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.ABSTRACT
~A New Approaeh to the Approximation of Constang Group Delay

Lcw-pass One Dimensional Analog/and
Digital Transfer FunctYons

M.Omprakash Sharma, Ph.D.

Q\\-M;Z?Zimrzor"di:a University, 1985 :

1 . Y
., In this thesis, a new procedure for constant group delay

;pprox;?ation of low-pass, analog and discrete domain filters 15

developed. Starting with the ﬁhase'function as an odd infinite series,

K a new set of parameters are defined, A linear matrix eéequation is formed

in terms of these qéw variables andlfﬁe coefficients of the transfer

function. - Some properties gf the elements of the matrix lead to Qbme

* further 1nterest1ng'ﬁfoperties with respect to stability, genefation of

transfer functions by recurrence relation, aﬁd the solutions to the

coeff;ciénts of the traqafer func;ions. ‘ These ‘properties and the

structural properties of the matrix are exploited in order to enhance

the computational ability of the approximation procedure, the criteriﬁ

being the least mean square. Thdpprocedure incorporates a minimization

algorithm whicg requ;fes an initial ghess values for the variables. A

method to obtain these initial values fér‘a'given set of coefficients of

a transfer funétion, is~described. ?he stab}lity constraints, solutions

‘tq some of 'thé' coefficients;» and in the case of analog dom;in, the
elemental values of a ladder realization, are obtained simultaneously.

In the analog AOmaih, the izzkod of generating the denoninator

‘polynomial of the a}l-pofe trahsfer function 1is developed. Some

prOp;rties ;t thg generating matrix with respect to differentiability

and integrability of the elements and of the determinants of the matrix

a— ‘s
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are presented.' An important property of this matrix with respett to the

stéb}lity of the trahsfer function ‘is established. The existence of the

recurrence relation for the generation of the denominator polynomial are

shown.

3

The structural properties:of the matrix increases the computational

aﬂility in evaluating its determinanps by 68.75¥(when compared with that"

of the Gaussian method). Also, these properties lead to the‘evaluation‘

e

of the determinant in terms of lower order determihants and coefficients

of the polynomials of lower orders. It is shown that in each iteration

7 -

the elemental values of a doubly ‘terminated _ladder network ‘can be

evalﬁated simultaneously during the minimization process. These are
illustrated with examples. o ) e
Starting in the t-domain (Richard's variable), similar properties

are established for the generation of discrete transfer functions. The

difference and anti-difference propertiesﬁin thg discrete domain are

analogous to the derivativé and, the integral properties in the anlog,

domain. Also, the stru&tural properties are interestingly simiiar.
Similar to the analog case, an<'a1gor1tﬁm is developed for .the

approximatigh of constant, group delay in” the least mean square sense.

The minimization algorithm incorporated in the procedure requires a set
S

of initial values for the variables. - A method to obtain these initial

values is described. The approximation procedure 1is 1illustrated with

>

examples,

Scope for further research is discussed.’

3 .
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CHAPTER ONE

INTRODUCTION

1.1 GENERAL:

Constant group. delay( or 1linear 4eg?se) filters find ex£ensive
applications in signal proc;ssing;- It is known [1] that a number of
important features of a/éignal are well preserved only when the phase“is
also considered. Further, it has been shown [1] that a signal can be
reoonstructgd\inAa large numgg;,gﬂ&éﬁses when the phase component of the
spectrum of the sig;al is known.

_In‘aintion, distortionleas transmission is required 1n’ order to
preserve the signal wave shape. This necessitates synthesis of filters
having constant group -delay characteristics in the entire passband. In
practice, it 1is not'p0351b1e to realize such filters. Therefore, design
procedures are needed to feai&ze filters which ,approximateh'constanf
group delay charac£eristics over a réquireg bandwidth. ' -

In what follows, the various éontriﬁutions made in order to
app;oximate constant group delay qver a band of frequencieé will be

briefly reviewed.

1.2 CONSTANT GROUP DELAY APPROXIMATION:

Constant group delay low-pass ladder networks having transfer
fgnctions with Bessel polynomials as the denominators are well known
[2]. The method employed is‘fo obtain the continued' fraction expansion

Mew(moﬁwuapWMu frequency ,variadle) around the origin.

e - . e —————— \r’— - -
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Since the coefficients of the resulting continued fraction expansion are

positive, the corresponding transfer function is always stable, and this
also provides the elemental vaiues of the resulting passive ladder

né twork. - \\,.

In [3,4], approximations of arbitrary phase characteristics have

Qtﬂ’bs
\ﬁ%m been considered, and from the solutions, maximally flat delay filter can

~Be deduced as a particular case. As the group delay response 1s

maximally \flat abdht nthe gg}gih, the error of approximation is more
towards ??e edge of the passbang. . M '

Explicit solution to the a%proximation of constant group delay at
equidistant points inlkhe aEecified band has also Leen obtained [5]. 1In
this, the ’devi;tion ofr tgén}delay at the points other than the
equidistance points are not considgr%q. All the aboVe‘metﬁ;ds with
éxpiicit solutions do not have the best e?ror norm.

Design techniques consideq;ng error norms such as. equi-ripple and
least mean square sense. have been developed [6-8], These techniques
depend heavily on optimization algorithms 1nvolviﬁg mimerical

o & .
computations. In [6], the coefficients of the all-pole transfer
funcfion are SBtained such that the phase approéimates a quadratic

function in the Chebyshev sense.: In [7,8], the results are ohtained as

}

a product:of second order factors with a first-order factor wheﬁ needed,

’

thereby ensuring the Hurwitz nature of the denominator polynomial. The

error norms in [7] and [8] are respectively equi-ripple and least mean

square.

In the discrete domain, similar work has-been carried out. ‘In {91,
explicit solution for thejcperfieients of a filter podbessiﬁg maximall&

flat group delay characteristics has -been -obtained in terms of the

" . . ‘W’ . . (4




.....

¥

-3 -
¢ ¢ s

variab}e z (z = g‘JQT, T is the sampling period). 'ﬂbis same solution is

" obtained in a simpler way by making use of the bilinear transform of the

variable z [10]. Also, in [11], by considering Taylor series expansion
of ‘the group deléy_ function, the same solution as in¢[9;10] but in a
differént form has been repbrted. There are other contributioné
{12,13), describing techniques of appromimating constant group delay 4n
tSe‘equi-ripple sense. In [12], equi-ripple conditions are formed by a

se¢t of non-linear equations and are solved numerichliy. The same

/
problem is solved using a different approach in [13].
As the solution to the approximation problem is the same in the

digital and the’ distributed domains, the techniques developed in the

latter can be used to obtain digital filters also [14].

In the above methods, emphasis is only on constant group delay

approximatioh. This does not mean that the magnitude response is not
important. Next, we briefly discuss asome of the tegchnigues that
consider improving magnitude response while .retaining the group delay

response. Also; there are some other techniques that consider improving

magnitude response, but at the expense of some constant group delay

characteristics. These are also discussed.

1.3 CONSTANT GROUP DELAY AND MAGNITUDE APPROXIMATIONS:

There are several contributions, where different conditions on the

+

amplitude and gro:;ﬂpéelayq characteristics have been consideréd and

solutions to the.approximation problem have been obtained[ 15-31]. In

[15], a rational filter is obtained as a ratio of two Bessel polynomials

with frequency scale difference of unity, As the denominator and the

o e
.'.“ (v ad
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. humerator possess maximally flat delay characteristies, the resulting
rational filter also possesses maximalby delay characteristics about the
origin. By varying the scaling factor, a variety of amplitude-group
delay cnaracteristics are obtained.

In [16], the .above problem is considered and, eipressions for time
‘delé& and frequency response characteristics:in ennlicit form are‘given.

In [17], the same approach is followed as in [15]; except that the
Bessel polynémial is replaced by Gene::lized'Bessel polynomials.

In [18]), by adding an additional parameter to the coefficients of
the continued fraction expansion of a Bessel filter, flexibility of
approximation 1is enhanced wnile retaining the generation of transfer
function by recurrehce relations. By varying this parameter in the
region of stability, a variety of responses can be obtained.

‘ In [19], with two additional parameters, the Bessel‘ polynomial is
generalized. In [20],'by introducing a transformatipn,’the exponential
function is approximated as a summation. In this summationf; the
-function is =a product of Bessel polynomial and a binomial ekpsnsion of
(1- r[Z)i (1<i<n}, where r is the new parameter. For different values

of this parampter in the stability region, various frequepcy response

characteristics can be obtained. By varying certain ﬁarameters (poles
An

and zeros), various combinations of amplitude and group delay

characteritics are obtained [21-22] .~

[}

In [23}} closed form solutions for the transfer function possessing

linear phase in the psssband q/?’steep amplitude selectivity have been

obtained. In this, the passban
B .
is determined by amplitude selectivity. For the approximation of phase

’ responSe'or a filter, the number of available conditions .are (n-1),

region over which the phase 1is linear .




N ._5-.

t

where n 1is the degree of the denominator polynomial of the transfer
function. Py assigning (n-2) conditions to approximate maximally flat
group delay and the remaining one condition to approximate preécgibed
magnitude response, explic{f)solutions have been obtained [24]. Also,
it  i1s shown that by adjusting only two coefficients'in the truncated
continued fraction expansioh of the complex phase angle of an ideal
delay function, a large variety of passband loss speiifications can be
fulfilled, while retaining phase linearity at lower frequencies. In the
above method, the Bessel filter can be recovered specifically. A family
of low-pass filters ﬁossesSing maximally flat group delay as well as
maximally flat amplitude characteristics has been obtained in [25].
Another approach to the problem of approximating linear phase and
' frequency gﬁ}eétive magnitude charact;ristics is to have equal-ripple
attenuation in the stopband and flat attenuation in the passband, where
the numerator 15 iteratively determined while the &enominator is a
Bessel polynomial [26].

In the discrete domain, similar work has been carried out [27-31].

1.

The method describéd in [27] can be considered as an extension of the
a?alog case [15] to the discrete domain. Also, the methd described in
[28] is an eiiended version of the analog method [23] to the discrete
domain. In {29], the method is Sased on the Laurent expansion of the
filter transfer ﬁunction with no zeros or poles on the unit circle. The

. closed form solutions for the coefficients of filter's transfer function

possessing both maximally flat group delay and amplitude -

s>

characteristics, have been obtained [30]. In this, the analysis is
carried out in the domain of the variable which 1is the Silinear

transform of the discrete varlable 2. Also, the corresponding analog
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. '  transfer function can be recovered specifically. 1In '[313} fhe method
determines explicitly the coefficients of the transfer function
possessing Chebyshev characteristics as its attenuation in the stopband
and linear ’phase or constant group delay'@peciriable independently of
the attenuation. |

In all the above methodé the mean square error is not considered.
Design methods for microwave filters can be usedi‘to obtain
corresponding‘ discrete '%}lters [32-35]. of course, a number of design
téchniques based onliteréiiVe and numerical computational Pethods for
microwave as well as digital filters can be found in the literature

[36-42]. ' ‘\

——

1.4 SCOPE OF THE THESIS:

. .
L ' ’
»

From;the above, it can be seen that the problem of approximating

constant group delay minimizing ﬁhe mean square error in a bandwidth has

- not attracted much attention. [8] discusses this problem, however, the

S resulting denominator Hurwitz polynomial o% the transafer function is a‘

function obtained as a product of second-ordér factors and a first-order

factér where needed, As a consequence, realization of such transfer

P functions by terminated LC-ladder networks could result in certain

problems like*the variation of the response characteristics with resﬁect

to the elements of the ladder network. Also, in the discrete domain,
such an ap;roximation does not appear to exist.

Therefore, in this thesis, an approximation technique is given

1ncorporat1néA%he f011013ng: -

(a) The group delay response approximates the specified- constant

- —— S —— T " ~e

4

(b



.

\gg\swhere the variable "t".is the Richard's variable

.
! N

\
- %

group deléy in the least mean sauare criterion and in a specified
bandwidth. )
(b) The transfer'functiqp (both in the analog and the discrete

domains) satisfies the stability. conditions
- . \
(e) In the analog domain, the elements of the terminated low-pass
o

3

LC-ladder network is simultanéously obtained. v

(d) The approximaton procedure is simple and reduces the number of

\

computations (multiplications) as much ‘as possible.

1 Rel

Oniy all-pole low-pass transfer functions are considered. In the

. P
analog &qmain, a filter trgnsfer function is represented as ‘

c
4 an

Ta,n(p) - (1.1)

- 1
' }E: ai,n P
i=0

In the discrete domain,  the transfer functionkis represented as

»
3

. c -
- un
I ——— ’ ‘ 4
T, n(®) = =5 , | (1.2)
' i ' 2‘1 ~
dn =% 5T
3 1=0

+

t= Cb_ tanh(pT/2)
. . ——— A
with T as the sampling period and eb is a constant.
Ikisuffiees to consider an all-pole transfer function only, because

!
the denomindtor polynomial can be determined such that it approximates

i the desired group delay and / or magnitude characteristics and then a

suitable even polynomial in the analog domain or ‘a mirror-image

o

polynomial in the discrete domain can be introduced jas the numerator in

“

order to improve the magnitude characteristics.

-
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\

In Chapter Two, the generation technique for the denominator

'

polynomial of an analbg transfer function is considered. This is done

-~

by formulating a linear matrix equation. Some .interesting properties of

the generating matrix with respect to differentiability , and

integrability of the elements and the determinants of &he matrix, and

-~

the matrix strugtural properties facilitating the computation7{/ effort

are presented. It is shown that the principal minors of the éederating
J

matrix are related to the Hurwitz determinants. Some properties with
~ .

respect to the recurrence relation of the polynomials are discussed. .An

‘ approximation algorithm is developed in order to obtain the elemental

a3

values of a network realizable as a LC~ladder structure terminated in

resistances and such that the transfer function approximates a specified

constant group delay in the least mean square sense and in a specified
. s
bandwidth. Some examples illustrate the technique.

In Chapter *Three, a simi T’ method to ggnerate denominator
Bolynomial of the all-pole %ii:sfer function in the variable t ias
presented. Sdgé interesting T{Operties of the generating matr;; with
respect to forward difference and anti-difference of the elements and
the determinats of the matrix are discussed. . Structural properties of
the matrix similar to that of the generating matrix in the ané\pg domain

l

are obtained. t is shoun how a stable discrete transfer function can

2

be obtained.. Anwapproximation algorithm is developed in order to obtain
the coef?ieientg and the poles of a digital transfer function such that

it approximates a specified constant group delay insthe least mean
3 9

i *

square sense and in a specified bandwidth. Some examples are worked out
and a numbe; of responses are obtained.

In Chapter Four, the ‘eonclusions are d}awn and the scope for

N\ .
s
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CHAPTER TWO

©

CONSTANT GROUP DELAY APPROXIMATION OF 1-D ANALOG LOW-PASS TRANSFER
FUNCTIONS ‘ ;////

2.1 INTRODUCTION: ‘ s

. ”

In this chapter, we shall consider ﬁhe generaffan of the analog
transfer function approximating a specified constant group delay. The
various analytical properties are fir developed and these are
effectively used to minimize the error between the constant group dela&

dueery

and the actual group delay.

2.2 FORMULATION OF THE GENERATING MATRIX:

<
N

The analog all-pole transfer functioh of order n can be represente&

Al

as ‘ ' ( l{“-

c ’ A '
T, (P) = —= (2.2.1)
P_ _(p) '
a,n : ’
" where Can is a real positive constant and the denominator polynomial is .
given aé .
/
. .
PanlP) = 22 n P Withay =1, (2.2.2)
k=0 oA

and p 1s the complex freq&ency varisble = o+ Jw



o~

- the phase, we have

211 - . e
. Tﬂerefore, : ) - ) -
b4
~ %an '
Tan(;jw) S cmme—— ) . (2.203)
P (Jw)
a,n
: Z
[}
e ¢ (jw)
- ———-an.—u e a ! - (2-2.“)
1P, p(3wl ; - .
- + & s

where'«ba(jm) is the phase function. The.denominator polynomial Pa 'n(p)
. '

v

gives

“

. - g ¢p(jw) . .
fa'n(jw) = IPa,n(jw)l e ’ _ - (2.2.5)
where ¢p(j_w) is the phase function of the polynomfal. !xpressing the

phase function as a sum of two odd polynomials with aa as the slope of

L)

T T L N XX
‘and. '¢p(;w) = =% (3u) . '
A =‘ (],a' jw- J‘Ga(w) ] ; ! (2.2-1“)
-1

The odd polynomial Ga(Jm) is termed as the error phase polynomial

containing odd terms only and is represented as

f\ | .

¥
«

“ 2i+1] .
() = ZE . P 4 L e (2.2.8) ,
a T 244141 pajw - ’

<
-

(€2;1+1 1'3 are the real coefficients and the second right hand suffix 1
? . '

! N ' LN
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indicates the power of 6a(P)a.)
We have

2,(p) = -0 (p) | -

= -0, p+ 8 (p)

We can now consider phe all pass function

{

(P‘ s \'2 )
a.nP) . p(p)

Pa'n(-p)

Eq.‘(2.2.110) can be written as

.

-Q_p aap w
Pa,n(p) e - Pa,n(,-p) e
op =268 (p)
a a
* Pa,n('p)v e fe ‘

(2.2.9)
i

(z.é.w)
Y} (2.2.11) '

By the infinite series expansion of the exponential t'u_nctio:g the left

hand side of Eq.(z.'2.11) can be expressed as

-a_p . @p
ENCERSTAROY
R ’ . ,fn.;,' - K
1 . o B4 "
~ a
0D
2141-k,n &1 P
, 1=0 k=0 .
and the right hand side can be expressed as
. ,.,';_“ ",.',“d’ ‘
o‘:}"f o
, ) ‘ “1' ’Q . o .
L ‘ . v ’
y ,

2141 &

(2.2.12)



» . - 13 =

w,p =2 da(p)'

Pa,n(p) e {e - 1}

' k

. 1 , ,
- (2 Z e g (2,
'1=0 k=0

- .
3 5 ke2 : .
{b,' p” b3 P+ z bk p '} . (2.2.13)
. k=4 ‘ .
The coefficients a, and b,'s, in Eq.(2.§.13), are considered as new
parameters.. These new parameters and the coefficients 621” 1'5 in
. 1

"+ EQ.(2.2.8) are related by \

j’2
Z 2(21—2) .

) bk_.2 z - 021_1,1( for (k-2) odd and (2.2.1’!4)

) 1=1 (28-1)1 s
372
Z 5(21-1) ( ,
bl‘:__2 = | me—— °2=i,k for (k=-2) _even (3,2.15)

1o 21! , ,

v o.

‘ wher-e J 1is the largest integer such that 3j<k (it jis’ found to be odd
th

(m is 21i= 1 or 21) is the coeffioient of the k

then j is J+1) and O
m!

! y
I Y 2441,™ ’ S
+ . o, . H
8a(M} = () €504 3 P71 formd 1 o o (2.2.16)
R £ ) .
- 2143m S
= Z 21430, p S 24D
. ‘ i=0 . o
vhere. ) i+

€, . E . .E
2443m,m * Z 23+1,1 21+3m-23=1,n-1 (2,2.18)

S
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o B

Using Eds.(2.2.16) to (2.2.18), the coefficients °n '3(m 1s 21-1 or 21)
. . ?

are obtained. It is required that a n'é, shall be obtained: as a

k,
‘solution for a given set oi" values of the new variables oca and, bi's. A
set of linear equations can be ,fomed from which _the coefficients ak,n's
are obtained as a solution.

Substituting Egs.(2.2.12) and (2.2.13) in Eq.(2.2.11) and eguating

corresponding odd powereld terms on both sides, infinite number of linear

equations can be deduced. Of these, only the first n equations shall be
1 i

#

considered, because of the following reason: When we obtain the
coefficient &k’n from these equations in terms of new variables all the
remaining variables with even suffixes can be evaluated.

Now the set of first n linear equations can be expressed as a

matrix equation as follows:

(2.2.19)

(A o) (Xl = (B0
whe{'e
[Aa,n] is a square matrix of order n,
) '[xan] is a colum vector of length n,
and [Ban] is also a colum vector of length n. '

kel

The elements of the matrix “a,n] » the vectors [X '] and (B ] are

respectively as follows:

S



r v - i

1 0 0 0 0 ) 0

Fo 1 fp 0 1 0 ‘0 . O

J ’2,2

- ' - Y

f3,1 3,2 % 1 ey 1 e 0

4 L) . L] '. ’a 2 o
L ] L L] [ ] » [N ) o
[Aa'n] = . . » . . vee 0
L] L] » . . LR 2 0

. . . . . i;- FO

. . . .“‘ . xR} F1

. . L & L] . se e .
1 T2 Tyt Tare 0 e Fy

where
o 21-1=k o 21i-4=k
f = ¢ 2 + a

Lk " o1a1-0)1  (21-4-k)
fork = 1,2, with £, o =z 1,
1,1
for n odd: Fo= 1, F =
\

for n even: Foz 0, F

215-k 21-5-k-§

b, + Za by )
-+ «
! Z (21-5-k-1)1 I*2

3=

1 f2,1 grvsesy an !(n‘1)/2'1’

1-_- -fz,z gueery Fn= —f(n/2)+1’2

]

[Xm] = (a1'n .2’;‘ esecernesss an’n )

(B..1 = ¢

) '
L3
m fz’z r3’2 ...'.‘..‘rn§1,2)

(Prime indicates transpose.)

i

*when power suffix of

suffix is zero.

is less than zero, then a‘ with that

(2.2.20)

(2.2.21)

(2.2.22)

(2.2.23)

(2.2.24)

~



. ]
3 . . .

©
1

The elements of the matrix [Aa n] and the vector EBaO] in

]
R
Egs.(2.2.19) and (2.2.24) respectively are because of the consideration

L

of the first set of n consecutive linear independent equations. The

n? element of the vector [Ban] is a function of (2n-3)-variables.

4

_Among  these, n-variables (ua, Dy b3, b5,....! b2n-3) w?th odd suffixes

aregindependent. The remaining (n-3) variables (bz, bys b6"""~b2n-u

with even suffixes can be obtained as a function of the independent

) A

variables. The vector [xan] is obtained as a solution to -Eq.(2.2.19)
for a set of values for the'new parameters (089 b1, b3, b5,...., bZn-B)'

Thus the vector [Xan] containing the coefficjients & n's as its elements

’

1s generated. For all bi's equal to zero, the generated polynomial 1is

the Bessel polynomial of order n. Before attempting to establish the
strictly Hurwitz nature of the polynomial Pa n(p), we wish to discuss’
. ’

.some properties of -the. elements of the matrix [Aa n]. Henceforth this
“

L

matrix [Aa .l s called the generating matrix.

