National Library
of Canada

Biblioth
du Canada

Canadian Theses Service Service des théses canadiennes

Ottawa, Canada
K1A ON4

NOTICE

The quality of this microform is heavily dependentupon the
guality of the original thesis submitted for microfilming.

very effort has been made to ensure the highest quality of
reproduction possible.

If pages are missing, contact the university which granted
the degree.

Some pages may have indistinct print especially if the
original pages were typed with a poor typewriter ribbon or
if the university sent us an inferior photocopy.

Reproduction in full or in part of this microform is governed
by the Canadian Copyright Act, R.S.C. 1970, ¢. C-30, and
subsequent amendments.

NL-339 (r.868/04) ¢

nationale

AVIS

La qualité de cette microforme dépend grandement de la
qualité de la thése soumise au microfilmage. Nous avons
tout fait pour assurer une qualité supérieure de reproduc-

tion.

Sl mancsxe des pages, veuillez communiquer avec
f'université qui a conféré le grade.

La qualité d'impression de certaines pages peut laisser a
désirer, surtout si les pages originales ont été dactylogra-
phiées a I'aide d’'un ruban usé ou si l'université nous a fait
parvenir une photocopie de qualité intérieure.

La reproduction, méme partielle, de cette microforme est

soumise A la Loi canadienne sur le droit d’auteur, SRC
1970, ¢. C-30, et ses amendements subséquents.

Canada

A Neural Network Approach to Routing
and Flow Allocation Problems in Communications
Networks

Faouzi Kamoun

A Thesis
in
The Department
of
Electrical and Computer Engineering

Presented in Partial Fulfillment of the Requiremenis
for the Degree of Master of Applied Science at
Concordia University
Montreal, Quebec, Canada-

November, 1990

© Faouzi Kamoun, 1990

i+l

National Library
of Canada

Bibliothéque nationatle
du Canada

Canadian Theses Service Service des théses canadiennes

Ottawa, Canada
KtA ON4

The author has granted an irrevocable non-
exclusive licence allowing the National Library
of Canada to reproduce, loan, distribute or sell
copies of his/her thesis by any means and in
any form or format, making this thesis available
to irterested persons.

The author retains ownership of the copyright
in hisf/her thesis. Neither the thesis nor
substantial extracts from it may be printed or
otherwise reproduced without his/her per-
mission.

L'auteur a accordé une licence irrévocabile et
non exclusive permettant a la Bibliothéque
nationale du Canada de reproduire, préter,
distribuer ou vendre des copies de sa thése
de quelque maniére et sous quelque forme
que ce soit pour mettre des exemplaires de
cette thése a la disposition des personnes
intéressées.

L'auteur conserve la propriété du droit d'auteur
qui protége sa thése. Nila thése ni des extraits
substantiels de celle-ci ne doivent étre

imprimés ou autrement reproduits sans son
autorisation.

ISBN 0-315-64696-9

Canadi

ABSTRACT

A Neural Network Approach to Routing
and Flow Allocation Problems in Communications Networks

F. Kamoun

Recently, neural networks have been proposed as new computational tools for solving
constrained optimization problems. This thesis is concemed with the application of neural
networks to flow allocation and routing problems in communications networks. The solutions
to these problems involve Linear Programming and shortest-path computations. The existing
neural networks have been improved for these applications. The flow allocation and routing
problems have been formulated in a convenient way, that make them solvable by neural
networks. This will enable these complicated problems to be solved in real time.

In this thesis, the general principles involved in the design of such neural networks to
solve routing and flow allocation problems are discussed. The computational power and
speed of neural optimization networks are demonstrated through computer simulations. Some
of the issues surrounding the applications of neural networks to these routing problems are
also addressed. The key features of the neural network approach, namely a potential forhigh
computation power and speed, high degree of robustness and fault tolerance, low power

consumption and real time operation are highlighted and suggestions for further research are

proposed.

iv

ACKNOWLEDGEMENTS

I'would like to express my heartfelt gratitude to my thesis supervisor,
Dr.M.K.Mehmet-Ali, for his constant guidance and assistance during the entire prepara-
tion of the thesis and for his suggestions and constructive criticism.

I also gratefully acknowledge the graduate scholarship awarded 1o me by the
University Mission of Tunisia, which provided most of the financial support required for
the completion of my master’s degree.

Last, but not least, I would like to express my deep gratitude to my parents, sister,
and brothers for their constant encouragements and support throughout my studies. I
would like also to express my appreciation to all my friends at Concordia University for
their moral support.

Table of Contents

List of Figures
List of Tables
List of Symbols
Chapter 1: Introduction
Chapter 2 : Neural Networks for Constrained Optimization
2.1. Introduction
2.2 -opfield and Tank Neural Network
2.2.1. Model Description
2.2.2. The Hopfield Approximation Error
2.3. Extension of Chua and Lin Linear Programming Network
2.3.1. Description of the Extended LP Network
2.3.2. Network Implementation
Chapter 3: A Neural Network Approach to the Maximum Flow Problem
3.1. Introduction
3.2. Problem Formulation
3.3. A Neural Network Approach
3.4. Simulation Results
3.4.1. A Single Commodity Case
3.4.2. A Multicommodity Case
3.4.2.1. A Five Commodity Network

&:

o

- N R S - R

11
13
14
19
26
26
28
29
33
33
43
43

3.4.2.2. A Ten Commodity Netwcek
Chapter 4: A Neural Network Solution to the Shortest Path Problem
4.1. Introduction
4.2. Problem Formulation
4.3. The SP Energy Function
4.4. The Connection Matrix and the Biases
4.5. The SP Simulation Results
Chapter 5: Neural Networks for Optimum Routing in Packet-- Yed
Communications Networks
5.1. Introduction
5.2. Problem Formulation of the Optimum Routing Algorithm
5.3. Characterization of Optimum Routing
5.4. Implementation of the Routing Algorithm in a Distributed Fashion
5.5. Simulation Results
5.5.1. A Single Commodity Case
5.5.2. A Five Commodity case
Chapter 6: Conclusion
References
Appendix A
A.1. Network Description

A.2. Network Implementaion

56
56
61

67

79
79
80
85

92
92

106
110
114
114
118

List of Figures

Figure 2.1. Hopfield and Tank Neural Network

Figure 2.2. The Input-Output Relation of a Neuron

Figure 2.3. Local Error Term e'(V;)

Figure 2.4, The Extended Linear Programming Circuit
Figure 2.5. Chua and Lin Nonlinear Resistor Characteristic
Figure 2.6. A Circuit Implementation of the Extended Model
Figure 2.7. Symbol of a Neuron

Figure 2.8. Circuit Implementation of a Neuron

Figure 2.9. Linear Equality Constraint Module

Figure 2.10. Nonlinear Inequality Constraint Module

Figure 3.1. A Single Commodity Network

Figure 3.2. The Neural Network for the Single Commodity Example

Figure 3.3. Neuron Voltage V,
Figure 3.4. Neuron Voltage V,
Figure 3.5. Neuron Voltage V,
Figure 3.6. Neuron Voltage V,
Figure 3.7. Neuron Voltage V;
Figure 3.8. Neuron Voltage V
Figure 3.9. Neuron Voltage V,
Figure 3.10. Scalar Function of the Single Commodity Network

12

16
16
20
21
21

23
33
35
38

38
39
39

4]
41

Figure 3.11. A Five Commodity Network

Figure 3.12. Scalar Function of the Five Commodity Network
Figure 3.13. Total Throughput of the Five Cotnmodity Network
Figure 3.14. A Ten Commodity Network

Figure 3.15. Scalar Function of the Ten Commodity Network

Figure 3.16. Total Throughput of the Ten Commodity Network
Figure 4.1. A Six Node Network With Self-Loops

Figure 4.2, Some Neural Representation of the Shortest Path
Figure 4.3. An Illustrating Example

Figure 4.4. A Simulation Example

Figure 4.5. Typical Results for the Five Node Network

Figure 4.6. Another Simulation Example for the Five Node Network
Figure 4.7. An Eight Node Network Used in the Simulation

Figure 4.8. Typical Results for the Eight Node Network

Figure 4.9. Another Simulation Example for the Eight Node Network
Figure 5.1. Flowchart of the Minimum Delay Routing Algorithm
Figure 5.2. The Single Commodity Example

Figure 5.3. Initial and Final Flow Allocation for the Single Commodity Example
Figure 5.4. Simulation Results for the Single Commodity Network
Figure 5.5. Example 1 of Shortest Path Computation

Figure 5.6. Example 2 of Shortest Path Computation

43
47
47

51
51

59
65
70
72
73
74
75
76
88
93
95
96
97
98

Figure 5.7. The Five Commodity Network 9
Figure 5.8. Initial and Final Flow Allocation for the Five Commodity Network 104
Figure 5.9. Simulation Results of the Five Commodity Network 105
Figure a.1. Chua and Lin Linear Programming Network 115
Figure a.2. Chua and Lin Nonlinear Resistor Characteristic 116

Figure a.3. A Circuit Implemenataion of Chua and Lin Lincar Programming Circuit 120

List of Tables

Table 3.1. Simulation Results for the Single Commodity Case

Table 3.2. Commodities of the Network Shown in Figure 3.11

Table 3.3. Simulation Results for the Five Commodity Network Under Zero
Initial Conditions

Table 3.4. An Alternate Flow Allocation for the Five Commodity Network

Table 3.5. The Ten Commodities for the Network of Figure 3.14

Table 3.6. Simulation Result of the Ten Commodity Network

Table 3.7. An Altemate Flow Allocation for the Ten Commodity Network

Table 4.1. Cost Matrix of the Network of Figure 4.1

Table 5.1. Traffic Requirements of the Multicommodity Network

Table 5.2. Characterization of the Paths of the Multicommodity Network

42
43

45
46
48
50
52
58
100
101

Sy
u

List of Symbols

Input capacitance of the i* neuron

Input capacitance of neuron at location xi

Cost of the arc from node i to node j

Capacity of arc a

Aggregate flow on link a

Flow of commodity k on link a

Vector of puth flows

Flow carried on pathn

Neural transfer function

Length of the path connecting node s to node d
Scalar function of the Linear Programming Problem
Source-destination pair corresponding to commodity k
The set of real numbers

Synaptic connection between neurons i and j

Packet delay at link / queue

Total average packet delay
Total packet arrival rate

Input voltage of the i* neuron

Input voltage of neuron at location xi

Output voltage of the i* neuron

Output voltage of neuron at location xi

Traffic flow originating at s* and destined to ¢*
Flow vector corresponding to commodity V.
Incremental time

Voltage threshold value
Neural transfer parameter
Average packet arrival rate to link / buffer

Offered traffic to commodity i
A specified tolerance value

CHAPTER 1
INTRODUCTION

During the past few years, neural networks have become very popular as new candi-
dates for parallel distributed processing systems. From a system’s point of view, neural
networks are large-scale dynamic systems that can be described by first-order nonlinear
difference or differential equations. These systems have been designed in an attempt to
capture some of the features of biological neural networks. It is well known today that the
computational power of the human brain is derived from the massive interconnections among
a huge number of parallel distributed processing elements or neurons. In an attempt to
explore this idea of distributed parallel information processing , scientists and engineers
have proposed many neural network models, eachdesigned to performa specific information
processing task. All these models, however, have the same general structure:

Conceptually a neural network consists of many nonlinear, typically analog, processing
elements which operate independently from each others and in a parallel fashion. Each
processing element (PE) gets inputs from many other PEs through a network of variable
weight synaptic connections, and produces a single output according to a well defined
transfer function.

Most of the neural network models , however, differ in the topology of their synaptic
conneciions (example feedforward against feedback connections), and in the way the
weights of their synaptic connections and the neurons’ transfer functions are defined.

This thesis is concerned with those neural network models that are intended to be used
for solving constrained optimization problems. These models are characterized by the

presence of feedback synaptic connections, and their dynamics follow a gradient descent of
a cost function, which combines both the objective function and the constraints. In order to
apply neural networks to solve constrained optimization problems, the PEs’ transfer func-
tionsare to be specified. In addition the synaptic connections and their comre sponding weights
are to be determined, so that the neural network dynamics evolve towards an equilibrium
point, which shall correspond to the desired solution.

This thesis focuses on the application of neural networks to flow allocation and routing
problems in communications networks. The problems of flow allocation and traffic routing
emerge whenever there are alternative paths for a given source to reach its corresponding
destination. All flow allocation and traffic routing algorithms have one common goal, that
of finding the best path for each given origin-destination pair, taking into account the fact
that the traffic of a given origin-destination pair is likely to interact with that of the remaining
pairs. These problems, however, arise in many contexts. For instance the best path between
a source-destination pair may be defined as the minimum length path, in which case the
routing problem becomes a shortest path problem. Alternatively we may wish to route
and allocate the traffic of each source-destination pair so as to maximize the total network
throughput, in which case the flow allocation and routing problem becomes a maximum
flow problem. We may also consider the more general flow allocation and routing problem,
where the best paths for all source-destination pairs are those which minimize the total cost
of the network. If this cost is set to the average network delay, then the flow allocation and
routing problem becomes a minimum delay routing problem.

The objective of this thesis is to study these three selected routing and flow allocation
problems, namely the maximum flow problem, the shortest path problem, and the minimum
delay routing problem, and to show how to apply neural network optimization techniques

tosolve them. It should be noted thatdetailed discussion of the many conventional techniques
that have already been proposed to solve each of these selected routing problems is beyond
the scope of this thesis.

What makes neural optimization networks interesting alternatives for solving traffic
routing problems in communications networks is their potential for high computational
speed, high degree of robustness and fault tolerance and low power consumption. Neural
optimization networks derive most of their high computational speed from the massive
parallelism in computation that takes place at each PE. This enables a neural network to
process huge amounts of information simultaneously. In addition the search for the optimal
solution is performed in real time and this solution is reached almost instantaneously. The
high degree of robustness and fault tolerance offered by neural networks is due to the fact
that information is distributed among all the PEs in the network, rather than being con-
centrated at a particular location. When confronted with a sudden failure in some of its
neurons, the neural network remains viable and its performance is expected to experience
a graceful degradation. This is opposed to what generally happens in a sequential general
purpose computer, where the failure of a particular device will completely shutdown the
computational process of the whole computer.

This thesis is organized as follows:

In chapter 2 the use of neural networks to solve constrained optimization problems is
described. First Hopfield and Tank neural network is reviewed in details then a modified
version of Chua and Lin Linear Programming network is suggested. The latteris an extension
of Chua and Lin’s original network, that makes it possible to handle both equality and
inequality constraints in an efficient and cost effective way.

In chapter 3 the computational power of the modified Linear Programming circuit will

be demonstrated, through simulations, by solving the maximum flow problem. It will be
shown that the modified Linear Programming circuit is very efficient in solving the problem,
with the solution being obtained very fast and with the computational time increasing
moderately with problem size.

In chapter 4 the second routing problem, namely that of finding the shortest path
between a given origin-destination pair, is solved using Hopfield and Tank neural model.
The main steps involved in the design of Hopfield and Tank neural network to solve the
shortest path problem will be described. The computational power of the proposed model
will be demonstrated through computer simulations. The proposed model combines many
features such as flexibility to operate in real time and to adapt to changes in link costs and
network topology.

In chapter 5 it will shown that the neural network shortest path algorithm, developed
in chapter 4, could effectively be used to solve the optimum minimum delay routing problem
in packet-switched communications networks. Since Hopfield and Tank neural network can
perform shortest path computations in real time and can adapt to changes in its environment
then its application to the proposed minimum delay traffic routing problem (which heavily
rely on shortest path computations) becomes very desirable. The applicability of the neural
network shortest path problem to the traffic routing problem will be demonstrated through
computer simulation and a distributed version of the neural based, minimum delay routing
algorithm will be described.

Finally in chapter 6 a summary of the main findings and results of this thesis is given

and suggestions for further research are provided.

CHAPTER 2

NEURAL NETWORKS FOR CONSTRAINED OPTIMIZATION

2.1 Introduction

The use of neural networks to solve constrained optimization problems was initiated
by Hopfield and Tank [1,2,3). They proposed a neural network model to solve discrete

combinatorial optimization problems. They demonstrated the computational power of their
network by solving the Travelling Salesman Problem (TSP), which belongs to the class of
nondeterministic polynomial-time (NP) complete problems. Since then many researchers
have attempted to apply Hopfield and Tank model to solve other combinatorial optimization
problems. Hopfield and Tank have also shown that even the continuous optimization
problem of Linear Programming (LP) could be solved by neural networks. Their LP circuit

[3] maintained analog (as opposed to binary) values by propetly scaling the saturation level
of neurons’ outputs. This avoids the use of more complicated schemes suchas those proposed
by Takeda and Goodman [4] for representing analog real values at neurons’ outputs [S].
Other attempts to solve continuous optimization problems by neural networks include
the work of Chua and Lin [6,7], who proposed a canonical nonlinear programming circuit
that simulates both the objective function and the inequality constraints of the more general
nonlinear programming problem. Kennedy and Chua [8] analyzed the LP network of
Hopficld and Tank and found an error in its design. When this error is corrected, they have
shown that the modified Hopfield and Tank LP network becomes a special case of Chua
and Lin canonical nonlinear programming circuit. Kennedy and Chua also analyzed the
dynamics of the canonical nonlinear programming circuit of Chua and Lin and proposed a

circuitimplementation using *neural’ networks. The use of Chua and Lin canonical nonlinear
programming circuit to solve LP problems becomes attractive when we consider the relative
ease with which the LP circuit (as opposed to the more general nonlinear programming
circuit) could be implemented.
The remaining of this chapter is organized as follows:

In the next section we start by reviewing Hopfield and Tank neural network. The error
introduced by Hopfield and Tank approximation will be highlighted and a method to correct
for this error will be proposed. In section 2.3 an extended version of Chua and Lin Linear
Programming network will be described.

