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ABSTRACT

A Modified Potential Method
for Transonic Flow Problems

Bao Quy Nguyen \

Transonic flows are of high interest in the design of aircraft .

and turbomachines. The governing equations for inviscid transonic flows
‘are nonlinear and of mixed-type, calling for complicated nurﬁcric;l

treatment. The classical velocity potential and stream function models are
the most used formulations for such flows. They are not, however, without
limitations. The potential method has been proven inapplicable for choked
flows and inaccurate for _flows with strong shocks. It has also recently been
discovered to suffer from a multiple solutions problem. The stream function
method also suffers from a double-valuedness problem in mixed flow
situations.

In this Thesis, two new formulations for transonic flow
problems are proposed based on a modified potential model and a hybrid
model. In the first, a non-isentropic potential model is developed based on
the entropy condition obtained by shock tracking or by solving a pressure
equation. The second approach, called a hybrid one, is in terms of a velocity
potential and a perturbation stream function. It goes one step further by
accounting for the vorticity generated behind curved sh?cks by the entropy
gradient.

The results forchoked flowin a converging- diverging nozzle
are shown to be unique and agree well with the analytical solution. Results

over a non-lifting airfoil reproduce the features of Euler solutions. S
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NOMENCLATURE
A ~ cross-sectional ;rea of nozzle
T a speed of sound o~
P E- | .encrgy‘ _
-/ e-ASR entropy function across a shock
/ 0 f . "right-hand side vector
h enthalpy |
K B global influence matrix
k element influence gnz;trix
M Mach numl;er
.m mass flow rate
N - shape function ‘
P Q pressure )
. q Qelocify, VuZ s v2
R gas constant |
- Ré residual -
a S entropy
T temperature
u,v x and y velocity components
X,y Cartesian co%rjdinates ‘
‘ w weighting function
‘ o B relaxation factors
v isentropic exponent
5, A" change ina quantity
, K ~ -potential
- Yy stream function
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g pertur%ation stream function .
{l . artificial viscosity or artificial compressibility coefficient *
p density - f
P * artificial ::ompressibility ‘
vorticity : \ '
* Subscripts | S ‘ '
e,e-1 * - - element, upstream element =
Cex exit c .
i, nodal indices g
in inlet \
n outward riorma} direction | .. ’ '
) stagnation property ’ |
S streamwise direction -
X,¥,t derivatives with respect to x, y and time
00 _ freestream value |
Superscripts , ‘
'(apostrophe) isentropic value ] ' k )
* non-dimensional value |
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,  CHAPTER1
o INTRODUCTION

v

11 . Inviscid Transonic Flow Problem - An Overview

The motion of a general unsteady viscous compressible flow is

governed by the Naviey-Stokes equations, which are a system of nonlinear
: 3

coupled partial differential equations. Exact solutions cannot be found except

for few highly specialﬂized cases. Aerodynamicists normally have totum to

. numerical methods to obtain analytical solutions. In such cases, however,

) S
sufficient simplifications must still be made to bring the computation efforts
N - . 2

to manageable prbportions and to obtain an approximate but meaningful
solution. :
. In the last decade, the use of such numerical methods for flow

simulation has become a powerful and indispensible tool for the design and

analysis of modern aircraft and turbomachines. This is mainly due to the
<X .

rapid growth’ of computer technology as well as the development of new,
accurate and efficient numerical algorithms. .‘

Among the growth areas of computational aerodynamids, a

great effort has been expended towards developing numerical algorithms for

transonic flow problems. Transonic flight, now recognized as an efficient

regime for aircraft, is also quite frequently encountered in turbomachinery

‘cascade passages and has become a challenging focus of interest.

o ®or flows with sufficiently high Reynolds numbers, the

viscous effects are important only irra thin shear layer near the body surface,

-

as suggested by Prandtl's boundary layer theo;'T. The remainder of the flow

1=

~
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~can be considered inviscid. This is the basis of most presefit transonic

"N

and: !I\?i+v-j ‘ BN . ’
) ' - - o R N o ' .

EL) ‘ 2

~

- . L
inviscid calculations and is the focus of this Thesis.
A - . / )
<
1.2 ‘Governing - Equations for Two Dimensnonal

lnvlscid Flows

z
-
~ B

compressxble flows are obtamed from the conservatlon of mass, momentum

The governing equatlons for general two-dnmenSxonal inviscid

and energy In the absence of body. forces

-
.

R
& N 4
&~ o 121 Conservation of Mass: C

P Z (pll) 0 e~ .
Qﬁere::.. g Z S—H g—g S '

(3 . -

1.2.2 Conservation of Momentum: N

’ ’ . Y ' , ..
PU.MU=-Yp T ()
where p is the static pressure. . | T .
- 1.23 Conservation of Iénergj} i | o .
KS - o - L
~.§7.H-A(PEOLD—-F>(]ll V)P | R (13)
. . i e 8 — !
‘ ]
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where E, is the total energy.
The system of equations (1.1 - 1.3) are known as the Euler
equations. - . _
This set of first-order h'yperbblic equations has been
vigorously tackled in t.h’e last few years by many researchers and it has
Become increaéingly féshionable t(}‘solive‘ the Euler eqﬁations in their

prlmmve variables form. . . _

It should be noted from the above equations that, to compute
the flow ﬁeld, four unknowns must be solved for: two velocity components
and two thcx;mddynamic properties. The computational requirements of the
Euler equations are thus substantiallyl higher than the more traditional
velocity potential and strea;n-function methods for which a single unknown
need be determined, as will be shown in the next section.

To introduce the "single" variable methods such as the velocity

potential or the stream functlon the governmg equatlons are combined

- and/or replaced by simpler relations.

For steady, 1sentrop1c flow of a perfect gas, the energy

equation is: p
= [1-%LM2ue-D o L a4y
. =1 L M | (1.4)
where: M, q/a is the Mach number with respect to the stagnation
speed g? sound. '

-~ Y

From the first and second laws of thermodynarics, one has:

TdS =dh-9p . - ‘
P o



s : TES=2]’I-3-¥P-
= ¥, -4 YU.W1-1¥p
-'The momentum equatjofl (1.2) is now:

U.DU =4YU.I)-Ux¥xU

~TYS - Ylh, - YU 1))

or: . . '.-uxixu=Tzs-m o a8

By defining the vorticity vector as:
@=YxU sy

equation (1.5) becomes:

-

.\

Equ‘étiqn (1.7 'ig usually kné&n as the‘Crc‘)c;:o rqlation‘.

Ux@=-TVS +¥h,

Expressed in a natural coordinate system aligned with the flow, ”équation

(1.7) becmhes:

g.m=Tg-§ " \/ | N | ' (1.8')’

\ _ . ,
- which expresses the vorticity in terms of the gradient of entropy across the

an .
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streamlines. .

The éoveming equations are now reduced to the continuity
and vorticity equatlons, supplemented by the Crocco relation (1.8), i.e.:

(1) The Continuity E%Jatlon o

gow +$pV=0. . o 9

(2) The Vorticity Equation : ,

3%-3%03 | S K Tuao
\ | :

\J‘

" The stream function and velocity potential fonnulatxons are

with the vorticity ® given by equation (1.8).

based on the simplified system consisting of (1.4), (1.9), (1.10) and (1 8).