! « .

2.3 SOME PROPERTIES OF THE ELEMENTS: OF THE GENERATING MATRIX:

: )

LY L) -

It is evident from the structure of the matrix [Aa n] ‘that there
- 1

are only_(2n-1) different elements which are to be evaluated. Any

N B .
(i,J)th element of the matrix ocan be evaluated from the following
Iexpression.

/ L 20m1-8 21-bey
f,4° (-nd* (2 el
o (21-1=- 1 (2i=-4=9)1 ) -
‘ 21<5-3  21-5-3-K .
a
-+ 2] b } (20301)
(21-5-3-k)1  ¥*2 .

k=1

>
[ Y



-/

/ - 17 -
ff , | When fi,J" are evaluated according to Eqs (2.34.1-), we get the elements
of ‘the matrix [Aa o) along with the required sign.
[} B
Several theorems are prdved below.
- ) > -~
" Theorem 2.3.1 ‘ .
ri+1’3+2 = fi’.J i " (203.2)
. Proof: .
- Substituting (i+1) for 1 and (§+2)} for § in Eq.(2.3.1), the power
suffixes in Eq.(2.3.1) willv remain the same. - Hence, the . (i,J)m .
element is exactﬁ' equal to '(1+1,J+2)th element®.
Hence the result follows.
The eleménta corresponding to two consecutive cq;uma(in the
‘ ascending order) and a row are related through partial derivatives with
respect to the phgse slppe o a and is given by the following theorem.
) Theorem 2.3.2 .
$
. f )
a i’J . ' . ‘
S I AZ3.3)

v Proofs
Differentiating Eq.(2.3.1) with respect to @, and miltiplying by

" (=1) we have »

-
‘® (_1)J+1 < (-1).14'3
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5 f a2l a 2a1=>J
2T SRSV PO SRR ) b, -
bo, (2i-1 . (21-5-3)1

© 24-6-4 21 -3k
- b |
Z (24-6-3-k)1 <*2

P \/'

Hence tpe result follows.

The elements corresponding to two consecutive rows

descending order) and a column are related through second order par;tiai-

derivatives with respéct to the phase slope o a and 1is gi

f‘ollowing theoren.

) »
. _ .
Theorem 2.3.3
: 2

e 31,3

i-1,3 ° .

. oLa

L]

Proof*:

_ Differentiating _Eq.(2:3.1) twice with respect to the phase slo;;e

(Xa, wE 80? Cp 1
2 2i-3=-3 . 21-6-J
r a o '
. é—-’m = (—1)j+1 { a + a b1
aaa i . (2i=3=-3)1 ° (24-6-1)1
) 21-7-§  24-T-3-k
(18 b }
., + ——
(21-7-3Kk)1 2
o]

-~ &
It can be easily verified that

32 r

f = Ly
1-1,3 % 2
a

(2.3.4)

4}

(in the

\. by the

(2.3.5)

(2.3.6)

ey
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Hence the resuit follows. > .

The elements of the generating matrix [lta n] are related through
% ]

integral rslationships. These are presented as below.

%%
Theorem 2.3.4
= (3+1) '
fivJ B -friyjﬂ by + (1) Y2153 - (2.3.7)
Proof: : .
Let
rivj = -[fi,J+1 daa + °1 . (2.3.8)

The first term in the right hand side is true from Theorem 2.3.2.
7

It remains to be established that the constant of integration e, is
341 ‘
(-1) b21_3_3.°
From Eq.(2.3‘.8), we have
P £ da ‘ 2
01 - fi,'j + i, J+1 'a ( '3'9)
» . .
'Substituting expressions for fi 3 by wusing Eq.(2.3.1) and
’ -
Theorem 2.3.2, Eq.(2.3.9) results as
- J+1,
01 - (-1) b21-3-3 (203-10)
Hence the result follows.
Theorem 2.3.5 - R .
S Y PSS L (2.3.11)
1,3 - i-1,3 “a"a 2i-3-4 Rl
Proof': S o '
Let ;- ”
fi’J 8/]{1-1 ,J« m‘ha L 02 ' B (2-3.12)

-
K4
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k]

‘% The first term in the right hand side of the above equation is true

/ .
due to Theorem 2,3.3. It remains to be established that the constant of
¢ .
‘ a . J+
ol integration c, 1is (-1) b2 1-3-4° |
From Eq.(2.3.12) we have \ ®
c, = f 1,3 —ﬁﬁ 1-1, 4 daafb.a (2,3.13) .
Substituting expressions for f, g by using Eq.(2.3.1) - and
. ?
— Theorem 2.3.3, Eq.(2.3.13) results as '

= (-3 (2.3.14):

% =y 21-3-4

. Hence the result follows. : o . '
. E\v In the next section, we shall discuss some pqoperties of the

1

determinants resulting from the, generating matrix [Aé -9].
. ¥

2.4 PROPERTIES OF THE DETERMINANTS OF THE GENERATING MATRIX:

¥ “

By Cramers's rule, we have

ic, .|
CY 2,k (2.4.1):
' A, |
a,n
where |C a kl is the determinant of the generating matrix [lla n] with its
y K » ' !

kth column replaced by the vector [Ban] and lAa n| is the determinant of
14

the matrix [Aa nJe  There exist some relationships among these
. .

determinants, and hence among the coefficients & n's of the polynomil\'xal
9’ \

-8

I - R

Pa n(p). In this section these relations are discussed. \
4 v



/ Theorem 2.4.1 ‘ v ) ?ir
NN

- {n)
lca,n' = (=1) Ma,nﬂl (2.4,2)

) ,4%&‘00!‘: o
///’ LR '

The first element in the mtrix [Aa e

) , 1] is always unity.
Therefore, 'i.ta determinant is that of thg/szmtrix pf‘ order n obtained
by deleting‘ the first row and the fir;st column of the matrix \[Aa,nﬂ]'
In this submatrix if the first, the second, the third,... and t:he\‘nth
colums are replaced respectively with the second, the third! the

f‘ourtzh,...(n—ﬂlth and the first columns, the matrix ECa n] is obtained
* P ¥

where the nt

h column will haye' the elemen®s of the vector -[Ban]. When

n 1is odd or even, there;yiflf.l be (n-1) number of column changes. Taking /
into account the negative sign of the vector FBan], there are n. ;mmber /
sign changes. This can be put as in Eq.(2.4.2). . /

‘ Hence the result follows. ) /

Theorem 2.4.2

0

(n) lAa n+1' : )

a ‘r{.-. (—1) -—h (2.”.3) ~

D T ' : %
a,n ‘ / '

Proof': o ! ~

From Cramer's rule, we havg

[

a =l E T N e RN

.
\ ) ’
' n
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s (-1)(n) 'Aa.n+1' ’ - .

an n b .
’ @
IAa,n' \ . @ .
Hence the results follows. )
Using Theorems 2.3.2 and 2.3.3, the elements of the generating
matrix [Aa nl can b& shown to be sequentially related to the “partial
? .
derivatives of the nth element of the vector [Ean] with respeoi to the
phase slope ota. This nth element is designated as G( a) which is equal

-a

to fn-ﬂ 2"

o u .
In order to prove some further properties of the generating matrix

[A. _], the matrix [C_ .1, and the relations among the coefficients
B,ﬂ a,k + { )
ak n's of the polynomial P (p), the elements of the generating matrix
? .
fa a, n] are expressed gs the r‘espective partial derivatives of the
function G(a ) whieh is the nth element of the column vector [B__] given

an

by O(0,) as’ o | ,
7 \\ ' ‘ £t B [ N
° . 0‘a21'1-1 cvan--lo - 0‘a2n-5-lc
~G(aa) = { + b, + ' k+2} (2 4.5)
(-1 (2n-t)r | L (3n—5—k):
t-
[y ' n . ,
v
{ ';" -
' -
' b,
4

b

g



[

where

k,; - -23 -

r 4
{21 0 eeees
t g(2n-3) g(n-2) glm-1)
o(&=9) _s(2n-W) (m-3)

3

[Aa:;j = . ! . .z cesenea
G(3) Y-G(u) G(S) o000 0
. 6(1) ¢ -G(Z) 653) ©ese e

9( -

for n odd: Jo=‘9$2n-1); J1=,G(2nﬁ3)’ .

for n even:

The elements,6 of the matrix [Ca n]'are also expressed as partial
. y

derivatives of the }unction G(aa). The matrix [Ca n],is
I . A ' . ,

e

J0= _G(QH—Z),

/

A -
¥

J1= _G(Z’n-‘l)

(n)

geey Jn= —G

.0

.0 .

.0

.0

.0

. and G(2n~1) is (2n;1)th‘partial derivative with repect to Gy

(2.4.6)

(2.4.7)
“~ (2.4.8)

}

—
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& ' \X
- / -
g1 0 .. G(Z“fZ)
¢ -
G(2n--3) _G(Zn-z) G(2n-1) .. G(2n L)
» . . e 0 - '
[Ca’n] =A . . . L) Lo . * (2-”09)
. . . e L1 . ,.*
~ ‘ vt 2
N @) ¢ LG
where
Cad '
for .odd n: L= {232k Ly= - L= ‘w1 (2.4.10)
" and for even n: Lo= {21, L= (-3, L, = 61 - (2.4.11)
. '_/ v
'Next, the relationship between the determinant ICa n 1I and " the
. i o o
partial’ derivative of the/det#éminant Ic, ,! with respect toa  is
© ‘ ] ,
established. P -
Théoreﬁ 2.4.3 ) s,

The determinant |C
. B,n-1

»~

derivative of the determinant ICa

n| with respect to phase glope‘la.
14

3 ICa o! . .
IC | 2 e . (2.4.12)
a,n-1 aa

Proof':
The partial derivative of the determinant lCa nI with respect to
. ?

a

ua is the sum of n partially differentiated ‘determinants. The _rirst

determtnaﬁb” is the determinant of the matrix {Ca n] with its first
. 9 » V4

-~ .

| 1s equal to the partial
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column Qleﬁ:ents replaced by the par'tiai derivatives of the elements in

; the second partially

the first column of the original matrix tc, ik
) ’

differentiated determinant is the determinant of the matrix [c, o] with

its second column glements replaced by the partial derivativea of the

)

elements in the second column of the original matrix [Ca n];...; and the
4
th

‘n paréially differentiated determinant 1is the determinant of the

- matrix [Ca n] with ' its nth column elements replaced by the partial

¢

th

derivatives of the n~ column elements of the original mat)'ﬁﬁc

J

In the fcth determinant, the ki’h column elements (partial derivatives of

th olumn elements with respect to d, are the same as the
N ‘ R

a,n]’

the original k

corresponding elements of the (lttf*‘r)t‘h column, except when k is (n-1).

And when k is n, k+1 is 1. As the two columns have the same elememnts

in order, the value of the determinant is zero. Hence, in the summation
of:‘n deteminants,\ (n=-1) determinants vanish. The non =zero valued
determinant 1is .the one whose (n-1)th column elements are try! respective
partial derivatives of t,he' (n-1)th column elements of the original

matrix [Ca n]' Therefore we have
, Y

(\ i
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G(2n—1) 0 0 0. G(2n-2)

G(2n-3) _G£2n-2)\b(2n-1)

Pl

0. - G(gn-u)

3!Cq ! ‘ . _
# = . . . Wo L. (2-”.13)
a ' ' -
L] L] L ] w1 . ’
L[] ¢ [ [} ] []
o3 W () W, ¢?
sV @ 3 W o
Q\\ '
N 3
w?ere /
for odd n
wo =-G(2n-1)’ W1 =-G(2n-3)’n¢- ] wk_1 =-G(n+2), wk :-‘G(n), (2-“.1")
and for even n «
/ 2n_2 2 .
.WO - 0, w1 = G( )’OIO, wk-1 = G(n‘F ), wk e G(n)o (2-“-15)
Interchanging the (n-1)th and nth columns in lca n' we get the
’

determinant ’Ca,n-1!' {

Hence ?he result foilous.

4
A

*M and tne (n-1)“nl

Next, we shall establish a relation between the n

1

coefficients of Pa,n(p). D
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Theorem 2.4.4
" The coefficient a and the coefficient a_ are related
n,n . ) n-1,n
. by -
’ 1
i 9 |Aalrml
90, .
a a
bt p® (2/4.16)
ks l,Aa,n+1|
. Progf:

From Theorem 2.4.1 we have

n) '
Ca,nl z (-1) lAa,n+1| 4 ' . (2.4.172)

‘and from Theorem 2.4.3 we have

a

o A G
e a,n+1 S ' (2.4.17b)

C
1 a,r}~1' " 30,

From Cramer’s rule, we have

- ' ‘I’; . ‘
o 1c, _| ,' L '
B L , : {2.4.18)
. L T Y R T
!,l’l N .\ ' -
\ - . : . *
and - ) . .
A 1T, oyl - :
- » - a :‘-—!T-— . - (2.”.19)
n-1 ,n 'l l Voo, e \
a,n N
Forming the ratio of Eq.(2.4.18) and Eq.(2.4.19) and substituting
for IC | and IC |, we obtain the required result as Eq.(é.ll.16).
a,n “a,n=1 ) ‘ -

Hence the result follows.

M

/ )

1

The determinant of the matrix [C(n o] can be. expressed as function
N g 3= . »

of the partial derivatives of the determinant of the matrix [C J or -

a,n=1

4

n c
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[Ca,n] or [Ail'n*"]. R !

Theorem 2.4.5

?

_ a,n-1" )
|Ca'n_2l = ; . (2.4.20a)
g
! 152 Ic, ! :
L L (2.4.20D)
2 dog
> ;
1 3" 1A ! -
(n) a,nel
2 - (-1) + (2.“-200)
2 Ba '
a e

Proof's

The same procedure is followed as in the previous theorem. That
is, the determinant IGJa n 1! is partially differentiated column wise n
- , -

times and their summation is considered. The partially differentiated

kP golumn ‘in the determinant |C.

| is the same as the elements in
a’n-1 B

(ke column except: when k is (n-1) and (m@2). Hence, in the
summation of the determinants all the detrminants ex ept two, vanish as

L]

they have same respective elements in two of their golumms. Therefore

we have . . o
3 Ic, I
—2L g1 4 1o, (2.4.21)
oa

where & ) =



i

4

and

(Prime indicates

where
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g(@-1) 4 0 veee O
G(Zn—3) _G(Zn—Z) G(Zn-—ﬂ cees 0
g{2n=5) _s(2n-4) (2n-3) . ,

- - * 0

1q,l = . . LUy O
: . . LU W
(3) 4) (5)
G <?QS ¢ * Va1 Wit
1) (2) (3)

G -G G LU W
¢y o ., 0
G(Zn-3) -G(zn‘z) (2“‘1) . 0
. . . . f, da
L] L] L[] 1
(3 g ) ﬁk & w
@ @ ﬁ o ".k

&«

G(Zn-u)

(2n-2)

G

G

R XN

(Zn-u)

(2)

partial derivative with respect to}la.)

(2.4.22)

(2.4.23)
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for‘odd n

(2n-1)

Uy =0y -6(2“‘” U, do, =G ) W'y=0

0, 620D,y g2 /U a& 4@y g2n-2)

e L () W) o A(ne3)
Ug-1 =6 y WO ’ _Uk-1 dap =677, Wi =G -
- -3 1 ol
Uk =G(r2 3), Wk=-G(n), ka daa =(.'v(n 3), W'k=-G(n+ ) (2.4.21)
and for n even
T (2nel) o (2n-2) o, _
Uy ==G y Wy=0, ﬁo do,  ==G sW'! =0
b, =c(B°Y), y (-2, _[U‘ b =GBy g(2n=1)
a 1
L] N L] L] ‘ ﬁ -
: (n-1) o () ] _m) %, (nan)
Uy =G 7 W 567, Acf Ugq 40 ==G 7y Wiy 40
(n-3) (n-2) _ o(n=-2) _aln=1)
U, ==G , wk=cQ , /Uk do,  =-G y W' 20 - (2.4.25)

o

The first determinant [Q,| in Eq.(2.%.21) is the detetminant ,

. It remains to establish that the sscond determinant Ig,| 1s

Ica,n-z

also the same a? lca,n-z

By partially differentiating (n-z)t"h column and' partially
integrating (n-1)t’h column of the second determinant |Q2l and further

applying the Theorems 2.3.2 and 2.3.4, 1t is clearly seen that the

—~—

determinants IQ1| and IQal are the same. The other relationships follow
7 ) .

from Theorem 2.4.4.

Hence the results follows.

I

" We shall now establish the relationships of a,_, , With respect to
=Cy

kd

the coefficients an-l;h‘ and an,n.

LY
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Theoren 2.4.6

\
'

Proof:

By Cramer's rule we have

. Ica,n-:zl
n-2,ﬂ lA l
: a,n
ic_ |
and A = _ﬁg_
A T Y
a,n

(2.4.26a)

v

o

(2.1.26D)

\ez.u.zsa

(2-4.27)

(2.4.28)

Teking the ratio of Eq.(2.4.27) and Eq.(2.4.28) and using

Theorems 2.4.3 and 2.4.5, we obtain the required result as Eqs.(2.4.26a

to 2.4,26¢).

-

Hence the results follows.

Thus Theorems 2.4.4 and 2.4.6° establish

three coefficients.

’

the relation among the



Theorem 2.4.7

! The .coefficient a, . for ‘any ord%r n is always the phase
’ o

319pe aa. That is for all n
- 3

a ) =0 , (2-11.29)

Proof':
The ve‘ctor [xan] is

? ’ P

-1, ‘
\'[xan] =[Aa,n] [Ban] , (2.4.30)

_ 1 )
a,n] = Addoint of A 1/IA, (2.4.31)

In the generating matrix [Aa n], the first element is the element
1
corpesponding to the first row and first column which is always unity

and the rest of the elements in the first row are all zerog. Hence

|Aa’n' H 211 ’ . . (2.“132)
A vhere Z,, is the cofactor of (A, )
\ , <
- Miotnt of fA, 1 = Ic, .|
Therefore 11 ,n z rz’z'

L

/' saa | (2.4.34)

Hence, the result follows.

/

=i

We shall next discuss the Hurwitz nature of the polynomial P; n(p).
. ?
A

14
r
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2.5 HURWITZ PROPERTIES OF THE POLYNOMIAL Pa n(p): : -

¥

¢

Two of the important requirements of a transfer function are the
stability and the realizability. ~For the all-pole analog transfer
functio?, if the dénominator polynomial Pa,n(p) is strictly Hurwitz, the
transfer function is realizable as a reactance function terminated in a
resistance [43].

Whenevér it is not easy to generate the polynomial Pa n(p) in the

closed or analytical form, generation of the same by numerical or ather
»

techniques is unavoidable. In such a technique, it is advantageous to

incorporate stability constraints which are to be obtained as a function

of a set of parameters, The advantages &are the reduction in the

"

computational effort and time.
In this section, a method to generate the stability constraints as
: ‘ 4

a function of the new variables (Gh’ by b

I

3’ b5,.....) is expla%ned. It

will be shown that these stability constraints are equivalent to the
Hurwitz stability eriteria.

The denominator polynomial Pa n(p) is expressed as sum of its odd

)i

and even parts, that is,

Pa,n(p) = Oa,n(p) + Ea n(p) (2.5.1)

where Oa,n(p) and Ea,n(P) are odd %nd even parts of Pa,n(p)

respectively.
The stability constraints depend on the requirements that the

principal minors'of the generating matrix should satisfy -

»

(O

w



»

- 34 -

(AU 4y s 0 for (1¢t<nen) (2.5.2)

or the coefficients in the continued fraction expansion of the even part

\
Ea n(p) to the odd part Oa n(p) shall be positive. First, the continued
’ é .

?

fraction expansion of Ea n(p) by 0a n(p) about the origin is expressed
4 H

in the form of Hurwitz determinants, Then, it will be shown that these

are equivalent to the determinants of the generating matrig\r

(A, ;1(1<i<n+1) with respect to their absolute value.
’

b

The continued fraction expénsion of Ea n(p) and 0a n(p) is
9

E—!———a n(p) = El. + a 1
oa’n(p) o 52 . 1
P + .

8n-1

——
p

tD|_.;

'U':l

(2.5,3)

where.ﬂi is a function of determinants known as Hurwitz determinants

[U4]. The coefficient Bi is

tn, 12 ' ' ‘
B, e . for (1<i<n) : (2.5.4)

il 1By 4! , ' o

¢ In Eq.(2.5.4), IqiizfiQ the principal minor - of order i in the

" Hurwttz matrix [Hn+1] of order (n+1). This matrix [Hn+1l is obtained by

arranging the coefficients of the denominator polynomial Pa n(p) as
. , ’

follows.
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Eq.(2.2.02) for l’a n(;:.) is rewritten as
. . Ta,nr.

) n
. k
Pa,n(p) =1+ Za'k,n p (2.5.5)
3 k=1 . [Ny
The Hurwitz matrix for odd n is °
p 3 ' N . -
. "ltro 0o o o0 0 0o o 0
0 a1,n a3,n a';'~,n a'I,n an,n 0. 0 0
P .
01 a2,n all,n a6,n an--1,no ‘-,0 0
. 00 & ,n.a3,n as,n an-2,n 8"n,n 0 ° ‘ ¥
00 1 az,n ‘ll,n ‘ P an—1,n 0 s
[Hn*1] = 0 0 0 . . . » . . . (2'5.6)
ﬁ.
/, 10 o 0 0 a1,n a3,n . eie '.’n,n
/

0 0 0 0 1 %, 00 Snt,n| .

- . .

¢ Stimilarly, it is simple to construct the Hurwitz matrix [Hn-ﬂ]
- where n is even. This is shown below.
# A

»




[(H

than zero, then the'polynomial Pa

n+1

Lt EIN

0a
1o 1

=100

1’n a3,n‘ aS’n 87,!'1 ) an-—1,n

principal minors are

°

1yn (;Jl'

?

