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ABSTRACT

A Neural Network Based Approach to
the Control of Flexible-Joint Manipulators

V. Zeman

Traditional robot control strategies assume both joint and link rigidity for the purpose
of simplifying the control problem. The demand for greater precision coupled with the
increased use of lightweight materials necessitates the inclusion of elastic dynamics in
the control strategy. These highly nonlinear dynamics which increase the order of the
system are extremely difficult to formulate with sufficient accuracy. The standard form
of adaptive control does not appear to be applicable since the basic assumptions on the
system dynamics and nonlinear characteristics are rarely satisfied. We propose an alternate
control scheme which does not rely on accurate a priori knowledge of the manipulator
dynamics, but instead can “learn” these dynamics by using a neural network.

A backpropagation network is trained off-line to model the inverse-dynamics mapping
of the manipulator. The trained network is then inserted in the manipulator’s control
system wherein its purpose is to linearize the robot’s dynamics. The overall system
response can then be selected independently of the robot’s dynamics, by specifying a set
of servo feedback gain constants. Simulations for a single-link flexible-joint manipulator
illustrate the performance of the resulting closed-loop control system, and reveal some
of the practical issues involved in neural network training and control.

Our control sirategy is similar in structure to standard feedback linearization, with two
important differences. First, the feedback signal is not constrained to entering the robot
inputs linearly, as it is in feedback linearization, therefore our system does not preclude
the linearizability of certain flexible-joint configurations which have been shown to be
non-lincarizable by the conventional approach. Second, the use of a neural network
obviates the need for any prior knowledge of the manipulator’s dynamical equations,

requiring only an accurate estimate of the order of the system.
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1
INTRODUCTION

The aim of this research work is to design a system to control a flexible joint
manipulator with unknown dynamics. Every real manipulator has some degree of both
joint and link elasticity, but these effects are neglected for most industrial robots. In
certain cases, however, the assumption of rigidity results in insufficient control accuracy
and can even cause system instability. For example, lightweight robots with long thin
links, such as the Canadarm aboard NASA’s Space Shuttle have a reiatively high degree
of link flexibility.

As soon as link or joint flexibility is considered, the order of the plant model increases,
and a linear approximation is generally not sufficient. The required controller is far more
difficult to design than for the case of a rigid manipulator, but several techniques to do so
have been proposed in the literature. These techniques, including feedback linearization,
singular perturbation, integral manifolds, and adaptive control are reviewed in Section
1.1. All of these control strategies, however, require some amount of a priori knowledge
about the robot dynamics. For a real robot, these nonlinear dynamics are very difficult
to estimate, and impossible to determine exactly. Furthermore, they may not be exactly
the same for all robots of a given model, and may be environment or time dependent.

This thesis proposes a controller design which eliminates the need for a priori
dynamics formulations by incorporating a neural network (net). A neural net can be
trained to model the nonlinear dynamics of an arbitrary robot.

The next chapter reviews some neural net concepts which we will need later to select
a net that is suitable for our application. In Chapters 3 and 4, we develop the general
control system for use with an arbitrary nonlinear plant. A backpropagation neural net is

used to model the plant’s inverse dynamics. In Chapter 5, the proposed system is applied



to a specific flexib.c-joint manipulator. Computer simulations are used to evaluate system
performance with several net sizes, feedback gains and input trajectories. The system

behaves as predicted, showing high conformity to the performance specification.

1.1 Current Strategies for Control of Flexible-Joint Robots

Because there exist many reliable techniques for controlling linear plants, it is
tempting to apply such techniques to the control of a nonlinear plant as well. In cases
where the nonlinearities cannot simply be neglected, one can attempt to linearize the
plant by designing a feedback loop around it in such a way that the input/output response
of the resulting system is linear. This procedure is known as feedback linearization. The
computed torque method [1] for controlling rigid robots is an example of this type of

linearization.

Consider the single-input n-th order nonlinear plant described by

U=y
2 =y3
(1.1)
Yn-1= Yn
o= gb(y1,¥25 ... Yn) + Ga (y1,¥2,... Yn) u
where : yi arethe plant's state variables (i =1,2,...n)
ga, gt arenonlinear functions of the state
u  ts the plant input
If we apply the nonlinear control
u=fa(yny2,-- )+ folyr, y2,- .- yn) (1.2)

where: fo=1/gq

fo=-0/9.




then, the resulting closed-loop system

1 =2

V2= Y3
gn-l =Yn

Yn =0

is linear and a simple n-tuple integrator system. This feedback-linearized system,
enclosed by the gray rectangle in Figure 1.1, can now be controlled by a simple linear
compensator in an outer feedback loop. It should be noted that the inner feedback loop
design is totally plant-dependent in that it requires accurate a priori knowledge of the
plant dynamics. By contrast, the outer loop design requires no such knowledge (except
for the order of the system). In a sense, feedback linearization results in a new, “generic”
plant which can effectively be controlled as a black box. For these reasons, the inner
loop controller is sometimes referred to as the model-based portion, and the outer loop

controller as the servo portion [2].

Y

Y, O Linear | v u | Nonlinear IR
— >
; Controller * Plant

Figure 1.1: Feedback linearizing controller.



A significant difficulty with feedback linearization is that real-world plants generally

do not present themselves in the form of Equation 1.1. Fortunately, it is frequently
possible to obtain the required form by means of a transformation [3). For example,
given the nonlinear system

U1 =y1y2

g2 = sin (y1) + yau

we can apply the transformation

z1=0
(1.3)
22 = NY2
to obtain the form
.‘31 =2
i =1 [13 +sin(w1)] + myou
Using the inverse transformation of Equation 1.3
yi=2
(1.4)

y2 = 22/ 21, a#0
we arrive at the standard form
21 =2
29 = z1sin (22) + 22/ 21 + 22u

which can be feedback linearized by the inner loop control

1 22sin(z1) + 22
y oty _zsin(z)+2
22 2122

The resulting linear system, shown inside the gray rectangle of Figure 1.2, is a double
integrator. The outer loop control can be designed as before to obtain some desired
response in z. The problem with such transformations is that the original plant output y
is generally not linear with respect to the input v, and its response is not directly obtainable

from the outer loop control law. If one is concerned with controlling the original plant




outputs (y, not z) in some specific way, as is usually the case, an additional transformation
block which maps from y to = is needed at the overall system’s inputs. The resulting

controller is highly dependent on the accuracy of this transformation block.

1=
Zr=V
2 Plant
. I
&, Linear v C U g=yy, Y12
—"l" CompenS. > + > &) = sin(yl) +yu >
zdz - 4+
| 1] @73 =y,
:‘ Z; 2122 L=WY
T 2
)

Figure 1.2: Example of a feedback linearized system with coordinate transformation.

There does not always exist a transformation which will yield a system that is

linearizable by Equation 1.2. The necessary and sufficient conditions for feedback

linearizability are presented in [4]. It has been shown that these conditions are quite
‘ restrictive, and preclude the linearizability of many robots that one could expect to
fl encounter in the real world. For example, Cesareo and Marino [5] have demonstrated that
! a planar 2-DOF elastic joint manipulator does not satisfy these conditions, and therefore
cannot be feedback linearized. Since the focus of this research is on arbitrary flexible-
joint manipulators, we must reject feedback linearization as a possible approach because
of its limited scope of applicability.

A more general approach can be derived from the singular perturbation formulation

of the flexible-joint manipulator’s equations of motion [6]. The dynamic model is

iﬁnﬁ.'w -
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decomposed into one “fast” and one “slow” subsystem. The slow variables are the
joint positions and velocities, just as in a rigid model. The fast variables are the joints’
intemal torques and their time derivatives. This decomposition has the advantages of

decoupling the fast and slow subsystems, and allowing them to be controlled separately.

Taking the singular perturbation parameter u as the inverse of the joint stiffness, and
utilizing the concept of an integral manifold, Spong et al. [7] have derived a reduced-
order model of the flexible-joint manipulator. Their model is of the same order as the
rigid manipulator, yet it incorporates the effects of elasticity. In fact, as p tends to zero,
their model reduces exactly to the rigid model. The resulting controller consists of a “rigid
control” part designed for the purely rigid model, and a “corrective control” part designed
to compensate for the effects of elasticity. Spong er al. have shown that their reduced
flexible model is feedback linearizable, and that their controller is capable of accurate
trajectory tracking after the decay of any fast transients. However, the integral manifold
conditions may be violated during such transients, resulting in a temporary degradation
of the tracking accuracy. Despite this limitation, the integral manifold approach still
provides an improvement over conventional rigid control, even during transients. It also
allows us to proceed when the standard feedback linearization approach is not applicable.
Unfortunately, both of these techniques do share the dependence on complete a priori

knowledge of the plant dynamics.

A number of control strategies have been developed specifically to handle some
degree of plant uncertainty. Robust control involves minimizing the overall process
uncertainties in terms of the system transfer function. The acceptable uncertainties are
specified in terms of gain and phase variations of the plant’s transfer function over a range
of different frequencies. Reducing the effect of these uncertainties invariably requires a

higher closed-loop gain, therefore increasing sensitivity to noise and risk of instability [8].




By contrast, adaptive control strategies deal with plant uncertainty by isolating
specific plant parameters whose exact values are unknown or are expected to vary with
time. The underlying assumption is that the remainder of the plant dynamics are known
and fixed. Well-known adaptive systems such as MRAC (model reference adaptive
control) and STR (self-tuning regulators) require, as does the Horowitz robust controller,
a priori information about the process dynamics. It is up to the system designer to decide
which parts of the plant’s equations can be considered as known, and which parts are to
be tuned by adaptation. The success of these adaptive control strategies depends on the
accuracy with which the “known” dynamics of the plant can be represented, and on the
linear parametrizability of the system. Wnen these requirements can be met, adaptive
control theory provides the tools to ensure both convergence of the tracking error, and
global system stability.

As an example, Slotine and Li [9] tested their adaptive control strategy on a 2-DOF
rigid manipulator. Neglecting friction, the dynamics of a rigid manipulator can be written

as

u=H(q)§+C(g,4)3+9(q) (1.5)

where : u tsthen x 1vector of actuator forces/torques
g itsthen x1vector of joint displacements
H(q) isthen x ninertia matriz
C(g,4) isthen x 1 centripetal and Coriolis vector
g(g) isthen x 1 gravitational vector

n ts the number of joints
The individual terms on the right-hand side of Equation 1.5, and consequently the

dynamics as a whole can be written in terms of a linear function of a suitably chosen set

of manipulator and load parameters [10]. This linear parametrizability condition allows

7



us to rewrite the dynamics as

u=F{(q,4,4) ¢ (1.6)

where: ¢ isapx 1 vector of selected parameters
F(¢,4,§) 1sann X pmatriz of known, generally
nonlinear functions of q, ¢, and §
p isthenumber of parameters

Slotine and Li have developed an adaptation law to update these parameters on-line.
When combined with a PD control law, this adaptation scheme guarantees global system
stability and convergence of the tracking error, and does not require a reference model.
Experiments with a 2-DOF manipulator demonstrated significant reductions in tracking
error when compared with PD control alone, and some improvement over computed
torque control. The parameter values used for the comiputed torque method were estimated

realistically, but of course did not correspond exactly to the real values [9].

Unlike the feedback linearization method, this adaptive technique does not require a
priori knowledge (or even estimates) of the robot parameters. However, like all other
adaptive control strategies, Slotine and Li's approach depends on a knowledge of the
structure of the dynamics. In particular, it is assumed that the dynamics are of the form
of Equation 1.6, where F(q, 4, ¢) is fixed and known. Generally, the system will have
unmodeled dynamics arising from various sources such as sensor and actuator dynamics.
If the contribution of these unknown dynamics is significant, then the adaptive controller
will be unable to attain the expected performance. Even if their contribution is quite
small, there is an inherent danger with on-line adaptation. Because the adaptation is
itself a dynamical process, it may interact with the unknown plant dynamics in such a

way as to produce unwanted oscillations or even cause overall system instability.




There is no reason to believe that Slotine and Li’s method could not be extended to a
flexible-joint manipulator, but the resulting controller would (like feedback linearization)
require the measurement of higher derivatives of joint displacements. A new method
proposed by Khorasani [11] combines the Slotine and Li algorithm with the singular
perturbation representation of the flexible-joint manipulator dynamic equations. This
methodology results in adaptive control laws whose complexity is comparable to their

rigid model counterparts.

All of the controllers discussed so far require some prior knowledge of the dynamics,
with Slotine and Li’s method requiring the least. An entirely different adaptive technique
developed by Widrow and his colleagues [12, 13] is worthy of mention for its indepen-
dence from such requirements. In this approach, the plant is treated as a “black box”
containing some input/output mapping, represented by an unknown transfer function. Us-
ing adaptive signal processing techniques, a transversal filter is designed and adapted to
model the plant inverse, as shown in Figure 1.3. The error signal is used to update the

filter's tap weights according to some chosen adaptation rule.

Input o l — Plant

error

AN
Adaptive
Inverse Model

Y

Figure 1.3: Adaptive filter for inverse plant modeling with declay [13].
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The delay D is not required if the plant is minimum-phase, but by including it,
we can model both minimum-phase and non-minimum-phase plants without knowing in
advance with which type we arc dealing. Once a sufficiently good inverse model has
been obtained, the filter can be used as a feedforward compensator for controlling the
plant in a feedback control system (Figure 1.4). At this point, the tap weights can be
fixed or adaptation can continue on-line. If a delay (D # 0) is used in Figure 1.3, then
one has to expect an on-line system delay of at least D betweer. the reference input and
the actual plant output. This may be acceptable in some, but not all cases, depending

on the application.

Reference  + Adaptive

|  Plant
Input Inverse Model

" Output

Plant

Figure 14: Example of an adaptive filer used to control a plant (unity feedback case).

A typical implementation of an FIR (finite impulse response) adaptive filter consists
of a series of delay elements and an adaptive linear combiner as shown in Figure 1.5. An
adaptation rule determines how the weights wg, wy,.. . , wy will be updated, as functions
of the error in the filter’s response. This error is generally measured as the difference
between the filter’s actual output and some desired output (provided extemally). For
example, in Figure 1.3, the desired adaptive filter output is taken to be the plant input.
A commonly-used adaptation rule is the LMS (least-mean-square) algorithm, which can

also be extended to recursive or IIR (infinite impulse response) filters [13].
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Figure 1.5: Adaptive FIR filter with L+1 weights, single input, and single output.

This approach to adaptive inverse control has the unique advantage that it requires
no prior knowledge of the plant dynamics. In this sense, it is the most general technique
presented so far. Although some knowledge of the plant characteristics would be helpful
for choosing the length of the transversal filter (L) and the delay (D), if any, one could
proceed without this knowledge by trial-and-error. Furthermore, the designer will in
most cases have some idea at least of the approximate order of the plant. The main
limitation is that the resulting filters are strictly linear. To generate a nonlinear model,
one would have to add nonlinear transducers on each of the filter taps. Since there is
currently no adaptation scheme available for modifying the nonlinearities themselves,
these would have to be fixed in advance, thus requiring at least a partial knowledge of

the plant dynamics.