2.2 Hopfield and Tank Neural Network
2.2.1 Model Description

The neural computational circuit of Hopfield and Tank is shown in figure 2.1 . This
circuitis designed so as to model the basic components of a biological neural network. Each
neuron is modeled as a nonlinear device (operational amplifier) with a sigmoid monotonic
increasing function relating the output V; of the i* neuron to its input U; . The output V; is
allowed to take on any value between 0 and 1. A typical sigmoid function is the logistic
function:

1

Vi=gU)=—o—
1+ e'a' U

(2.1)

This function approaches a unit step function as A, approaches infinity . Figure 2.2 shows

the input-output relation of a neuron for three different values of A, .

Neuron Output Voltage

Neuron Input Voltage

Figure 2.2 The Input-Output Relation of a Neuron

One of the most important characteristics of the sigmoid transfer function is its satu-
ration behavior at both ends. This behavior is behind the computational power of neurons
in making decisions [10]. Each neuron has an input resistance p; (to model the
trans-membrane resistance of a biological neuron), an input capacitance C; (to model the
capacitance of the cell membrane) and receives resistive connections (to model the synaptic
connections) from other neurons. The synaptic connections 2re allowed to be either
excitatory or inhibitory by providing each amplifier with 4 normal as well as an inverted
output. Each synaptic connection is implemented with a resistance R, = 77"5 , connecting the
input of the i* amplifier to one of the two outputs of the Jj* amplifier. The selection of the
appropriate output depends on the type of synaptic connection to be established. If the
synaptic connection is to be excitatory (T;; > 0) then the input of the i * amplifier is connected
to the normal output of the j* amplifier. In the latter case (T;; <0) it is connected to the
inverted output of the j* amplifier. The synaptic connections can be fully described through
the matrix T = [T;] , known also as the connection matrix of the network.In addition, as
shown in figure 2.1, each neuron receives an external current (known also as a bias) 7;,
which could represent actual data provided by the user to the neural network [2,3].

Neglecting the output impedances of the amplifiers, it can be shown from simple circuit

theory that the equation of motion of the i* neuron is described by the following nonlinear

differential equation:
au, X U
C‘_dt— -j;l TV; —E-i»l,- (2.2.9)
. 1
Vi=gU)=—7F7 (2.2.b)
14U

where
1 1 X

Hopfield [11] considers the following energy function :
/]
p=—2% S rww,-Siv+ S2 [o ooas @.4)
B Y Y ey AR A ~ R Y 3] &)

where g'~' is the neuron inverse input-output relation which, for the logistic function in

equation (2.1), is given by:

. 1-V;
Ui=g (V=1 -;,—) @.5)

For a symmetric connection matrix T, the time derivativeof E is :

dE XN oE dV,
-d-'——‘g,js-‘-,:°-&- (2.6.0)
N N U; av;
= El(-:;-:x TVV,- ¥ .E: - l‘) . ?t- 2.6.5)
From (2.2) and (2.6) we get :
du;, OE
TR 17 @
Substituting (2.7) in (2.6.a), we have:
dE ¥y du; dv;
E--E:C" T (2.8.9)
N du; (dv;
==Y C o | — 2.8.
iglc' ay; (dtT (2.8.0)

__ b4 ey (W
=-1C gy V) (dt I (28.c)

10

Therefore if g; ' is a monotonic increasing function then the energy function (2.4) will be
mbnotonically decreasing. In addition at equilibrium :

E_ W .
& =0& m =0; Vvie {1,2,....,N} 29)

Expressions (2.7-2.9) show that the equations of motion of the neurons, for a symmetric
connection matrix T, follow a gradient descend of the energy function E and that , starting
from some initial conditions, the state of the system (described by the V;’s) evolves towards
a minima of E and stabilizes when all neuron outputs remain constant. This final stable state
corresponds to a possible solution to the problem. In addition the energy function (2.4) is a
Lyapunov function for the neural system [11,12].

Hopficld [11] has shown that if the gains of the amplifiers are sufficicntly high (A; = o)
then the last term of (2.4) vanishes and the Lyapunov function reduces to the quadratic

expression :

1NN N
E.=-3% STVV,-Z1V, (2.10)

2i=1jsl
Hopfield [11] has also shown that while the state of the neural system evolves inside the
N-dimensional hypsrcube defined by V; e {0,1} , the minima of the modified energy
function (2.10) occur only at the 2" corners of this space. In terms of the modified Hopfield
and Tank energy function, E,, , the dynamics of the i* neuron are described by the following

equation:

C—zen_ 2 (2.11)

The usage of Hopfield and Tank discrete model to solve combinatorial optimization prob-

lems involves the following [3] :

11

- The proper choice of a candidate quadratic energy function. This function incor-
porates both the objective function and a sequence of penalty functions for constraint
violations.

- The derivation of the resistive connections (T;) and the input biases (/;). One
simple way to achieve this, is by equating the right side terms of equations (2.2.2)
and (2.11).

- The provision of initial input voltages (U; 's) to the amplifiers .

- The decoding of the solution from the final stable states of the neurons .
2.2.2 The Hopfield Approximation Error

In this section, the error due to the Hopfield approximation error (2.10) is investigated. It
will be shown that for large but finite amplifier gain , A; , the last term of (2.4) starts to

contribute and can no longer be neglected .

Define the error between the original and the modified energy function by AE . Then we

have :
AE =E ~E, (2.12.0)
N 1 “
=.-§,E,.£37"‘)"‘ 2.120)
.
=f_’z‘£-‘_{-%1n(—;—’5)a @.12:)
-3 e V) 2.12.4)

12

v,
¢°(V.-)=-flr{l;—’)dx = (1=V)ln(1 = V,)+ V,In(V) @.13)

’l'hefunctione'(V,-)hasamaximumatV,nOorllndaminimumatv.;so.s,lsill:....'ateu

in figure 2.3 .

Local Error Term

0 0:1 0:2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Neuron Output Voltage

Figure 2.3. Local Error Term e"(V,)

13

Fpmthe above it becomes clear that while the error AE approaches zeroas A; = e, ittends
to displace the minima of the energy function towards the center of the hypercube as A,

becomes finite. This displacement is further accentuated as A, is decreased. For very small
gain A, the effect of AE becomes dominant .

One way to compensate for the displacement of the minima from the comers of the
hypercube, due to small A, is to insert a small positively weighted quadratic term :

om _S &
E =.2-.'§|V‘(1_V‘) 2.14)

in the energy function. This quadratic term is minimized as V; approaches 0 or 1 for all i's.

2.3 Extension of Chua and Lin Linear Programming Network

Chua and Lin [6,7,9] proposed a neural network mode to solve Linear Programming
problems, in which the feasible region restricting the state space of the optimum solution is
defined by inequality constraints. In this section an extended version of their mode] is
proposed that will enable us to solve the more general linear programming problem, in which
the feasible stats space of the optimum solution is defined by inequality as well as equality
constraints. Although Chua and Lin Linear Programming network (refer to appendix A for
a summary of their original work) can handle such a problem, as an equality constraint can

always be written as two incquality constraints, namely:

¢¥)=0 & {""‘V)ZO @.15)

'q,(V) >0

14

it will be shown that the extended model can solve the same problem in a more efficient
and simplified way. The idea behind the proposed model was motivated by earlier work in
constrained optimization theory, where exterior point penalty functions or loss functions of
quadratic types have been found to be very adequate to handle equality constraints [13,14].
The remaining of this chapter is organized as follows:

In section 2.3.1 we start by describing the extended Linear Programming circuit. Following
a similar approach as in [9], we will carry a dynamic analysis of the extended model and
show that the proposed model is completely stable. In section 2.3.2 a circuit implementation
of the extended model, using solid-state devices, is proposed.

2.3.1 Description of the Extended LP network

Here we consider the more general problem:

Minimize the scalar function:

OV)=A+-V (2.16)
Subject to the constraints:
f(V)=B;+V-E;20; j=12,.p 2.17.a)
aWM =G V-F,=0; k=1,2,...m (2.17.5)
or in matrix form:
fV)=BV-E 20 2.18.3)
qV)=CV-F=0 (2.18.5)

where:

15

-Aﬂ -Vﬂ -Bﬂ -Ctn .Ban . .Buﬂ 'EJ
A=l , |; V= sBi=l . [iG=| . |iB=|| E=
bAL LVq_ Lqu_ ;Cﬁ. _BplBﬂ * 'Bn. LEp.
(2.19)
.CuCn . cuﬁ -FJ
Czn sz .. Czq - F,
C=||:F=
| CoiCrz- -Cn] | Fal

Note that the (+) symbol in (2.16 - 2.17) refers to the dot product operator, and that the
j* row of matrix B corresponds to-ﬁ;'r, while the k* row of matrix C corresponds to vector
T.". The LP formulation (2.16-2.19) is the same as in Chua and Lin original work, except
for the equality constraints in (2.17.b and 2.18.b). Our goal is to show that the network
shown in figure 2.4 solves this problem with norisk of oscillation.

The Linear Programming model, shown in figure 2.4 consists of suitably defined
controlled current and voltage sources, linear and nonlinear resistors and linear capacitors.
Each rectangular shape symbol in the middle column of figure 2.4 represents & voltage
controlled nonlinear resistor, whose characteristic (shown in figure 2.5) is governed by the
following equation:

0 if V>0
g.(V):{R;’_ £ V <0 (2.20.a)

Now writing the equation for the circuit at the center of figure 2.4, we get:

i =8.0,(V) (2.20.)

16

f.
—<—>—"
St

“»
[%
._U
(——
’.D
(2]
-
11

1 +
A4
wkig
','..'_r;~
]
[=9
LA o 17
k’
h-
E]
e_
>
3
«
s
] 1

ip

_:< : ' .E .
aly
fP(U) E z, ﬁq ;
P -
9.
X Y, h:]‘,kckq J:lhnjq

Figure 24. The extended Linear Programming circuit

i=g(V)
i AT
+
g(.) v
SV
= i
i
Rp

Figure 2.5. Chua and Lin Nonlinear Resistor Characteristic

The equation of the circuit on the left hand side of figure 2.4 is given by:

= k(g V) = q'(v) Q21)

“
The circuit equation corresponding to the 1™ row of the network shown in figure 2.4 is given
by:

dv,
C. _d-'t' - ‘-A B z Cﬁ " (2.22.0)

=-A,- ,.g-, Bj-gi(ﬂ(v» - ‘g Chht(‘h(V» (2.22.0)

Next substituting from (2.17.a) and (2.17.b) for £,(V) and ¢,(V) respectively, we get:

av, 5: - .
C"? =-A,— 2 B.8B;*V-E)- E, Cohi(Ci°V-Fp) (2.23)

To see how the model shown in figure 2.4 solves the Linear Programming problem
formulated in (2.16-2.18) consider the scalar function:
P :R'"—— R

-—

V——P'0)=2-V+£6E -V-E)+ EHCV-F) @
J. =

where:

0 ifVv>0

6= | g,(x)dx—{zt; £V <0 @.25.a)
J

2

v
H0)= [hewts =g 2.25)
[

18

Note that the scalar function P° takes care of both the equality and the inequality constraints
implicitly through the two sequences of quadratic loss terms, namely:

= (C,-V-F) @B;-V-E)
,E, 2R, and ig 2R,

Taking the time derivative of P* we get :
dP” _ ¢ oP" dV,

dr S0V, dt (2:26)
From (2.24) we have:
O 4 +$ B E V-E)+ 3 Ch(CoV-F) Q.27
av, jm1 PO 77 km
Therefore:
dp’

= m o)Y,
) ..l(o+ ,-5.:, BugjB;~V-E)+ X Cuhy(Ci*V -F,)) =2 (228)

dr dr

From (2.23) the expression inside parentheses in (2.28) is noihing but- C, - ‘7"' . Hence we

have:
c. dd‘:"-_g‘:, 2.29.0)
ﬂz_;_.g c..(iia‘::)zso (2.29.b)

and
%: @‘2?:0 1Vne {1,2,.9} (2.30)

We therefore conclude that the state of the network described by (2.23) follows a gradient

descent of the scalar function P°, and that starting from some initial condition, this state

19

evolves towards a minima of P* and stabilizes towards a stationary point when

dav,
—_—=0V ,2,...9}.
T 0 Vk e {1 q}

In order to relate the solution of the Linear Programming problem (2.16-2.19) to the
minimum of the scalar function P° we note that P° consists of the objective function ® plus
a sequence of quadratic penalty functions for constraints’ violations, so that the solution of
the new unconstrained problem, formulated in (2.24) approaches that of the original con-
strained problem (2.16-2.19), provided that the conductance values k}: and -1_; are suffi-
ciently high.

Since the components of the state vector V are normally the output voltages of op-amps
and since these latter are bounded by their saturation levels, then the state space of the Linear
Programming circuit is enclosed within the hypercube in R*, defined by:

H={Ve R'/V, e [V, V™*],i=12,.q}

where V™® and V™" are the minimum and maximum values the op-amp outputs can assnme
respectively. Fortunately one can always scale the state vector V so that the stationary point

of the Linear Programming network is always kept inside the hypercube H [91.
2.3.2 Network Implementation

The extended model shown in figure 2.4 can be implemented using solid-state devices
as illustrated in figure 2.6. The entries of vectors A, E and F and those of matrices B and
C are implemented as conductance values of some resistors. Each triangular shape symbol
enclosing an integral sign is a neuron, which is also known as a variable amplifier, since its
outputis the value of a variable in the Linear Programming problem. Each elementary neuron
is basically a summer followed by an integrator (figure 2.7) whose circuit implementation

is shown in figure 2.8 [9].

20

: Wy a2 o
Y A (\
% k{u \&2 18 ™\ % \Eu WBip [4Bie

;r'a;
v
£
A
e
4
7

7
v
A
Iz
e
T

WEBE

S/

\
e

5
g

“

e
R,
A
s
,-‘Nf
7

N

fé-f

,g,'

T
v

e

VAV

4

Figure 2.6. A Circuit Implementation of the Extended Model

ift)

t
I uetd=-1 |1crat +uce
i(t) L J n, C | n
2 "o
i(t)
13.
i(t)
m
Figure 2.7. Symbol of a Neuron
Jh — Wt
B>
+
(83 > .
;}f
L -y(t)

Figure 2.8. Circuit Implementation of a8 Neuron

Each triangular shape symbol labeled A, , in figure 2.6 is a Linear Equality Constraint Module

whose detailed circuitry is shown in figure 2.9.

Roxe

M-
>,

L% o

/

Figure 2.9. Linear Equality Constraint Module

The input-output relation of a Linear Equality Constraint Module is given by :

Py=-R.J, (231)
and an inverted output (=P,) is obtained through op-amp 2 and resistors R.
Each triangular shape symbol labeled g; in figure 2.6 is a nonlinear inequality constraint
module, whose circuit implementation is depicted in figure 2.10 [9].

23

[
3

Figure 2.10. Nonlinear Inequality Constraint Module

The input-output relation of a nonlinear inequality constraint module is given by:

-I;-R; ifl;20

0;=g,l}) ={ 0 otherwise (2.32)

and op-amp 4 and resistors R are added to obtain an inverted output (- O,) from the normal
output. Referring back to figure 2.5, it can be seen that rather than being the driving point
characteristic of a nonlinear resistor, the nonlinearity g; is now interpreted as the transfer
characteristic of a current controlled voltage source. It is also important to note that each
neuron and each equality and inequality constraint module maintains a virtual ground at its
inputs.

