NI e .

National Library
of Canada

i+l

du Canada
Canadian Theses Service

Ottawa, Canada
K1A ON4

NOTICE

Thequality of this microform is heavily dependent upon the
quality of the original thesis subritted for microfilming.
Every effort has been made to ensure the highest quality of
reproduction possible.

I pages are missing, contact the university which granted
the degree.

Some pages may have indistinct print especially if the
original pages were typed with a poor typewriter ribbon or
if the university sent us an inferior photocopy.

Reproduction in full or in part of this microformis governed
by the Canadian Copyright Act, R.S.C. 1970, ¢. ¢-30, and
subsequent amendments.

NL 339 (¢ 88/04) ¢

Bibliothéque natiunale

Service des théses canadiennes

AVIS

La qualité de cette microforme dépend grandement de la
qualité de la thése soumise au microfilmage. Nous avons

tout fait pour assurer une qualité supérieure de reproduc-
tion.

Sl manque des pages, veuillez communiquer avec
l'université qui a conféré le grade.

La qualité d'impression de certaines pages peut laisser a
désirer, surtout siles pages originales ont été dactylogra
phiées a l'aide d'un ruban usé ou si funiversité nous a tan
parvenir une photocopie de qualité inférieure

La reproduction, méme partielle, de cette microforme est

soumise a la Loi canadienne sur le droit d'auteur, SRC
1970, c. C-30, et ses amendements subséquents.

Canadi

A New Perspective of Hough Transform: Theory and Applications

Derek Chi Wai Pao

A Thesis
in
The Department
of

Computer Science

Presented in Partial Fulfilment of the Requirements
for the Degree of Doctor of Philosophy at
Concordia University
Montreal, Quebec, Canada

June 1991
© Derek Chi Wai Pao, 1991

A+K

National Library
of Canada

Bibliothéque nationate
du Canada

Canadian Theses Service

Ottawa, Canada
K1A ON4

The author has granted an irrevocable non-
exclusive licence allowing the National Library
of Canada to reproduce, loan, distribute or sell
copies of his/her thesis by any means and in
any form or format, making this thesis available
to interested persons.

The author retains ownership of the copyright
in his/her thesis. Neither the thesis nor
substantial extracts from it may be printed or
otherwise reproduced without hisfher per-
mission.

Service des théses canau.ennes

L'auteur a accordé une licence irrévocable et
non exclusive permettant & la Bibliothéque
nationale du Canada de reproduire, préter,
distribuer ou vendre des copies de sa thése
de quelque maniere et sous quelque forme
que ce soit pour mettre des exemplaires de
cette thése a la disposition des personnes
intéressées.

L'auteur conserve la propriété du droit d’auteur
qui protége sa thése. Nila thése ni des extraits
substantiels de celle-ci ne doivent étre
imprimés ou autrement reproduits sans son
autorisation.

ISBN 0-315-68779-7

LA

Canadi

ABSTRACT

A New Perspective of Hough Transform: Theory and Applications

Derek Chi Wai Pao, Ph.D.
Concordia University, 1991.

The Hough transform is an effective method to detect parametric curves in binary
images. However, some of its drawbacks are also well known. For the detection of
straight lines, the method only determines the parametric representation; information
concerning the exact locations and lengths of the line segments is not available. The
lack of the positional information may limit the usefulness of the extracted features in
some applications. Also, because of its statistical nature, spurious lines may be
detected. For the detection of higher order parametric curves, the computational com-
plexity and memory space requirement of the method grow exponentially with the
number of parameters of the curves. In this thesis, we present novel methods to detect

straight lines and higher order parametric curves, such as circles and ellipses.

For the detection of straight lines, we present a modified algorithm (SLHT) that
incorporates a pixel connectivity check. By so doing, the end points of the line seg-
ments can be computed, and unrelated pixels (noise or pixels of far apart objects) can
be filtered out. A new line selection algorithm based on comparisons among neighbor-
ing accumulator cells is developed to replace the simple thresholding method. Short
lines as well as long lines can be detected, but spurious lines are totally eliminated.
The modified Hough transform is implemented on a systolic array. The area-time com-

plexity of the proposed architecture compares favorably to other parallel designs.

For the detection of higher order parametric curves, we present novel methods

based on the decomposition of the high dimensional parameter space. in our approach,

iii

the SLHT is first computed. We then compute other transforms from the 8—p space (6
and p are the normal parameters of a straight line) to the subspaces of the curve. Con-
ceptually, each point in 8-p corresponds to a straight line in the image plane; and the
line iz tangent to the curve. The major advantage of formulating the transform using
the set of tangents is that it allows the translation parameters be easily separated from
the other parameters of the curve. Also, rotation in the image plane corresponds to cir-
cular shifting in tie 6-p space. Novel methods to detect circles and ellipses are
presented. The computational complexities of our methods compare favourably to other
Hough based algorithms, The approach is further generalized to recognize arbitrary
shapes by computing a signature in the 8—p space. This signature is invariant to trans-
lation and easily normalized with respect to the size of the object. Rotation in the

image plane corresponds to circular shifting of the signature.

In our curves detection methodology, we assume that the shape is being
represented by its complete set of tangents. In this thesis, we establish the theoretical
foundation of our methodology by proving the uniqueness of the tangent set represen-
tation of closed smooth curves. A byproduct of our proof is that it is possible to fully
reconstruct a curve from its complete set of tangents without knowing the points or
tangency.

The curves detection techniques are applied to extract graphic features for
automatic conversion of engineering line drawings. The graphic features extraction
problem is formulated as a segmentation problem. A stepwise segmentation refinement
strategy is developed in which the Hough transform is applied to generate initial
hypotheses to guide the segmentation process. Good segmentation results were

obtained in the preliminary experimentation.

iv

R e

ACKNOWLEDGEMENTS

First of all, I would like to express my sincere gratitude to my supervisors, Prof.
Hon F. Li and Dr. R. Jayakumar, for their guidance, support, and encouragement
throughout this research. Even though the high standard of requirements of my super-
visors is not easy to live with, I will not hesitate to admit that I have benefited enor-
mously from their critical comments and insights. Besides leaming how to define and
tackle research problems, I was also given vigorous training on how to write research
papers and how to make oral presentations. These technical skills are extremely useful
and essential to the success of my future career. I am very lucky to have not just one

but two excellent supervisors.

From the very beginning of my Ph.D. program, I have been associated with the
Optical Character Recognition (OCR) research group of the Centre of Pattern Recogni-
tion and Machine Intelligence (CENPARMI) under the leadership of Prof. Ching Y.
Suen. I am very grateful to Prof. Suen and other members of the OCR group, which
includes Dr. Louisa Lam, Raymond Legualt, and Christine Nadal, for their support and
encourageinent. I benefited a lot from the stimulating discussions in the regular meet-

ings and their constructive comments.

I would also like to thank Prof. R. M. H. Cheng and Mr. Simon Poon of the
Mechanical Engineering Deptartment of Concordia University for helping me to gain a

iter understanding of engineering line drawings.

I am very thankful to the technical staff of the Computer Science Department,
Mr. Paul Gill, Mr. Girish P..c}, Mr. William Wong, and Mr. Mike Yu for their techni-
cal advice and assistance during my experimentations. In particular, I am very
impressed by the enthusiasm of Mr. Paul Gill in helping students to solve system prob-

lems.

Throughout the course of my graduate studies at Concordia University, i received
much support from my friends and colleagues. Their help in both academic matters

and daily life problems are very much appreciated.

Last but not least, I would like to thank the examiners, in particular the external
examiner Dr. Steven L. Tanimoto and the external-to-program examiner Dr. R. M. H.

Cheng, for their valuable and constructive comments on the thesis.

This research is partly supported by research grants from the Natural Science and
Engineering Research Council of Canada (NSERC) and partly by a Strategic Research
Grant from NSERC.

vi

PP RN o d TR TR Ty e T e T

TABLE OF CONTENTS
LASE Of fIUIES.c.uiiiineirncrerinriecrtestseirnsensinssssssssssss sosssvsesssessnsersasaersessssssss ssassussussnssnsanes ix
LISt Of tADIEScovrrerecinrinranceresrenmrinensensscsnussessisncstsussssnssesasnassnsessassssssc ssssssssassnisissssnans X
Chapter 1. INtroductioncceecivinnniiminnenieeses s s cssnssnimisisases 1
Chapter 2. Detection of Straight Lines ..o, 7
2.1. Modified Hough Transform and a Systolic Implementationccooeeveenees 11
2.1.1. A Remark on Systolic COMPUtationceeeesesssienesnniiansiseniianirssesseeans 20
2.2. Area-Time Complexityciveerimenmrreiineiieesessissssininniinn e isas s sssesssieses st 21
2.3, LINE SEIECHOMeervrreeirrireieceerersenssceisbessssensrstensanssssssstssssssssssssnsssastiasnssnsans 25
2.4, EXPEIMENIRLONcovviiniimiriinrsssenirsisssssssssessesisssss shssssasnsssasssssasassssassistsnsssnss 30
2.5, REIMATKS ...veverririverrereeeeerannsesesesssisssssesesnisstsnssbersasasse sasnasssssesssssssassassssssseseseansass 30
Chapter 3. Characterization of 2D Smooth Curves Using the Set of
TANGENE LANESccovremeiniriiictniies sttt st st stin s s 34
3.1. The Shape Representaion SChEmE ..., 34
3.1.1. Preliminaries and NOAONS.........ccvviiiiiimnieinsienneesiecieiisimeinnnrsn, 35
3.1.2. M2 TREOTEIM...ceiviiieecteierereeseeeeseesaessissnessnsasenasaastesss st ststennesnstsassnnsannas 36
3.2. Reconstruction of Open SMOooth CUIVEScccvevieiiniiiiiiieininsieeees 47
3.3. Comparisons with Horwitz’s Proof and McKenzie’s WOrKcoovveen covevecnes 47
Chapter 4. Detection of Parametric Curves...........moiicncnincnimcsn 50
4.1. DeteCting CirClesccvevrmmimreisisiesienscssniiniisssissnssss st ot st s 52
4.2, Detecting EIIPSES ...ccuviviiirinietmernissncrsessssiis sttt s st 59
B8.2.1. MEROA 1ot ireerrireeserstesesscsascssssssssnssssssssbossssssssases sesssssssnsnsstsanansnsans 60
4.2.2. MEIHOA 2 .veneeeereieriirisessessensssassessiessssssssmssssssssmsssssssesss sossssassntisssssnasansns 63
4.2.3. EXAMPIES c.ccvecuruiriirinnsessssesisisessesers st instssasssarsinsssssas st ssssserssassasesssnse 65
4.3. Comparisons with Previous WOrKS.......ccc.vissn s 81
Chapter 5. Recognition of 2D SMOO0th CUFVeS......coocoevneiiiiiinimnmmniiiinisin s 84
5.1. Implementation DetailS........cocoveimmimiiinimimisiinisessii s s 86
5.1.1. Quantization EITOTS.....c.omimnininticiiinin s e s 88
5.1.2. EXAMIPIES coouvuremiinnitietntse s seissssissas st st sens s b abss s saens 89
5.2. Performance of the Recognition Method.......cocouiviiiiiiinnniisieiinnnnnnnciennnn 101
5.2.1. Computational COMPIEXItYecueeuuceuriiiirerimrmmmisiisnses st 101
5.2.2. Sensitivity to Shape DiStortion.......cceeviiminiinmisenesssiscniii s 102
5.3, REMATKS cveuveveeersrsrireeraeeserssssnssssssotsessessinssessstassssnsasss setsessetssestasssosssatustsscs sssisns 108

vii

Chapter 6. Extraction of Graphic Features for Automatic Conversion

of Engineering Line Drawingsccooriiiesiesnminnisisimnisceies 110
6.1. INTOAUCHIONcveiciereerecaericecirentesaniirenn sre s iise s sanesaersssastesansssrenartassssssssssisssssse 110
6.1.1. The Graphic Features Extraction (GFE) Problemcccccoeceieniinccnnncn. 112
6.1.2. Previous WOTK......coccciceeeernereneniresenisiismissmnssasssnasisissssssesssnsssssssasaasssisssssee 113

6.2. The Graphic Features EXtraction SYSIEIMccccereiimnssssnnesisssnscscsanssninsiinsens 114
6.2.1. Implementation Details and Experimental Results........cccoouieueiiiarsenens 115

6.2.2. Comments on the Current SYSIEIMccceceiienmiisnensessissssastnsanssuesssisissee 130

6.3. REMATKS ...oeveeriieierensrentessasesstcsansnsetisess sesssnssssss ssassssnssssssanssssssasanstassassssssssssase 130
Chapter 7. Concluding Remarkscoveeeevimiiiiiiimemminssssmies 132
REFEIENCESoooveeveieririreirreeraeessesessssssssosssiissssse sssrsisssss sessborssssssssssessarasinssassssusstsssosens 136

viii

e e -

R -

R ta N

e 3 ety Wy T

LIST OF FIGURES

Figures
2.1 Normal parameters of a straight lin€covinenninniniiniccncsissiinne 8
2.2 Architecture of the SYStOliC AITAYcccovevisniiiiiseenieniensienieseessssinsssiisnines 13
2.3 Parameters used in the accumulator cell with horizontal

scanning: k = Ap/sin® and step = 11aN0coceeiiiiieneniiiciiiiiiinees 18
2.4 Spreading of a line segment to buckets in adjacent columns.........coeevvviniennas 27
2.5 Checking for overlapping linescueeeininennininienescesisssesiesisninsnenes 28
2.6 Example of straight lines detection......c.ccnneenennincsisccnias srtieissnseensisninen. 31
3.1 A simple closed smooth curve and its H ransform..........ccooeinieninieniininnnns 37
3.2 Partition of the x—y plane by two non-parallel lines........cccccceeeeevscninniciiinenns 42
3.3 Common tangents Of tWO COMVEX CUIVES....cveeierersrisesentsississessssssaasssaansnsasiness 44
4.1 Effect of translation on the normal parameters of a straight line...........ecccc. 51
4.2 Neighbors of the cell p in £=00 SPACE....ccviirencntrsiiiininiiitinstssr e 55
4.3 Example of circles deteCtionccoereeernnieiscsiiinimiiininic et 56
4.4 Parameterization of an €llIPSEcocoieiniiiiirnnnineniisesesci i e 60
4.5 Intersecting point of two symmetric tangents t0 an ellipsecceevvirevneiinnnnns 64
4.6 Example 1 Of ellipses detECtioNccvvervieunmnnisiintiniinniiinimininsesessss s eisnsissens 67
4.7 Example 2 of ellipses deteCtioncoc.eoueoeiiiintiiiiiiininstnnnessssssisnnecstissiees 70
4.8 Example 3 of ellipses deteCtioNvveecrniniiscniniiniirisnisnsississs s 76
5.1 Example 1 of ~Uject recognition using the STIRS signature.........ccooceeveeeenecs 90
5.2 Example 2 of object recognition using the STIRS signature.......cocoveeevecrenene. 93
5.3 Example 3 of object recognition using the STIRS signature.......cccoveuevuiuvnscnce. 97
5.4 Recognition of distorted objects using the STIRS Signatureccooeecevennssuss 105
6.1 Sampling of @ CUTVE SEZMENT....cocuniiiisisisiiinistassssissiesessesssststs s sassasassiassie e 117
6.2 Example 1 of graphic features eXtraCtioncocuiiiminmisssisescimsemssiniisssiniiiencns 122
6.3 Example 2 of graphic features eXtraCtion ... uvnscssmiscssienienerss srtsssiinsenne 126

ix

LIST OF TABLES

Tables

2.1 Area-time complexities of the six Hough transform algorithmscceeeee.

4.1 Time and space complexities for detection of ellipses

ooooooooooooooooooooooooooooooooooooo

Chapter 1

Introduction

Detection of straight lines and higher order parametric curves such as circles and
ellipses in binary images of man made objects is a fundamental problem in computer
vision. These entities are often used as features in higher level applications such as
object recognition, automatic inspection and vehicle guidance, etc. One effective
method to detect these features is the Hough transform [Hou62, Dud75]. In this
method, the curve to be detected is described by a characteristic equation
f@aya,a,),(xy)) =0, where (a,,...,a,) are the parameters of the curve
and (x,y) are the free variables. By interchanging the roles of the parameters and
variables, an image point (x;,y;) is mapped into a hypersurface in the n -dimensional
parameter space R" = A;xA,x - - - XA, using the above equation. Hypersurfaces
corresponding to image points that belong to the same curve will intersect at a com-
mon point in the parameter space. In computing the transform, the parameter space is
quantized and represented by an accumulator array. Each accumulator cell keeps track
of the number of image points that are mapped onto it. A high vote count represents
high level of evidence of the presence of the curve instance in the image, and the
indices of the accumulator cell reveal the parameters of the curve instance. Hence, the
problem of detecting curves in the image space is equivalent to a much simpler prob-

lem of locating peaks in the quantized parameter space.
The Hough transform has several desirable properties. First, it operates on raw
binary images with minimal preprocessing requirements. Second, each image point is

treated independently, and therefore the method can be implemented in parallel

machines to speed up the computation. Third, its independent accumulation of evi-
dence means that it can recognize partial or occluded shapes. Also, random noise in
the image is unlikely to contribute co=rently to a single bin of the accumulator array,
and therefore, the method is, to a certain degree, insensitive to random noise in the
image.

In the past decade, there have been a large number of publications on the Hough
transform {I1188], and it was the major theme of several Ph.D. dissertations [Kri87b,
Ku87, RiJS89]. Applications of the Hough transform include polyhedral objects recog-
nition [Eng88], vehicle guidance [Ini84], target detection and tracking [Cow83,
Kri87a}, automatic inspection [Dye83, Hua85, Shu87], imag~ segmentation [Jay83,
Poe86], image registration [Anu85, Yam81], character recognition [Kus85, Che89],
subgraph isomorphism [KaS83], motion estimation [Rad86), recognition of 3D objects
using range data [Kri89, Tay90], satellite image processing [Lee89], and document
processing [Fle88, Hin90]. In this thesis, we focus on the detection of 2D planar

curves using the Hough transform.

The Hough transform is basically a statistical summary of the likelihood of pres-
ence of the features in the image. If the features being looked for are parametric
curves, then the method only determines the possible parameters of the curve instances
in the image, for example the slope and intercept or the normal parameters, p and 6, of
the straight lines. The lack of information regarding the exact location and length of
the line segments may limit the usefulness of the extracted features. A more severe
problem, known as the sensitivity problem, arises when the number of features in the
image is large, and the vote patterns of distinct features interfere with each other and
lead to the formation of spurious peaks.

Another drawback of the Hough transform is its high computational cost and
memory (space) requirement. The computational cost can be divided into two com-

ponents, the cost of accumulating the votes and the cost of detecting peaks in the

parameter space. If the curve to be detected is characterized by n parameters and if
each parameter is quantized into M distinct levels, then the voting cost is O (PM n-ly,
where P is the number of pixels in the image. The computational cost of detecting
peaks in the n-dimensional parameter space is normally O (M") since every accumula-
tor cell has to be inspected at least once. The amount of storage required is also nor-
mally O (M"). If either M or n is large, then the computation cost and memory
requirement may become prohibitive. For example, detection of ellipses, which are
being characterized by five parameters, the center coordinates, the major and minor

axes, and rotation, is often deemed infeasible using this method.

In this thesis, we develop a modified Hough transform for straight lines detection
that will incorporate a pixel connectivity check. By so doing, confusions that arise
from the statistical nature of Hough transform can be avoided. Spurious peaks can be
totally eliminated. Each detected line segment is characterized by its two endpoints in
addition to the normal parameters p and . The modified Hough transform is imple-
mented using a systolic array. The merits of our modifications and the systolic imple-

mentation are listed below.

1. Pixel connectivity can be checked incrementally such that only a constant amount

of memory and a simple comparator are required in each processing element (PE).

2. No multiplication is required in the computation. Hence, the design of the PEs is

much simplified.

3. The area-time (AT) complexity of our design compares favourably with the con-

ventional sequential algorithm and other parallel algorithms.

For the detection of higher order curves, such as circles and ellipses, we develop a
novel parameter space decomposition approach that will reduce the time and space
complexity substantially. Our method is based on the shape representation scheme that

uses the set of lines tangent to the curve. The use of this representation scheme for

object recognition was first studied in [Cas87] and later in [McK90]. The major
advantage of this representation scheme is that it allows us to separate the translation
and rotation parameters from the intrinsic parameters of the curve. Let L be the set of
lines tangent to the curve C. The pattern obtained by plotting the normal parameters of
each line I € L in the 6-p plane is referred tc as the "transform function" of the
curve C, denoted as p(8). In the discrete domain, this transform function can be com-
puted using the modified Hough transform we have developed. Each detected line seg-

ment is an approximate tangent to the curve.

Let py(8) be the transform function of a curve C located at the origin of the x-y
plane. If C’ is an instance of C which is rotated by an angle ¢ in the counterclockwise

direction and translated to (x,y o), then the transform function of C’ is given by
p(B) = tcos(B-a) + sign * po(6—9)

where =\/W, o = tan~}(yg/xq), and sign =1 if 02¢; otherwise, sign = -1.
The tcos(8—0) term is called the translation term and the sign * po(6-9) term is called
the intrinsic term. Mathematical derivation of the transform function will be given in
chapter 3. One desirable property of this representation is that it provides a natural
way to decompose the high dimensional parameter space. By decoupling the two
terms, we can decompose the high dimensional parameter space into three subspaces,

namely the translation, rotation and intrinsic parameters.

Let’s consider the detection of ellipses. In one of our metheds (which will be ela-
borated in chapter 4), we assume the orientation of the ellipse and eliminate the intrin-
sic term. A voting phase in the r—c plane is carried out to determine the center coordi-
nates of the ellipses. Knowing the orientation and center coordinates, we can perform
another voting phase in the a—b plane (a and b are the major and minor axes of the
ellipse, respectively) to determine the major and minor axes. If the orientation is not

known, then a search on the ¢ axis is carried out. Our method only requires searching

a 1D space and voting on 2D spaces. Substantial savings in both time and memory are

achieved when compared with the conventional Hough transform that involves voting

on a 5D space.