1.2 Empirical Control Schemes

We wish to design a system which can be used to control a flexible-joint manipulator

whose dynamics are unknown. Without an exact expression for the dynamics, many of
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the control schemes presented in Section 1.1 are rendered unusable. Adaptive control
schemes allow more freedom in that only the structure of the dynamic equations must be
known in advance, while the aciual parameters can be generated on-line. To go one step
further and climinate our dependency even on the structure of the dynamics, we have no

choice but to turn to an empirical approach.

Unfortunately, there is a very limited body of knowledge in empirically-based
controller designs. The common element in such designs is that they involve some degree
of learning. By learning, we refer to the controller’s ability to modify its own transfer
function based on some predetermined error criteria. Adaptive control is an example
of on-line leamming. However, learning in adaptive controllers involves the updating
of only certain predefined parameters, while the nonlinearities and the structure of the
equations remain fixed. The well-known neural network based technique of Kawato et
al. [14] also models nonlinearities by preselecting and fixing them in dedicated input
transducers. Neither of these approaches is completely empirical, since both make a

priori assumptions about the system.

The required controller must be able to model the nonlinear plant dynamics by using
only learning. Backpropagation neural nets and CMAC (Cerebellar Model Arithmetic
Computer) networks [15, 16] are some examples of systems which have a proven ability
to do so [17). These nets use a supervised learning procedure, which means that at each
step in the leaming process, we must apply both a net input and an error signal to the
net. The emor signal is a measure of how close the net’s actual output is to what it
should be (desired output). This error must be computed externally to the net by some
other component in the system. In many cases, there is no component in our system
to provide the error signal we need. Supervised nets, therefore, are critically limited to

modeling only those mappings for which the desired output is available during learning.
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Of course it is possible to generate the error signal from a mathematical model [18], but
such a model would require a priori knowledge of the dynamics which we have assumed
is unavailable to us.

One mapping that can be learned by supervised nets is the inverse dynamics of a
robot, as has been repeatedly demonstrated {19, 20, 21, 22]. In Chapter 3 we discuss

how the error signal is derived for inverse dynamics training.

1.3 The Performance Specification

Before developing any practically useful control system, we start with some spec-
ification of the desired performance. This specification may be based on one or more
of many criteria, including the system’s impulse response, step response, frequency re-
sponse, closed-loop pole placement, steady-state error, and transient error. A control
strategy believed capable of satisfying the given specification is chosen, and the con-
troller’s parameters are then tuned (on or off-line) to actually meet the specification. For
example, a rigid manipulator whose closed-loop damping ratio and natural frequency
are specified could be controlled by PID feedback, where the proportionel, integral and
derivative terms are constants chosen off-line based on knowledge of the robot’s exact
dynamics.

In a real system, it may not even be possible to satisfy an overly stringent specifica-
tion. In the above-mentioned PID controller, for example, it may be desirable in order
to get a fast response to have the closed-loop system poles approaching —oo on the real
axis of the complex plane. This will require extremely high feedback gains, which in
turn is likely to cause input saturation which together with unmodeled robot dynamics

and delays in the feedback loop may result in instability.

It is therefore important not to specify excessive requirements on a system, but

rather to specify the minimum performance required to adequately execute the desired
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tasks. If the requirements cannot be satisfied by a particular controller mathematically,
in simulation, or in actual operation, then one of the following actions must be taken

by the system designer:

1. Choose a different control strategy.

2. Upgrade the equipment (eg. reduce delay in the feedback loop, use more
precise sensors).

3. Reduce the stringency of the specification.

4. Shelve the project.

The importance of conforming to some specification must not be under-emphasized.
We therefore require a control scheme with parameters which can be adjusted in some

predictable manner to yield the desired performance.

1.4 Empirical Control Satisfying a Mathematical Specification

Combining the requirements discussed in the last two sections, it becomes clear that
we need a controller that can empirically model the robot dynamics, while conforming
to some mathematical specification for overall system response. Although these may
seem to be contradictory requirements, we can in fact satisfy both by breaking up the
controller into two parts. We develop this system in detail in Chapters 3 and 4. The
resulting conwoller is similar in structure to the standard feedback linearization control
strategy with the notable difference that the inverse dynamics mathematical model has

been replaced by a trained neural network.
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A RE i e

2
AN OVERVIEW OF ARTIFICIAL
NEURAL NETWORKS

This chapter introduces neural networks, discussing their capabilities and limitations.
The components of the network are described along with a review of available design
choices, and some insight into how each choice affects the overall functionality of the
net. No new material is presented here, but the remainder of the thesis makes frequent

references to the issues addressed in this chapter.

2.1 Neural Network Structure

As their name implies, neural nets are loosely based on the structure of neurons
in the brain. A neural net consists of a set of interconnected processing elements or
nodes which are analogous to the neurons in our brains. In the t; pical vertebrate neuron,
nerve impulses originate in the cell body, and are propagated outwards along the axon.
Nerve erdings called dendrites receive impulses from as many as 1000 other neurons via
synaptic connections to the respective axons of those neurons. The cell body processes
this information and produces an impulse which is then transmitted by a single axon to
several other neurons [?3]. A processing element of a neural net (Figure 2.1) is similar in
that it has several inputs with varying connection strengths, a main tydy which processes
those inputs, and a single output line which carries the resulting signal to other nodes
(or neurons).

n general, the nodes are analog devices. The connection strength between the output
of one node and the corresponding input of another is modifiable in both living and

artificial neural systems, by the process referred to as learning.



Inputs from Node Outputs to

other nodes = body other nodes

Figure 2.1: Neural Net Processing Element (Node).

There are, however, more differences than similarities between the brain and artificial
neural nets. For example, the connection strengths are determined at the output branches
of the living cell [24], whereas in the artificial neural nodes these weights are attributed
to the inputs. Also, the internal functions of the living neurons are complex and not fully
understood. They have been modeled in the artificial node by simple transfer functions
such as sigmoids or sinusoids. It is therefore important not to take the analogy too far,
but to be aware of it for the purpose of understanding the motivation behind neural nets
and the biological terminology used to describe them.

In addition to the structure of its individual processing elements, the neural net is

further characterized by the interconnection pattern between these elements. The most
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general pattern is the fully connected model in which each node’s output is connected to
every other node’s input. All other connection patterns are a subset of this model which
is rarely used because of its intractability. Commonly used are hierarchical patterns in
which nodes are grouped into levels such that all the outputs of one level are connected
only to inputs of higher levels. There exist so many different intercornection patterns that
very few common features can be identified. In most cases, the interconnection pattern
is quite dense when compared to parallel computers, and the number of interconnections
grows disproportionately faster than the number of nodes. These are only observations
however, not rules, and they do not suffice to distinguish neural nets from some parallel

computer networks such as the N-cube

2.2 Learning

The appeal of neural nets can perhaps best be attributed to their unique learning
capability which is not shared by traditional computer architectures. When a neural
net is excited by an input signal it responds by producing some output signal. The
net can be thought of as an ({input : output} mapping function. The learning process
involves repeated presentation of many sets of {input : desired output} data pairs until
the connection strengths converge. During the learning process the connection strengths
are continually changing so the same input presented at different stages of the learning
may well yield different outputs. Before leamning, the {input : output} mapping is
generally random. Upon successful completion of learning, the connection strengths will
completely describe the mapping between the input data set (domain) and output data set
(range) which was used to train the net. The net thus derives a set of rules which perform

the same function as the programmed algorithm running on a conventional computer.

This learning capability of neural nets makes them highly suitable for problems where

some (input : output} pairs are available, but a closed-form mapping function from
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input to output is not known. Conventional computers, by contrast, are more suitable
for problems where the inputs and the mapping function (algorithm) are fully specified.
Neural nets, however, are not well suited to tasks requiring high numerical precision. For
example, the multiplication of two 8-bit binary integers can be done to perfect accuracy
using simple digital logic. To accomplish the same task a neural net would have to be
very large and would require careful and extensive training. This is due to the essentially
algorithmic nature of multiplication; knowing the algorithm, it is simple to manipulate
the data, but being shown only the {input : output} data pairs, the algorithm is far from
clear. Training the neural network in this case would be like expecting a child who can
count but does not yet know how to multiply to complete the pattern: (2,3 : 6}, {12,4
: 48}, {1,1: 1}, ... ,{9,7 : 7).

It should be observed that the learning procedure is itself algorithmic in that it follows
a set of rules which are predefined at the time the network is designed. However, these
learning rules are very general. They depend on the physical structure of the network,
but not on the problem or mapping being learned. They are more analogous to the
operating system than 1o the applications software in a conventional computer. The
same learning rules can be used with different data sets to result in completely different

network behavior (I/O mappings).

It is precisely this algorithmic property of the learning rules which allows us to
simulate neural networks on conventional computers. The learning algorithm tells us
how the connection strengths will change each time a new {input : desired output} data
pair is presented. We can thus feed training data to the simulated network to determine

what its weights will converge to, but we generally cannot predict these weights a priori.

In summary, we wish to emphasize that neural networks are only useful for a limited

(although large) class of problems: those not easily solvable by digital computers. It is
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precisely this capacity to complement rather than to replace traditional computing which

makes neural computing such an important new technology.

2.3 The Processing Element

The typical processing element or node (Figure 2.1) is characterized by an input
function and an output (transfer) function. The input function maps the inputs and their
weights into the processing element’s activation value. The output function maps this
activation value into the processing element’s output value, which is then used as an
input to other processing elements.

We will use the following notation for the j-th node of a network:

I is the value of the k** input to node j

Wik is the weight on the k*® input line to node j
n; s the number of inputs to node j
Aj is the activation of node j

0, is the output of node j

c1,¢2,c3 are constants selected by the network designer

2.3.1 Input Functions:

By far the most commonly used input function is a single weighted summation over

all the inputs:

n,
Aj= ijkl ik
k=1
Another function sometimes used takes the maximum (or minimum) of all the weighted

inputs. Widrow’s Madaline net [25] uses a majority voter input function. In yet another

paradigm, a weighted multiple replaces the weighted summation, or the two can be
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combined in what Rumelhart calls “sigma-pi” units [26]. There are a great many

variations, but in practical applications, the simple weighted sum prevails.
2.3.2 Output Functions:

The original output function used in perceptrons was the threshold function:

0, AJ‘ < ¢
0; =
adj, Aj2c

This is actually just an extension of the linear output function:

Oj = c14;
It is the linearity in the  functions that can be blamed for the downfall of perceptrons.
Just as Minsky and Papert showed that the single layer perceptron is unable to distinguish
nonlinearly separable classes [27], so it can be shown that a multi-layer perceptron
network is reducible to a single layer if the output functions of its nodes are linear [28].

Another commonly used function is the modified step:

o Ci, Aj <c3
J' =
c2, Aj>c3

This function discretizes the oniput of the node to one of two levels. It is used in the
Adaline [25] and Brain-State-in-a-Box [29] networks.

An important class of output functions consists of the semilinear mappings, in which
the output of the node is a nondecreasing and differentiable function of its activation. The
most common example is a sigmoid, but others such as the hyperbolic tangent can also
be used. Because they are not linear, these functions can be used without redundancies
in a multilayer network to overcome the perceptron limitation. Furthermnre, the fact that
they are nondecreasing and differentiable means that the generalized delta learning rule
[30, 26] can be used to train such a multilayer »ztwork. The result is the backpropagation

network which is capable of classifying nonlinearly separable data.
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2.4 The Topology

The most general network topology from which all others are derived is the fully-
connected model. In such a network every node’s output is connected to one input of
each of the other nodes, including a feedback connection to itself [31]. If there are N
nodes, then each node must have N inputs and there are in total

2% (];r) 4+ N = N(N -1)+ N = N? connections.

Thus, for a net with 100 nodes, we would need 10,000 connections. Such a ratio is very
difficult to implement in hardware. In fact most comme ‘ial neural processor boards
offer ratios ranging from 10 to 25 connections per node. Furthermore, the behavior of
such a system is very difficult to analyze and relaxation may be very slow, to the point

of making the net unsuitable for simulation.

To make their nets more tractable and the structures more meaningful, most re-
searchers have adopted a hierarchical topology as shown in Figure 2.2. Nodes are grouped
into layers and the layers are numbered starting with the input layer. The input layer usu-
ally acts only as a bulier and is omitted from some networks, however in the following

discussion, we assume its presence.

21



Hidden
Layers

Input
Layer

Figure 2.2: Rierarchical Network Topology.

2.4.1 Number of Layers:

One of the first steps in designing a neural net is deciding how many layers are
required. If all nodes have nonlinear output functions, then increasing the number of
layers generally enables the net to learn more complex patterns. To illustrate this,
Lippmann [28] uses the example of a 2-dimensional (2 inputs) pattern classifier with

step output functions on all nodes. A single-layer version 0% this network (ie. output
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layer and input buffer but no hidden layers) forms half-plane decision regions and is
therefore only able to distinguish linearly separable classes. The two-layer net (ie. one
hidden layer) forms a convex decision region in the input space. The three-layer net can
combine several convex decision regions to form any arbitrary shapes in the input space.
The network designer attempts to select the minimum number of layers required for his
problem. If he is uncertain about his data distribution, as is usually the case, he may have
to experiment with different numbers of layers. It should be noted that in Lippmann’s
example, more than three layers are never required, however in some cases, adding more

layers may actually reduce the total number of nodes or improve network convergence.

In most neural nets, all the nodes within a given layer are of the same ype. They have
the same input and output functions, and they follow the same leaming rule. Different
layers, however, may be composed of different nodes. For example, Widrow’s Madaline
network [25] with one hidden layer has simple summation input functions in the first
two layers, and a majority input function in the last (output) layer. His hidden layer
follows the Widrow-Hoff [25] learning rule, whereas the input and output layers perform

no learning at all.

2.4.2 Number of Nodes:

The number of nodes in the input buffer layer is equal to the number of inputs, and the
number of nodes in the output layer is equal to the number of outputs. Choosing a "good"
number of nodes for the hidden layer(s) can however be difficult. Lippmann describes
the relationship between the number of nodes and the richness of the training data: "The
number of nodes must be large enough to form a decision region that is as complex as
is required by a given problem. It must not, however, be so large that the many weights
required cannot be reliably estimated from the available training data” [28]. As was the

case with choosing the number of layers, nothing more precise can be said about the

23



number of nodes without knowing how the data is distributed. Experimentation is the

only way by which to proceed.

2.4.3 Direction of Information Flow:

A network can be classified as either of feedforward type or of feedback (bi-
directional) type. In both cases, the external connections are the same: data is entered at
the input nodes and is generated at the output nodes. Internally, however, the two types
differ. In a feedforward net, each node’s inputs are connected only to the outputs of
nodes on lower levels. An excitation applied to the input will propagate forward through
the layers until it reaches the output. This system has a constant and relatively short
response time to a step input. Any given constant input will always produce the same
steady-state output, regardless of previous inputs. The perceptron and the Adaline are

feedforward nets.