To show how the network of figure 2.6 actually implements the extended linear

Programming model shown in figure 2.4, consider an arbitrary Linear Equality Constraint
Module. Its input current (see figures 2.6 and 2.9) is:

L=-% GV +F, (.33.a)
=—C,*V-F) (2.33.)
Hence from (2.17.b) we have:
L=-() (2.34)
Its output voltage (2.31) is :
P,=h(@(V)=Rua.(V) (2.35)

The linearity h, may therefore be looked upon as the transfer characteristic of a current
controlled voltage source. Next let us consider an arbitrary nonlinear inequality constraint

module. Its input current (see figures 2.6 and 2.10) is:

I=-% BV, +E, (2.36.a)
=B, -V-E) (2.36.b)

Therefore from (2.17.a) we have:
L==f(¥) 2.37)

Its output voltage (2.32) is:

R;-£(V) iff(V)sO

0,~=g,-(f,-<V»={ o #s@m0 (2.38)

Now consider an arbitrary neuron. Its input current is:

I_=A,+j£18,0,+‘i'C.P, (2.39.9)
=4+ £ By 0+ £ Cuh@ ¥ 2395)

Its output voltage is described by :

av, .
Cgi=- £ BB V-E)- 2 CuliCi-V-F) 2.40)

The above expression is readily identified as the .stane equation (2.23) of the extended linear
programming model to be implemented.

In the previous analysis it has been assumed that the entries of vectors A E and Fand
those of matrices B and C ase all positive. If any of these entries is negative, then the virtually
non-grounded terminal of its corresponding resistor is connected to -1V, +V,,=0;or -P,,
asrequired. The analysis hasalsoassumed that the outputsof the linear and nonlinear equality
constraints modules are updated instantaneously in the feedback path, in response to changes
in neuron voltages. Although parasitics in these constraint modules may siow down their
output updating rate, the assumptionremains reasonable if the capacitances of the elementary
neurons are kept large enough so as to allow enough time for the constraint modules to
update their outputs [9].

In the special case, where all components of F and C are _ero, then the proposed model
reduces to Chua and Lin Linear Programming network, described in appendix A. Therefore
instead of using two nonlinearities to implement (2.15), the extended model offers the

alternative to dedicate a simple linearity to handle each equality constraint.

CHAPTER 3
A NEURAL NETWORK APPROACH TO THE MAXIMUM FLOW PROBLEM
3.1 Introduction

In this chapter we will demonstrate the computational power of neural networks by
solving a traffic routing problem where the goal is to find the maximum throughput of a
communication network. We define a communication network as a set of n nodes inter-
connected by a given set of m links, each having a finite capacity. We are also given a set
of K source-destination pairs, where a message belonging to a given pair defines a
commodity. Each commodity originates at a particular source and is to be routed to its
corresponding destination through any of the available paths between them. This results in
a flow of K commodities in the network. The total throughput of the network, defined as
the sum of all flow values of the K commodities, is restricted by the finiteness of link
capacities.

By definition, a traffic flow is said to be feasible if it is positive and satisfies both link
capacity constraints and stations’ flow balance requirements. By link capacity constraint
we mean that the aggregate flow due to all commodities cannot exceed the capacity of the
link over which it is transmitted. For each commodity, the flow balance requirement at each
node depends on the type of that node relative to that commodity. Define the total outflow
(inflow) at a particular node as the sum of all flows coming out (in) that station. Then for
each commodity, the flow balance requirement is stated as follows:

- If the node is the source of that commodity then its total outflow minus its total inflow

must equal commodity flow value.

27

- If the node is the destination of that commodity then its total inflow minus its total outflow

must equal commodity flow value.

- If the station is an intermediate node then its total inflow must equal its total outflow.

Although each commodity flow has its own flow balance requirement at each station,
flows of different commodities interact and compete for the residual link capacity, as the
flow of a given commodity is likely to share link capacity with flows belonging to other
commodities. It should be noted however that flows belonging to two different commodities
do not cancel out when flowing in opposite directions [13,16]. The maximum flow (Max-
Flow) problem is therefore to find a feasible traffic flow assignment that maximizes the
network throughput.

For the one and two-commodity cases efficient labeling techniques based on the
Max-Flow-Min-Cut theorem have been proposed [17,18]. In particular Ford and Fulkerson
[17] proved that the single commodity flow problem is integer; ie if the arc capacities are
integer then the maximum flow is also integer. Hu [19] showed that the two-commodity
problem is also integer for even arc capacities. This integrality property can not however
be extended to the general multicommodity case [15]. When dealing with three or more
commodities, the efficiency of the labeling technique can no longer be exploited except for
a special three-commodity problem in which all nodes are either sources or destinations
[15].

For general problems involving more than two commodities only Linear Programming
techniques have been proposed [20]. However for networks with a large number of arcs,
conventional Linear Programming techniques based on the simplex algorithm become
inefficient because of their excessive storage and running time requirements. For such

problems approximate heuristic methods [21] have been proposed.

28

3.2 Problem Formulation

Consider a directed graph G = (N,4) , where N is the st of n nodes and 4 is the set

of m links (arcs) forming this graph. To G we assume that K source-destination pairs are
priori specified.

Let:

(s*, t*)= source-destination pair corresponding to commodity k; k € {1,2,...K}.
C_ =capacity of link a; a € 4.

f* = traffic flow of commodity k on link a; k € {1,2,..,K};a € A.

v* = traffic flow Csiginating at s* and destined to ¢* ; k € {1,2,.,K}

L= élf: = aggregate flowonlinka;ae A

I';={a € A/ link a is leaving node i }

I = {a € A/ link a is entering node i }.

The directed multicommodity Max-Flow problem is then formulated as follows:
Maximize:

K
3 v 3.1
kst
Subject to: vt oif i=st
.?rf:' Zr_jf= v ifi=¢ (3.2)

0 ifiwest,d
Vk e {1,2,...K}
f20;V(a,k) e Ax{1,2,.K} (3.3)

v20;Vk e {1,2,.,K} (34)

29

K —_—
‘El ffsC.;VaecA (3.5)

The objective function (3.1) gives the total throughput of the network. Constraint (3.2)
corresponds to the flow balance requirements at each node. Constraints (3.3 - 3.4) ensure

that all flow values are positive, while (3.5) ensures that all link capacity constraints are
satisfied.

3.3 A Neural Network Approach

Recall that to solve the Max-Flow problem using the extended Linear Programming
network, one has to reformulate the problem in the form of (2.16 - 2.19). First the maxi-
mization problem is converted to a minimization problem by reversing the sign of the
objective function since:

Maximizing ‘Et:‘ v & minimizing —é‘,lv' .

Then most of the complexity of the neural network approach resides in the programming
of the resistive interconnections, which are displayed in the entries of matrices B and Cand
vectors X, E and F. In our case the unknowns are the link flows f* and the traffic flows vt,
corresponding to each commodity k.

In addition to constrains ((4.2) to (4.5)), we added K upper-bound constraints on all flow

values v¢ ;

vt (st)=min{ T C, T C.} (3.6)
acl"‘, sel’

Vk e {1,2,.,K}
These upperbounds on all flow values v* correspond to the situation where all links leaving

s* or entering ¢* are saturated. Additional flows might be lost due to the flow balance

30

requirements at intermediate nodes and the interaction of traffic flows belonging to different
commodities. These upperbound constraints reduce the feasible state space of the network
and therefore speed up the search for the optimum solution. This hypotheses was backed

by simulation results.

The following notations will be used in the mathematical formulation of the neural

network approach to the Max-Flow problem :
I =1dentity matrix
O = Zero matrix (n X (m +1))
W = [w;l, «m) = Incidence matrix of the network ; where:

+1 if linkj e T,
wi={-1 if linkj e I

0 otherwise

z = Column vector with all zero entries
£ =Column vector (n X 1) with zeroentries except at entries corresponding tos* and *where

it takes on the values -1 and +1 respectively

‘ —
C'= [gk I w](n x(m+1))

l& = [?(mxl)' —I(ﬂiﬂ)](nx(mﬂ))

L= Lok mary s Where :

. __{-l If (xyy)=(k:1)
=1 0 otherwise

=| . = Link capacity vector

L M J(mx]1)
72-,: = column vector ((m + 1) x 1) with zero entries except at the first entry where it takes on
the value -1

vl

f
vi=|f

V= = flow vector corresponding to commodity k.

;f:; (m+i)xil

) Sl cml =@

With the above notation, vectors A, V, E, F and matrices B and C are readily obtained

by putting equations (3.1 - 3.6) in the standard form (2.16 - 2.19), giving:

32
r T’: - I ;‘l‘ }
-“;z'- -E:'— [Zigmenen)]
. 5 "v J(um(ux)x;)
| -V;. Jxm+)x) L E‘: JKm+1)x1)
C'1010 |..10]
[Ikmanykmen) | 2 IE'Z—I_O_I._I_e
SIPR s B PR
__J_.I—J:I—--_Jf_x:m,..(m,m.m» B
01010 11 yuntwen

Hence for the Max-Flow problem the extended LP circuit would require :

- K.(m+1) neurons, one for each flow variable.

- 2K+m.(1+K) nonlinear incquality constraint modules, one for each inequality constraint.

- Kin linear equality constraint modules, one for each equality constraint.

Where m, n and K are the number of links, nodes and commodities, respectively.

33

3.4 Simulation Results

In this section we report some simulation results of the neural network approach to
the Max-Flow problem. We have consideredone single commodity and two multicommodity

networks as illustrating examples.
3.4.1 A Single Commodity Case

Consider the network shown in figure 3.1, where it is required to find the maximum

flowv' fromnode s! to node ¢' . Each link is labeled by two numbers; with the first number

denoting link index and the second number inside parentheses denoting link capacity.

Figure 3.1. A Single Commodity Network

The state vector of the corresponding Linear Programming network is:

1

<
<

<1
]
=
i
SooSh ShoSu Sh Su

L] e

and the resistive interconnections are described by:

10000007
" 0100000
0010000
0001000
0000100
0000010
1110000 0000001
Z| 0101110 o |- -——=—-
00-1-:1101]"" | 0-100000
-8 10000-1-1 00-10000

-3 000-1000

- —4 0000-100
-6 00000-10

-7 000000-1
-3 e eea o
-1000000

COO0OOoOO0OO0O OO

|
n

From the above expressions, and referring back to figure 2.6, the extended Linear Pro-
gramming network that solves this problem is obtained as shown in figure 3.2. As may be
seen, there are seven neurons, fourteen inequality constraint modules and 4 equality

constraint modules.

35
-34 '
1 [1
: BT :
1 %'[. !
1 Eo !
1 -. !
1 %0 !
B ‘
‘ L3
5 1 w .
] 1 j'%'-
B - 1
3 1
4 1 {Eﬁ'- -
3 1 Bd- -
? 1 %- .
13 j,%‘- .
' t! I 3[: : 1 1
i i, 1 . 1 1
1 1 1 ‘g: ¢ : 1 1
i 1 1 . !
B —
% ﬁ' 'ﬁc, 8T T Y

Figure 3.2, The Neural Network for the Single Commodity Example (Black circles at
intersections and associated numbers denote resistive connections and their correspond-

ing conductance values)

36

The equation of motion of a particular neuron (see 2.23) is given by :

C"% =-A,- jl_f', B, gB;*V-E)- é‘-l Cish(Cy +V=F,) (3.7)
vne {1,2,..7}
or
av, -1 14 — — ‘. — .
Ttl “C {A" * ,-?. B8/, V -E)+ ,E‘ Cih(Cy *V-F, g)} (3.8)

The left side of (3.8) is approximated with its first order difference giving:
& 0 —_— 4 —
V,@+3)=V,(1) . {A, + 'ExBj,gj(B,- *V-E;)+ ‘Zl Cih(CieV -F,)} (3.9)
] J= -
where 8¢ is the incremental time for the updates.

Simulation of the neurons’ dynamics therefore involves simultaneous solution of 7
nonlinear differential equations. The simulation, written in Fortran, consists of observing
and updating neuron states simultaneously at incremental time steps 8¢ as given in (3.9).
Throughout the simulation it was assumed that the system reaches steady state if all ele-
mentary neuron voltages did not change by more than a threshold AV, = 107 volts. To give

the system its units, we have chosen:

C,=10 nF

R,=R, = 10KQ

4
all independent of their respective subscripts, for simplicity. In addition all remaining
resistances in the network (black dots in figure 3.2) have been normalized using a 1 KQ
resistance, R,,. Therefore if a resistor in figure 3.2 reads X, then it was simulated as an ;%

U resistor.

n

A preliminary series of trials revealed that the response time of the extended Linear
Programming network is very fast since it was observed that the voltage of a particular
neuron oscillates between very small and very large values, without reaching steady state.
Therefore it was necﬁssa:y to reduce the incremental updating time 8¢ to a very small value
50 as to properly observe the dynamics of the simulated network. For our case a value of
107 seconds has been chosen for 8t. Decreasing this value did not improve our results, but
simply increased simulation time. It was also observed that increasing the constraint
resistances R; and R, yield better results. However if these resistances are allowed to exceed
a threshold value then the elementary neuron voltages oscillate without ever converging.
Another equally important finding, revealed by simulation, is that the extended Linear
Programming model does not require a feasible initial solution in order to converge. Under
zero initial conditions, the response of the simulated extended Linear Programming network
of figure 3.2 is obtained as shown in figures (3.3-3.9). From (2.24) the corresponding scalar
function P” is also plotted as shown in figure 3.10.

These results confirm that the state of the extended Linear Programming circuit evolves
50 as to decrease the scalar function P” and that at steady stated-‘% = 0. In addition the steady
state value of the penalty function, P, , is equal to the normalized minimum objective

function :

P,=A-VY, (4.10)

where Vss denotes the steady state vector.

Voltage V1 (Volts)

Voltage V2 (Volts)

14

12

10

38

yd

—

500 1000 1500 2000 2500 3000

Iteration Number

Figure 3.3. Neuron Voltage V, (Throughput)

4

Y4

500 1000 1500 2000 2500 3000

Iteration Number

Figure 3.4. Neuron Voltage V, (Flow on link 1)

Voltage V3 (Volts)

6 /
5 /
4 rd
3 //
2l //
: ;
00 500 1000 1500 2000 2500 3000
Iteration Number
Figure 3.5. Neuron Voltage V, (Flow on link 2)
0 . ,
-0.002} /
<0.004 f-oreerrermreeeins -
2
S -0.006
S
%-0.008 I
G
>
-0.01
-0.012 --
0,014 5 : l
0 5m 1000 1500 2000 2500 3000
Iteration Number

Figure 3.6. Neuron Voltage V, (Flowonlink 3)

Voltage V5 (Volts)

Voltage V6 (Volts)

09
038
07
0.6
0.5
04
03
0.2

0.1

500 1000 1500 2000 2500 3000

Iteration Number

Figure 3.7. Neuron Voltage Vy (Flow on link 4)

500 1000 1500 2000 2500 3000

Iteration Number

Figure 3.8. Neuron Voltage Vs (Flow on link 5)

40

41

Voltage V7 (Volis)
F -

3 /
2 //
1 <.
0o 500 1000 1500 2000 2500 3000
Iteration Number
Figure 3.9. Neuron Voltage V, (Flow on link 6)
0 ,
-0.002 \ SRR SRS SO SO -
<0.004 fres : :
g
s
& -0.006 N\
>
& -0.008 |- N\
|
o
)
-0.01
0,012 b st bsesnse s s o oo o \—_
-0.014
0 500 1000 1500 2000 2500 3000
Tteration Number

Figure 3.10. Scalar Function of the Single Commodity Network

42

Simulation results for three different initial conditions are illustrated in table 3.1, where

the initial state vectors are given by:

07 6] " 14]
0 4 14
0 5 14

VW=lo|;VP=|2|; Vi =| 8 (3.11)
0 4 9
0 5 2
0] el [9]

Table 3.1. Simulation Results for the Single Commodity Case

(Numbers in brackets denote exact values)

1 1 1 1

1 1
Initial state lhrwldput. '1 fz f’ f‘ f . 1 3 ‘ Nusber of
. v iterations
=1)
V‘n 13.06 6.8 8.81 |-1.36x10 9.990 6.819 7.2 22070
(13) (s) ({)) (9) (1) 6) v))]
—2) 13.00 6.02 8.619 2.0 3.0 6.82 2.810
(13) (5) ®) (2)) (6) v} 1262

3) 13.86 §.92 8.009 | 2,901 | 3.9 6010 | 72.@2
v(13) (5) (® (3) 10) (¢)) 142

These results show that the maximum throughput of this single commodity network
is 13 units and that there are more than one flow allocation strategy to achicve this purpose. |
In addition the closer the initial state vector is to the optimum solution, the faster is the |

response time of the extended Linear Programming network.

43

3.4.2 A Multicommodity Case
3.4.2.1. A Five Commodity Network
Consider the network shown in figure 3.11 where it is required to find the maximum
throughput for the five commodities specified in table 3.2.

Figure 3.11. A Five Commodity Network
(Numbers inside (outside) brackets denote link capacities (link indexes))

Table 3.2. Commodities of the Network Shown in Figure 3.11

Comnodity Seurce Bestimtion

T T AR T REET

44
In this case the equation of motion of a particular elementary neuron is:
dv, o —_— 25 —
C,— = -A, -iElBj,g,-(Bj . V—E,-)-‘E‘,l Ceahi(Ci* V-F) (3.11)

Vn € {1,2,..,50}

This problem requires 50 neurons, 64 nonlinear inequality constraint modules and 25 linear
equality constraint modules. The dynamics of the corresponding extended Linear Pro-
gramming network are simulated asin section 3.4.1 with & = 107 seconds and C, = 100nF.
After a series of trials the following constraint resistance values are found to yield good
results:

R, =550KQ

R; =650KQ

all independent of their respective subscripts. In addition all remaining resistances are
normalized using a 1X'CQ2 resistance. It was assumed that steady state is reached if all ele-
mentary neuron voltages did not change by more than AV, =10 volts. Decreasing this
value did not improve the results, but just increased simulation time.