In our methods and that of Casasent and Krishnapuram, the curve is characterized
by its set of tangents. One fundamental question we ask is whether this representation
of a curve is unique or not. In other words, can we have two distinct curves that can
have exactly the same set of tangent lines? In this thesis, we present a mathematical
proof based on convexity theory that a 2D continuous, smooth, simple closed curve is
indeed uniquely characterized by its set of tangents. A byproduct of our proof is that

reconstruction of a closed smooth curve from its set of tangents is feasible.

Observing from the transform function p(6), if we can eliminate the translation
term, then we are able to obtain a signature of the curve which will depend only on
the rotation and intrinsic parameters. This signature has three very useful properties:
(i) it is invariant to translation of the curve in the image plane; (ii) rotation of the
curve corresponds to circular shifting of the signature; and (iii) the scaling factor of the
signature can be easily normalized. This signature is, however, sensitive to variations
of image patterns. Recognition of the curve only involves computing a 1D convolution
of the signature of the curve with that of the reference curve. We call this signature
the Scalable Translation Invariant Rotation-t0-Shifting (STIRS) signature. The compu-
tational complexity of this matching method is much lower than the conventional tem-
plate matching method. This method is especially attractive when the test pattern has

to be matched against a large number of reference patterns.

To demonstrate the applicability of our curve detection techniques, we apply our
method to extract graphic features from engineering line drawings. Automatic conver-
sion of engineering line drawings is essentially a computer vision problem. The ulti-
mate goal is to derive an intelligent interpretation of the drawing that can support

efficient editing, 3D modeling and integration with CAM (computer aided

manufacturing). Extracting meaningful geometrical features is very different from com-
puting a "best" approximation to the set of data points. For example, a curve can be
approximated by a set of straight line segments. But this representation is by r.o
means adequate for the above stated objectives. The basic question is not how to
obtain a set of curves that can accurately approximate the input image, but rather how
to infer a meaningful description of the input image in terms of the set of extracted
features. Our view on graphic feature extraction is essentially a segmentation problem.
Once we can parition the set of data points into a number of subsets, then it won’t be
difficult to derive the best parametric representation of a curve that passes through a
particular subset of data points. A stepwise segmentation refinement strategy based on
the Hough transform is developed. In this approach, the dominant features in the image
are successively extracted, and the segmentation is refined after each iteration. Very
good segmentation results have been achieved in the preliminary experimentation. A
more detailed introduction to the engineering line drawing conversion problem is given

in chapter 6.

The thesis is organized as follows. In chapter 2, we present our modified Hough
transform for the detection of straight lines and its systolic implementation. In chapter
3, we establish the theoretical foundation of our curves detection methodology by
proving the uniqueness of the shape representation scheme using the set of tangents.
The parameter space decompositicn approach to detect circles and ellipses is discussed
in chapter 4. Formal definition and application of the STIRS signature to the recogni-
tion of arbitrary shapes are presented in chapter 5. Application of the curve detection
techniques to the engineerirg line drawing conversion problem is presented in chapter
6. Finally, some concluding remarks and discussion on future research are given in

chapter 7.

Chapter 2
Detection of Straight Lines

A straight line [can be represented by the equation
l: p=xcosb + ysind

where 0 is the angle between the normal of the line and the x -axis, and p is the per-
pendicular distance of the origin from the line / (figure 2.1). Let the size of the input
iinage be NxN. Then the value of 0 is restricted to [0°180°), and p lies within the
range [-V2N V2N]. A straight line ! is uniquely characterized by the tuple (8,p). The
0—p space is quantized and represented by a 2D accumulator array of size mgxm,,.
The quantizations in p and 6 are Ap and A6 units, respectively. To detect straight lines
in the image, every image point (x;,y;) is mapped into a sinusoidal curve in the 6-p

space by
p = x;cos0 + y;sind.

The accumulator cells (buckets) along the sinusoids are incremented by an amount
depending on the scheme, often a function of the pixel value. In this thesis, we only
consider binary images, and the accumulator cell is incremented by 1. The other way
to look at the voting process is that each bucket corresponds to a rectangular window
in the image plane with orientation 6 + 90° and width Ap. The vote count of the
bucket is equal to the number of image pixeis lying within the corresponding window.
Peaks are located by thresholding the accumulator array and they are regarded as

hypotheses of the presence of straight lines in the image.

Figure 2.1 Normal parameters of a straight line.

Because of quantizations in the iinage space and parameter space, the sinusoid of
the image pixels belonging to a line instance do not, in general, intersect precisely at a
common point in the parameter space. Moreover, each accumulator cell will also accu-
mulate votes due to noise and unrelated pixels in the image. Hence, the vote count
does not necessarily reflect the true level of evidence. Selection of the threshold value
is another difficult problem. If the threshold is set too high, short lines cannot be

detected. On the other hand, if the threshold is too low, spurious peaks may result.

Several studies on the behaviour of the Hough transform in relation to the choice
of quantization of the parameter space and the effect of noise on parameter accuracy
have been reported in the literature {Sha75, 78,79]. Van Veen and Goren studied the
quantization errors in straight line detection using the (6,p) parameterization [Van81].
Analytic results for the spreading of peaks as a function of quantization of the image
space and 0—p space were derived. These results serve us guidelines in choosing the

quantization of the parameter space to minimize spreading of peaks. Leavers and

Boyce analyzed the shape of peaks in the 6-p space {Lea87]. They observed that
peaks in the 8—p space due to straight lines exhibit a characteristic butterfly shape,
and suggested suitable convolution filters which would enhance these peaks. Niblack
and Petkovic also attempted to improve the accuracy of the estimated parameters by
filtering the 8—p space [Nib88].

Another approach to improve the performance is by reducing the background
votes. One method proposed by Brown is known as the complementary Hough,
CHough [Bro83]. The Hough transform is recast as a linear imaging problem. The pat-
tern of votes generated in the parameter space by each image point is called the feature
point spread function, psf. The final accumulator is the superposition of the feature
psf’s in the image. In this approach, an image point contributes positively to some
parameter values, but negatively to the off-peak parameter values. The net effect is to
reduce the mean and variance of the background votes and to produce more prominient
peaks. However, this method only applies to a psf that is symmetric, and may suffer

more from quantization effects.

Another method to reduce background votes is by incorporating additional con-
straints in the mapping of each image point to parameter space. One method is by the
use of gradient information associated with the image pixels [Bal81). For example in
straight line detection, if the gradient of an image point p is g, then the point p will

only vote for the accumulator cells in columns
6 = ((tan"1(g £ €) + 90°) / AB) mod mg

where ¢ is the expected error in the measured gradient g. The other method is to con-
sider pairs of pixels. Random combinations of pairs of pixels, (#; and p,), are gen-
erated. Each pair of pixels will vote for the parameters that correspond to the line
passing through the two points. The effectiveness of this method degrades substantially

with increased complexity of the image. Suppose the line I has k pixels and the total

number of pixels in the image is P. Then the chance of getting & ~air of points from
the line [is (k/P)2. So, when P > k, the number of votes the line / can have with a

fixed number of trials decreases quadratically with the complexity of the image.

The above mentioned attempts in improving the accuracy and sensitivity of the
Hough transform for straight lines detection only achieve limited success. The major
reason for that is because of the inherent statistical nature of the Hough transform.
The votes due to noise and unrelated pixels cannot be distinguished from the votes due
to genuine pixels. A vote count of k may be due to a line with k pixels or as well be
due to k noise pixels that happens to be collinear. One way to overcome this problem
is by incorporating a pixel connectivity check, such that the accumulator cell can dis-
tinguish between noise and genuine pixels. A straightforward way to implement pixel
connectivity requires each accumnulator cell to store the coordinates of the pixels that
vote for it. A better method was proposed by Shu et al [Shu87] which used a bit array
in each accumulator cell to determine the connectivity and length of the line segments.
Every pixel mapped to an accumulator cell will mark the corresponding bit in the bit
array. A continuous string of marked bits in the bit array corresponds to a group of
connected collinear pixels. This method simplifies the connectivity check but the
memory requirement is still substantial because the size of the bit array grows in pro-

portion with the size of the input image.

In this chapter, we introduce a modified Hough transform which performs a con-
nectivity check in a simple and efficient way. A systolic architecture [Kun82, LPJ89b]
that implements this modified transform is developed. The systolic array takes the bit-
map of the binary image as input and processes one row/column of pixels con-
currently. The processing elements (PEs) of the array are very simple and the area-
time complexity of the proposed architecture compares favourably to other parallel
implementations. By checking the contiguity of edge pixels, unrelated pixels can be

filtered away. Each line segment is characterized by its two end points, and a bucket

10

can hold multiple collinear lines. Knowing the end points of a line, we can determine
the "best" fit to the group of "collinear” edge pixels by counter-checking with other
lines that are detected in adjacent buckets. This approach to selecting the best lines can

avoid the confusion that usually arises when simple thresholding is applied.

2.1 Modified Hough Transform and a Systolic Implementation

In our approach, we check the pixel connectivity incrementally. Suppose the
image is being scanned from left to right and bottom to top for 45° < 0 < 135°, and
scanned from bottom to top and left to right for other values of @. The edge pixels
belonging to the same line segment will be processed and mapped to a common bucket
in sorted order. Each bucket can reject unrelated pixels by simply checking the con-
nectivity of the incoming pixel with the last pixel sitting in the bucket. This approach
only requires a constant amount of memory space to store the start and end points of
the line segment in each accumulator cell and a simple comparator for checking con-
nectivity. Whenever a discontinuity! is detected, the current line segment is terminated
and the incoming pixel defines the starting point of a new line segment. Isolated (sin-
gle) pixels and very short line segments whose lengths are less than some threshold

value, say L., can be simply discarded.

When mapping this approach into a systolic array for implementation in VLSI

[Mea80], we want to achieve the following three objectives:

1. Minimize external and intercell /O requirements: To reduce external 1/O require-
ments, we process the bit map of the binary image directly. Each pixel is
represented by a single bit instead of its coordinates. By using a carefully

designed local timing scheme, the accumulator cell can compute the location of the

! 8-connectivity is used in our work. However, the connectivity constraints can be rclaxed a lite to al-
low for small gaps of predefined size along the line.

11

pixel based on its arrival time (this will be elaborated later in this section). This
means that we don’t have to pass around the coordinates of the edge pixels. This
represents a huge saving in intercell data routing and consequently in space com-
plexity.

2. Simple processing cell: Hardware multipliers are complicated. In our design, all
multiplications are replaced by simple additions. Hence the cell design is extremely
simple.

3. Maximize concurrency: The algorithm exploits concurrency by both multiprocess-
ing and pipelining of the processing cells. One celumn or row of pixels are pro-
cessed per time unit (the time required to perform one basic arithmetic-logic opera-
tion).

Details of the implementation now follow. The basic systolic architecture (figure 2.2)

consists of a linear array of compute cells, a routing network and a linear array of

accumulator cells. The systolic array processor takes the bit-map of the binary image

as input and computes the Hough transform for a particular value of 6.

Lemma 2.1: Suppose the image is scanned horizontally (vertically), that is one column
(row) of pixels are sent into the systolic array per time unit as shown in figure 2.2.
The destinations of the pixels for a given value of 8, say 6,, can be computed by sim-

ple addition.

Proof: Let P;; denote the pixel at (i ,J) in the image plane. If the image is scanned
horizontally, the row of pixels Pq;, Py, ..Py1,j will be sent to the j-th compute cell

on successive time units. The destination r;; of pixel P;; is:
rij = (icosBy + jsin®,)/ Ap.

The corresponding destination of the next pixel P;,; ; that enters the j-th compute cell

1s

12

E e M

— e —— e m o e o — — — o —d

Figure 2.2 Architecture of the systolic array.

13

ris,j = ((i+1)cos@; + jsin®,) / Ap.

The difference in destination between adjacent pixels that enter the same compute cell

is a constant equal to
Tis1,j — Tij = cosB / Ap.

By preloading the destination register with j sin; / Ap, the computation of the desti-
nation of an edge pixel can be performed using simple addition. The value of
cosO, / Ap is added to the destination register in every time unit. When P;; enters the
J-th compute cell on the i-th time unit, the value of the destination register will be
(icosBy + jsin®,) / Ap. The incoming pixel can simply pick up the value in the desti-
nation register. If the image is scanned vertically, then the destination register of the
i-th compute cell is preloaded with icos@, / Ap. Destinations f two adjacent pixels

differ by sin6; / Ap. O

The pseudo code of the compute cell function is shown below. Here, input and
output variables are named with the suffix _in and _out, respectively. The variables
without the suffix _in or _out are local variables. Since the destination of a pixel is
within the range [-m /2, mg/2], it can be made always positive by adding an offset of

my/2 to it. Hence the destination register is initialized to jsin8; / Ap + m pl2.

In the following discussion, we assume that the image is scanned horizontally.
The output of the compute cell is a two-tuple (pix, r), where pix is the value of the
pixel and r is its destination. The routing network is responsible for sending the °1°
pixels with destination r to the r-th accumulator cell. The routing network is com-
posed of a m XN array of routing cells. The output of a compute cell (pix,r) traverses
the routing network from top to bottom. The value of r is decremented by one when-
ever the output moves one row downward. When r becomes zero, the pixel will be

picked up by a data token, called the "collector”, that traverses the routing network

14

Function of the compute cell
/¥ input variables are named with suffix _in;
output variables are named with suffix _ous;
variables without the suffix _in or _out are local variables;
*/
Data types:
pix : 1 bit;
r : integer;
increment, destination : fixed point number;

Initialization of the j-th compute cell:
increment « cosf / Ap;
destination ¢ jsin@ / Ap + my/2.

Computation:
pix_out < pix_in;
r_out « round(destination);
destination <« destination + increment,

from left to right.

A collector consists of a bit-vector (shift register) of k bits, a modulo k counter,
and two boolean flags, pick_up and freeze_count. The bit-vector is initialized to null
(all zeros), the value of count is initialized to zero, and the two boolean flags are ini-
tialized to false. The collector has its count value incremented by one when it moves
from one routing cell to another. When the collector first meets a '1” pixel with desti-
nation 7 =0, it starts the "pickup" process and the incrementing of the counter is
stopped. The value of the counter is used by the accumulator cell to compute the
offset of the bit-vector with respect to the reference location. This will be elaborated
later in this section. If r = 0, the value of the pixel is shifted into the bit-vector; oth-
erwise a '0’ is shifted into the bit-vector. The shifting of the bit-vector is from say left
to right. The pickup process stops when the bit-vector is full, that is when the right-
most bit has a value '1’. The function of the routing cell is shown below. The nesting
of the IF-ELSE statement is understood by the indentation in the pseudo code. If the

column of pixels are sent into the array of compute cells with a 45° skewing (as in

15

Function of the routing cell
/* variables are named as in the function of the compute cell */

Data types:
r : integer,
pix : 1 bit;
bit_vector : k-bit array;
count : 0..k-1;
pick_up, freeze_count : boolean;

Computation:
pix « pix_in;
bit_vector « bit_vector_in;
Sfreeze_count « freeze_count_in;
pick_up « pick_up in;

IF (freeze_count = False)

count « (count_in + 1) mod k;
ELSE

count « count_in;

rerin-1,
IF(r =0)

IF (pix = 1) /¥ pick up the edge pixel */
shift pix into bit_vector; [* stop incrementing counter */
Sfreeze_count « True;
pick_up « True;

ELSE
IF (pick_up = True)

shift ’0’ into bit_vector ;
pix_out « 0,
ELSE

IF (pick_up = True)
shift '0’ into bit_vector;

pix_out « pix;

IF (bit_vector is full) /* the rightmost bit =1 %/
pick_up « False; /* stop the pick up process */

r out «r;

count_out ¢ count;
bit_vector_out « bit_vector;
freeze_count_out « freeze count,

pick_up out « pick _up

16

figure 2.2), then the pixels on the j-column will meet the j-th collector at successive
routing cells on each row of the routing network. Pixels with destination equal to r
will be picked up by the comesponding collector on the r-th row counting from the

top. The size of the bit-vector is given by the following lemma.

Lemma 2.2: If we scan the image horizontally (process one column of pixels per time
unit) for 45° < 0 < 135° and vertically (process one row of pixels per time unit) for
0° < © < 45° and 135° < 0 < 180°, then k, the number of pixels on the same column

(row) having the same destination, will be bounded by *lixAp.

Proof: Consider the case of horizontal scanning. Referring to figure 2.3, the value of &
is:
k = Ap / sinb.
For 45° < < 135°, sin® > 1/¥2. Similarly, for the case of vertical scanning,
k =Ap /cos® for0°<© <45° and
k = Ap / cos(180°-6) for 135°< 0 < 180°.

For the given ranges of 0, cos© > 12 ()

The discretization error in the Hough transform has been studied by van Veen

and Groen [Van81]. The optimum values of Ap and A are related by

Ap = L a0y X 5in(A6/2)
where L., is the maximum length of a line in the image. Value of Ap should be
Jarger than 1 to avoid oversampling. To obtain a good accuracy, value of Ap should

not be too large. In this thesis, we choose Ap to be less than or equal to three units,

and A6 to be 1°.

17

NN N

Figure 2.3 Parameters used in the accumulator cell with horizontal scanning:
k = Ap/sin6 and step = 1/tan®.

The pseudo code of the accumulator cell function is shown below. The accumu-
lator cell is "triggered” by the arrival of the first collector. The value of the counter
current_cycle corresponds to the column number, that is the x—coordinate of the pix-
els in the incoming bit-vector. The accumulator cell keeps in itself an expected value
of the count (ref _count) that corresponds to a reference location (base) as shown in
figure 2.3. By comparing the value of ref count and the value of count of the collec-
tor, the offset of the bit-vector can be obtained. Based on the value of the offset and
the reference location stored in the base register, the coordinates of the pixel can be
computed. In practice, only the coordinates of the start and end points need to be com-
puted. Knowing the offset, the bit-vector can then be aligned and compared with the
previous bit-vector (last_bit vector) in the bucket to check for pixel connectivity. Only

the connected pixels will be retained and stored back to last bit vector. If a

18

Function of the accumulator cell
/* variables are named as in the function of the compute cell */

Data types:
bucket_empty : boolean;
count_in, ref count, offset : 0.k-1;
base, step : fixed point number;
start, end, current_cycle, start_cycle : integer;
bit_vector_in, current_bit_vector, last_bit_vector : k-bit array;

Initialization:
preload base, ref count, step;
current_cycle < 0,
bucket_empty « True;

Computation on receiving a collector:
of fset « count_in — ref count;
current_bit_vector « align(bit_vector_in, of fset),
IF (current_bit_vecior is empty)
IF (bucket_empty = False)
output (start_cycle, start) and (current_cycle—1, end);
/* the start and end points of the line segment */
bucket_empty « True;
ELSE
IF (bucket_empty = True)
start « round(base) + of fset;
end ¢« start;
start_cycle < current_cycle,
last_bit_vector <« current_bit_vector
bucket_empty « False;
ELSE
IF no pixel in current_bit_vector connected to pixels in last_bit_vector
output (start_cycle, start) and (current_cycle~1, end);
/* the start and end points of the line segment */
last_bit_vector « current_bit vector;
cycle_start « current_cycle;
start « round(base) + of f set;
end +- start;
ELSE
last_bit_vector « connected pixels in current_bit_vector
end « round(base) + offset of the last connected pixels;

current_cycle « current_cycle + 1;

base « base + step;
ref count « round(base) mod & ;

19

disconnectivity is detected (incoming bit-vector empty or no connected pixel found),
the current line segment (if exists) will be output, and the incoming bit-vector (if it is
not empty) defines the starting of a new line segment. The values of base and

ref count are updated during every time unit by adding to thein the value of srep.

Lemma 2.3: An accumulator cell groups connected edge pixels into a line segment
defined by the start and end points.

The proof of lemma 2.3 follows directly from the above description. It is impor-
tant to note that step, base, and ref count are real (fixed point) numbers. However,
only the integer part of base and ref_count will be used in the computation of the

offset, pixel coordinates, etc.

Theorem 2.1: The systolic array correctly computes the straight line Hough Transform
of a binary image such that each detected line segment is composed of a string of con-

nected pixels.

The proof of theorem 2.1 follows directly from the above discussion. Each line
segment detected is contiguous and is defined by the four-tuple (6,p,S.E), where S

and E are the start and end points of the line segment, respectively.

2.1.1. A Remark on Systolic Computation

Systolic arrays evolved as an architecture for direct VLSI implementation which
emphasizes the regularity and locality of communications. These two properties are, in
general, the basic prerequisites for efficient parallel processing. From this viewpoint,
systolic computation can be regarded as a general parallel processing paradigm. Sys-
tolic algorithms are specifications of parallel computations (software architectures)
which can be embedded on various forms of parallel machines, such as SIMD array or

tightly coupled (shared memory) MIMD multiprocessors systems [Hwa84]. Embedding

20

data flow systolic algorithms onto SIMD arrays is straightforward. Considering the
design of the Geometric Arithmetic Parallel Processor (GAPP) [Dav84], which is a
bit-serial systolic array, the major difference between data flow systolic computations

and SIMD computations lies mainly on the initial data distribution.

In MIMD multiprocessors systems, bottlenecks of computation usually arises from
memory contention and delays due to irregular synchronization among processors.
From the point of view of software architecture, each data path in a systolic array is a
thread of control that forms a natural software pipeline of subtasks. Each pipeline
receives (feeds) data tokens from (to) adjacent pipelines synchronously. When imple-
menting systolic algorithms in MIMD machines, the algorithm is decomposed into a
number of software pipelines and each pipeline is run on a separate processor. Both
memory contention and synchronization delays can be av~ided. Optimal speedup pro-

portional to the number of processors in the system is achievable.