IHOI = 1 (an’ assumption)

Il = a; 5 a5, - ’},n

lHul =a

¢

etc,

(a

3,n 1,“

a.’

zln _Q.a39n

¥

)a-ﬁ

a a . a - a ’
2,n U4,n “6,n n-2,n n,n

1,n

1,n a3,n a5,n : an-3,n an—1,n

an"1’n

a a
n-2,n n,n

(a1

o

It -is well known that when‘all the principal minors are greaﬁér

n(p) is strictly Hurwitz [44].

i,n

-a

(2.5.7)

»

These

Sn

(2-5-8) ‘ .

The coefficients in the continued fraction expansion of Ea n(p) and
, .

‘ ]
Oa,n(p) of Pa’n(p) are the 8,'s (1<i<n). For the polynomial rPa,n(p)'

. &
the Routh-Hurwitz array(R-H array) can be constructed. The elements in

the first column of Routh—ﬂur&iti array oan be'exprgsqed as a ratio of

LS

¢

.

sOn e i e
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‘the _principal minors of the Hurwitz matrix [Hn+1]’ That is, the first

column elements of R-H array are
Y ‘ * ° ., \,\
|
[H, .1 - y
1+1 » (2.5.9)
I8, |

(R_H)i,1 z

"It can also be shown that the coefficients Bi's can be expressed in
terms of the these determinants which are the principal minpr's of the
Hurwitz matrix [Hn?H]' That is,

o)

Y
for (1<i¢<n) (2.5.10)
) )

| | IH

H:I.-1 1+1

Our aim is to obtain Si as a function of the prinerpal minors of
the generating matrix [Aa n]. We shall now show that there exists a
’ n

relation between principal minors of the Hurwitz matrix and the

generating matrix {A ],

Theorem 2.5.1

.

N

. me}aééeminant of 'the generating matrix [Aa 1] of order 1
* H

,is related to the determinant of the Hurwitz matrix [Hi] of the same

order i as -

r

(1(1-1)/2)
(71) '-Aa,il = lnil (2.5.11)

LN

(Proof is given in Appendix A:)

Theorem 2.5.2
/ ¢

The coefficient. B, in terms of the determinants of the

generating matrix [Aa 1] is given by
’



y iy
for (1<i<n) (2.5.12)

. A'\Ma,in' 1A

a,i-1|

\

This result can be proved as a\consequence of 'I'heoreni 2.5.1 in view

of the foregoing discussion. %

Theorem 2.5.3

The necessary and sufficient condition for the polynoniial

Pa n(p) to be strictly Hurwitz, is
, £
(-0 EE=D2) 4y )50 for (1¢¢nen) | (2.5.13)
’ .

Where IAa iI (1<¢i<n+1) 1is the pricipal minor(of order i) of the
, .

gengrating matrix [Aa, n+1] .

Proof':

From Theorem 2.5.1, for Bi to be greater than zero, it is required

Ll

o
that B

)
) -IAQ,MI.IA%HI >o/ror- (1<i<n) : (2.5.14)

The aign of IAa i| is determined by the order 1 as. given in
H
Eq.(2.5.13). The II\a 1| will have the same ﬁega'tive (or positive) sign
' ’ . .
for any two consecutive orders(i,i+1), when (1(1-1)/2) is odd( or even).

. In the above expression the difference between the orders of the two

+

matrices is two. Therefore, one of the determinants either ‘Ma i+1| or
*

lAa 1 1I will have a negative sign. The conclusion is, if [A | is
. ,‘ =

a, i+

less than zero (or greater th!n zero), then IAa { 1I is greater than <
. 1 1=

2

&
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zero (or° less than =zero). Therefore, the condition Eq.(2.5.13) is
necessary and sufficient.

Hence the result follows.

2.6 GENERAT, OF P (p) BY RECURRENCE RELATION:
K% a,n+1

The 1ntentidn‘is to show that in general, a polynomial of degree

(n+1) caﬁ be generated from the recurrence relation

Pane1(P) =By (P + R (0) P, 4(P) (2.6.1)
N ) . \.:—
with Pa,O(p) = 1, Pa,1(p) = 1 4+ o.Pp and
o 1A | 1a I ‘ 4
Ra n(p) - p2 a,n-1 a,n+2 ‘ ‘ ‘ (2.6.2)
' . .
'Aa,nl 'Aa,n+1| '
L
P (p) - P (p)
. - ajn+1 a,n (2.6:3)
: 3 ' . PE,Q-1(p)

4
Several authors have develoﬁed mgth&ds to rgenerate - transfer
functions by recurrence’ relations [3], (43, [éj. A varieiy of
phasq(géoup delay):responses(buch as arb;trékx phase, equidistant linear
phase, maximéllﬁbflaf 11ne§r phase, etg,jcan be .satiqsifd\ with these
transfer functions. From the fecurrence relatfoﬁ, ‘sbubilityfmand‘
realizability c;iteélt can be established {5]. 1In our. case, these two

eriteria depend on Ra'n(p) in Eq.(2.6.2). 1In particular, these criteria
Pl , N .

. . T
depend on the - t ., ~

-
-



. Emcom e m——

A, 1A

a,n- a,n+2 (2.6.14)

a,n a,n+1

1
Eq.(2.6.4) is a function of the coefficients of the polynomials

a,n 1(p),_ (p), and P _1(p). This function is
n+1-1!n+1 [‘-i n (2-6-5)
an“i- ,l’l-1
fOl"i:O, 1, 2,..0,1’]'1 and& =0f01"i '-'0- \ .
n 1- 1,

Theorem 2.6.1

The  polynomial Pa,n(p) can be generated frqg\ the

recurrence relation
oy

a n+1(p) =Py a,n (E) * Ra,n(p) Pa,n-1(p) v
where '
A 1 14 .
R n(p) - p2 a,n+2 a,n-1 (2.6.6)
! A | 1A |
©dyn a,n+1

(groof is given in Appendix B.)

This leads to a relationship among the coefficients of the

~ N
polynomial Pa,nrl(p)’ Pa’n(p) and Pa,n+1(p) which 18 -given by the

following theorem.



Theorem 2.6.2

)

an,—%,n-1 /én+1-3,n+1 B an+1-jj_n

’ = (2.6.7)
8k,n=1  Zn+1-i,ns1 " Znei-i,n
with £ $ k, n-2<n-1 and n-k<n-1 <
3 1, n+1-J<n+1, if n+el1-Pn, then ne1eg,nel © 0.
. n+1-i{n+1, if n+1-i>n, then an+1-1,n+1 = 0.
Préof: e,

In Eq.(2.6.3), if Eq.(2.6.5) and p? are taken out as common
factors, the pumerator and the denominator. will be identical. By
equating the respective coefficients the relation by Eq.(2.6.7) is
es%ablished. As Ra,n(p) is unique, so is the.Eq.(2.6.7?.

Hence the result follows.

In the next section, we shall &iscuss the structural p}operties‘of
the generating matrix which will enable us to reduce the computational

" complexity.

A

2.7 STRUCTURAL PROPERTIES OF THE GENERATING MAfRIX: -
. . -

-

“: We‘have seen in earlier aections,_that the generating matrix [Aa’n] -
is important as the properties of the denominator polynomial Pa,n(p)
depends on the matrix‘[Aa’n].4 The vector [Xan] in Eq.(2.2.19) can be
obtained numerically as well as an;lytically.' Analytical solutions are

" simple to obtain for low order matrix equations. But for higher orders,

mathematical complexity increases. Hence evaluation of the determinants

by numerical methpds 'is unavoidable. ( These methods involve number of




o \

multiplications, divisions, additions and subtractions. This number is
also known as complexity involved in computing the determinant,

In this section, we present some structural properties of the
generating matrix [Aa,n vhich lead to a reductich in the complexity
(number of additioﬁa and subtractions are not considered in our case) in

computing the determinants. Using these determinants in the recurrence

4
relation Eqs.(2.6.1) and (2.6.2)’the polynomial P_ n(p) can be obtained.
‘ ]

The colums of the generating matrix are rearranged and partitioned into

four submatrices as follows.

-
Sl See ; _
(A, o) = emee- (2.7.1)
- f’21 : 322- /.

"~
where [511] is a lower triangular Toeplitz matrix, [812] is.a lower

’
triangular Toeplitz matrix with all its diagonal elements zero, and

[521] and [822] are Toeplitz matrices. These matrices are given below:

For even order <;

plaw ~ T

1 0 0 0 . 0

f21 1

1"3’1 r,zﬂ 1

[811} - . . ~ f2,1 ) . - (207-2)

r 4

L ] . - L] . - 0

4 r(n/2),n r(n/2)—1,ri r(n/2)-2,n * f2,1 1

Y

N



-

.

3\’

f(n/2)+1,2‘

finsaye2,2’

¢

- 43 -

n"1’1

f(w2),2

f(n/2)+1,2

.,

fn-2,2

‘n-1,2

o~

Tnr2),2 Ttnr2)-1,n

Tins2)e1,1 Linr2) 1

f(n‘/2)42,1 r(n/2)+1,1

§

0 0
0 0 0
» L ] .
. ¥ .
' 3,2 12,2'0
. f3’1 1"2’1
. f“v‘ f3’1
¢ ' r(n/2)+1,1
8
£3.2 £2,2
'rll,2 f3;2
‘ s
U ) J .

/

_ T nr2)e2,15 (ni2) 42,2

(2.7.3)

(2.7.8)

(2.7.5)
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4

Similarly for odd orders, these matrices are as follows:

r—. -] -
N
1 0 -0 0
Q 1 - 0
B LEN 2,1 ! 9 |
[311] =/ . 3 . N i » (2.7.6)
o £ r 10
(n-1)/2,1 (n-3)/2, °
Tem1yr2,1 Tn-1)r2,1° L
I ]
0 0 . . 0
£ A 0
2,2 0 0 .
£ 2 fz',2 . . L
[812] - - ; / L] . L] [ 3 (2!7-8) ,
A\
finet)s2,2 fn-1)7202 f22 0
~ . Wi o i
f(ne3)72,1 finet)r2,1 ° f2,1 '
£ (m5)/2,1 f(ms)/zn . I3,
[821] ] : ) . . . . (2-7.9)
4 frm a1z fine3)/2,1

)
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' N
[~ - o . .
£ine3)se,2 S(netys2,2 o f3,2

[822] = {. . . . (2.7.10)
fn2. L faag2 - T(ne3)s2,2

4

It is noticed that:
[511] is a square matrix of order (n+1)}/2,
FS12]‘13 a rectangular matrix of order (n+1)/2 bx'(n-1)/2
[821] is a rectangular matrix of order (n-1)/2 by (n+1)/2

and [522] is a square matrix of order (n-1)/2

Now, we shall evaluate the determinant of the matrix [Aa,n]' The
order of the matrix [Aa,n] is directly constrained to the degree of the
polynomial Pa’n(p) being generated. Memor& space, computational effort’
and time could be minimized by réducing the order n of the determiffant
of the generating matrix which is possible in this case due to the
‘nature of the submatrices.  Specifically, the QESer of [Aa,n] is reduced
f n to n/2 far n even, and (n-1)/2 for n odd. This is shown as
fwvllows. 4 . ‘ | ‘ ) K

_Jhe generating matrix [Aan] is of even order n and its determinant

in terms of the submatrices [511] ' [812], [821] and [822] is
-1 '
!5a,n| = |S11| 1[522] - [321] [511] [812]| .(2.7.1{3¢’

As [S1i] "is a lower triangular matrix with unity as its diagonal

elements its determinant is always unfty. That is, ///‘\\\



and yi,i is the (i,J)‘.th element of the matrix (Y

- U6 =
#, !
. W "
|S11| = 1

Also, as [S"] is a lower triangular Toeplitz wmatrix, 'so is its

inverse. The elements of [S"]"1 are

81.1 = 1 )
.. N”N”f
| i-1
1,1 = - Z % k,1 fieer,1  for (2gi<n) -
k=1 . .
Biat,441 = 8g,y  for (2¢(4,9)< n) L (24742)
Let ~ * ) )
-1 ) ‘
Then
¥ . .- .
'Aa,nl - lxa,n/2I o , } (2.7.14)
J
Yiynse * Ti41,2 for (1<1<n/2) , (2(.7.15)»

a,n/Z] which is given ‘as

)

J
Yim-g * -; 'y1,1-—k+m f1+J-k,1 44,2 ' (2.7.16)
® .

for (1,3) = 1, 2, 3, eeesym and m Y
An odd order matrix can similarly be reduced to a matrix

[Ya,(n-1)/2] of order (n-1)/2 and its elemts are -



\ -

k-]

- Yi,m-3 = fieg+1,2 = 73,2 Tiago1,1
3 - o
\ - léy‘l"‘_k*m fi+J_k,1° (2.7.17)
for (1,1) = 1, 2, 3y eees ,mand m = (n+1)/2 '
Since [S”]'1 " is a lower .trian'gul'ar matrix, [Ya,n/,‘,] or
[Ya,'(n-1)/2] is easier to construct. The order of the determinant is

thereby reduced.

Now, we shall xd&ecuas the computational complexity reduction of the
determinants of the generating matrix [Aa n]' It 1s known that the
’

number of multiplications and divisions (known as complexity) in

evaluating the determinant by Gaussian method is

(n=1) (n® + n + 3)/3 ” (2.7.18)

th order determinant can be treated as an (n-‘l)th

In our case, the n
order determinant due to the fact that the elements in tlhe first row are
zero, except .for' the first element which is unity. Then, the total
number of mltiplicﬁtiona and divisioné will be .

(n? - 3%+ 5n-6)/3 - (2.7.19)

Case 1: Even order n ) e

The order of the reduced matrix [Ya is n/2.

,r1/2:l
The number of multiplications required to reduce- the order is

x
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? (n-2)16 | B (2.7.20)

and the complexity to evaluate its determinant is

(n - 2) (n2 + 2n +12)/24 (2.7.21)

Total complexity involved is

(503 - 602 + 16n - 48) /48 © . ; (2.7.22)

Due to the structure of the generating matrix, the complexity is

(a3 + 302 - n)/6 | A (2.7.23)

That is, compared to Eg. (2.7.19),(the reduction in complexity is

~»
”’} . P
‘\//

(n3 - 9n? + 11n - 15)/“6' (L2.7.2u)

’

Further, because of the reduction in the order of the matrix, the

reductiort’in complexity is b \i

S

(11103 - 42n 4+ 64 n - 88)/48 " (2.7.25)
Therefore, the overall reduction in complexity is approximately 68.75%.

Case 2: 0dd order n

The onderA of the reduced matrix [Ya,(nn)/a] is

(n=1)/2. The number of multiplications required to reduce the order is

¥

(n-1)2 (n+ 1)/716 . X (2.7.26)
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: - u9 - _ Y

- and the complexity to evaluate its determinant is

¢ ! 4

‘w !

(n - 3) (n% + 11)724 (2.7.27)

&
Due to the structure of the generating matrix,—the complexity is

3

(503 - 9r2 + 190 - 63)/48 . N (2.7.28)

., ‘
That is, compared to Eq.(2.7.19) the reduction in complexity is

ey

(= 1) (40 + Tn - 9)/24h (2.7.29)

Funttier, because of the reduction in the order of the matgix, the

reduction in complexity is

(11 n3. 39 n? 4 6% n - 33)/48 (2.7.30)
‘ \ ,

4
‘ Therefore, the overall reduction in complexity is approximately 68.75%.

A
The determinants of the generating matrix [Aa,n] are alsoc generated

as a function of the elements of'the matrix and’ the coefficients of

lower order polynomial. It can be shom; that the determinants of even

order can be expressed as

. & (n/2)-1

lAxan,nl = IAa,n-Z'{ - f.11,2 *+ ;(fn-ﬁd a‘21—1,:1-2 - rn'-i,z a‘21.,1'1-2)}

(2.7.31)
and odd order determinant can be expressed as '



;T ' . ' \,
- - 50 - -
. P \
' n-1 |
z
, ] . ) .
Bg,nl = 18 nop! }E: fre1-1,2 212,02 ~ Tn-1,1 82}-1,n-2}
1=1 | ‘ . (2.7.32)
“ - . 5
{ with ag o =1 \E
» - R

4

, :
2.8 GENERATION OF A PHASE FUNCTION FROM THE COEFFICIENTS OF‘THE

A‘ TRANSFER FUNCTION:

In this section we present a method for obtaining the coefficients
1 .
of an odd infinite series representing the phase\‘ function of a nftwor'k,

. fad
given its parameters (the coefficients of the ‘transfer f‘uncticr!\.

“ N
representing the networld). - ’

As ,a transfer function is representéd by a ratio of two

polynomials, it suffices to obtain the coefficients of the odd, phase: - /
[

function, given the coefficients of a polynomial Pa‘ vn(p).
Gy

Our objectiveé is to obtain b 's givel a 'S of the polynomial
?

i

Pa n(p). This will enable us to cbtain a new set of variables 1'5
, -~ ‘ E)

1

during the optimization procedure. \ N
The matrix. equation Eq.(2.2,19) can be r"ea’rr'anged such that the
/anmown, columh vector [X ] “has the new variables b, 4 's as its
elements and the elements of the matrix [Aa,n] and [Ban] are ' functions
of ,the coefficients ak,n's ’of‘ the polynomial Pa,n(p)' The matrix

% ’
equation becomes

] ‘ (2.8.1)

where .
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[ 3;1-1] = - (b1 b3 * . -b21"1) ; ’ , . (2:8.2)
[Bah_.‘] = ( I3 IS . s @ 121-0-1) . (208.3)
!
\.vitlr 2214-1'3 giveqn as ‘ ‘ . - o
l ¢ . ‘ e
= 1-3 ' , 7
A-lagar = Tager * lekn" Pa1s2-2k (2.8.4)
' k=1

and the elements Ii's areé given as . L

C
1 K . -
I, = Z a, 0-135-1) . .o (278:5)
=0 "4} - - R
The matrix [Aa,n-1] is given as R Vi
[] poon - 5,
1 0 0 0..0
hn" N
R P A 0 0.0 |
[Aa?n.1] 2 Iu 12 1 D O 3 (20806)'
’ , \ b L . -
- . * . . ‘e )
Ton2 Ton-y = 2.7
" . “ -l

‘J

The lower suffix in Eq.(2.8.1) does not indicate the order of ' the

¢olumn or the matrix except for the vector [_ﬁaﬁM]' : : .. .

The solution can be obtained in a recursive manner as shown below.
-3 ’ '
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Py =I5~ I,. b,

bs - I7 - Iu [ b1 - I2 L[] b3

b7 = Ig - 16 . b - Iu - b3 A

+ 13 - ’p‘”— 12 . b5
. “
\ . k b’21+1 - 121+3 - Iz 2121-1 k . b 2 (2.807)
' L] . ) r, k—
‘ The variables with even numbers as suffixes are related to the

R C . variaples with odd numbers as suffixes as can be sqeen below:

. : : ‘b, =0 N

1]
—~
o

= 2 b‘L b5 +* (b3

. i . i \ u )
. f‘ b10 =2 b1 b7 + 2 b3 bs + (b1_) /3 i (2.8.8)

So when an odd numbered variable Ie determined- from the recurrence

)2

[+ -]
L]

)' relation, the next even numbefed variable is detemined. The next odd

numbered variable will have term céne‘ieting of the previocus lower even

numbered variable. Likewise any number of variables with odd numbers as
- N0y

' Buffixes can be generated for a given 'nth degree polynomial Pa n(p).
. - ; ’

Alternatively ihet;ead of treating b '8 as the new variables, the

.

. coefficients 621 1,1 e of the defined phase function as an infinite

series, can be be coneifdered"ae new parameters. We will now show how

, e any desired number of’ coet‘ficients €ayy 1,1 's could be generated and

hence the phase mnction as en a truncated series could be obtained.

»

The relation between the odd numbered ver:lable b 'e and the coeffieiente

¢y . </ _-
e SN , S

PR ot
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€t '1'3 ‘o{ the err‘of' phase polynomial 5a(p) ‘s .given by Egs. (_2'.2.114) .
’ ' .

and (2.2.15) which are rewritten as below

v
i

472
,(21-2)

- B e ¢ S féf"k odd S (2.8.9) .
. Z (21-1)\! 21"'1,]‘ . - .
b .1’-:1 “ } )

o’
"

P — OZi,k‘ for eveln . . (2.8.10)

where J is the largest 0dd integer such that 3j _«(_k\(if‘"J is found to be

odd then § is j+1) and © is the coefficient of tie ktjh degree term

my k
in{for m=21i-1 or 21 and m>1)

4

m 00 s . '
' . 21+1 > .
B} = { Zezm,l p } . (2.8.11)
i=1 )

In Eq.(2.8.9), 0 represents the coefficient of the k™ term of P

4n the expansion of the error phase polynomial ﬁa(p) raised to the pp'wer-

m({Gé( p)}m ). As described earlier, using Eqs.(2.8.7) -and §2.8L8) ‘the

coefficients bi'a can be determined. Then using ._Eqs.(2.8.§), . €2.8.10).

[

and '(2.8.11) the coefricfi%s €,4,1.1 Of the error phase function can. be
L PR - . .

determined in a recursive manner. Thus any number of coefficients

v

621*1,1 can be deter'mj‘.ne\d. , ‘ . ‘

.. . . 1
With respect to the phase function which is an infinite series .
o ’ p

several observations can-be made., Firstly, for a given nth order

0

polynomial, there exists only n indépendent .coefficients in the ‘phase

.. function. The rest of the coefficients are dependent” on the first n

[y

~

- *
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coefficients. Secondly, these can be generated recursively. Depending
on the accuracy requirement this infinite series can be truncated to the
¢ .

required number of terms.

\

e In the next section we shall show that an approximation technique

can be developed by considering the new variables bi's as new~

par’ameters.

»

2.9 AN APPROXIMATION PROCEDURE: ) |

From the foregoing- discussion the existence of the direct relation

. between the coefficients of the phase f‘ugction(represented as an‘

infinite odd series) and the coefficients of the polynomial Pa n(p) ﬁas.
’

been established. Using the above results and properties, it now
remains to gievelop an approximation pmocedure for obtaining a all-pole
:malog transfer function approximating a specified cor;stant group delay
over a specif‘i‘ed band of frequencies(or bandwidth Bw) which includes the
stability cqn&traints. The approximation shall be carried c;ut ﬁsing the
least mean square error criterion.