Under zero initial conditions, the extended Linear Programming network reached
steady state after 7433 iterations, giving a maximum throughput of 19 units. Table 3.3

summarizes the corresponding flow allocation.

45

Table 3.3. Simulation Results for the Five Commodity Network Under Zero Initial
Conditions
{ f* is the flow on link a due to commodity k }
(Numbers inside brackets denote expected values)

k k k] k k k
k K k
Comnodity '1 6‘2 63 f‘ 'S 0“ 0‘7 f. '9 9

4 - -3
1 0-883 | 0.881 |9.683x10-1.28x16}1.56x18
088 |@e| @ | @ | ©
3¢ -2 s i1 2000
2 1.315 1.314 | 1.316 |1.66x101-4.18x101-3.96x: 1.81:&10-1.24)110-3.06)&;3{ 1.310

(130 (3 |z | @ | @ | @ | @ | @ | @ [aw

-1.m§oi1,w{q 9.082 -1.»:1;1 0.888
® | @ || @ |@©80

- | - - -3
3 [+.800x10 | 1783 | 1.785 |1.54x18| 1.699 |7.54x18 |1, Géxtal-1.66x18| 6.806 | 7.715
@ |anlan| @ | an] @ | e @ | 6o on

-3 4 -4 - 4 o -
4 L1222x18]| 1.122 [2.008x1014.48x10}-1.56x101-4.49x18/5. 13x18 1.122 L1 Goxi0| 1.126
(9) (1.12) | (@ (0) ()] ® @ | (1.12) (8) {1.12)

-3 -4 X | -5 <
. -4.747x10|-1.87x16] 1979 | 1.978 Lq.ax10[2.48x10 | 6.806 [2.43x10 [1.65x18] 7,088
(®) (0) (2.8) | 2.0) (9 @ €6.9) @) (@) | (.0)
5 " 10.036
Maxinun throvpheut 32 v —’ (19.9)

k=3

As shown in figure 3.12, again the dynamics of the extended Linear Programming

circuit evolve so as to gradually reduce the scalar function P°; until the maximum allowable

46

throughput is reached (figure 3.13). Once again it was found that this maximum flow of
19 units could be achieved through many other routing strategies. Table 3.4 gives one
alternate flow allocation, which corresponds to each neuron having a 1 volt initial voltage.

This flow allocation was obtained after 4925 iterations.

Table 3.4. An Aliernate Flow Allocation for the Five Commodity Network
(£} is the flow on link a due to commodity k }
(Numbers inside brackets denote expected values)

k) K k k K Kk] & k
Connodity fy ‘2 9" 6‘4 f‘ f‘ f, '8 fo)
k

-4 -a - - - -
1 1.824 1.821 |2, 726x10-1.26x10|-1. S3x10]-1. 53x 1.5«15 1.822 -x.omgl 1.820
(1.83) | (1.83) @)) ® ()] (1.83) 0 | (1.83)

- - -3
2 2.54 | 2.333 | 2.33% -1.umia.md-a.md-z.md-x.mu -a.oaxiﬂ 2.338
(2.33) | (2.93) | (2.99) ()] () (1)) (1)) @ W | (2.3
-3 - -3

3 032 | 1.572 | 1.6 [1.63x18| 1.220 | 0.336 -1.m;=-1.smo 6.006 | 7.584
0.33) | 1.67] (1.57 o |29]w®.33) | (@) 6.9) | (2.57)

-3 =4 -4 3 -4 ;; -3
4 [1.978a8| 0.165 [2.304x18]4. 69x10[-1.63x10/4.67x1014.62x18 ©.164 [-1.63x18| ©.168
()] (0.16) (O] o) (®) () © | ¢8.16) @ | (e.16)

4. 826x10 | o] "~ 22 3
6 .826x18]-1.06x18| 1.901 | 1.000 |4.8218]2.09x10° 6.006 |1.6o08 15318 7.114
{9) @ [ae| an| ()] 6.0) (2.11)
10.83%
k.i o

-0.002

-0.004

-0.006 \

-0.008 N
-0.01 \\\

-0.012

Global Penalty Function

-0.014

.0.016 E : ‘\

-0.018

-0.025 1000 2000 3000 4000 5000 6000 7000 8000

Tteration Number

Figure 3.12, Scalar Function of the Five Commodity Network

B
1 f / -

N

Total Throughput
o0

0 1000 2000 3000 4000 500 6000 7000 8000

Iteration Number

Figure 3.13. Total Throughput of the Five Commodity Network

47

48

3.4.2.2. A Ten Commodity Network
In this section we consider a larger network consisting of 14 links and 7 nodes #s
shown in figure 3.14. Correspondingly we define 10 commodities to be accommodated,
where each commodity is defined by its source-destination pair as specified in table 3.5.

Figure 3.14. A Ten Commodity Network
(Numbers inside (outside) brackets denote link capacities (link indexes))
Table 3.5. The Ten Commodities for the Network of Figure 3.14

Corwd ity Seures Sust.imut lon
. % -

49

The corresponding extended Linear Programming netwark that solves this Max-Flow
problem requires 150 neurons, one for each variable, 174 nonlinear inequality constraint
modules and 70 linear equality constraint modules. The equation of motion of a particular

neuron is:

dv, 1 — - % —
Ca—m=-4, ‘jEBj-Sj(Bi ‘V-E)- ‘2_.-, Cihi(C,*V=F) (3.12)

Vn € {1,2,..150}

The dynamics of the corresponding extended Linear Programring network, with a zero

initial state vector, are simulated as before with the following parameters :

C, = 100nF ; 8 =10"" sec; R,, =550KQ
R;=650KQ; R, =1KQ; AV, = 107V
The dynamics of the simulated system settle to equilibrium after 8064 iterations, givl.ng
a maximum network throughput of 40 units. The corresponding flow allocation is shown in

table 3.6. The global penalty function and the total throughput are also obtained as shown
in figures 3.15 and 3.16.

50

Table 3.6. Simulation Results of the Ten Commodity Network
(Zero Initial Conditions)
(Numbers inside brackets denote expected values)

et IS S LS B S S N C NI B (A IO 0 IV I
. Lo osanTr2miY 160 | em [ed? < seidler onde-roni] 200 freoid | 0.0 |<.ecait Loanas?] o oai?| 2.3
L W (.60 | @m (U (0] (0} (0} 2.%) (D) .8 ®) ™ » 2.%)
e.anid] 14 | 0.5 Jo s’ omis [-5.2mid -1.&1'0}‘."7&‘ - S S PECN PR B A

¢ m e | vas] m o) m (") () () D) O] m ann | 30 a.n
, 2 |-neenan]100ai’ 1ow [2.ma0] 1o [-2 seeifle.osde] -2 eat] 2. mad] 2. 67208] o] 6o !|-s.00a5! o
0e (7] ®m jum]| ® |0 (0] (0} 0]) () ™ m ® € 6)

-3 oouait] 4 zzpaifeonid] 1w | Lo Laomd| e [armidl-imar] 262 |-amaiteeear s waad |+ 0ai?| 1m0

¢

‘ () ()] o |am|{am| ® | cw | ® w | em " m » ® (3 55)
202 i) 1o Fe el 1w 2] 2.1 freesad st 1o | oLee [eoseaiYzoman’|-0 amait| 2w

) w ® (1.00) " amj @ o (] 18 (1.6 (0] ()]) (2 15)
Lm0 [-Le2ai Y1 ends] 0.0 | zaw | 20w | mﬂ-x.mﬁ-: wai®l 1 |2 eman] < 0] .20t 000t | 29

¢ (1.8 (] [} oa) 2.1 | oo [0 (U] [(}) {12 (]) ™ " o.m
Lomit] 1660 | 830 |4 seecin| 10w |-1 oelmidles wnis] 15 |1 acatd |1 1m0 vanan |1 sctd] Wom | 3ass s

’ W [ash | em; wm | ae (U] | (O " » ® 0 | 08 | QW

. -0 005id] -6 aomuin |0 a12018) 2. omuctn [0 w0t f-0. comsiT 1. 104urs -1.50u18] 5. 21008%| -1 81018 1. 00atd {4, 47218 420008 Y 4. 20008 2 9120137

L] L L] LU m ® (G} ®) 0] (0} (1)) 0 ® "

0. 20200 -z.um? -2 xm-: -z.mﬂ-x.uuﬁ’ -+ m.ﬁ -c.-cri‘-x.nufua 260 |1mpas’®] 268 |~ lﬂxl‘l‘ 1 ‘ani: -+ s’ 2,622

) (U]) » [£]) (O] 1] () ()] Q.45)) (2.65) (] (0] (L)) @.&)
H s~ 2eai’ls wai}s ol moae suiils o] wai] v omi'o eea'| 201 |-Lsomid 20w 2w | 2.0

" [0}) ()] [O) [0} (O]) m ()] [} @8 (O] 2.84) @ 2.4)
0.007

18
Mucinm theovsonz P v =)
bl

()

Global Penalty Function

-0.025

-0.035

Total Throughput

-0.015

-0.01

S
8

N

-0.03

0

1000 2000 3000 4000 5000 6000 7000 8000 9000

Iteration Number

Figure 3.15. Scalar Function of the Ten Commodity Network

35

T T T =T

0

1000 2000 3000 4000 5000 6000 7000 8000 9000
Iteration Number

Figure 3.16. Total Throughput of the Ten Commodity Network

51

52

An alternate flow allocation, obtained with a different initial state vector and which gives
the same throughput is illustrated in table 3.7.

Table 3.7. An Alternate Flow Allocation for the Ten Commodity Network

Comity |0 [y o Dy ¢ % ¢ o & & “ | o -~

1 ¢ oannii] 106008’ 1000 | e [1.eesaid e mrnist 0. Deia} L uunnit] 20s8 Cranid | oom |combtrmaiemaiy nus

] ® |om| em ™ w w ™ @) m . 0 ™ ™ (2.6

. [eomaii] 202 | 007 | o006 |6.710008 |-0.meii}-1. rmmithe. at1uis] 2. a0nuid’ | 0. 0008 | .200 oni| Lwe | o |

@ |czuey | 0003 | o w ® ® ® ® o 0.0 ™ aam | 9.0 | 0.6

a0 |-2omibroesad’] raes [o1mai] 1o [-220eale seenis] ¢ cosmi] -0 10213 0.001010 6. a0enti] @.200215! -0 ommaa’| o2

! .15) ® | e ® | ae ®)) ® ® o | ® ™ (4.96)

2. oemid 4wl 2. 50xiE] 1008 | 1026 [-0.0508] 3.10 |e.ewid]-tizemd’| 219 [-0.:said PRy I Yy PP

¢ n) W e | o [} 3.14) (] () a2 (L (C1) [] (L) 13.24)

creerninooomsy 1% (Lol 1me s.00ui8| 2.aae [r7Omid-lenid’| 1.200 1.9% |2 seans Y-z 7e0s v, mai?| 2.0

:) ™ |oo] o | am| ® s | » m a.ze | (L 0]) w (2.0

o2 FLomais 1ammis] 0w | 204 | 2% F3.eseiYreinitiomad®| 2002 -1 aouid] JUTRI- I oo e

¢ as | «») wan)| zen | @) m ») @.o ™ ™) ®)

cheomis] 16e | s183 [namwad] 136 [-1.Owid|-1.e0id] 2188 |-taed’| e 0% [-10ua] &5 | e 2.8

’) a0 | wanr | wen| w3 [@ ®w | ew® ™ ®.3% | ¢ 0 wso | am | aw
0729 6.621a18 |~ 708 18| 2. 70418 o 00n 13, peaia 1. 390me |1 BEbmit | 0. 1| 0. o1~ 20kt || 4.197018°] ~4.060n1d | =6.1220 w18 " 2. 000013

‘ [L}] o) m) [{] " (] (] ({1 » [{ }) m w) ({1

e e ris 2 169 Te | 2 3Rn IR |2, oo IR -1 28 Ie 8. WniE . 91niE L wuid| 236 | 1.538?| 2.0 |-sowuid | 1.2800d [0 amid!| 2.3

* » ™) ®) ® ® - .34) (2.30 0 ® ™ @.30

o AN InlF - L. Gt 10 720i 0. oG i |6 001D 0. 6L0usB =1 B2l |4 062l =2 061 [-g. ve2e18®| 2.900 [crwemssd 2om | 230 | 2w

" o - ™ ™ ®) ™ - ® ® 2.3)) @ | @awm | em

.04

Nl M:’:’v)

)

53

Next is a number of remarks to follow regarding these simulations:

- First the computer simulation results obtained in sections 3.4.1 and 3.4.2 are based on the
assumption that all the components of the extended Linear Programming circuit are ideal,
which is not the case in most practical situations. However, when the LP network is
implemented in hardware, the solution, which may not be hundred percent exact, will be
obtained very fast. In many real-time control problems, requiring Linear Programming
computations, the controller’s decisions are to made very fast. In such cases it would be
better to get a very good solution in a very short time, using a neural network hardware
implementation approach, rather than exhausting considerable amount of time to get very

accurate solutions using conventional iterative optimization methods.

- Second the simulation results for the single commodity and the two multicommodity cases,
as obtained in sections 3.4.1 and 3.4.2, reveal that the computation time of the extended
Linear Programming network does not increase very rapidly with problem size. In fact the
solution to the single commodity network (7 variables, 14 inequality constraints and 4
equality constraints) was obtained in about 2970 iterations while the five-commodity (50
variables, 64 inequality constraints and 25 equality constraints) and the ten-commodity (150
variables, 174 inequality constraints and 71 equality constraints) problems were solved after
7440 and 8070 iterations respectively. This prominent characteristic of the neural network
approach can be explained by the fact that as the problem size gets larger the number of
required neurons increases and so does the amount of parallelism used during the distributed

processing of neural computation {4].

54

- Third convergence of the extended Linear Programming network to the optimum solution
is guaranteed thanks to the convex property of the solution space of all Linear Programming
problems, Hence the local minimum reached by the gradient descent optimization process
is also a global minimum regardless of the initial state.

- Fourth although a hardware implementation of the extended Linear Programming network
can solve the maximum flow problem very fast and in real time, there are two challenges
that will be hopefully overcome, especially with the recent advances in VLSI technology.
The first challenge is the software problem of how to program the proper resistive inw:r-
connections among all ’neurons’. It is clearly understood that the computational time
invested in programming the inter-neurons’ resistive connections should not shade the very
fast response brought by the hardware implementation. The second challenge is the hardware
problem of implementing large resistive connection matrices and large number of integrated
op-amps on a single VLSI chip. During the past few years there have been many attempts
to solve these problems using analog VLSI techniques. Although the results obtained so far
are veryencouraging, there is alot of work to be done before the microfibrication of thousands
of resistive connections and integrated op-amps on a single silicon wafer becomes plausible.
Nevertheless since the extended Linear Programming circuit has a well defined structure
(figure 2.6) then it might be possible to design a special purpose Linear Programming
network, where the general topology of the neural network is stored in a special program,
with the user specifying the parameters required to solve his particular problem (example:
number of elementary neurons, linear equality constraint modules and nonlinear inequality

constraint modules, conductance values of the resistive connection matrices, etc..) [6].

35

- Finally for small size Linear Programming problems, special purpose softwares such as
SPICE could be used to simulate in a more realistic way the dynamics of the extended Linear
Programming network.

CHAPTER 4
A NEURAL NETWORK SOLUTION TO THE SHORTEST PATH PROBLEM
4.1.Introduction

In this chapter, another important network roating problem is considered, where the
goal is to find the shortest path from some source node (s) to a destination node (d)through
aconnecting network. Once again we define a network as a directed graph G = (V, 4), with
n nodes and m arcs. Corresponding to each arc (ij) there is a nonnegative number C;.called
length, distance or transit time from node i to node j. Defining a directed path P* as an
ordered sequence of nodes connecting s to d:

P¥=(s,i,j.k,...,r,d) 4.1)
Then the length of this path will be L = C,; + C;+ Cy +... + Cy. The problem is therefore
to find the path which has the minimuza length, L*,

The applicability of the shortest path (SP) problem to telecommunication and
transportation networks is diverse. For instance, if C, is the cost of sending data on arc (i,j)
then the shortest path from s to d is the optimum route for data transmission. Alternatively
if C is set to -In [p;] , where p; is the probability that arc (ij) is usable, then the shortest
path from s to d is the most reliable path for data transmission, provided that the usability
of a given arc is independent from that of the remaining arcs. In addition there is a large
class of network optimization problems whose solution requires solving SP problems as
subproblems [22].