Systematic methodology for designing systolic arrays has been a popular research
topic in recent years. Methods to generate systolic architectures from mathematical
specifications, such as set of linear recurrence equations, have been developed [Mol82,
KuSY88]. Research in hardware algorithm design may as well be applied to parallel

programming and compiler design.

2.2. Area-Time Complexity

This section analyzes the area-time (AT) complexity of the architecture presented
in the previous section. The AT complexity of the proposed architecture is compared
to that of the conventional sequential algorithm and some parallel designs. The area

costs of the three types of processing cells in our design are first considered.

1. Compute cell: If the image size is NxN, then the destination register should have
O (logN) bits (we assume that m, has the same order of N). It has been shown in

[Dud75] that the allowable truncation error in cos® and sinB is Ap/N. If Ap>1,

21

then logN bits are required to store the value of cos or sinf. Hence the area cost

of the compute cell is A, = O (logN).

2. Routing cell: For values of Ap less than or equal to some constant, the length of
the bit vector is bounded. So the area of the routing cell is dominated by the regis-

ter storing the destination r, which is A, = O (logN).

3. Accumulator cell: In the accumulator cell, there are registers storing the start and
end points of a line segment. The bit vector and comparator have constant area.

Hence, the area cost of the accumulator cell is A, = O (logN).
Thus, the total area of the systolic array is:
Apgo =NXA, + m>NxA, +myxA,
=0 ((N+mpN+m p)logN)
=0 (mpN logN).

Assume that the arithmetic and logical operations can be done in one time unit. The
time required to scan the image once is N units. To compute the transform, the image
have to be scanned mg times or mg systolic arrays are required if these are to be done

concurrently. Thus the AT complexity of our architecture is:
ATpg, = O (m mgN2iogN).

The AT complexity of the conventional sequential algorithm [Han87] can be abstracted
as follows. The area cost consists of two components: (1) the storage space, and (2)
space for the computation unit. For images of reasonable sizes, the total area cost is
dominated by the storage cost. Each accumulator cell records the number of votes it

got. Hence, the area cost of the accumulator cell is O (logN).
Aseq = O (mpmglogN).

The total time required is the sum of the computation time of the following two

processes.

22

1. Scanning the NxXN image to obtain the coordinates of the edge pixels. This pro-
cess requires O (N2) time units.

2. Computing for each edge pixel the value of p for each possible value of 6. This
process requires O (P mg) time units, where P is the number of edge pixels in the
image.

However, the two computation processes can be pipelined. For reasonably sized

images, the computation time is dominated by the second process. Thus, the AT com-

plexity of the sequential algorithm is:

ATy = O(P mymg*logN).
Usually, P is equal to a few percent of the image area. For large N, P mg > N2
Hence, our architecture has better AT complexity.

Chuang et al [Chu85] designed a systolic array processor based on Shu’s
approach [Shu87]. Instead of using a bit array, Chuang stores the distances of the pix-
els with respect to a reference point (the first pixel mapped to the bucket) in the accu-
mulator cell. Connectivity check is then accomplished by first sorting the "distances",
and a big gap between two consecutive distances indicates a discontinuity. Hence, the

area cost of the accumulator array is:

AChuang =0 (m pmeNlogN).
The time required to compute the transform is O (P+mg+m;) excluding the post-

processing time (time for the sorting process). Hence the AT complexity of Chuang’s

architecture is:
AT Chyang = O (P+mgtm)m mgNlogN).

The AT complexity of our architecture is superior to that of Chuang’s since P » N

for reasonable size images.

23

During the course of our research, more parallel designs were being reported.
Fisher and Highnam implemented the Hough transform on a linear array of SIMD pro-
cessors called the scan line array processor (SLAP) [Fis89). As the SLAP sweeps
through the image plane from top to bottom, the PEs trace along lines with
45° £ 8 < 135° and accumulate the votes. For other values of 6, the SLAP sweeps

through the image from left to right. The AT complexity of this method is
ATSLAP = O(MQZNZIOgN)
which is basically equal to that of our design.

Guerra and Hambrusch implemented the Hough transform on a 2D SIMD array
[Gue89]. Assume the accumulator array is also of size NxN. The input image is first
preloaded onto the processor array with one pixel per PE. Two algorithms based on
line tracing were developed. The first one partitions the NxN array into N blocks of
size VN xVN. Each block B; is assigned a value of 6; and each PE within a block is
assigned a value of p;, for j = 1,2,.,N. In one iteration, the PEs in a block traces
along the lines with © = 0; within the block B; by sending message packets to adja-
cent PEs, and accumulate the votes. This process takes O(VN) time. Also, N itera-
tions are required to compute the transform. Hence, the time complexity of the algo-

rithm is O(N VN + N). Hence the AT complexity is
AT Guerra1 = O (N33logN).

In the second one, no partitioning is required. The lines with 45° < 0 < 135° are traced
from left to right across the 2D array and lines with other values of 0’s are traced
from top to bottom. Collision can be avoided if the tracing is done according to a cer-
tain order. The time complexity of the algorithm is O (N+mg). Hence, the AT com-

plexity is

ATGuerraz = O (N3logN).

24

This is by far the asymptotically fastest aigorithm reported in the literature. This
method, however, requires substantial multiplication operations. Hence, the constant
factor of the AT complexity is much larger than that of our method. The algorithm
reported in [Cyp87] also exhibits O (V) time complexity. The AT complexities of the

six methods are summarizes: in table 2.1.

Table 2.1 Area-time complexities of the six Hough transform algorithms*

Methods con‘:l:(ity co;;?;iity g;:::?t:
Sequential | O (m mglogN) O (Pmg) O (Pm gm g*logN)
Chuang O (mmgNlogN) | O(P +mg+m;) | O(PmymeNlogN)
SLAP O (mgNlogN) O (mgN) O (mg*N%ogN)
Guerra, O (N?logN) ON'3) O (N3-10gN)
Guerra, O (N%logN) OWN) O (N31ogN)

Pao O (m,NlogN) O(mgN) O (mymgN2logN)

*
In general, P > N = my > myg.

Although the algorithms of Guerra and that of Cypher have a better AT complex-
ity than ours, their algorithms cannot be extended to incorporate the pixel connectivity

check.

2.3 Line Selection

Since a bucket can hold multiple collinear line segments, simple thresholding of
the accumulator array is not applicable. In this section, we present a line selection

algorithm that is based on local comparison among adjacent buckets. The Hough

25

transform can be regarded as a sampling tool which samples the input image at
different orientations to collect evidence of the presence of straight lines. Conversely, a
straight line in the image will be sampled by more than one buckets in the 8—p space.
Each detected line segment whose length is larger than L, is a sampled instance of
the line. We want to select one of the sampled instances as the representative. The
longest line segment that passes through the set of pixels of the line is selected. How-
ever, we don’t know in advance what this set is. A heuristic procedure is adapted and
described below.

A line segment is defined by the four-tuple (0,p,8,E), where § and E are the
starting and ending points of the line, respectively. Let L = (6,,,p,S,E}) be a line
segment detected by bucket (8,,,p,). Some portion of L; will map into (vote for)
buckets in adjacent columns (8,5, py) as shown in figure 2.4. In fact, the votes for
L, can spread over 28+1 columns in the accumulator array, where 8 is given by the

following lemma.

Lemma 24a: If L ;, is the minimum length among the lines of interest in an image,
then the spreading of votes of any of these lines are confined to 28+1 columns in the

accumulator array, where
d=Ap/(ABXL, ;).

Proof: Referring to figure 2.4, the line L, is detected by bucket (8,,,p,). The portion

of L, namely L, that also votes for bucket (8,, .5, py) is
L,y = Ap / sino > L,
where o = 5xA0. Hence,
Ap I L, > sin(8xAB) = §xA6

implying that, 8 < Ap / (AOXL ;). O

26

Figure 2.4 Spreading of a line segment to buckets in adjacent columns.

Lemma 2.4b: The spreading of votes of line L, = (8,,,p,S1,E;) in column 9, of
the accumulator array is bound by the range [min(R;,R,),max (R ,R,)], where

R, = (Sy(x)cosB,y + S1(y)sinb,;)/ Ap,
and

R, = (E{(x)cosB,, + E(y)sinb,,)/ Ap,
where S(x), S(y) and E(x), E(y) denote the x— and y-—coordinates of the start and
end points, respectively.

The proof of lemma 2.4b is straightforward, and is omitted. When we compare
two lines, we have to, first of all, be sure that the two lines correspond to the same
group of points in the image within the specified tolerance. Two lines

L1=(91,p1,Sl,E1) and L2=(92,p2,S2,E2) as depicted in ﬁgure 2.5 are said to

27

correspond to the same group of points in the image if:

1. L intersects or touches L,, and

2. the perpendicular distances of the start and end points of L, to L,, say D, and D,,
are both smaller than some value, say Ap+1. The values of Dy and D, are com-

puted as follow:
Ds = S2(x) COSO] + SZ()’) Sil’lel,
D, = Ey(x)cosB; + E,(y)sin6,.

In fact, a bounding box of width 2(Ap+1) and length L, is defined. The portion of
L, that falls within this bounding box is regarded as overlapping with L;. If the
length of L is longer than that of L, and significant portion of L, overlaps with
L, (say 75%), then L, is selected and L, is discarded. The approximate percen-

tage overlap is calculated as follows:

Figure 2.5 Checking for overlapping lines.

28

Case 1: 45° <6 <135°
P = max(§(x),S,(x)); Py =min(E(x), Eq(x));
P,-P,

% lap = .
o overlap Eg(x)—El(x)XIOO

|
{ Case 2: 0°< 0 <45° and 135° < 6 < 180°

Py =max(S;(»),S200)); Po=min(E(y), E,(y))
Py,-P,
X
E,(y)-E ()

The pseudo code of the line selection algorithm is shown below. It is important to

100.

% overlap =

note that L, will not be marked when it serves as the initiator of the checking process.
This makes the parallelization of the line selection process easy. Each bucket is simply
required to broadcast its line segments to its neighbors whose range is given by lem-
mas 2.4a and 2.4b. All line segments that are niot marked will be selected after the

process terminates.

Line Selection Algorithml.

FOR each line segment L;=(0,,p1,S ,E)
FOR 92 = 91—8 to 91+8
ry = S(x)cosB, + S(y)sindy;
r,=E (x)cos8, + E (y)sinOy;
FORr,=rstor,
FOR all L, in bucket (85,p7)
check_overlap(L,,L;)
IF 75% of L, overlap with L, and length of L, < length of L,
mark L,;

select all line segments not marked;

29

2.4. Experimentation

The modified Hough transform and the systolic architecture presented in section
2.1 were simulated to evaluate the effect of considering pixel contiguity. The test
image (figure 2.6a) was extracted from a road map and digitized with a resolution of
200 points per inch. With this resolution, the width of a road is about 8 pixels. Fig-
ure 2.6b shows the edges extracted from this image after preprocessing. The values of
Ap and AO are 3 units and 2 degrees, respectively. Line segments with length less
than 10 units are discarded. Each line segment is counter-checked with buckets that
ar¢ less than or equal to 5 columns apart. The results of the modified transform is
shown in figure 2.6¢ and figure 2.6d is the image reconstructed from the selected line
segments. The curved contours in the image are approximated by a number of straight
line segments. Several short edges marked in figure 2.6d are missing. If the image
was digitized with a higher resolution, edge A would have been detected. The road
contour near edge B is slightly curved. The line segment that contains edge B was
removed because more than 75% of its length overlaps with the adjacent line segment

and it is shorter. The other missing edges are removed due to the same reason.

2.5. Remarks

Logic circuits of the processing cells of the proposed systolic architecture have
been designed. The number of logic gates required to implement the compute cell,
routing cell and accumulating cell are 288, 209 and 817, respectively. The average
number of transistors per gate is about 4 to 5 if implemented using CMOS technology.
With today’s technology, more than a hundred of such processing cells can be fabri-

cated on a single chip.

The modified Hough transform was simulated ¢~d the observed performance is
satisfactory. The accuracy of the modified transform in describing the original image is

remarkable. In the line selection algorithm, a line segment L in bucket (0,p) is

30

iy
il

17
7

total number of line segments detected = 1831
number of line segments selected = 72
length of longest line segment selected = 145 units
length of shortest line segment selected = 14 units

(c)

i
o

Figure 2.6 Example of straight lines detection: (a) Test image extracted from a road
map; (b) edge pixels extracted after preprocessing; (c) results of the modified HT; and
(d) image reconstructed from the selected line segments.

(d)

31

removed if (1) significant portion of L overlaps with another line segment L’ that
belongs to an adjacent bucket, and (2) L is shorter than L'. If this line selection algo-
rithm is modified slightly such that only the portion of L that overlaps with L’ is

removed, a better linearization of the image can be obtained.

Basically, the line selection can be done in a number of ways, depending on the
objectives and requirements of the applications. The algorithm presented in section 2.4
will extract an approximate linearization of the image. The extracted features will be
useful in applications such as character recognition [Che89, Kus85], polygonal object
recognition {Eng88] and vehicle guidance [Ini84] etc. Another line selection algorithm
will be presented in chapter 6, where we are only interested in extracting the "true"

long straight lines.

Recently, Princen, Illingworth and Kittler developed a bottom-up hierarchical
approach for detection of straight lines [PIK90]. The input image is initially divided
into a number of overlapping subimages. The Hough transform is applied to individual
subimages with a coarse angular resolution. Adjacent subimages will be merged
together to form a larger parent subimage in the next higher level. Each detected line
segment is represented by the intersection point of the hypothetical line and its normal.
The grouping of line segments in the parent subimage is again expressed as one of
detecting collinear points. The angular resolution is refined as the grouping proceeds
up the hierarchy. The grouping process is event driven and stops when (i) the vote
count of the new line obtained is not larger than any of its contributors; or (ii) the top
level is reached. This method essentially integrates the voting process and the line
selection process into one process. Because of the initial partition of the input image
and local grouping, distant noise pixels or pixels of far apart objects are not likely to
contribute to the vote of the line. This is also a legitimate approach to improve the
sensitivity of the Hough transform. However, the connectivity constraint becomes

more relaxed when proceeding up the hierarchy. Line segments, which are represented

32

by points in adjacent subimages will be grouped together if the representative points
satisfy the collinearity constraint. In the upper level of the hierarchy, the sizes of the
subimages, as well as the allowable distances between line segments in the group,
become larger. Therefore, it is still possible to group together collinear but separated

line segments into one line.

33

Chapter 3
Characterization of 2D Smooth Curves Using
the Set of Tangent Lines

Pattern recognition methodologies depend heavily on how one characterizes or
represents the shape of an object. A brief survey of various shape representation
schemes can be found in [Bal82, ch.8]. In this chapter, we propose a new representa-
tion scheme for 2D objects based on the set of tangent lines. It will be shown in sec-
tion 3.1 that a simple (planar) closed smooth curve in the continuous domain can be
uniquely characterized by its (complete) set of tangent lines; that is, two curves with
the same set of tangents have to be identical.

This representation scheme by itself is of interest in the study of geometry, where
the problem is known as the uniqueness problem [Hor89]. The motivation of our work,
however, originated from the study of the Hough transform. Recognition methodolo-
gies based on the straight line Hough transform {Cas87, Kri87a] and the curve detec-
tion methods to be presented in chapters 4 and S recognize objects in the 6—p space.
Each point in the 6—p space cortesponds to a line in the x~y plane which is tangent to
the curve. The results derived in this chapter will serve as the theoretical basis of these

recognition methodologies.

3.1. The Shape Representation Scheme

Assumption 1 (Smoothness assumption): The curve C is continuous, smooth, simple

and closed.

Assumption 2 (Finite tangency): Let T{(C) be the set of straight lines that are tangent
to C. There are only finitely many lines in T(C) that have the same inclination. In
other words, in any given direction, there are only a finite number of lines that are
tangent to C.

If T(C) satisfies assumption 2, then we will be able to uniquely reconstruct C
from T(C) without knowing the point(s) of tangency on each tangent line (as shown
later in this section). This implies that if two curves have the same set of tangents,
then they have to be identical. Some previous studies on shape reconstruction from

tangent lines (supporting lines) are restricted to reconstruction of the convex hull

[Mur88, Pri90].

3.1.1. Preliminaries and Notations

A curve C in the x—y plane can be expressed as

C=C(s)=(x(s)y(s))

where s is the arc length measured along C in the counterclockwise direction from a
reference point o (which is an arbitrary point on C). Thus, (x(s), y(s)) define a mov-
ing point in the x—y plane when the curve C is traversed. If C is smooth, then the

first derivatives x (s) and y'(s) exist and will not be both equal to zero for any s.

Let the line L, be tangent to C at the point (x{s), y (s)). The slope of L, is

m, = tanf(s) = _y_(_s)_

x'(s)
where ¢(s) is the angle measured from the positive x—axis to the line L;. The range of

®(s) is from 0° to 180°. The line L; can also be characterized by (8(s), p(s)):
L, : p(s) = x cosB(s) +y sinb(s)

where p(s) is the perpendicular distance of the origin from L and 6(s) is the angle

35

measured from the positive x—axis to the line normal to L. We have the slope of the

normal

-x'(s)

tanf(s) =
y(s)

We can also observe that ¢(s) and 6(s) are related by

0(s) = (¢(s) + 90°) mod 180, and

d(s) = (8(s) + 90°) mod 180.
The pair (8(s), p(s)) defines a corresponding moving point in the 6-p space?.
Definition
Transformation H: Suppose we traverse the curve C in counterclockwise direction,
and compute the tangent line to C at (x(s).y (s)) and the corresponding moving point
(6(s),p(s)) in the 6—p space. The resultant pattern traced by the moving point
(0(s), p(s)) is denoted as H(C).

Although H (C) is obtained from the trace of (8(s), p(s)), it is represented by the

set of points visited by (8(s), p(s)). Figure 3.1 depicts a simple closed smooth curve

and the transformed pattern.

3.1.2. Main Theorem
Theorem 3.1: For two curves C,; and C, that satisfy assumptions 1 and 2,
H(C,)=H(C,) if and only if C| =C,.

We will prove the theorem by showing that given H (C), the original curve C can

be uniquely reconstructed. First, we consider some of the properties of H(C).

2 Every staight line in the x—y plane is uniquely represented by a point in the 6-p space, except for vert-
ical lines. A vertical line, x = a, is mapped o two points (0°,a) and (180°,—a) in 6-p space.

36

Figure 3.1 A simple closed smooth curve and its H transform.

Lemma 3.1; If C satisfies assumption 1, then

(i) the trace of the moving point (6(s), p(s)) in the 8—p space is continuous, except
that there is a discontinuity jump from some point (180°—a) to the point (0°.a),
and vice versa; and

(i) (8(s),p(s)) will not move vertically.

Proof: Recall that tanO(s) = —x (s)/y'(s), and p(s) = x(s) cosO(s) + y(s) sinb(s).

Since C is continuous and smooth,

lim x'(sq) = x'(sg), and lim y'(sy) = y (s0)-
1250 §1350

To show (i), we consider the following three cases separately.
(a) y'(so) # 0and x (sg) # O.
For any point s, it is easy to observe that

lim 6(s;) = 6(sg), and lim p(s;) = p(so).

$1950 $1—¥5o

37

(b) y'(sg) # 0 and x'(s¢) = 0.

©)

In this case, the tangent is a vertical line. This line is mapped to the two points
(0°,x(s5¢)) and (180°,—x(sg)) in 6—p.
For 5, such that x'(sl) >0

lim 6(s;) - 180° and lim p(s,) = —x(s5q) if y (s¢) > 0,

$1~950 §1-¥5¢

lim 6(s;) —» 0°and lim p(s;) = x(sg) if ¥ (sg) <O.
§1-¥S¢o 5150

For s such that x'(s,) <0

lim 6(s;) = 0°and lim p(s,) = x(sg) if y(sg) >0,

31950 5150

lim O(s,) — 180° and lim p(s;) = —x(s¢) if y (5¢) <O.

51950 51350
¥ (sg) = 0 and x'(s¢) # 0.

In this case the tangent is a horizontal line which is mapped to (90°,y(sg)).
For s, such that y (s,) > 0,

lim 6(s;) = 90 ifx'(sg) >0,

51250

lim 6(s;) = 90> if x'(sg) <O.

519950
For s, such that y(s,) <0,

lim 6(s,) - 90° ifx'(sg) >0,

§1-250

lim 6(s,) = 90°* if x'(sg) < 0.

51980

In both cases, lim p(s;) = y(sy)-
$1¥5¢0

To show (ii), we will derive a contradiction. Without loss of generality assume that

(6(s), p(s)) moves vertically upward (or downward) at 8 = 90° for some s € [54,5,].

Recall that tanf(s) = —x (s)/y (s). If 8(s) = 90°, then y'(s) = 0. This implies that the

corresponding curve segment C(s) for s € [5,5,] should be a horizontal line. Hence

p(s) cannot move upward (or downward) for s € [s5g.5;]. 0

38

Before we present the reconstruction of general smooth closed curves, we first
consider the reconstruction of simple open convex (or concave) curves. Let F = F (x)

for x € [a,b] be a single valued function’ which is continuous and smooth.

Lemma 3.2; If H(F) is a single continuous curve in 8—p such that (i) 0° < 6 < 180°,
and (ii) no two points in H (F) possess the same 0 value, then F is either convex or
concave.

Proof: H (F) is the set of points visited by the moving point (8(s), p(s)) when F is
traversed. In this particular case, since no two points in H(F) can have the same 6

value, 6(s) must be monotonic in s. Suppose 6(s) is monotonically increasing in s.