In a feedback network, some nodes receive input from nodes in both lower and
higher layers. Nodes in one layer can also receive input from each other. To avoid
endless oscillations or divergence in such systems, the nodes have clipped nonlinear
output functions. When an input is applied, the feedback connections cause some nodes
to become more active and others less active. The system is said to have converged or
“relaxed" once every node has reached its upper or lower output limit. In a discretely
sampled net (or simulation), this process typically requires several time samples (or
iterations). ‘

Because the node outputs converge to one of two states, feedback nets are used
with binary input and output data. Feedforward nets are suitable for both binary and
continuous data. Another difference is that the next state of a feedback net depends not
only on the current inputs but also on the previous state. A well-known feedback network

is Anderson’s Brain-State-in-a-Box (BSB) [29].

24




2.5 The Learning Rule

Much like a Von Neumann computer without software, an untrained neural net can
perform no useful function. It is the learning (or training) process which gives the
network all its "knowledge". Since the information in a net is stored within the internodal
connection strengths or weights, the learning process consists of correctly setting these
weights. At each learning iteration, an input and a desired output are presented to the net
which modifies its weights so that the net’s actual output approaches the given desired
output. Starting with the same untrained net, different learning sessions can result in
trained networks having dramatically differing functionalities. The three factors involved
in training are:

1. the set of training data used
2. the order in which data from this set are presented, and the number of
times they are repeated

3. the learning rule

The training data consists of {input : desired output} pairs chosen to be representative
of the expected input domain. Often, the training points are evenly distributed throughout
the input space. A common variation is to divide the input space into regions with the
number of training points in each region proportional to the probability of an input
occurring in that region.

The order of presentation is usually random (or pseudo-random) to inhibit the
formation of artificial local minima in the activation space. The training set is presented
repeatedly as many as hundreds or even thousands of times. To determine how many
times is enough, the network output can be monitored, and leaming is terminated once
the net’s "hit ratio” reaches some desired threshold. The hit ratio is some measure of

the net’s performance, such as the frequency of correct classification (net output matches
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desired output). In exceptional cases, learning can be terminated after less than five
repetitions of the training set. Although it is most common to first train the network, and
then to employ it with the weights fixed, it may be desirable to continue training while
the net is in service. For example, if the net is used within some larger system which
can measure output error, this error can be fed back to the network as a training signal.
Such on-line training systems have been proposed for adaptive robot control [29].

The learning rule determines how the weights at each level change in response to
one training data point. In supervised learning, the weight changes are a function of the
difference between the network’s actual response to an input and some desired response.
Generally, the greater this difference, the more the weights change. In unsupervised
learning, the desired output is not given, but is assumed to be the same as the training
input. The remainder of this section presents some commonly used learning rules. In
all cases, supervised learning is assumed, but the rules can be extended to unsupervised
learning by setting the desired output equal to the training input.

The following additional notation will be used to describe the effect of a single

learning iteration on the weights of the j-th node:
D; is the desired value of the node's output
wjr 1S the current weight on the k™ input line
Awjr  is the change in wji to result from the current
learning iteration

n; is the number of inputs tonode j, and 1 < k < n;

2.5.1 Hebbian Learning

Hebb’s original learning rule was based on the principle of increasing a synaptic

strength whenever the corresponding actual input and the desired output are simultane-
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ously active:
c1, ifDi>crand Iy > c
Aw;ji =

0, otherwise

where: ¢ >0 isthelearning rate
c2 s a threshold above which a node is

considered active
Although this rule is important historically, it has the major disadvantage that it has

no mechanism for reducing the weights. Several variations of Hebb’s original rule offer
this facility including Hopfield’s modification [32]:
c, if (Dj>czandljy>c) or (Dj < czand Iji < c2)
Ak = { —c), otherwise

The effect of this rule is to increase the k-th weight whenever the k-th input is the same
as the desired output (ie. both are active or both are inactive), and to decrease the k-th
weight otherwise. Hopfield’s model used the step output function:

0: inactive
0
1: active

with ¢z = 0.5. The result was a discrete binary model, although in principle this learning

rule could be used with continuous models.

2.5.2 Perceptron Learning

Hebbian learning and its variations fail to take into account the actual output of the
node whose input weights are being trained. Thus, the weights may be modified even if
the node’s actual output matches its desired output. By contrast the perceptron learning
algorithm [27] treats the difference between actual and desired outputs as an error term
and modifies the weights by an amount proportional to this error:

c*(Dj—0y)/nj, ifIjx>0,D;>0and0; <0
Awjp=§ —c1*(Dj = 05) /n;, if Iz >0, D; <0and O; >0

0, otherwise
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Effectively, if the output should be active but is not, the weight is increased on all active
input lines. If the output should not be active but is, the weight is decreased on all active
input lines. The weight changes become increasingly smaller as the weights converge to
their final values. Furthermore, the convergence of perceptron learning has been proven
for linearly separable input sets [27). Although this learning scheme was initially used
with linear node output functions, there is no reason why it could not be extended to

nonlinear or semilinear output functions.

2.5.3 Widrow-Hoff Rule

Whereas Hebb’s rule depends on the actual input and the desired output, and the
perceptron rule depends on the actual input, the actual output and the desired output, the
Widrow-Hoff rule combines dependencies on the actual input, the weighted sum of all
the inputs, and the desired output. Developed by Widrow and Hoff for their Adaline

network [25, 12], this rule can be summarized as
ijk =] * (Dj - AJ‘) * Ijk/nj

The Adaline output function is the nonlinear step with the two possible values —1 and +1.
By using the node’s activation A; instead of the actual output O;, we allow for a variable
amount of weight change (like the perceptron rule), while maintaining a nonlinear output
function. The I; term only affects the sign of the weight change.

A variation which uses the actual output O; instead of the activation 4; is employed
in Anderson’s BSB model [29]. This can be done because unlike the Adaline, the BSB’s

middle layer uses linear output functions.

2.5.4 Delta Rule and Backpropagation

The Hebb, perceptron and Widrow-Hoff learning rules all require a priori knowledge

of the desired outputs for all the nodes being trained. In general, however, when training
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a network, we only know the external inputs and outputs of the net. The desired outputs
of hidden nodes within the network are not known. As a result, only the output layer
(whose desired outputs are known) can be trained by the preceding learning rules. There
can be several layers in the net, but all except the output layer will have fixed weights
set by the aetwork designer. These learning rules therefore limit the capabilities of all
nets to those of a single-layer net.

The generalized delta rule [30, 26] is very similar in form to the Widrow-Hoff rule

except that all signals are now assumed continuous:
Dwjp = c1 * 65 * L 2.1)

where §; is the error signal, and ¢ is referred to as the learning rate constant. For each

node j in the output layer, the error signal is given by
8 = (Dj — 05) * £; (4)) 2.2)
where f}(A;) is the derivative of the j-th node’s output function
0; = fi (4;)
For each node j not in the output layer, the error signal is given by:

5 = £ (Aj) * 3 (g %+ wyy) @3)
q€Q

where the summation is taken over all nodes in the layer directly above node j, and w,;
is the weight on the connection from node j to node q.

The backpropagation learning procedure applies the delta rule to multilayered feedfor-
ward nets. For each (input : desired output) data pair presented to the net, the following

steps are executed:

1. The inputs are applied and fed forward through the network, until all node

outputs stabilize.
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2. Starting with the output layer, the error signals are computed for each node
and the input weights to all nodes in that layer are updated as explained
above.

3. Step 2 is repeated layer by layer going downward until the lowest hidden

layer is reached.

The output function must be continuous and differentiable. It should also be noted
that if the output function is linear, then its derivative is a constant and the delta rule
for the output layer reduces to the Widrow-Hoff rule. The semilinear sigmoid function

is most often used.

2.5.5 Other Schemes

There are many other learning schemes and variations of the above rules described
in the literature. One such family of leamning rules is due to Kohonen [33] and involves
changing the weights so that they correspond to an average of all the input vectors
presented during learning. This rule is used in the hidden layer of Hecht-Nielsen's
counterpropagation network [34].

Another approach has been to describe the state of each node by a probability density
function. Anderson and Abrahams, for example, proposed a Bayesian probability network
[35] in which all inputs and outputs were given as probabilitics, and the state of the overall
system was represented as an energy function analogous to Hopfield’s energy function
[32].

A difficulty often encountered when using neural nets for a practical problem is
the appearance of spurious states as leamning progresses. Several methods have been
proposed to reduce this effect. In Hopfield nets, a procedure called "unlearning” [36] has
been used to cancel these spurious states. The trained network is presented with random

inputs whose resulting outputs are used to modify the weights in a direction opposite to
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the way they would be modified during leaming. By repeating this for random inputs,
the spurious states are "unleamed” first because they are weaker, but unlearning must be
stopped before the previously learned states are also unlearned. This procedure has been
described as functionally analogous to dream slecp.

Another procedure called simulated annealing [37, 26] is used to escape local minima
in the energy function of the network. The name originated from the annealing process
used to cool molten metals to their lowest (most stable) energy state. In simulated
annealing a "temperature” coefficient is slowly reduced while the units in the network are
allowed to change state according to a probability function. Wher the temperature is high
the states change dramatically with relatively little dependence on the system energy. At
low temperatures, the states have a strong tendency to change so as to reduce the overall
energy, but the changes themselves are very slight. Reducing the temperature slowly
therefore allows the system to initially escape local energy minima, and to eventually
settle at the global minimum (most of the time). The Boltzmann machine [37] combines a
probabilistic decision function, a modified version of unlearning, and simulated annealing

into a single network training procedure.

2.6 Supervised Learning & Hetero-Associativity

One of the greatest difficulties encountered during the course of this research has been
in obtaining a suitable training signal for the net. The following question has repeatedly
arisen: “Is it not possible to somehow learn the inverse dynamics using an unsupervised
learning scheme?”” Unsupervised learning has the advantage of not requiring an external
teaching signal, whereas supervised leamning by definition does require such a signal.
As shown in Figure 2.3(a) this “supervisory” signal must be in the same units as the
network output. It is usually a desired net output which is compared to the actual net

output at each learning step. The resultant error signal, also in net output units, is used
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internally by the net to update its weights. In some cases the error signal itself may be
directly available as shown in Figure 2.3(b). Both of these configurations are referred to
as “hetero-associative™ because they map (associate) a vector from the input space into
another vector from a different output space. In general, the two spaces are of different
dimensions. Hetero-associative nets are therefore used for modeling the input/output

relations of systems.

By contrast, auto-associative nets (Figure 2.4) have input and output spaces of the
same dimension. There is a limited number of valid output vectors for which the network
is trained. Any given input vector maps to the closest! valid output vector. This net is
especially useful in the presence of noise. If a noisy or incomplete version of a valid input
pattern is presented, the network will output the original pattern, noise-free and complete.
Auto-associative nets are mostly used for pattern classification and noise rejection. They
are trained by repeatedly applying vectors from the valid output set to the net’s input.
The learning is unsupervised because no external teaching signal is required. However,
to adjust their internal weights during learning, all networks require some error signal.
Auto-associative networks derive this signal intemnally by comparing their output with

their input which also happens to be the desired output during training.

Auto-associative nets can therefore be thought of as a subset of hetero-associative
nets, wherein the assumption of identical input and output space has been made, and
consequently the error signal required for learning can be obtained internally. Auto-
associative nets are not suited to our application of robot dynamics modeling, so we
must use a hetero-associative net with supervised learning. Therefore, in our control
system, we will be able to use a neural net to model only those relations for which a

teaching signal is available.

! “Closeness” is usually measured in terms of mean-squared error but can be based on other criteria
as well,

32




+D Desired
output

0» Actual

output

Desired
change in

output

» Actual

output

Figure 2.3: Hetero-associative network leaming requires an external supervisory signal.

Net
Actual I .
input
P
Net
Actual I
. — e o o
input
»
Net
Actual
. ——
input
i ® o o

Actual
output

Figure 2.4: Aulo-associative network learning requires no external supervising signal.
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2.7 Simulation Control Schemes

Since most neural nets described in the literature are not implemented in analog
hardware, but are simulated on digital computers, the network designer must take into

consideration the effects of the resulting discretization.

2.7.1 Synchrononus vs. Asynchronous Update

Synchronous update assumes that the outputs of all nodes change either simultane-
ously or in some predetermined order. For example, in simulating a feedforward network,
the software would first compute the outputs of the nodes in the input layer, one at a
time. Then the outputs of that layer would be used as inputs to compute the outputs of
the nodes in the layer above, and so on until the output layer. A real neural network
generally does not have a global synchronization strategy. Each node updates its output
continuously based on its inputs. Furthermore, different nodes can have different response
rates. Such an asynchronous update scheme can be simulated using a pseudo-random
control strategy on a digital computer, but this is more difficult both to implement and to
analyze. In some cases, such as that of the single-layer perceptron, both update strategies
will yield the same final result, although the synchronous update will be faster. However
in cases involving feedback, different update strategies will result in different paths along
the system energy function, with possibly different results. In such cases, the designer

must choose the strategy which better suits his assumptions about the system.
2.7.2 Relaxation Time

In feedback nets such as Bidirectional Associative Memory [38], or in feedforward
nets with probabilistic output functions, a period of time is required for the system to
stabilize after an input is applied. This process, known as relaxation, corresponds to
the network converging to an energy minimum. Simulation involves repeatedly updating

the node outputs until some stability criterion is satisfied. The criterion can be a certain
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number of update iterations, or some error margin. The choice of this stability criterion

can have a major effect on the results obtained from the net.

2.8 Conclusions

As we have shown, there is presently no such thing as a “generic neural network”. A
great many options must be considered in selecting a specific neural net for a particular
application. In addition to the more common, frequently used network paradigms
summarized in this chapter, the designer is free to create hybrid paradigms by combining
characteristics from various standard paradigms. One can also introduce entirely new
strategies as one considers appropriate to a specific application.

Beyond the distributed structure and the ability to learn, there are currently no fixed
rules constraining the architecture and functionality of artificial neural nets. There is also
extremely little theory and analytical work available to guide the designer in making the
best choices. Researchers working in the area often comment that the network design
process is still very heuristic and generally involves some degree of trial and error.
However, we have identified the following areas which inust all be considered when

setting up a net:

[T
-

Associativity (hetero- or auto-)

Resolution (continuous, 2-state, tri-state, or discrete multiple states)
Learning Rule

Number of layers

Number of nodes per layer

Direction of flow (feedforward or feedback)

Node Input Function

Node Output Function

© 9 N wm oA W N

Simulation Control Scheme
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10. Amount of theoretical knowledge available on the paradigm selected (an
existing proof of convergence or proof of stability may be a strong incentive

to use a particular net)

In each of the areas, a different approach can be taken for different layers of the net.
For example, Hecht-Nielsen's counterpropagation net has a middle Kohonen layer within
which the nodes compete on a “winner takes all” basis. The output layer by contrast is
the Grossberg outstar with a simple weighted sum transfer function in the nodes [39].
Even in relatively homogeneous nets such as backpropagation, it is common to have a

different learning rate in each layer.

In Chapter 3, we consider each of the above-listed areas in selecting the net which

is most suitable for our particular application of nonlinear dynamics modeling.
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3
TEACHING MANIPULATOR INVERSE
DYNAMICS TO A NEURAL NETWORK

Several research groups have successfully trained neural nets to model the inverse
dynamics of rigid link/joint manipulators. There is a wide variance in the approaches
used and in the assumptions made about the plant. We review some of these techniques
in Section 3.1, and discuss their lack of compatibility with our own design objectives.
The remainder of this chapter develops a neural net along with a training procedure to

meet these objectives.