The - obJectiw;e is to obtain a stable low;pasa, all-pole, nt’h order
filte'r such that the group delay‘of‘ the filter appmximat;es J?
constant group delay in a specified bandwidth l;w The parameters of the

fliltef" shall be the new variables namely,ﬂa;, b, b3,..., and

b21_3 which will define the component or the el.emental values of the
realization of the filter(whié:h is a LC low-pass network ,terminated in
resistances) in terms -of the detgminants of the wg\en’erating mtrix as
well as stability constraint;.s. It is noted thatfthey coet‘t‘ie;tents ak,n's

are generated indirectly. This is in direct contrast to the method
, o ‘ I

desired
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contrast to the method adopted in (8] " where the dénominator of the
transfer‘ function 1s obtained, either as a product of factors or as a
polynomial. In such cases the objective function parameters are the.
coefficients ér ‘the transfer function. When the trgnsrer function is
realizable, it has been observed thé; the small variations of the
coefficients of the transfer function wou1d~cause large variations in
the value of the e1ement§ of the realized network. On the other hand,
wbeﬁ Bi's(functions of parameters aa,and bi's), thefzofficients in the
continued fraction expansion of even by odd parts representing the
elemental values are varied, large variations 1in the values of the
coefficients JL,n's of the transferlrunction‘do not occur [47]. The
present method incorporates tﬁis property.

The objective function in this approximation is defined as

Y

m
Ob(aa’xan-1) = E (Tanmq,aa,xan_1) - Tsp) (2.9.1)
i=1 - oo

LS
- . - ' 0
4

! . A
where a” , X are the parmaters
a’ “an-1 p

1 Xan-1) is the group delay function,

an(wi’ %a’

n is the order of the filter,

o d

m is the number of points considerd in the specified band width

wy is the frequency interval equal to Bw/{(m-1) and

Tsp is the specified group delay. This is minimized  subject .to

the stabilit} constraints as

T

(_1)C?(1-1)/2) A 1

a, i 20 for(1gignst)




(The actual evaluation of the determinants is discussed in Sect 2.7.)
It 4is seen that ﬁhe elemental values of the ladder network is

obtained directly. L

Example 2.9.1:

*+

It is required to design a fourth order all-pole analog

’

filter such that its group delay response approximates a specified group

delay Tsp in a bandwidth of 3.5 radians per seconds.

The transfer function is e
]
T (p) = , / (2.9.2)
Tayl P . (p)
) a, b p .
Y A
where.
- P ,(p) =1 +\a '+ a, ,p° +a 3+a ¥ (2.9.3)
WA LA R LA W LA L VeI
-’ .
and Cay = 1
The group delay function ia
' 2 y 6
go R gzw + guu) + 86(1)
Ta,u@rey y'8) = % B (2.9.4)
h0+h2w -o-huw +h6w -o-hsw
where ~
& = 8,4 .
8 =8y 3 =385,
By = 8y B3,y = 3283, 2y .
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=2
(1]

.1 | ¢
h2=a1’u2-2a2’u “ |
’z,uz S22y
,“3,&2 "2% .2

hg = ‘u,uz
The group delay function Eq.(2.9.4) is a function of *and the

=
1]

coefficients a, u's.‘ The next step required is to transform the
- 9 -

coefficients parameters a 's to the new variables aa, b1, b3 and b_.

K, U 5

This is done as(ff'ollows.

The matrdx equation Eq.(2.2.19) for order four is

8 ) . i N [ 7
‘ 1 0 0 0 . f 2
o, 22 V0 L %] |32 .
f3,0 f3,2 2,0 T2 |33, ™,2
\ Ty Ty f3,1 ~f3,2 %, L’fs.z
v i
vhere . ’
2
f2 1% 2
Y
4
Og

t3’1 e IT +aa b1

6 3
(Xa N aa . -
fy 45— ¢ =D sa by+Db
e L Y Y - :
2,2 %
\ (133
f 2 aoswm § b
3,2 % 3 1
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aas aaz .
ru’2=‘;+;b1 +b3
M\ :
0‘a? aau aaz
f S wmme 4 ~= b 4+ == b +0 b + b
5'2 7 ‘ j,” 1 21 3 a j 5 .
The above matrix equation is solved analytically and the solution
is. .. . ;g
.a.l ,‘l = aa
aas onas 2 3
——— - — b + =0 b - a b + b b . ’
105 5 1 3 a 3 a’s 175
38 Ml
Ma,lll
2 O‘ag oLas 'aau 2 3
— -:—b‘+-—b3+2cxab1b3-0ta b5-b1
9us 15 3 .
a = < -
3,4
\ LA
] i IAa 5I
YT ’ :
a,i
where
6 3
o o
« 2 *
A ] & e e 2 b, 40 b, =) 2
. a,l 45 3 1 a 3 1
10 7. 5 3
a o o o
¥ a - 2
A .| = I L S T
85" 4925 105 ' 15 3 3 > & 173
[ 2 3 —
o +b‘ b5 - b3 - aa b1 :‘. ) Was

N

The coefficients a u'a are thus obtained as a function. of a set of
- ’
variables aq,, by, b3 and b5. This gives Tiu‘“’"k,u") as a mqf:tion of

-
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Oy and bi's. The obJjective function is

Ob(wa, xa,3) 2 Z (Tall(wi’ aa;‘]:a’3) - Tsp}
i=1

2 -

and the stability constraints are

D a1 >0

2).-1A | >0

a,2

3) -la, 5 >0
b) Ma,ul >0 "

5) ',Aa,sl >0 - . )
Thg stability constraints can be further simplified as !'ollows'.

The first constraint is always unity as the determinant of the
generating matrix [Aa'1] is unity. Hence, there are actually four

constraints. These are —

1)a.>0
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e,

4) 1A .1 >0

8,5

The above problem is a non-linear least squares data fitting
problem. The algorithm described by Fletcher is used to minimize the
objective function [48]. “This minimization algorithm requires an

in}t;al approximation to the variables aa, b1, b, and b

3 5 * Thesg are

determined as follows.

The relation between the variables and the coefficient ak’u'a are
established in Sectién 2.87 From equation Eq.(2.8.9) the variables Ogs
b1, b, and b. are obtained as a function of the coefficients ak'u's of

3 5
the polynomial Pa u(p). They are
]

a_a1,u "
a.” a .
0,4
b. = a - Ba a +a_1——’u2 -.a.li
17 73,4 1,4 2,4 21 1,4 3y
b3=15-12b1
bs = I7 - Iu b1 - 12 b3 o
where
a 2
I.=za - a a +-1-’-£— . '
28,8 7 8,40,y -
2 37 4
e P R N s P v



«
. Coa uz a ,u3 2 uu
I_za-a, ,a - a SR AR} + a —r
5T TR R T R T T R T R T,
5
- Bl
51
a 3 a 4 a > a 6
and I -a 1,4 + ..lLl_'_-a ' + a _1_,ll_
LT 34y 2,4 5y LIPS
7
a
ERATLE

The flowchart for &he optimization 1is given in Figure 2.9.1. It is
seen that .this flowchar@ is for any order n. A known analog all-poleh
low-pasas filter _such as Beassel, Butterworth, Chebyshev, ... ete, are
chosen to determine the corresponding new variables Ota, b1, b, and b_..

3 5
These variable values .are used as initial guess values as required by'
the optmization algorithm. Figure 2.9.3 shows ti:he various\ group delay
_responses, In tpe Table 2.9.2, the elemental values, tha)deviation of
the group d}alay from the specified group delay Tsp (which is normalized
to unity), the ‘percentage root means square error, and the sixﬁr; of the
1ike kind elements are tabulated\ By adopting similar proewedures,\ the
/ .
results f‘or‘ the cases n = 3 and n = 5 are obtained and these are shown
in Tables 2.9.1 and 2.9.3 re:pectively. Figures~2.9.2 and 2.9.4 show
the responses corresponding ﬁo these cases. Figﬁre 2.9.5 1s a low=-pass
LC-ladder network terminated in res@&n’ces at hoth ends. Flgures
2.9»‘6, 2.9.7 and 2.;§.8 show the mgni‘tude responses corresponding to

these cases.

g

N | )
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7, ' Input

n, initial values a; (toa Bw, m,
1 'i_ ’

sp

Find the corresponding new variables

Vo
Z//f(:ompute the determina;/]
. A 4

s o

Compite  °
a) Elemental valués

b) Derivatives of the constraints
c¢) Group Delay and its derivatives

-

Compute m ,
() = 2 (T () -7gy)

and derivatives.

“

a set of
new
variables

Output

Fig.2.9.1. Flowchart for the Approximation Procedure: Analog Domain.

-

&



Group Delay in Seconds.

od
i -

_~63_

. ® - Bessel

- & - wﬂ.son

-6 1 3rd order filtef;s.p ‘delay‘ =
Bandwidth 2.5 rad.s/ sec.s.
& -
<
- . ‘/
2 ' /
. 4 ) ’ g°

- . . ‘ - - ' ‘ - .
.0 B % 0 2k 3z . e

: A freauency in rad.s per sec.s .

L

,Fig.2.9.2.Various Group Delay Responses.
‘ . \

1
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2.10. SUMMARY AND DISCUSSIONS:

" In this chapter, a method is developed which will generate the

denominator polynomial fPa n(p) of an all-pole analog transfer function

in order to approximate constant groub delay. Starting from an all-pass

function(obtained from the transfer function considered), a set of new
\ »

variables (aa and bi's) is obtained which determines the error between

the actual and the constant group delays. This results in the

generating matrix [Aa
¢
Some important properties of the elements of [Aa

n] whose .elements are functions‘of aa and b,'s.

' i

n] and .the BrincipaL
?

minors of [Aa n] are discussed. In particular, it 4is shown that the
- ’ .-
principal minors of the generating matrix are equivalent to the

corresponding Hurwitz determinants‘formuléted by the coefficients ék n's
~ ]

of Pa n(p), This will enable us to obtain the various stability
’ -

constraints in terms aa and bi's. In addition, a recurrence

relationship is obtained which will permit us to obtain higher order

3

polynomials atarting from lower-order: ones and incorporating the

stability constraints.

Using the above properties, Qn optimizqtion,procedure is formulated
in order to approximate a constant group dealy. It is shown that the
structure of‘[Aa,n] consideraply reduces the computational complexity iﬁ
‘ that the order of any determinant is approximately reduced by 68.75% _as

compared with that of Gaussian method. N
/

In. this procedure, it is shown that the objective function and the
stability constraints are obtained as functions of the -‘parameters that

are related to the phase function expressed as an infinite series. It
=7 . i

is shown that the Bessel polynomial is one particular case( all bi's are

W
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equal to zero) of this: procedure and a large number of résponses can be

obtained depending on the extent of ‘minimization of the objective

function. In addition, the elemental values of the realized LC-ladder

network terminated in resistances is also obtained simultaneously.

!
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CHAPTER III

v

'CC)‘NSTANT GROUP DELAY APPROXIMATION OF 1-D LOW-PASS DIGITAL FILTERS

<

3.1 INTRODUCTION:

"In this chapter, we shall consider the generation of " a digital

transfer function approximating a specified constant groug delay. Tﬁe
44

various analytical properties are first developed and these are
effectively used to minimize the error between the constant group delay .

and the actual group delay.

]

3.2 FORMULATION OF THE GENERATING MATRIX:

In this approximation, we conside)r" the Richard's variable
¢ -

»

/

(3.2.9)

\ é:'.f’ L. ; K //

wherefra is the the sampling period, cbv 184 positive constant, and p 1is

ann
t = ¢, Tanh(p1/2)

the comﬁlex frequency variable defined as p' = Lo+ JQ.
By making use of the relationship
z = ePT o ‘ i (3.2.2)

we have . _ AR
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where z is the variable in the digital domain.

. . . ) <
3///»ﬂ M This means that startings from a strictly Hurwitz polynomial in the
variable t, one can get a polynomial in z which has all its zeros within

the unit cirele. Also, as the solution to the approximation problem inm

the t-domain and the digital z-domain is the same except for ’

. realization, we have

-

‘ - " . .
2,(¢t) =9, (z)f . . (372.u)
R pT .
t=cp tanh(pT/2) z=e
where‘QA(t) and ¢ (z) are respective phase’functions in the t-domain and

the -z-domain.

3 In terms of the Richard's variable t, the all-pole transfer
- function in the t-domain:can be represented as
Al
¢
T, (t) = —oo (3.2.5)
d,n P, (t)"
d’n J a

where cdn is a positive constant

P
‘ : ’ -

2
. - n . . . '
= i - . .4
Pd,n(t) =z :E: di,n t~, with do,n = 1 ‘ (3.2.6) ,
- i=0 ) - C
B
l.
j The variable p can be ‘expressed as a function of the Richard's

.variable t as



11}

. pT/2

£(t) - . ' (3.2.7)

. . :
The polynomial Pd n(t) as a function of JOT/2 is expressed as
o , v M N ’
“ _ : x
3 b (1/2)
Pd,n(JQT/Z) = IPd}n(JQT/Z)I e'd (3.2.8?

where phase fénction ¢d(j§T/2) is \ ‘ , Y

0,(01/2) = J1/2 oy - §,(J1/2) . #(3.2.9)
s ' L
In Eq.(3.2.9) &y represents the phase %?ope and Gd(JQT/2) is the error

phase'polynomialiin the discrete domain given as

v

\ oy E: N TPY .
' §=1 - ' :

<

\ .
“ where CZi#T 1'3 are real coefficients and the second right hand suffix
’ .

1 indicates the power of Gd(pT/2). This error bhgse polynomial is an

odd infinite series.

We can now consider fhe all pass transfer function in the t-domaini

@

Id .
with t as the independent varidBle.

P, (t) 26.(t)
d,n e d | - - g
Pd:ﬂ(-,t) . : ) PR .'

»

I‘-:m.«‘b‘&
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| . ¢
, (-4
2a, pT/2 - 25d(pT/2) ' . .
’ = e “ ) (3-2-11)
pT/2 = £(t)
we have ) . .
a, - ' N
- Zad pT72 [[1 + t/cb 5 *

e = i ‘ (3.2.12)

1 - tle, g ~ "

,  Substitu$ing Eq.(3.2.12) in-Eq.(3.2.11) and rearranging terms we get

S

a
: d .
Py, n(t) L1 = treyd = - By (-t) [ +W

B ' ag . =26,(p1/2)
& =P (=t) [1 +tr/ec. ] {e. - 1} »(3.2413)
N \ . ,n‘ b ' * . .

0

. .

where £(t) (Eq.(3.2.7)) is substituted for pT/2.

The left hand side of the abqve expression can be exbressed as

'

: a4 4y
R M ORSIERYLN Il ANCORRULN

k=1

@ 1 Ol.d . k
z 2 Z(Z[— I (o =-2)] dk’n (-7 ¢t

2i+1
ki "
1=0 k=0 {;1 ( S

d¢
e
L

(¥} 21+ | (3.2.14)

o

where fk's are factorial polynomiﬁls'given as

fo=—= Teo-e) . - (3.2.15)
kl d t Al . ( M
=1 - ' .

. ‘ T °

N

7 - .
The Eq.(3.2.74) is obtained by the infinite series expansion of the:term

PR

a C. ' Fo'Yng .
[1st/c,1 % by the binomial series. The right haR¥°side of Eq.(3.2.13)

' . I

-
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\ v .
Vo . \ ;
\ ’ - 79 had : - L ‘-
Vo ' ‘ o
1\ (%] . N ]
\ ¥+ . .
. \ \p can be %xpr-eseed as : | 1
) " ' ‘ \\ . N d -~
) \\ - » ‘ a -25d(pT/2‘) . -
| Py n(—t) 1+ t/cb] {e . - 1)
“\ - ~ipT/2 = £(t)
\ : :
= b, ((b/oy )3, E e )t (3.2.16)
. ) .
The coefficients bi d's are obtained by th¥ expapsion of the infinite
’ ! =268, (pfr2)
‘ 1 series due to the exponential function € d and the binomidl ' -

a . N
series expansion of [1+t/cb] d. These coefficiens:s along with the :
coefficient Oy ére considered as new parameters. bi d's in Eq.(3.2.16)

& -
and the coefficients C21 ' s in Eq. (3 2.10) are related as follows: )
h 3
For k odd : - ' /\
' L Je 2k, - 1 .
. 2 | * ‘
- Jk+2 '
= - —————————— ") , ( .2.
®kyd (e (2k, - 1)1 kK . 3:2:17) A
‘ k=1 . |
" and for k even '
372 2):1
K2 2
b = (c¢) z Y . (3.2.18)
' k,d b (2k1)! m,k . .
k,=1 ‘
1 { \
~ where J is the largest integer such that’ 3J<k(if J is odd then Jz3+1)
and Vi k (m is 2k1-1 or 2k1) is the coefficient of the kth powered term
, N
of thg variable t in the expansion of ’
. ’
z 2k+1 '
{6 (t)} = { 2k 1 1 } ! .' (302.19)

k=0 . ' -~



b ™ ) o
<@~ ’ ’
) \Z . ) : ,
- = - 80 -
p . . .
and
3 = 2 .2.20
. Moke1,1 ic23+1,1€2j+1,2k+-1 (3 )
- JF j
' i th '
where EZJ+1,2k+1 is the coefficient of (2k+1) )powered term of t in the
. " S
exﬂpansion of R
13
«© ‘2j+1 ‘ .
! 2i+1
{Z Porar,1 b ) (3.2.21)
i=0q - .
.
3 .
2 2141
with. P2i41,1 = EFT(T/cb) (3.2.22)
-— g ‘ 7 ‘

Using the above equatioﬁs the coeffic}ents Ve k's(m is 2i-1 or 21) are
?

" obtained.

Eq.(3.2.13) 1is to be solved, that is, d_ _'s, the coefficients of

Kyn

the polynomial Pd n(t;) are to be obtalned as a solutiqn for a given set
Bad

of wvalues of the variables ad and bi d'
y

be formed from which the coefficients dk o'S of the polynomial P, n(t)
' ’ .

are obtained as a solution. Using the relationship Eq.(3.2.3) the

s. A set of linear equations can

desired denominator polynong.al of a digital transfer function can be

obtained. + *®

Tep'sgl.ution dk,n'a is a function of bi’d's and  0,° Sut{stituing
Eqs.(3.2.14) and (3.2.16) in Eq.(3.2.13) and equating corresponding odd
powered éms on both sides, a set of infinite number of 1linear
i@dent equations can be deduced. Of these, only the firstn

equations shall be considered, because of the following reason: When we
obtain the coefficients dk n's from these equations in terms of the
o1

variables and b

g 1 d's, all the remainisag coefficients of the phase
, d
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function can be evaluated. i
> '

Now the set of n linear equatio'ns can be expressed as

[Ry,n) [Xgy) = (Bg) A (.2.23)

.
»

where [Ad n] is square matrix of order n, [xdn] is column vector of
H
length‘r{,' and [Bdn] is also a column vector of length n.

The elements of tRe matrix [Ad,n]’ the vectors [xdn] and [Bdn] are

A

respectively as follows. o ~ '
. : "4

1 0 0 0 (] oes 0 )
X2’1 -3(2,2 1 0 » 0 o8 0

- x3’1 -x3,2 xz’1 °x2,2 . 1 ess O
. - L 3 . [ ] L 0

]
. [ ] - ‘ ‘- = 7 o.tn 0‘
[A J s . . . " /e -n/c 0 (3-202”)
d,n ‘
. {
. . . . / . e 0
. L] L] . ? . L N ] %’O,d
L[] L] * [ ] L *0 e F1’d
J( -X X -X . e e F N P
n,t “n,2 "n=1,1 n-1,2 n,d
where
2i=k-5
b T b }' |
Xk S ook * Tagony P1,0 ¢ Z Toe1k-3 Pye2,a
3=1 ‘

7

& yhen suffix is less 'than zero, that particular f is zero.
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v : éd
for k = 1,2 and x, , = 1 . (3.2.25)
’

where for n Odd:FO,d = 1, th = x2’1,....., Fn,d = x(n+1)/2,1, and
for n even:F‘o’cl = O’F1,d = X, """Fn,d = X(1/2)41,2 (3.2.25)
- (3.2.27)

[an] = (d1,n.d2,n ceesenes dn,n ) /3. .
N ' (3.2.28)

[Bdn] = (x2’2 x3'2 [N} oxn+1,2) 3' .

(Prime indicates transpose.)

"Egs.(3.2.23) and (3.2.24) are because of eonsideration of the set of

first n consecutive linear indpendent equations. The nth element of the

A

vector _[Bdn] is a function of (2n-3)-variables. Among these,

n-variables (OLd b ) with odd suffixes are
, ;

1,d? b3,qz Py a1t Poni3ya

independent. The remaining (n-3)-variables .(b )

2,d’ bu,d"""bzn-u,d

with even suffixes één be obtained as a‘’ function of independent
variables. The vector [an] is obtained as a solution to Eq.(3.2.23)

for a set of values for the new parameters (0 b

d’ 1,4’ b3,d’ Bys Bgyeeees

]
b2n-3,d)' Thus. the vector [an] containning the coefficients dk,n s of

the polynomial Pd n(t) as its elements is generated. For all bi d'.s
] 1

equal to zero, the generated polynomial and the resulting filter will

have constant group delay in the maximally flat sense about the origin.

‘Before attempting to establish the strictly Hurwitz nature of the

polynomial Pd n(t), we wish to discuss some properties of the elements
? \

of the matrix [Ad n]+ Henceforth, this matrix [Ad n] is ¢alled the
. y ’

generating matrix of the discrete domain.
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3.3 SOME PROPERTIES OF THE 'ELEMENTS OF THE GENERATING MATRIX:

A

. L3
- It is evident from the elements ¢f the matrix [Ad n] .that there are
! - ) ,

only (2n-1) different elements which are to be evaluated. Any (1,J)th

element of the matrix can be evaluated from the following expreasion.

i

_ J+1
xi,J £ (=1) {f2.1_1_3 + tZi-u-J b1”d

N *

Jos

.‘%

T % 21-5-k

' Z f21-5-k..3 b,j+2,d} (3.3.1)
J=1

Several theorems are proved below.

Theorem 3.3.1

x1+1,1+2 ‘= xi,.ﬁ (3.3.2)

Proof':

Substituting (1+1) for i and (J+2) for J in Eq.(3.3.1), the power

4
suffixes in Eq.(3.3.1) \Wwill remain the same. Hence, the (1,J)t'h X
N * . Al P th ."‘ l\
element is exactly equal to (i+1,3+2) element .