The SP problem can be solved using many well known graph theory algorithms. The

57

two most commonly used are Dijkstra’s and Ford-Fulkerson’s algorithms. Dijkstra’s (or
forward search) algorithm finds the shortest path from a given source node to all other
ncdes. Ford-Fulkerson (or backward search) algorithm finds the shortest path to a given
destination node from all other nodes. Discussion of these graph theoretic algorithms
however is beyond the scope of this thesis.

The use of neural networks, to find the shortest path between a given source-destination
pair was initiated by Rauch and Winarske (R&W) [23]. They proposed a neural network
architecture arranged in a two dimensional array of size nxM; where M is the number of

nodes forming the path. The output V,; of the neuron at location (x,i) is defined as follows:

] 4.2)
0 otherwise

Vﬁ{l if node x is the i* node to be visited in the path

One obvious limitation of the above representation is that it requires a prior knowledge
of the number of nodes forming the shortest path. This number however is unknown. R&W
fixed M to the minimum number of nodes forming a path. It is obvious then that R&W
algorithm finds the shortest path only among those M node paths. Therefore R&W algorithm
is not adequate to solve the SP problem since it gives only a suboptimal solution; after all
the shortest path may consist of more than M nodes.

‘To correct for this error, Zhang and Thomopoulos (Z&T) {24] extended M to the
total number of nodes in the network, which is also the maximum number of nodes the SP
may consists of. They assigned zero-cost self-loops connecting each node to itself and very
large costs to non-existing links. In this way a self-loop can be included in the SP without
increasing the path cost. To illustrate Z&T approach, consider the six node network shown
in figure 4.1 where cach link is labeled by its corresponding cost. The cost matrix C* = [C;]

associated with this network is given in table 4.1, where L denotes some large positive

pumber.

58

Figure 4.1. A Six Node Network With Self-loops

(Links are labeled by their corresponding costs)

Table 4.1. Cost Matrix of the Network of Figure 4.1

(L is a large positive number)

1 2 3 & & ¢
4_

1 Je| s L]}l

2 1|l e|o| L]Ss L

8 |L| 20| 6] 2] e

e J1| L]|é6] 8] 2]

s |L| 8|1 2]0] 2

é JLiL|a| L]?2]e
4—

59

The shortest path between nodes 1 and 6 is P**=(1,4,5,3,6) and it has many neural rep-

resentations as shown in figure 4.2. Each neural representation in figure 4.2 corresponds to
a particular self loop, which is introduced to compensate to the fact that node 2 is not in the

SP solution.

1l 2|3lals]| 1|l2]as|a]|8]e ;
1afe|e|afa]e 1lafs]lefe]a]|e i
2|l olo|alo]le]o 2|o|o|af{o]a]e i

:
s|oe|lalo]|2]2]oe s|elglolo|lale Z
%
a0 |i|eflelalo s|lo|lo|a|e]|0]e
slo|ofalo]|o]0 s|of|a[o|[s]|a]o
¢c|of{o|o]le]l 0] AR RERERE
a) 1—4—6—3—3—6) 1—1—4—5—3—%

§|0]| o|oa]s]je}0

6|6 |0 |0 |8 {0 |1

o) 1—4—4—5—3—%
Figure 4.2. Some Neural Representations of the Shortest Path P
(V., = 1 means that node x is the i* node to be visited)

s cen U A S

Using Hopfield and Tank discrete neural model, Zhang and Thomopoulos proposed
the following energy function to be minimized:

Ar-l s & Bas s a C(» »
" E‘% El J‘Z;I VaCiVien +5k§| El igx VaVa +-2-(i§lj§| Vi~ nI @4.3)

In the above the A term represents the total cost of the path, while the B and C terms are
constraints introduced to force the neural network state to converge to a valid path. The B
term is minimized if each column contains at most a single 1, which corresponds to at most
one node visited at a time. The C term ensures that there will be exactly n 1’s in the final
solution. When combined together, the B and C term ensure that each column will have
exactly a single 1. The connection weights and the biases, corresponding to the energy
function (4.3) are given below:
Ly =-ACy(5;;.1+8;;_)-B(1-8,)-C 4.4)
I;=Cn 4.5)
where 8 is the Kronecker delta defined by:

% ={ (: i:t?::wise 4.6)
For a given source destination pair, Z&T fix the state of all neurons located at the first and
last column, while allowing the remaining neurons to evolve $0 as to minimize the energy
function (4.3). For example in figure 4.2, the state of the neurons belonging to column 1 is
fixed, corresponding to a single onc at row 1 since it is known that the source node (1) is
the first to be visited. Similarly the state of the neurons located in the 6* column is fixed,
with a single one at row 6 since destination node 6 is the last one to be visited.

Although the neural network formulation proposed by Z&T is more adequate than that

of R&W, it still has limitations. Since each neuron belonging to the first and last column

61

has a fixed output voltage, the neural network is designed to find the shortest path between
onlya given source destination pair. To find the SP between another pair , the neural network
configuration has to be changed. More importantly, since the A term in the energy function
(4.3) is quadratic, the connection strengths among neurons, as given in (4.4), depend on link
costs. In practice the link costs in a communication network are usually time varying since
they normally depend on the flow the links are carrying. Subsequently if Z& T neural network
is to be used for traffic routing as suggested in [24] then the resistances of the synaptic
connections are to be changed continuously in order to adapt to changes in link costs. This
makes the circuit implementation of Z&T neural network not suitable for finding shortest
paths under time varying link costs. In addition, in terms of neural representation, the
presence of self-loops in the final solution is not desirable. Referring back to figure 4.2 it
can be seen that a path which does not pass through all the nodes of the network has many
neural representations, each defined by a particular set of self loops.

In what follows a new approach to the shortest path problem, based on Hopfield and
Tank neural network is proposed. This solution is more appropriate for the optimal routing
application to be studied in the following chapter.

4.2.Problem Formulation

To formulate the SP problem in terms of Hopficld and Tank neural network, a suitable
representation scheme is to be found so that the shortest path can be decoded from the final
state of the neural network. The proposed model is organized in an (nxn) matrix, with all
diagonal elements removed, since not needed. Therefore the computational network requires
n(n-1) neurons, which is less than the number of neurons required by Z&T model. Each

neuron is described by double indices (x,i), where the row subscript x and the column
subscript i denote node numbers, and a neuron at location (x,i) is characterized by its output
V,; , defined as:

V-{l if the arc from node x to node i is in the shortest path @7
*~10 otherwise .
We also define p,; as:
1 if the arc from node x to node i does not exist
i = . 4.8)
0 otherwise

In addition the cost of an arc from node x to node i will be denoted by C,; , a finite real
positive number. For non-existing arcs this cost will be assumed to be zero, but non-existing
arcs will be eliminated from the solution by being invalid.

4.3 The SP Energy Function

In order to solve the SP problem, using Hopfield and Tank neural model, we first have
to define an energy function whose minimization process drives the neural network into its
lowestenergy state. This final stable state shall correspond to the shortest path solution. The
energy function must favor states that comrespond to valid paths between the specified
origin-destination pair. Among these valid paths it must also favor the one with the shortest
length.

An energy function that satisfies such requirements is given by:

63

E.."— ZZC V,,+ }; 2p_, v..._};{L‘V -zv}

2 x-li-l -H-l 2 sa1 5:: 3::
C'.l)‘(l-') ﬁ.‘)'(‘-‘)
s
gx Ex V, (1= V"')+i(l -V.) 4.9

In (4.9) the y, term minimizes the total cost of a path by taking into account the cost
of existing links. The y, term prevents nonexistent links from being included in the chosen
path. The y, term is zero if for every node in the solution, the number of ingoing arcs equals
the number of outgoing arcs. This makes sure that if a node has been entered it will also be
exited by a path. The J, term is a compensating term that pushes the state of the neural
network to converge to one of the 2*-* corners of the hypercube, defined by V,; € {0,1}.
The 5 term is zero when the neuron at location (d,s) has a unity output . Although the link
from d to s is not part of the solution, it is introduced to enforce the construction of a path,
which must originate at s and terminate at d. This makes sure that the final solution contains
the arc from d to s and therefore both source and destination nodes will be in the solution.
Thus the final solution will always be aloop, with nodes s and d included. This loop consists
of two parts; a directed path from s to d and an arc from d to s.

If there are no zero length loops in the network, then the y, term will ensure that there
will be at most a single 1 at each row and at each column. This will also guarantee that to
each path P there corresponds one and only one neural output. As a result the decoding of
the selected path from the final stable state of the neural network will become easier, as
there will be a one to one relation between the set of feasible neural outputs and the set of
paths. Toillustrate this consider the example depicted in figure 4.3. For the network in figure
4.3.a, let us assume that the shortest path is P* = (1,2, 5, 6). The corresponding arcs which

are to be included in the final solution are shown in figure 4.3.b. These arcs form a loop,
thereafter referred as a primary loop. Correspondingly, the neural output will be represented
as shown in figure 4.3.c, where each node included in the shortest path has a single 1 in its
corresponding row \ column. Note that since nodes 3 and 4 are not part of the shortest path,
they have all zero entries in their corresponding rows / columns.

Now let us suppose that node 2 has two outgoing arcs in the final solution, corre-
sponding to two ones in row 2. Then besides the primary loop, forming the shortest path,
secondary loops will be forced into the solution due to the ji, and 15 terms. Examples of
secondary loops are shown in figures 4.3.d and 4.3.¢. As long as the length of the secondary
loop is not null, the energy function, through the W, cost term, will prevent this secondary
loop from being part of the final solution as its inclusion results in an extra cost to be added
to the primary loop cost. Therefore path P* = (1, 2,5, 6) will have one and only one corre-
sponding neural representation, the one shown in figure 4.3.c.

4.4. The Connection Matrix and the Biases

The connection matrix and the bjases of the neural network can be found by comparing

(2.2.a) with (2.11), which are now written as :

dei Un‘ LI,
g R T Vit @10
Jwey
du,;, U, ©E,
.t % "R —BV,.- (4.11)
V(x,i)e NxNix #i

By substituting (4.9) in (4.11) , the equation of motion of the neural network is readily

obtained:

65

4.3.3. The Original Netuvork 4.2.b. The Prinary Locp Forning The 8P Solution

1 45 ¢
1 1 oleje
210 si1|s
3iele el0]|e
aje|o]e AL
E{ofo|o|e 1
¢ [1lo]efe e

4.3.¢. fnother Secondary Looe (2,4,3,2)

4.3.d. A secondary Looe (2,3,2)
—’ 1 A prinry loop arc

’lanm:hrvhunn

Figure 4.3, An Illustrating example

dUy Uy W 2 _
C,,- . '_dt—' - —E-'z— C'.-(l - 8‘ * 8')“ 2 pn'(l 8“ * 8') (4'12)

» . T
—"s’%(vsy "VJ-)"'“!,%(V&)-V")—'Z_(I -2V,)

yux ywi
+E25‘8‘ * 8'.

V(x,i)e N xNix #i
where d is as defined in (4.6).
By comparing the corresponding coefficients in (4.10) and (4.12), the connection strengths
and the biases are derived as:

Ty = Wb 0; — 13D, — a8 + 1,5, + 11,8, 4.13)
=P 1-5..51-"0 (1-5 .5 - B
lxi = 2 C.u'(l a.d 8:) 2 pu(l s.d aw) 2 + 2 sdau

Bs Mo |
5 -5 if@x,i)=(d,s)
= 2 2 (4.14)

H o)) .
—2C,,- 2 Psi=% otherwise

Vi #i),V(y #)

The first term in (4.13) represents excitatory self-feedbacks, the second and third terms
represent local inhibitory connections among neurons in the same row and in the same
column respectively. The last two terms represent excitatory cross connections among
neurons.

Unlike the previously proposed neural networks, solving the SP (23&24) and TSP (2)
problems, the proposed model maps the data (here defined by link costs and node con-
nectivity information) into the biases rather than into the neural interconnections. This is

due to the fact that the data terms are associated with linear rather than quadratic expressions
in the energy function (4.9). One advantage of the proposed representation scheme is a
flexibility reflected by the fact that the link costs C,;"s and the network topology information,
embedded in the p,;'s terms, can be changed through the biases. This will make the neural
network very attractive to operate in real time and to adapt to changes in network topology
and link costs. Another advantage is that the inter-connection strengths do not depend on a
particular source or destination. Hence the neural network can find the shortest path between

any given two nodes by properly choosing the input biases as given in equation (4.14).

4.5. The SP Simulation Results

Recall from (4.10) that the dynamics of the neural network are described by:

dU.:, s =a U.:
-'—£'= R ,—J R 4.
g~ T Ve g (“.13a)
Jey
. 1
Vz.' = 8.:.‘(”,") = 1__-:"54—‘-’: (4.15.0)

For simplicity it will be assumed thatc,; =C , R,;=R , A,;=A , and g; = g, allindependent
] Y ln'
of the subscript (x,i). Then dividing by C and redefining T-’&‘-’ and i T, andl,;

respectively, we get:
du.. s = U.;
._..’l - . . .-—ll . 4-16.
dt ,§1 ;:gl TuixVs T th (4.16.0)
7®y
T=RC (4.16.0)

‘Y

. 1 .
V=8 U))=—""=71 (4.16.c)
8 1+ L

68

With the above simplifications, the time it takes for the neural network to reach steady state
is in arbitrary units. Therefore the time constant of each ncuron is arbitrary st to 1.0.
In addition the equation of motion describing the dynamics of Hopfield and Tank model

now becomes:
au, U, .
=h=—2-Bc,0-8.8)-2p.a-8.80-1, 3 0,-V,)

yoz

+1h £ 0, -V-Sa-2w)+ 558, @17.)
ywi
V= 1_;“, 4.17.b)
1+ ™

Given the initial neurons’ input voltages U,;’s at time t=0, the time evolution of the
state of the neural network is simulated by numerically solving (4.17). This corresponds te
solving a system of n(n-1) nonlinear differential equations, where the variables are the
neurons’ output voltages V,,’s. To achieve this the fourth order Range-Kutta method [25]
has been used. Simulation has shown that this method always gives better results than the
classical Euler method. Accordingly the updating of neuron voltages is simulated as follows:

K,=8-h(U,)

K,=5- h(U,ﬁ-%) (4.18)
K,=8 - h(U,+K)

U,= U,,+ (K, +2K,+2K,+K,)

69

-where 8¢ is the incremental size of the updates.

Simulation has shown that a good value for & is 10, Reducing this value increases
the simulation time without improving the results. Another important parameter in the
simulation is the neuron initial input voltages U,;'s. Since the neural network should have
no a prior favor for a particular path, all the U,;’s are set to zero. This corresponds to the
initial state of the neural network being concentrated at the center of the hypercube, with
all neuron output voltages V,;’s set to 0.5V. The simulation is stopped when the system
reaches a stable final state. This is supposed to occur when all neuron voltages do not change
by more than a threshold value AV, = 107V from one update to the next.

As an example, the five node network shown in figure 4.4.a is considered. There are
six feasible paths between the source node 1 and the destination node 5,whose corresponding

neural output representations are shown in figure 4.4.b.

After a series of preliminary trials the heuristic coefficients, y,"s are chosen as follows:

K, =950
K, = 2500
My =1500
W, =475
s =2500
Simulation has shown that there is a compromise between chosing a small or a large

value for the neural transfer parameter A.

70

P

4.4.a. A Netvork Exanple Used in the Simvlation

1 2 3 4 6 1 2 3 4 §

2 3 4 &
i|0]| e e

1le|eo|0

1

4 |0
13

1|0 |0}|0

1

1j0|@ |0

1—2—3—-5

1--2—4--5

1 2 3 4 &

1 2 3 4 8

e|1oo

4 0
6

@il |oele
e

1

1

s|je|@]e

1--3—4-—8

1-—~2-~3—4—5

Output Representation of the Feasible Paths

4.4.b.

Figure 4.4. A simulation Example

!

While a large A gives rise to a fast neural response for which the solution is not always a
global minimum, a small A yields a slower response which always guarantees an optimum
solution. In our case we have chosen A = 1. For the network of figure 4.4.a, the simulated
neural algorithm is run 100 times using different randomly generated Jink costs, between 0
and 1. In all runs the simulated algorithm has converged to states corresponding to valid
solutions within 3000 to 8000 iterations. In addition the global optimum was obtained in all
runs. Typical examples are illustrated in figures 4.5 and 4.6. A se~ond set of 100 runs is
then performed on the eight node network shown in figure 4.7, using the following
parameters:

W, =650 ; p,=2500 ; uy=2000 ; p,=85

Hs=2500 ; A=1 ;AV,=10"V; & =10"
For this network there are 21 paths between the source node 1 and the destination node 8.
All the runs converged to states representing valid and optimum solutions within 5000 to

16000 iterations. Typical results are also shown in figures 4.8 and 4.9.

Simulation has also shown that the number of iterations required in the SP neural
computation increases as the second best solution gets closer to the optimum solution. This
could be explained by the fact that it takes more time for the neural network to decide to
which path to converge, taking into account that it should favor states corresponding to

shortest paths.

