS

223

AhRkhkhRRAhXkhkhdedehhhdiddidhhdhdh fdohihiideddhhkdd ik kdkkdkkkkkkdk ik dkkkikkkikkkikik

<1l> IFV = 1l =o=mm=m JCV = 0
nbr wvalue typ father time node previous state

M 1 4

S Gl#a

M 9: 0 s 0 Gl#b

S 10: 500 Gl#a FSMstate = 0

M 19: 1 n 9 - 10 1500 G1l#b

S 20: 2000 Gl#a FSMstate = 1
tl = 500

M 29: 0 n 19 - 20 3000 Gl#b

s 30: 3500 Gl#a FSMstate = 0
tl = 2000

M 39: 1 n 29 - 30 4500 Gl#b

S 40: 5000 Gl#a FSMstate = 0
tl = 3500

M 49: 0 n 39 - 40 6000 Gl#b

S 50: 6500 Gl#a FSMstate = 0
tl = 5000

M 59: 1 n 49 - 50 7500 Gl#b

S 60: 8000 Gl#a FSMstate = 0
tl = 6500

M 69: 0 n 59 - 60 9000 Gl#b

S 70: 9500 Gl#a FSMstate = 0
tl = 8000

M 79: 1 n 69 - 70 10500 Gl#b

S 80: 11000 Gl#a FSMstate = 0
t6e = 4096

<2> IFV =] ====m= ICV = 0
nbr wvalue typ father time node previous state

M 1 4

S G2#a

M 8: 0 s 0 G2#b

S 9: 500 G2#a FSMstate = 0

M 18: 1 n 8 - 9 1500 G2#b

s 19: 2000 G2#a FSMstate = 1
tl = 500

M 28: 0 n 18 - 19 3000 G2#b

S 29: 3500 G2#a FSMstate = 0
tl = 2000

M 38: 1 n 28 - 29 . 4500 G2#b

S 39: 5000 G2#a FSMstate = 0
tl = 3500

M 48: 0 n 38 - 39 6000 G2#b

S 49: 6500 G2#a FSMstate = 0
tl = 5000

M 58: 1 n 48 - 49 7500 G2#b

S 59: 8000 G2#a FSMstate = 0
tl = 6500

M 68: 0 n 58 - 59 9000 G2#b

S 69: 9500 G2#a FSMstate = 0

M 78: 1 n 68 - 69
S 79:
<3> IFV = 1

nbr value typ father
M 1 d
S
M 7: 0 s
[} 8:
M 17: 1 n 7 - 8
S 18:
M 27: 0 n 17 - 18
S 28:
M 37: 1 n 27 - 28
S 38:
M 47: 0O n 37 - 38
S 48:
M 57: 1 n 47 - 48
S 58:
M 67: 0 n 57 - 58
S 68:
M 77: 1 n 67 - 68
S 78:

<4> IFV = 1

nbr value typ father
M 1 d
S
M 6: 0 s
S 7:
M le6: 1 n 6 ~ 7
S 17:
M 26: 0 n 16 - 17
S 27:
M 36: 1 n 26 - 27
S 37:
M 46: 0 n 36 - 37
S 47 .
M 56: 1 n 46 - 47
S S7:
M 66: 0 n 56 - 57

10500
11000

munus TCV =
time

224

tl = 8000

G2#b

G2#a FSMstate = 0

node previous state

G3#a

G3#b

G3#a FSMstate = 0

G3#b

G3%a PFSMstate = 1
tl = 500

G3#b

G3%¥a FSMstate = 0
tl = 2000

G3#b

G3#a FSMstate = 0
tl = 3500

G3#b

G3#a FSMstate = 0
tl = 5000

G3#b

G3#a FSMstate = 0
tl = 6500

G3#b

G3#a FSMstate = 0
tl = 8000

G3#b

G3#a FSMstate = 0

node previous state

Gd#a

G4#b

G4#a FSMstate = 0

G4#b

G4#a FSMstate = 1
tl = 500

G4#b

G4#a FSM3tate = 0
tl = 2000

G4#b

G4#a FSMstate = 0
tl = 3500

G4#b

G4#a FSMstate = 0
tl = 5000

G4#b

GA%a FSMstate = 0

G4#b

tl = 6500

S 67:
M 76: 1 n 66 - 67
S 77 :
<5> IFV = 1

nbr value typ father
M 1 d
S
M 5: 0 s
S 6:
M 15: 1 n S - 6
S 16:
M 25: 0 n 15 - 16
S 26:
M 35: 1 n 25 - 26
S 36:
M 45: 0 n 35 - 36
S 46:
M 55: 1 n 45 - 46
S 56:
M 65: 0 n 55 - 56
S 06:
M 75: 1 n 65 - 66
S 76:

<6> IFV = 1

nbr value typ father
M 1 d
S
M 4: 0 s
S 5:
M 14: 1 n 4 - 5
S 15:
M 24: 0 n 14 - 15
S 25:
M 34: 1 n 24 - 25
S 35:
M 44: 0 n 34 - 35
S 45:
M 54: 1l n 44 - 45
S 55:

9500

10500
11000

mmmmre JCY =
time

0
500
1500
2000

3000
3500

4500
5000

6000
6500

7500
8000

9000
9500

10500
11000

mnomm [CV =
time

500
1500
2000

3000
3500

4500
5000

6000
6500

7500
8000

225

G4#a FSMstate = 0
tl = 8000

G44#b

G4#a FSMstate = 0

node previous state

G5#a

G54b

G5#a FSMstate =

G5#b

GS5#a FSMstate = 1
tl = 500

G5+#b

G5#a FSMstate = 0
tl1 = 2000

GS#b

G5#a FSMstate = 0
tl = 3500

G5#b

G5#a FSMstate = 0
tl1 = 5000

G5#b

GS5#a FSMstate = 0
tl = 6500

GS#b

GS#a FSMstate = 0
tl = 8000

G5#b

G5#a FSMstate = 0

node previous state

Gb6#a

G6#b

G6#a FSMstate = 0

G6#b

G6#a FSMstate = 1
tl = 500

Gé6#b

G6#a FSMstate = 0
tl = 2000

G64b

G6#a FSMstate = 0
tl = 3500

G6#b

G6#a FSMstate = 0
tl = 5000

Go#b

G6#a FSMstate = 0

tl = 6500

M 64: 0 n 54 - 55
S 65:
M 74: 1l n 64 - 65
S 75:
<7> IFV = 1

nbr value typ father
M 1 d
S
M 3: 0 s
S 4:
M 13: 1 n 3 - 4
S 14:
M 23: 0 n 13 - 14
S 24:
M 33: 1 n 23 - 24
S 34:
M 43: 0 n 33 - 34
S 44:
M 53: 1 n 43 - 44
S 54:
M 63: 0 n 53 - 54
S 64:
M 73: 1 n 63 - 64
S 74:

<8> IFV = 1

nbr value typ father
M 1 d
S
M 2: 0 s
S 3:
M 12: 1 n 2 - 3
S 13:
M 22: 0 n 12 - 13
S 23:
M 32: 1 n 22 - 23
S 33:
M 42: 0 n 32 - 33
S 43:
M 52: 1 n 42 - 43
S 53:

9000
9500

10500
11000

time

0
500
1500
2000

3000
3500

4500
5000

6000
6500

7500
8000

9000
9500

10500
11000

am=m=e= JCV =
time

500
1500
2000

3000
3500

4500
5000

6000
6500

7500
8000

G6#b
G6#a

G6#b
G6#a

226

FSMstate = 0
tl = 8000

FSMstate = 0

node
G7#%a

G7#b
G7#a
G7#b
G7#a

G74#b
GT#a

G74#b
G7#a

G7#b
G7#%a

G7#b
G7#a

G74#b
G7#a

G7#b
GT7#a

previous state

FSMstate = 0

FSMstate = 1
tl = 500

FSMatate = 0
tl = 2000

FSMstate = 0
tl = 3500

FSMstate = 0
tl = 5000

FSMstate = 0
tl = 6500

FSMstate = 0
tl = 8000

FSMstate = 0

node
GB#a

G8#b
G8#a
G8#b
G8#a

G8#b
G8#a

G8#b
G8#a

G8#b
GB8#a

G8#b
G84#a

previous state

FSMstate = 0

FSMstate = 1
tl = 500

FSMstate = 0
tl = 2000

FSMstate = 0
tl = 3500

FSMstate = 0
tl = 5000

FSMstate = 0

M 62: 0 n 52
5 63:
M 72: 1 n 62
S 73:

<9> IFV

nbr value typ

M 1 d
S
M 1: 0 s
S 2:
M 11: 1l n 1
S 12:
M 21: 0 n 11
S 22:
M 31: 1 n 21
s 32:
M 41: ¢ n 31
S 42
M 51: 1 n 41
S 52:
M 61: 0 n 51
S 62:
M 71: 1 n 61
S 72:

= 1
father

mmmme 10> ==mm= JFY =

w2

N WX W uxux

<4

nbr

[Rrpye—
- oo
e sr ee e

20:
21:

30:
31:

40:
41:

50:

value typ

1 d

0 s

1 n 0
0 n 10
1 n 20
0 n 30
1 n 40

father

9000
9500

10500
11000

time

0
500
1500
2000

3000
3500

4500
5000

6000
6500

7500
8000

9000
9500

10500
11000

1l ==man ICV =

time

500
1500
2000

3000
3500

4500
5000

6000
6500

7500

227

tl = 6500
G8#b
G8#a FSMstate = 0
tl = 8000
G8#b
G8#a FSMstate = 0
node previous state
G9#a
G94#b
G9#a FSMstate = 0
G9%4b
G9#a FSMstate = 1
tl = 500
G9#%b
G9#a FSMstate = 0
tl = 2000
G94b
G9#a FSMstate = 0
tl = 3500
G94b
G9%#a FSMstate = 0
tl = 5000
G94b
G9#a FSMstate = 0
tl = 6500
G94#b
G9#a FSMstate = 0
tl = 8000
G94#b
G9#a FSMstate = 0
node previous state
G1l0#a
G10#b
Gl0#a FSMstate = 0
G1l0#b
Gl0O#a FSMstate = 1
tl = 500
Gl0#b
Gl0#a FSMstate = 0
tl = 2000
G10#b
Gl0#a FSMstate = 0
tl = 3500
G1l0#b
Gl0#a FSMstate = 0

G1l0#b

tl = 5000

n X n X

n

S1:

60:
6l:

70:
71:

0

1

0

n

n

50 -

60 ~

70 -

51

61

71

8000

5000
9500

10500
11000

12000
12500

Glo0#a

G1l0#b
Gl0#¥a

G1l0#b
Glo0#¥a

G10#b
Gl0#a

FSMstate =
tl = 6500

FSMstate =
tl = 8000

FSMstate =
tl = 9500

FSMstate =

228