13 Stream Function Equation

»

In this approach, a stream function, ¥, is defined to satisfy the

equation of continuity identically:

u=%§y¥ : _ | (1.11a)

/‘ L
and: v=lgt | . (L1Ib)

The VOTthlty equation (1.10) then pmvxdes the govemmg

_equation in terms of the stream function:

\. w '.. L
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| d o ad oh-o - (1Y)

, v . NC L.
The vorticity ® Lb given by the Crocco relation (1.8), which

éan be re-arra}nged as follows: ‘
m~=:gg}51\ ,
3
For a perfect gas,ﬁsin‘cecp:pRT: . ;
o-mEY

-p L(S-2 3(S) R E
| pg;}gR) yMg;(R)_ o

\1

using, in the first expression, the fact that the normal derivative of the stream
function is the mass flux (pq) between two streamlines and the deﬁnitigﬁ of

the speed of sound in the second. , ~
For incompressible flows, the above equation implies that

- vorticity remains constant along a streamline and for compressible flows, it

simply states that the vorticity/pressure ratio is constant along a streamline.

The energy equation (1.4), in terms of ¥ is: -

(1.14)

wl S



It can be seen that no assumptions are made in recasting the
Euler equations system into a stream function/vorticity system. It is
therefore appropriate to expect that a solution of the new system of equations

should yield resuilts totally in accordance with those of the Euler system.

- 1.4, Velocity Potential Equation 4

9

e 3 .e
If the flow is further assumed irrotational, the velocity can be

defined as the gradient of a potential to satisfy the vorticity equation

identically,
U=Yo;u=00 ; y-00 | > 115y
PLO O | X 1l y ) ¢
. , ,
*  The continuity eqﬁation then yields: R
: . _

a 90D + 4D -0 . o (1.16)
The energy eduation is: . - |

T A 2 V- 1)
N g;-.\[ljﬁiMo] (-1

/. =[1-Y= “(V 2] Wy-1y .. ~ 3 .,‘ '(1"1‘7) .
| (1-%51eed | i oo
\'L ' " ) : I ‘ ;
1.8 - Difficulties. of Transonic Solutions

. The complexities of the potential or stream function transonic
! N N— —
L g ) , “
/ . » | \\/\) 1 . S

|
1



'8
flow foxfmulations lie primarily in the mixed-ty;;é nature of these equatiofs%m A
For subsonic flows, the equations are elliptic but as the free stream velocity
exceeds the critical value, a supersonic pocket develops over the body. and the
équations become locally hyperbolic. Furthermore, the equations accept '
discontinuous solutions through the formation of shock waves. Both
LT compression and expansion shocks are, however, permitted by the equatiogs.
Expansion shocks are physically impossible and must be éxcluded. The
limits of the supersonic regions, as well as the shock strength, are also not
known a priori and must be determined along with the solution.
) Let us now examine the solution method for inviscid transonic
flows using the velocity potential formulation in order to highlight some of
these points. '

\
-

1.5.1 The Concept of Artificial Viscosity for the Mixed-
Type Equation ,
¢ The potential equation (1.16) can be rewritten in characteristic
or nop- conservative form as: | |

*

(a2 - u2)d,, - 20V, + (a2 - VDD =0 (118)

An interesting.phenomenon can be demonstrated from this
equation in the transonic regime. Since the equation is symmetric it remains
unchanged regardless of whether the velocity U is defined as VO or - V.
This implies tﬁgt- the equation permits reverse flow solutions. For

) illustrative purposes, let us consider the flow over ; symmetric biconvex
airfoil, depicted in Fig. 1.1. If central differences are used everywhere, two

shocks gppear with one of them being a non-physical expansion shock. If



L

> ) 9

forward. differences are applied for supek@nic points, only an expansioﬁ
| shock is obtaified. Only when backward differences are used for supersonic
points will a compression shock appear in the solution. The use of backward
_differences in the supersonic regions in ordér to"capture shocks was first
made by Mﬁrman and Cole [1] for the solution of steady transonic flow over
thin airfoils, using the transonic small disturbance equation. Their approach
wes extended to the full potential equation by Garabedian [2],and Jameson [3]
and has been in wide use since. )
To illustrate Jameson's approach to the full potential equation,
let us recast equation (1.18) in a coordinate system locally aligned with the
flow, i.e. along a streamline and the normal to it. The equation rezfds:

~-

(1-M2) O + D =0 , (1.19)

where the local derivatives with respect‘ to (s,n) are defined in terms of the -

global derivatives with respect to (x,y) as:

’

Dy = (1/g2)[u2Dy, + 0vD,y + V2D, ]  (1.20)
and: Oy =(UqAV2D,, - 20D, + 42Dy : (1.20b)
L \e ,

This method, known as the rotated. differences scheme, takes
mto account.the non-alignment of the grid and local velocnty véctor in
representing the domam of dependence more accurately in supersonic
regions. |

It is obvious that equation (1.19) is elliptic for subsonic flows

J (M < 1) and hyperbohc for supersonic flows (M > 1). This is an important

£ ) : .
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property of the full potential equation and it is classified as being of
mixcd-typé. . sy

Let us,' in general, consider the numerical treatment of a.

differential equation of the above mixed-type written in the following form: « )
AP +Dp =0 ; A=1-M | (1.21)

/

If upwind or backward differences in the streamwise direction

-are applied to discretize the @, term, one obtains:
T (1-M2)(D; - 2 By | + D 5)/As?

This can be re-expressed in terms of-central differencgs and a

correction as:
=(L-M2) (@, -20; + D, )« @
(@1 -3 @ +3 O, + D, ,))/As?
) = (1-MY®Dy, -2+ D, g) /AS2- | S
(1 - MY)[(®D,; - 20; + B, ) - (®; - 20 + D, p)l/As? h K/ |
=(1 - M3)(®;,; -2 ®; + @, ;) MAs? - (1-M2) As O
. : S R
= (1 - M2)(®;,; -2 @; + D) /As2 + M2(1 - I/M2) As ug,

e

~
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| ’ (1.22)
the correction term on the right-hand side of (1.22) is observed to be a

viscous-like term, similar to the right-hand side terms in the Navier-Stokes
_equations and it cafiibe concluded that the use of backward difference
operator in the supgré’gnic region introduces an "artificial viscosity"” in the
inviséid potential equation proportional to the grid. spacing. This artificial
viscosity has a switching factor defined as: ’

-

HAsug ; p=max (0, 1-1/M2)

that limits its introduction to supersonic points.

N It has been lately recognized by Hafez, Murman and South [4]
that the artificial viscosity term can be absorbed in the density to produce a
more compact form in the follow'iﬁg manner: if one rewrites the upwind:
differences form for the componepts of ®, from’ (1.20a), an artificial

viscosity is obtained for each component as:

K74

@, D, - AxD \

XXX

L ’
@,y : Dyy - (A/2) By, - (Ay/2) By -

o

i |

-

Dyy: Pyy - Ay Dyyy

" The overall viscosity is then:

- -.h

(1- M?)(l/qZ)[u?-Ax»d>m +UVAy @, . + uvAx @, + v2Ay Dy ]

, L]
- -
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L oe(l- M2)(1/q?)[Ax(uu,, + uvvyy) + Ay(uvuy, + vzvy,;)]

o

This, when multiplied by p, can be shown [5] to be equivalent

- tor »
( L TRIMD gy ax + upy), Ay)
‘\\\\ e , / . '
\-—/,/Equation(l.IS\) can now be recast as: R
(Pu)yc+ (PV)y= [(1 - 1/MP) up Axly+ [(1 - 1/M?) vy Ay),
| ' o | (1.23) .
or; PP+ P2BYy=0 (1.24)

’

’ wh.ere:“ " py=p - max [0,(] - 1/M3)] u PyAx

o~
.

and: pz*p-.maXIO,(i-llM2)lvpy y

' ~ A simpler, approximate form of (1.23) is given by: ' / .
S O+ (D=0 o Caas)

s

where p idle.artificial compressibility and is given by:

[ ) ' »
T« Bep-ppyas, g (1.26) °
' v . ” ' ' . ' . | [ ’ - “
| PAS= WP AX + (i) pyly - - (12)
5 -
- : P
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and: . p=max (0,1-1M2) o (1.28)

is a switching function vanishing in the subsomc region.