3.1 Approaches to Inverse Dynamics Training

In designing a neural-network based robot controller, one faces two key questions:

1. What network configuration is capable of providing the modeling capabil-
ities required?
2. From where will the training signal (desired net output) be obtained?

This section presents the work of several researchers who have used neural nets to
model inverse robot dynamics. Their approaches will be compared and contrasted on the
basis of how they resolved these two questions.

Among the pioneers and frequently quoted researchers in the area are Kawato et al.
[14, 20]. They have trained a neural net to model the inverse dynamics of a 3 degree-of-
freedom rigid manipulator. Their net is used as a feedforward controller and is trained
on-line as shown in Figure 3.1(a). A fixed-gain PD feedback controller is used to compute
the torque error from position and velocity errors and feed it to the neural net as a training
signal. The PD gains are calculated based on a linearization of the manipulator dynamics.

The net itself is a single layer linear perceptron-type network as shown in Figure 3.1(b).



Functions f; — fi3 and g1 — gi3 are nonlinear “subsystems” consisting of sines, cosines,
multiplications and differentiations. The functions are selected a priori so that a linear
weighted summation of them would yield the manipulator’s exact dynamical equations.
There is no learning within these monlinear subsysterns but only in the weights of the
linear summation. The net was trained by repeated presentations of one trajectory, and
demonstrated quite accurate control performance when used for that particular trajectory.
Other trajectories required re-training. The approach of Kawato ef al. requires a priori

knowledge of the nonlinearities in the manipulator dynamics.
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Figure 3.1: Kawato’s Inverse Dynamics Controller. (a). block diagram of
simulated neural net and manipulator. (b). intemal structure of neural net [20).
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Selinsky and Guez [18] proposed a similar structure for their rigid robot neuro-
controller. As with Kawato er al., a single layer perceptron-type net performs a linear
weighted summation on 2 group of nonlinear functions f;;. Selinsky and Guez, however,

have implemented each of these nonlinear functions as an independent backpropagation

neural net.

The closed form dynamics of a rigid-link/joint manipulator can be expressed as:

u ="F(g,4,{) ¢

where : u isthen x 1vector of actuator forces/torques
g 1isthen x lvectorof joint displacements

F(q,4,4) isann x pmatrizof known functions

¢  isapx lvector of weighting constants
n  isthe number of joints

p  isthe number of weightsin the net's output layer

There are generally several equivalent systems which satisfy the above equation. The
approach of Selinsky and Guez is to select one such parameterization based on a priori
knowledge of the structure of the dynamics equations. The exact values of certain constant
parameters such as link lengths and masses, however, need not be known in advance.
The (n x p) neural subsystems are trained individually off-line to model the component
functions f;;(q, ¢, ) of the matrix F'(q,4,§). Once trained, the subsystems are combined
to form the neurocontroller wherein only the parameters ¢ are then leamed on-line.
Whereas Kawato et al. implements the nonlinearities as mathematical functions,
Selinsky implements them as neural nets which are trained to model those same functions.
The effective difference is that the implementation of Kawato et al. is more precise. The

nonlinearities of Selinsky and Guez are not tuned or re-trained on-line any more than
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those of Kawato et al. Selinsky and Guez claim that the advantage of their method lies

in the greater fault-tolerance of their distributed implementation.

There is certainly an overlapping region between the fields of neural control and
adaptive control. Just as the single-layer perceptron net is nothing more than Widrow’s
adaptive linear combiner (Figure 1.5), so also, the neurocontroller of Selinsky and Guez
has exactly the same macrostructure and parameter updating rules as the adaptive control
scheme of Slotine and Li [9] (Section 1.1). On occasion, the question of whether
a particular strategy is adaptive or neural has been the source of heated discussion.
However, for the purpose of this thesis, we can accept these controversial schemes as
neural candidates because of their ability to adapt or “learn.” Without worrying about
taxonomy, we can see that the neural scheme of Kawato er al. and that of Selinsky and
Guez share with the adaptive scheme of Slotine and Li a dependence on accurate prior
knowledge of the structure of the manipulator dynamics. We, however, are secking a

more general solution to the control problem at hand.

The inverse manipulator dynamics represent a 2N-th order system for N-link rigid
robots (higher order for flexible robots). By contrast, the nets discussed so far perform
strictly feedforward zero-order (static) mappings from inputs to outputs. The derivatives
(d,4) of the input ¢ have to be generated externally and supplied to the net as additional
inputs. An alternate approach would be to use recurrent nets such as those proposed by
Hopfield [32]. These dynamic nets incorporate intemal feedback via integrators (time
delays in the discrete case). The result is a higher order system which can be represented

by a set of differential equations of the form:

t=—az+N(z)+]
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where : z(t)€ R isthe siate of the net attime ¢

N(x) isthemapping functionof theinternal
static subnetwork
Ie R* isthenetinput
—a 18 the pole
By using a multiple layer nonlinear neural net for the mapping function N (z),
it has been argued that the resulting class of generalized neural nets is “adequate to
deal with a large class of problems in nonlinear systems theory™ [40]. Unlike the
standard feedforward net which can only model static mappings, these generalized nets
can potentially model a dynamical system of atbitrarily high order, without requiring any
external computation of input (and output) derivatives. Therefore, the inverse dynamics of
a single-joint manipulator can theoretically be modeled by a single input (joint position),

single output (torque) generalized neural net.

Aside from the fact that very little is known about such nets, there are some
fundamental dangers with this approach. Because this net intemally performs integration
on the weighted input signals, even small modeling errors or biases can become very
large with time. To prevent this, the net may require an additional feedback loop or
some external “synchronization” signal. A still more severe problem occurs if the plant
is non-minimum-phase, that is, in the case of a continuous linear time-invariant system it
has zeros in the right-half s-plane (or outside the unit circle in the z-plane for a discrete
linear time-invariant system). The dynamical net (plant’s inverse dynamics) would then
have poles in the right-half s-plane (outside the unit circle in the z-plane), and would
therefore be open-loop unstable. Even if the overall closed-loop system is stable, the

neural net itself could saturate, causing severe clipping errors.
One way of dealing with this problem is to introduce a delay into the system, as
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proposed by Widrow and Stearns [13]. The corresponding training configuration is shown
for a discrete system in Figure 1.3, where the adaptive inverse model can be replaced be a
recurrent net. By choosing a sufficiently large delay D, the delayed inverse model can be
stabilized, while preserving its amplitude response. Urnfortunately, this method generally
causes significant changes in the phase response (and transient response). Although this
solution may be acceptable for certain filtering applications, it certainly does not lend
itself to real-time robot control. Widrow and Stearns have suggested methods to restore
even the phase response, including the addition of a phase compensator with variable

delay, but any such add-ons can at best degrade the overall system response.

In any case, some additional delay in the response is necessary to ensure stability of
the inverse of a non-minimum-phase system. Even if we were to accept a small known
delay D in the controller, there is no reliable method for selecting D for a plant whose
dynamics are unknown. Choosing a very large D just to be safe would likely violate our
system performance requirements. Because we assume no prior knowledge of the plant’s
dynamics, we cannot even be sure whether or not they are minimum-phase. The risk of
instability must therefore be assumed in all cases, making the dynamical net an unreliable

solution for the purpose of this work, but certainly one that merits future investigation.

Finally, a neural net paradigm worthy of mention for its relatively short training times
is the counterpropagation net. It is typically composed of three layers. The first hidden
layer normalizes the input vectors onto the surface of a unit sphere. The second hidden
layer is a Kohcnen layer within which the nodes compete among themselves such that
there is only one “winner” for each input vector presented. Thus, only one node in this
layer is active at any given instant. The final output layer is the Grossberg Outstar. It
maps each of the finite number of possible outcomes of the Kohonen layer into a point

in the output space [39].

43



Hecht-Nielsen claims that the counterpropagation net can usually be trained one to

two orders of magnitude faster than the backpropagation net [39]). The shorter training
time has been confirmed in simulations of robot kinematics [41]. However, in both [39]
and [41], it has been concluded that the counterpropagation net results in significantly
greater error when modeling a continuous system. This is due to the discretization
in the Kohonen layer. In fact, the number of levels of discretization in the trained
counterpropagation net is bounded from above by the number of nodes in the Kohonen
layer. Of course the discretization error can be reduced by increasing the number of
nodes, at the expense of the required training time. However, this approach seems

counter-intuitive since it involves using a discrete network to model a continuous function.

3.2 Selecting a Network Paradigm

Referring to the criteria for network selection listed in Section 2.8, we must now select
a suitable neural net for modeling robot inverse dynamics. Robot inverse dynamics map
joint positions g (and possible higher derivatives of positions ¢,4,...) into a driving
torque u. This is clearly a mapping from one space into another entirely different space,
so the neural net will be hetero-associative. From the discussion in Chapter 2, it follows
that we will use a supervised learning strategy and will consequently require a training
signal from outside the net.

The net should also have a continuous (input:output) mapping. Looking at the net
as a mapping from an input space ¢ to an output space u, we could actually implement
it as a massive lookup table wherein each element represents a tiny hypercube from the
input space. As the input varies continuously, the output will vary discontinuously in
steps as the input crosses the hypercube boundaries. These steps could be very small
but then the size of the table would become too large for economical implementation.

If the number of inputs is n and each one is discretized to d levels, the size of the
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table is d". For a modest number of inputs, say 3, discretized into 0.1% steps of their
respective domains, the table would require 10° entries. We therefore set out to model
our continuous mapping by using a continucus neural network, as opposed to a discrete

net such as counterpropagation.

Perhaps the greatest difficulty in applying neural networks to real problems is that
there is so little mathematical theory to guide us in this area. Most researchers concede
to using a trial and error approach in developing neural nets to accomplish specific tasks.
Certain network paradigms have received more attention than others from theorists, and
backpropagation in particular has associated with it some proofs of convergence and

applicability which inspire confidence. Hecht-Nielsen has shown that:

Theorem 3.1: Given any ¢ > 0 and any L, function f : [0,1]" C R" —
R™, there exists a three-layer backpropagation neural network that can

approximate f to within ¢ mean-squared error accuracy [17].

This result is corroborated by several others such as Stinchcombe and White [42],
who have extended this universal approximation property to nets with bounded connection

weights.

In theory, we can make the mean-squared modeling error e arbitrarily small by
increasing the number of nodes in each hidden layer, without increasing the number of
layers. Hecht-Nielsen noted that although three layers are always sufficient, more layers
may be desirable for some problems which would otherwise require an intractably large
number of nodes. In fact, the number of nodes required is entirely problem dependent,
and although 'hard’ lower bounds for this number have been proposed [43], we are not
aware of any formal procedure for determining an optimal number. Generally, some
experimentation is required in designing a network which satisfactorily balances the

mutually opposed design criteria of error minimization and network simplicity.
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The backpropagation learning algorithm involves updating the internal connection
weights by the 'Generalized Delta Rule’ described in [44]. When this rule is applied
to a feedforward net with semilinear activation functions, the following has been shown

to hold:

Theorem 3.2: The generalized delta rule essentially implements gradient

descent in sum-squared error for semilinear activation functions [44].

This means that at every learning step, the net’s modeling error is reduced (unless
we have reached a minimum, in which case the error remains unchanged). Mult-layer
nets may contain local minima in addition to the global minimum, so the learning may
in theory get “stuck” at a sub-optimal local minimum. However, empirical investigations
of local error minima in practical problems indicate that there is little cause for concern

[44, 45].

Unfortunately, this theorem does not indicate how quickly the training will converge.
The rate of convergence depends on a large number of factors including the initial
connection weights, the learning rate coefficients, and the distribution and order of
presentation of the training data. Some experimentation is often required to achieve

an acceptable rate of convergence.

Although these theorems do not guarantee success with the backpropagation network,
they do provide us with some useful guidelines for applying the backpropagation net to
a given problem. Theorem 3.1 gives us some insight into the effects of topology on
modeling accuracy. Theorem 3.2 guarantees that continued training will never result in
increased modeling error provided that the training data consistently represents a single

L, function.
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3.3 Neural Net inputs and Outputs

A robot’s direct dynamics, ie., its simulation can be represented as a system whose
inputs are the joint torques, one per joint, and whose outputs the joint positions. It would
therefore seem to follow that to model the inverse dynamics, our neural net should
simply have the inputs and outputs reversed. In other words, the net inputs would be
joint positions, and the net outputs would be joint torques. Because this relation between
joint positions and torques is dynamical, any device used to implement it (in this case a
neural net) must also be dynamical. The net would need the ability to internally compute
the derivatives of its inputs and/or outputs. Although the dynamical net discussed in

Section 3.2 has this ability, the backpropagation net does not.

The backpropagation net, once it is fully trained and its weights are fixed, performs a
strictly static mapping from its inputs to its outputs. There is a tendency to think of such
nets as dynamical because of their ability to learn or self-adapt. The learning process
is dynamical, but the dynamics of learning are not directly related to the dynamics (if
any) of the relation being learned. In fact, the dynamics of learning are defined only by
the backpropagation algorithm, by the node activation functions, and by the learning rate
constants, all of which are pre-selected by the designer of the net. The net’s dynamics,
therefore, are not themselves learned, but instead are only used to learn some unknown
static mapping as quickly as possible. How then can we model a robot’s inverse dynamics,

using only the static mapping of a backpropagation net?

We begin by considering a single-input nonlincar dynamical system, described by:

1':1 = .fl (31732"")31!7")

2= f2(21,Z2,...,%n,u)

(3.1)

in = fﬂ (3‘1,-‘52,- ..,z,,,u)
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where Zy...T, arethe states
u i8 the driving torque
fi...fn arenonlinear functionsof z1...z, and u
n ts the order of the system

In systems where the states z; ... z,, and their derivatives are measurable, it is possible

to obtain a static inverse mapping of the form

U= finu (m],zz,..-,xn,ii) (3.2)

where i can be the index of any one row in Equation 3.1, which contains u in the right-
hand side. The mapping f;n, can then be approximated by training a backpropagation
network of suitable complexity. This net will have at most n + 1 inputs, and a single
output. If the output y of our original system (3.1) happened to be one of the states
T1...Zn, Say z;, then this static net could actually be thought of as modeling the inverse
dymnamics relation from y to u, by tapping into the dynamics of the plant itself for the

additional n inputs, zx,(k = 1,2...n,k # j), and ;, as shown in Figure 3.2.
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Figure 3.2: Using a static mapping to model the inverse dynamics. (single-input, single-output case)

This approach, although theoretically quite straightforward, has some implementa-
tional difficulties that may be insurmountable in all but the simplest of cases. First, the
states must all be measurable. This can only be done if the states represent real quantities,
and sensors can be obtained or designed to monitor them. Second, although Equation
3.2 indicates that only one of the state derivatives (z;) is required, we do not know
which one. Actually, if we return to our assumption of no knowledge about the system
equations, there is no direct way to proceed with this approach. However, by performing
nonlinear transformations on the system, we may be able to map the states z; ... z,, onto
some measurable outputs which have a real-world significance. For example, Spong ez

al. [7] describe the single flexible joint using the state vector

EN q]

T2 g

T3 2

[za] [Z]
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where : q is the joint position
z is the torque within the joint
The joint position ¢ and velocity ¢ can be readily measured. The joint torque 2 is more
difficult to measure, althongh sensors to do so have been designed [46]. In addition, it
can be shown that our static inverse mapping function would require the measurement

of 2 and # (which may be extremely difficult) to yield the relation

u =fl'ﬂv (Q$q'szvz.12)

Any suitable transformation can be performed on the system equations to obtain a more
useful set of state variables. Regardless of the transformation, the resulting inverse
static mapping for the n-th order dynamical plant will require n 4+ 1 independent input
variables, taken from the plant itself.