Since ¢ = (6 + 90°) mod180,

li — 90°* => tan$y — —oo
Jim. ¢ ¢

li - 0°=>t -0
om0 ang

lim ¢ — 90° => tan¢ - +oo,
0-180°

Hence, F '(x) is nondecreasing in @ < x < b. Therefore, F (x) is convex [Roc70, Thm.

4.4). Similarly, if 8(s) is monotonically decreasing in s, then F(x) is concave. []

In the following discussion, F is assumed to be either convex or concave.
Definitions

Let (a,F(a)) and (b,F (b)) be the two end points of F. Let L, and L, be the two
tangent lines to F at its two end points, respectively. The extended curve F, is

defined as follows:

3 The terms "curve" and "function" are used synonymously in this chapter.

39

L,* forx <a
F, =\F fora <x<b
L,* forx 2b

where

L

a

L,*=4{(x,y)| (xy)e L, andy 2 F(a)} ifL, is vertical and F is convex
(xy)! xy)e L, andy S F(a)} ifL, is vertical and F is concave

if L, is non—vertical

and L, is defined similarly. The domain of F, denoted as Dom_F, is defined as fol-

lows:

,

(00, +o) if L, and L, are non-vertical

(—o, b] if Lg is non—vertical and L, is vertical
Dom_F, = [a,+e0) if L, is vertical and L, is non-ver ‘~al

la, b] if L, and L, are vertical

Y

The epigraph of F, denoted as epi_F, is defined as follows:

. (&y) | x € Dom_F, andy 2 F,(x)} if F is convex
epi F. = (x,y) ! x € Dom F, andy < F,(x)} if F is concave

Hence, the boundary of epi F, & F,. Let a and b be two x ‘s such that
@) a 2aandb <b, and
(ii) the peint (a',F(a) lies on L, and (b',F (b")) lies on L, and
(i) for x € (a’,b’), (x,F (x)) does not lic on either L, or L.
Then the reduced curve F, is defined as
F,=F forx e (a,b]

It is easy to see that H(F) = H(F,) = H(F,).

Lemma 3.3: If F(x) is defined for x € [a,b] and F (x) is convex or concave, then F,

can be uniquely reconstructed from H (F).

40

S

Proof: From the study of convexity [Ben66, Roc70], every tangent line to F, defines a
supporting half-plane for epi_F,. Moreover, epi_F, can be uniquely determined by
taking the intersection of all the supporting half-planes defined by the set of tangents
to F, [Ben66, Thm. 7.8]. To apply these results, we need only determine whether F

is convex or concave from H(F), and then deteninine the supporting half-planes of
each tangent line.

Let the range of 6 in H(F) be [6,.9,] and 6, > 6,. Select three tangent lines L,,
L,, and L, such that 6, <6, <8, <0, <8,. We first reconstruct L, and L, in the
x—y plane. These two lines will meet at some point p and divide the x—y plane into
four regions ry, ro, r3 and r4 (figure 3.2) such that

ry={(x,y) | xcos8, + ysinf, < p, and xcosB, + ysin. < p.},

ro={(x,y) | xcos8, + ysin@, 2 p, and xcosB, + ysin@, < p.},

ry={(x,y) | xcosb, + ysin8, 2 p, and xcos8, + ysind, 2 p_},

rq={(x,y) | xcos8, + ysin, < p, and xcosf, + ysin, 2 p.}.
If F is convex, then F must lie within r5_If F is concave, then F must lie within r.

Now consider line L, . Note that L, cannot pass through the point p. If L, passes
through point p, then p is the only point in the intersection of ry and L, (or r; and
L,). Hence, L, must be tangent to F at point p. However, L, and L, are also valid
tangent lines at point p, which violates the assumption that F is a smooth curve.
Hence, L, can only pass through r; or r3 (not both). If L, passes through r, then F
must lie within r, and hence it is concave. If L, passes through rj then F must lie

within r3 and is convex. O

Now we consider the implications of the second assumption on H(C). First we

introduce the following definitions.

41

Definition
A branch in H(C) is a maximal subset of H(C) such that it is

(i) a continuous curve for 0° < 6 < 180°, and
(ii) no two points in the subset have the same @ value, and

(iii) if point ¢ belongs to branch B;, then ¢ does not belong to any other branch B;,
unless ¢q is the end point of B;. The end point of a branch is the point that has

the smallest or largest value of 0 in that branch.

']

eSS

Figure 3.2 Partition of the x~y plane by two non-parallel lines.

Lemma 3.4: If C satisfies assumption 2, then the following statements hold.

(i) C is formed by the concatenation of a finite number of convex/concave curve

segments.

42

(ii) There are only a finite number of common tangent lines (lines tangent to C at

more than one disjoint intervals of s).

(iii) H (C) does not occupy any filled region in 6-p.

Proof:

@

@ii)

By lemma 3.2, a convex/concave curve segment is transformed into a continuous

curve in 6—p with 0° < 6 < 180°. For any given 0, there are only a finite number

of distinct p“s. Hence, H(C) contains only a finite number of curves.

We will show that given two convex/concave segments 'y and F,, they can have

at most two non-vertical common tangents.

(a)

()

Assume F | is convex and F, is concave.

Suppose lines L, and L, are the two common tangents. These two lines will
divide the x—y plane into four regions as in the proof of lemma 3.3. F,
should be contained in r3 and F, should be within r,. For any other non-
vertical line that is tangent to either F; or F,, it can only pass through either

r, or rs but not both.

Assume both F; and F, are convex.

In this case, F; cannot touch F,, otherwise, C is not a simple curve. Sup-
pose lines L, and L, are the two common tangents. Both F; and F', have to
be within region r3. Assume F, > F for all x € Dom_F{ M Dom_F,. Let
L, be tangent to Fy at x =a; and L, be tangent to Fy at x =c; (refer to
figure 3.3). Since F, > Fy for all x € [a,c,], the points of tangency of L,
and L. to F,, namely a, and c,, respectively, should satisfy a; < a;, and
¢4 > ¢1. Now consider line L.

(1) 6, <0, <6,: L, cannot be tangent to both F; and F,. Otherwise, F,

will be equal to F, at the point of tangency to F .

43

(2) 6, <©,:If L, is tangent to F, then it must intersect L, to the left of
a,. Hence L, cannot be tangent to Fy. If L, is tangent to Fy, then it
must intersect L, in between a; and a,. Hence L, cannot be tangent to
F,.
(3) 6, > 6,: Similar to case (2).
(c) Assume both Fy and F, are concave.
Similar to case (b).
(iii) Suppose H(C) occupies a filled region ((p6) ! pe [py.,p+Ap] and
0 € [6,,6,+A0)). Then at 0 = 6;+3 for 0 < § < A9, there are infinite p’s, con-

tradicting assumption 2. a

Figure 3.3 Common tangents of two convex curves.

Lemma 3.5: If the line L, = (8;,p,) is tangent to C(s) at k disjoint intervals
(I, =[s11512) I3 = (59182, -, Iy = [5¢1,5k2]), then there are 2k branches in H (C)
that meet at (8, p;). If 6, = 0° (or 180°), then the branch with end point at (180°,—p,)
(or (0°%~—p,)) is considered to be connected to (0;,p;).
Proof: Suppose we traverse C starting from a point which does not belong to any of
the k intervals. In one complete traversal of C, the comresponding moving point
(0(s),p(s)) in 6-p will visit the point (8;,p,) k times, i.e. (8(s), p(s)) will move into
and out of (8;,p;) k times. Hence, there are 2k branches meeting at (6;,p)). In the
special case when ©; = 0° (or 180°), the moving point (0(s),p(s)) will jump to
(180°,-py) (or (0°,—py)).

Let B; be the branch that was traced by (8(s),p(s)) when traversing an interval
on C that is connected to /;. The 2k branches have to be distinct. If these 2k branches
are not distinct, say B; =B;, then the same segment in C is traversed more than once.

This contradicts the assumption that C is a simple curve. O

Corollary 3.1: If C satisfies assumptions 1 and 2, then a line L can be tangent to C

at only a finite number of disjoint intervals.

Corollary 3.2: If C satisfies assumptions 1 and 2, then H(C) can always be decom-

posed into a unique set of finite branches {B;).

Proof of theorem 3.1
(i) If C, =C,then H(Cy) = H(C>). This part is trivial.

(i) If H(C,)=H(C),) then C, = C,. To prove this, we will show that the curve C

can be uniquely reconstructed from H (C).

Given H(C), we can always decompose it into a finite set of branches (B;}

(by corollary 3.2). For each branch B;, we can reconstruct the epigraph of the

45

convex/concave segment F,; (by lemma 3.2). Hence, we can determine F,; which
is a subset of ;. If point p belongs to F; but not to F,;, then p must lie on the
line that is tangent to F; at one of its end points. Let C,’ denote the union of all

the F,; ’s reconstructed.

For a given tangent line L;, if L; is tangent to C at intervals [s11,512)s ...s
[54 1,52, then the points C(s 1), C(519)s s C (sy), and C(syy) are in C,’. More-
over, for all points p; = C(sj), fors; € (sj,,sjz) forj = 1 tok, p; lies on the
straight line segment joining C (s;;) and C(s;7). If the original curve C is simple,
then all the k straight line segments joining C(syy) to C(sy3), ... C(sy) tO
C (sy,) must be disjoint and do not intersect other curve segments of C. Hence,
those points in C but not in C,.' satisfy the following condition:

if p =C(s)for s € (s1,5,) and p belongs to C but not to C,', then p

must lie on the straight line segment joining C (s) to C(s7).

Hence, we can recover all the points in C but not in C,' by constructing straight
line segments joining the end points in C,'.

Consider the line L; = (e,-,p,-) such that (Oj,pj) is an end point of some
branches. Let P; = { p | p is an end point of some F,; and L; is tangent to F,
at p). The number of points in P; is always even (by lemma 3.5). Let P; =
(p1, P2 - P2x) and the p;’s be sorted such that x_p; <x_p; and y_p; Sy_p;
for i<j, where x_p; is the x—coordinate of p; and y_p; is the y—coordinate of
p; We then connect the pairs of points p; to p; 4 for all i’s that are odd. The
reconstructed curve C, is taken as the union of C,” and all the straight line seg-
ments joining pairs of end points in C,’ as described. Note that C, is closed, since
every end point in C,” is connected to exactly one other end point. Also, C, is

simple, since line segments connecting pairs of end points do not intersect.

46

By continuity, there is only one way, as described above, to join all the end

points in C, to obtain a simple closed smooth curve. Hence, C, must equal C.

0

3.2. Reconstruction of Open Smooth Curves

In the case of open curves, lemma 3.5 may not hold in general. However, the
reconstruction procedure can still be applied with the final step modified as follows.
Given a convex/concave curve F, the two semi-infinite straight lines obtained by
F, — F, are the two semi—tangents of F at its two end points. To connect the end
points in C,’, we need to consider the direction of extension of the semi-tangents at
the end points of each concave/convex segment. Let L, be a common tangent at the
two points (x;,y1) and (x,y,) which are end points of two curves F; and F,,, respec-
tively. Assume that x; < x5 (or y; < yj if L, is vertical). Suppose the semi-tangent at
(x1.y,) extends in the direction of positive x (or positive y if L, is vertical) and the
semi-tangent at (x,,y,) extends in the direction of negative x. We will then connect
(xq,y7) and (xp,y7) if and only if there is no other end point of some F,; that lies in
between (x,,y,) and (x,,y,). The reconstructed curve C, is identical to the original
curve C, except for the two straight line segments at the two ends of C. Hence, C, is

a reduced version of C.

3.3. Comparisons With Horwitz’s Proof and McKenzie’s Work

During the course of our work, we became aware of the proof reported in
[Hor89]. Horwitz’s work is in a slightly different context. He only considered func-
tions of a single variable, i.e. open curves. His proof is based on the notion of conver-
gence. A sequence of lines {L;} converges to L if (i) the slope of L, converges to the

slope of L; and the y—intercept of L; converges to the y —intercept of L. The point of

47

tangency of L is equal to the limit point of the intersection of {L;} with L. Such a
limit exists provided (i) both the first and second derivatives of the function exist, and
(i) the second derivative is equal to zero at most a finite number of times. However,
for common tangents®, the limit point is not unique. Horwitz resolved this problem by
simply ignoring all common tangents in his reconstruction procedure. He argued that if
there are only a finite number of common tangents, then the finite number of points
not reconstructed can be recovered by continuity constraints. The following implica-
tions can be derived from the assumptions:

(i) There are only a finite number of points of inflection on the curve.

(i) There are only a finite number of common tangents>.

(iii) There is no straight line segment in the curve®.

Our proof is based on the reconstruction of the epi-graph of a convex/concave
curve from its supporting half-planes. We make no assumption on the second deriva-
tive of the curve and we are able to reconstruct every point (including straight line
segments) of the original curve if the curve is closed. If the curve is open, we can

reconstruct the reduced version of the original.

Both Horwitz’s method and our method are restricted to finite curves. In the case
of infinite curves, for example, an infinite spiral, the trace of (8(s), p(s)) will eventu-
ally fill up a region in 6—p. Hence, we will no longer be able to decompose H (C)

into a set of distinct branches. Horwitz’s reconstruction procedure will also fail

4 In [Hor89], a common tangent (multiple tangent as used in [Hor89)) is defined as a line that is
tangent to the curve at more than on¢ points.

3 This is truc only for single valued functions. For closed curves or general 2D curves, such as an
infinitc spiral, there can be infinitc number of common tangents even if the second derivative equals
zero finite number of times.

6 The difficulty in dealing with straight line segments in Horwitz’s reconstruction procedure is due to
the fact that the end points of the straight line segments cannot be determined.

48

because there are an infinite number of common tangents.

McKenzie and Protheroe described a method to reconstruct curves from the 6-p
space [McK90). They showed that if the curve in the @—p space is differentiable
(which implies that the second derivative of the curve C exist), then the point of
tangency of the line to the curve C can be computed. Because of the above assump-

tion, the same limitation of Horwitz method applies.

49

Chapter 4

Detection of Parametric Curves

An effective approach to reduce both the time and space requirements of the
Hough transform is to decompose the high-dimensional parameterization into smaller
sets of parameters that can be determined sequentially. For this method to be viable,
one must formulate the problem in such a way that subsets of the parameters can be
easily separated.

In this chapter, we present novel techniques tc detect higher order parametric
curves, such as circles and ellipses, based on the tangent representation of the curves.
In the discrete domain, the transformation H(C) can be computed using the modified
Hough transform for straight lines (SLHT) described in chapter 2. Each detected line

segment is an approximate tangent to the curve C.

First, we consider the effects of translation and rotation on the transform of a sin-
gle straight line I = (8,,p;). If the image plane is rotated by an angle’ ¢ < 180° in the
counterclockwise direction, then the point (8,,p;) will be mapped to (6,,p;) such that

Py if B,+0 < 180°
92 = (91+¢) mod 180° and P2 = -P1 if 91+¢ > 180°.

If the image plane is being translated by (xq,y) (refer to fignre 4.1), then
92 = 91 and P2 = tCOS(e]'—a) + P

where 1 = \/x02+y02, and o = tan~!(y¢/x). The transform H (C) can be expressed as a

Tig ¢ 2 180°, then we can perform the rotation in two steps ¢, ¢2 < 180° and ¢ = ¢ + ¢2.

L
p//
3
16
/ P X
/ //
/
t, P
/ //%

Figure 4.1 Effect of translation on the normal parameters of a straight line.

(multiple valued) function p(8), where p(6) is a mapping © — p, such that for a given
6, say 6;, p(9;) = {p; | (Gi,pj) € H(C)}. In the following discussion, we refer the
function p(B) as the SLHT transform. Let py(B) denote the SLHT transform of the
curve C located at the origin. If C’ is a rotated and translated instance of C, the

SLHT transform of C’ is
P(C) = tcos(B-at) + sign * p(6-0)

where sign =1 if 0 2 ¢; otherwise, sign = —1. The "+" operator here means adding
the value of rcos(B—a) to every element in sign * py(6-9). The rcos{G-a) term is

called the translation term and the sign * py(0-¢) term is called the intrinsic term.

We can see that this representation provides a natural decomposition of the
parameter space. If we can eliminate either one of the two terms in the transform func-

tion, determining the parameters of the term left behind is relatively easy.

51

4.1 Detecting Circles

The SLHT transform of a circle of radius r centered at (x,y) is
p(0) = rcos(0-0) % r.

In this context, we regard the 8—p space as a boolean array, such that an accumulator
cell will have a value 1 if it contains one or more line segments, otherwise, it will
have a value 0. If the circle is properly segmented and is closed or almost closed,
then we can eliminate the translation term by simply computing the difference between

the pair of points that have the same 6 value. Hence, we get
p'(8) = (rcos(8—a) + r) — (tcos(B-a) — r) = 2r

which is a horizontal line and its intercept with the p—axis is equal to two times the
radius. Knowing the value of r, we can determine the center of the circle by comput-
ing an inverse transform of rcos(8—t) [Cas87]. Each point in the 68—p space is mapped
back into a straight line in the image plane. The set of straight lines corresponding to
the sinusoidal curve rcos(8-0) will have a common intersecting point in the image

plane, which correspond to the center of the circle.

In a more general case, the circle is either not closed or it cannot be properly seg-
mented. In this case, we try to eliminate the intrinsic term and solve for the values of
t and . Three points from the SLHT transform are selected, (84,p;),
(6,,p,) and (63, p3). To simplify the discussion we assume that the intrinsic terms of
all the three p’s selected have the same sign. The value of ¢ and o can be obtained as

follows. Let

L B

P1—P3
_ cos(8;-a) -- cos(6,~a)
~ cos(B,-at) — cos(03-ar)

Then we can obtain

52

(cosB;—c0s0,) — T (cosB;—0s63)

tano =
1T (sin@;—sinB;) ~ (sinB;—sinB,)

and ¢ can be computed by

P1—P2
cos(0,-a) — cos(8,—0)

In practice, at least two out of the three p’s intrinsic terms will have the same sign.
Suppose the sign of intrinsic term of p, is different from that of p; and p;. We can
then start with

Py + P2
PL—P3

Note that there can be four different possible cases. Different combinations of set of
three points are selected and the values of ¢ and & computed. This is equivalent to per-
forming a voting in the z—c space. If the 8 axis is quantized into mg intervals, the
points in the 6-p space are then divided into mg piles. The selection of points from

the 6-p space follows the two guidelines below.
1. The same combination of points should not be repeated.

2. Exhaustive search over the whole domain may be prohibitive. Hence, only a lim-
ited set of combinations of piles are tried. But all possible combinations of points
of each set of selected piles are considered.

One simple way to avoid repeating the same combination of piles is as follows. Sup-

pose 6, is on the left of 6;, and 65 is on the right of 8, (modulo arithmetic is used).

The relationship among the three ©’s is that the distance between 0, and 6, is even

and that between 6, and 0, is odd. The detailed voting algorithm for circular arcs is

presented below. The nesting of the for loops is understood by the indentation.

Time complexity of this process is O (mg k3) where k is the average number of

points in each pile. The choice of w; and wj is such that the selected pilzs are 15° to

53

Voting Algorithm For Circular Arcs

FOR 6, =1 to mg do
select ¢, nonempty piles on the left of 8, within the range w, to wj
whose distance from 6, is even;
select 1, nonempty piles on the right of 6; within the range w; to w3
whose distance from 6, is odd;
FOR i =11to1¢ do
0, = the i-th selected pile on the left;
0, = randomly pick one selected pile on the right;
FOR each combination of 3 tangents, selected one from each pile do
compute ¢ and «;
increment the count of the corresponding accumulator cell;
detect peaks in the t—0L space;

45° apart from the center pile 0,.

Because of quantization, the transform function, which is obtained by thresheld-
ing, may be noisy. Spreading of a line segment (tangent) across two adjacent accumu-
lator cells is very common [Van81]. It is desirable to perform some filtering before
voting. Using the information about the end points of the line segments, it is easy to
lump connected line segments in adjacent buckets of the same column into one. The
effective value of p(®) of the connected line segments is taken as the weighted aver-
age, where the length of the line segment is used as the weight. Also, the boolean
0—p array will be sparse. Hence, we can store it in a more compact format, such that

each column stores only the indexes of the cells having non-zero values.

Peaks in the t—o space are found to spread across cells in the ¢ dimension more
than in the o dimension. This is possibly due to the quantization errors associated
with the values of the p’s, and the relatively coarse resolution of o.. A heuristic adap-
tive peak detection strategy is employed. Let Ny be the 10 neighbors of a cell p in the
same column, and N, be the 10 neighbors of p on adjacent columns (refer to figure
4.2). The choice of N, and N, are based on observation of the peaks in t-0o of a

number of cases. The 10 cells in N, are ranked by their votes. The collective vote of

54

A YA
a4
~

”

Y
T
PhL
AYAY
, L
AYAY
s
AR ALY

g
S EYEYAS EYAY
N N4

DK
BN AN AYAYAY DAY

N
’
’
’_
EYAYAY AN
a4

,
I~

’_ s
NN

"RXA XA

he

RN AT RPN ENONLN £

P AR

! ENLYEY ANEN
LYANEY AN
PN KN

LAY
’

SR AR KA A
)

PN R XA

A N

N, neighbors

AN
2
NN

| N, neighbors

Figure 4.2 Neighbors of the cell p in t—a space.

a cell p is the sum of the vote of p and its two immediate neighbors in the same

column. The cell p is a peak if it satisfies all the following conditions:
1. Collective vote of p is larger than the threshold TA,,, .

2. Collective vote of p is larger than or equal to the collective votes of all its N,

neighbors.

3. The collective vote of p is larger than the sum of the votes of the 3rd ranked

through the 8th ranked neighbors in N,.
4. The original vote of p is larger than or equal to the st ranked neighbor in N,

5. The original vote of p is larger than the sum of the votes of the 4th ranked through

the 6th ranked neighbors in N.