72

Netverk Shoving Randonly Gerersted Link Cests

1 2 346 1 2 346 1 23 a6
1 1leje| @] 4 1|e]eje] 1 1|e{efe
2le LALIRY 2]s of1]e 2|0 1lels
s|oj® 'ie 2jle|e ole sie|e [N

S oo B 1 . o]
4 q 0o |o . a0 [
s|[ije]e]e s|{1{o]0]e s(1|sfe]e
Pathls 1—2—8 Path2: 3 —2—4—G Pothd; 1 —2—3—§
Lanethe1. 34030803 Lonsthe 1.0060M20 Lensth 1. 36349820

1 2 346 1 2 3 45 122 a s
3 1lejej o] o[1{efs]| 2 ol1leTs
2o ije 2] olefo] 2]e 'R
s[v]e slele oit| afe]e 1fe
aje]®e 3 0NN OEENDD 1]
sf2p}jo® ® s|a|o[e]fe s [1({e|o]e
Pathd)} =od=fol==g Pachis 3—3—8% Pathé) 1 —D—g—§

Limgthal 0OIE4O5S Lonpths=0.31046104 Longths 8. OMEIN01?
The Feusible Paths lnll Thair Coerresponding Lenshts

1 2 9 46
1 Y ER)
2|0 [BLRLJ
s|lele LRR
oD n
sj(s|o]e]e

Moural Metwerk Solutisn ¢ Path §) Obtained After 3332 Iterat ions

Figure 4.5. Typical results for the Five Node network

(V,; = 1 means that the arc from node x to node i is part of the path)

.

123 46 1 23 46 123 &
1 1,0]10}0 1 eo|e]|e 1 1{eslele
21e ele|1] =2]e e |1|e] 2]e. 1 efe], P
3 |esfo e{e] 32|e ele] 3 (e]e ef1
AOLE OO0 ARanrs o
sj{i|e]|® |0 s |1 ole s [1]|s]e]e
Path2i 1—2-—4—6 Pathd: 1—2--3—%
Length = 0.702412344 Lensth = 1.08215720 Length = 1.4821628
1 2 3 48 1 2 4
1 3 oj1is|e| 1 elzlefe
2 21e e|eoje| 2|e el
3 s{ele oj1] sle]e 1]e
. AN DD 3 B .
5 s{1]efefe s |1 ®|e
Pathii]l —2—3-—4—6 PathE: 1—3—6 Pathét 1 e-3—4—6
Langth = 2. 694048 Lenoth = 8.9836877 Length = 2.0004176
The Feasible Paths and Their Corresponding Lenshts -
1 2 2 46
1 1l o]sfe .
2le ele}s
afele 10
1o 0
s(i|o]o]s

Neural Netvork Solution(Path 1)Obtained Afcer 2360 Iterat ions

Figure 4.6. Another Simulation Example for the Five Node Network

73

Figure 4.7. An Eight Node Network Used in the SP Simulation

74

75

1 2 J 4 L]] 7 8
Path |Mode Sequence| Lemath 1 ln.:-n-u ' ’ Lmuuq ' ' '
1 | 12348 1. 1942063090 .
21 » ﬂo.mu ¢ [|ssnpomud .
2 | 1-2-3- 1. 279604567 r
3 '] ’ o5z ¢] P.mmo 0,690
s |12-9-e-28 | 1e37e7
-2
¢ | 12970 | vovewm 4| ' ' ’ ’ I'-“‘"WJNNI'
§ | 1-2-6~4-8 1. 640437241 51 o lomem| o lomsons| o '
¢ |s-24-4-7-8 | 2 28372400 .
61] (] soey e 0
7 | 1-26-7-8 1. 0046206 , ,
8 | 1-2-5-3-4-8 1. 636396994 7] s ’] (] (] L.mmu
0 |1-2-5-3-4-7-3] 2.32m324%
gl o . (] ’]]]
1w | 1-2-5-2-8 1.779507241
11 | 1-2-6-3-7-6 | 12867077 .
s. Randowly Generated Cost Matrix
12 | 126676 | 1.6o0mezme
»
13 | 1-2-5-6-4 1. 7206111110 (Mumber at location (x, i) denotes the lmt‘bbf the arc from node x to node §)
18 [1-25-64-28| 2.263648655
1-64-7-8 2. 1010577 | ° 12346 678
1 1{0]e]e]afefe
164648 2.27227144 I Ronnor
17 | 3638 | ' 2.29m577 100 BoONk
v [] [[]
1| 1536 2. 329267545 41010 e|e]e
20000 0ag
19 | 1-5-3-7- 1.639230781 _nnnnn oo
20 | 1-5-3-4-7p | 2.9810027% AULDUULLD K :
aft]o]efe]a|e]e
21 | 1-5-6~4-7-8 2.914308880
* .
. ©. Neural Metvork Final State Coressonding to Path 4
b. Feasible Paths and Corresonding Lengths

(Solution was obtained After 8886 iterations)

\

Figure 4.8. Typical Results for, the Eight Node Network

»

Path | Mode Sequence Lensth
1| 1234 1.904676437
2 1-2-3-8 1.500733877
3 122478 | 2.4
4| 123 | 27228010
5 1-2-4-4-8 2.173057943
¢ [1-2%-4-70 2.004855714
? 1-2-4-7-8 2 312481823
0 | 12604e | 2.eomi0610
9 |1~2-5-34-7-8]| 3.3%0317381
| 12534 2.204374250
1 | 1-2-5-3-7-8 2.425709902
12 | 1-2--¢-7-0 3. 145601554
19 | 1-2-5-44-¢ 3.826047674
1 |2-26~4-78] 3.757i5445
15 1-6-6-7-8 2.300682618
4| 154648 2.190677%
17 | 1-6-3-44 1.701130671
1w 1-5-3-8 1.377187311
W | 14379 2.598621363
2 | 1-5-34-78 | 251202042
21 | 1-6-44-7-8 | 2.929976506

76

1 2 3 4 5 6 4 g

i lmﬁ' ' (L.Bt ' ' 0

2] o Lm) L.nnzm vasxie| o ’

3| o ’ ouxxe| o ' |.mm'am|

¢ o [' ’ P (YT p—

5] o ' Ha.mu ’ i] (]

§] o ‘ o pmeuw| o An.mxs '

71 o])] 0] Jo.ceaméay
8l o |~ . . ' Kl '

3. Randonly Generated Cost Matrix

(&lhrn.louum(x,i)mmlmthofmlml‘mrp&x tonode |) ¢

1 3456 67 9
[} elej1|o]e|e .
2(a ejojejele|e

. 3 e|joflele|0a|2
sjojojoBaln]els
5|elsl1|o@elp|e
¢|ojojojs|ofMolel
1nnnnnn n
eli[o|oefo]0]e

.

©. Neural Netvork Final State Coressonding to Path 18

b. Feasible Paths and Corvesonding Lengths

{ Solution vas obtained After 12161 iterations)

Figure 4.9. Another Simulation Example for the Eight Node Network -

<

v

7

Referring back to figures 4.5 and 4.6, it can be seen that the number of iterations
required to compute the SP solution has more than doubled in the second example due to
the fact that the cost of path 5 has become very close to that of the optimum path 1, hence
it takes more time before the neural network decides to which pattern it shall converge. Also
it should be noted that the ability of the SP neural algorithm to separate between an optimum
and a very good suboptimal solution is heavily enforced by the smoothness of the neural
transfer function g° (which corresponds to a low neural transfer parameter A). This is
explained by the fact that a large A (such as 10 or 100) may not allow enough time for a
neuron to optimize its performance, as the neural response time becomes very fast and hence
less accurate.

These results show that thc;erformance of Hopfield and Tank neural network gets
better when solving the SP problem as opposed to the TSP. In our case the neural network
does not require any random initialization and always converges to valid solutions which
are also global optima. This is also supported by earlier simulation results reported by Protzel
[26], where it was found that neural networks with linear cost functions generally perform
much better than those with quadratic cost functions. -

Finally convcrgenoe problems due to Hopfield approximation error could have been
avoided by omitting the %ﬂ-tcrm in (4.15), in which case the dynamics of the new model,
described by:

o~ 3

, l s &8 & & LI
E. 2:?1 ;gx ygl ;?n TawVuVy .E': :‘:‘:'1 LV
ax ny x

Gy at ,E Erl TixVutls
jey

1

V,=giU) =——
1—- e"u Uy

78

(4.19)

(4.20.a)

(4.20.0)

(4.20.c)

are guaranteed to converge to orie of the 2**-* corners of the n? - n dimensionzal hypercube,
defined by V,; € {0,1} /x #i. Although there are no doubts that computer simulation of

(4.20) will reveal better convergence properties, as the neurons’ dynamics will follow a

gradient descent of the modified energy function E,,, the usage of (4.20) was avoided simply

because there is no trivial way to find an analog hardware implementation that simulates it

[5]). Since Hopfield and Tank neural network derives most of its computational power from

its hardware implementation, through paralle! distributed processing, then it becomes

redundant to procfaim all the features of neural networks by just numerically solving (4.20),

regardless of its feasibility to analog hardware implementation.

CHAPTER §

NEURAL NETWORKS FOR OPTIMUM ROUTING IN PACKET-SWITCHED
COMMUNICATIONS NETWORKS
5.1.Introduction
. o
The choice of an optimum routing policy to forward packets from sources to desti-
nations in a packet switched computer network is an important factor that has to be dealt
with care in order to optimize sume performance measures such as mean packet delay and
network throughput. For many years the area of network routing has been the subject of
intensive research because of its direct impact on the performance of computer networks.
Routing algorithms can generally be classified as centralized or decentralized, static,
quasi-static or dynamic, deterministic or stochastic [27]. This chapter, however, focuses on
the optimum quasi-static bifurcated routing problem, where the goal is to minimize the
network-wide average time delay. Bifurcated or multiple path routing arises in situations
where the traffic of a given commaodity is allowed to be distributed over several paths. This
is opposed to virtual circuit (VC) routing, where a single path is assigned to all traffic
belonging to a given commodity. Here the term commodity refers to the traffic offered to
a given source node (S) and destined to a given destination node (D). Although VCrouting
itas many advantages such as simplicity reflected by the fact that all packets reach their
destination in their proper sequence, it is not optimum if the goal of thg network routing
strategy is to minimize th® long-term average network delay [27,28]. A quasi-static routing
strategy assumes that the statistics of the traffic entering the network exhibit slow variations

relative to their mean values, so that near optimum solutions are often obtained [29].

80

In the next section it will be shown that under appropriate assumptions the optimum_
bifurcated minimum delay routing problem can be formulated as a nonlinear multicom-
modity flow problem, whose solution is well krown using nonlinear mathematical pro-
gramming techniques. However direct application of these mathematical programming
techniques to the routing problem in computer'networks is not'very efficient because in
computer networks the optimum rout‘i.ng computations are to be executed in real time and
usually in a distributed fashion. This makes neural networks very good candidates for
* implementing most of the computations involved in the routing problem, since they can
operate in real time and can guarantee a high degree of robustness and fault tolerance.

The remaining of this chapter is organized as follows:

In section 5.2 the general minimum delay routing problem is formulated. Then in section
5.3 the optimum routing solution is characterized. The use of Hopfield and Tank neural
network to achieve this optimum solution is highlighted. In section 5.4 the implementation
of the routing algorithm in a distributed fashion is described. In section 5.5 simulation results

for a single commodity and a multicommodity network are reported.
5.2. Problem Formulation of the Optimum Routing Algorithm

Consider a packet-switched (known also as a store-and-forward) communication
network with N nodes and L directed links (channels) connecting them. Here a message is
segmented into packets and a packet originating from node S and destined to node D is
stored at any intermediate node K and then forwarded to the next node R in the route from
S toD whenever channel (K,R) becomes available [30]. In a packet-switched communication
network, a packet experiences delay at various stages during its journey from its source node

to its corresponding destination node. First there is a processing delay at each node due to

81

packet header processing, routing computations and error checking. There is also a delay
due to error control re-transmissions and, most importantly, there is a significant delay due
to buffering of packets at each node. This chapter focuses only on link buffer packet delay.
Here it will be assumed that the packet arrival process at each link buffer (queue) is random,
derived from a Poisson probability distribution. Each queue is assumed to have enough
capacity to accommodate all incoming packets, so that packets are always allowed to join
the queue and hence are never blocked. In addition packets are processed on a First Come
First Served (FCFS) basis, with an exponential distributed service time. This permits to
model gach queue as an M/M/1 queue.
Let:
l= .link index,l € {1,2,...,,L}
C, = capacity of link ! (Data units/sec)

= average packet length (Data units/packet) , assumed equal for all links.

Rl Lo

A, = average packet arrival rate to link / buffer (packets/sec).

where data units could be bits, Kbits etc...
The average waiting time or packet delay at link I queue is the sum of queuing and
- transmission (service) time and, for an M/M/1 queue is given by:

1
T, =m (sec/packet) ¢.1

Under Kleinrock [30] independence assumption, namely independence of service time at

successive nodes, a communication net can be modeled as a network of independent M/M/1

e

82

queues, in which case the expression of the average network time delay (here the delay is
averaged over time and over ail commodities) is given by the well known formula:

r=gs 52)
where:
T = total average end-to-end packet delay in sec/packet.
¥ = Total packet arrival rate offered to the network (throughput) in packets/sec.

Equation (5.2) can now be written as:

T=-3 —ﬁ—- (5.3.a)
==Y -t (5.3.0)

i I (5.3.¢)

i D/(f) . (5.3.d)

where :

fi= -ﬁ{ = average flow on link / in Data units/sec

and

D(f) =——le: 7 | ' (5.4)

Since the total external load, ¥, is constant then the object of the routing algorithm is to

. . :

83

I'= £ D)= t

5C—7, (5.3)

which, from Little’s formula, has the interpretation of the average number of packets in the
network.
The minimi;aﬁon of (5.5) is to be carried over the set of feasible multicommodity flows, in
which flow balance requirements, non-negativity of flows and capacity constraint
réquimments are to be met. It is also convenient to formulate the routing optimization
problem in terms of path rather than link flows as above, in which case the routing problem
is formulated as follows: R
Given a directed network of N nodes and L directed links. Let NC = {1,2,..K) be the

set of K commodities (S-D pairs) in the network. Following a similar approach as in [22],
the corresponding paths will be numbered sequentially, so that the sets of directed paths
corresponding to the K commodities are given by: |

P, ={12,...,n,}

Po={n+1,n,+2,...,n}

(5.6)

Pr={ny_,+1,...,n¢}
where n,, n,, ...nx are some integers satisfying n, < n, <...ng. In (5.6), P; denotes the set
of directed paths that could be used in routing commodity i, and the integer n;, is the total
number of paths corresponding to all K commodities.
Let:
f(n) = traffic flow (Data units/sec) carried on path n.

84

[f(1)]
L)
f=| . |= vector of path flows.
| £
A(i) = offered external traffic (Data units/sec) to commodity i; i € NC
Then:
T=h X M) 5.7

The average link flow, f;, can be expressed in terms of path flows as follows:

fi= 2 fn)(n,1) 58)
where:
_J1 if path n contains link |
Ln, D)= { 0 otherwise (59)

Withthe preceding definitions, the minimum average delay routing problem can be concisely

formulated as follows:
Given:

- Topology and link capacities of the packet-switched network.
- A set of K commodities and their corresponding traffic requirements A(i)'s.

Object:

ST TR TR AR TR TN 77

85
Minimize average packet delay or equivalently :
ag
. - L L XS5,
Minimize : FO)::Z;D‘U‘):,E --x.‘
= =]
Ci= X f(n)n, 1)
Yariables:
Path flow vcctorf.
Constraints:
A= Z’ f(n) VieNC (5.11)
f(n)20 VneP,uP,uL..P, (5.12)

Note that the link capacity constraints, f; < C,, are not included here since, starting from a
feasible solution, the objective function will implicitly take care of these constraints, as

F(f) = eowhen f; = C, [22).
§.3. Characterization of Optimum routing

The solution to the optimum routing problem, formulated in (5.10 - 5.12) can be
found using many iterative algorithms such as the Frank-Wolfe or flow deviation (FD)
method [31], the extremal flow (EF) msthod [32] and the gradient projection (GP) method
[33]. All these algorithms rely on the fact that the objective function (5.10) is a convex
function of path flows and that the multicommodity constraints (5.11 and 5.12) form a
convex sct in terms of path flows. Therefore a stationary point, corresponding to a local
minimum is also the global minimum. A comparison of the iterative algorithms cited above

(see for example [27,34]) reveals that the GP method is suitable only for networks having

(5.10)

86

small number of commodities, which is not the case in most computer networks. The EF
method requires huge memory space for networks with large number of nodes. The FD
method requires less memory space and less computations, but converges slowly.

Inthischapter the FD method is chosen forsol ving the minimum delay routing problem.
A neural network algorithm is incorporated into the FD method in order to enable its real
time implementation.