The above approach, which was proposed by Hafez et-al [4], is

" commonly known as the Artificial Compressibility Method (ACM). 1

proved to be a breakthrough for transonic flow galculations. éspecially. for
the finite element rhethod, and is now widely used due to its simplicity and
ease of iing;lementatidn. Results using the full potential equation with the
ACM can be found in Refs.[6 - 9]. T

1.5.2 Non-Uniqueness of the Potential Solution

While the full potential equation with artificial viscosity has

enjoyed wide use in transonic flow computations, it has recently been found

to suffer from a non-uniqueness problem. Steinhoff and Jameson [10] and _

later Salas et al [11] reported that, for a certain class of problems, multiple

solutions r | ay be produced by the potential equation in conservation form,

satlsfymg entlcal boundary conditions and permitting only compression
| t

shocks. Th\py concluded that this non-uniqueness is an inherent problem and

since this is not relatgd to the physical phenomenon, the theory of potential

‘flow in the transonic range should be reviewed for its validity [11].

” Several successful attempts have been made, since, to modify
the potential formulation to account for the entropy rise across the shock
and to circumvent the non-uniqueness problem. Hafez and Lovell [12], fdr
ilistanf:e, proposed a non-isentropic pdtentia] model where the entropy jump

is accounted for. A?nOther dpproach is provided by Habashi, Hafez and

Kotiuga [13], who solve a pressure equation derived from the momentum.

eqpations, in conjunction with the potential equation, and ‘calculate an

“~ .
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%

% ) ' v : -
= ent‘ropy correction determined by the deviation of the calculated pressure .

EN
’

“from. the isentropic one. Both approaches will be covered in Chapter 2. The
point to be made here, however is that one should not let the so-called non-
" * uniqueness problem detract from the many obvxous advantages of the

potential formulation.
i

q

1.5.3 Inapplicability of the-Potential Solution to Internal

. Flows with Shocks ' '

For an intemal flow such as the flow in a cor';vergent-

‘ dlvergent nozzle the back pressure may lead to a situation where the nozzle is

“ choked and a shock appears past the throat. The shock posmons itself to

create the appropriate loss 1n total pressure to mee't the imposed back

pressure. ?y virtue of the fact that the potential model is an isentropic one, it

is im%ossible to meet a back pressure other than the isenfropic one. This led
@ many resea:rchers to conclude that, for ynternal transomc\flows, th;E(uler\/’\

, » equations were the only suitable -method of solution. By‘ana\ly;z' g the

preblem and its boundary conditiens, however one comes to-the conclusion,

as.will be shown in Chapter 2, that minor modlﬁcatlons of the potential flow

Yo
formulat_lon allow it tb be successfully extended to choked internal ﬂowsr
with shocks. ‘

'y

/

. . 1.5.4 Transonic Stream Function Equation
The advantages of the ¥ formulation over the Euler equations
wany Let us, however, mennon two iniportant ones, (a) the solution of
a one variable problem versus four variables, (b) the solutlon of a
second-order equation rather than a set of first-order equatlons with

comphcated boundary conditions.’ The obvious advantage of the ¥
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formulation over the full potential method is its ability to include the

rotational effects due to entropy gradients behind a curved shock and to its

simpler Dirichlet boundary conditions. Unfortunately, the model coptains a
classical difficulty for mixed s%onio/supc’rsonic flows: the

double-valuedness of the density-mass fluk relation, as 1llustrated in Fig. 1.2.

For a pamcular value of mass flux (pq), two values of density can be

./

determined, one correspondmg to a subsomc Mach number and the other t’o a

supersonic one. L ‘f\
ThlS singularity has been remedied in [14] by altematlvely

1teratmg between the stream function equation and the sar\so equatlovecast

flow orientation) is known:

\  =tanl(Y) = tankRY) = tanr (-, ) 129’

u pu ‘Py

The vorticity equation becomes:

du.odv= a—(qcose) -a—(qsme) = DI o (1.30)
dy 9x dy ax
where: q=VulZ+vd)

&

Equation (1 30) is flrst-order in terms of q and can be

mt\egrated if a solutlon is known along an initial data line other than a,

4'

characteristic. For flows over isolated airfoils, for example, the initial _data
line is usually the far field'boundary representing the free stream. The
équation is then integrated in the general direction of its characteristic.

‘Results using the stream function fonnulatlon can be found for instance, in

~

‘in term®f the velocntx q, once the stream function distribution ¢hence the - -

N

N——
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[14] and [15] showing the effect of vortxcnty in displacing the shock position

.’ upstream compared with those given by the irrotational velocnty'potentlal ’
model. |
3 | | :
1:6 ~ Summary

The transonic flow problem with its physncal and theoretical
difﬁcultles has been simulated to a considerable degree of success fof the last .
decade. Since the first solutions in the early 70's, based on the simple model
of small perturbations, aerodynamicists have now developed powerﬂil tools
to predict and analyse flow phenomena which previously could only be
observed experinientally. o | L
The potential equation has proved to be a powerful and
reliable method to predict transdnic inviscid flows despite its few perceived
limitations. The major constramt of the potential assumptlon is that the
rotatlonal effects are ignored making it' somewhat inaccurate for curved
shocks. While the anomaly of multiple solutions and the internal flow
" difficulties have brou gl‘it the appiicability of the full potential solutions under
cfose scrutiny, the newly-developed modified formulations would probably s
remain. among the best methods for the numerical solution of the transonic &
problem and continue to serve computational transonics well.
' The stream function formulation offers a higher approx-
-imation of transonic inviscid- flows than the potential model since the
rotational effects are faithfully reflected. The inclusion of vorticity should
yield more realistic resalts in the presence of strong shocks.

iy

LY
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1.7 ' Scope of Thesis

Two new formulations for ﬂue t'ransonicfﬂow probl/em are -
proposed and are based on a modified potential model. o

In the first approach, called the Modified ‘Potential Method,
only the entropy jump is accounted for, while in the second approach, or the -

. Hybrid Method, both the entropy and vorticitj? are.calculated.

In the next chapter, the dcri\zfltion of the goverriing equations
with the modified potential and hybrid potential/stream function models are
presented, together with their discretization using the finite element mcthod.‘

. Some iterative schemes appropriate for transonic solutions are illustrated in

Chapter 3. Results and discussion are presented in the last chapter.
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CHAPTER2
" PROBLEM FORMULATION .

- [l

C In this chapter, the two approaches based on a modified
potential and a hybrid potential/stream function are demonstrated. The
methods are .applied to the analysis of both internal and external transonic
flows. v

Choked internal flows are used to i}iustrate the modified
potential mqthdc_l and it compares favorably with the exact solution for
one-dtimensiona] flow. The hybrid method applied to non—liftiﬁg airfoils
shows the trends of an Euler solution, at a fraction of the cost.

" ‘The finite element analysis is presented in the following
section with special emphasis on the ease of applicat{on of some particularly

problematic boundary conditions.
2.1 Assumptions o i

In deriving the governing equations in the subsequent sections,
m-.

Downstream of the shock, the ratio (entropy/pressure) remains constant

- along the streamlinés but the entropy gradient across the streamlines causes

vorticity.
g The flow stagnation pfoperties may be determined by the
isentropic relations before the shock. Although the flow becomes rotational
thereafter, these properties can be found, along each streamline, by the same

relations modified by the correct entropy increase.

»>

" the flow is assumed to be isentropic and irrotational up to the shock wave,
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2.2 Mathematical Moggl

As mentioned in Chaptér 1, the transonic potential equation is
not adequ‘ate to simulate flows in some cases. For low transonic cases whe:&}
shocks are-weak the isentropic assumption does not produce a significant
error and the potential equation results are acceptable. As the free stream
Mach number increases,.and the shock strengthens, the potential model
becomes less accurate since the flow can no longer be regarded as isentropic.
Another ser;ous problem of the potential formulation is the non-unique
solutions in a certain range gt; free stream Mach numbers for external flows,
while for intemal flows ﬂié/i'sentropic potential solution may not exist at all.