To determine the radius of the circle, we compute a 1D histogram by first eliminating
the translation term rcos(6-c) from the transform function, and then project the

boolean 6-p space onto the positive p-axis. Hypotheses of the presence of circles are

35

obtained only if one or more peaks in the 1D histogram can be found.

An example is shown in figure 4.3. The size of the test image is 512x512. The
test image consists of a partial circle located at (180, 120) with radius equal to 80, and
a dashed circle located at (300, 350) with radius equal to 120. The 6-p space is quan-
tized with Ap = 2 units, and A® = 1°. Line segments with length less than 10 units are
discarded. In the voting process, T; is set to 4 and TA,, is set to 200. The expected
peaks in r—o are (216.3,33.7°) and (461,49.4°); and the detected peaks are very close

to the expected values. More examples can be found in chapter 6.

(a) Image of two partial circles;

(b) The SLHT transform of (a);

Figure 4.3 Example of circles detection.

56

40 (a)

33 34 35 36 37 38 39

2% 30 31 32

27 28

26

OHOONNANNSHNWYWAMOO

HOOHMUOOMMENHOOO

COONONMHHODOANAOO
[

MmMooordITAREMAEOACH

NOOCOHALHITOANITANNO
—

5
1
2
1
1
1

MNeEHO AN

10
21
11

1O O ~A A0 OO

10

20
14 2201312
611 _85

1

0

0

0

0

1

NHO1ON

OMANANIT MM

14

HANNNHHAOOTNTAHO OO

NHONDNOWITHHHOTOA

OdrxHmeOoOo0O NN AHO WV

OrHrMNMAOO > T AT

OCOO0ONHOOOMUNM I N A

Nr{iMmMOoOOOOOoOOMUNILITNNO

56 (a)

55

43 44 45 46 47 48 49 50 51 52 53 54

42

716863575225632
- ~ —

MmMo~oaoMedOH MmooV~ s

—

OMNMIINOMMO MU VOO

NSO ITONDNOONONOO
-

NN AAOENMONAHOO

OO ANHALNOMMEM
~ — —
NMONODONHNDNWOW T ONN
A NO AW N
NN
HOD LR DA O NN
A AT AHO NN
o~
NACOMNHOMWYWWOWA TN
—t — 1~

O NOOITVUIOWIHTITM
(9] —

OCINANMUNWITM O TMOO NN

NON-OITMTNNTWOoOONON

11

ONMNHANAAD TN
—t
HNWYWOITITNHANULNMOANM

TANANHHONOON HONWWOWOA

(c) Peaks detected in -t

Figure 4.3 (Continued).

57

.......................................

(d) The 8-p space after removing the translation term 216 cos(8 — 34°).

(e) The 8-p space after removing the translation term 461 cos(@ - 49°).

Figure 4.3 (Continued).

58

4.2. Detecting Ellipses

An ellipse, E, located at the origin with its major axis @ and minor axis b paral-

lel to the x— and y—axes, recjective, can be represented by

2 2

X P

E: —+ = 1.
a? b2

Let I = (8, p;) be the line tangent to E at (x,,y,), as in figure 4.4,
l: p] = .xlCOSﬁl + ylsinel.

The slope of line [is

2

slope; = —cot; = - %cct\y.
a

In polar coordinates, x; = rcosy and y; = rsiny. Substituting into the equation of the
ellipse £ and the equation of the line /, we get
2b2

2 a
b%coshy + aZsin?y

rc=

and
p; = r(cosycosB, + sinysind,).
Taking the square of the above equation, and substitute the value of r2, we obtain

, @?b%cosd, + tany sin@;)2
Pr= b? + a*tan®y

Substituting the value of tany from the equation of the slope of line ! and rearranging

the terms, we get
p.2 = a%cos?; + b2sin%0).

Hence,

p1= VaZcos®0, + bsin@,.

In general, the SLHT transform of an ellipse can be expressed as

59

p(8) = tcos(8-a) + sign VaZcos’(8—¢) + bZsin?(6-9) .

We have developed two methods to detect the presence of ellipses. Both methods

make use of the symmetry property of ellipses.

Figure 4.4 Parameterization of an ellipse.

4.2.1. Method 1

This method is essentially an extension of the method used to detect circles. If
the ellipse can be properly segmented and is closed or almost closed, we can use the
same trick to eliminate the translation term. This time, we will obtain a bell-shaped

curve

p'e) = 2Va 2c0s2(6-9) + b2sin%(6-9).

The maximum and minimum of p’(8) correspond to the values of 2a and 2b,

respectively. To verify that the curve is in fact an ellipse, we can compute a 1-D corre-

lation of p’(8) with a template T () = 2VaZcos?0 + b?sin?0. The maximum degree of
correlation reveals the level of evidence and the location of the maximum indicates the

orientation of the ellipse.

In other cases, we try to eliminate the intrinsic term. In general, it is not possible
to solve analytically equations involving squareroot of cosine and sine functions. How-
ever, we can make use of the symmetry property of the ellipse. An ellipse is symmetri-
cal with respect to its major and minor axes. The same holds for the intrinsic term of
the SLHT transform. To solve for ¢ and o analytically, we need to select two pairs of
points from the SLHT transform, (81,,p14)s (815+P15)s (824.P24): and (8, P2). We
assume that the value of ¢ is known, and 0,, and 6, are at equal distance from ¢ (or
$+90°) on the left and right of ¢, respectively. Hence, the magnitude of the intrinsic
terms of p;, is equal to that of p,,. Similarly for the other pair of points (024.P24)
and (8, ,py,)- Assume that the intrinsic term of the four points are of the same sign,
then we can solve for ¢ and a as follows. Let

Pia = P1b
) P2a — P2

cos(8;,—0) — cos(0;,—a)

€08(8,,—0) — €0S(B,—01)

Value of o can be determined as in the case of circular arcs. In practice, the intrinsic
terms of p;, and p;, may be of different signs. Similarly for p,, and p,,. Hence,
there can be four different cases to be considered. To detect an ellipse, we only need
to perform an 1-D search on ¢. Knowing f,0 and ¢, we can determine a@ and b by

voting in the a—b space. Rewriting the SLHT transform of an ellipse,
a2c052(9—¢) + bzsin2(6—¢) = (p(©) - 1cos(6—a))2.

The values of @ and b can be determined by selecting two points from the SLHT

61

transform. The algorithm to determine a and b is similar to Algorithm1 below, except
that we only need to consider a pair of tangents at a time, and the pair of tangents

need not be at equal distance from the column ¢.

Voting Algorithm]l For Elliptic Arcs

FOR ¢ =0 to my/2
FOR t; =110 my/2 -1
81, = (¢ — 1,) mod myg;
015 = (¢ + ;) mod mg;
IF either piles 0,, or 6,, is empty
skip this iteration;
FORi=1to1;
randomly select a pair of non-empty piles 6,, and 8,
that are symmetric about ¢
FOR each combination of 4 tangents selected on from each pile
compute ¢ and o
increment the corresponding accumulator cell;
detect peaks in the £~ space;
determine the maximum of the peaks among all values of ¢;

The time complexity for accumulating votes in the r—o. space for a selected value
of ¢ is O(met,k“), where k is the average number of points in each pile. To detect
peaks in the r—a space requires O (mgm,) time. Hence, the total time complexity of
Algorithm1 is O (mg(m 9t5k4+m9mp)). The time complexity to determine the values of
a and b is O(metsk2+N2), assuming that the accumulator array for a—b is of size
ON?).

Some examples are given in section 4.2.3. One limitation of the method was
observed during the simulation study. The major and minor axes of the ellipse divide
the curve into four pieces, or four quadrants. If all the four points selected in the vot-
ing process correspond to lines that are tangent to £ in two adjacent quadrants only,

then all the terms in the expression for 1 invloving o will be cancelled out. Let’s

62

wLte T T

consider the case for ¢ = 0°. Expanding the expression, we get

_ (cosBy, — cosy,)cosa + (sin@;, — sin6;,) sinat
(cosB,, — c0s0y,) cosaL + (sinBy, — sin6y,) sina”

For ¢ =0, we have 6,, = 180° — 8,,, and 6,, = 180° — 8,,. Hence, 5in), = sinb,,
and sin®,, = sin,,. All the terms involving o will be cancelled out. In the other
situation, if one of the points, say (8;,,pP;,), correspond to a line tangent to E in the
third quadrant, then the sign of the intrinsic terms will be different from that of Pia.

Then, we will have

Pia t Pis
1z ————

P2 — P

cos(0,,—) + cos(9,,~-a)

cos(6,,—0) — cos(64;,—0)

(cosB,, — cosBy,) cosa + (sin@y, + sinby,) sina
(cos8,, — cosB,;,)cosa '
The values of o and ¢ can then be computed. Hence, this method, in general, requires

that segments of the ellipse be present in more than two quadrants.

4.2.2. Method 2

Instead of solving for ¢ and o, the second method tries to locate the major and
minor axes of the ellipse. The intersecting point of the major and minor axes also give

the center coordinates of the ellipse.

Lemma 4.1: If [, = (014,P14) and [, = (015, P1p) are two tangents to the ellipse E
such that 8, = (¢—r,) mod 180° and ©;;, = (¢+7;) mod 180° where ¢ is the orienta-
tion of the major or minor axes and f; is a constant value, then the intersecting point

of I, and I, lies on either the major or minor axes of E.

63

Figure 4.5 Intersecting point of two symmetric tangents to an ellipse.

Proof: Without loss of generality, we assume that the ellipse E is located at the origin
and its major and minor axes are parallel to the x— and y —axes, respectively. The two
lines {,, and /,, are tangent to E at the first and second quadrants, respectively, as

depicted in figure 4.5. We have
14 P1a = XcosB;, + ysin®,, and ly,: py, =xc0sbyy, + ysinB;,,
where 6, = 180° — 8,,. The x—coordinate x; of the intersecting point is given by

_ Piasinfy, = pypsindy,
cos0,, sinB,, — cosOy, sind;, -

Because of symmetry, p;, = Py, and sinf;, =sin@;,. Hence, x; = 0, which implies
that the intersecting point lies on the y—axis, the minor axis of the ellipse. The same

argument applies if the two lines are tangent to E at the third and fourth quadrants.

If the two lines are tangent at the first and fourth quadrants or at the second and

third quadrants, then the intersecting point will lie on the major axis. Rotation and

translation of the image plane will not affect the validity of the argument. Hence the

proof. 0

To determine the major and minor axes, we assume the value of ¢ and select
pairs of tangents. For each pair of tangents, we compute the intersecting point (x;,y;)

and then vote for the major and minor axes.
Pa = Xx;cos(¢+90°) + y;sin(¢ +90°),
Pp = X;cosd + y;sind.

Two separate 1D accumulaior arrays are used to accumulate votes for p, and p,. To
increase the sharpness of the peaks, we choose to consider two pairs of tangents at the
same time. The accumulator cell will be incremented only if the vote of the two pairs

of tangents agree with each other. The detailed algorithm is shown below.

The time required for accumulating votes for a selected value of ¢ is O (m etsk“).
and the time for detecting peaks in the 1D histogram is O (N). Hence the total time

complexity of Algorithm2 is O (mg(mgt k*+N)).

Knowing the major and minor axes, we can compute the center coordinates of the
ellipse. The values of a and b can be determined as in method 1. Some simulation

results are given in section 4.2.3.

In the event that only half of the ellipse is present in the image, this method will
only determine either the major or minor axes of the curve. In this case, we need to

search along the line for the center of the ellipse and vote for the values of @ and b.

4.2.3. Examples

Three examples are presented in this section. The sizes of the images are
512x512. The SLHT is computed using the same set of parameters as in the example

for circles detection in section 4.1. For simplicity reason, the module used to detect

65

Voting Algorithm2 For Elliptic Arcs

FOR ¢ =1 to mg/2
FOR i1=witow, do
0;, = (¢ — ;) mod myg;
©1p = (0 +t;) mod my;
IF either piles, 6,, or 0,, is empty
skip this iteration;
FOR i =1to¢ do
randomly select a pair of non-empty piles 8,, and 8,, symmetric about ¢;
FOR each combination of 2 tangents selected from piles 8;, and 8,; do
compute the intersecting point (xy,y1);
FOR each combination of 2 tangents selected from piles 6,, & 8,, do
compute the intersecting point (x5,y2);
Pa1 = X1€08(¢+90°) + y sin(¢p + 90°);
Pa2 = XzCOS(¢+90°) + yzsin(¢ +90°);
IF |pa1 - pa2I <E
increment the entry of the 1D histogram for p,;
Pb1 = X1COsP + y sing;
Pp2 = X2€08 + yosing;
IF | pyy = Poal <&
increment the entry of the 1D histogram for p,,;
detect peaks in the two 1D histograms;
find the maximum among all the peaks for all values of ¢;

peaks in t—a for circles detection is used in this simulation.

Exammple 1

The first example consists of a single ellipse, as shown in figure 4.6a, with the
following parameters: (@, b,xg,y0) = (100,70, 300,300,35°). The value of f in vot-
ing algorithml is set to 1 and the threshold value TA,,, is set to 150. The results of
applying voting algorithm1 are summarized in figure 4.6b. The values of "votes" in
figure 4.6b are equal to the sum of the accumulator cell and its two immediate neigh-
bors in the same column. The corresponding location of the center of the ellipse in the
x—y plane is also shown. The detected peak in the t—ou space for ¢ =35° and its

neighbors are shown in figure 4.6c. Using the detected values of f,a, and ¢, we

]

perform a voting in the a—b space, with 1, equal to 2, to determine the major and
minor axes of the ellipse. Peaks in the a—b space are detected by a simple threshold-
ing process which takes into account the 3 by 3 neighborhood of a cell. The threshold
is set to 200. The detected parameters of the ellipse are (100, 69,300,300,35°). The

errors in the value of the minor axis is acceptable since Ap is set to 2.

The results of applying the second method are summarized in figure 4.6e. In the
voting process, I, is set to 1. Again, simple thresholding is used to detect peaks in the
1D accumulator arrays for the major and minor axes. The threshold is set at 30. The
expected parameters of the major and minor axes are (73.7,125°) and (417.8,35°),

respectively. The detected axes are within the acceptable range.

(a) Image of an ellipse and its SLHT transform.

Figure 4.6 Example 1 of ellipses detection.

67

O|lol|la|aloololals
W.MMMWUMM.
Sl
- =18
REEEMMEE
o
P R =8
2X e)
7~ 1~
AR
7~~~
'-m.m|m4’&omlm
= A
T
Slh|dIh|S NS
< IKRIQIKR|AIFIQIR

(b) Peaks detected in t~o using method 1.

52 (a)

51

39 40 41 42 43 44 45 46 47 48 49 50

38

OO0 DODOODOOODOOOO

COO0OODOODO0OOOOOODODOLDOO

[=JelojofafoNoloNoNeloloNoNol e

QOO0 ODOOCODODOOODOO

COO0ODQOO0OCODOO0OOOOQOO
LA

OO OO LOODOOODOODOOOO

(ojojojofejofoRaNaleNoNeNoRaNo]

COOoOCONMANA™NOMO O
M o~
N

[=}ejolojofoReNolaNololoNo¥ oo

ejlejojojofooRsNoNeloNoNoNoNo)

COCOTOODOOOOOOOOOO

[>lejefolojoloNoRololoNoNaNel o

OOV OCODDLOODOOOO

(=jejajojofofofoloNolaNaol ool

COCO0OO0OO0OOOCOOOOOOOOOD

= 35°

(c) Peak detected in z—-a for ¢

Figure 4.6 (Continued).

68

93
94
95
96
97
98
99
100
101
102
103
104
105
106
107

(a)

S Gt e R T TS - S . S8 LD e G — — T A > v S ——— —— - . S A G —— - —

(d) Peak detected in a~b space for ¢ = 35°, ¢t = 424, and o = 45°.

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
1 0 2 1
7 3 8 9 2
0 5 6 8 1
0 0 0 6
0 0 0 0
0 0 0 0
0 0 0 4
0 0 1 1
0 0 1 1

HHEHOOWANOWOOOOOO

68 69 70 71 72
0 0 4 1 0
0 0 4 2 0
0 0 6 4 0
0 2 5 4 0
0 4 14 3 1
2 19 33 12 5

34 74 78] 38 37

57 108 86f 34 11

36 85 48 8 0

18 29 3 0 0

14 10 4 0 0
4 7 0 0 0
9 1 0 0 0
2 1 0 0 0
4 1 0 0 0

¢ Peaks: (p, votes)

20° major axis: nil
minor axis: nil

250 major axis: nil
minor axis: nil

30° major axis: nil
minor axis: nil

350 major axis: (74, 217)
minor axis: (418, 115)

40° major axis: (38, 31)
minor axis: nil

45° major axis: nil
minor axis: nil

50° major axis: nil
minor axis: nil

(e) Major and minor axes found using method 2.

Figure 4.6 (Continued).

69

OO0 OOOWYWWNWOOOO

OCOOO0OOOOONNINKFROOOO

COOOOOQONNNOOOOO

CQOO0OOO0OOOLBOHOOOO

OCOO0OO0OO0OO0OONWOOOOOO

Example 2

The second example consists of two overlapping ellipses with parameters equal to
(100, 70, 300, 300,35°), and (110,75,200,200, 10°), respectively. The same voting
parameter values from example 1 are used. The results of applying method 1 are sum-
marized in figure 4.7b and 4.7c. Interferences between the two ellipses lead to the for-
mation of secondary (spurious) peaks in z—o. However, no peaks are found in the a-b
space that correspond to any of these secondary peaks. During the simulation studies,
it is observed that the interferences between the two ellipses tend to reduce when they
are further apart. The results of applying the second method are summarized in figure
4.7¢. The expected parameters of the major and minor axes of the two ellipses are

(73.7,125°) and (417.8,35°), and (162.2, 100°) and (231.7,10°).

(a) Image of 2 ellipses and its SLHT transform.

Figure 4.7 Example 2 of ellipses detection.

70

¢ Peaks

@, o x,y) votes

0° nil nil n/a
5° nil nil n/a
(282, 45°) | (199, 199) 517

10° | (404, 34°) | (335,226) | 209
(348, 58°) | (184, 295) 154

15° nil nil n/a
20° nil nil n/a
25° nil nil n/a
30¢ (420, 45) (297, 297) 157
350 (424, 45°) | (300, 300) 477
(354, 47°) | (241, 259) 187

40° (428, 45°) | (303, 303) 209
(338, 46°) | (235, 243) 175

45° nil nil n/a
50° nil nil n/a

(b) Peaks detected in #—0 using method 1.

Figure 4.7 (Continued).

71

52 (@)

39 40 41 42 42 44 45 46 47 48 49 50 51

38

HOAHNONMANNANAMNMNOO
OCMNMHOANMHONAHOMANO
AONHOOONOMMONOM
00000101102119”

NNNCOOHOOAHWOON
— ot

A~ ANTAAATOODONAN

4

0228«”0131000707
v e

MNMPONNMNMTNNTNOODO AT
—

13
13

AN A AMNOANAHNNAO

NULrHAdAA120MQAAHO
~

1 101

41

34 35 36 37 38 39 40

33

28 29 30 31 32

27

MONOOAHAHOOMANT N0

CFNONHOOITAHNONAMA
WINIANNANANTANOAANN

243113044513504
— ~

AHHOMMUNANHTNMM
—

OMeiNOAMeEe 1 NO~ < T
—

MOUOUOAHAM~AEOTUNONM
cl—

NOoOT QI
N 4

OO O
NN
HeH O TONMNANNOO AN

NN NOAMNONNOM

WOoOWrRErt OO

13

D N~
~ -
LA TPTIFATMUOUT NN

WO OMOOIANNNO A

CANTTLTANAOANOOO O

(o)

65

52 53 54 55 56 57 58 59 60 61 62 63 64

51

PTNMNMNMAMNAAOCOAAOCO A
MOANANNFOOANOOOO M
OrNNOOOODOO-WNHO
ONHOOOONOOOOHOWN
MHITYANANOONAAHNMO

ONHWNMEANNHAMAEN
— i

13

MeHONMOUNOONMAN NI
—AMTANM A
ogvrdHooOoOnHACVACEMANM
N M WO Yy
OO~ RAO TN
NN TN —

~FNWVWOYNANDIANLTANOWN
N —
oo~ MUMOTMEONAHM

W OMNMWOWENDNMNMNATOM

NAdITOCNAMNMITOAAANA

NPT AHANOOMANNOTTNM

COHNODMMAAHODOMMNN

(c1) Peaks detected in z—o for ¢ = 105

(t)

Figure 4.7 (Continued).

72

52 (o)

39 40 41 42 43 44 45 46 47 48 49 50 51

38

HNFANAMANAOOM N

[ag]
NMYOAUNOANCSCHANWLDOM
— T e
HONTOIT O~ MT N
~oom
ONCOFAODOMWNOM™
~ -t —

HOONOCOFMANNWNOMO
o~ —

OHNOHOONOWNOOMO
N

O i NONNDANNAITOOO

3

MNMN~~ O N~ r=-O N
T —
TOONITIMONANODTON
N\ A
HOHUNMANINMNMONOOONN
M m
HOOIPOAITNONMFE O T A
~ ~ -
-
MNMOoONEFEOITOANTONOON
oo —f

N ™

41 42 43 44 45 46 47 48 49 S0 51 52 53 54 (&)

40

630026247-550559
—t = —

T NAI-ATOOOSTN
L] —t
NNCAOOHAAOHAHOITTM
—
~OMO~O0OCOMANTM A~
NOANOMOMTITONNUNO

NONFHNTNMOUONAN—O

O MNMTMMNTOONOMOO A
—

M OHOYNNMONMIT OO
e NN O N N

HTNCETA A AL NN
—t

TOUNONEAINONAHN ANO
—

TPUWOoOITOPNEITIHOOTO
— N

MOTVANULNHOOOMOM
ot — N

855889322003420
— L |

MOUANODMMEENAHMOMANO
™~

ANNNNAHONMNMOLANMNNITM

35°.