In this research work, we attempt to develop a general approach to modeling inverse
dynamics, yet one which is specifically intended for robotics. Because the joint position
is invariably taken as one of the outputs (if not the only output) of the robot, and because
it can be measured relatively easily and accurately, we use it as the basic variable in our
general approach. Let us consider a real-world single-joint robot of some unknown order

n (due to dynamic uncertainties), described by

¢1=q2

@2=q
(3.3)

dn—1=4qn

én = .f(QhQ%'- -qrnu)

where : u is the input
gi i=1,...,narethe states

F(-)  is a nonlinear (static) function of q1...qn and u
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The representation given by Equation 3.3 can be obtained from the general system
description in Equation 3.1, provided certain conditions are met [3]. From the last row

of Equation 3.3, it can be seen that our static inverse mapping will be of the form

U= finy (Qa 4,y - ’q(n))

where ¢ = ¢ (Figure 3.3).

> q
u Plant . q
* Dynamics L q®
et Static -
= Mapping

Figure 3.3: Generalization of our approach to modeling inverse dynamics.

Provided that this static mapping represents an L, function (a fairly lenient require-
ment), then a backpropagation net can, in theory, be trained to approximate it. The
strength of this approach stems from the fact that we do not require any prior knowledge
of finu(:), nor of the transformation used to obtain the form in Equation 3.3, nor even of
the plant’s original dynamical equations. We do, however, require a knowledge of the
order of the system and the ability to obtain accurate measurements of ¢, ¢, ... q™).

The ability to measure higher derivatives of g is primarily a technological issue of

sensor design. There are significant noise problems to be addressed when taking time
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derivatives of the signals, and we are not aware of any existing devices for measuring
y©® or y4). However, for the purposes of the present theoretical investigation, we will
assume that the required derivatives (of joint position) can somehow be obtained.

In the case of a multiple-link manipulator in which each joint ¢ is described by an
ordinary differential equation of order n;, the total order of the system will be
where N is the number of joints. The dc::gln requires at least the first n; derivatives
of the position of each joint 4, so the system designer must estimate the value of n; for
each joint. This can either be done intuitively, based on a knowledge of how the robot
is built, or experimentally by measuring its response to various types of inputs.

If the neural net is trained with fewer than n + 1 inputs, the training procedure will
generally not converge. For example, if we assume that t.he manipulator is rigid and that
there are no dynamic uncertainties, then n = 2, and the inverse static mapping to be

performed by the net is given by

u = finv(9,4,9)

This is consistent with the standard form of the rigid manipulator dynamics given
by Equation 1.5. The f;,, mapping is fully determined by the three net inputs g, ¢, §.
In other words, for each input vector (gq,¢,§) there is a unique output (u). During
supervised training, the net would always be presented with the same desired output
vector for any given input vector. Under this condition, learning would converge to

some error minimum.

If, on the other hand, the system designer incorrectly estimates that this robot is of first
order, and uses only position and velocity as inputs to the net, then the corresponding

static net mapping will be given by
u= finv (q'; q.)
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In this case, for a given input vector (g, ¢), the net may receive any number of different
desired output values (ug) which depend on the unknown values of §. Consequently,
the error surface will change at each step of training, and the leaming algorithm will
be unable to converge.

It should be noted that the system designer can, however, overestimate the order of
the robot with impunity. In our example, if a third order system is assumed, then four

inputs to the net are required, with the resulting mapping given by

U = fine (Qaq.a g, q(3))

where ¢(3) denotes the third derivative of g with respect to ¢ (jerk). Due to the lack
of correlation between ¢(3) and u, the additional input will be treated much like a pure
noise input. The backpropagation training algorithm will eventually reduce the weights
on all connections to ¢(*) until this redundant input ceases to affect the net’s output.
This observation would seem to encourage the designer to use a few more derivatives
than deemed necessary, just to be on the safe side. However, it is highly desirable
to minimize the number of derivatives used, because of the measurement difficulties
discussed previously, and also for the purpose of reducing network complexity and
training time. In general, the designer will have to make an accurate estimate of the
exact order of the plant. If training does not appear to be converging for a particular net,

an additional input derivative may have to be added.

3.4 The “Many-to-One” Mapping Condition

Due to the nonlinearity of the f;,, mapping, a “non-uniqueness” condition can cause
learning difficulties similar to those caused by underestimating the order of the system.

Let us consider the nonlinear first order mapping
W=qg+2§
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which can be rewritten in our standard form

u =fs‘nv(q,é)= +vq+2¢

Here, for every net input, there are two desired outputs which will satisfy the mapping. If,
during training, the desired output u4 is sometimes positive and sometimes negative, the
backpropagation algorithm will not converge to a solution, but rather will tend towards an
“average” output (in this case, zero). To overcome this, we could ensure either uy > 0 or
ug < 0 at all times during training. However, the choice of any such restrictions would

generally have to be based on the plant dynamics which we assume are unknown.2

In general, backpropagation is capable of learning input/output mappings that are
one-to-one or many-to-one, but not one-to-many. Intuitively, we would not expect to
encounter a one-to-many mapping for a non-redundant real robot, because such a mapping
would imply that different torque trajectories could be used to yield any single end-effector
trajectory. Although we have never encountered a robot that exhibits such behavior, the
theoretical possibility nevertheless exists, and this risk must be acknowledged. In this
work, however, we assume a one-to-one or many-to-one mapping. Should leaming fail
to converge for a given robot after the previously-discussed precautions have been taken,

then this assumption should be re-examined for the robot in question.

3.5 Network Topology

In our simulation, we have compared several different network configurations. One
configuration which provided a good compromise between modeling accuracy and total
learning time is shown in Figure 3.4. The input buffer layer contains strictly linear

activation functions and has the fixed weights shown in Table 3.1. This layer does not

2 There is an additional constraint imposed by this plant's dynamics that (¢ + 2¢) > 0. This is ensured
when ¢ and ¢ are taken directly from the plant, however if these net inputs are 10 be generated by some
other means, then the preceding condition would have to be checked explicitly.
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perform any learning. It is used only to scale the net input signals so that Layer 1 nodes
are not initially driven to the extreme ends of their activation functions.3 Although the
scaling is not necessary, it does significantly reduce the total learning time for the net.
The weights have been estimated based on the observed operating range of the robot’s

outputs (net inputs).

Lyer3

Lyer2

Layer 1

hpt
Bll?f!

Inputs

Figure 3.4: Topology of neural net used in simulations.

3 Since the leaming rale is proportional to the derivative of the activation function, learning with sigmoid
and hyperbolic tangent activation functions is fastest when the sum of a node’s inputs is close to zero.
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input weight
q 033
dq 0.04
ddq 0.01
d3q 0.0033
d4q 0.0002

Table 3.1: Fixed weights of nodes in Input Buffer Layer.

Each node in Layers 1-3 is driven by all the nodes of the layer immediately below.
An additional bias input has been added to each node to allow for the possibility of a

fixed offset.* The input function of any node j is the weighted summation

Aj= Z wirlip + wij
keK

where: K  isthe set of all nodes in the layer below node j
B isthe output of the bias node (B =1)

b  istheindez of the bias node
The output O; of node j is related to its activation A; by the output function

O; = tanh(4;)

Although the standard backpropagation algorithm uses the sigmoid output function
whose outputs are in the range (0,1), we use the hyperbolic tangent to obtain a bipolar
output in the range (-1,1). This is a valid substitution because both of these functions
are semilinear, a necessary condition for successful application of the backpropagation

algorithm as defined by Rumelhart et al. [26].

4 For example, if all net inputs are zero and the desired net output is non-zero a bias signal is required

for trainability.
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Layer 3, the output layer, consists of a single node which maps the outputs of Layer
2 into the overall net output u. In the multiple-joint case, the net would have one input

node for each joint in the manipulator.

Because the net’s output corresponds to the manipulator’s driving torque, the range
of this output will be the same as the operating range of the manipulator (after the net
has been trained). However, the hyperbolic tangent output function limits the net output
to the range (-1,+1) which generally falls far short of any real manipulator’s operating
range. We overcome this problem by scaling (multiplying) the net’s output by the actuator
torque limits. Doing so gives the net the ability to generate the required output torques,
while guaranteeing that the net cannot under any circumstances damage the robot it is

driving by exceeding its torque limits.

A potential shortcoming of this approach bccomes manifest when the robot is not
trained (but operates) over its entire permissible torque range, as would often be the
case. The ability of the net to model nonlinear mappings is given by the nonlinear
node output functions, in our case, the hyperbolic tangent function. The derivative of
u = Upgrtanh (z) varies from ¢t = Uy, when u = 0to & = 0 s u — FUpq,, Where
Unma: is the given robot’s actuator torque limit. This significant variation in 4 provides a
measure of the degree of nonlinearity of the hyperbolic function. By contrast, if the robot
were used only within one fifth of its maximum actuator torque range, « would vary only
from & = Upqez When u = 010 & = 0.96U;ngz When u = Up,y;/5. In other words, u
would remain nearly constant over the operating range, thus limiting the Layer 3 output
mapping to an almost linear relationship. Recalling that we need three nonlinear layers in
the net, Theorem 3.1 provides strong motivation to add a fourth layer to the net. Once this
is done, the single-node output layer can implement a strictly linear mapping function,

however we retain the byperbolic tangent function with appropriate output scaling to
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protect against exceeding actuator limits. The effects of varying operating range and

number of layers are illustrated empirically by the simulations in Chapter 5.

3.6 The Generalized Learning Model

As we have discussed, the fact that the backpropagation net uses snpervised learning
implies the need for a training signal. In the past, most researchers [14, 19, 20] using
neural nets to model robot inverse dynamics have adopted an approach referred to by
Psaltis er al. [21] as specialized learning. This approach, illustrated in Figure 3.5,
consists of driving the unknown system with a neural net while using the error measured
at the system’s output to update the internal weights of the net. The success of this
method has been demonstrated for rigid systems. However, we feel that it is unsuitable
for flexible manipulators. Because highly flexible joints tend to be only marginally stable,
their linearized models have a complex conjugate pair of poles close to the imaginary
axis of the s-plane [7]. During the early stages of learning, the weight changes taking

place within the neural net tend to reinforce the oscillatory tendency of the plant.

Robot 1,

Inv. Robot
Dynamics Qe

Figure 3.5: Specialized learning configuration.

Another difficulty that arises with specialized learning is the question of how to
determine the training signal u, that corresponds to the measured system output error

ge. This correspondence, given by the Jacobian of the plant, is unavailable to us under
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our assumption of unknown plant dynamics. Kawato et al. [20] have estimated it using
constant values. Chen and Pao [19] proposed an adaptive method called the inverse
transfer learning scheme. Both of these approaches however are only approximations, so

some error is inevitably introduced into the leaming procedure.

In order to avoid these problems, we have adopted the generalized learning model [21]
as shown in Figure 3.6. In this scheme, the learning procedure cannot cause unwanted
plant oscillations, because the plant is no longer driven by the net. Furthermore, the
torque error is given directly and accurately. The main disadvantage of generalized
learning is that it is an off-line procedure. The net is first trained at the output of the
plant as shown in Figure 3.6. Once training has been completed the weights are fixed and
the net is placed in front of the plant to drive it . It should be noted that the two types
of learning could be combined by first performing generalized learning, to establish an
accurate inverse dynamics model and then running the system under specialized learning

with a slower learning rate so as to compensate for variations in the plant dynamics.

Figure 3.6: Generalized leaming configuration.
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3.7 Lowpass Noise Training

The generalized leaming model requires that we provide torque input trajectories
during learning. Our goal is to train the net so that it performs well for any arbitrary
joint space trajectory (subject to actuator constraints) that we may later present to it. The
most general type of training signal would be white noise. However, since the expected
system input is limited to low frequencies, only lowpass noise is used. To simulate this

signal, we employ a summation of randomly chosen sinusoids given by:

N
u(t) =) Aisin (wit) (3.4)

i=]

where N = 5. A; and w; are real constants generated pseudo-randomly within the ranges

"Amaz S Ai < Ama:

0 S wi < Wmaz

and updated at 10 second intervals during learning. A,,,, is chosen so that u (t) remains
within actuator constraints. Clearly, our bounding method is vastly oversimplified, mainly
because in simulation there is no danger of damaging any hardware. It is understood that
when a real robot is used, a more reliable method for remaining within actuator limits
will be required. Several simulations with different values of wp,, were carried out,
resulting in widely varying degrees of learning ability as discussed in Chapter 5.

Using a simulated noise signal generates a uniformly populated input space during
learning. As a result, during subsequent network recall, any input vectors presented
will be relatively close to some of the vectors used during training; the distances over
which the net has to interpolate will remain small [21]. The noise signal also results

in an unordered presentation of the inputs during learning. This is a highly desirable
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condition for convergence to a global minimum when using, as we do, the generalized
delta training rule.

It is very important for the training signal to exercise the entire operating range of the
robot, in terms of joint positions, velocities, and all applicable higher derivatives. If the
intended operating range is bounded only by the actuator limits, then the training signal
must uniformly exercise the full range of torques between those limits. On the other
hand, if we know in advance that the robot will only be used for a set of operations that
exercise a portion of its maximum operating range, then it is more advantageous to train
only within that smaller range. Doing so will result in a denser training set distribution
over a smaller (generally simpler) subspace. Given the same net and the same training

time, significant reduction in modeling error can be achieved.

3.8 Learning Rates

Recalling the generalized delta leaming rule (Equations 2.1 - 2.3),

Awji = c1 * b * I (3.5)

6; = (Dj — O;) * f; (4;)

b = f;"(AJ') * Z(% * wyj)
9€Q
we note that the learning rate c; is used to scale the amount by which the node input

weights change at each learning step. The exact value of ¢; is chosen by the net designer
and is generally less than 1.0.
A very low learning rate yields relatively slow convergence but a smooth trajectory

of descent along the error surface®. Higher learning rates will generally yield faster initial

5 Assuming random order of presentation of the input data.
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convergence into some neighborhood around the error minimum, with no further average
error reduction after that. The weights tend to fluctuate a great deal with higher learning
rates, resulting in a jagged trajectory along the error surface. This tendency can cause
overall system instability if the net is being trained on-line and its output is used to drive
the plant. Under such conditions, low values of ¢; should be used to minimize the effects
of the net learning dynamics on the overall system dynamics. In generalized training,
this is not a concern. In fact, large weight fluctuations are desirable because they help the
network escape local minima and flat (almost zero gradient) regions on the error surface.
Conversely, there exists the danger of jumping from the global minimum’s region of
convergence into a local minimum’s region of convergence; however, the probability of
going in the opposite direction is greater®.