The application of the FD method to optimal routing in packet-switched computer
networks was suggested in [31]. The FD algorithm approximates the objective function
(5.10) by itc tangent hyperplane, defined by the partial derivatives % Then starting from
some initial feasible path flow vcctor? “the al gorithm changcs?w along the feasible steepest
direction until the global minimum is reached. The general minimum routing algorithm,
based on the FD method is illustrated in figure 5.1.

The main steps of this algorithm are the search for an initial set of feasible path flows
(step 1), the shortest path computation (step 2), the minimization process (step 4) and the
stopping rule (step 5) [35]. Step 1 consists of finding a feasible initial path flow vector 1,
which should preferably be close to the optimum path flow vector, if the number of iterations
is to be reduced. Here it will be assumed that a feasible starting flow is available, although
there are methods to find it (see for example [35]). Step 2 starts by computing ti.c first

. . , k
derivatives D, at the current path flow vectorf). where:

87

[F'()]
" r'o
f‘ ("x)

k= itcration number

fitn)= flow on path n at the k* iteration

D,'(f,)=—ﬁ— vie {1,2,.L} (5.13)

G -£7
Under this metric, each node computes the shortest path (known also as the minimum first
derivative length (MFDL) path) from itself to each of its destinations. The choice of (5.13
) as a measure of link cost is derived from the Kuhn-Tucker optimality conditions, applied
to the objective function (5.10).
[FM)]

F2)

Step 3 finds the path flow vcctor?t)= , obtained by routing all input traffic,

|fre)
A(i) , for each commodity along its corresponding shortest path.

Step 4 forms the new flow ?‘ * '). expressed as a convex combination of _?" and -v:):

V= o f ?t)) ;o€ [01] (.14)

where @, is chosen so as to minimize

G(a)=FG* ") =F(F+aF9_)) (5.15)

—

-
For this feasible vector § (o
find thenininun firsct derivative

length (MFDL) path for sach ocomnodity

=2(k)

Forn the new veotor f resulting
fron all input traffic, (1), for

each comodity, i,being routed
along correspending MFDL path

—Ckel)
.tha corvex combinmation

00 =2k
orf'w? % nich mininizes

_(ke1)
FCf>

YES

Problen declared unfeasible

sSTOP

K=kel

1

Figure 5.1. Flowchart of the Minimum Delay Routing Algorithm

88

89

One way to find the optimal a, is to approximate G (a,) by its second order Taylor series

around o, =0, giving [22]:
- L . -
G(oy) —E'{D,(ﬁh aD,(f})- (ir-f.‘)+(§)b, WA -ﬁ)’} (5.16)

where f} and /7 are the total link flows corresponding t0 7’ and f* respectively: ie:

fi= .éf'(n)C(n) (5.17.a)
o {
fi= T Fmin,0) (5.17.5)

In (5.16) the first derivative D, is as given in (5.13), while the second derivative D" is given
by:

2. 2
D, 5.18
= (5.18)
Minimi dG (ay)
zation of (5.16) with respect to o over the interval [0,1] is obtained by setting——— o,
to 2ero, giving:
}: =10 ()
&= min {1, - (5.19)
): Gi-Ho"¢h

Step 5 decides whether further iterations are necessary by comparing the improvernent
brought up by the last iteration to some predetermined level of tolerance €. If no significant
improvement is made then the routing algorithm is stopped.

From the above it can be seen that the shortest path computations play a key role in
the optimal routing algorithm, especially that they have to be carried out at each iteration.

Therefore the choice of an efficient shortest path algorithm is a crucial factor in the per-

formance of the routing algorithm, especially for large networks where thousands of iter-
ations (hence thousands of shortest path computations) might be required by the FD
algorithm. In a packet switched network, routing and flow allocation decisions are to be
made very fast, otherwise the network performance may be subject to severe degradadon,
at the customer dissatisfaction. As a result it is suggested that the use of the neural network
SP algorithm, described in chapter 4, is highly recommended as it will reduce the execution
time per iteration requircd by the FD method. The incorporation of the neural network SP
algorithm into the optimum routing method requires that at every iteration, each node
compute the MFDL path from itself to each of its corresponding destinations. Note that the
link from node x to node i is labeled I, then (from (5.13)) its corresponding cost is:
Cl
(C-fY

Cx‘. = (5.20)

Here the link costs are time varying since they depend on link flows which change from one
iteration to wnother. Along with the fixed connectivity information terms p,;’s, the link costs

(5.20) constitute the inputs to the neural network.
5.4. Implementation of the Routing Algorithm in a Distributed Manner

The minimum delay routing algorithm using the neural network SP algorithm can be
implementedin a distributed fashion, where the computational task required ateach iteration
by the FD algorithn is shared among all the nodes of the network [29].

Each node measures the average input traffic A(i) for all commodities for which it is
the source. At the beginning of the algorithm each node broadcasts to all other nodes the
average link flows, f, of all its outgoing links. This could be easily done through a flooding
algorithm or through a spanning tree originating from the broadcasting node. Each node can

91

then calculate the first and second derivatives D (fF) and D "(ff) for all links J. Subsequently
each node computes the MFDL path to each of its destinations, using the metric D '{(ff) as
link costs. This requires repeated or preferably parallel application of the neural network
SP algorithm for each destination node. Each node then broadcasts to each of its destinations
the current value A{)) of the offered traffic along the corresponding shortest path. Then every
node computes the flow value f} for each outgoing link and transmits the difference (f} - ff)
to all other nodes. At this stage each node computes ¢ (5.19) and updates the link flows
f1*! according to:

i '=fte-(i-1) (5.21)
The process is then repeated until the optimum path flow vector is reached.

The above implementation calls for certain degree of synchronization when broad-
casting, flow updating and computing shortest paths. This synchronization is however
required in order to guarantee convergence to the FD algorithm. It should also be noted that
the minimum delay algorithm can also be implemented even for time-varying external flows
A(i)’s. In this case, at the k™ iteration, each node keeps track of the fractions of flows

f(n)=fx-gl—)) ;Vae P, (5.22)

for all destinations and subsequently routes each commodity flow according to these frac-
tions [22].

92

5.5. Simulation Results

The minimum delay algorithm described in section 5.3 is simulated in Fortran to solve
a single commodity and a five-commodity network routing problem. The shortest path
algorithm was also simulated using the proposed neural network approach as explained in
section 4.5. The routing problem consists of allocating some desired commodity flow levels

A(i)’s among their corresponding paths so as to minimize the network average delay.
5.5.1. A Single Commodity Case

Consider the network shown in figure 5.2.a, where a desired flow of 20 data units per
second is offered to node 1 and is to be routed to destination node 5. There are six possible
paths between nodes 1 and 5, whose neural output representations are shown in figure 5.2.b.
[f(1)] 4]
Q@)
J3)
J@

JO)
L f(6) 5]

This corresponds to the initial flow allocation depicted in figure 5.3.a, and which gives an
initial cost of 20.8786.

The path flow vector, f = , is intially set =

WY N O W

In this case the neural network shortest path algorithm requires 20 ncurons, whose
dynamics are simulated according to (4.16 & 4.17) and using the following parameters:
W, =950 ; p,=2500 ; p,=1500 ; u,=175
P=2500 ; A=1; & =10"; AV, =10V

6.2.m. A Netvork Example Used in the Sinmulation

93

(Nunbers inside (outxide) brackets denote linkk capacities (link indexes))

1 2 3 & S 12 2 3 a4 B 12 2 3 a4 ©
Y iJeJe] e 1 1|efele 1 1lefe]|e
2 |le CHE- IR 2|l e o2 lile 2|e 1l 0]|e@
3 je|0 c] 3 |lej|e 0|e 3j@je e|a
- [} -]) P e|le |@ 8 4]O ole -]
& |1|o o |® E |1]|0]|ele tEjr|je]le e
Pathl: 1—2-—§ Path?2: 1——2e—q——5 Pathd: 1—=ZawGe-f
1 2 a3 4 © 12 2 3 a4 © a1 2 22 4 S
1 1| eje] @ 1 o|lafele 1 bl1lole
2le 1je [| 2l e o e le 2leo oeje|®@
s [e]e 1| 9 2 [ele AR 23 |[e]e 1le
an|Bjo 1 a|[ofele) 4lo@|aje 1
[3 1 - l) '3 1 |e|le|e [3 A jleje e
Path41l ——2=—)——@—=§ PathE: 1——3——5 Pathét 1—=S=—=qg~—=5
&.2.b. Output Representation of the Feasible Paths

Figure 5.2. The Single Commodity Example

94

For the simulated FD algorithm, a tolerance value of 107 was assigned to € (step §). With

these sets of parameters, the simulated minimum delay algorithm converged to the desired

solution after 29 iterations.

[[4.00069]
4.35239
2.14597
o |
2.67477
| 6.82618

The final path flow vector is ?19) =

Correspondingly the optimum flow allocation is obtained as shown in figure 5.3.b. In figure
5.4, the objective function, given by equation (5.10) is also plotted against number of

iterations.

During each of the 29 FD iterations, the neural network SP algorithm has successfully
converged to valid paths, which are also global optima. Figures 5.5 and 5.6 illustrate two

neural network shortest path computations, corresponding to two different iterations.

o L ek e - SRR

95

5.3.92. Initial Flow Rllocation
Cost = 28.8786

5.3.b. Optimal Flow Allocation
Cost = 13.5619%

Figure 5.3. Initial and Final Flow Allocation for the Single Commodity Example

Objective Function

21 ; 3

19 Ho — s 1

eeesesrratintiiicittioreNancististesntnseverasasnecitenrtirsartenncissnitsrsans

18

1 ; : i i i
30 5 10 15 20 25 30

Iteration Number

Figure 5.4. Simulation Results for the Single Commodity Network

s

| FD Iteration number : 28 |

9.21491586

Netvork Showing Link Costs Based on Deriuvatives of Link Delay

1 2 3 a4 B 1 2 3 4 6 1 2 3 a E
1 iJe]e| e 1 ijeje[f] a 1]ele|e
2le e |®]a 2]le ej1le 2 |° 1|le|o0
ale]e c|® 2(ele e|e 2[eofe o1
P ® [} " ® | - ai{e [0 T - L] ®le T
c|2|ejo |® E |2]lele|e E [2ie|e|e
Pathi: 1——2—85 Path2) 1—2—a4—& Pathii 1—2-——9—6
Lenpthe 1. 73837812 Lenpths 1. 83664262 Lenothe 2. 60406878
i Z 3 &4 & 1 2 2 a4 & 1 2 2 a
2 il efe’ e 1 ela|mle]| a o[1]ele
z2le | ile |& 2|e ele[e|] 2(e e le|®
3 |0 |e 2 2{efe e|l1]|] afele 1]e
aj0o]@e]|s 1 alolele @] « [@]|® @ 1 |
RENEIED ~ s [afe]e]e s |[2]|e|efe
Path4:1——2—3—4—5 Paths: 1-——3—6 Pathé 1——3—a—E
Lenothe 2. 68527204 Lenpth= 1.89868764 Lengths 1.86722890

The Feasible Paths and Their Corresponding Lenchts
1 2 3 a4 ¢©

1 i|e|e]e
2le FRCAR
2/ ele e|o
alelol|e o |
s{a|e @0

Neural Network Solution (Pathl)Obtained After 8173 Yterations

Figure 5.5. Example 1 of Shortest Path Computation

97

98

| FO Iteration nunber : 8 |

Netvork Showing Link Costs Based on Derivatives of Link Delay

1 2 3 a5 1 2 3 a8 1 2 3 4 &
1 ije] s| e 2 1|eile 1 1]ele|®
2 e {06|1 [1 [
® L 21]e LARS K 2 [
2 {af0®) 2(ele ofe 2(eile el
a]S e ° alolofe 1 4| lele |
g |1|o|@ @ c|[2|elo|e E|y|@le]e
Pathli 1—2-—§ Path2t Jew2m—qg—=6 Path3dt 1 —2—9—&
Lensthe 1.0@124262 Lengtha 1. 94025432 Lenath=3.26017_4
1 2 3 45 T 2 2 4 & 2 2 3 & s
LS 1l eje]e 2 e[1]e|e]| 1 e[i1e]e
z e e |@ zle ojl@| 2o e|e|e@
a2 |els 1 »{e]e o(1] sle|e ile
a [pj0| 0 1 aloleo|e o| a[ele |0 1
s {1]@el8/4 s|3le{e|e 6la|®|els
Pathd:l ~—2—3-—dq--5 Patht: 1~-3—& Pathé: 1 —3—q——§
Lenoths 2. 9696407 Lenath= 1.9801767¢ Lenpths 1. 70063004

The Feasible Paths and Their Correspondine Lenghts
1 2 8 4 &

1 el1lef®
21e elele
s
? oo 1le
S
4 (®0loie 1
6 |a|o|e]e

Neural Metwork Bolution (FPath 6) Obtained After 7346 Iterations

Figure 5.6. Example 2 of Shortest Path Computation

99

§.5.2. A Five Commodity Case

Here we consider the 5 commodity network shown in figure 5.7, where the goal is to

route the traffic inputs A(/)’s for all the commaodities specified in table 5.1 so as to minimize
the average traffic delay.

Figure 5.7. The Five Commodity Network
(Numbers inside (outside) brackets denote link capacities (link indexes))

100

Table 5.1. Traffic Requirements of the Multicommodity Network

Comnmodity Source Destination Traffic input
i A(i)
1 1 6 o
3 2 4 *
4 4 3 15
1) 6 1 30
-

In this example the set of commodities is NC = {1,2,3,4,5} and the corresponding sets of
directed paths are:
P,={1,2,3,4,5,6,7}
pP,={8,9,10,11,12}
P,={12,13,14,15,16,17,18,19}
P,=1{20,21,22,23,24,25}
Ps={26,27,28,29,30}

where each path is defined by its node sequence, as specified in table 5.2.

101

Table 5.2. Characterization of the Paths of the Multicommodity network

RN,
Conmod ity Path Node sequence
! 1-25
2 1235
3 1-2-34-5
1 4 1-3-2-5
6 1-3-5
6 1=3-4-5
? 1-4-6
8 1-3
9 1-2-3
2 10 §-2-5-3
1 1=4-5-3
12 1=4-5-2-3
13 2=3+4
14 2-1-4
15 -4
3 16 2-5-3~4
17 25~3-4
18 >1-3+4
19 1-3-5-4
% 41-3
21 4-1-2-3
. 2 4-1-2-5-3
px) 453
24 4-5-2-3
- 4-5-2-1-3
2% g-2-1
{4 &2-34~1
5 3 5-3-2-1
2 6-3~4-1
» &4~}
L .

. 102

[()]
@

The path flow vector is initially set to the feasible flow ?°)= where:

| 1°(30),

F/M=50; £'®)=45; /(13)=35
£°20)=10 ; 21)=5 ; £°(26)=30

with all remaining path flow components being set to zero. This corresponds to the initial

flow allocation shown in figure 5.8.a, and which gives an initial cost of 78.4336.

Once again the dynamics of the neural network (consisting of 20 neurons)are simulated

using (4.16 & 4.17) and with the following parameters:

B, =550 ; B, =2500 ; p,=2000 ; p,=85

Ho=2500 ; A=1; &:=10" ; AV, =107V

In all runs the neural network SP computations have converged to optimum solutions. In
addition, with a tolerance value (£) of 1072, the simulated minimum delay routing algorithm
has reached the optimum solution after 38 iterations. The components of the optimum path

flow vector, f"), have converged to the following values:

103

(1) = 188967 ; £**(4) =0.270102 ; £%(5) = 1.29328
107 = 46.5469 ; £%(8) = 42.1885 ; /*(10) = 1.70069
- 11)=1.11084 ; £2%(13) = 27.1009 ; £4(15) = 7.89910
£420)=7.74312; **(21) = 3.87156 ; 1*%(22) = 0.29370
£423)=3.09162 ; **(26) = 23.2293 ; £*(30) = 6.77066
with all remaining components set to zero. This corresponds to the optimum flow allocation

shown in figure 5.8.b and whose cost is 35.4485. In figure 5.9 the objective function (

equaticn 5.10) is also plotted as function of number of iterations.

Finally it should be noted that while the applicability of the SP neural network algorithm
to traffic routing was demonstrated in conjunction with the FD method, other routing
algorithms can as well benefit from the SP ricural implementation. In fact most of the current
operating packet-switched networks use some form of shortest path coraputation, where a
cost measure (fixed or variable) is assigned to each link and a least-cost path between each
source-destination pair is sought. Here again the cost of a path is defined as the sum of the
costs of each link. Most of today’s routing algorithms, however, differ in the way the link
costs are defined and computed and they also differ in the way the routing computations are

performed.