(c2) Peaks detected in . —o for ¢

Figure 4.7 (Continued).

73

82 (b)

68 69 70 71 72 73 74 75 76 77 78 79 80 81

OO NONWMAHAHOOOOOO
COOQOONITUMOAOOOOOO
COO0OOODOMMENHMOOOODOO
QO rMCONWMNA~OOOOO
110018”00000000

ANNOOMMUMNMNMMNMOOOOOO

N
NI TODOADAOOOCOCO
NANN A
NITOVOOWWOWMOHANOOO
— N O N
NOOQOTHO MO W TN NN
—~ IO O I~} —
AFAOOOO MW O N
NN <

QOO OO NDODFTOWANAHO M

COCOOCOoONM THHOOOCO

OO0 OO HOAAONNDOA

76 (b)

45°.
74 75

35° ¢t =282, and o
70 71 72 73

(d1) Peak detected in a-b space for ¢
63 64 65 66 67 68 69

62

Nr-HMNMOAOIT100O0O0OOO

COHOOMITNOOODOOOO

OCOMOANTNNANNOODODODODOO
~—

HFOOOOONOhODOOOOOO
= i

OONNMNOOHT|O~-OONO
e O wld
—
OCHOOHMITO|IOO O N
I O TN

OO OCOOOWMHE VWO NEHMA
5~

COOCOOCOMAHOMONHO

~

OCOOOOOONUMMOODOOOO

QOO0 ODOMMHAODOOOO

COOOCOANAAMOOOOO

COCOOO0OOOTMODONOOC

45°.

35% ¢t =424, and a

Figure 4.7 (Continued).
74

(d2) Peak detected in a—b space for ¢

o Peaks: (p, votes)

0° major axis: nil
minor axis: nil

50 major axis: (178, 36)
minor axis: nil

10° major axis: (162, 254)
minor axis: (232, 154)

15° major axis: (139, 42)
minor axis: nil

20° major axis: nil
minor axis: nil

250 major axis: nil
minor axis: nil

30° major axis: (107, 37)
minor axis: nil

350 major axis: (74, 232)
minor axis: (418, 124)

40° major axis: (36, 53)
minor axis: nil

45° major axis: nil
minor axis: nil

50° m;jor axis: nil
minor axis: nil

(e) Major and minor axes found using method 2.

Figure 4.7 (Continued).

75

Example 3

The third example consists of two overlapping dashed ellipses. The parameters of
the ellipses are the same as those in example 2. The value of f is set to 3 and TA,
is set to 150 in the voting on t—c. In the voting on a-b, the value of £, is set to 3
and the threshold is set to 150. In the voting process of method 2, f; is set to 3 and
the threshold is kept at 30. As expected, the height of the peaks are lower than that in
example 2. However, the accuracy of the detected parameters are the same as that in

example 2.

/ . \ .\“‘
.

(a) Image of two partial ellipses and its SLHT transform.

Figure 4.8 Example 3 of ellipses detection.

76

R T

268
270
272
274
276
278
280
282
284
286
288
290
292
294
296

()

Peaks

¢ (t, o) x,y) votes
0° nil nil n/a
5° nil nil n/a
10° (282, 45°) | (199, 199) 293
15° nil nil n/a
20° nil nil n/a
25° nil nil n/a
30° nil nil n/a
(424, 45°) | (300, 300) 318

35° | (262, 51°) | (165,204) | 182
(356, 47°) | (242, 259) 154

40° (338, 46°) | (235, 243) 240
45° nil nil n/a
50° nil nil n/a

(b) Peaks detected in r—ou using method 1.

O0OOOOOCONNOOHNH

COO0OCOQCOOCOOOWWOoW

40 41
12 6
0 11
1 7
1 2
0 2
2 0
0 2
1 1
1 0
0 0
0 0
1 0
0 1
0 0
1 0

WHOFFOOQOQWON® WO
CROFPOONRPWHEHOONUIMIWOO

[[
OB JO-LSHRPUOUOWNOO KO

[

'.—l

<

o
OCROCOOFRUHOWAAIANGC

ONVOFHNOOOOH OXNE®N

=

(c1) Peak detected in ¢—o for ¢ = 10°.

Figure 4.8 (Continued).

77

LN HENFEFEPROOODOR O

OO OO

NAIFWHRNOOHF OO

[y

NLABHRNNNHREEHEORHPOOO

HOWUOMWORONHOOHOH

HWWO R PR PORNNO S W

(a)

52 (o)

39 40 41 42 43 44 45 46 47 48 49 50 51

38

OO0 O0OMOOOOO A0

000210021057~“22
4

OCOMNMOOOWONT ™~
—) e

0000011042”8213
OCHOOONO T MMUONAHO
N

NOOOOOOEHITMNONO A
()

OO0 OO0OOHIT-MOOOOO0O

OO ~OmM
- -

AMAHO MO
N

19
7

ODCOMANNNO ~FOMOITOO
=4

13 30]223

O OO

52

HTOO~O0OO0O

OHOANONOOOOAOO
NN

OO0 HOITITNHAANOOHOOO
[te

32274%707000000
—

2043%6213000000
(]

HOMOAOAANNNOONODOOO

58 ()

51 52 53 54 55 56 57

49 50

45 46 47 48

44

COOOOONMOHOMUVON
HrOOHMOAHAOMHUNOMONM
OO ArHANAONNANNA
COCONNHHOOOITANITNO
OCOO0OO0ODNNNHAMNO
HHOOOOOONONMOHO

NN T N
™

[
N~

23

MAA000000
N

T O~ ONOAM~OO
<M A A

54
94
34

001227”89642000

22217m022230000

PNONODANOONMAHOOO

COOUMNMWANNFPWOOOO
— —

OO ONITOWAOHOOHO

HOWHEAOUIMMOHOITOOODODO O
[Lo B |

COT-HITITTNTOODOODOO

54 ()

53

41 42 43 44 45 46 47 48 49 50 51 52

40

MANOCOODOOOOOOAMUNO A

OO0 OHOOOOONHNME

-

CO0O0OO0OOOOOOoOON DM

COO0OOCOOOOOOUNITMANON

OO0 O0OOCOMYWOUANNNAHO

OO0 COOOTAAANNNO

NOOOCOOOONOAOOA OO

N O OO

oy ™~ ~ONINO
N O~ < ~ N

| —
(3" gl

QOO ONULITNTITHAAMOTN
— i

OCOO0OHITOTIANNAOAOO
~

COO0OHOITNWOVWOWARAROOOON
~

OO HANMMWOUMNITOOOO

COMr I UATDAHOOAOCO
— N

COTNEIPTITNMOOMANO
—

= 35°,

(c2) Peaks detected in t—o. for ¢

Figure 4.8 (Continued).

78

67 68 69 70 71 72 73 74 715 76 77 78 79 80 81 (b)

OO HNOODOOOOO

COoOO0OOOHNMOOOOOOCO

0COoO00OO0OMMOODOOOOOC

NOOOOITITNODOOODOOO

HHAOOOR M MOOOO0OOOO

coNDHHWOVLODIONFHMOO
MO M
O+tO0O0HOINOWNMMANWHO
[N < N

cooCcOoCOoOONUUNIANMCENO AN
v~

cCOoOO0OoOOANNOATAOCOO
—

OO0 ITONTAHANOOO
—
OO0 HIIOOOOO
—

COCOOOONHOHOOOO

OCO0OO0OOCODOONNODODOOOO

45°,
74 75 716 (b)

13

35°, 1 =282, and
70 71 72

66 67 68 69

65

64

(d1) Peak detected in a—b space for ¢
62

OO0 HNOOOOCOCOCO

OO0 HODOHOOOOCOOO

SCO0OHNINOOOCOCOOCOO

COOOOOOMNOODOODOOO O

COO0OOCOAFNOOO0OOOOO0O

OT AOVNWYWMNMUNNITOOODOO O
—

M THONNOMADHN =+~ OOO
— —{N D
OO0 T W NNW P T
) O
COO0OO OO > e —
NN

COoOO0OO0OOOONITOOAMANAO

— !

OO OOITHONODOOO

OO0 OCOUNITOOOOCOO

COO0OO0OODOODNMODODOOOO

COQOO0OO0OO0CONMOODOO0OOO

COO0OO0OOO0OOCHHOOOOOO

45°.

35°, ¢t =424, and

Figure 4.8 (Continued).
79

(d2) Peak detected in a—b space for ¢

¢ Peaks: (p, votes)

0° major axis: nil
minor axis: nil

50 major axis: nil
minor axis: nil

10° major axis: (162, 116)
minor axis: (232, 81)

15° major axis: (140, 61)
minor axis: nil

20° major axis: nil
minor axis: nil

250 major axis: nil
minor axis: nil

30° major axis: (108, 37)
minor axis: nil

350 major axis: (74, 199)
minor axis: (418, 54)

40° major axis: (37, 79)
minor axis: nil

45° major axis: (2, 32)
minor axis: nil

50° major axis: nil
minor axis: nil

(e) Major and minor axes found using method 2.

Figure 4.8 (Continued).

80

4.3. Comparisons With Previous Works

In this section, we compare our methods, in terms of time and space complexities,
with some previously published methods. To simplify the discussion, we only examine

the detection of ellipses.

Let the size of the image be N xN, the number of edge pixels be P, the size of
the 6—-p accumulator array be mgxm and the average number of non-empty buckets
per column be k. We assume that m, is of order N. In the conventional Hough
transform, the time required to accumulate the votes is O (PmgN?), and the peak

detection cost is O (mgN 4). The space requirement is also O (meN“).

Ballard showed that oy incorporating the gradient constraint in computing the
mapping of image points to the parameter space, the number of free variables is
reduced by one [Bal81]. This method is often referred to as the generalized Hough
transform, GHT. Hence, the voting cost is reduced to O (PmgN?). If the estimated
gradient of a pixel has an error of € times the desired accuracy, then the voting cost
may become O (PemgN %), The peak detection cost and storage requirement remain

unchanged.

Other parameter space decomposition approaches have been proposed. In
[Tsuj78] and [Tsuk83], an estimate of the center coordinates is first obtained as fol-
lows. The accumulator array is the x—y plane. The accumulator cell corresponding to
the mid point of a pair of edge pixels having the same gradicnt is incremented. The
centers of the ellipses are determined by locating peaks in the accumulator array. The
voting cost of this step is O (mgi?), where i = P/mg in this case. If the error of the
estimated gradient is € times the desired accuracy, then the complexity of the process
is 0(P2£2/me + N2), where NZ is the peak detection cost. In [Tsuk83], the remaining
three parameters of the ellipse is further divided into two sets. They are determined

by a 2D transform of the whole image followed by a 1D histogramming. The

81

complexity of this step is O (VPN +N 2)), where v is the number of peaks found in the
x~y accumulator array. There are, however, two major drawbacks of this method: (i)
it relies heavily on the accuracy of the gradient information; and (ii) the estimation of
center coordinates may become difficult in ¢ ‘mplex images especially if parallel lines
are present in the image.

Casasent and Krishnapuram [Cas87] are the first to develop object recognition
methodologies using the SLHT. Assuming the orientation, major and minor axes of the
ellipse, the intrinsic term of the SLHT transform can be eliminated by simple subtrac-
tion and the translation parameters can be determined by an inverse transform. The
number of non-empty buckets in the 8—p array is mgk. Hence, the time complexity of
the inverse transform is O (mgkN +N 2y, If the rotation and intrinsic parameters are not
known in advance, then a coarse-to-fine search is carried out. To detect ellipses, it is
necessary to search for the values of a, b, and ¢. Hence, the total time complexity is

approximately equal to O (mg2kN3), and the space requirement is O (N o)

The time complexity of our two methods is approximately equal to
O (mg(1,k*+N)), and the space requirement is O (N?). The value of 1, is relatively
small compared with the other parameters. In our examples, f; is set to be less than or
equal to three. The value of k can be significantly reduced in several ways:
1. Filter the 8—p space by lumping connected line segments that spread across adja-

cent buckets into one.

2. Filter out the long straight line segments (to be elaborated in chapter 5), hence the
value of k is about two to three times the number of curves in the image, which is

presumably a small number.

Because of the statistical nature of the voting process, we need not exhaust all the pos-
sible combinations of set of four points for each set of selected piles. We can further

reduce the complexity by selecting only 7. random combinations of set of four points

82

instead of trying out all the k* possibilities. The time and space complexities of the
five methods are summarized in table 4.1. The complexities of our methods are better
than the other four. A more concrete comparison on the computational and functional
performances of the different methods can only be obtained through a comprehensive

simulation study. Because of time constraint, this is left for future research.

Table 4.1 Time and space complexities for detection of cllipses*

Methods Time Space
complexities complexities
Conventional O (PmgN®) O (mgN*)
GHT O(PemgNt+mgN%) O (mgN*%)
Casasent O(m esz Y O Ny
Tsukune O (P%*mg+VPN) O(N?Y
Pao O (mg2(t,k*+N)) 0 (N?

*
In general, P > N =m,>mg > k =&, 1; and v are small numbers.

Comparing the two proposed methods, the second method is more efficient than
the first one. However, the first method is more robust in detection of dashed curves

and the second one tends to suffer more from sensitivity problems.

Another popular approach to speedup the computation is by iterative coarse-to-
fine search [11187, Li86a, Mil86]. The algorithms adaptively focus on regions in the
parameter space that have a high vote counts and iteratively refine the resolution of
these regions. Integrating our parameter space decomposition approach with the adap-
tive processing techniques should result in an even more computationally efficient

method.

83

Chapter 5

Recognition of 2D Smooth Curves

In the recognition of arbitrary shapes, we are concerned with the detection of the
object as well as the estimation of the amount of translation, rotation, and scaling of
the object in the image. Let py(6) denote the SLHT transform of the reference object
O located at the origin. The SLHT transform of a rotated, translated and scaled

instance of O is given by
p(B) = tcos(B—ar) + S * sign * py(6-9),

where S is the scaling factor.
An efficient technique to eliminate the translation term has been described in sec-
tion 4.1 and 4.2 for detecting complete (closed) circles and ellipses. In this chapter, we

will generalize the technique to recognize arbitrary shapes.

Definition
Transformation D (). Consider at a given 0, say 0;, p(6;) = {p;1, ..., P;x} such that
Pi1 <Piz< '+ <py (k>1). The set D(6;) = {py | py = p;; — p;; for 1<j<k; or
Pit = Pk — p;j for 1<j<k}. Hence, the number of elements in D(6;) is equal to
2k-3.

In transformation D (8), we have effectively computed the perpendicular distances

between parallel tangent lines.

Lemma 5.1: The D (8) transform of an object O possesses the following properties.

@) It is invariant to translation of O in the image plane.

(ii) If O is rotated counterclockwise by an angle ¢, then D (8) = D ((6—¢).

(iii) If O is scaled by a factor S, then D(6) = S * D ((0).

Proof of lemma 5.1 is straightforward and is omitted here. Given a reference template,

D (0), and the transform of the test pattern D (6), to determine the orientation of the

test pattern, we need only to perform a 1D correlation of the test template with the

normalized reference template. This will be elaborated in section 5.1. The peak of the

correlation indicates both the likelihood of existence and the orientation of the object.

In general, the D () transform is not unique. Consider smooth convex objects of

constant width [Cha74]. These objects will all have their D () transform equal to a

horizontal straight line. Hence, the D () transform can only be used as a signature of

the object. We call this signature the STIRS (Scalable Translation Invariant Rotation-

to-Shifting) signature. The procedure to recognize an object is as follows:

step 1:
step 2:

step 3: "

step 4:

Compute the transforms p(8) and D (6) of the test pattern.

Normalize the reference template D with respect to the test template D.

Determine the orientation of the object by computing a 1D correlation of the
reference template with the test template. If no significant peak is detected,
then we can conclude that the test pattern is not an instance of the reference
object. The position of the peak indicates the amount of 1otation ¢ (or ¢p+180°
since D (0) is periodic in 180°) of the test pattern.

Eliminate the intrinsic term in p(8) by "subtracting” the scaled and shifted
reference template S * sign * po(6—¢). Since p(6) is a muitiple valued func-
tion, the subtraction function is basically a correlation function between the
two "vectors" py(6;—¢) and p(8;) for each 6;. This will be elaborated in sec-

tion 5.1. The value of ¢ and o can then be determined by an inverse

85

transform to the x~y plane or by performing a voting in the r—c space. The
peak corresponds to the location of the test pattern in the image plane. If no
peak is found, then the test pattemn is not an instance of the reference object.

We can further speed up the classification of the test pattern by computing a third

transform by projecting the D (6) transform onto the p—axis.

Definition
The profile of the projection of D (8) onto the p~axis, I'(p), is equal to the number of
points in D (8) that have the same p.

Obviously, the transform I'(p) is invariant to both translation and rotation. Hence,
step 2 above can be modified such that if the profile of the test pattern does not match
that of the reference object, then we can conclude that the test pattern is not an

instance of the reference object.

5.1. Implementation Details

The D (6) transform is represented by a 2D array D {mg][m] such that

{ 1 ifp; e D)),

Di9jlieil=) o omherwise

To find out the rotation of the test pattern, we simply slide the test template (with
wrap around) over the reference template. The position at which maximum correlation
occurs corresponds to the amount of rotation ¢ (or ¢+180°). Let Ay and D be the
p(8) and D (0) transforms of the reference object, respectively. Similarly A, and D,
are the transforms of the test pattern. The detailed algorithm is listed below. The

nesting of the for loops and the if-else statements are understood by the indentation.

The time complexity of this process is O(mazmp). However, we can easily

improve the efficiency by adopting compact storage for D, and D,. The time

86

Matching Algorithm

FOR61=OIOMQ— 1
FOR p; =2tomy/2
IF (D,[6))Ip;] = 1)
FOR92=0tom9—l
1= (92 - 91) mod mg;
IF (D, 18,)[py)) = 1)
score [t] = score[t] + 2;
ELSE IF (D,[8,)[p;11] =1)
score[t] = score[t] + 1;
ELSE
score(t] = score[t] - 1;

FOR 92 =0to mg -1
t = (92 - 91) mod meg;
FOR p; =2 to mp/2
IF (D,[6,][p;)) = 1 and D,[6,][p;] = 0 and D,[0,][p;£1] = 0)
score[t) = score|t] - 1;

/* nommalize the score;

count = average number of points in Dy and D, */
FOR 6; =0tomg — 1

score [0,] = score[6;] x 100 / count;
detect peak in score[);

complexity may then become O (mg?Kp), where K p is the average number of points
in each column vector of D, and D,. Once we know S and ¢, we can determine ¢ and
o by "subtracting" S * sign * py(8) from p,(8). Recall that the effect of translation is
the same as adding the offset zcos(8;—a) to each element of py(8;). Determining the
value of the offset is equivalent 10 finding the position at which maximum correlation
of the two vectors A4[6;] and A,[6;] cccurs. The correlation function is similar to that
described in the matching algorithm. The only difference is that we now have 1D vec-
tors instead of 2D templates. Let T[mg] denote the resultant translation term obtained
for each 6;. In case there is no correlation between the two vectors, the corresponding

entry in T {mg)] will be set to nil. To determine the value of ¢ and «, we can perform

87

P —

either an inverse transform to the x—y plane or a voting in the t—a space as in the

case of detection of circles.

5.1.1. Quantization errors

There are two sources of quantization errors, the digitization of the image plane
and the quantization of the 8-p space. In _igital images, the notion of "smoothness" is
not well defined. The resolution of the digitization will determine how well we can
estimate the gradient of the curve. This problem is further complicated by the quanti-
zation of the 6-p space. Because of discretization, spreading of long straight line seg-
ments across adjacent accumulator cells is very common [Van81]. In order to capture
the tangents at places with small radius of curvature, a lower thresheld should be used.
However, lowering the threshold will certaialy increase the noise (spurious tangents) in
the transform space due to spreading of straight line segments. Two suggestions to

solving this problem are proposed.

1. To reduce the noise in the 6—p space due to spreading of straight line segments
across two or three adjacent accumulator cells, we can lump connected line seg-
ments in adjacent buckets of the same column (same 0) into one. This can be done
since the information about the end points of the line segments are available. The
effective value of p is taken as the weighted average, where the length of the line

segment is used as the weight.

2. To remove spurious tangents, we can first extract long straight lines from the 6-p
L
! space. The selected struight lines are then reconstructed. For any line segment in
0-p whose length is less than some threshold L,, if its constituent pixels are

included in the reconstructed image then the line segment will be removed.

These two noise filtering strategies will be illustrated in the examples in section 5.1.2.

88

5.1.2. Examples
The size of the images used in the examples are 128x128. The 6-p space is
quantized with Ap = 2.0 units, and AO = 2°, line segments of length less than 5.0

units are discarded (except for example 3).

Example 1
Figure 5.1(al) shows a test object O, which is a scaled instance of the shape shown

in figure 3.1. The shape is composed of four half-circles. The center of mass (CG) of
the shape is chosen as the reference point. The transforms of the reference shape are
generated by program. We can easily observe the similarity of the profiles, the I'(p)
transforms, of the test object and the reference. The result of matching the D (6)
transform of O, and the normalized transform of the reference object is shown in
figure 5.1(c). The normalization was done in the discrete domain. The orientation of
O, was correctly determined. Figure 5.1(d) depicts the translation term of p,() after
eliminating the intrinsic term, and the result of the voting process is highlighted in
figure 5.1(¢). The estimated translation of O, was offset by 2 pixels. This offset was
acceptable since we have Ap = 2.

In figure 5.1(f1), we introduce 4% random noise into the image (i.e. 4% of the
image is random noise). We compute the transform of this noisy image and match it
with the original (without noise). There are only about 11 points out of 337 points in

the D (0) transform that do not match.