1 In the iaresent Thesis, two new approaches are suggested to
modify the potential model in order to include the non-isentropic and/or

rotational effects.

2.3 One-Dimensional Flow
For the one-dimensional internal flow example, let us consider

a compressible flow in a converging-diverging nozzle as described in Ref:
[17].

2.3.1 Non-Uniqueness of the Classical Pdténtial Solutidhn for
Choked Flov;rs _
The contiguity equation can be solved analytically to yield two
isentropic solutions with a sonic point at the throat as shown in Fig. 2.1. For
‘subsonic ‘inlcyet conditions; the flow expands in the converging part and

" compresses in the diverging part of the nozzle. If the sonic condition is
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reachcd at the throat, two cases are possible: (i) the flow may continue
compressmg following the subsomc solution (curve B) or (ii) the flow may
cxpand to supersomc condmons (curve A) and Jump to a subsonic solutlon
through the formation of a normal shock in the diverging section. In both
~ cases, the solution is controlled by the exit pressure, which in general does
not correspond to the isentropic pressure.

; The shock position can be umqucly determined only if the
pressure loss or the entropy increase is taken into account. The classical
isentropic potential solqtlon simply does not ex1s§ in this case [14].

" Habashi et al, in Ref. [14], show that a Neumann boundary
condition for the.potential at the exit produces non-unique solution for the
choked nozzle. ‘

Conéider the one-dimensional equation:
[®,2], =0 | - @21
for 0 < x < L. For subsonic inflow, the inlet boundary ¢ondition is:

x=0;0=0

At the exit, where the flow becomes sqbsonic again due to the

presence of a normal shock in the nozzle, one can impose either of the

followings: -
x=L;®,=C,or®=C,

Upon integrating equation (2.1), one can write;
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or: @, =G

" From the upstream conditions, one has: -

(b\x=+c3. ‘ ] o /-

and if the Neumann condition at the exit is selected:
@, =C;=-Cs

which implies that the éolution' cannot be uniquely determined, as illustrated
- - - ‘

in Fig. 2.2. .
‘ Now, if the Dirichlet condition, ® = C, is chosen, the shock
location is given by [14]:

© xg=L- [B(x) - CUC, @22

where: d(x,) is the potential value at x.

2.3.2 The Modxﬁed Potential Method - Model 1 **
X ' Having. recogmzed the boundary dxffxculty that hindered the
sblution of choked flows, Habashi, Hafez and Kotiuga [13] and Deconmck
and Hirsch [18] developed potential flow methods capable of solving internal
flow with shocks. The former approach is more general and is based on a

modified potential formulation in which the entropy increase across the

L

£
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shock is taken into account via the Rankine-Hugoniot relation.

i
\
\

Since vorticity cannot exist in the one-dimensional casexeven
in the presence ‘ot" shocks, the velpcity can be defined as the.gradient of}\\ _

potential, i.e.: ;o
u=0, B ' ~ 2.3)
The continuity equation is:

S—

[PAul=0 | ' (2.4)

- N

which can be written in terms of the potential as: \\\_; | }\\ _
(PA d)x ]x =0 ) (2.5)

The density p isafunctionof u and i§ obtained froxh' the

following modified expressioﬁ:
= 1.9 21 1/(y-1) o-ASR - :
£ =0 Y M2 Y- D) e ' : .(2.6)

where the term e-AS/R s unity before the normal shock while after the

shock, the entropy jump is given by the Rankine-Hugoniot relation:

2 2 w.1 lll‘y-lv J M2 ‘y/'.y-l B
/R =In{( My Y ) I (r+ DM ) 1 @D
ST+l Y+l 24 (y-D M

W

T
=



2.3.3 Boundary Conditions
. At the inlet (x = 0),

- op=0)=0 7 o @8

for subsomc inflow conditions.

1 9

\

A Dirichlet boundary condmon must be 1mposed at the nozzle

exit i order to umquely define the shock location:

O(x=L) = C3 b\a-\j o 2.9) . )
.9 - 3 B S
The value of C; ;@ be varied to adjust the shock position,

and hence its strength, in the'diverging section of the nozzle to praduce the

correct exit pressure. In our solution, the value of C5 is obtained iteratively.

“ .
234 ‘The Modified Potential Method - Model 2
An alternative way to calculate -the losses in an automatic
_ manner is to solve for the pressure determined from a sécond-order .
\‘=\ differential equation derived from the two momentum equations. This
\". pressuré-then yields the losses and pghnité the caiculation of the correct
density [19]. ' |

The continuity equation is:

. POA),=0 . | @.5)

1

While the momentuin equation for the one-dlmensmnal case

can be written as: ‘@
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o (Ap uz)x -Ap, =0 . . (2.10)
,‘/) . This equation is tumed into a second-order equation suitable .

. for solution by finite elements by differentiating it with respect to x:

. . . ) |
) < -
. | (Ap v2),y - (Apx=0 = @.11)
. -~ 2.3.5 Boundary Cgnditions

The boundary ¢ .ditions for the pbtential equatio‘n 2.5)

remain as before while those for the second-order momentum equation are

. asfollows: = | , ,
“(a) at inlet (x = 0), the pressure gradient is specified from the
original first order equation: B '
S

py=(Apud), /A (2.12)

(b) at exit (x = L), the static pressure is prescri_bed, i.e. a

Digichlet boundary condition is iniposed:

P=Pex /Y\\/ e

These boundary conditions are summarized in Fig.2.3. .

‘Once ‘the pressure field is determined, the losses can bé found

S
b}
as: .
. o 3
: :

P =plp'= cASR - 2.14)

- - ) "1- ‘ Fl
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N Y ..

where the prime denotes the ideal isentropic value defined from:.
o D=1 -¥21lM 2] (-1 ' S
- g— (1 1—2-11\/[0 LY .Y ; 2.15)

(o]

and"the non-isentropic density is calculated as :
]

. .

- | R -1-Y-lM21M(Y-1) ¢-ASR Y
- P, '[ : °]',;-.‘ e . | (2.6)
- | While the oposed method involves the solution of an

additional equation, namely a Poisson equation for pressure; its results are
thought to be much closer to the solution of the Euler equations, still at a

fraction of the cost.

N

2.4 T\;vo-Dimens'ional Flow ‘ o

The above approaches can be easily extended to the two-

dfme \‘:. ‘.'(-‘f'

al case as demonstrated in Hafgi, Habashi and Kotiuga [19].
However, another approach will be considered here to offer a second

-

alternative. -

The velocity components can be redefined, withoutany loss of
generality, as a combination of the gradient of a potential and the curl of a

divergence free term:

.9y . _
: R | K

. * Note that the correction terms a{e/‘ chosen based on a strgam .
PN \ [

" function-like concept and for the remaining of this work, ¥ is referred. to
. _ J

: A

-

A

\ S JF0 . S S -
., _ 80,1 ak _ - @16

-

T

\\

N

\
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as the perturbation stream function.