N

Hence the result follows.
- The glemonta co‘rr‘esponding to' twd consecutive columns(in the
ascending order) and a row are related through partial forward

differences wi;h respe‘c/t),,to the phase slope o a° Before we present these

" properties as theorems, we wish to pfesent the two well known differance

s

and anti-difTerence properties of the factorial polynomial Eq.(3.2.15)

1

(o) 1) L (3

¢
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aa' Lemmas.

Lemma 3.3.11 N\ P '
th
- If t‘k(ad) ‘ 13' the &

2 o

«

t“i(_i(mad) of order k-1; that is,

(1

13 A v
% f0g) = 1

(a

4)

k=1

Proof:

)

.We have
. .ad k=1 - ’ .
£,(04) 2~ 1 (04-1)

i=0"

Te(%y) = 1,01 < £,(0)

Qe k=1 o k-1

. s Ny -2 (@-1)

d
k i=z1 *' ie1 e

which simplifies to

]

L]

u A

Gy the other variables remaining invariant {49].

N
»

1

»

order factorial polynomial then its

L ] :first forward partial difference with respect to the phase slope - a 1s

v

b.3.9)

‘(3'3.“)
(3.3.5)

(3.3.6)

Sa, 18 the symbolic r-’opr'caentation for partial difference obonio‘ﬁ',’
which”mgpna the diffsrence shall be taken with respect to the

variable



5

Ke2
O.d .
2’ - n (a -1) (303-7)
- ki d .
i=1
1 ’
: /

)

Hence the result follows. ' /

1 /’
3 s . //
—femmd 3.3.2 0\ )

If ' f(0,) is the k' order factortal, then its first

anti-difference with respect to phase solpe 0 is f‘zﬂ(ad) of order k+1.

d

L (1)ne / &

/

A .
. % £.(0g) = fi,q4(2y) / (3.3.9)

/

roof: .
We have the expne:psion for fk(ad/hé Eq.(3.3.4)., Then from

Lemma 3.3.1, the first partial differenge of fk+1 d

: /
Therefore, the firat partial anti-difference of !‘k(dd)\is
e /
. . /
. A(-1) o ( ' L
0y £, (%) = £ (0 + °o7ﬂ
/
where ce d is a constant of anti-difference. As f
' .

(«) 15‘ t‘k(ad).

¢

(3.3.10)

e

Y hal
k+1(ad) has to a’atisfy'
Eq.(3.3.4) it cannot have a non zero value. Therefore, ¢, d has to be
/ ’ . .

J

.20 ro. //
/

. ©J
Hence the result followp/’
. . / ‘

./// E

o

. /
o
. ~ -1 e
#% 0 {s the symbolic representaion for the partial anti-difference
operatog [4g]. - .

/

!
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Theorem 3.3.2

The element x is the Ecgative of the first partial

1,341

Qa

forward difference of the element xi j with respec¢t to the phase slope
. ]
dl
' (1
x =B x| : ‘ (3.3.11)
i,J+1 d i,J - .
Proof's , A\ )
- ?® ' .4

Taking the first partial rorﬂqgg_hifferehce of the Eq (3.3.1) with

- réspect to ad and nultiplying by (-i) and applying Lemma 3.3.1, we have

'

‘ (1)

A T oaJel : \
O (xy,9) = (D7 Uy g+ fa3.5.5 Paya . -
1 .
3y
) b LD Tk w2, d
k=1 .
=Xy g . (3.3.12)
Hence, the result follows. »

»

The elements corresponding to two consecutive rows (in the
deieending order) and a column are related through second order partial
forward differences with respect to the phase siope Oy and is given by

the following theorem.

Théqrem 3.3.3

@ , | e

Xi_1,j.l a'd xi,J s o . ’ (3-?013)

.Proofs

Taking the second partial difference of Eq.(3.3,1) with respect“to

<

Y
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.

the phase slope o, and using lLemma 3.3.1, we get

(2)
A J+1 . :
ag (kg0 = N AL,y oy ¥ Toy 609 Pyya
) 24=7=3.
-t .
+ Z f
§ - .k=1
It can be easily verified that -
(2) '
A
X =

1,3 5 %4 X1,y

Hence the result follows.

21473k Cke2,d

3

(3.3.14)

The elements of the generating matrix [A d n] are related through
- ’

, anti-difference relationships. These are presented as f‘olloﬁa.

Thaomm 2.20’“

(-1
-4 341
X1, %7 Y Fggm G107 Py g (3.3.15)
{
Proof's
A('-1) , ‘
Let X33 "™ % ®,5m * %0 N (3-3.16)

-

The first term in the right hand side is true from Theorem 3.3.2.

It remains to establish that the constant of anti-difference

31 ’
("1) bzi_d-3c -~

From Eq.(3.3.16), we have

e1"1 is

N

<



© (-1)
e, ,=x, . +% «x : (3.3.17)
o 1,d - 1,J d i’J+1 B ”
LS ) S .. ) ) y.
,‘:v L - Substituting expressions for xi‘1 y using Eq.(3.3.1) amd_
, ‘ f ' '
Theorem 3.3.2, EqQ.(3.3.16) results as 4
. ) o
_ J+1 . . '
°1,d = (=1) ‘ b21-J—31 | . (3.3.18)
| .
I l
Hence the result follows. ;
; ) \ f
o
Theorem 3-3.5 ?\' .
“ (-2)
3+ C .
xi,J = cad 11_1’3 + (-1) bZi—j—u (3-3'19)
Proof: .
~A(-z), T
Let xi'j“ = ad 11-1’1 + 02 - ‘ | (3‘03020) .
The first term in the right hand side of the above equation 1_s true
from Theorem 3.3.3. It remains to show that the constarnt of
3+ )
anti-difference 2.4 is (-1) bzs.-;'-u‘
From Eq.(3.3.20) we have - ‘
\ . A(-Z) . L] '
. %X g,y B X 11,3 (3.3\\21)
Substibuﬁing expressions for X4 by using Eq.(3.3.1) and
¢ s
Theorem 3.3.3, Eq.(3.3.21) results as
T ‘ J-+1 | ~. '
\\ e NI by gy : (3.3.22)
Hence the result follows. : . -

<

&
—~

vt
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‘determinants resulting from the, generating matrix [Ad

G

-89.’.' .
4 f N
In the next sectjon, we shall discuss some properties of the

vn].

’

1 vy

3.4 PROPERTIES OF THE DETERMINANTS OF THE GENERATING MATRIX:

AN .
By Cramer's rule, we have )

I ‘ -

4 = K : (3.4.1)
LT
d,n »
\d th .
where, dk n's are the coefficients of the k powered term of the
y . . 1

denominator polynomial P, (t) and ch\kl is the determinant of tlie
1

d,n

geﬁZrating matrix {Ad n] with its kth' coiumn replaced by the ctor
’

‘[Bdn]. There exist some relationships among these determinénts, and

\

hence among the coefficients d _'s of the polynfhinal Py.git)e In this -
- B Y ]
section these relations are discussed.
Theorem 3.4.1 . K
‘ ) (n) P
|Cd,n| - (-1) IAd,n'f".l (3-“.2)
Proof't XN

The first element in the matrix [Ad n+1] is always ‘unity.
v B 9

Therefore, its determinant is the determinant of the submatrix of order

(AN :
n obtained by deleting the first row and the first column of the matrix
. y )
[Ad n+1].\/&n this submatrix if the first, the second, the third,...
3
th

and the n columns are replaced respectively with the second, the

third, the rourtﬁ,..., (n-1)th and the first columns, the matrix [Cd n]
. ?
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v v N

h . N

is obtained: where the: nt column willshave the" elements of the vector

<

: '[Bd 1. 'When n is odd or even, there will be {(n-1) hu?ber of column
-dn : P

changes. Taking into account the negative sign of the nth

column, the

‘number of column changes is n. In general, this can be putj, g8 1in

Eq.(3.4.2). . >
Hence the result follows.

-

Theorem 3.4.2.

— A ] . . -
a4 = (-0 _4ynel . L (3.43)
A 1A | -, .
d,n
Proof': .
From Cramer's rule, we have <
¢
lc, | )
d = —iﬂ_ (3.“.“)
d,n . .
< From Theorem 3.4.1, substituting for ICd n' s We get
- ,l
(n) 'Ad n+1l .
d = (=1) —ee s
n’n . IA' I
b dyn
., a
Hence the results follows. .

e
Using Theorems 3.3.2 and 3.3.3, ®he elements of the generating

1 N .
matrix [Ad n] can be shown to be aeque'ngiany related to the partial
’ N

“ forwarll differences of the n'f

th

element of the vector [Bdn] with respect

to®.. This n

a4 element is designated as Gd((!d) which 1is equal to
J . ' -

P

Xne1,2

<
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. [Ad,n]’ the matrix [C
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.

" .In order to prove further prope'r%iesr of the generating matrix
- s - N .

44 Js and the relations among the coefficients
’

dk n's .of ¢he polynomial 'f’d n(‘t)’ the elements of the generating matrix
’ . ]

L4 v

[Ad n] are expressed as the respective partial forward di%femnces of *
] . -
the function x which 'is the nth element of the column vector (B, ]
n+1,2 e’ dn
given by G,d(ocd);as < )
r B e
. : 2n-5% . o
L6 5 et b £ b ] (3.4,5)
c al%q) = o g+ Ton By a* 2n-5-k "ke2,d4° 0"
k=1 - o ’ ) -
and the matrix [c, .1 will be "
, [
e . ' X ' et P
“ Gd(zn.1) 0 0 9 ’ se o 0
(2n-3) . (2n=2) . (2n=1)
Gy -G, cd( ") e . O
, (2n-5) _, (2n-4)¢ . (2n-3
; Gd ‘ G“1 ? . Gd . es o O
[Ad,n] =) . - . sos o O (30“.6)
\ R
- . L) . e .Jo,d L
- - . L ] i > 8 'J1’d
e (3) (4) (5)
5‘ Gd -Gd Gd s @ 0/ K
(1) ' (2) (3) _
Gd "'Gd Gd [N} 'Jn,d
b . o -
where ' : ©n T *
(ene) (2n-3) 4 ) )
p "1 2“‘3 g n
Y - - -
. o (2m-2) - (2n=4) _n (n)
for n even.Jo,d "Gd ’ J1,d =Gy yoos Jn,d ,"Gd (3.4.8)
(en-1) , " th
and Gd is (2n-1)"" partial forward difference with respect to oy

Chay

.

<
The elements of the matrix ICd nI are also expressed as the partial
’ ’ v
, .

3 .

.
2 ’ ’ G
’ Rl
,
e .

; R . * X
oo gy - . e -

.

N4
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: . ' [
forward differences of the function Gd(ad). aN, RN
> >~
¢ q N el
- )
* . (2:1-1)"’!"0 N, . A (2n=2)
d / 0 ') . Gd
(@n-3). . (2n-2) , (2n-1) (2n-4)
Gd "Gq _— Gd . e e Gd \v
. » ‘( . s 0 . ‘\
ch,nl = . 0 - -~ .e LO,d . \
L ] ‘. . . ",. L1’d -8
"v"y’ . - - . - .
(3) ) (5) T (2)
G ™" G B v bee,e G
(1) (2) (8) G
Gd ' \ -Gd Gd R .e Lk,d d
- . f
m . . (3.4.9)
. ¢ ' :
where ‘
s
g - _p (2n=2) (2n-1) s b (n=1) oy
,foz: odd n'LO,d = -Gd ’L1,d -Gd ‘ "’Lk,d e :bGd (3.9/.‘10)
. (2n-1) . (2n=3) - (n=1)
and for evem n: LO,d,"Gd s L ~d szd yeey Lk,d' 4 ]
) (3.4.11)

;

P

ﬁext, the relation of the determinant |C d 'n-1l with respect t§ the
’

e ,
_partial forward dift‘erenco' of the detebtminant lCd h‘ with respect to
H

o . (G
a, is established. ; / ' T
-
-~ . [ oo ,
N , , f d
s b Id
' - ‘

213
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Theorem 3.4.3

The determinant ICd n 1[ is equal to the partial forward
yN=

et
difference of tﬁé%determinant ICd nI with respect to O

.

’ d'

(1)
g

iC | = o ch,n| (3.4.12) °

¢
Proof':

The first order partial forward difference of the determinant

ICd nI with respect to ad is the sum of ,n partially differed
y .

determinants. The first partially differed determinant is the

determinant of the matrix [Cd n] with its first column elements replaced
’

-

‘ by the partial forward differences of the elements in the first colump
of the original matrix [GH n]; the second partially differed determinant
1

is the determinant of the matrix [Cd n] with its second column elements
" ?

L

replaced by the partial forward differences of the elements in the

second column of the original matrix [C, ] 4... and the nth partially

dyn

differed determinant 18 the determinant of the matrix [Cd n] with its
’

nth column elements replaced by the partial forward differences of the

nth column elements of the original matrix [Cd n]. In the kth
H

determinant, the kth

?(- th

original k column elememts ugth respect to ad) are in equivalence to
/AJ

.. the corresponding elements of the (k+1)th column, except when k is

column elements (partial forward differences of the

(n‘q). And when k 18 n, k+1 is 1. As the two co;umng have the same
elememnty in order, the value of the determinant is zero. Hence, in the
summation of n determinants, (n-1) determinants 3anish. The non zero
valued determinant is the.one whose (n—1)t‘h column Deleﬁenﬁs are the

respective partial forw%rd differences of the (n--1)th column elements of

the original matrix [Cd n]. Therefore, we have
‘ b

3

{
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(2n-1) ) (2n-2)
' Gd ] 0 0 . Gd
' (2n-3) (2n-2) (2n-1) (2n-4)
Gd -Gd ‘ Gd 0 Gd
!‘ qeo - . *
:{‘\ ) L] . .
(a4 L
A 'Cd,n| - L] [ ] 1 ] wo’d »
Gd .
HISAN . . . W1’d .
/-\ . L’ . . [
' (3) @(& (P (2)
6 ™" Oy Gy Weer,a Ca,
(1) (2) (3) ’
Gy -Gy Gy o G
-
(3.4.13)
where ‘
. . (2n-1) (2n-3)
fOP Odd n . Uo,d - -Gd y W1’d - -Gd . ’o:‘n y
. (ne2) (n) '
Weoq,a = =Gy » Weg = Gq (3.4.14)
and for even n ' : r
vy “(2n-2) (n+2), (n)
"O",d- 0’;w1,d SGd goey Hk—1,d -,Gd Hk,d-Gd (30""-15)
“ , (1)
Lo th th A
Interchanging the (n-1)"" and n”" column in the determinant ay ICd nl
. 1
we: get the determinant |Cd,n—)" l
Hence the result\tollows. N
X , th th
Next, we shall establish a relation between the n™" and the n-1

-

" coefficients of Pd (t),
. ,n

>
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Theorem 3.4.4

The nt’h coefficient dn n and the (1'|F-1)?’h coefficient dn_1
a 1

l are related through

(1)
d A“ A |
n-1,n _ (_1)(n) .4 '8 ne1’
4 dn,n ) IAd,n+1I

Proof:

From Theorem 3.4.1 we have

. 1= (-0

d,n d,n+1

and from Theorem 3.“.3’ue have

(1)
A

'Cd,n-1' =

From Cramer''s rule, we have

‘ _ ch,nl
*ﬂ,n -
Iag !
and
Ic l
e Gl
d,n

-

'R

' (3.4.16) Ie

(3.4.17a) .,

’

(3.4.17b)

(3.4.18)

(3.4.19)

-
<,

Forming the ratio of Eq.(3.4,18) and Eq.(3.4,19) and substituting

for lcd,nl and lcd,nJﬁ" we obtain the required result as Eq.(3.u.16).

Hence the result follows.



- 96 - v

. The determinant of the matrix ICd ‘r; 2I can be expressed as func
y 1= ., :
of the partial forward differences of the determinant of the ma
¢
lcd,n—11 or ch,nl or IAd,an.

Theorem 3.4.5

(1)
164 gl = 3 fag 10y oy . G2
(@) '
= 3 fag 1y (3.4.2
(2)
= 3 ™ 1y (3.4.2

Proof':

The same procedure is followed as in the previous case. That

the determinant 'Cd,n-1

their summation is qonsidered. The partially differed k

| is partially differed column wise n times

th ‘column in

determinant 1C, .,

respect to the elements in (k+1)'Ch column excep‘t when k is (n-t1)

tion

¢

trix

0a)

0b)

Oc)

is,

and

the

| results in the equi’\;alence of its ¢lements with .

and

(n-z), Hence, in the summation of the determinants allA the detrminants

columns. Therefore we have

(1) .

A .
og 1%, p-1! = 19,41 + 19 4]

(3.4.2

where

| ekcept two, varish as they have same respective elements in two of their

1

-



BT 2

(2n-3) .. (2n=-2) (2n=1)
G, G, Gy .

(2n-5) (2n-4) . (2n=3)
Gy 4 Gq-

(3) . (W) .(8)
Gd( ) ‘-Gd( ) 0?3)

1 2 ,
G, . Gy (AR

o

. 0 'Gd
.. 0 64
. 0 .
. 0 .
" 0 :
W00 .
A .
Uie Vo,
U, ¥ee1,a %
Uga Ye,a G
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Gd(z""” 0 0.. g, (2n-2)
' (2n-3) _, (2n-2) g (2n=1)
Gd ' "Gd ] % Va
'. . x'.. (-1) o .
A
¢ IQ ) ' * . XX udUo’d 0 .
2,a! = S (-1). (1) ‘
A A
— . . . e (ldU1,d adwﬂ,d .
(1)
‘\ar;"'/ ) A(l W
L ] L] » . LN . d 1’¢ o -
(<1) (1)
(3) () A 4 g, (@)
Gd -Gd [N ) aduk—1’d dwk-1,d d
(=1) (1)
(1) (2) A A .
Ga Gy oo 09U %d¥,a G4
4
. |_ 323y
" ’ /
for odd n ’
. (=1) ( : 1Ly}
* o (2ne1) A o (2n=1) A .
Uo,a = O Wy q = -G4 v 09Ug,a ® » Og¥g,a =0
a (=1)
_ A (2n-2) (2n-3) A - (2n-3)
Uy,a = % » Wq,a = G4 v ogUy 4= Gy ’
‘ . (1) ( ' )
A - 2n-2
ag¥y,q = <G¢ :
. (-1,
= 4 (=) ) (n¢2) A (n)
Uga1,a %% " Wkar,a " "Ca 0 %g%a,a %% s
: 7 )
o A, (n+3)
g . Og¥_y,q = Cq,




~,

0,da = G’

* anti-difference of (n-1

N (3.4.24)

and for n even

(v2n-1) .
U ) Vg, q = 0 aglp o = -

o ened) T (me2) A . g (o0l
Uy, 7 G v Wi,a=8 ’j”nd"ﬁd

11d

'

o (3-“.2.5)

v : . . R ) t
. The first determinant IQ1 dI in Eq.(3.4.21) is the determinant
- ’ -

|. It remains to-show that the second determimant IQ, ,| is also
. ’ .

b

’Cd ’n"2

aame as the ch e

- By taking the partial dit‘remnce of (2-2)*" column ‘and partial
) odlmm of .the second de:.}minant IQ l and
further applying the Theorems 3.3.2-and 3.3. 1&, it is clearly{‘peen the -

existence of the equivalence ot‘ the ' first determinant [Q, .| to 'the

‘ 1,d
) L - - A T s
determinant ’Qz,di' \ _ )\ o P
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‘Hence the géault‘follows.

n with respect to the

We shall riow establish the relation of dn >
o . : <y

coefficients d

n“,n and dﬂ,n. . , ‘ . ' “« )
.. A
Theorem 3.4.6 ’
9, %
d T | . .
n-2,n , _d,0-2 (3.4.26a)
dn,n I?d,n|
(1
A, )
a, IC I .
. % » d( )d;n-1 Lo (3.4.26b)
(=0 1Ay
dyn+
) (2)
b,
. % d( )d1“+‘ ' , (3.4.260)
0™ 1, ?}
. - ,l’H- 4 \ ;
#roof‘:‘ .
BY Cramsé's rule we have
'.cd n_zl . * ' : . v
d . PR Loni 38 and (3.4.27) ‘
B=2,0 " ) \
o d,n
, ic, |- -
d ] ——9—12— ' - - h ' (3-”.28) )
L L VU
a,n

* AN y

Taking ?ﬂvrétio of Eq.(S.M.Z‘Zi‘ and Eq.(3.4.28) and using

Theorems 3.4.3 and 3.4.5, we obtain the required result as Eqs.(3.4.26a)

-

“to (3.4:260).

[

Hence the results follows. ' N
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w
., A

Thus Theorems 3.4.4 and 3.4.6 §eatab11§h the relation among the

three coefficients. »

J
!

Theorem 3.4,7 |

.

The coefficient cl1 n for any.order n is always Oye That is
, ‘

for all n

d1,n = ad ‘* ; _/ ! (3.“029) )

-

Proof:

The solution vector [X dn] is

-1

(Xyd = [Ad,n] [Bdn] (3,4,39)
, ) | ) } o
where ) < . .
CAq, nl = Adjoint of [A a,nd /1Ag,n! X (3.4.31)

In the generating matrix [A ], the first element is the element
'!’

correaponding to the first row and first column which is always unity

-
&

and the rest of the elements in the first row are all zeros. Heénce

|Ad,n| = Z‘1,d of 'Ad,nl ) (3-“032\)
where z11 d is the bot‘actor of [Ad ,nl. Adjoint of 'Ad,n‘ is ICd’1|
which is’ x2 2 Z"’d . 'rherefore .

- ’ g 3
4,n =%2,2 . ‘
='ay ‘ _ - (3.4.33)

. Hence the result 'foll7l. T

: ‘ w .
We shall next discuss the Hurwitz nature of the polynomial P a lu(t)‘.
oo
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<

3.5 HURWITZ PROPERTIES OF THE POLYNOMIAL Pd n(t):
,n.

-~

As stated eariier, two of EEF important requirements of a transfer
function are the stabiii;y and and the realizability. For the all-pole
t-domain transfer function, if the denominator Qolynomial Pd,n(t) is
strictly Hurwit;, the corresponding digital traﬂ.fér function is always
realizable by some structure. )

Whenever it is not easy to generate the polynomialnPd’n(t) in tpe
closed‘ or analytical form, generation of the same by numerical or other

techniques is unavoidable. In such a technique, it is advantageous to

lincorporate stabiliﬁy constraints which are to be obtaingd as a function

of a set of pq“meters. The advantages are the reduction in the .
computétional effort and time. ‘

In. this sectioh, a method to generate the stability constraints as

1,d’ °3,a’ 5,4
It will be shown that these stability constraints are equivalent to the

a function of the new variables (ad, b ;...) is explained.