89

(al) a scaled instance of (a2) p(8) transform of (al); (a3) the filtered p(8);
the shape shown in fig. 3.1;

P P
S o
0 T
(a4) D (0) transform of (a3); (a5) profile of (ad);
P P

2 RN
6 r
(b1) D (8) transform of the shape (b2) profile of (bl);

shown in fig. 3.1;

Figure 5.1 Example 1 of object recognition using the STIRS signature.

s P
r'/“\
~N
hY
\l
booncvacwssssvaare \ .\....q
~
/])
(c) result of matching (ad) against the (d) the translation term of (a3) obtained
normalized template (bl), peak detected by eliminating the intrinsic term;
at (0, score)=(90°, 109);
33 34 35 36 37 38 39 40 41 42 43 44 45 ()
65 1 0 1 0 0 0 0 0 0 0 0 0 0
66 l 1 2 5 1l 5 0 0 0 0 0 0 0
67 0 1 4 3 3 3 0 0 0 0 0 0 0
68 1 6 8 14 20 16 0 1 0 0 0 0 0
69 0 2 5 16 49 40 15 1 0 0 0 0 0
70 1 3 6 6 23 56 56 21 5 1 3 0 0
71 0 0 3 0 5 24 61 15 5 1l 1l 0 0
72 0 0 0 2 0 12 22 18 10 2 0 0 0
73 0 0 0 0 0 4 10 12 9 3 1 0 0
74 0 0 0 0 0 0 8 6 5 1l 1l 2 0
75 0 0 0 0 0 0 2 4 10 1 1l 2 0
76 0 0 0 0 0 0 0 1 2 2 2 0 0
77 0 0 0 0 0 0 0 1 2 3 1 1 1

(e) result of voting in —c space, expected peak is at (69.8, 38°), and the detected peak
is at (70.5, 38.5°);

Figure 5.1 (Continued).

91

[
i ’ R N
: "/:-'(;?(; R Tea0n
! ST o) ot
IR GRS
, 0
; (f1) image of (al) corrupted with (f2) D () transform of (f1);
é 4% random noise;
; s
§

6
(f3) result of matching (f2) against (a4), peak detected at (8, score) = (0°, 184);

Figure 5.1 (Continued).

50y

92

Example 2
Figure 5.2(al) shows another reference object Oy, which is the outline of a duck

drawn by free hand. The test object shown in figure 5.2(b1) is obtained by transposing
the reference object. The CG of the reference is at (59,45). The intrinsic term Po(©) of

the reference object is obtained by

Po(B) = Pag (8) — 74.2c0s(6-37.3°).
The orentation of the test object was correcily determined by matching the D ()
transforms. The estimated location of the test object was offset by 3 pixels in this
example.

We also try to match the D (8) transform of this shape with the reference used in

example 1. In figure 5.2(f), we observe no correlation between the two templates.

P p
/':'_'_ T
273N AT\
RN s N
= “\\ ir* W\,
e e N oo e NN -
\\\\\\\\' N \§\\
RN S Y
\‘.. \ \:'.. \
9 \\ "y
N
N
6 7

(al) image of object O 5,3 (a2) p(6) transform of (al); (a3) the filtered p();

Figure 5.2 Example 2 of object recognition using the STIRS signature.

93

0 I
(a4) D (8) transform of (a3); (a5) profile of (ad);

[\ .“.. . ."_
/ \ ‘..' /‘ ha PO .“‘
\ N \ N
R R
'\'. S '.\'. N
breacacsavenses \-". l.?* \:: '.n-'.i
0NN LN
N A
NN NN
A ‘s‘ \..
\K :\\\
\
\
Y

(b1) object O,, obtained (b2) p(8) transform of (bl); (b3) the filtered p(8);
by transposing (al);

1

T ..M-'v.-\'F..\

: ** e T e
: R

‘ . "oy -—— ™ . “r
: [. " e,

) P s V.

6 r
(b4) D (8) transform of (b3); (b5) profile of (b4);

Figure 5.2 (Continued).

94

6

(c) result of matching (b4) against (ad)
peak detected at (8, score}=(90°90);

s

b

0

w
[o0)

=

e

(d) the translation term of (b3) obtained
by eliminating the intrinsic term;

28 29 30 31 32 33 34 35

92 0 0 0 0 0 1 J o

93 0 0 0 0 2 2 3 2

94 0 o 0 0 1l 2 2 2

95 0 1 0 1 1l 5 3 2

96 1 o 0 1 2 16 12 2

97 0 1l 0 2 2 7 17 2

98 0 0 0 3 1 7 39 17

93 0 0 0 0 4 5 24 22

100 1 0 0 0 1 7 19 39
101 1 1 0 0 o) 1 3 15
102 0 0 0 0 0 0 1 4
103 0 0 0 0 0 0 0 0
104 0 o 0 0 1 0 1 0

NUINNVNMITWHOOOOOO

FOUWOHWOOOOOOO

OWOoWUINOOOOO0O0O

WONNMNHFOOOOOOOO

(e) result of voting in r—c space, expected peak is at (101, 35.7°), and the detected

peak is at (99, 34.5°);

Figure 5.2 (Continued).

95

6
(f) result of matching (ad) against the normalized template of figure 5.1(b1), no corre-
lation is observed.

Figure 5.2 (Continued).

96

Example 3
The pattern used in this example, figure 5.3(al), is the outer contour of the character

H. This pattem has long straight lines and sharp turns. We also try to compute the
p(0) transform with a lower angular resolution with A8 = 3°, In order to capture the
tangents at the corners, a lower threshold of 3.0 units is used. Line segments whose
lengths are greater than 20 units are selected. The reconstruction of the selected long
straight line segments are shown in figure 5.3(a3). In the reconstruction, the selected
linc segments are first shortened by 2 units at both ends so that we will not remove the
short tangents near the corners. The p(8) transform before and after filtering are shown
in figure 5.3(a2) and 5.3(a4), respectively. Figure 5.3(bi) shows an instance of the
same patterr rotated by 24° in th: clockwise direction, and figare 5.3(c) shows ke
result of matching the D (6) transforms of the test pattern with the reference pattern.
Almost the same correlation score is obtained if we use a higher angular resolution

with A@ = 2° (refer to figure 5.3(d)).

S o
)
)
\/ \/
6
(al) outer contour of the letter "H"; (a2) p(0) transform of (al);

Figure 5.3 Example 3 of object recognition using the STIRS signature.

97

-

P
B) -.\\
b
TN
E— '\ "}Z
, \)

(a3) reconstructed image from the long (a4) the filtered p(8);
straight segments detected in (a2);

r
(a5) D (0) transform of (a4); (a6) profile of (a5);

Figure 5.3 (Continued).

98

(b1) outer coutour of the letter
"H" rotated by 24°;

(b2) p(©) transform of (bl);

P
N
f:-' .--'\;.“' \j‘%‘:
AR
// =/ / Y
;
6
(b3) reconstructed image from the long (b4) the filtered p(0);
straight segments detevted in (b2);

Figure 5.3 (Continued).

99

(b5) D (©) transform of (b4);

(d1) D (0) transform of (al)
with higher angular
resolution;

S b 0
(b6) profile of (b5); (c) result of matching
(b5) against (a5);

: 6 6
(d2) D (8) transform of (b1) (d3) result of matching
with higher angular (d2) against (d1).
resolution;

Figure 5.3 (Continued).

100

In the above three examples, we can observe that the profiles (I'(p) transforms) of
the D(0) transforms, although quite noisy, can be used to distinguish the three
different shapes.

5.2. Performance of the Recognition Method

In this section, we analyze the computational efficiency and the sensitivity aspects
of the matching method presented in the previous section. The computational complex-
ity of our method is analvzed and compared with the standard template matching and
the generalized Hough transform (GHT) [Bal81]. We have seen exampies of matching
the transforms of two ideatical shapes in section 5.1. In section 5.2.2, we will give a

qualitative discussion on the sensitivity of the D (8) transform to shape distortion.

5.2.1. Computational Complexity

Assume that the input image is of size NxN and the nimber of black pixels is P
(the length of the object contour). The computational complexity of our method can be
divided into two parts, namely the overhead and the matching cost. The overhead
includes computing the transforms, and filtering the 6—p space. To simplify th. com-
parison, we assume that the algorithms are implemented in a sequential machine. To
implement the SLHT transform described in chapter 2, we need to sort the pixels. This
can be done by simply reading out the pixels in row major or column major order.
Hence, the complexity to compute the SLHT is O (N2+ Pmg). The time to compute the
D {9) wansform is O (mgk) where k is the average number of points in each column
of p(8). The computation cost to filter the transform space is O WN%+m pma). Hence,
the total overhead is O (N2+Pmg+mgk +mgmg), which is approximately equal to
O (N2+Pmy).

The algorithm to match D () against the reference template takes O (mg2Kp)

time where K is the average number of points in each column of the D (8) transform,

101

and the time required to compute the translation term is O (mg k). And finally, the vot-
ing algorithm to determine ¢ and o has a complexity of O (m ¢2). Suppose there are 7
different object classes. To determine the class of a test pattern, we only need to match
the D (0) transform of the test patten with the n reference templates. Assume that
only one reference template matches with the test pattern, then the total matching cost
is O Mmg2Kp +mgKp +mg?) which is approximately equal to O (mmgZKp). The com-
plexity of the matching process can be further brought down to O (1ym p+m921(D) if

the I'(p) transform of the objects are used to reject incorrect hypothesis.

Now we consider the standard template matching. There is no overhead involved
in this method. Let the template size be TxT, and the search range of the allowable
translation be R. Then the matching cost of this method is O(nmeRsz), where R2T2

is at least O (N?).

In the GHT [Bal81], the gradients of each contour pixels are first computed. Let
x be the average number of pixels having the same gradient, i.¢ X = P/ms. Then the
matching cost of GHT is OM(meP x+cost of peak detection in image plane)).
Assume that the votes are mapped to a region in the image plane of size nxn. Then

the complexity is equal to O (T](P2+n2)).

Comparing the three methods, our method involves a feature extraction phase
(computing the transforms). Because of the invariant properties of the transforms, the
matching cost of our method is much lower than the other two methods. The advan-
tage of our method is even more prominent when the number of object classes is large,

i.e 1 is large.

5.2.2. Sensitivity To Shape Distortion

To understand the sensitivity of the D(8) transform, we have to analyze the

"shape" features that are being captured. A convex/concave segment is mapped also to

102

a continuous curve in p(t). The number of points in p(8) does not depend directly on
the length of the contour. It is instead proportional to the angular span of the curve,
and the pattern of p(0) depends on the curvature and position of the curve segments in
the image plane. In the D(0) transform, we compute the perpendicular distances
between pairs of parallel tangents. It basically captures the relative position of a curve
segment with respect to other curve segments of the contour and A® determines the
sampling rate of the measurement. Changes in the p(0) transform will be reflected in
the D (8) ransform. There are basically two kinds of changes in p(0): (i) displacement
of the branches; and (ii) shortening or lengthening of branches. These changes
corresponds to one or more of the following kinds of distortions of curve segments in

the image domain.

1. small local distortions (bumpy contour),
2. changes in curvature,

3. changes in angular span,

4. changes in position (translation).

Because of thresholding (in computing the SLHT) and quantization of p, small local

distortions will be filtered out to a certain extent.

For distortions that affect a significant angular span, the effects on D (0) will be

much bigger. To simplify the discussion, we assume that

1. The shape contour is composed of k segments and each segment has an angular
span equal to 180°. Hence, there are k points in each column of p(6), and 2k-3
points in each column of D (8). Here, we also neglect the intersecting points of the
curves in p(8).

2. One of the k segments is being distorted and the distortion affects the complete
segment. Consequently, one of the & points in each column of p(6) will be dis-

placed.

103

Let’s consider one column of the transforms. If the distorted segment overlaps with
the convex hull of the curve, then either the top most or the bottom most point in that
column of p(8) is displaced. Consequently, k-1 points in D (8) will be affected. In
the other case, some point in between the top most or the bottom most points of p(8)
is displaced, and only two points in D (9) will be affected. This means that the D (0)
transform is more sensitive to distortions that affect the convex hull of the object. If
k-1 points out of 2k—3 points are displaced, then (2k —3)~(k-1) points will match and
2(k-1) points (k~1 points of the test template and k—1 points of the reference tem-
plate) will have a miss. Hence the score of the correlation (matching) function
(neglecting the effects of quantization) is

2x((2k -3) = (k=1))mg - 2x(k = 1)mg 2
2k -3)ymg X % -3

where mg is the number of quantized columns. For the other case, two points in each

column of D (8) will be displaced. Hence, the score of the matching function will be

2x((2k =3) - 2))mg—2%x2mg 4k —14
x 100 =
2k =3)mg 2k -3

x 100

In real life, distortion of one curve segment will also affect its adjacent segments.
Hence, the above two expressions may not give us very accurate estimates of the
correlation score. Four examples of distortion and the matching scores are shown in
figure 5.4. The shape shown in figure 3.1 is again used as the reference shape, and the
shape in figure 5.4(al) is used as a control sample for comparison. The matching
score for figure 5.4(c) is better than the score predicted by the above expression. This
is mainly because of the quantization effects. At the two ends of the bottom curve seg-
ment, the positions of the tangents are quite close to the non-distorted case. For the
other two cases, figures 5.4(d) and 5.4(e), the score is lower than the score predicted.
This is because the distortion affects all the three upper curve segments to different

extents and part of these curves overlaps with the convex hull of the contour.

104

Nf\s\ - /
LN -}-\ ".
-"L \o\

g DA AN
-~

o
- s ottt .
-, .—.-_'#.--..::..... o

3
v ¢

0 | ;
(al) an instance of the (a2) D (0) transform of (al); (a3) result of matching (a2)

shape shown in fig. 3.1; against fig. 5.1(b1), peak
found at (0, score)=(90°,119),

S
P
P~ o
\-" - ’ e
T e
Y iR B
6 0

(b1) an instance of (al) (b2) D (8) transform of (b1); (b3) result of matching (b2)
with local distortion; against fig. 5.1(bl1), peak

found at (8, score)=(88°,90)

Figure 5.4 Recognition of distorted objects using the STIRS signature.

105

p
ﬁ\\ . /
R
6 0
(c1) a distorted instance of (c2) D (0) transform of (c1); (c3) result of matching (c2)
(al), the bottom curve is against fig. 5.1(b1), peak
changed to an ellipse; found at (0, score)=(90°,23),
S
P
M-\ ~, //.#J
M.]
as&w*{‘\ﬁ-
7
- o i
6 0
(d1) a distorted instance of (d2) D (8) transform of (d1); (d3) result of matching (d2)
(al), radius of the upper against fig. 5.1(b1), peak
half-circles are modified; found at (@, score)= (88°,20);

Figure 5.4 (Continued).

(c1) a distorted instance of
(al), the middle half-circle
of the upper half-circles is
shifted up and the angular
span of its neighbor half-

circles are reduced by 30°%

(c2) D (8) transform of (c1);

Figure 5.4 (Continued).

107

6
(c3) result of matching (c2)
against fig. 5.1(bl), peak
found at (0, score)=(90°,23),

5.3. Remarks

Basically, the STIRS signature captures the char:cteristics of curvy segments of
the object contour, such as angular span, curvature, and relative position with respect
to other segments, and de-emphasizes straight edges. Because of the definition of the
signature, it is very sensitive to distortion that affect a significant angular span, espe-
cially for the segments that coincide with the convex hull of the shape. However,
small local distortions may be filtered out because of the smoothing effect of quantiza-
tion. One way to avoid de-emiphasizing straight edges is to assign weights (o points in
D (0) according to the length of the line segments extracted in the SLHT, so that
points in D (8) that are due to long line segments will be given larger weights. This
weighting scheme will improve the recognition accuracy of patterns that have long

straight edges, such as the shape used in example 3.

In general, the D (8) transform can be applied to images that are composed of a
set of "smooth"” curves which are not necessarily closed. This generalization will allow
us to relax our assumption that the object have to be properly segmented. Partially
occluded objects may aiso be recognized. Without a pricri segmentation, we can parti-
tion the image into a number of smaller subimages. The D (B8) transforms of all the
subimages are computed (partial signatures) and matched against the reference. If there
is sufficient similarity between the partial signature and the reference, then we combine
the subimage with its neighbors and compute the new partial signature. To do that, we
need only to add the translation term to the corresponding SLHT’s of the subimages
and then compute the new partial signature. The merging of the subimages is accepted
if the new partial signature has a better match with the reference. Merging of subim-
ages stop when we arrive at a predefined degree of similarity or when the size of the

subimage is larger than or equal to the size of the reference object.

Potential applications of this method include matciing of maps and fingerprints.

A previous attempt to apply Hough transform to extract ridges of fingerprints is

108

reported in [LinW83]. In fingerprint identification, the test image needs to be matched
against a large number of reference images. Performing the matching in the D(0)
space is attractive because of the low matching cost. However, more in depth investi-
gations on the distortion model of fingerprints, noise, and quantization errors are
needed before we can affirmatively conclude that the D (0) transform is applicable to

this problem.

109

Chapter 6

Extraction of Graphic Features for Automatic
Conversion of Engineering Line NDrawings

In this chapter, we consolidate the curve detection techniques presented in
chapters 2 and 4 to extract graphic features from engineering line drawings. We will

first give a brief introduction to the problem and then present our solution.

6.1. Introduction

With recent advances in and wide spread use of computer-aided design and draft-
ing, there is a strong demand to convert large volumes of existing paper drawings into
the CAD database in order to maximize the benefits of the computer technology
[Hof86, Jos89, Kar85, Pfe85]. Three categories of drawings have so far received

much attention.

1. Map and utility plan drawings [Ale87, Eji84, Hos86, Mac85).

2. Electrical circuit and logic diagrams [Ble84, Bun81, Fuk84, LinX85, Oka88].

3. Mechanical and architectural drawings [Bix85,88, Bla81, Cle81, Jos89, Nag90].
There are very distinct processing requirements for these three categories of drawings.
In the case of map and utility plan drawings, the images consist of straight lines, arbi-
trary curves and text annotation. Automatic conversion involves the extraction of text
and an accurate approximation of the region boundaries. roads, and rivers, such that

queries on the length of a road joining two cities, and area of a region can be

answered. Hence, line tracking and curve fitting techniques serve well in this

application.

For circuit/logic diagrams, there is a set of predefined symbols and the informa-
tion to be extracted is the symbol identities and the connectivity of wires among them.
Exact locations and size of symbols, and parametric representation of the wires are not
important. Hence, this kind of drawings are best processed by line tracking together

with pattern recognition techniques.

A mechanical drawing is a geometric description of an artifact. It is mostly com-
posed of parametric curves and text annotation. Extraction of the geometric features
(parametric curves) in mechanical drawings is very different from finding an approxi-
mation to the curves as in the case of map processing. For example, we can approxi-
mate a curve by a set of straight lines. But this representation is not adequate as in
editing and deriving intelligent interpretation.

Conversion of mechanical drawings is essentially a computer vision problem. The
ultimate goal is not only to produce a compact encoding of the paper drawing in elec-
tronic format, but also to infer an intelligent interpretation of the geometric information
of the object being drawn such that integration with CAM (computer-aided manufac-
turing) systems becomes possible [Bob85, Cho85]. There are active research projects
on various aspects of interpretation of mechanical engineering drawings, such as recog-
nition of dimensioning information [AntS0, Dor89 & 90], reconstruction and
modification of 2D models from dimensioning information [Lig82, Wat88], reconstruc-
tion of 3D models from multiple 2D views [Bin86, Ric86, Rus87, Sak83]. All these
papers assur-< that a "perfect” feature set is available. A "perfect” feature set is the
set of features, text and graphics, that a draftsman uses to describe the drawings as if
he were creating the drawings using a CAD station. Hcwever, the graphic features
extracted by line tracking and curve fitting methods are far from perfect in this sense.
In this chapter, we present a new approach to extract geometric features from mechani-

cal part drawings.

111

6.1.1. The Graphic Features Extraction (GFE) Problem

A mechanical parts drawing consists of text (alphanumeric characters and
mathematical symbols) and graphics. The graphics can be broadly divided into two
categories: (i) line-structured entities, e.g. straight lines and curves; and (ii) special
graphic symbols, e.g. arrowheads, machining symbols, etc. Each line-structured entity

is associated with

1. geometric attributes: parametrization of the curve such as end points of a straight

line, center and radius of a circle, etc.;

2. display attributes: such as thickness, solid or dashed, and dash length and gap
width;
3. semantic attributes: the meaning of the graphic entity, e.g. visible contour, dimen-

sioning, hidden edge, etc.

The semantic attributes are to be derived from the display attributes and context (its
neighboring graphic entities and the text annotation). For example, thick solid lines
are usually used to represent the visible contour of the object, whereas thin solid lines
can be used as dimensioning, sectioning, folding lines and other purposes. To infer
the geometric model of the drawing, we need correct recognition of both the geometric
and semantic attributes of the graphic entities. Our view of the GFE problem is essen-
tially a segmentation problem.
1. Text/Graphic (T/G) segmentation
Given a set of data points §, we want to find a partition § =T () G where G is
the set of data points due to the line-structured entities, and T is the set of data

points due to the text in the drawings including the special graphic symbols. If the
text touches the graphics, then T 1\ G # @.

2. Line-structured graphic entities extraction

Given the set of graphic data points G, we want to infer a set of curves €

112

(together with the geometric, display and semantic attributes) such that (i) G can
be reconstructed from C, within some prespecified maximum allowable error and
(ii) the representation we obtain is as close to the "perfect” feature set as possible.
If we can segment G into a number of sets of pixels, and each set of pixels
corresponds to a curve, then it won’t be difficult to compute the best geometric and
display attributes of each curve. To derive the semantic attributes of the curves, we
need to recognize other graphic symbols, such as arrowheads, and the inference

process will be context sensitive.

In our work, we are mainly concerned with the extraction of geometric and display

attributes of line structured graphic entities.