As an example of a two-dimensional flow, let us consider the

| unbounded flow around a symmetric non-lifting airfoil. -

_2.4.1 Governing Equations - . . SR
By substituting the definition of the velocity given in (2.16a,b)

in the continuity and vorticity equat'ior)s, one obtains:

@»%%p 90 2 390 . em
and: g_(l 3:1’_) %-( )--co , o (2.18)

t -

-t

" The non-lsentroplc denslty is obtained from*(2. 6)
v .
8 - [1- Yl M2FAY D eASR ” e
o " . ’
£ .
while @ is obtained from the Crocco relation (1.13). ;
4

© =‘7%r L) | 2.19)°

Equations (2.17) to (2.19) constitute a set of equatléns
govemmg the motion of an inviscid non-isentropic compress1ble flow in
¢
terms of the new variables ¢ and ‘F'. N
2.4.2 Boundary Conditions % ‘
“ The flow configuration is shown in Fig. 2.4. In order to

determine the proper boundary conditions, let us consider the: velocity

corhpbnents in terms of the two varigbles & and W' alohg the outer

-
e

R
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 (d) In the far field region where the presence of the airfoil is
not felt, ‘the flow variables assume.the free stream values, which are denoted
by the subscript . Along the outer boundaries x‘ OR,, the velocity is thus: |
- , ~ ) a
U=U. : ‘

. . ’/'
whlchmt{es u=U, ; v=0 | . ‘

. Now since. the flow in the far field is lrrotatlonal and no
perturbatlon term should be present, the boundary conditions for <D along
B;R/ can be taken from the potentxal model, i.e.: . .

Voo ) o
* : N . s [ ) .
O=Ug,x , o (2.20)
L y & :

This means that a Neumann condition should be imposed on

~ the perturbation stream function:

‘ ¥ =0 | | T _an

‘g(ii) On the airfoil surface, the flow tangency must be enforced,
This is equivalent to setting the normal mass flux to zero along Ry, oF:
- : : '

@, =0 S (2.22)

ﬂ . leading to: ;‘P’s =0 or ‘P' = const. ~ o (2.23)

©

" The solution is determined to within some arbitrary constant

of the variables @ and ¥', and the constant can be choscn:as zero for

\‘.
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+ / '
Since the flow should be symmetri¢-about the centerline for

-~ simplicity.

. . . . et .
this particular configuration, the stream function assumes a zero value along

thi's line, including the slit behind the airfoil, i.e.

v i

q{';o " | | | :
along AB'in Fig. 23. . « \ |
25 Finite Element, nisc;e;izétion
re 4:\/ . | “The finite element discretizetion of cthe governing equations

for both the’ one- dlmensmnal and two-dimensional problems will be -

presented in this sectgon. s

I

2.5.1 The Galerkiir Weighted Residual Method

" Given a differential equation of the form:
AN ‘ L
' . L@)=f Ty (229
- ' . . > , ~

the welghted residual method seeks %p approxxmate solution in the form of a

ﬁmte number of basis functions:

»

~ o . o
u=ZuNwy) T - 1(2.25)
i=1 ’
o ‘ .
where vu; are the undetermined coefficients and N; are known as the ba81s

¥ At

-

or interpolation functxons

b,
\
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. _ ' R
‘ Since the approximation solution y will not, in general, satisfy
. the governing equation exactly, substitution of equation (2.25) into (2.24)

shoulci yield an érror or a residual R, that is:

a)

Lw-f=R (226

‘>

The main objective of the weighted residual method is to
determine thé coefficients u; such that the residual R is minimized over the
solution domain in an average manner. This is achieved by setting the

weighted average error to zero, or:

v

Jiw-f1waxay=0_ - - e
A
where Wi are weighting functions which, in general, are not the same as the -
interpolation functions N;. The Galerkin method, however, selects the

weighting functions to be the basis functions N; sothat: .

1w - f1N; dxdy = 0 (2.28)

A : o

The finite element method can be formulated applying the
Gale:rkin weightid residual method by. breaking the integral (2.27) into its

sum over all elements:

> JliLw-f1N;daxdy =0 )
i=1
2.5.2 Isoparametric Elements

‘One of the advantages of the finite element method is its ability

-y

wy T
i
-t
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to approximate intricate boundaries. This. can be achieved by a local
transformation to rg}p a distorted element into a regular-shaped parent

element as shown in Fig. 2.5. Within an element, the function and the ,

coordinates (X,y) can be expressed as: \ {“%
. ) - “ppd
DOF e , .
f =2 MEWE « . (2.30)
S : .. \

x =% NGEmx sy =2 Ni€,m) y;
!

where DOE is the number of degrees of freedom, (€, M) are the ‘
non-dimensional coordinates of the parent or undistorted finite elér;ent and
(xi;yi) denotes the physical coordinates of node i. .

Several types of elements can be defined based on the choicg of
polynomiéls for the geometri\: interpolat‘ion function Ny and for the i’%&
interpolatjion function M. If the two polynomials are of the same order, the
elements are called isoparametric. In contrast to the isoparametric concept,
the order of M; can be chosen to be lower or greater than that of N; for

« subparametric or superparametric elements, respectively.

For four-node isoparametric i)ilinear elements, the shape

functions are found to be: AN ¥

bt

Ni €. m)=-(1+EpU +mny) (2.31)

A .
where (§;,7;) are the coordinates of the corner node i. The shape function
N; can be observed to assume a value of unity at the corner node i and vary

linearly with& andn along an element side (§, 1 = %1). ‘
L N & .
' . LN
%

¥



| 2 53 One-DxmenSmnal Equatxons
By applying the Galerkm criterion to equatlon (2.4), one can
write:
NEL L

Y IN L p Ad®jax=0 - (2.32)
i=1l 0 dx dx .
This can be integrated by parts to give:
'NEL L ' L\ | |
| le[pA@]dx+pAd-QN| e
i=1 0 dx | dx dx 0 .
From equation (2.30), one can write:
i ~ DOF - -
. 4P > dNiCDi ’ (2.34)
dx i=1 dx P
N,,/’\, . ‘
‘ Substituting (2.34) into (2.33):
NEL L | L.
T Npa®jaiap-padlN | ()

i=1 0 dx - dx - dx 0.

where the repeated subscript denotes ‘summation.
| Note that the nght-hand side term of (2.35) is nonzero for
elements with nodes on the domain boundaries whcre a derivative boundary
. condition is prescribed. Therefore it vanishes in the present problem. -

If denS1ty is assumed constant within an element, equauon

(2 35) can be recast as: . J
NEL ' . ' ’ L
) pc,f dN; (A dN; ) dx { B3} = p A SBN; | @36

"=l . 0 dx dx , dx 0
. . - / Al
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or, m matnx notation:

- —,

' [Kg1{®} = {Fo} - s
\ N

For two-node linear clements, the element stiffness matrix
[kep] can be eValuatcd to be:

v | Ko = Pe I Box (D (2.38)
-~ o \ , o I? '

\

while the right-hand side vector is zero throughout: .

»

foi=0 - (2.39)

P

Similarly for the momentum equation (2.11), one can’ write .

\\ | the Qalerkln formulation as: | | \
‘ NEL L | ‘
> N {[(Apid)yy + (Apy)] dx = (2.40)
i=1 0

which, upon integration by parts,‘yields:
) 4
NEL L ° |
Y JadN dNjgpyax-

i=1 0 dx dx L

Nil(pu2A) + Ap} - | Wiu2a),ax ~  (2.41)
0 0 dx |

or, in matrix notation:

[Kp14p} = {B} o
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-1dent1ca11y at the actual nozzle inlet. -

33
I A dx (-1)4 I (2.42)
T o2 ) -
- and: fp,i—-f dn; j{puzA_}j dx . ' (2.43)
L dx dx.

It s observed from equation (2. 41) that the flrst-order

g
momentum equation appears’in the boundary term, making the contour

. integral vanish identically. Therefore, the boundary terms need never be

considered. Had the finite difference method been used, the pressure would

have had to be calculated at the inlet via the first-order momentum equation.

This appreach first presented herelhas been extended by Hafez, Habashi end

'Kotmga [19] and by Peeters, Habashi and Dueck [20] to the soluuon of

pressure equations of both 1nv1sc1d and viscous two-dxmensxonal flows."