It can be seen from the generalized delta rule equations that even if the net attains
its exact global error minimum, it will not remain at that minimum unless that point
corresponds to exactly zero error. In general, a network of finite size cannot model an
arbitrary mapping exactly but can only approximate it to within some non-zero error
e. This error will cause the network to move away from its error minimum at the
next learning iteration, and then to move back towards the minimum at the subsequent
iteration. Because the step taken at each iteration is proportional to the leamning rate, a
smaller value of ¢; at this point will tend to maintain the net within a closer proximity
of its error minimum.

We employ the advantages of both fast and slow leamning rates by the process of
simulated annealing [37, 47]. At the commencement of leaming, the network state is
relatively far from the minimum error state. We want the network to progress quickly

toward the global error minimum, while escaping from any local minima and flat regions

6 The amount by which the weights change is proportional (o the error, and Jocal mirima correspond 10
a higher error than the global mirimum, so jumps from within the local minimum's region of convergence
will on average be larger than jumps from within the global minimum’s region of convergence.

62



e TN gy AT RN AT sy ey

that may be encountered along the way. The learning rate is therefore initially set high.
As learning progresses and the net approaches its minimum error state, we gradually
reduce the learning rate to smooth the path down the error surface and reduce the amount
of overshoot of the minimum. The learning rate is, therefore, set as a function of the

accumulated learning time according to some predetermined “anncaling schedule”. A

typical schedule used in many of our simulations is shown in Table 3.2.

1.00 0.50 0.25
Layer 2: 0.50 0.25 0.13 0.06
Layer 3: 0.25 0.13 0.06 0.03

Table 3.2: Leaming rate (c;) schedule for a 3-layer net.

Although it is possible to have an independent learning rate for each node, or to
have the same learning rate for all nodes in the net, we have found it most advantageous
to have an independent rate for each layer. The fastest rate is in the lowest layer, with

increasingly slower rates for successively higher layers.

3.9 Initialization and Timing

Once a network’s topology and leamning rates have been established, all of its inter-
connection weights must be initialized to soms non-zero values prior to the commence-
ment of learning. As can be seen from Equation 3.5, the amount of weight change Aw;;
at each learning step is directly proportional to the node’s input I;; along that connec-
tion. If a given connection weight w;; is initially zero, there will be no input along that
connection (I;z = 0), so the corresponding amount of weight change (Aw;;) will be
zero, and wj; will remain at zero forever. All interconnection weights must therefore

be initialized to non-zero values.
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If, however, all the weights in the net were initialized to the same non-zero value,
it can be seen that even as leaming progresses, all the nodes in any given hidden layer
would always have equal outputs’. Such a network could be collapsed to a net with the
same number of layers but with only one node in each hidden layer; any additional hidden
layers would be redundant. However, we need a net for which the addition of hidden
nodes will tend to enhance its modeling capability. The initial weights must, therefore,
be non-zero and unequal. The weights in our simulations are initialized independently

by a pseudo-random number generator producing values in the range [-0.1,0.1).

During learning, the net is simulated as a discrete, synchronous sub-system with a
fixed sampling rate. The inputs and the desired outputs are held constant for the duration
of each learning step, while the net recomputes its internal connection weights which
become effective at the beginning of the next time step. The simulated system can
be thought of as continuous-time net with synchronized zero-order “sample and hold”
devices at its inputs and its outputs. As a result, the dynamics of signal propagation

through the net do not affect its output signal, and transient states are avoided.

No attempt has been made to run these simulations in real time, so we placed
no restrictions on the size of the time step. For real-time simulation or hardware
implementation, there would certainly be a lower bound on the step size. We use a
step size of 0.02 sec., which for real-time feedforward operation of the net in Figure 3.4
would entail approximately 0.5 MFLOPS, a rate easily attainable by many off-the-shelf

floating point co-processor chips.

7 Based on the assumption that all nodes in a given layer have the same leamning rate and the same
output function.
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3.10 Summary

A method has been presented for using a backpropagation net to model the inverse
dynamics of the flexible-joint manipulator. We have shown that even a static net is
capable of approximating a robot’s driving torques directly from the joint positions and
their derivatives, provided that a sufficient number of those derivatives are obtainable. A
procedure for training such a net has been detailed..

This neural network based approach has the distinct advantage of allowing us to
develop controllers for robots whose dynamics are unknown. However, the control system
designer must know the order n; of the differential equation describing the dynamics
corresponding to each joint : of the manipulator, and be able to accurately measure (or
compute) at least n; derivatives of the position of this joint.

In the next chapter, we show how such a net can then be used as part of a nonlinear
feedt- ontrol system. The following chapter shows an application of our approach to
a" ~ -of-freedom flexible-joint manipulator. Both the network training and on-line

conu.. , ses are evaluated by computer simulation.
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4
THE PROPOSED CONTROL SYSTEM

4.1 System Structure

As discussed in Chapter 1, we seek to satisfy two major design objectives. First,
the controller design must be attainable without the availability of the robot's dynam-
ical equations. Second, the overall system response must conform precisely to some

independently-provided performance specification®.

These potentially conflicting goals can simultaneously be satisfied by parnitioning the
controller as shown in Figure 4.1. The inner loop has the sole responsibility of linearizing
the plant. 'We use a neural net that has previously been trained off-line as described in
Chapter 3. For a single-joint manipulator with a dynamical model of order n, this net
will have 72 +1 inputs and a single output. The first n inputs (g, ¢,4,.. - , q("'])) remain
connected to the plant, just as they were during training. The highest order net input,
which was connect to the plant output ¢(® during training, is now connected to the outer
loop feedback signal v, whose units must therefore be the same as those of ¢(). The

inner loop is closed by connecting the net’s output u to the robot’s input (driving torque).

8 The specification must, of course, be within the physical limitations of the robot atuators and the
controller hardware. This problem was examined in Section 1.3.
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Figure 4.1: ‘The control structure for an arbitrary n-th order, single-joint robot.

As a consequence of the “‘many-to-one” mapping condition described in Section 3.4,
any given net input vector (q, Gydye .., q"), v) will produce a unique net output u. Let
us now make the assumption that for any robot state (q,q', d,-.. ,q("‘l)), the driving
torque v uniquely determines the rate of change of state ¢{®). This is equivalent to
assuming that the robot is controllable. Under this assumption, there exists a one-to-one
mapping between u and ¢(®) for any given robot state (q, Q,q,.. .,q("‘])). Since the
net was trained with its (n + 1)th input connected to ¢{™), the trained net will, therefore,
produce an approximation of that driving torque u which would result in the plant output
¢(™) being equal to the net’s (n + 1)th input. By connecting the net’s (n + 1)th input
to the feedback control signal v, and leaving all the other inputs connected to the robot,
the net output u will approximate the driving torque required to produce the plant output
g(™) = v. The dashed box enclosing the inner feedback loop in Figure 4.1 can therefore
be treated as a sub-system described by

¢ =~ v, @.1)
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where the quality of the approximation depends exclusively on the modeling error of
the net’. In the theoretical limiting case of a perfectly-trained net, this subsystem is not
only linear, but represents nothing more than a simple n-th order integrator. The trained
net and the inner loop together form what we will call the model-based portion of the
controller, so named because it models the inverse dynamics of the robot.

The second portion of the controller is the outer loop, commonly referred to as the
servo portion. The servo design does not concemn itself with the robot dynamics; instead
it treats the model-based portion as a black box which is assumed to perform n-th order
integration. Only the order of the robot is needed for the servo design. Any linear
feedback strategy can be applied to the outer loop. Our approach is a straightforward
extension of constant-gain PD control. Defining the servo error as e = ¢; — g, and
assuming that Equation 4.1 is a good approximation, the equation of motion for the

overall n-th order systtm becomes
e™ 4 kna1 eV 4 4 kyé+ koe =0 4.2)

where ko, ki,..., k,—; are the feedback gain constants which can be set to provide any
desired closed-loop system poles without any specific knowledge of the plant dynamics.

The resulting control law is given by

v= qf,") + knpe1 (qf,"'l) - q(""’)) +...+ki(da—q)+*ko(qa~9q)

This partitioned control strategy satisfies both of our major design objectives. By
employing a neural network, previously trained off-line by the procedure described in
Chapter 3, the model-based portion compensates for the robot dynamics without requiring
any knowledge of the robot’s specific dynamical equations. The servo-based portion can
then be designed to yield some pre-specified overall system response, also independently
of the specific robot dynamics.

9 Negligible inner-foop time delays are assumed.
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4.2 Comparison with Feedback Linearization

A comparison of Figures 4.1 and 1.1 reveals some similarities between our controller
and the feedback linearization approach for a single flexible-joint manipulator. Both
controllers use a partitioned strategy, wherein the inner loop linearizes the plant, and the
outer loop provides generalized linear system control. The outer loop (servo portion) is
the same for both systems, and both assume the ability to transform the plant outputs

into the form:

1 =q2
gz = q3
q-n-l =dqn

Gn =9(91,92,---,qn )
Our controller also shares the feedback linearization controller’s ability to create a “new”
subsystem which is both linear and decoupled [1]. Here, the similarities end.

The model-based portion of conventional feedback linearization systems requires
prior knowledge of the exact inverse dynamics of the robot. This knowledge includes
not just the order of the robot and the structure of its dynamics equations, but also the
actual values of all parameters. By contrast, our system circumvents this dependency by
training a neural net to perform that same mapping.

A second marke& difference lies in the way that the servo feedback signal v is passed

to the robot input u. In feedback linearization,
u=fov+fp 4.3)

where f, and f, are some nonlinear functions of the robet’s outputs. For any given

plant output vector, f, and f, are constant, so u is directly proportional to v. The servo
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feedback signal is said to enter linearly into the plant. Due to this restrictive conditon,
Equation 4.3 may fail to linearize certain plants. For example, Cesareo and Marino [5]

have shown its inability to linearize a planar 2-DOF flexible-joint manipulator.

In our system, on the other hand, the relationship between u and v is given by

4= finy (q,q, e gD, v) 44)

where fin, is a nonlinear function of both the robot’s output (q, Qyeory q("'l)) and of the
servo feedback signal . Consequently, v is not restricted to entering linearly, so Cesareo
and Marino’s proofs of nonlinearizability do not apply. Although there exists no general
proof of linearizability for our neural net based controller, comparison of Equations 4.3
and 4.4 reveals that our controller’s modeling capabilities represent a superset of those

of conventional feedback linearized controllers.

4.3 Selecting the Outer Loop Gains

When a sufficiently well trained network is obtained for the model-based portion
of the controller, Equation 4.2 becomes a good approximation of the overall system
response. Under these conditions, it is possible to fully specify some desired system

response by setting the servo gain constants appropriately.

We have chosen to specify that all the system poles be placed at a single location on
the real axis of the s-plane. For cxample, in our simulations of the single-link flexible-

joint manipulator, the closed-loop response is given by

6(4) + k3e(3) + ko€ 4 kié+ kee=0
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To place the four poles of this system at a point s, on the real axis, we must use

ko = s:
k; = —432
ko = 63,2,
k3 = —6s,
In our simulations, except where otherwise noted, we have chosen s, = —10, resulting

in the servo gains ko = 10000, k; = 4000, k; = 600 and k3 = 40.

Although the choice of s, is up to the designer, it will be limited by both the modeling
accuracy of the net and by loop delays in a real system. As s, is moved farther to the left
in the s-plane, the sysiem response becomes faster, but the resulting dramatic increass in
feedback gains makes the system much more sensitive to modeling inaccuracies. We will
show simulations in which the net was not accurate enough for a given pole placement,
and the system became unstable.

We have used a quadruple real pole throughout all the simulations, but this is by no
means an inherent restriction of the control system. The designer is free to choose any

poles that he/she feels are best suited to a particular application.

4.4 On-Line Training

Although the neural net is not installed in the closed-loop system until it has been
satisfactorily trained off-line, it may sometimes be desirable to cor-inue net training on-
line. Such training would allow system adaptation to environmental changes and robot
dynamics variations. It would also enable adaptation to frequently repeated trajectories.
For example, a neural net trained with the white noise generalized training procedure
may later be used on-line for only one task which is being repeated continually. On-line
training would finc-tune this net to better model specifically those plant dynami.. which

are most excited by that particular task.
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As is always the case with supervised nets, an error signal is required for such on-line
training. To obtain this signal, a secorid net is added to the closed-loop sysiem, as shown
in Figure 4.2. The two nets are identical at all times. Recalling that the error signal
must be in the same units as the net output, we can obtain this torque error u, by taking
the difference between the actual robot input u and the output of the second neural net
4c. The torque error signal is then used to train Net 2 in exactly the same way that
the off-line training was done. In fact, the subsystem formed by Net 2 and the robot in
Figure 4.2 is identical to the generalized training configuration presented in Section 3.6.
The notable difference is that the robot’s input u is no longer a random torque signal,

but rather a task-specific feedback signal which depends both on the robot dynamics and

on the accuracy with which Net 1 models those dynamics.
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Figure 4.2: A closed-loop controller incorporating on-line training. The two nets are identical,

As the training of Net 2 proceeds and its connection weights are updated, those
weights are imme-diately copied into Net 1 so that the two nets remain identical at all

times. In a sense, Net 1 can also be thought of as learning, but not exactly as defined
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by the backpropagation algorithm. Feeding the error signal u. directly to Net 1 weuld
not result in the same weight changes, and the two nets would not remain identical. To
understand why, let us review the generalized delta rule give by Equations 2.1 — 2.3.
The weight change in the output layer would be given by:

Awjk = 1 X ue % f; (45) % Ik

where beth A and I; are functions of the net input after it has been propagated forward
through the net. Whenever u, is non-zero, it follow. that the outputs of the two nets
are necessarily not equal (u # uc). Since the nets are identical, their inputs must be
different. Consequently, A, and I;; will differ from one net to the other, and the weight
chang s in the output layers of the two nets will not be equal. This line of reasoning
can easily be extended to show that the weight changes in any node will generally not
be the same for the two nets. Therefore, in order to maintain identical nets, we perform
backpropagation training in Net 2, and copy its weights to Net 1.

Net 2 has been chosen as the training net because of the way u. is obtained from the
system. The training error signal must be the difference between the net’s actual output
and its desired output. Since all of the inputs of Net 2 are taken directly from the robot
outputs and the net is supposed to model the inverse mapping of the robot, it is clear
that its desired output is simply the robot’s input u. By contrast, there exists no suitable
signal within the system to provide the desired output for Net 1. If there were such a
signal, we could eliminate both nets and use that signal to drive the robot directly.

Having established a configuration for on-line training, it may be tempting to use this
configuration from the outset, and to completely eliminate off-line training. This cannot
be done in general. Placing an untrained net into the on-line feedback loop, particularly
for flexible-joint manipulators with their inherently oscillatory nature, is likely to cause

closed-loop instability. The off-line training is needed initially to reduce the modeling
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error of the net sufficiently for it to be stable when it is later placed in the closed loop
system. The higher the servo feedback gains, the more accurate the net must be before

it can be placed into the feedback loop.