Hurwitz stability eriteria.
The denominator polynomial Pd n(t) is expressed as sum of its odd’
, ]

and even parts, that 1is,

Pa,nlt) = 0g p(t) + By (1) (3.5.1)

where 0, (t) and Ed

d,n n(t) are odd and even parts of P

H
'

d,n{t)

respectivgly.

\ ,
The stability constraints depend on the requirements “that the

principal minors of the generating matrix should satisfy
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D2y s 0 for(ieney (3:5.2)

or the coefficients in the cﬁntinued fraction expangion of the even part

(t) to the odd part 0 (t)shall be positive. First, the continued
fraction expansion of d n(t)~by 0d n(t:) about the origin‘Is expressed
as a function of Hurwitz determinants. Then, it will be shown that
these are equivalent to the determinaﬂta of the generating matrix

{ ](1<i<n+1) wiia respect to their absolute vaIUes.
fov

o

<

The continued fraction exSansion of Ed n(t)land 0d n(t) is
] ’

Ed’n(t) _ :1 . 1 —
Od’n(t) t 13 . 1
t + )
Y , . '
¢
Yn-? 1
gt e —
t Y
= (3.5.3)
t

Where Yi's are functions 6f the determinants known as Hurwitz

determinants [44]. The coefficient Y, is

]
1
2
'Hi,d'
| I8

Y- for (1¢i<n) ' (3.5.4)
IH [

Ma1,d' Taa1,d

4

In Eq.(3.5.4), |IH .| 1is the principal minor of order i in the
N ’ :

Hurwitz matrix [H ] of order (n+t). This matrix [Hn 1, d

n+1,d -

] is

obtained” by® arranging the coeffioients of the denominator polynomial



Pd,n(t) as follows.,

{
Eq.(3.2.2) for P, n(t) is rewritten as
H

e |
LA . n h 1 ‘
P, (t) =1+ Y da _t¥ " (3.5.5)
d,l’l - - ’k,n N "o ’ :
A
The Hurwitz matrix is formed as follows. '
For ‘odd n, C-
e*' ‘

p= b ' -

1 0 0 . . . Q

0 dl,n d3,n . \dn,n » O . 0

N o -

0 1 d2,n n=1,n 0 . 0

0 0 d1,n * n-2,n n,n 0

0 o 1 . dl&,n . dn—i,n ki)

N

[Hn""‘,d] = 0 0 o . . . . . 0_

0 0 p ’ » - . 0

. - . . . 3 LY . L] 0

oo TY dn %30 - 4,n
. . 00 | _\O 0 1 dz’n .. dn—1,n

(3.5.6)

Similarly, it is simple to construct the Hurwitz matrix [Hm1 "
! ]

[

fod

where n is even, This is shown below.



Ao s e s s

[Hn+1ﬂd] =

It 1is -well known that when all the principal minors of ¥he matrix
1

. . - .
[Hn+1,d] are greater than zero, then the p:Synomial gd,nFt) is strictly.-

Hurwitz [44],

s
N
-

lHU,dl =
{" |
‘HT,d' = 1
- 'HZ,dl - d1,n
. . |H3,d| iﬁd1,n
° l
IH | = d
i e % e
ete,
The coefficients

»
o

in

v

These determinants are

1 (an asgumption)
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\

3’n .. d7,h
2,n °° d6,n
T

0

0 d1,n

LI

0 0

4 1n 0

dn—?,n” 'dn,n . 9

. - fa

dn-3’n dn"1,n ,»0

/ 0

.o .o N

d3,n * “n-1,n 0
* * “n=2,n dn,d

(3.5.7)

a

(3-5-§)

+
u

the continued fraction expansion of

| Ed’nﬁt)/od,n(t) are the v;'s (1<i<n). For the polynomial Pd,ﬁ(t)" the
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4

\J .
Routh-Hurwitz array(R-H array) can be constructed. The elements in the
first column of Routh-Hurwitz érray can be expressed as, a ratio of the

principal mino‘rs of the Hurwitz mabdrix '[Hn” d]' That is, -the first
t ! .
column elements of R-H array are C

) H, , .| S
(ReBy), | = —=D1 for (1¢1¢n) , (3.5.9)
’
B
} I i,dl

.
s,

It can also be shown i;hat the coefficients Yi's can be expressed in

terms of the these determinants which are the principal minors of the

-

Hurwitz matrix [H

6’*1 ,d]‘ That is,

‘ 2
'Hi dl * i
Y, = d for (1<i<n) (3.5.10)
- T T T :
i-1,d' 41,4

/)561‘ aim is to obtain yi's as a function of the principal minors of

the generating matrix (Ad ;1]. We shall now show that there exists a
?

relation between principal minors of the Hurwitz matrix and the.

'genekrat ng matrix [Ad n].

’

' y C > B
' Theorem 3.5.1 k

&

The dqtéj-minant of the generating matrix [A 4.4] of order 1
L
is related to the determinant of the Hurwitz matrix [Hi d] of the same
. ) ’

‘. order i.as ‘

{ * .
: ‘ L ey (1(1=1)/72) .
! ; .: y ("1) . 'Ad 1' - lHi,dI s . (3-5011)
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(Proof is given in the Appendix C.) .

‘Theorem 3.5,2

The coefficient Yy in terms of the detemir{‘gnts of the

- ti trix [A Y; b | ¢
“™. generating matrix d,i] is given‘ y W

2

IRy 4!

Yy ® for (1i<n) . ‘ ' (3.5.12)

S R Y

This result ‘an be prdved as a cq‘riaequehce of Theorem 3.5.1 in view

of the foregoing discussion. ' ) f

Theorem 3.5.3 . . o

The necessary and sufficient condition for the polynomial
B ]

Pd n(t;) to be strictly Hurwitz is

’

3

1Ay 41 >0 for (1<icn+1) ' (3.5.13)
’ ° .

L

(o) (1(1=-1/2)

¢

-

Where IAd i' (1<i<n+1) is the prinecipal minor(;)f ordem i) of the
, A,

/ generating matrix [A d,ri+1]' . . .

*

Proofs ’ " N

Frgm Theorem 3.5.1, for Yy to be. greater than zero, it 19 required

that

\ N

{ Ls

4

ed)



- 108 - .

~
- 14

-1a 1 1A | > 0 for (1i<n) ; (3.5.14)

d,i+1 d,i-1

‘'The sign of |A, .| i8 determined by the order i as given in

d,1
¢ Eq.(3.5.13). The iAd 1I‘will have the same neéziive {or positive) sign
]

i
for any two consecutive orders(i,i41), where 1 is even and vwhen

S

. . (1(1-1)72) 1is odd (or even). In the above expression the difference

between the orders of the two matrices is two. Therefore, one of the

determinants either IAﬂ,i+1l or IAd,i-1I will h%ve alnegatiye sign. The
conclusion 1is, if IAd 1+1I is less than zero (or greater than zero),
A ’ . ,
then IAd i 1I is greater than zero (or less than zero). Therefore, the
g =

< condition Eq.(3.5.13) 1s necessary and sufficient. .

»

Hence the result follows.

3.6 GENERATION OF Pd n+1(t) BY RECURRENCE RELATION:
y .

The intention is to show that in geheral, a polynomial of degree

e
(n+1) can be generated from the recurrence relation

~

Pd,n+1(t) = Pd'h(t) + Rd’n(t) Pd’n_1(t) B (3.6.1)
. ¢ L X
- with Pd’o(t) = 1, Pd,1(t) =1 +C¢d t and
IA i Ia | ,
: Rq,n(t) = R LR L (3.6.2)
¥ A s ) IAd,nI 'Ad;nw;l

: ‘ P 2 (t) - t ‘

- | | S A A (3.6.3)
©OP (t) L

d,n=1

'Severa;' authors have  developed methods to generate transfer

J ' .
B N N )
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functions by recurrence relations [33-35]. A variety of phase {group
delay) responses such as arbitrarj phase, equidistant linear phase,
ma;;mally flat linear phase,...etc, can be satisfied with these ﬁkansfer
functions. From the recurrgnée relation, Stability and neaiiz;bility
criteria can be established [35]. In our case, these tio criteria

depend on Rd n(t) in Eq.(3.6.2). 1In particular, these criteria depend
Uy

on the

d’n+2 ' (3.60“) ‘(’5'\ '
2 | £

d,n+1 .

A, | 1A

Eq.(3.6.4) 18 a function of the coefficients of Rhe: polynomials

(t), Pd n(t.), and P (t). This function is
’

Pa,n41 d,n1

dretet,nel ™ Yhaioin g
) ) (3.6.5)
dnsi-1,n-1 i '
: fQP ir=”'0,t"1, 2, ro,n-“ a.fld :fn-ﬁv'l’i’n s 0 fOP 1' :00 - )

. ‘ . 4

Theorem 3.6.1
Tﬂg‘polynomial Pd‘n(t) can be generated from the recurrence
’ .

relation
. LR .I

yed
*

‘ . .
where ¢ \ g* )
s Af '
. s - - N ' -

. :
M~ B v
L
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¥

jd,n(t),F t

2 g paa! 1A

'Ad,n' IA

d,n—‘lI

-

d,n‘ﬁl

(Proof is given in Appendix D.)

This leads to a relationship among the coefficients of the

poélynomial P’d-,n—‘l(t)’ Pd,p(t) and P_d,n+1(t) which 1is gliven by the
following theorem. -
Theorem 3.6.2 \

d d -d '

g-zjn-f= n+1-j,nf1 n+1-3,n _ . (3.6.6)

dn-k,n-1 dn+1-i,n+1 - dn+1-i,n

with 2 ¢ k, n-SL_<:n-1 and n-k in-—ﬁ
4

J 14, n+1-3 < ne1, if net-3d>n, then d = 0.

n+l-j, n+t

= 0.

n+i-i < n+1, if n+1-i>n, then dn+j-i,n+1 s

Proof:
oy 2

In Eq.(3.6.3), if Eq.(3.6.5) and ¢t are taken out as common -

factors, the numerétt;r and the denominator polynomial are identical. By
- 4 )

equating the respective coefficients the r.'elation as’ given by Eq.(3.6.6)
is established. As Rd ri(t) exists and 1is unique, so is the Eq.(3.6.6).
' n - -

Hence t‘he'results follows.

&

The structural properties of the generating ma“t.rix A d n] are the
k] - y

same as those of [A; n] and hence they will not be discussed here.
. ] ! L
{
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y &
3.7 GENERATION OF A PHASE FUNCTION FROM THE COEFFICIENTS OF - THE -

TRANSFER FUNCTION:

In this section we present a method for obtaining the coefficients
of an odd infinite series representing the phase function of a network,

given its parameters (the coefficients of the ¢transfer. function

. representing the network}.

As a transfer function is represented by a ratio of two

~polynom:i:als, it suffices to obtain the coefficients of the .odd phase

function, given ‘the coefficients of a polynomial Pd n(t). -
?

Our objective is to obtain o, and b, .'s given d
d “i,d k

polynomial Pd noét). This will enable us to obtain a new set of
. ’ ?

L
n s of the

variables o, and b 's whoée values are used as initial values for the

d 1,d
minimization algorithm of the optmization procedure.

The matrix equation Eq.(3.2:23) can be rearranged such” that the

/ ‘

unknown column vector [an] has the new variables b, 1"d's (1<i<n) as
, -1, =2

its elements.” From Theorem 3.4.7, the solution for the new variablé oy

is the coefriqient'? ‘d1,n' The elements of tlhe matrix [Ad,n] and [,Bdn]

are functions of the coefficients d, -

k,n"" of the polynomial Pd,n‘”‘ The

matrix equation Eq.(3.2.'23) is rewritten 1ncorporating the changé of '

4

variables as

(5, ! (%) o] = [By oy (3.7.1)
where [T, 1z (by 4By g.eibyy g ) (3.7+2)
[Bd,n-'l]’: (IB'd -I-s’d * o e 121*1’0) ('30703) !

o .
e N ¢

\



with 121“'(,'3 given as

'\.

12141,d = T2141,d “z Take1,d 214224,

f ~
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i-3

k=1

and the elements I, ,'s are given as '
]

1
: z "
Li,a = L Yeic,a T ©V

k=0

The matrix [A dor ] is given as

,n-1

o

[

(]
(1]

R, n-1

3

4,d

0 0
1 0
IZ,,d 1
. / *
Zoas

W

I

2,d

.

(3’7.“)

(3.7.5)

(3.7.6)

¥

The lower suffix in Eq.(3.7.1) does not indicate the order of the

-

column or the matrix except for-the vector [B dne1l*
' ’

The solution ocan be obtained in a recursive manner as shown below:

by a® 13,4

b3a* I5,a~ 12,4 P1,a

b

5.4 17,4~ Iu,a P1,a " 12,4 P3,q

’

7,0 * T9,6 = T6,d P1,a = T4,a "3, * 13,0 ®4,a = 12,4 Ps,a

3
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21-3
b21+1,d_ : 121"'3’d - Il?ivd bhd - Z IZi-‘I—k.d bk+2,d (3.7.7)
k=1

The variables with even numbers as suffixes are related to the

)
by

variables with odd numbers as suffixes as can be seen béelow:

b, 0

@ 2,d ~ 8
b, .= (b )2
4,d 1,d

[

Bg,a = 2 1,4 53,4
2
b8,d =z 2 b1,d bS,d + (b3,d)
. : 4
\ b10,d= 2b1,d b7,d+2b3,d bS,d* (b1,d) /3 3.7.8)

So when an odd numbered variable is determined from the recurrence
relation, the next even numbered variable is determined. The next odd
numbered variable will have terms consisting of the previous lower ‘even
numbered variables. Likewise @ny'number of vg;iables with odd numbers
as aufrixes %:: be generated for ajéiven nth degree polynomial Pd,n(t)'

Alternatively, instead of treating b 's as the new variables, the

i,d
coefficients C21*1 1'3 of the defined phase function as an infinite
? .

éeriea, can be considered as new parameters. We will now show how any

desired number of coefficients C21+1 1‘3 could be generated and hence
y

the phase function as an a truncated series could be obtained. The

relation between the odd numbered variable bi d's and the coeffici;nts
‘ y
n21*1’1's of the error phase polynomial dd(t) 13, given by equation
Eqs.(3.2.17) and (3.2.18). ) .
<
In Eqs.(3.2.17) and (3.2.18)'\’m,k (m i 2i-1 or 2i) represents the

L
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th degree term of the variable t in the expansion of

coefficient of the k
the error phase polynomial 5d(t) raised to the power m {(6d(t))m}' The
term whose suffix m 1s gregter than one are all functions of Vv 's
i 2141,k

where the odd powered sué?}x-21+1 is less than or equal to k. Thus any
B . ]
numberof coefficients v21+1,k'5 can be determined(h?nce, ;21+1,1 s by
using Eqs.(3.2.19) to (3.3.22)) in a recursive manner.

With respect to the phase function which is an infinite series
several observations can be made. Firstly, for a given nth order
polynomial, there exists only n independent coefficients in the phase

function. "These are o, and the first (n-1) coefficients s of

[ ]

;i d 52141,1
the error phase polynomial Gd(pT/Z). The rest of the coefficients are
dependent on the first n coefficients. Secondly, these can be generéted

rgcursively. Depending on the accuracy requirement this infinite series

can be truncated to ﬁhe,required number of terms.

in the neki section we shall show that an approximation technique

can  be developeg by oonsidering the new variables b1 d's as new
?

parameters.,
VN

3.8 AN APPROXIMATION PROCEDURE:

From the foregoing discussion, thelexisgence of the direct relation
between the coefficients of the phase fanction(représented as an
infinite odd series) and the coefficienta of the polynomial Pd’n(t) has
been esta%&}shcd. Using the pbove results and properties, it now
remains to develop an approximation procedure fof obtaining' a digital

low-pass transfer function approximating a specified conatant group
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™~

delay over a specified band of frequéncies(or bandwidth Bw). Also, the
stébi;ity constraints are. to be incorporated in the procedure. The

approximation shall be carried 6ut using the least mean square error
3]

criterion. [

The objective is to obtain a stable digital low-pass, all-pole, nth

order filter such thak the group delay of the filter apbroximates a

desired constant %roup delay in a specified bandwidth Bw. TQe
parameters of the filter shall be the | new variables
namely, 0y b1,d’ bé,d’ . v e : and b21-3,d whic§ will also define
the stability conséraints. It i3 noted that the coefficients dk,n's are
generated indirectly. This in turn leads to obtain the doefficients of
the digital transfer function by use of the bilinear transformation.
Thus the coefficients of. the required digital transfer funetio& are

gendrated in terms of the new variables.

The objective function in this approximation 1s defined as

2

.

m
X - X - T
0blagsXg, not) = :E: Tan @ 4o Xg,ne1) = Tsa) (3.8.1)
i=z1 ’ '

where

aa\rnd the elements of xd,n— are the paramaters

1
Tdn(gi’(ig' xd’n_1) 13 the group delay function,

. n is the order of the filter,
0

m 1s the number of points considerd in the spedified bandwidth Bw,
Qi is the frequency interval equal to Bw/(m-1) and

T ad is the specified group delay.
A}

,\‘\
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The objective fﬁnétion is minimized subject to the stability
constraints a§ ' - :‘
(_1)(i(ia1)/2) 1A

- :
d,il >0 for(1<i<n+1)

(The actual evaluation of the determinants is discussed in Section 2.7.)

Example 3,8.1:

A

/\L

It 1s required to design a fourth order low-pass, all-pole digiN

filter such that its group delay response approximates a specified group

delgy 'rs d

respect to twice the sampling frequency.

in a bandwidth of 0.35%adians per seconds normalized with

The transfer function is '

(z+1)u

" . .
Tz,M(Z) = ¢ ' (3.8'.2)

1
(2]

N

>

where

. ' 2 3 y
I_,z,ll(Z) = uo'u . uhuz + uz’uz + ua,uz + uu’uz §3.8.3)

and ¢ 2l is a tonstant which normalizes the magnitude at_the origin to
unity.
With z = eJm’ we have the g}'oup delay t‘unctio% as )
) '

\
M(QV) M @,T) - M'Q,V) N //é)
2 - MoyyT/2

T, (Q,V) = -
z, 47 M@,V)° 4 N@,V)

)

' B , . '
T e
1 ' ~ -

2
15N ./ : ~
. -

T~_
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where is t’he digital domain frequency variable in radians per

seconds, V is a vector whose elements are the coefficients uk Z'KT is
L] , .

the sampling per'iod.in seconds. And . .
{ i}
MOY) fug y + ) u, , Coa(ian)
1:1
u - .
N(R,V) = Z u, , Sin(£T)
, i,4
- i=1 -
'3
4
M{OV) = - :z:ir’u sin(io)  °
i,4
i=1
. y ‘ o *
N'©,V) = Z iT v, Cos(iQT)
1 ~ .
i=1 - .

The group delay function is a function of @ and the coefficients

u. y's. The hext step required is to transform the coefficients
’

parameters to the new variables oty b1,d’ b3,d’ bS,d and b?,d' The

.coefficients u

K u's as a, function of new variables are generated as
H

follows:

We consider the tranafer function in the t-domain

Cay ‘ '

T, ,(t) =
d,4
T Pyt

where ¢ m 48 a positive constant and

»

~ v
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g

P, ,(t) = < d, , tt | | ‘?x
Fa,u(t) = 3 dgy D
i=0 . b

M/ The matrix equation Eq.(3.2.18) for order four is
-\ s | t
// . s . » .