" In the present solution, a staggered computational grid for the

pressure and the potential equatlons is adopted, as ‘shown in Fig. 2.6. The_) '

". reason for thls choxce is that the momentum equatlon will be satisfied

» ¢ t
%
4

By assemblmg equatnons (2.38), (2 39) and (2.43) for all
elements, trldlagonal systems in terms of the potentlal @ and pressure p

result

' 2.5.4 Two-Dimensional Equations

In this section, the derivétion df the element equations is

demonstrated for the continuity equation (2.17) while only the final
expressions for the vorticity equation (2. 18) are shown.

- The Galerkin formulation for equation (2.17) is: | @
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ZH[QP@)J—(pag?)JNdxdy 0 | _es

i=l A dx 9x dy Ody

»~~

By applying Green's theorem:

m.Vv dA = §-u(v.n)ds - H v.VudA ) (2.45)

L

to intégrate (2.44) by parts, one obtains:
. ' B

Al ip2® Ny p2® IMNijaxdy + PN;p R ds=0  (246) -
l N

A, Ox Ox dy dy. on
Substituting the derivatives for ® given by (2.434) into/(2.46)
to get: '

1o 2 AN 4 p A; 2N dxdy{®;} +INp X ds - 0 (247)
Ae ox 0Ox dy dy . dn

e By assuming constant density over the element, one can finally
write: )

g -

. - —pc.U[aN oN; , O -aNJ]dxdy{<D}+ s
S A by P
o - INpERds=0  (248)
b L . . an . ’

. After assembly, equation.(2.48) becomes:

[Kgpl{®} = {Fq} L © (249)
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where [ kg ] is an influence matrix of order (4 x 4) with elements:
ke = Pe | (9 A £ ON; ONj) dxdy (2.50)
A Ox 0x dy Ody
and: | fp; = PN 2Rds o 2.51)

// , on

Note that the contour integral (2.51) exists only for non-zero

flux conditions imposed on the elements along the (global) inner and outer

boundaries. Along-any edge shared by two elements, the contour integral
cz.méels. In 6ther words, the zero flux or Neumann-typ'e boundary
conditions are naturally satisfied by the finite element method. More
impoftgnt in the case of the pressure equation is the fact .that the
two-dimensional momentum equations are naturally satisfied along the now
more complex 2-D boundaries, including -solid ones. Alternative
formulations would -have to somehow compute the pressure along the
boundaries as is the case for the primitive variables Euler equations.

The vorticity equation can be discretized in the same manner:

o X Il 2y L L )4 @) Ndxdy0  (2.52)
" i=l A, dxp dx dyp dy .

* which upon integration by parts yields at the element level:

(L 2N 2 N ANy ey ()
Pe Ac 3x Ox dy.dy ,
Pe - Ae |

The influence matrix therefore is:



Yop i

and the right-hand side vector is:

= (1o [Jran; 2N; . aN; ONj) axdy
Pe Ae Ox Ox

dy dy

fgi = AN s + ] N;N; {@;} dxdy

A
cp?

on

Ae

-
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(2.54)

(2.55)

The derivatives in (2.50 - 233) are evaluated numerica}}y:"l

— k=l Treminem=X T ww, F&;mHEp;)l

141 .

NGNG

i=1 j=1

oo (] [ a ][] [N, |
o | - & & ||ax [ -p5y]ox (2.56)
dN; ox dy || o - | 9N,
lon ] Lon  anflay 3y |
DOF -
where: o - Y o '
Sk el ¥
" and: [J]  JaBbian of the transformation
The global deri'vétives_are thus: .
(AN, | [N ]
ox |yt | o (2.57)
| dy _ _an f 4
3ig€2.50) and (2.54) can be determined by émploy-
ing the Gaussian quadr§pé®technique with (2 x 2) iﬁtegmtion points [211:

2.58)

-
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where: - NG is the order of integration
W;,W; are the weight factors
&;, m;) are local coordinates of the Gauss integration points.

. Upon assembly of the element equations for the entire: field
with the assumption that density and vorticity are frozen from the previous
iteration step and therefore known, two systems of simultaneous linear
equations in terms of the potential arfld perturbation stream function are
obtained. Several iterative techniqﬁes suitable for transonic problems shall

be presented in‘the next chapter.

b

2.6 Artificial Compressibility Method for Finite
Element Discretization -

The finite element discretization shown abgjve iS not

. dissipative. In order to capture the correct shock, an artificial viscosity is

recjuired. In all calculations, a modified density is used at supersonic points

‘and given by:
Pe=Pe - e Pl T @s9)
‘ - ‘ o
- !
where: psAsz‘p_e-pe_l 4 _ f (2.60)
and: Bo=max (0, 1-1/M2) S 2.61)

withsubscript e denoting the value at the centroid of an element e and (e-1)

the value traced back along a streamline to the element upstream.

+

It is worth noting that in earlier finite element results using the
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»

artificial approach, the switching function ., is normally sxnl;liﬁed by a
~ factof ranging f;om' M2 to 2M2 in order to stabilize the iterative scheme and
to avoid "peaky"” shocks This leads to weaker shocks positioning farther
upstream than the fmlte dlfference results which use lower artificial
viscosity. Habashi and Hafez [2]0 propose a switching function given by:

N

" pe=max(0,1-1M2,1- 1M, 2) L @62
This he]ps provnde unsmeared transomc results free of
pre-shock accelerations. It has been actually found quite feliable for the
solution stabijlity and has been adopted by many others, for exa.mg\,e [16].

4

-
v/
=

" ..
ﬁ
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CHAPTER 3
. ITERATIVE TECHNIQUES

”

As can be observed in Chapter 2, the govcn@icquaﬁons are /}

nonlinear partial differential equations whose solutiofis can only be found b

N "
numerical iteration, after discretization. In this chapter, some appropriate
7

iterative techniques for transonic sqlufions will be presented. 4
. After assembling the element equations for the'engi'{ field, a
system of simultaneous linear equations is formed: | //
‘ ¥ Vs
. " /
(K ){} = {1} . /@D

" where [ K ] i§ a symmetric sparse matrix. For the Hotential and stream

" function equatiohs, [KJis a functich of the density which is laggibg behind

the solution itération-wise. In this case, the system always looks elliptic since
the artificial compressibility is positive in both subspnic and’supersonic
regions [4]. This linearized scheme, however, wik not cohverge for
transonic flow.problems, The divergence of such a scheme can be attributed
to the essential -nonlinearity of the governing equatjons which is not

truthfully reflected by the matrix. For moderate to hig/h/transonic cases, the

global influence matrix may become ill-condjtioned.

It should also be mentioned that the iumerical scheme must be
_carefully ‘selected considering that for"!’/ e solutions to be obtained the
numerical stencil must, at least, contajn the domain of dependence of the
differential ecjuation. For ellipti\‘c equations, an explicit numerical approx-

imation, such as the point Jacobi‘} can be applied to obtain the solution at a

/

,f.
. /.

i -
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particular grid point based on the values of the neighboring points. Now for
transonic flows, as the local Mach number approaches unity, the governing
equation becomes parabolic and the characteristics are normal to the

streamlines. In this case, all explicit solution schemes a??i‘napplicable and, at

least, a line-implicit scheme such as Vertlcal Line Successive Over-

Relaxation (VLSOR) ¥nust be employed.
3.1 ~ Line Solvers -
‘ ) ) '
3.1.1 Vertical Line Successive. Over-Relaxation (VLSOR)

The method is applied. marching line by line with the flow,

making use of the most recent solution of the previous line and that of the

next line \as boundary conditions. The resulting influence matrix is

tridiagonal and the solution is rélaxed in the following fashion:
Nn+ly o . n+?§% n
[T {80;"*"} = - {Re(6®; 1™ a0 (3.2)

The over-relaxation schemé can be shown to introduce
transient terms to the iteration and is r?t in the time-dependent form [4].