5.8.a. Initial Flow Rllocation
Cost = 78.4336

5.8.b. Optinal Flow Allocation
Cost = 35.4485

Figure 5.8. Initial and Final Flow Allocation for the Five Commodity Example

105

75 g T T P IS RETTTITR: TURTIRTRTIPNTLINEL

70,{, , -

65H -,. -
&
g 7] % SOOI SSPHPIOROSSIOS SRS RING: S e -
(4% :
]
2 :
i 55 o H { oo 3 =~
:D : : . : : :

1 e S— .

45

L]

3 ; — i i :
0 5 10 15 20 25 30 35 40

Iteration Number

Figure 5.9. Simulation Results of the Five Commodity Network

CHAPTER 6
CONCLUSION

The computational power of neural optimization networks in solving routing and flow
allocation problems in communication networks was quantitatively and qualitatively
demonstrated.

The potential use of neural networks to solve routing and flow allocation optimization
problems is motivated by the inherent features of these highly interconnected networks of
analog processors. These features, most of which are brought by parallel distributed
information processing, include a fascinating computational power and speed, a robustness
and fault tolerance with respect to the failure of individual processors, a low power con-
sumption and finally an aptness to real time operation, combined with an adaptivity 10
fluctuations in traffic characteristics.

In chapter 2, Hopfield and Tank neural network was described in details and an
extended version of Chua and Lin Linear Programming network was proposed. These two
neural optimization networks are of feedback type and are characterized by their dynamic
behavior which follows a gradient descent of a global penalty function that combines both
the objective function and a series of local penalty functions for constraints’ violations.
Starting from a given initial state, the dynamics of the neural network, described by the
output voltages of its neurons, converge to astationary state which corresponds to the desired
solution.

The application of the Extended Linear Programming circuit to the maximum

throughput, routing problem was successfully demonstrated in chapter 3. Simulation of the

B L T,

e S G T TS Tt M b

107

circuits® dynamics, using a digital computer, has revealed that from a computational point
of view, the Extended Linear Programming network is very efficient in solving the problem.
It was also shown that the computation time of the Extended Linear Programming network
does not increase very rapidly with the problem size. Further, since the feasible state space
of linear programming problems is always convex, then the Extended Linear Programming
circuit is guaranteed to converge to the optimum solution provided that the constraint
resistances associated with the constraint processors are sufficiently high. It should be noted
that the simulation results obtained in chapter 3 are just approximations to what would have
been obtained by hardware implementation. These results were obtained based on many
assumptions such as ideality of all circuit components and no inherent delay in the response
of the constraint processors. In addition thz numerical solution technique used to solve the
differential equations, describing the dynamics of the Extended Linear Programming net-
works is approximate. More accurate solution techniques could have been considered, but
it was found that they often result in a prohibitive simulation time, especiaily for large size
problems. To this effect one has to keep in mind that the neural dynamics were simulated
on a sequential digital computer.

In chapter 4, a new solution to the shortest path problem was proposed, using Hopfield
type neural network. The general principles involved in the design of Hopfield and Tank
neural network to solve the SP problem were discussed. The proposed model combines
many features, such as flexibility to operate efficiently in real time and to adapt to changes
in network topology and link costs. By properly chosing the heuristic coefficients J;’s it
was found that, for the SP problem, Hopfield and Tank neural mode! always converges to
valid solutions which are also global minima.

In chapter 5 The proposed neural network SP algorithm was applied to the optimum

R T SO AT S

R

PRI e A N

-y

R rRE T e L

108

minimum delay routing problem in packet-switched computer communicatiors networks.
It }was found that in a quasi-static environment, Hopfield and Tank neural network SP
algorithm could be used in conjunction with the FD method to route traffic so as to minimize
the average network delay. The applicability of the proposed neural network SP algorithm
to the routing problem was successfully demonstrated througb computer simulation. When
implemented in real time, it is expected that Hopfield and Tank neural network SP algorithm
will speed-up the execution time of the FD algorithm. The implementation of the neural
network based, routing algorithm in a distributed fashion was also considered.
Finally thzr:> are some obstacles that have 10 be overcome if the practical use of neural
optimization networks in solving routing and flow allocation problems is to be concretized:
- The first obstacle is the hardware challenge of microfibricating very large resistive
connection matrices and a huge number of integrated op-amps on a single VLSI chip.
Although advances in analog VLSI technology have been escalating during the past few
years, there is a lot to be done before VLSI chips with thousands of resistive connections
and op-amps become available. In addition three-dimensional optical technology may be
considered tosolve the communication bottleneck problem encountered when implementing
neural networks on VLSI chips. However advances in this very promising area are still at
their primitive stages. Another hardware problem is the inability, with today’s available
technology, todesign very accurate resistors on asilicon wafer. The fact that the applicability
of neural optimization networks to large scale optimization problems is tightly coupled to
future technological developtnents is nota very new situation for engineers; after all in most
previous successful engineering achievements the ideas have preceded the technology.
- The second problem that has to be tackled is the software challenge of programming a

huge number of resistive interconnections and biases on a VLSI chip.

109

- Another equally important problemis how to design Hopfield and Tank neural optimization
network with a unique equilibrium point, corresponding to the global minimum. This would
prevent the network from being trapped in a local minimum. Further research is required to
find a systematic way to estimate the values of the j;’s coefficients, so that the global
minimum would always be obtained.

Finally neural networks which are based on learning algorithms (example: the
back-propagation network [36]) can be invesﬁgat;d for possible use in dynamic routing
control. These neural networks are well suited to dynamic routing environments because
they operate in real time and they rapidly adapt to changes in traffic characteristics by
learning through actual examples. A neural network that uses a learning algorithm, such as
back-propagation, can learn a nonlinear function between the observed input data and the
optimal routing decision by training itself with sufficient number of sample data. When
confronted with new input data that it has never been trained with, the neural network can
successfully generate its own rule and take the appropriate routing action. Future work that
concentrates on the application of these learning algorithms to dynamic routing problems

is recommended.

References

[1] J.J.Hopfield, "Neural Networks and Physical Systems with Emergent Collective
Computational Abilities", Proc.Natl.Acad.Sci.USA, Vol.79, 1982, pp.2554-2538.

(2] J.J.Hopfield and D.W Tank, " *Neural’ Computation of Decisions ia Optimization
Problems", Biological Cybemetics, Vol.52, 1986, pp14!-152.

(3] D.W.Tank and J.J.Hopfield, "Simple 'Neural’ Optimization Networks: an A/D Con-
verter, Signal Decision Circuit, and a Linear Programming Circuit ", IEEE Trans.Cir-
cuits.Syst. CAS-33, No.5, 1986, pp.533-541.

[4] M.Takeda and J.W.Goodman, " Neural Networks for Computation: Number
Representations and Programming Complexity ", Applied Optics, Vol.25, No.18, 1986,
pp.3033-3046.

[5] B.R.Copeland, "Global Minima Within the Hopfield Hypercube ", International Joint
Conference on Neural Networks, January 1990.pp.1377-1380.

[6] L.O.Chua and G.N.Lin, " Nonlinear Programming Without Computation ", [EEE Trans.
Circuits. Syst, 1984, Vol.Cas-31, pp.182-188.

[7] L.O.Chua and G.N.Lin, " Errata to 'Nonlinear Programming Without Computation * ",
IEEE Trans. Circuits. Syst. 1985. Vol.Cas-32, pp. 736.

(8] M.P.Kennedy and L.O.Chua, "Unifying the Tank and Hopfield Linear Programming
Circuit and the Canonical Nonlinear Programming Circuit of Chua and Lin", [EEE
Trans.Circuits. Syst, 1987, Vol.CAS-34, pp.210-214.

[9] M.P.Kennedy and L.O.Chua, "Neural Networks For Nonlinear Programming", [EEE
Trans Circuits. Syst, 1988, Vol-CAS-35, pp.554-562.

111

[10] JJ.Hopfield, "Artificial Neural Networks", I[EEE Circuits and Devices Magazine,
Vol.4, No.5, Sept 1988, pp.3-i0.

(111 JJ.Hopfield, "Neurons With Graded Response Have Collective Computational
Properties Like Those of Two-State Neurons", Proc.Natl. Acad.Sci. USA, 1984, Vol81,
pp.3088-3092.

(12] Y.Yao, "Dynamic Tunneling Algorithm for Global Optimization", IEEE Trans On
Systems, Man, and Cybemetics, 1989, Vol.19, No.5, pp.1222-1230.

[13] PR.Adby and M.A.H.Dempster, "Introduction To Optimization Methods", 1982,
pp.119-136, Chapman and Hal! Ltd.

[14] A.V.Fiaccu and G.P.McComik, "NonLinear Programming: Sequential Unconstrained
Minimization Techniques", 1968, John Wiley & Sons Inc.

[15] A.A.Assad, "Mulicommodity Neiwork Flows - A Survey ", Networks, 1978, John
Wiley & Sons, Inc, Vol.8, pp.37-91.

[16] T.B.Boffey, "Graph Theory in Operation Research", The Macmillan Press Ltd, 1982,
pp.227-228.

{171 LR Ford and D.R.Fulkerson, "Flows In Networks", Princeton University, 1962.

[18] T.C.Hu, "Multicommodity Network Flows", Operations Res, Vol.11, No.3, May-June
1963, pp.344-360.

(19] T.CHu, "Integer Programming and Network Flow", Addison-Wesley, Reading,
Masachusetts, 1969.

[20] LR Ford and D.R Fulkerson, "A Suggested Computation For Maximal Multicom-
modity Network Flows", Management Sci, 1958, Vol.5, pp.97-101.

[21) F.J.Gratzer and K.Steiglitz, "A Heuristic Approach to Large Multicommodity Flow

Problems", Proceedings of The Symposium on Computer Communications Networks and

PRSP RV IE 3. FUCHNIUPNTY-P YT O R

P i OO, RO T TR

112

Teletraffic, New York , April 1972, pp.311-324.

[22] D.P.Berteskas and R.G.Gallager, "Data Networks", Prentice-Hall INC, 1987.

[23] H.E.Kauch and T.Winarske, "Neural Networks for Routing Communication Traffic",
IEEE Control Systerp Magazine, April 1988, pp.26-30.

[24] L.Zhang and S.C.A.Thomopoulos, "Neural Network Implementation of the Shortest
Path Algorithm for Traffic Routing in Communication Networks", International Joint

Conference On Neural Networks, June 1989, p II591.

[25] A.W.Alkhafaji and J.R.Tooley, "Numerical Methods in Engineering Practice °,
H.R.W.Inc, 1986.

[26] P.W.Protzel, "Comparative Performance Measure for Neural Networks Solving
Optimization Problems", International Joint Conference On Neural Networks, 1990,
pp.I1.523-526

[27] M.Schwartz, "Computer-Communications Network Design and Analysis ",
Prentice-Hall Inc, Englewood Cliffs, New Jersey, 1977.

[28] M.Schwartz and T.Stern, "Routing Techniques Used in Computer Communication
Networks ", IEEE Transaction on Comm, Vol.COM-28, No.4, April 1980, pp.539-552.
[29] J.F.Hayes, "Modeling and Analysis of Computer Communication Networks", Plenum
Press, 1984.

[30] LKleinrock, "Communication Networks: Stochastic Message Flow and Delay",
McGraw-Hill Book Co, New York, 1964.

(31] L.Fratta, M.Gerla, and L.Kleinrock, "The Flow Deviation Method: An Approach to
Store-and-Forward Communication Network Design", Networks, Vol.3, 1973, pp.97-133.
[32] D.G.Cantor and M.Gerla, "Optimal Routing in a Packet Switch Computer Network’,
IEEE Trans on Comm, Vol.C-23, No.10, Oct 1975, pp.1062-1069.

113

[33] M.Schwartz and C.K.Cheung, "The Gradient Projection Algorithm for Multiple
Routing in Message Switched Systems", IEEE Trans on Comm, Vol.Com-24, No.4, April
1976, pp.449-456.

[34] M.Schwartz, "Telecommunication Networks: Protocols, Modeliné and Analysis",
Addison-Wesley, 1987.

[35] P.J.Courtois and P.Semal, " A Flow Assignment Algorithm Based on the Flow Deviation
Method", ICCC 1980, pp.77-83.

[36] D.E.Rumelhart, J.L.Mc Clelland and the PDP research group, "Parallel Distributed
Processing", Vol.1.MIT Press, 1987.

APPENDIX A
CHUA AND LIN CANONICAL LINEAR PROGRAMMING CIRCUIT
A.1 Network Description

Chua and Lin [6,7,9] consider the following LP problem:

Minimize the scalar function:
OV)=A-V (a.1)
Subject to the constraints:
f(V)=B,+V-E;20; j=1,2,...p @2
Or equivalently:
fV)=BV-E 20 (a.3)
where:
[A,] RA B, [E,]
A, v, B, E, B;B, . By,
— ommay -— -— . 821822 : .qu
A= V= ; B;= yE= B=} (@a.4)
. . -B’JB’z . OBn-
A,] LV,_ | B, | | E, |

They have shown [9] that the network shown in figure a.1 solves this problem with no risk

of oscillation.

115

P +
gl.) ’1‘°’¢ £>J§15Jn“ <> 1 1= Y
X '
Wt ; A " L v
o 5 v Y 3=t JBJR \/ k T k
: L iﬂ : g ;
T . A c.L”
£.OH p—
af.) P <V JE‘JBJ‘I q a__ Vg

Figure a.1. Chua and Lin Linear Programming Network

The dynamic neural model shown in figure a.1 consists of controlled current and voltage
sources, nonlinear resistors and linear capacitors. Each symbol on the left side of figure a.1
represents a voltage controlled nonlinear resistor whose characteristic (shown in figure a.2

) is governed by the following equation:

0 if V>0

g(V)=sV if V<0 (a.5)
R;

116

Figure a.2. Chua and Lin Nonlinear Resistor Characteristic

The circuit equation for the k* row of the network shown in figure a.1 is given by:

dv, ,
C =4 ',-5.:1 B,i, (@.6.1)
=-A, -jf_:lBﬁg,(fj(V)) (@.6.2)

Next substituting from (a.2) for f}(V) we get:

av, — o
gt =4, —jf_:ln,,g,(s,. V-E) @7

Vi e {1,2,...q}

To show how the model shown in figure a.1 solves the linear programming problem for-

mulated in (a.1-a.4), Chua and Lin consider the scalar function:

P:R?——R

V—-—-)P—)=Z-V+I§'.IGM(V))
where :
v 0 if V>0
(] ZR,-
The time derivative of P is:
dP _ 4 9P dVi
dr im0V, dt
dP _ g 9P dV,

.dT=t-|§-‘7¢. dt

= &g(A’ + ,'g Bﬁ 8 (-E; V- Ej))

&,
The equation inside the parentheses is nothing but —C,—‘-}, therefore:

dV, oP
“T =W
and
dP _ dv,
dt téxc"(dt)250
In addition

_d.t..= @-a—:ﬂ Vke {1’2)""q}

117

(@a.8)

(@.9)

(a.10.1)

(a.10.1)

(a.10.2)

(a.11)

(a.12)

(a.13)

I

118

Therefore Chua and Lin conclude that the state of the network described by (a.6) follows
a gradient descent of the scalar function P, and that stasting from some initial condition,
this state evolves towards a minima of P and stabilizes towards a stationary point when
dv,

717-0 Vke {1,2,...q}.

In order to relate the solution of the Linear Programming problem to the minimum of
the scalar function P we note that P represents a global penalty function which takes care
of the p inequality constraints implicitly . This function consists of the cbjective function
& plus a sequence of quadratic penalty functions for constraint violations so that the solution
of the new unconstrained problem, formulated in (a.8), approaches that of the original

constrained problem (a.1-a.3), provided that the slope of the resistor characteristic in the

third quadrant of the v-i plane (figure a.2) is sufficiently high.

A.2 Network Implementation
Kennedy and Chua [9] proposed a circuit implementation to the Linear Programming

circuit of figure a.1, using solid-state devices, as shown in figure a.3.

The circuit implementation shown in figure a.3 is a special case of the circuit shown
in figure 2.6, which was proposed to implement the more general Linear Programming
problem. To see how the network of figure a.3 actually implements the Linear Programming

model shown in fij ure a.1, consider an arbitrary neuron. Its input current is:

119

1,=A‘+15:,B,.,o, ‘ (a.14.1)
=4, +igB,g,(f}(V)) (@.142)
=4, +i§',‘8,‘g,(3j -V-E) (@.14.3)

Its terminal equation is given by :
av,
1,,=-c,—d-ti (@13)
hence:
av, —
Ci—=-4, —jf_:ls,,g,.(a,. -V -E) (a.16)

Equation a.16 is readily identified as the circuit equation (a.7) of the Linear Programming

circuit to be implemented.

120

L 4

| T/ N —
% \'{1 \\';u \‘{_12 \\i{‘l) N w1 \\'fgz \‘\"g\
E \”{z \{21 \{gz \"{zq‘ 0 21 | Wz \"{zq

T T TRETRE S

_}
(—?7

b

.

’z{'
<l -

& -

&
¢

o

L o A

Figure a.3. A Circuit Implementation of Chua and Lin Linear Programming Network