&

e

vwhere

is

_ e e e e -

1 o 0 0 (1}“ X 2

X, %a,2 v 0 L) %3,

X3,1 3,2 *2,1 2,2 | [%3,1 xh,2

M0 T2 3,0 T2 | %] M52

*2,1 = T2 | .
X3,1= Ty + £1 Py 4

Xy,1 % fg + T381,q % F1 b3+ By g

X2,2 = % ] |
x3'2=f’3+b1'd‘ , .
E PR PEE P N ' n
X5 0% t‘.r + 1y bl,d + 1, b3,d + 1, bu,d +‘b5,d

A

.d

)

above matrix equation is soived an&lytically and ‘the solution

6 y 2 3
% Qg g %> 2

. " 2
E e o s o am—— - (—-— - - Q0 ) b + Q b - (b )
0% s T e T im0 3 3¢ttt %aP3a T Pryd
= 'A}'ul . )
d."n = ad \ . " o ‘j ';N::u‘\
p SR
' . S
L4 m.

wwu vt o
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L]

8 6 5 :
a [+ o a L
gt Ze o 202 (Al
' 105 15 15 \105 5 ] '
. .' kY
2 2 -
(-3- ag- + ad) b3,d + b1,d b3,d -0y bs,d
' 5 6 2
2 2 a o a
u:“—-—t ad‘lo“- -(!d7 ‘—d--_ﬁlddB—('—-d—-- d )?‘b1d.
’ 945 9 1% 9glU5 . 15 15 o
3 0‘du 2 2 -2 -
v &)
' ¢ | %
" 6 .. ‘
S 2020, P
6 6 ' :
/
. ®
s IAd),SI ﬁ .
< K 1 i ~ ¢
w10 G866 gy 4 ”
P .8 a4 ‘a 4
dS _—--—.-—*—-:-—ad +--—(!d +b1AHb3d
7 125 315 75  9k5 525 A
1 d
o a .
- (L. Be2_ 4 3
" T S )
}‘ - L]
v 5 3 ’ ' . ,
®g %4 . 2 o )
L. (——‘- 4 — - - ad) b *
a a, oo 3
d’ d . 2?
(o= = =) by g ey by g by 4= (by 7
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‘ ‘ - l—(u 4 ; 6 o3 130 2,60 ) (b )2 |
e ‘ . o d a ¥ d a’ ‘°1,4 ,
¢ .. . 2y
' ! : ‘
d, 2he coefficients dk u's are thus obtained as a tuncﬁioﬁ of a set of
, -
s . .
variables Oy bl,d’ b3,d’ bS,d and b?,d' B? ap?lying the b}linear
» transformation to the polynomial Pd u(t)’ the ;polynomial Pu u(z) is
? ! ?
j obtained. Therefore, now we have the group delay function Tzu as a
function oT’ﬁew variables. The objective function is . \
'
fn ' :
. . —_— — 2
= - -1
, - Ob(ad'xdlt) - Z (Tzll(gi’ad’xdl&)h sd}
i=1 '

. ‘ « . ' N
- ‘ !
H | L . )
’ - and the stability constraints are
1 ' '.‘ ! v \\
. - N Ry qto0 |
: 3

%;lAdﬂ' >0 : - b

v .
Sz -
.

t'3) —IAd'3I >0

I .
y) lAd,ul >0

’ + 5) 'fd,sl >0
~ .
¥ The Qﬁabiiiﬁy constraints can be further simplified as follows.
The first constraint is always unity as the determinant of the

generating matrix [Ad 1] is unity. Hence, there are actually f&ur
. ’ “

. ’, - S «

RO YN
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\
* - {
constraints. These are

. \,
A g0 >0

4 lag 510

' The algorithm dee ibed by Fletcher is used to minimize the objective

ctiéﬁ [48],

Tyd

ed as f‘ollo?: ' ¢
° The relation 69&: een the variables and the coefficient d, ,'s are
- y

P

established in Section 3.7. From equation Eq.(3.7.7) the variables
ad, b1,d’ b3o’d, bs,d and b7,d are obtained as a f'unction of the

coefficients’ d, ,'s of the 'polynomial P (t). They are
. K,4 ° d,u

#

!, o = 1—’“—
d d ! .
4 ' D,u
b1,d = ds’u - dz’u f1 + d1’u fz,- do’u f3'

3,d © “5,d

~ o
[ N

This minimization algorithm requires an initial '

pproximation fto the variables Otd, b1,d’ b3,d ’ bS,d and b, .. .These|
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° 2
By,q =g, 4
b5 a = T7.0 % Ty a0 12,4 83,0 “
b6,d = 2 b1l b3,d
bra=T9,a~ T6,a 21,4~ Tu,a 3,4 * 13,4 Pu,a = T2,4 Ps5,d

by a® Ti0,4 = 18,4 ®1,4 = T6,a P3,a * 15 Pu,q il

- - Iy aP,a* 13,4 %, ~ 12,4 P7,d

where Ii d's are given by equation Eq.(3.7.5).
’ \

. N
The flowchart for the optimization is given in Figure.3.8.1. It is

seen that this flowchart is for any order n. A known t-domain all-pole
low-pass filter such a; maximally flat delay, Butterworth, Chebyshev,...
)
ete are chosen to determine the cqrresponding new variables
ays b1,d’ b3,dr:‘b5,d’ and bf,d' These variable values 5:e used as
initial guess values as required by the optmization algorithm.
Figure.3.8.3 shows the various group delay responses. In the Table
3.8.2, the coefficients(‘dk’u's of the transfer function, and the
percentage root means square error for various bandwidths are tabulated.
By adopting similar pr?cedures, the results for the cases n = 3 and
n = 5 are obtained and these are shown in Tables 3.8.1 and 3.8.3
réspécéively. Figures.3.8.2 an& 3.8.4 show the responses corresponding
to these cases. Also, the poles for different banwidths and respective
orders of the transfer functygns are tabulated in Tables 3.8.4 to.3.8.6.

Figures.3.8.5, 3.8.6 and 3.8.7 show the magnitude responses

corresponding to these cases.

&

3
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Input

) n, initial values d, _‘'s, Bw, m, T

i,n

- :

sd

Find the corresponding new variables

s by gr b3 gr - - by sy

. e,
Compute the determinant
LYW
A
N YL no
{ =2, (-l)i(l 1)/~ lA ‘1 )0 ™ S
! W
a
T:0 |
> ’ |
! ) a set of A
1 ves new :
|
Compute, variables !
a) Derivatives of |Ay ;k |
d, ' '
b) in'S and the corresponding My o'

c) ‘Group delay and its derivatives

Compute m
0b ()= &«

and its derivatives

-

Fig. 3.8.1.Floéhhart ‘for the Approximation

Procedure: Discrete Domain
\\ 3

E

Minimize Ob ( )

Output

no
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m.f.g.d = maximally flat group delay

o 0
4™ order filter . 1

,‘ Fig.3.8.3 Group Delay Response for different ga*ndwidths.
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2
A
&7 7 9
0 f— ~ 2L
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6
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m.f.g.d4:= max;mally flat group
(”\3 delay
] X mf.qg.d
s
R N
T T T
l . 2 R 3
f/f0
5tB order filter

.Fig.3.8.4.Group Delay Response ‘for different

Eandwidths.
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3.9 SUMMARY AND CONCLUSIONS:

: . I . ’
In this chapter, a method is developed which will generate the

denominator polynomial P (t) of an all-pole t-domain transfer function

d,n
in order to approximate constant group delay. Starting from an all-pass

: A - .

funct@l(obtained from the transfer function considered), a set of new

1 d's) "4s obtained which determines the error between
H

the actual and the constant group delays. This results 1in the

variables (O‘d and b

generating matrix [A ] whose elements are functions of o, and bi d's
?

dyn d
Some important properties of the elements of [Ad n] and the prinecipal
’ )

‘minors of [A n] are discussed. In particular, it is shown that the

d ’ : [ Wy——

principal minors of the ‘gener'ating matrix are equivalent to the

corregpending Hurwitz determinants formulated by the coefficients dk n's
’

of Pd l,l(t)‘. This will enable us to obtain the various stability,
’ ~ i

constraints in terms oy and In 'addition, a recurrence
A

bi,d's
relationship is obtained which will permit us to obtain higher order
polynomials starting from lower order-“ ones and incorporating tho
stability constraints. ‘ )

Using the above' properties, an optimization pr‘ocedure is f‘omulated
in order to approximate a constant ‘group delay in the digital domain and
the corresponding digital transfer function is obtained. It is observed

that the struotur'e of (A is same as that.*of‘ [A ]. Hence the

d, n:l
savings in number of mxﬂtiplications is 68 75% as oomBared with that of
Gaussian method of evaluxing deteminanta.

In this procedure, 1t is shc»t{a that the ob jective function and the

stability constraints are obtained as funotions of the parameters that

are related to the phase f‘unction expr'essed as an 1nfinite series. I\t

¢
»




-3~ w

- »

is shown that the ﬁaximally flat group delay function is one particular
case (all bi,d" are‘equal to zero) in this procedure and a large number
of responses can be obtained dependinhg on the extent of Wminimization of
the objective function. Also, given the derivatives of the phase

v

function, the corresponding transfer function can be obtained.

Cf
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CHAPTER FOUR

&

i SUMMARY AND CONCLUSIONS

3

4,1 SUMMARY AND CONCLUSIONS:

In this thesis, a new pgocedure for constant  group delay
approximation of 1-D, low-pass analog and digit;al filters has been
developed. Such filters so obt‘ainn)ed possess group delay cha;racteristics
approximating the specified constant group delay 1n the least mean
square sense and in a specified bBandwidth.

Starting with a phase function as an odd infinite series, a new set
of variables 1is defined. In terms of these variables and the unknown
coefficients of the transfer function, a 1linear matrix equation is
formed. Some properties o«t‘ the elements of  the matr:ix and the
deter:minants are studied. These properties lead to the generation of
the- coefficients of the transfer function incorporating the conditions
of stat;ility. It is shown that a polynomialt.’of a ‘given ordex\» can be
genera}:ed by polynomials, of lower orders tzy .meﬁns of recurrence
relations. The structqral properties of the generat;ng matrix reduces
the rlxumberb of multiplications (aﬁd divisgons) that are requirxé‘d to
evaluate the values of the determinants of the generating matrix.
Hence, the computational ability of: the lapproximtio‘p proce&ure has been

enhanced considerably by exploiting these properties of the generating

\

matrix.

Ve

The analog domain 1s first considered.‘ Several properties of the

. ( ¥ :
generating matrix are obtained and studied. The differential and

‘.
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integral pr"'operties of the lemenﬁs of the matrix and of the

detérminants of the matrix ap€ estgblished. Further, some properties of
the determinant of ¢the[ genergting matrix which enables us to obtain
solutions to some of the cdefficients, are obtaine'd. In addition,
solutions to the coefficients of the transfer function are expressed in
terms of the determinants of the generating matrix, It is also shown
how the polynomial can ,be generated by a recurrence relation. Thus, in
order to solve the matrix equation, the requirement of inverting the
matrix 1s avoided., That is, the ill-conditioning probleh: that exists in
inversion techniques is eliminated [45]. The stability of the transfer
f;unction depends on the Hurwitz property of the denominator polynomial.
This property of the polynomial 1s established by showing that the
vrincipal minors of the generating matrix are equal to the Hurwitz
Jeferninants with respect to their absolute values. Finally, ‘the'
structural properties of“ the generating matrix lead to reduction in "the
number of multiplications that are required to evaluate the
determinants. The computationalq savings is 68.75% more when compared
with the compli./x\;ty involved in the Gaussian method of evaluating the
determinant of the same order.

Solutions t<; the coefficients of the transfer funétion, stabiiity
constraints, and the elemental values havé been obtained in terms of the
determinants of the generating matrix whose elements are functions of
the variables. As these variables are f‘unctions of the coeffitients of
thé error phase function and the phase slope, it can be obaserved that
the problem has been' defined in the phase domain or;ly [461].

An approximation algorithm is developed where, in order tc; r;educe

the number. ot“computations, the various properties developed are used.

)




S p———ri

- 140 -

\

The minimization algorithm employed is a non-linear programming which
requires a set of 11{11;131 guess values for the parameters. As thése
values have to satisfy the stability constraints, the parameters
corresponding to g known, stable transfer f‘unction,( are to be determined
by a method+ Hence, for a given set of coefficients of a stable
transfer function, a method to obtain the Q%}ables i1s formulated. The
elemental values of a ladder network terminated 1n resistances are
obtained simultaneously. These ar'e' illustrated with examples. The
elements of a doubly terminated LC-ladder network are functions of the

determinants of the ‘generating matrix and, in fact, are only the

principal minors. These are evaluated in each iteration of the

+

‘approximation algorithm simultaneously along. with the stability

constraints. }(;n\?:he other hand, the transfer fl‘mction alone could have
been ‘generated first ;nd by means of the contin\'xed fraction éxpansion,
the LC-ladder network could have been obtained. This is avolded here as
the elemental values so obtained cause the grp’up,delay response to vary
considerably due to the high rate of convergence of the continued
fraction. expansion [ﬁ?]. Thus,' the sensitivity of frequency résponse
characteristics due to the perturbation of the values of parameters are
less when compared with the c:ase wh;re the parameters are the

%
coefficients or the poles and geros of the transfer function.

- The Bessel filter is 's"hov.m as a B special case. Also, 1f the

3
derivatives of the phase are given, the corresponding transfer function

can be qbtained using the above method. .

o
In the discrete domain, the  Richard's variable t has been

considex;ed as an independent variable and the corresponding z-domain’

polynomial is obtained from the strictly Hurwitz polynomial in t.
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Various new properties similar to those in the analog domain are
obtained. The differ;nce and the anti-difference properties of the
elements of-~the gene;ating mjfﬁix and of the determinants of the matrix
are established. Some prop ﬁ%}es of the determinant of the generating
matrix, inii\-enables us to }ptain solutions to some of the

%
coefficlents, are obtained. In xagdition, solutions to some of the
coefficignts of the transfer function are expressed in terms of the
determinants of the generating matrix. Finally, the structural
prop;rties of the generating matrix leads to a reduction\:n the number
of multiplications that are required to evaluate- the dete;min;nts.

As* in the analog case, similar conclusions can be drawn except for
the realization. It can be observed that the properties with respect to
differentiability and integrability in the analog domain and the
difference and anti-difference in the discrete domain are similar.

An appr@ximation procedure is developed where, in order to' enhancg
the computationai .ability, the various properties established are made
use of; Thém}inimization algorithm incorporated requires a. set of -
initial values for the variables. A metgod to obtain th;se initia}
values is described. Somecexample; have been worked out.

fthe maximally flat group delay

As in the case of analog domain,
filter ‘?an be obtained as a specie; case, Also, glven the derivaﬂives
of the phase function,- the corresponding digital transfer function can
be obtained.

In order to reduce the number of computatipns of the procedure
further, the approximation can be carried out in the t-domain. From the

resulting t-domain transfer function, the corresponding digital transfer

function can be obtained.

7
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4,2 SCOPE FOR FURTHER RESEARCH:

Wi

In the analog domain as well as discrete domain, the existence of

solutions to coefficients’ a, n's(di n's) for (2<¢i<n-3) can be
s ’ .

investigated. Further properties of the determinants of the generating
matrix can be developed. These properties are likely to lead to further
simplification of the stability constraints and enhancement of the
computational ability of the approximation algorithm.

Phase’ function‘ as an odd infinite series and its properties with
respect to stability and realizability can be 1nvestigated. These
properties are- likely to 1lead to new algorithms for phase unwrapping
techniques. Also; possibility of expressing the phase function as a
rational function can be investigated. This may give'clues‘to devlop
explicit solutions to constant group delay response in the Chebyshev

»

sense.
. iny
By considering an arbitrary set of n equations that can be formed
from Eqs.(2.2.11) and (3.2.13), similar psoperties can be investigated.
These properties are likely to lead to other approximations of constant
group delay. Vo i
, .
Further work can be carried out in order to extend the above

methods to two dimensional filter design.




APPENDIX A

PROOF FOR THEOREM 2.5.1.

The generating matrix [Aa o) 8iven by Eq.(2.2.20) is rewritten
(without . the elements 1in the fifst row and ‘the first column, as the

solution to a . is fz,z)'as

?

-f 1 0 0. 0
2,2
- "f3’2 f2,1 -f2'2 ’1 . 0
"r - . o 7
b2 3,10 3,2 °
[Aa’n] = . . . v Fo (A.1)
<
. . . . F1
. . . . 0 . .
L-fn,z n-1 ,1 -f!‘l-‘T ,2 ° Fn
=y

where

for odd n:F,. = 1, F

0

ts can be expressed in terms of

and the elements Lfiemselves. That {3,

.

s



o

\ o «

3’2 = f2)1 a1 ’n = f2,2 az,n +a3,n

b2 3,08, " T3,28 n* 2,1 %3

ks ' k,
£ e e,
T3,2 % £ F3k,1 22ktyn 'ij-k,a 2ok,n for (289¢n)
k=1 - )

k=1
where for odd 32 ky = (3-1)/2, k2 = k1- ]
and for even j: k1 = j/2 + 1, kz = k1 -1 © (Aa2)

Substituting Eq.(A.2) for t;ohe elements in the first colum of the

matrix [Aa nj and applying the elementary transformations on the niatrix,
' N

we get the desired result. T’hese‘ elementary transformations are

desoribed as follows:

Step 13 ' . ) o
1) Row 2 = f2,1 row 1
2) Row 3 = t‘3’1 row 2

n=1) Rown « ¢ rby n-1
n,l

L 4
*

Step 2:

1) Row 3 =~ !’2’1 row 2 | - -

L -



%

Q\\

A rema——————— S Mot v it = o 4

2) R‘og 4 - r3’1 row 3

-
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n-2) Row n = fn-1,1 . POW ni=1

. Step 3

1) Row 4 - f2,1 row 3’

th ... a2

n=-1"" Step:

1) Row n - f2,1 row n=1

¥

The last step is described as follows:

nth Step:

1) Row 2 + row 1 8,
2) Row 3 + row 2 a,
14

N

n* rovw 1 eu.,n
1

-

k1‘
n=1) Row n + z row n-i ‘21,9

i=1

r

for odd n, ko= (n=1)/2

and for even n, k‘= n/2

3

(A.3)

(A.4) -
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0 After applying the above transformation, the matrix [Aa n] reduces .
N ]
« 1 1 i
tO - N ‘
—1 A
- Y ! T
a1’n 1 0 0o . ) 0
’ -a a -a T~ 0
' ( 3,“ 2,“ 1,“ -
-a5,n au,n “23,n * 0 .
¥ 3 c\ L] . . O 0
L] . L] L[] . . 0 )
-ak1’n akz’l? ] [y 0 .
0 %y pm "k3,n . 0
-a
(HJ = |o 0 kyon o0 (A.5) g
. 0 0 0 . e 0
4 / 0 o 0 0 8.0 R,
| 0 o 0 . .
0 0 0 .o . . .
e t 0 0 .. 0 %k am '
| ) © v

\

where for odd nt k‘| = n, k2 =z nei, k3 = n=2, kl& 0

n

and for even n: k1_ 2 n-1, k2 = n-2, k3=n-3, ky

)

The matrix in Eq.(A.5) can be transposed to have the np&essary- form

4 s -

as required. Also a row and a column is added wif:h all the elements B
zero except the first one which 1is unity. The v(néé\rix as given by * .
. Eqs. (2.5.6 or 2.5.7) results.

Hence the result follows. AN T

The above result is now illustrated with the following example,
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The order of the transfer function is five,- the number of

coefficienty is six. The order of the generating matrix is six which

P

-~

can be reduced.to a fifth order matrix and the number of coefficients is

five as the coefficients can be normalized with respect to the first

coef‘t‘icient,

Viz,a

/
0’5 *

The reduced matrix is designated as [D, 5] which is
?

’
Pa,s ) | a2 13,1 13,2
L

‘with

fp2 78 5
P
f3,2 = 12,1215

f‘hgf t‘3,1a1 5 -

f5,0 =8y, 98 5

- f6,2 2 f5, 13 5

P

Let T

= fy,2%,5 * T3,183,5 = 350 5 + T5 4355

-f‘z’? 11 0

-r £ 17F2,2

Ty, 1 T2
£ . of

5,2
-f

6,2 5,2

L

3 f2,232,5 + a3,5

f3,2%,5 * f2,1%3,5 = T2,0%,5 * %5

\

The ma®rix [Aa 6] is reduced to order five..
’ 2

f5,28%2,5 * Ty, 4835 = fy o8 5 *+ T3 435 5

-

step k * [P 5)step ki *'[Pa,5)step k

‘

yhere T Step k represents a set of transformatipns to be- Q{;lied at each

step k and for k = 1, [D

a,SJStep 0o° [Da,S]'

The matrix [D

3,5]Step k (k |
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is'i, i1, 111, iv) after applying each set of transformations and the

corresponding elements of the matrix are as follows:

Step 1t

1} Row 2 - row 1 f2,1 |

‘2) Row 3 = row 2 f

3,1
T ——
3) Row 4 - row 3 f‘u’1 .
4) Row 5 - row 4 r5’1
e v} g .— *
L L
rays 10 0 0 .
(1) ’ ,
9,1.9 -85 170
(1) W | ,
[0, 5)stept = |.93,1 © 93,3 O -85 E &
- X\ , R
(1) (1) (1)
W,0 O Y,3 O Y 5f
v (1) (1) (1)
A - t..q5,1 0 q593 "0 q5:5 h

® &

- where, the right hand 'upper suffix (k) (k=1, ii, 111, iv) of the element

of the matrix [Da'S]Step x indicates the particular element obtained -
. N i . .
afteri applying the set of transformations under the step k and these

elements are ’ g L

. B
NEORN . o , L
2,1, 7 81,5 82,5 “ %35 : . .
o i e -t o8,  + 0, ., 8y -
3,1 7 73,2 %2,5 7 "2,1%%3,5 * 12,2 fyy5 < %55

&
<
'



(1)
Ay, 1

(1)
q5,1

(1)

(1)

’ q(1)
(1)
QI‘,s

(1)
9% 5

=h

f

Ty

fu,2 82,5 = f3,1 83,5 * f3.2 84,5~ T,1 255,

5,2 82,5 = fiy,1 83,5 + fy 2 8y 5 = T34 85 4

f
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e

2,1 81,5+ T2 08 52335

!

-f3’z,a1'5 + f3’2 82,5 - f2,1 a3’5 + f2,2 au,s - a5,5

o

£2,1
3,1
,1

T30 8,5 *

4 v
f3,2% 53,185

Sﬁep iis

3) Row 5 = row 2

£

2) Roﬁ 4 ~row2?

o

2,2 32,5 " 83,5
-f

1

1) Row 3 = row 2 f2’1

3,1
fu,1

.