Let us illustrate this“by considering the incompressible

[

potential equation:
Oy + Dy =0 o (3

The over-relaxation solution at a particular point (i,j) is:
4 ‘ .
<x>,J =@+ (D" <bij"5 .

L

\.J



‘where &* is the calculated value and ® the over-relaxed valqé.

p

The discretized equation can be fewritfén as:
(<D 1+14 2<D +<b“+1, IJ)/AX ‘+ (®* i+l - 2<D +¢ ij- Viy2= é

But: . ..

@ = (O™! - O/ox + O = SPloL + N

and equation (3.3) now bepomes: ' h i
((Dl+1,J 2(D + (DI_IJ)QIAX 28¢IJ/((1)AX ) + 8<I>l l,_]/Ax .

-

+ (P51 - 2<b +<I>x - l)“/Ay2+(8<l>l J+L 260;; +8<i>i J,l)l(bJAyz) =\0 ‘

This is equivalent to:

(Dyx + D )n - (2o Ax2)3D;; + (8<D i1 Oy +6<I>,J)/am

.
1)
. ‘ a
jy o-
. P
o .

.
i’

+ (8D j,1 - 280+ 5¢iJ-;).é{,GAy2) =0 -

SR Dy ) - AUAX2(2ct - 1)<1>t (AVAX) Dy + (2At/a) yye =0

i o -

I B¢xt+y¢yyt+s¢t=ke' " L (34
. - . . .' ' k
The importance of the transient term @), in an iterative

method for transonic solutions can be dpﬁxonsn'atcd as foilgws.

L
-~ Q
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The solution of compressible flows are normally determined

from a system of the form:

[L13®]=R®) ' . ‘- (35

¢ : @

. vshere [ L ] is chosen, for pra{ctical 'pﬁ‘rposee, to be the incompressible

Laplacian operator. This njethod will not converge for high transonic cases
since the Laplacian cannet replace a miXed type operator For mild
transomc cases, the solutlon may ¢onverge if the artificial vxscosxty is greatly
enhanced However, convergence difficulties will re-appear if the grid is
refined. '

It is therefore more appropriate to design an iterative scheme

' that is based on the Unsteady problem so that the converged solution is

.
- PR

obtamed when the steady state is reached.
For example, Jlet us consider the one—dxmensxonal unsteady

muatxon in terms of the velocity potential:

‘ .

- YDy + 2u B, = (a2 - v, (.6

> 2
<

When the flow-is supersonic, equation (3: 6) is ﬂyperbohc It

has been proven [5] that in order to have two real characteristics for the
» .

hyperbolic equation, one must have:

°©

Ead

B2>1-1/M2 _— ' NEN)

‘ . 3 v . N
In other words, for the iterative scheme to succeed in

. ¢ .
stipersonic regions, the coefficient of the ®,, term must be positive and -

~
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larger than 1- 1/M2.

The iterative matrix must be augmented by a @y term and

- should be modified by a term proportional to:

Ax o0 - Axat 2_(5%) (8

/

The first term is added to the diagonal and the second tq the

- (@;-0; !

~ RHS since the value of ® on the lme upstream is known.,

The VLSOR scheme marching with the flow contains the ®,, /
term while other iterative methods such as point SOR, point Jacobi,
horizontal line sﬁccessive ovér-relaxation (HLSOR\)Z line Jacobi, Fast Solver,
VLSOR marching against the flow etc. do~ nothave a ®,, term and must be

explicitly added.

3.12 Zebroid Scheme

ln§tead of sweepmg the field with vert:cal lines, a horizontal'
line solver can be applied. However HLSOR produces ady, term of varying |
sign when applied to each line. If every second horizontal ljne is updated -
(Zebroid scheme), the transient term ®,, does not appear. An iterative step

@ therefore requires two fleld sweeps. With a @, or ¥y, term explicitly

added, the Zebroid method converges much faster than the VLSOR method~
[9]. This can be attnbuted fo the fact that flow mfonnatlon is transmltted

faster in the stream-wxse direction in this method than n VLSOR

P . -



3.2 " Poisson Method .

1 4

The nonlinear equation can be re-arranged in the follb,wfng

form: D v ) R . ’\ N . \

(@ O 0, Oy 8 69
" which suggests an iterativ; scheme of the form:
{p;}.[L ]{54;}““ = -0 {Re}" (311‘05 .\ |
where . [L] =incompressible operator or the Laplacian,
=V2 =3, 43, | - ‘

r -
5@l = n+l. pn .
{Re}n = residual at iteration leveln -
=k et o

‘@ =acceleration factor (1 Sa<2)

i | ]

-~ - ~ > ) ' N .
This method converges rapidly if [ L]is a good approx-
imation of the actual compressible operatof. An iteration scheme with the

TR

Prandtl-Glauert scale factor can also be applied to accelerate the

convergence:
y

Pl M3+, 1080 - (RO G

o

. -
. a : -
. i N [
oo - ,
.
- J .



‘/\ A It can be seen from the Poisson or Taylor. method that a

consecutive iteration levels in the following manner: .

3.3 ~ Taylor Method"

This method resembles the Poisson method above, except that . -
the global stiffness matrix is assembled every iteration with the new dens:ity

value.

r

(P" 3D, + (P 8D, = -a{Re}* - . - (312

Moge work is required at each step due to the assembly but the

total computation effort may be less.

It should be noted that neither Poisson nor Taylor method will

converge for moderate to high transonic cases unless greatly enhanced

artificial viscosity is used to stabi{ize the solution. Such solutions are

"contaminated” and convergence problems will resurface if the grids are

refined: ﬂ ‘ | : ’

34 " First- and Second-Degree Implicit Mgt'hods

~
)

simulation of the type given by (3.10) or (3.12) can be efnployed and this

‘ ldea is extended to an implicit scheme to involve the solutions at two or three

e

e[L]{52<I>}+a[L {50} = -B{Re} ' @)
, \ w
- where: [L] =Laplaciani operator s

e =0 for first degree method
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= 1 for second degree m,e‘thod

* a,P = acceleration parameters

The ®,, or ¥,, is needed and can be introduced by the
following method. In elements with supersonic nodes, an asymmetric matrix

can be constructed as:

© A=

. -
where [Tl ] is a transformation to exclude the influence at a supersonic pomt -
from downstream nodes while doubling that from nodes upstream. This can.
be schematically seen in Fig 3.1. The glob'al matrix is then decomposed by
an LU scheme. The iteration is more laborious at each step but global
converg'ence is found to be certain for transonic solutions.

. Another method to introduce the @, for this schemie is to

~ modify the Laplacnan matrix as:

B -
\

[L]1{8®} +[L {50} =-{Re} . - ‘Gl4~

where [L; ] is an asymmetric operator whose eleménts are;

L1~=(1-1/M2) {O-®.,}- . . - (3.15)

_ In our woxk the solution is started from a guess, Wthh can
logxcal 4{ be closen to be the incompressible one. Elther the Pmsson%r the °

Taylor method can suitably be apphed for'some preset number of cycles or

until convergence dtfﬁculty is encountered (this is normally when the
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supersonic region appears). The iteration scheme is then switched to either
the first- or second-degree implicit method, with transient terms ®,, and ‘¥,

explicitly introduced as described abdve, until the global convergence is met.



CHAPTER4 .
NUMERICAL RESULTS

S L ’

" The numerical results of transonic flows in a one-dimensional
nozzle and of a two- dimensional flow around an isolated non-lifting '
NACA0012 airfoil will be presented in this chaptcr with details.