Another potential danger of on-line training is that the net’s internal learning dynamics
will reinforce the oscillatory tendency of the robot dynamics, and thereby threaten system
stability even when the net models the robot quite accurately. This risk can be reduced
by slowing the rate of weight changes in the net, thus introducing a time scale separation
between the learning dynamics and the robot dynamics. The net learning rate constants
can be used to achieve this slow-down. On-line learning rates should usually be lower
than those used for off-line training. Their exact values will depend on both the nature

of the robot and on the servo gains.

4.5 The Simulation Tools Used

All neural network and control system simulations were run on a Sun 3/60 worksta-
tion. The neural net training was done using a commercial package called NeuralWorks
Professional II [48). The network block diagrams and training error plots were also gen-
erated by this package. All other plots were obtained using a robot simulation software
package developed in a joint project at Concordia and McGill Universities. The robot
and control system simulation software was written in the C language. A 4th/5th order
variable time-step Runge-Kutta integration routine {49] was called to solve the set of
differential equations used to simulate the robot’s direct dynamics.

The behavior of the manipulator was simulated mathematically, using the model
described in Chapter 5. The equations describing this model, however, are strictly internal
to the software module that performs the robot simulation, and are in no way available
to the neural net or used in the system design. The manipulator is treated as a black

box about which the only obtainable information is its inpat/output response. Replacing
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the simulated manipulator with a physical one, therefore, would have no effect on the

design approach taken in this work.

The neural net was also simulated, but using the NeuralWorks package rather than
software developed in-house. This package has proven to be extremely helpful in some
ways and restrictive in others. It provides graphical tools for laying out and revising
the network topology in seconds. Parameters can be edited and one can even change
the network paradigm with a few simple mouse operations. Both the net and certain
performance graphs can be displayed on the screen or sent to a laser printer. The
simulation package provides an ideal environment for the rapid development and testing

of new ideas.

Once these ideas have been developed, and a satisfactory net has been obtained,
the commercial package may no longer be the most suitable tool. Its versatility and
features introduce computational overhead which can be avoided by writing dedicated
software for the chosen net. Furthermore, integrating the NeuralWorks package with
other software for the purpose of simulating an entire control system of which the net is
but one component, can be difficult and in certain cases impossible. For example, the
on-line training configuration employing two nets cannot be reasonably simulated using

NeuralWorks.

To take advantage of the simulation package’s features while avoiding its pitfalls,
we approached off-line training quite differently from the closed-loop coutrol system
simul~tions. The NeuralWorks package was used only for the training phase. This
package can be set up to take advantage of the UNIX's multitasking capabilities by
requesting its input data from another running process, rather than just reading it from
an input file. The concurrent process referred to by NeuralWorks as User I/O is written

in C and compiled as a separate program, whose sole function is to wait for and respond
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to NeuralWorks® request for data.

The two processes communicate using UNIX IPC (inter-process communication)
shared memory and semaphores, as shown in Figure 4.3, NeuralWorks first spawns
User 1/O and sets up the communication channel. At each training step (0.02 sec)
NeuralWorks requests two sets of data: net inputs and desired net outputs. To provide
these data, User 1/O must simulate the generalized training configuration of Figure 3.6.
When net input data is requested, User 1/O computes a new pseudo-random manipulator
input torque, advances the manipulator simulation by one learning step by integrating
the robot’s differential equations, and places the robot’s new outputs (g, g, §,..., ¢™)
into the shared memory. When desired net output data is requested, User I/O places the
manipulator’s current input torque (u) into the shared memory. By employing User
I/O, the training data can be produced "on-the-fly”, thus obviating the need to first
generate huge data files. This is particularly important because we are using random
training signals, rather than repeatedly presenting one training set as is frequently done

for backpropagation nets.
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Figure 4.3: Interprocess communication between NeuralWorks and User /O during off-line training.
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Simulation of the closed-loop control system is done quite differently. Because we
use a variable time-step integration routine in the manipulator simulation module, the
manipulator input must be updated at unequal time intervals. Furthermore, the inputs are
derived from the neural net and the servo controller, so the signals throughout the entire
feedback loop need to be recomputed at intervals dictated by the manipulator simulation
module. The NeuralWorks package is not well suited for this situation, in which it would
have to behave as a slave, with the User J/O dictating the loop timing.

To circumvent this difficulty, we have written a software module to simulate the
backpropagation net, thus eliminating the need for the NeuralWorks package. Our
software module is not capable of learning, but it can read the configuration file for
any backpropagation net previously trained by NeuralWare, and then simulate that net’s
feedforward response. This software module is compiled and linked together with the
manipulator simulation and servo-controller modules, thereby avoiding the overhead of

interprocess communications with NeuralWorks.
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5
SIMULATION RESULTS FOR A
SINGLE-LINK MANIPULATOR

To evaluate the effectiveness of off-line training and the closed-loop control strategies
developed in the preceding two chapters, we have simulated the application of these
strategies to a 1 degree-of-freedom flexible-joint manipulator. Although the manipulator
itself is relatively simple, the simulation process is far from straightforward. Starting
from a primarily trial-and-error approach (for lack of analytical guiding principles), we
proceeded to train one network after another. After each training session, one or more
system or training parameters were adjusted, based only on our observations of previous
training results, and the next training session was initiated. Some of the simulation results
actually led to refinements in the training strategy, such as the introduction of net input
scaling and the allocation of lower learning rates to the higher network layers. In fact,
simulation turned out to be far more than a “proof of concept,” but was actually an

integral part of the design process itself.

Rather than taking the reader through a chronological presentation of this laborious
process, we will review the simulation results in reverse order by first discussing the
performance of the closed-loop system, and then returning to some of the more interesting
effects observed while varying certain system parameters. Section 5.1 provides a detailed
description of the manipulator model used in the simulations, and Section 5.2 presents the
closed-loop system behavior when a trained 3-layer backpropagation net is used to control
this manipulator. Section 5.3 discusses the observed characteristics of pseudo-random
off-line training, and Section 5.4 compares the closed-loop performance of a few different
net topologies with that of a mathematical model based controller. In Section 5.5, we

compare the results obtained when using training signals with narrower bandwidth. The



remainder of the chapter explores the effects of variations in the closed-loop servo gains

and the joint flexibility coefficient .

5.1 Description of the Robot

As an example, we have chosen a single-link manipulator with joint flexibility. This

is the same model as in the example studied by Spong et al. [7] using an integral

manifold approach based on knowledge of the dynamic equations. The manipulator,

shown in Figure 5.1 consists of a motor which is elastically coupled to a uniform thin

bar of length I/, mass m, and moment of inertia (1/3)mi2. The joint is modeled as a

linear torsional spring with stiffness 1/u. The equations of motion are:
12 !
-nl—¢j+Buj+12-q—sinq+z =0
3 2
. . 1
Jmgm + Bmgm + ;z =u

where

_#q QJ—P q nqm

Rewriting equations (5.1) and (5.2) in terms of ¢ and z, we get

d=a1d+azsing + Az

uZ =azg+azsing + agpz + Ayz + Bau

where
al - 12 9 2 2' ;] (13 Jm 127 4 Jm ]
-3 1 1
4, = — Ay =4 - oy B; = oy

6.1

(5.2)

(5.3)

5.4




2 ik

The manipulator parameters used throughout our simulations are listed in Table 5.1.

I'n /
<

dm

Jm u

Figure 5.1: Single-link manipulator with joint flexibility.

u 0.001 (1/Nm)

m 10.0 (kg)

1 3.0 (m)
Bpn 0.015 (Nms)
B, 36.0 (Nms)
Im 0.04 (Nms?)

n 100

g 9.8 (m/s?)

Table 5.1: Manipulator parameters used for simulation,

This system contains the hidden variable 2, corresponding to the internal joint torque,
which is not observable from the plant outputs ¢,q,§ alone. Upon examination of
equations (5.3) and (5.4), we see that the system has four state variables, of which
two correspond to the ¢ variable, and the other two to the z variable. We assume a time

scale separation between the slow g variable and the fast z variable. It is then possible to
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decouple the equations and to linearize them about the operating point (¢ = ¢ = § = 0)
corresponding to plant equilibrium. The eigenvalues of the resulting system are computed
using the parameters from Table 5.1, yielding approximate pole locations —0.22 £ 0.54;
and —0.194:5.98j, as illustrated in Figure 5.2. The time scale separation between the two
complex-conjugate pairs is by a factor of 10, thus supporting our original assumption.
The pole pair at —0.19 £ 5.98; corresponds to the fast z variable of the system. The
hidden variable is therefore maximally excited at & frequency of 5.98/2r = 0.95Hz.
At frequencies in the vicinity of 0.95H > and higher, the error due to the unobservable

variable » becomes unacceptably large.

s-Plane

p_4p
4
\/

Figure 5.2: Poles of flexible joint used in simulation.

Solving equation (5.3) for z and substituting into equation (5.4), we get:

u= f {Qa da fi, q(3)9 q(ﬂ}
1
A1 B,

[(alAz — a341) § + (a1a4p — A2) § — p(a1 +aq) g®

+ (1) ¢ + az (43 — Ay)sing + (azaqp) cosg - §
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—(a2p)cosq - § + (azp)sing - ¢°] (5.5)

From equation (5.5), we see that the input motor torque is a continuous nonlinear function
of the link’s joint position ¢ and its first four derivatives. In state-space form, we can
write
x = g(x,u)

where g is a nonlinear function of the state vector x = [q, 4,4, q(3)] T, and the input vector
u = u. This system is observable only from the four states g, ¢, §, ¢¢*); however for model
identification we also have 1o take ¢{4) as an output. Monitoring (or approximating) the
system outputs g, 4, §,¢(®), ¢(4) would therefore result in a system which could be used
for training a neural net to any desired degree of accuracy.

The preceding analysis and plant description has been provided soleiy for the
information of the reader and to aid with the interpretation of the simulation results.
Although the robot simulation module implements the above equations, they were neither
used nor was their availability assumed for either neural net training or overall system

design.

5.2 Closed-Loop System Response with Trained Net

After approximately 2.5 hours of off-line training, the 3-layer backpropagation net
described in Chapter 3 was inserted into the closed-loop system. The servo gains were set
to ko = 40, k; = 600, k; = 4000, and k3 = 10000, corresponding to a quadruple system
pole at s = ~10. We present the closed-loop results for three different trajectories: a
low-frequency high-amplitude sinusoid, an exponential step, and a high-frequency low-
amplitude sinusoid.

Figures 5.3 — 5.8 illustrate the steady-state system response to the desired trajectory
gd = 40sin (0.5¢). Although the frequency of this signal is only 0.08H z, its amplitude
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of 40 rad. causes very high peak joint velocities of 20 rad/sec (1200°/sec). Despite
these high speeds, the tracking error in both position and velocity remains below 0.1% of
the input signal. However, as higher derivatives are taken, the percentage error increases
dramatically, surpassing 10000% in the fourth derivative of joint position ¢(4). This
error signal (Figure5.7) exhibits distinct high-frequency oscillations in a frequency band
at least an order of magnitude higher than that of the system input signal. Although
when viewed as a percentage of the desired signal qg‘), the error seems disconcertingly
high, it is actually quite reasonable in an absolute sense. In fact, its relative prominence
is due primarily to the nature of the desired trajectory itself. Because this paricular
trajectory is a pure sinusoid of low frequency, the desired value of the second derivative
of acceleration is close to zero, so even slight variations in the actual output ¢{4) appear
relatively large. When a desired trajectory of higher-frequency is used, these oscillations

in the higher derivatives become relatively insignificant.

From the driving torque in Figure 5.8, it is apparent that the controller is responding to
these oscillations by generating a control signal u which also contains this high-frequency
component. Furthermore, although these oscillations are present in the higher derivatives
of the output, the controller effectively prevents them from affecting the joint position
and velocity. Since in most robotics applications the emphasis is on tracking position
and velocity (and sometimes acceleraiion), we conclude on this basis that the overall
system response to the applied low-frequency trajectory is acceptable!®. It can, however,
be argued that these high-frequency oscillations are not being sufficiently dampzed, and
that an input which excites the fast modes of the manipulator could cause more severe
errors or even make the system response unstable. We will investigate this possibility by

looking at a high-frequency input trajectory.

19 In cases where more emphasis is to be placed on control of the higher derivatives, a more suitable
placement of the closed-loop poles could be obtained by adjusting the scrvo gains.
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The last plot in this series shows the difference between the outer-loop feedback
input to the net (v), and the fourth derivative of the manipulator’s actual position (¢(*)).
Although ¢(*) is not used at all in the controller, we recall that is was used as the fifth
input to the net during training. In fact, the only net input connection that has been
changed since then is this fifth input, wkich is now connected to v. According to the
theory developed in Chapters 3 and 4, the limiting case of a “perfectly-trained” net with
no time delays should result in ¢} ~ v. We therefore use (q(‘) - v) as a measure
of the net’s modeling error. For this particular trajectory, (q(‘) - v) oscillates within
+1000 rad/s%, as shown in Figure 5.8.
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Figure 5.3: Joint position and tracking error at steady state. qq = 40sin(0.5t).

Iq ‘qdl qaqd
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Figure 54: Joint velocity and tracking error at steady state. qq = 40sin(0.5t).
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Figure 5.5: Joint acceleration and tracking error at steady state. qqg = 40sin(0.5t).
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Figure 5.6: First derivative of joint acceleration (jerk) and tracking error at steady state. qq = 40sin(0.5t).
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Figure 5.7: Second derivative of joint acceleration and tracking error at steady state. qg = 40sin(0.5¢).
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Figure 5.8: Driving torque and modeling error at steady state. qg = 40sin(0.5¢).
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Figures 5.9 — 5.14 illustrate the system’s transient response to the desired trajectory
gg = 1—- e
¢a(0) = ¢a(0) = §a(0) = ¢V (0) = ¢{) (0) = 0. When the desired trajectory is

applied at ¢ = 0, it creates a discontinuity in the velocity error feedback signal é and all

At time ¢ = 0, the manipulator is at rest with initial conditions:

of its derivatives. The controller successfully reduces errors in all derivatives to below

5% of their initial values within 1 second.

The high-frequency oscillations observed in the previous trajectory are not present
after the first second of this exponential trajectory. A closer examination of ¢{4) in
Figure 5.13 reveals the initial excitation of the fast modes during the first 0.2 sec, but

these oscillations are very quickly damped as the transient error settles.
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Figure 5.10: Joint velocity and tracking error during transient. qq = 1 — ™,
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Figure 5.11: Joint acceleration and tracking error during transient. q¢ =1 - e,
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Figure 5.12: First derivative of joint acceleration (jerk) and tracking error during transient. qa = 1 —- e
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Figure 5.13: Second derivative of joint wcceleration and tracking error during transiert. qq = 1 - e,

-------------------------------------

o sevvecsdovncccdecrvens
*
Joosscaadavesacsdoecans
"

.

..............................................................................