-\
~

fu,2 85 =Ty 18,5+ f3 585 ~"13 185"

f21 %5

1

2,1 8,5 = f2,2 85" % 5
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B ]
‘ -A-a1 ’5 1 0 0 0 ,
(1i1) o
B, 0 s 10
oy Clan g an T
[0n,5dstep 41 = [ 93,17 O . 93,30 O “Bq5
o Sl ey L ay (11)
N , U, 1 0 a3 O a5
- : MR (1) . (11)
\ o 8B %53 O 955
where
bt
(41) _ (41) . , o
2,1 ® 93,3 S S
RS 2
93,1 = 81,58,5 * a3 532,5 * 84,5 81,5 ~ 355
(11) 2 v
Ay,1 = -T3,2 85 .* f2, 2,5 a3 5 ’?1 5 8, 5 2,5 *
82,5 35,5 * 29,5 34,5 + a3 5 84,5 ~ -35.5’
(11) -2 2
%, = Ty 85 * r3;1 2,5 23,5°7 41,6 Bu,5 ¢

f2,1 82,5 85,5 * 13,1 81,5 24,5 * 2,1 83,5 345

‘ * au-,s a5,5 - f‘3,1 a5,5 | o

(11) f a, - a -a a, 2 Coe
Ay,3 % 12,1 81,5 82,5 " 81,587

(11 _— 2 -

q5,3 f3y1 84 ,é a2;5 - f3’2 82,5 * f2'1 a2!5, 83,5 T

"1,5 52,5 83,4 * f2,5 75,5 f3,1.%3,5 * 13,2 2,5
" 2,1 %5

(11) ) ' ‘
U, = 'fz 1 a1.5 il 58, 5 ,1 83,5 v 81585 8 5

N\

© Step iii:

1) Row 4 - row:3 f2!1
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_11) Row § = row 3 f3,1
%
a
a1 0 oo
_ (111) ' '
qz’1 0 —31;5 1 0
' ¢ i (111) (1i1) .
oo (g 5)step 141 = | 93,1 O 93,3 O 845
' (111) 7 (441) . (444)
: . U1 53 0 YU
(111) (111) 0 (111)
4Gy " 0 a5z 0 a5 g
P t
(141) ©  (144) © (4i4) (1) (1)
9,1 93,3 %5 =% =%,
(i) | (14) -
93,1 % Ay3 ‘
" 85%,5 Y3358 5% 8 585" 35
(111) _ 2 3
Q1 =815%;5 “83 5% 5 28 58 584
+ 32’5 85,5‘ + 8.3’5 as,u
.
(111) _ 3.4

9%B,1 =f3,2%;5

- -

(111)

P

. ) .
%,3 = f3,0%,5 *T2,18,593;5 " 8,5 8,5 84,5
’ %585+t faay -0 18
(441) _
95,5 = T3,0 857 Ta,1 83,5 * By 5 Bu,5 pls,5
o
Step iv:

1) Row'5 = rc?w 15‘2,1

~ NS

5

2 2
2,1%3,5 2,5 * 38,585 mjj} _
2 .
32'5 %,5 - 2 f2’1 a1,5 32,5 au‘s - 2 32,5 a ,5 au’s

Mo 18,585+ 128358 5-8 58,5 *853;

s
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\ r; _1
-ays 10 0 0 ,
~ ‘ B
. (iv)
. .o . q2’1 0 -a1,5 1 0
‘y . (iv) (1v) L
[Da,5lstep 1v = | 93,1 O 3,3 2 %5 4
. - (iv) (iv) (1v)
A, O 4,3 % W s5| ©
(v) (v (1v)
%4 0 93 0 455
_where ‘( ' ‘ /
(4v) (i11)
%2,1 = 92,1
(1v) _ (v) _ (1v) _ (411) - / .-
\ 93,17 = 94,3 * 35 = 93, " , :
. ,
(1v) _ (iv) _ (i14)
qu,‘l - q5,3 n qu,1
(1v) _ - Ty 3_, y
‘9%, 8,58 5 *A8358 5" 8558 5 *& 585
2 2
85 22,5 34,528, 58358, 528 g ’(5 J
. Sedond sequence
: 1) Row 2 + row 1 82,5
2) Row 3 + row 2 aZ,S + row 1 au,s
| _ 3) Row 4 + row 3 8, 5 * row 2 LT
[
‘ ll)‘Row 5 + row 4 a2’5 + row 3 ‘ll,s
®




S =153 - g

-a

(Da,sl *l%,5 &4,5 "235 5 "5

' 0 0 -85 5 8y 5 -23;
~ lo o 0 0 -a
. A 5,5

tranSbosing the matrix [Da‘S] afteﬁ adding a row and a column with zerog
? f

elements except the first element f1‘% being unity, we get the desired
. ’

result as follaws: . : . fj;

1 0 0" 0 0 0

\\ 0 31’5 8.3'5 35,5 0 0
~ 0" o3y 00 ((5-1)/2)

[H,,] = NS

0 0 - =a a 0

1,5 23,5 %%,5 .
0 0 1 32,5 au,s 0.
00 0 a5 235 85

As the ofiginal set of equations is satisfied at every elementary

transformation, ft can easily be seen that IH5+1J is the same as lAa 6|.
. “?

[

Hence the theorem. .
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APPENDIX B

* PROOF _FOR THE THEOREM 2.6.1

N

The intention 1s to show that the polynomial Pa n(p) can be
- ¥ ?

generated by recurrence relation. We have

Pa,ne1(P) = Py (p) + B, ((P) P 4(p) (B.1)—
s
yV
with Pa'o(p) =1, Pa’1(p) = 1 +aa p and
(A | 1A, o1 ,
‘ Ra,n(P) .= p? ~2e0 2,022 . (B.2)
' lAa'nl IAa,n+1l

' The existance of Ra n(p) depends on the factor

IAa,n-1l !Ad$n+2| ‘ 4/1
A, I A

a,n a,n+1I ' ' K =

(B.3)

Let ud assume that the relation (B.1) exists. Then we have

\

P (p) - P_ _(p)
R (p) = xRl ~ @ | : (.4

a,n
- s - pa,n‘1(p)

Using Theorem 2.4.7 and substituting for the polynomia1s we get



"

q”\Ba'n(p) = p

N N
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" nel

(n=1) .
{an+1,n+1p + gg%an+1-i,n+1 - an+1-1,n)p

(n-1-i)}

n-1 ot
( Z an-:i_,n-1p +1)
1=1 " (B.5)

”

B

In Ed.(B.1) the polynomial Pa n+1(p) has (n+2) terms. Similarly
9

the polynomials P_ (p) and P (p) have (n+1) and (n) terms’
’

a,n=1
respectively. It is obvious that Ra,n(p) has to be a polynomiaL\ of
degree two. Hence, the denominator polynomial has to be a factor of the
numerator in Eq.(B.5). The term p2 is already a factor. The terms
within the parenthesis 1in the numerator and the denomingtor represent
polyriomials of the same degree (n-1). in drder tha? Ra,n(p) is t; be a
polynomial, it 18 necessary 'that the numerator and t%p denominator

B}

differ by a multiplication factor. This factor is

(N

Bnelei,net ~ %ne1ai,n

(B.6)
2n-1-1,n-1
for 1= 0, 1, 2,-0-.-,“'1 and an+1_i,n =0 for i ?40 2
The polynomial Ra,n(p) now becomes
Y .

2 ®net-i,m1 = Bnelei,n

Ry, o(P) = : 2 2 (B.7)

H

®n-1-1,n-1

3

Ve shall now conai&er the validity of the Eg.(B.7) for various

values of 1.
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(a) Let 1=z0, we have ’
2 an+1 n+1 :
- 3 M b
Ra,n(p) = p° —— (B8
n-1’n"1 " '
From Theorem 2.4.2 substituting for an+1,n+1 and an-1,n-1 the result
follows which is rewritten for convenience as
A 1A |
R (p) = p2 a,n+2 a,n=1 , (B.9)
2, IR | .1A |
a,n_ " Ta,n+l
B
(b) Let iz1, we have
’ S
¢ P
a -8
R, (P) = p2 funtl  myn Mo _(B.10)
’ .
an-2,n-1
Two cases arise. .

Case 1. n 1s 6dd:

Y
a corresponds to the coefficient of p“ in the

n,n+1

polynomial P 1(p). This polynomial can also be obtained in terms of

a,n+
-
the coefficients of the continued fraction expansion Eq.(2.5.3)
The coefficients Bi's of the continued fraction expansion are
related to the coefficents a_ 's of the -denominator polynomial P_ _(p)
’

» a,n
as follows: 7



o ey A o e b TR ot

{ ‘ .
: A
‘ 32 +Bh .. + Bn (1,3 m
n,n+l © o . s
\ - I'[ Bi .
, i=1
1 ’
an,n '= T ¢ (3012)
e
‘ i=1 i
B, +B, + +B
e 47 n-1
8 p-2,n=-1 — — (B.13)
1 B1
i=1
Substituting these in Eq.(B.10), we get
p2
R I e ———— -
a,n(p) . . (B.14)
n  n+l
Substituting again for Ban‘1 from Eq.(2.5:12) we get
A Y | ' '
. 2 - R
Ra,n(p) - p2 a,n+ a,n-1 . (B.15)
\ .
. 'Aa,nl Mq.,nﬂ' )
Case 2. n is even: .' ; , .
We have ‘ ' - \
SR ke R Tnst v (8.16)
n,n+1' el {B.1
18y
i=1
/. ‘
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q b ] .
an’n - —!-1—?— (8.17)
I Bi
' i=1
B1+B3“f¢ . +Bn_1 )
n-2,n-1 ~ n-1 (B.18) .
I8,
i=1

©

Substituting these in Eq.(B.10) we get the same result as Eqs.(B.14) and

(B.15). . -

~

¢) For { = 2, we have

a ‘A = & .
- 2 n-1 ,n+1 n-1,n
Ra’n(p) =

<
an--3,n--1 : >
Again two cases arise. SR .

Case 1. n is odd:

(B.19)

In terms of the coefficients B—i's" these coefficients
. . 3 ' ’
can be expressed as '

“
“ .
nel e -
-
. [ve

, 211 & 21,
' 1=1 T ' .
) - = I m— . (3-20)
n-=1,n+1 ned )

1 B4 SN

d=1

»
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. . . °n
. an_1’n = - o - (3.21)
d=1 ,
Y o= n-1 n=1
B E B ’
21i-1 211
Loi=1 11=i \
®n-3,n-1 ~ = (B.22)
n g
i=1

Substituting the above expression in Eq.(B.19) and simplifying, we get

i

1

R (p) = p° (B.23)
an B 'B
non+d ’
A I 1A | .
“ = p2 - a’n"’z a’n"‘“ (Brzu)
' IAa,n' IAa,n-nl
"The-simplification is carried out as s%own below. .
>
n+1 n+1 n+l
. =z
] ] B E B .
2i-1 21‘1 n+1 212 -1
i=1 i.=1 1,51
1 2771
®n-1,n41 ~8n-1,n * el (B.25)
Bi
i=1

When :L1 = (n+1)/2,4 the last term becomes zero. Therefore (n+1)/'2

reduces to (n—1)(2, and -11 and i can have a maximum value of (n=1)/2.

&

T
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Hence Eq.(B.25) can be written as

@ ‘ ®
n-1 n-1
"z z
2521-1 Z B211
. 1=1 i1=i .
%n-1,ns1 = Bn-1,n (B.26)
' ’ n+1
it Bi
T 1=1

The nume?ators of Eqs.(B.ZS)ﬂand (B.22) are .the same. Substituting
these in Eq.(B.19) we ﬁave t‘? result as Eqs;(B;1u) and (B.15).
&muﬂymnnwm,umruﬂmcmbewhmw,

In -génerak for any integer £(0$}£p+1), it oan be shown that the
expression Eq.(B.7) is true; .

Hence the theotrem.

Ay
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APPENDIX C

PRDOF FOR THEOREM 3.5.1. ’

The generating matrix [Ad n] given by Eq.(3.2.23) 1is rewritten
: R o

(without ~ the elements in the first row and the first column, as the

’ £
“ golution to d1,n is x2’2) as
po— -1 ) ° e g,a
- '*2,2 1 0 0 0 v
-3:3,2 x2,1 -x2’2 1 0
- -xu’2 x3’1 '_-1:3’2 . 0 \
[Ad’n] . L] e L] tFo,d° . (C'1)
- a - - F1,d .
=X X -'x . . I F "
n,? n-1 ,1 n-1 ’2 n,d //)

where

ar

for odd n:?b’d.= 1, F

N

1,d = %2,17°° F a = *(na1) 72,1
K
=0, F

3

~

£
-
o

andlro? even n:Fo,d 1,d = -xz’z,.., Fn,d = 'xn/2,1

The elemen@sﬁin the first column are the negative of " the elements

of the coluhn vector [Bdn]. Thése elements can be expressed in terms of i‘

-

~ the coefficients and_the elements themselves. That is,

2,2 d1’n e

h . - .

X

3,2 = %2,1 %% " %2,2 %2,n * B,n '

LY
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‘
\
® S

xu'2 ='x3,1 d‘:n - x3’2 dz,n + xz" d3,n -A\xz,2 du,n + dS,n/ !

» * v * -ﬂ\ ’ l !
3 ! N i
v . ﬁ ‘ \ X

- | K, k,
a0 Xy z :xn-k,1 d2k-1,n 72 Xpnek,2 Y2k,n
. k=1 . kl:1
a " "’\\ N . * .
for odd n: k;“= (n=1)/2, ky = kg =1 \
- and for even n: k, = k, = §/2 -1 ' - (c.2)

. T . Substituting Eq.(C.2) for the//elements in the first column of the
« L .
4 k] : » .
. . matrix [A d.n) and applying t7 e elementary transformations on the
~ . \ ’ - N -
4 ! . ]
. matrix, we get the desired result. These elementary transformations are
’ . N ‘ Y '
described as follows:
. . . F
7 o ) * 2 et .
. * Step.1: 4
s - M R"ow?‘-:xz’1‘.'row1 . - o ‘//
Ly ) RoWw 3 <X . . row 2
. ‘ _) “ 3 1’ 1
- ki ' !
“ - ) .\ . & ' ! b *
. , .l \ i -
Y .
' ' e ‘n=1) Row n - ‘'« Trow n-l
. - ' n, 1 , .
- ‘.,‘ ’ ’ ’ A ™ > R .y
o Step 2: ‘ - ’
’ | - 1) Row B‘szﬁ o row 2 » ‘ T
FEER ) Row # = x . row 3
R 73,1 . .
T -, ,aP v “ .o - . \J\ '\\ (r . ‘ ‘1“ ;x N |
i ) ., — ’ ) !
fo ) n'-z) Row ‘h/- *ne1,1 * TOW n-1, - , \ :
o L/ - ,
. . - - Step 3. : ' L.
N R -t'ep~ 3 L o R Y .
. ‘ - . 1) Bowzll - 12’1 o row 3 ‘ . - ] N .
J’ }‘ . A ' " ‘ "' ' ¢
. ’»' B .. - . A
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s e R R e WY, Wy e WD mrmnmr we a
N

"= 163 -
.
[a% '
A' -
‘.n-3) Row n - xn_1,]‘ . réw“n-1 ) .
. N L ' , £
Step 4:
. s I ) . h , | :,, ‘ . \
h"“th Stép: ) . . ) s . v a 'u
1) Row.n - x2.,1 . rov n-1 . ) o ‘

/ . 0 >
The last step is described as follows.

| 5 N
’\ L . ) "
nth Step : N « . ) ‘ B
. ‘. 4 . . . + s J e
1) Ro?l 2 + row 1» . d2,,n S ‘ ‘ o _ .
v )~‘ " - Y e
2) Row3+f'ow2.d2,n+row1 ’dl&,nh : )
., ¢ . . ) .- . g \ K ‘ . ‘ . i
\_ . T
/ ) . 0 , .
k¢1 . b ’ ot . L]
n-1) Rown + roy nel.edy; 1 ] (AC.B)
=1 - S ) o
for odd n, k, = (n-1)/2, and even n, k, = n/2 . o (C.)
. , ) \ B
After applying the above transformations, the matrix [Ad n] reduces
L3 > . » oo y N
to o RO - ) -
v k — ' ) Ll
T .
) - //‘ /. a .
\ ] .
B >,
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-
t-d1’n 1 0 0 »
) -d‘3,n d2,n -d1,n 0.
'dS,n du,n ".13,11 0 -
“’ .d [ . [ -
-, k1,n dka’n . . »
\ > 0 %, 0 ‘dk3,n .
. \'d
[Hn+1,d] = |o 0 lf1,n .
l e ' 0 0 0 0.
0 0 0 0
v @ , 0 0 0
: ( 0 0 0 -
q 0 0 ' o L] v
' .
4 .~ N

vhere for odd n: k1‘ = n, kz = n-1, k3 = n-2, ky

and.for even n: k1 z n=1, k2 = n-‘2, kan,3, k),

-
. o

.t 0

. 0

. 0

. 0 :
.0

. 0

. 0 (C.5)
. 0

B Y1,n

. 0

. o .

. %

=0

=n

The matrix in Eq.(C.5) can be transposed to have the necessary form

as required. Also a row and a column is added with éli the elements

Eq.(3.5.6) or §3.5..7) results.

Hence the result follows.

. t
- “\
4 B

: ‘' As the structures of the ‘matrices 4, .1
o ’

« following modi;f‘ieations: The element 15‘1 j
.o 3

zero except the first one vhich is unity"f‘ The m‘trix as given by

’

and [Aa ] are same, the
?

=

‘above property can be illustrated: with 'the Exaniple 2.5.1 with the

is chgnged to the element .

5 ] ]
| ‘ \T:DU and the coeff_'icients‘ak,n s are f'eplaoed by dk,n s.

s
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APPENDIX D - S

| , PHOOF FOR THEOREM 3.6.1. . -

The intention is to show' that in general, a polynoinial of degree

Ay

.{n+1) can be generated from ‘the recurrence relation .

¢ P.d,n+1‘(t) s (t) + R (t) Pd n- 1(t) (D-1)

~w1t1:x‘ Pd,O(t) = 1_, Pd,."(t.) = 14+0, t and

/ d -
e t .
2 M1l g neal b . ¢
R '\(t) 2% 1 2 , (D.2)
TV '
* d,n g d,n"’ﬂ b
The existance of R d n(t,) depends on the factor
, .
/ * . \
\ ‘
| 1A l‘ '
haynt d,n+2 (D.3)
ﬁ dyn “‘d,n—ﬂl ’
" \ Let us assume that the relation (D. 1) exists. Then we have
(t) - P, (t) : I
R (1) = d,ml d n ! (d.1)
> 4 (t) -/
d,n‘1 . 4 '

'

o . N - ' . .
, Using Theorem 3.4,7 and substituting for the polynomials we get

2
b

3

-
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n-1
(n-1) Z (n-1-1)

{dnﬂ,nﬂ t  * (dn+1-i,n+1' dm»‘l-j.,n) t }

2 ' i=1
Rd,n(t) = t n-1
n-1
( Z dn-i,n-1 t +1) .
" ) i=1 (Dq?)

In Eq.(D.1) the polynomial P (t) has (n+2) ten%s. Similarly
@ - . d,n+1
the polynomials P, (t) and P (t) have (n+1) and (n) _ terms
d,n . d,n“‘“ B
respectively. It is obvious that Rd n(t) has tfo be a polynomial of
]
degree two. Hence, the denominator polynomial has to be a factor of the

2 is already a factor. The terms

numerator in Eq.(D.5). The term t
within the p renthesis in the numerat.ttar‘and the denominator represent
p'olynomlials i‘KL)the same dégree (n-1). In order that Rd,n(,t‘)' is to be a
polynomigl, it is necessary that the numerator and the denominator

differ by a multiplication factor. This factor is -

dn+1-i,n+1 B ¢n+1-1,n (D.6)

d.
n-i-1,n-1"

&i’"
=0 fori= 20

o
for i= 0’ 1, 2,.,.’..,“—1 and dn+1-iph v

" The polynomial R d.p(t) now becomes
- ’ , ’

2 9n41-1,n41 = %netet,n (0.7

| Rd,n( t,) = t d
; nei-1,n-1

We shall néu consider the various values of i

P [ 3
(a) Let 1=0, we have .

. d Co
2 n+l,nel

ydn-1 yN-1
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polynomial P

as follows: | .
'“\ : .
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B

From Theorem 3.4.2 substituting for d

ned N+ 1 and dn-1,n-1 the
result follows which is rewritpen for conveniehce as
‘ A
L
. 1A I 1a |
R - (t) =¥2 d'n+2 d,n“1 (D.g)
dn A, | 1A~ .1
i d,n d,n+1
*(b) Let 1=1, we have
© Ry (1) = £ myorl _ myn (D, 10)
’ d
n‘2,n-1

Two cases arise.

Case 1. n is odd:

(29

d corresponds to the coefficient of t" in the
n,n+1 . .

s . ////
d n+1(t). This polynomial can also be obtained in terms of
]

the.coefficients of the continued fraction expansion Eq.(3.5.3)

The coeffiéients of the continued fraction expansion Yi's " are

1

related to the coefficents dk n'® of the denominator polynomial P (t)
? ’ .

d,n

Yé + Vh O

- n
dn,n+1 N . (D.11)
Y n+1Y y
. mh . .
- - i1 :
-1
4an = —F (D.12)
Ty
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YZ“YH*' O

n-1
dn—Z,n-1 = n=1 . (0.13)
P nY .
i=1 @ \
Substituting these in Eg.(D.10), we get ‘
, ¢4
R t) = D.14)
d,n( ) — (
n n+t s ]
Substituting again for Yn Yn+1 from Eq.(3.5.12) we get
A | 14, |
‘ R * (4) = ¢F —SeBt2  dyne] (D.15)
: ’ . .
JAg ! 1Ay pq!
Case 2. n is even:
. We have ' g oo G Wy
Y .Y Y
d . 1 + 3 ": . . . . + n+1 .(D 16)
nynel n+1 )
? Y
3 n 1 ’
i=1 .
1
dn’n 2 - (D.17)
n/
Y .
i=1
b Y1 + .Y3 + . . » Yn-1 ¢ (D 18) ‘
n-2,n-1 =1 )
. i=1

-

(D.15).

. ) Q
Substituting these in Eq.(Ds10) we get theisme result as Eqa.(D..Ju) and

3

oot
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c) For 1 = 2, we have

2 dn‘-‘,n+1 -; d‘ﬂ")n (Do19)

dn-3,n71 . ‘ »

Rd,n(t) =t

-Again two cases arise,

Case 1. n is odd:

In terms of the coefficients Yi's, these coefficients

can be expressed as

n+1 n+1 N
N -3
E Y E Y i
21-1 211
i=1 i1=1 . . :
dn-1,n+1 = — A , (D.;O)
4 5
N Yy ‘
i=1 ) _
- Ny
)
Y1 + Y3 + L) . + Yn N '
n-1’n = ) i " ) (D021)
i Yi
¥ is1
AN
n-1 n=1
- T =
' Y Ye
21-1 Z %1 ] .‘" '
d R Tt Y - (® 22)
n-3,n-1 ~. n=1 . ‘ .
” .
Iy
, 1=1

ﬁubst;tuﬁing the above expression 1n.Eq.ﬁD.19) and simplirying, we get

13
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' » 1 .
Ry p(t) =z t& ———e (D.23)
Nt Y
n n+1
|A | JA N <
L4 % = tZ d,n+2 dz“"" (D.Zu)
, Ve
The simplification is carried out as shown below.
The‘?erm dn—1,n+1 - dn-l,n of the numerator in Eq.(D.19) reduees to
. ) ' . »
¢ 4
n+l . n+1 n+1 )
2 2 2
Y21-1 Z’YZIF Yn+1 Z Y212-1
i=1 i1=1 12=i1 ,
X - . (D.25)
T netd
1 Yi
i=t

When i, = (n+1)/2, the last term becomes zero. Therefore (n+1)/2
reduces to (n-1)/2 and also: i, and 1 can have a maximum value of

(n-1)/2. Hence Eq.(ﬁ;zu) can be written as

n-1 n-1
2 K
Id
' 22,1-1 Z a1,
i=1 i1=i
- (D027)
n-1,n+1 n=-1,n . n+1
ﬁ;;
i Yi
i=1

The numerators of Eqs.(D.27) and (D.22) are the same. Substituting
' L \ . .
these in Eq.(D.19) we have .the result as Eq.(D.14) and Eq.(D.15).

‘i

Similarly for n even, same results can be ocbtained.
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L= 1T -
L

In general for any, integer 1(0¢n<n+1), it can be shown that the
qxpressi,or; EQ.(D.7) is true,

Hence the theorem,
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