44. ' One-Dimensional Flow | > |
With the introduction of the modified potential, a non-
isentropic sofuiivn may be obtained following ‘the algorithm shown in \
Flowchan 4.1.
L Starting with an intial guessed value of potennal at the exit d)ex,

[(or equivalently A® across the nozzle), the solution is found subject to a
 certain convergence criterion, say when thevmigimum residue of either the
potential equation (2.4) or the pressure equation (2.7) is below 10°6. The’
pressure dctermmed at the exit is compared against the required value and a
- new value of <bcx is computcd using an interpolation' or extrapolatlon

schemé, such as the secant method. The outer loop is restarted datil the

calculated and the i)rescribcd back pressures agree within a tolerance of - -

71073,

n

The com?utational grid with 50 linear elements for the velocity
. potential equation and 51 eleéments for the pressure equation is shown |

erimposed in Fig. 4.2. The numerical solution is illustrated .in Fig. 43
agninst the exact solution for a static back bressure of 12.41 psia and A® =
0.651.



It can be seen that the theoretical and numerical solutions are in
éatisfactory accordance. ' ' g
" The convergence histories of solutions with differént featufes
- are shown in Fig. 4.4. |
For the potential equation,'ﬁle Poisson iteration method is
carried out for a preset number of iteration steps or until at least one
| supersonic nodé abpears. The first-degree implicit method, augmented by a
@, term, is then applied until convergence is met. The Poisson method is
emplo{;;:d throughout the iteration process for theé pressure equation.
In addition, the important role of the transient term @y in the
convergence of transonic solutions is clearly demonstrated in Fig. 4.4 for the
above case. The influence of the artificial viscosity on the shock location and

strength, as discussed in Chapter 2, is also illustrated in Fig. 4.5. . AN
4.2 Two-Dimensional Flow

The computational algorithm in' this c\I:ése is presented in
Flowchart 4.6. | SN

Several options exist it,'l the program that can be specified to,
obtain one of the followings:
- (1) classical potenti'al solution

(g) non-isentropic potential solution with entropy correction f

given by Rankine-Hugoniot relation

(3) modified potential solution with perturbation %eam
function. |
At every iteration step, the global stiffness matrix is assembled

using the so-called "Skyline" method [22] which makes use of the sparse

A s
.ﬁvu

-
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character of the matrix to economize computer storage. In this metﬁod, the
bandwidth of each row is stored along with the addresses of the diagonaL
elem;;nts. The assembled matrix contains only. non-zero elements. The
‘syster,ri is then decomposed énd‘invcrte'd by the LU decomposition schetne.

It is worth also describing the method to determine the nodal
values of velocity and vorticity of an element. The velocity and yorticity at
the Gaussian points are first obtained from. the potential and perturbation
stream function solutions. These values are then extrapolated to the corner
nodes using the procedure described in Ref. [23]. This scheme is found quite

~accurate and particularly important for vorticity. | |
 In transonic test cases, the Taylor iteration’method is used for
the first few iterations until one supersonic node appears. The first-degree
implicit method is then applied with the term ®,, or ‘¥, explicitly added in
the same manner as described in Chapter 3. A relaxation factor of unity .is
used throughout the iteration process. )

’Note that since the vorticity equation is only secondary, it need
not be solved at every iteration step. Here, it is solved periodically, i.e.
every 5 iterations.

The ébmputgtional grid, shown in Fig. 4.7, consists <;f 51 nodes
on the airfoil surface and 28 nodes from the airfoil surface to the oﬁter
boundaries, which is located at 3.5 chord lengfhs from the blade surface.
Some extremely fine layers adj'aceni to the airfoil are found to be crﬁcially’
necessary to represent the large vorticity variatign in that region. :

The Mach number distribution over the airfoil surface for.a
subsonic flow (M., = 0.72) is shown in Fig.—4.8 agai'nst the classical potentiai
solution. No difference should be expected since the flow is isentropic and

no vorticity is generated.
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.Transonic results with far field Mac;‘x numbers 0.80 and 0.85
. are illustrated in the next series of figures. The classical full potential
sqliltion and the new potential-perturbation stgeam function are plotted
against each other. The trends of an’ Euler solver are observed, namely that .
the shock weakens and moves upstream. These solutions cannot , however,
be directly compared to those, for example, in Ref. [24], considering the
"much finer grid used in the latter, which cqul'd hqrdly be afforded on the
Concordia Cyber 825.
The Mach number contours, the perturbation stream fﬁhction

- contours and the \:orticity contours for the two solutions can be found in
Figs. 4.11-12. o |
The non-dimlensional vort‘ici—ty as a function of the lateral

directio(n\i)s plotted for various stations are shown in Figs. 4.13-14, Notg that
the vorticity on the solid boundary is zero since the shock wave is normal to -
the airfoil surface and ‘alrsé vanishes along the wake due to symmetry.
\ The con\ié’rgenc‘e histories for" the two test cases are shown in

Figs. 4.15-16. “

4.3 Discussion

It is now clear that modifications of the classical‘potential
model are feasible to obtain non-isenfropic rotational solutions without
actually having to solve ‘the full Euler equations.- |

-‘ Two non-isentropic models have peén presented in this Thesis
and have been applied to the flow in a nozzle and for a’two-dimensional*
-external flow. Both models yield unique solutions.

- Two methods of calculating the entropy have also been - --

-~
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proposed: the first via a correction provided by the Rankine-Hugoniot
relations across the shock and 'the«second by solving a second-order pressure
equation to yield the stagnation loss across the shock. The finite element
method \w;‘as shown to simplify the solution with the natural boundary
conditions for the pressure equation easily accounted for.

In the two-dimer‘)sional‘ case, the rotational effects are
introduced through the addition of a coﬁqction term in the fom of a
perturbation stream function. The vorticity equat.iqn does not ha‘ve the
singularity problem as the full stream function formulation. Among the
advantages of this method over the primitive variables formulation are the
fewer number of equations to be solved and the much simpler boundary

conditions for both ® and ¥'. -
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. . APPENDIX S
a * NONDIMENSIONALIZATION SCHEME
The solution should Be best presénted' as nqn-d?mensi?mal
variabl®s\with respect to the flow cha‘lj cteristtc quantities for rgcri’érality
purpose. W '
' normalized variables denoted by aﬁ'superscript * "
(1) Length |

& N Frase™ ’
e non-dimensionalization scheme is summarized below with the
.

. K=xe;yt =yl N

-where ¢ is the airfoil chord length. S , .
C @ Velocity - w0
ut = wa, ;:v"»‘ = v/a, é?

] -

where a, is the stagnation speed of sound. The local Mach number can be

. found by:
' "M2 = Mozl[l - '(yf 1D)/2 M%)

= (q/ag)/[1 .- (f- 1)2 (q/ao)i—] : .‘
(’3) '1‘1'1e.n‘nodynamici variables‘

.

K : p*=p/Po .



o ‘u = 9d/(cadx’) + (1/pp™) a\P/(caoayj‘y

iy ' . ph=plp, ‘ o

b \
A \

where the subscnpt 0 denotes'stagnation conditions
(4) Potential and Perturbation Stream Function
To determine the non- -dimensional potential ®*

perturbatlon stream function ¥*, we start with the defxmtlon of velocxty

us= @, +(1/p) ¥y
which can be re-arranged as: T
u* 2, = (BDIox*Yic + (1/pp™) (B¥/3y*)ic

L

-

=Mt e quphyowteyt L T

- which implies: ) o @* = i(ca,)
| . | )
T T Y Yilepgag) ¢
- /"~ ’ » \'. >" ' ‘ . ‘.
‘ (5) Vomcity - . ’
:From the deﬁmtxon of vortxc1ty, one can wrlte.
. B L et :
e ‘95'=‘3v/<?x\-3u/3y e

Lo
A 0oa . , D
R L. g ) . t - .
, . . .
P . . B
’ .o . . , .
. v A . ’ . b - ’
A N 3 .
Y S - - g e . " L . -
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