1500 2000 2500 J00Dms
Figure 5.14: Driving torque and modeling error during transient. q4 = 1 — ¢,
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Figures 5.15 ~ 5.20 illustrate the system’s response to the high-frequency sinusoidal
trajectory g¢ = sin (10t). By setting all the initial conditions for the manipulator to zero
as before, we can view the transient response as it decays towards the sinusoidal steady-
state response. As with the exponential trajectory, the transient error decays within the

first second to below 5% of the desired input for g and all of its derivatives .

In contrast to the low-frequency sinusoidal trajectory, the error between even g4)
and q‘(i‘) becomes imperceptible as steady state is approached (Figure 5.19). The high-
frequency oscillations observed earlier are again present with approximately the same
amplitude as before, but because of the much higher amplitude of q‘(,‘), these oscillations
remain below 5% of the system inputs. As before, the modeling error lq(‘) - vl remains
roughly within 1000 rad/s* despite an approximately four-fold increase in the driving
torque (u) over the torque generated by the low-frequency input trajectory. This serves

as an indication of the success of generalized training in that the net has been trained

with a fairly well balanced error distribution over a wide operating range.
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Figure 5.15: Joint position and tracking error at high frequency. gg = sin(10t).

Figure 5.16: Joint velocity and tracking error at high frequency. qg = sin(10t).



Figure 5.17: Joint acceleration and tracking emor at high frequency. qq = sin(101).

Figure 5.18: First derivative of joint acceleration (jerk) and tracking error at high frequency. gq = sin(10t).
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Figure 5.19: Second derivative of joint acceleration and tracking error at high frequency. qq = sin(10t).

Figure 5.20: Driving torque and modeling error at high frequency. qq = sin(10t).
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5.3 Off-Line Training

The net used to obtain the closed-loop results described in the previous section was
arst trained off-line using the lowpass noise training procedure with A,,,; = 500N
and wmaz = 207 rad/s (10H2). Figure 5.21 shows the output error during the first 4
seconds of training. There is a noticeable decrease in the error as the network adjusts
its connection weights according to the deiia rule of backpropagation. This relatively
fast decrease in the error is due primarily to the high initial settings of the leaming rate
constants. One could expect this sharp downward trend in the error to continue, however
we have observed the opposite effect. After falling for a few seconds, the error often
increases sharply as training continues, and then decreases again gradually at a similar
rate to that shown in Figure 5.21. Such increases in the error are due to the pseudo-
random nature of the training signal. If the training signal were just one trajectory being
presented repeatedly, we would expect the error (averaged over each presentation of the
trajectory) to continue decreasing. A gradual flattening in the error plot would then signal

the approach of learning convergence, and serve as a signal to terminate off-line training.

Unfortunately, the results of pseudo-random noise training are much moi= difficult to
interpret. Even after 10000 sec of training, frequent fluctuations in the error are observed
(Figure 5.22), and the suitability of the net to any particular trajectory ceases to be a
function of training time. For example, we have found cases where a net trained for
9000 seconds performed better in the closed loop system than that same net after it
had been trained off-line for an additional 1000 seconds.!! To minimize such training
fluctuations, we implement simulated annealing by reducing the learning rates gradually
as a function of time so that the final network weights represent a good “average” model

of the inverse plant dynamics. It is toward this end that we train off-line for as long as

11 1n both cases, the desired on-line trajectory was qq = sin(10t).
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2.5 hours, despite the fact that we have found instances of nets which performed very

well on-line after less than one minute of off-line training.

8eo RMS Output Error

8.8 1.8 2.8 3.8 4.0 sec

Figure 5.21: Network error during first 4 sxconds of training.

1600 RMS Qutput Error

19800.0 10001.0 18002.8 10003.8 19084.0 s

Figure 5.22: Network error near the end of an extended training period.
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§.4 A Performance Comparison of Several Nets

With the intention to evaluate the effects of network topology on closed-loop per-
formance, we trained several different neis and tested them on-line. The parameters
investigated were the number of layers, the number of nodes, and the activation func-
tion of the output node (linear vs. hyperbolic tangent). All nets were trained for 9000
seconds using the simulated annealing procedure described previously. For purposes of
comparison, we also ran the simulation with the neural net replaced by the mathematical
model of the robot’s inverse dynamics, as developed in Section 5.1. The closed-loop

results for the mathematical model are shown in Figures 5.23 and 5.24.

Table 5.2 summarizes the closed-loop performance results for the various net topolo-
gies in response to the high-frequency desired trajectory g3 = sin (10t). The most
striking fact about these results is that the error due to the mathematical model is rela-
tively high. Figure 5.24 shows a modeling error (q(4) - v) of approximately 300 rad/s?
peak-to-peak. Although this is only about 1/6th of the modeling error of the 3-layer used
in Section 5.2, it is still more than one would expect for a mathematical model. We
attribute this error to the numerical integration performed within the robot model. Such
discrete integration necessarily introduces some time delays which would directly affect

the modeling error as we have defined it.

Although there were variations in the performance of the different nets, we could de-
tect no clear correlation between the performance and the network parameters discussed.
The observed differences in performance were actually within the same order of magni-
tude as the fluctuations caused by pseudo-random training. We therefore conclude that
the exact topology is not a critical factor in determining the net’s performance, provided
that we are dealing with nets having at least the minimum size required to model the

dynamics of the manipulator in question.




Another surprising result is that the “Big 4* network’s errors in the third and fourth
derivatives where actually lower than their mathematical model counterparts. We have
observed several such cases in other nets as well, but in all of these instances continued
training eventually increased the error. It is possible that such instances of unusually
low error are only random effects due to the fluctuations of lowpass noise training. On
the other hand, the nets were trained with the same mathematical model of the robot
(contining the same integration routine) that is used in the closed-loop system. It is
conceivable that the nets actually learned some of the unmodeled dynamics introduced
by the discrete simulation. Unfortunately, this result is not consistently reproducible, but
it does demonstrate the main strength of the neural network approach: its ability to learn

the unmodeled behavior of the system.
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Figure 5.23: Position and tracking error with net replaced by mathematical model.

ehssnessmscnas

desvemsrssnca

llllllllllllllllllllllllllllllllllllllll

ccccccc

lllllll

lllllll

Figure 5.24: Driving torque and modeling error with net replaced by mathematical model.
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Net

Approximate
Steady-
State

RMS

Errors

Net name:

Nodes in

Tanh 3

Lin 3

Big 3

Tanh 4

Big 4

Math
Model

Hidden Layer 1 20 20 50 20 50 .
Nodes in

Hidden Layer 2 12 12 30 20 30 _
Nodes in

Hidden Layer 3§ ___ S - 12 30 S

Output Node
Type

Position

raq)] 0.012] 0.008f 0.008] 0.015] 0.012] 0.008
Velocity
(rad/s) 0.05 0.02 0.05 0.06 0.015f 0.006
Accel.
(rads-s)] 0.6 0.2 0.5 0.6 012} 0.1
Jerk
(rad/s-s-s) 6.0 3.0 50 6.0 1.5 2.0
Deriv. of Jerk
(radss-s-s-s)§ 70.0 30.0 50.0 70.0 300 | 40.0
Modeling Error
4200 |175.0 |385.0 |560.0 |145.0 |140.0

(rad/s-s-s-s)

Table 5.2: Average RMS error at steady state for fully-trained rets in closed-loop system. g = sin(101).

5.5 Changing the Training Signal

To study the effects of varying the lowpass noise training signal, a new three-layer net

with the same topology as before was trained, this time with a cut-off frequency of 1/4 of
that used to train the original net. With wp,, = 57 rad/s (2.5Hz), and Apqaz = S00N

(as before), the net was trained until no further significant reductions in average error were

observed (9000 sec.). The resulting closed-loop response to the high-frequency desired
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trajectory is shown in Figure 5.26. The position and velocity error is approximately
500% higher than for the case of the original net (Figure 5.25). The driving torque signal
generated by the new net is severely distorted, as shown in Figure 5.30, and the modeling

error is more than three times higher than it was for the original net.

These results are not very surprising. One would expect a net trained with a higher
frequency signal to perform better for a high frequency trajectory than a net trained
within a frequency band that only barely encloses the fundamental frequency of that
desired trajectory. Following this line of reasoning, the new net should therefore perform
relatively well for our lower-frequency (0.08Hz) trajectory which is well within this
network’s training band. The simulation results in Figure 5.29 show that quite the
opposite is true. Compared to the performance of the original net (Figure 5.28), the
new net again generates 500% higher position and velocity errors. The modeling error is
still three times higher than for the original net. From these results, we can conclude that
the closed-loop performance is, indeed, critically dependent in the selection of a suitable
training bandwidth, and that this choice is not dictated exclusively by the bandwidth of

the on-line trajectories, but is also a function of the manipulator itself.
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Figure 5.25: Position and velocity tracking errors for original net. gq = sin(10t).
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Figure 5.26: Position and velocity tracking errors for net trained with lower-frequency noise. qq = sin(10t).
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Figure 5.27: Driving torque torque and modeling error
for net trained with lower-frequency noise. qg¢ = sin(10t).
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Figure 5.28: Position and velocity tracking emors for original net. q¢ = 40sin(0.51).
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Figure 529: Position and velocity tracking errors for net
trained with lower-frequency noise. qg = 40sin(0.51).
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Figure 5.30: Driving torque torque and modeling error for
net trained with lower-frequency noise. qa = 40sin(0.5¢).
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5.6 The Effects of Increasing the Servo Gains

Since the controller was designed with the goal that the servo gains alone should
define the overall system response, we now attempt to speed up the response by adjusting
these gains. Using the same net as in Section 5.2, we move the system poles from
s =—10 to s = —15by setting the servo gains to kg = 60, k1 = 1350, &, = 13500, and
k3 = 50625. The corresponding response to the desired input trdjectory gz = sin (10t)
is plotted in Figures 5.31 and 532. Ase¢xpected, the transient error decays more quickly,
falling to below 5% of its peak within 0.75 sec (in contrast to 1.0 sec when the poles
were at s = —10). The faster response does, however, require greater torque u which is

now reaching a peak of 1700 N, not far from the actuator limits of 2000 N.

To obtain an even faster response, we place the poles at s = —20 by setting the
servo gains t0 kg = 80, k = 2400, k2 = 32000, and k3 = 160000. Rather than
further decreasing the response time, however, this adjustment actually makes the system
unstable, as shown in Figure 5.33. The driving torque (Figure 5.34) exhibits severe
clipping at £1850 N, just below the actuator limits. Because we had set the net’s output
scaling to 2000, and the output node performs the hyperbolic tangent activation function,
it is not possible for the net output u to exceed 2000 N. By replacing the net with our
mathematical model, we can remove this restriction, and obtained the faster response
we desire (Figures 5.35 and 5.36), however the driving torque required to do so reaches
7000 N, clearly violating the actuator limits. The failure of the neurocontroller when
the system poles are set at s = —20, is therefore not due to a weakness in the control
strategy or in the net’'s modeling accuracy, but to a physical limitation of the manipulator
itself. The net actually protects the manipulator by limiting the torque to within the

allowed range.
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Figure 5.31: Position and tracking error with quadruple pole at s = ~15.

Figure 5.32: Driving torque and modeling error with quadruple pole at s = -15.
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Figure 5.33: Position and tracking emor with quadruple pole at s = ~20.

Figure 5.34: Driving torque and modeling error with quadruple pole at s = =20,
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Figure 5.35: Position and tracking error using mathematical model with quadruple pole at s = -20.
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Figure 5.36: Driving torque and modeling error using mathematical model with quadruple pole at s = ~20.
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5.7 The Effects of Greater Joint Flexibility

Figures 5.37 and 5.38 show the results for a net trained with a manipulator having
joint flexibility . = 0.001 being used in a closed-loop system to control a manipulator
with u = 0.01, and all other parameters remaining unchanged. As could be expected, the
increased flexibility results in severe error, and makes the system unstable. Retraining
the net off-line with this more flexible manipulator, and then re-installing it in the control
system yields stable tracking, as shown in Figures 5.39 and 5.40. However, the driving
torque u for this low-frequency desired trajectory is very close to the actuator limits of
+2000 N. Any further increases in flexibility, even if the net were re-trained, would
tend to cause the torque clipping and the corresponding instability observed in Section
5.6. These effects can be avoided by reducing the servo gains, at the expense of closed-
loop performance. In general, although the closed-loop performance can be controlled by
adjusting the servo gains as required, such adjustments can only be made within a certain
range which is determined by the actuator limits and by the manipulator parameters,

including the joint flexibility coefficient.
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Figure 5.38: Driving torque and modeling error for original net.
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l9-q,] 99,

Figure 5.39: Position and tracking emror for net trained with more flexible joint.

Figure 5.40: Driving torque and modeling error for net trained with more flexible joint.
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6
CONCLUSION

By combining several common elements from the fields of robotics and neural
networks, we have developed a new control strategy for manipulators with unspecified
nonlinear dynamics. The feedback linearization control scheme has been adapted so as
to allow the feedback signal to enter the robot nonlinearly, thus eliminating the inherent
limitation which makes classical feedback linearization unable to handle certain flexible-
joint manipulators [6]. By also replacing the model-based portion of the controller with
a neural network, we have obviated the need for any a priori knowledge of the robot’s
dynamical equations, thus meeting our primary design objective.

The emphasis has been on solving the problem of controlling a flexible-joint manip-
ulator, but the approach can be applied directly to other nonlinear control problems. It
is best suited for controlling plants whose dynamical equations cannot be derived with
sufficient accuracy. In cases where a reliable mathematical model does exist, such a
model may well be more desirable than a neural network based strategy for one or more
of the following reasons: the mathematical model does not require any training time,
it is generally easier to implement, and it may be more accurate than a neural net of
tractable size.

The proposed neural network based control strategy has two fundamental limitations.
The first is that it presupposes the knowledge of the order of the plant. For plants whose
dynamics are unknown, it is highly doubtful that the exact order of the system would be
known a priori. However, we contend that by observing the plant’s open-loop response
and examining its physical structure, it is possible to make a fairly accurate estimate of
the order. This estimate can be upgraded if neural network training does not show signs

of convergence. In either case, the order of the system will be easier to estimate than



the complete dynamical equations. The second limitation is that of obtaining a sufficient
number of derivatives of the plant output in a physical implementation of the proposed
system. This difficulty in obtaining the required state information from the plant is not
so much a limitation of our particular strategy, as it is an inherent problem of full-order
controller design for high order systems. For the purpose of this work, we have assumed

the availability of sufficiently accurate instrumentation to measure the required signals.

The development of our control scheme has required innumerable neural network
simulations. As a result of performing these, we have gained much insight into the
practical aspects of dealing with neural networks. Although they hold a great deal of
promise for solving the large class of problems for which mathematical formulations do
not exist, neural nets are not nearly so simple and elegant as they are assumed to be in
some of the more theoretical works. Training a net to control a flexible joint has consisted
of a long series of “trial-and-error” experiments. With minimal theoretical guidelines, we
have had to vary such parameters as network topology, learning rates, initial connection
weights, and training signals. Each time a change is made to one such parameter, the
entire training procedure is repeated while the net designer watches patiently to see if
the most recent change will improve performance as he had hypothesized. The neural
network based approach is highly heuristic and often frustrating, but it does open up
a path toward attacking those many problems against which conventional mathematical

approaches are powerless.
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