6.1.2. Previous Work

In the literature so far, T/G segmentation and graphic features extraction are
treated separately [Ant90, Ble84, KaR90a]. The output of the T/G segmentation is used
as input to the graphic feature extraction module. In the absence of any contextual
information and without explicitly recognizir:g the characters, the only properties that
can be made use of in T/G segmentation are the character sizes, and spacings of char-
acters [Ble84, Fle88]. With such limited available information, the segmentation fails

in the following situations:

1. text touching graphics (most of the time, text touches straight lines in the drawing,

e.g. guidelines, tables, dimension lines),
2. isolated single or double characters,
3. occasions where dashed lines are confused as text string.

In order to overcome these problems, we need to be able to extract the graphic entities
in the presence of text strings, and in turn make use of the extracted information to

guide the segmentation of the text strings. For example, the first problem can be solved

113

by first extracting the lines that touch the text before we carry out the T/G segmenta-
tion.

The approach commonly used to extract line-structured graphic entities is based
on local processing, such as line tracking and curve fitting [Bla81, KaR90b, Pav82]. In
order to fit a curve, some initial partition (segmentation) of the set of graphic data
points G is assumed. Usually, the critical points along the chain of pixels, corners, and
junction points are used to divide the curves into a number of segments. Individual
segments are fitted with straight lines; if the fitting is not accepted, then the segment is
fitted with higher order curves such as conic [Cle81, Nag90] or cubic splines [Bix88].
The acceptance criteria of the fitting are based on some local error measures. A "best"
fit is obtained by an iterative split-and-merge process to merge adjacent connected seg-

ments to form larger curves. There arc several drawbacks to this bottom-up approach.

1. An adverse side effect of the split-and-merge approach is that a segment can be
part of a single curve only. Consequently, if a curve intersects or touches other
lines/curves, it will be fragmented into pieces and individual pieces may be fitted

by curves not necessarily of the same type.

2. Since only local information is used, the fitting process is sensitive to local distor-

tions that are introduced during preprocessing, e.g. thinning.

3. This method also fails to recognize dashed curves. For example, individual seg-
ments of a dashed circle are very well fitted by straight lines. However, when all
the segments of the dashed circle are considered collectively, then the group of

segments is best represented by a circle.
6.2. The Graphic Features Extraction System

To overcome the above mentioned problems, we need to make use of some glo-

bal information to aid the decision on segmentation, and we should also allow pixels

114

to possess multiple memberships (belonging to more than one curves). The Hough
transform is applied to generate initia! hypotheses (collective evidence) of the presence
of curves in the transform space, and we verify the hypotheses in the image space. The
segmentation of the image is refined iteratively. The requirement on a priori segmen-
tation is, therefore, relaxed. Three different kinds of hypotheses are considered in this
work: (i) solid long straight lines; (ii) circles; and (iii) dashed lincs.

Although the Hough transform is a robust method to detect parametric curves,
direct implementation of the method outlined in chapter 4 will be computationally
expensive. To speedup the processing, we adopt a stepwise segmentation refinement
strategy. Note that most of the curves in the image are connected to other curves by
long straight lines. If we can logically remove those long straight lines, then the image
can be divided into a number of smaller blocks, which contains only a small number
of curves. Then we can apply the curve detection technique to extract the solid circles
in individual blocks. Line segments in 8—p corresponding to logically removed pixels
will not take place in subsequent hypotheses generations, but the removed pixels will
still be taken into account in the hypotheses verification process (this is to allow for
multiple memberships of pixels). In other words, the dominant graphic features are
successively extracted, and the segmentation of the residue image is further refined
after each step. The classes of graphic features will be extracted in the following order:
solid long straight lines, solid circles, dashed circles concentric with previously

extracted circles, dashed lines, dashed circles and finally shorter straight lines.

6.2.1. Implementation Details and Experimental Results

Throughout the discussion in this section, we assume that the drawings follow the
ANSI standard [Gia78]. The input image is digitized with a resolution of 300 points
per inch. The test image (after thinning) shown in figure 6.2a (on page 122) is used as

the example in the following discussion. The size of the test image is 1536x1536.

115

The processing steps are summarized below. Our emphasis is on segmentation rather
than on deriving the best parameters of the curves. The experimentation is only aimed

at demonstrating the feasibility of the approach.

Step 1: Long straight lines extraction.

We first compute the SLHT with Ap = 2 units, A® = 1°, and L,;, = 10 units.
The SLHT is regarded as a sampling toc! in this application which samples the image
in different orientations and collects evidence of the presence of straight lines. The fol-
lowing two criteria are used to determine if a line segment is a true straight line or

not. In this step, we are only interested in extracting the long straight lines
1. if the length of the segment is larger than some threshold, Ly,,, , or

2. if the length of the segment is larger than some smaller threshold, L, , and there
is no curvy extension from either ends of the segment. Referring to figure 6.1, if
the line segment /| = (64, p;) is part of a curve, then, there exists some line seg-
ment /5 = (85,p,) in adjacent columns® such that (i) !, overlaps with [,, (ii) I,
extends beyond the end points of /, and (iii) length of /, is 2 1/3 the length of /;.
If we trace along the same direction, we can find some other segment /5 which
overlaps with [,, extends beyond /, and with length > 1/3 the length of {,. Hence,
if there exists a trace of overlapping segments, /y, I,, ..., l; such that the angle
between [, and I is at least, say 10°, and the length of each segment in the list is

at least 1/3 the length of [, then we conclude that /, is not a straight line.

The second criterion allows us to deduce the presence of straight lines with average

length. In actual implementation, we need to take care of the possible quantization

The 6—p plane is considered to be circular and the (mg—1)-th column is said to be adjacen: to the 0-

th column.

116

~. ,,//A)LPQ,

1 -~ 6,.0)

i overlap region

Figure 6.1 Sampling of a curve segment.

errors [Van81]. Hence, we take into consideration the possible spreading of line seg-

ments across adjacent buckets when determining the length of the line segments.

In this sampling process, it is possible to have multiple selected l'ne segments
which correspond to the same straight line. An effective representation of tiie group of

segments is obiained as follows:

Lines Selection Algorithm2

threshold the accumulator array and collect line segments whose lengths are 2 L, ;
FOR each line segment in the list whose length is < Ly,,, check for curvy extension;
group together segments in the list that overlap with one another;

FOR each group that does not contain any segment marked “curve” do
find the longest segment in the group, say I} = (8,p1);
compute the bounding boxes with orientations 6,:+0.5% 6y, and 6,%1°
that enclose the end points of all the segments in the group;
select the narrowest bounding box as the representative;
IF the width of representative bounding box is less than 4xAp then
accept it as a hypothesis of a straight line;

117

In the experiment we set Ly,,, to 200 and L,, to 65. In the process of verification
and removal of the straight lines, we want to preserve the connectivity of the other
curves that run across the lines. To achieve this, we first find the junction points in the
image and assign to those points a label equal to 3. Then the foreground pixels in the
7 by 7 neighborhood of a junction point is assigned a label equal to 2. Other fore-
ground pixels will have labels equal to 1. To verify the hypothesis, we open up a rec-
tangular window of width 4xAp in the image plane corresponding to the hypothesis.
We start from the mid point of the hypothesis and scan outwards. The foreground pix-
els lying under the scanning strip will be deleted by assigning a label of -1, provided
there is no foreground pixels under the scanning strip having labels larger than 1. The
scanning stops when we encounter a block of four consecutive background pixels. Fig-

ures 6.2b and 6.2c shows the segmentation of the image after this step.

Step 2: Solid circles extraction.

We first compute the connected components of the remaining foreground pixels
and label the line segments in 8—p accordingly. To label the line segments in 6-p, we
inspect three pixels of the segment, the two end points and the mid point®. If the three
pixels have the same label, then the segment will be assigned the value of that label,
otherwise, the segment is assigned a label of -1. Line segments corresponding to
removed pixels will be assigned negative labels. All segments with negative labels are
discarded. The circle detection module is then applied to individual components with
250 or more pixels. There are seven components in figure 6.2c with 250 or more pix-
els. In performing the voting, we set At = Ap, A = A8, and TA,;,, = 200. The time

complexity of the voting process is proportional to k3 where k is the average number

7 Because of quantization, the mid point obtaincd from the two end points may not correspond to a
foreground pixel. This is overcome by performing a scarch on the 3 by 3 neighborhood of the mid point
for foreground pixels.

118

of points in each column of the compact boolean 6—p array. The value of 1, is set
according to the value of k such that 1, is interpolated between 1 to 5 for k ranging

from 8 or above down to 1.

The peaks detected in t—a are only rough estimates of the center of potential cir-
cles. Depending on the value of ¢, an error in o, say 0.25°, may result in a displace-
ment of 5 to 10 pixels in the image plane. So we perform a simple search around the
detected value of a in steps of 0.25° and compute the 1D histogram for radius estima-
tion. The value of a that results in the sharpest and highest peak in the 1D histogram

is selected.

For each hypothesis of a circle, we open up a ring shaped window in the image
plane and scan along the ring. The run length code of the foreground pixels (including
the previously removed pixels) along the scanning ring is computed and simall patches
(of size less than or equal to 3) of background pixels is filtered away. Also, patches of
foreground pixels of size smaller than 5 are discarded. These patches correspond to
other lines/curves that run across the ring. Foreground pixels lying under the accepted
patches are removed except for junction points and their neighbors. Figure 6.2d shows
the circles extracted in this step. After removing the foreground pixels, we also clean

up the 6-p space by discarding the segments that correspond to the removed pixels.

Step 3: Extraction of concentric dashed circles.

In mechanical drawings, it is very common to have dashed circles drawn concen-
tric to solid circles. So we can make use of the center coordinates of the circles found
in the previous step as initial hypothizses. The compact boolean 6—p array is reinitial-
ized to include all the remaining line segments in 8—p. To find the hypotheses of
dashed circles, we simply compute a 1D histogram for radius estimation using the
center coordinates of extracted solid circles. If peaks are found in the histogram, then

we will further verify the hypotheses as in the case of solid circle extraction. Figure

119

6.2e shows the dashed circles found in this step. At this state of the system develop-

ment, no further analysis is implemented to recognize the dashed pattems of the

dashed circles.

Step 4: Dashed lines extraction.

Up to this stage, long straight lines, solid curves and concentric circles are
extracted. The most dominant graphic features in the residue image is the dashed lines.

Three different types of dashed lines are considered in this work:
1. hidden line: short-short-short [-short]

2. center line: long-short-long [-short-long]

3. phantom line: long-short-short-long [-short-short-long]

The options in square brackets mean arbitrary number of repetitions. The following

rules are used in the recognition of dashed lines:
1. Length of short segments are less than 50 units.
2. Length of long segments are at least 40 units.

3. The ratio of the lengths of long segments to short segments in a dashed line is at

least 2.

4. The gap between segments should not be larger than the length of the short seg-

ments in the dashed line.

The choice of the line length limits is to allow for possible variations in the drawing
practice of different people. Collinear lines in the image plane will be mapped to
adjacent buckets in the 6—p space. Hence, we can generate hypotheses of dashed lines
by finding clusters of line segments (having distinct labels) in 6-p. Previously
extracted long straight lines may also be part of a dashed line, for example, the long
segments of center lines and phantom lines. So we will insert the extracted long lines

into the 6—p space, but they are given labels -2, -3 and so on to distinguish them from

120

the other line segments in 6-p. To verify the dashed line hypothesis, we compute the
effective representation of the cluster of line segments, i.e. the narrowest bounding box
that encloses the segments. A rectangular window is opened up in the image plane and
the run length code of the patches of foreground pixels are analyzed. The three
different types of dashed lines are recognized by finite state automata. The extracted

dashed lines are shown in figure 6.2f.

Step S: Extraction of remaining dashed circles.

At this stage, we clean up the 8—p space and perform yet another iteration of cir-
cle detection. All the remaining line segments in 6-p will be taking part in this step.
Noting that the remaining dashed circles are likely to be partial circles, and the number
of segments in 8-p will be relatively small, we increase the number of samples taken
in the voting process by setting ¢, to 8 and lower the value of TA,,, to 100 in the

peak detection process. Figure 6.2g shows the dashed circles found in this step.

Step 6: Polygonal approximation of remaining objects.

Objects in the residue image (figure 6.2h) are to be approximated by straight
lines. There are a number of small crosses in the image which are due to the junction
preservation strategy. These crosses can be filtered away by counter checking with the

extracted graphic entities. This step has not been implemented.

121

ERE Sl A

e T N s

(b) The extracted long straight lines;

Figure 6.2 Example 1 of graphic features extraction.

122

(c) The segmented image after removal of long straight segments.

(d) The extracted circles;

Figure 6.2 (Continued).

123

i A A it

i

\
[} ~,
LY 71// \\\\ A
/ \\
i VRN \
l S
\ { 1
‘\ \\-4’ 4 1
/
\ /
7/
) 0N
\\‘ J N —— - \ i,

,.‘L.—_)
l

-T-

Ao

N
]
s

() The extracted dashed lines;

Figure 6.2 (Continued).

124

(g) The extracted dashed circles;

(h) The residue components;

Figure 6.2 (Continued).

125

Another example is shown in figure 6.3. The size of the second test image is
1024x1024. Several segments of the dashed circle are classified as straight lines in step
1. However, these segments are reclassified as a dashed circle in step 3 when more
global information is taken into consideration. Some of the dashed line segments are
not classified correctly. This is due to imperfect image quality and digitization. Some
of the long segments of the center lines are broken and the gap between short seg-
ments is longer than the length of the segments. In the above two examples, although
the results are shown in the form of binary images, the extracted entities are being

represented in parametric format.

(a) The input test image after thinning;

Figure 6.3 Example 2 of graphic features extraction.

126

X)

RN
e
Lo

(b) The extracted long straight lines;

(c) The segmented image after removal of long straight segments.

Figure 6.3 (Continued).

127

(d) The extracted circles;

(e) The extracted concentric dashed circles;

Figcre 6.3 (Continued).

128

(f) The extracted dashed lines;

(g) The residue components;

Figure 6.3 (Continued).

129

6.2.2. Comments on the Current System

The objective of the experiment is to demonstrate the feasibility of the approach.
Besides speed, there are a number of aspects that can be further improved. For exam-
ple,

1. It is desirable to replace the simple verification process by a more sophisticated
module that will at the same time compute the best parametric representation of the

curve. The little crosses in the residue image may also be avoided.

2. Hypotheses of other kind of features, such as ellipses and sectioning (set of equally

spaced parallel lines), can be generated in the 8-p space.

3. The rules set out in the previous subsection for dashed lines recognition are inade-
quate to deal with poor image quality and nonconformity with the drawing conven-
tions. Developing more dedicated interpretation techniques that possess certain
form of drawing correction capability to deal with poor image quality and noncon-

formity with drawing conventions is a challenging research problem.

6.3. Remarks

Hough transform is a computationally expensive method. The tradeoff in this
application is the quality of the extracted features and potential gains in both speed and
functional performances of the overall system (when integrated with other modules)
and in higher level processing. From the experimentation, good segmentations are
achieved with this global processing technique. Maicover. the method is amenable to
parallel implementation. Hence, the computation tirne can be shortened considerably if

parallel machines are available.

In real life system development, it is desirable to further convert the extracted
graphic features into some standard CAD format, such as the IGES standard [Smi83],

such that the converted drawings can be edited using commercially available CAD

130

systems. In our work, we only considered the extraction of line-structured ygraphic enti-
ties, however, our system can be easily integrated with other functional modules, such
as the text/graphic segmentation module and the graphic symbols recognition module.
Our opinion on T/G segmentation is that it should consist of multiple phases (steps)
and interact with the graphic extraction module. For example, the T/G segmentation

can be divided into three major steps:

1. Initial segmentation of blocks of text using modified run length coding technique
[Wah82].

2. Extraction of long text strings using the regularity properties of lettering [Fle88].
This step should be executed after long straight lines and solid circles are extracted

from the image, so that text characters are separated from graphics.

3. Extraction of short text strings, such as single and double characters, will require
certain amount of contextual information, such as if there are character strings,
center lines, and arrowheads, etc. in the vicinity. So this step is preferably exe-

cuted after center lines and phantom lines and arrowheads are recognized.

131

Chapter 7

Concluding Remarks

In this thesis, we studied the use of Hough transform to detect 2D curves in
binary images. Improvements to both the functional performance and computation
efficiency are presented. We have shown that by incorporating connectivity check in
the detection of straight lines, spurious lines can be avoided. The method is more
robust against random noises. Isolated noise and unrelated pixels of far away objects
are filtered out. Moreover, the extracted features (linc segments) carry certain syntac-
tic information, such as the end points of the lines and the normal parameters of the
tangent to the curve. Knowing the end points of the line segments allows us to replace
the thresholding process by a more refined line selection process. Depending on the
application requirements, we can obtain a linearization of the image or select the long
straight lines. This makes the modified Hough transform a more powerful feature

extractor.

Another important aspect of Hough transform is its inherent parallelism. A sys-
tolic architecture that implements the modified Hough transform for straight lines
detection has been developed. Our architecture has superior area-time complexity com-
pared with other parallel implementations. In systolic computation, the processing ele-
ments only communicate synchronously with their neighbors. This implies that the
computation only involves local data dependencies and exhibits regular synchroniza-
tion, which are the prerequisites of any form of parallel processing. Systolic algorithms
can be easily mapped to other parallel architectures, such as the SIMD array proces-

sors or MIMD multiprocessor systems. Hence, our systolic algorithm need not be

restricted to VLSI implementation.

Tangents are useful features in object recognition. Novel techniques for detecting
circles and ellipses, and recognizing arbitrary smooth curves using the set of tangents
have been developed. One major advantage of formulating the transform using the
tangent representation is that it allows a natural way to decompose the high dimen-
sional parameter space into three subspaces, namely, the translation, rotation and
intrinsic parameters. Parameters of the three subspaces can be determined separately,
thus huge savings in both time and space are achievable. Moreover, our methods are
very robust against random noise. This is because in computing the SLHT, isolated

noise pixels will be filtered out.

Our methodology requires that the SLHT of the image be computed. This may
represent considerable computation overhead. However, it is not uncommon in com-
puter vision applications that straight lines are also important features to be extracted.
In these cases, the SLHT will be computed anyway and already available for use to
the curves detection algorithms. In chapter 4, we analyzed the asymptotic complexities
of different Hough transform algorithms for detecting ellipses. A comprehensive simu-
lation study on the computational efficiencies and functional performances of the

Hough transform algorithms is an interesting topic for further research.

Although we are not the first to investigate recognition methodologies using the
set of tangents, in this thesis we established the theoretical foundation of these metho-
dologies by pi ing the uniqueness of the SLHT transform of closed smooth curves.
There are, however, two issues worth further research. The first one is concerned with
the sensitivity of the method. During our simulation studies, we observed that tangents
from different ellipses will interfere with each other and may lead to the formation of
spurious peaks in the -0 space. However, the degree of interference tends to decrease
when the two ellipses are further apart. More research on the behaviour of the voting

algorithms is desirable. Comparing the two methods for ellipses detection presented in

133

presented in chapter 4, the second method is more computationaly efficient than the
first one. However, the first method is more robust in detecting dashed curves, and the

second method tends to suffer more from the sensitivity problems.

The second issue is related to the ability of the STIRS signature in distinguishing
shapes. Formal characterization of the distinctness of the signature with respect to vari-
ations of shapes will help to determine the reliability and applicability of the method to
real life probiems. Two potential applications of the STIRS signature are matching of
maps and fingerprints. It is worthwhile to conduct further investigation into these two

problems.

The overall orientation of the thesis is geared towards theoretical development
and less emphasis is placed on applications. This is partly due to the author’s personal
interests and partly because of the author’s lack of solid experiences in real life com-
puter vision applications. In chapter 6, we consolidated the curves detection tech-
niques and applied it to extract graphic features for automatic conversion of engineer-
ing line drawings. There are two major reasons for the choice of that application as a
pilot study. First, engineering line drawings are mostly composed of parametric curves.
Second, the drawing rules are relatively well documented. In this application, the ulti-
mate goal is to infer an intelligent interpretation of the objects being drawn. Therefore,
correct recognition of the feature classes is more important than the accuracy to which
the extracted features approximate the input image. The feature extraction problem is
formulated as a segmentation problem. The justification of using Hough transform in
this application is its ability to detect curves without a prion segmentation. Hypotheses
of the presence of curves are generated in the transform space, and then vernfied in
the image space. The whole image is taken into account and more reliable decisions
on segmentation can be made. One characteristic of our method is that the
classification of the features at a stage is only tentative. This classification can be over-

ridden in latter stages when more global information is taken into account. More

134

reliable features are extracted using this integrated approach of segmentation and

feature extraction.

Automatic conversion of engineering line drawings is by no means a simple prob-
lem. Our contribution is only to one of the many aspects of the overall problem. A lot
more research and development are needed before we can actually build a complete

line-drawing processing system.

135

[Ale87]

[Ant90]

[Anu85]

[Bal81]

[Balg2]

[Ban88]

[Ben66]

[Bin86]

[Bix85]

[Bix88]

{Bla81]

[Ble84]

[Bob85]

References

J. Alemany and R. Kasturi, "A computer vision system for interpretation of
paper-based maps”, Proc. SPIE, 829, Applications of Digitial Image Pro-
cessing, pp 125-137 (1987).

D. Antoine, S. Collin and K. Tombre, "Analysis of technical documents: the
REDRAW system", Workshop on Syntactic and Structural Pattern Recogni-
tion, pp 1-20 (1990).

Paul Edward Anuta, "Parameter space techniques for temporal image regis-
tration", Ph.D. Dissertation, Purdue University (1985).

D.H. Ballard, "Generalizing the Hough Transform to Detect Arbitrary
Shapes", Pattern Recognition, 13, pp 111-122 (1981).

D. H. Ballard and C. M. Brown. Computer Vision. Prentice-Hall, 1982.

Amit Bandopadhay and Jung Liang Fu, "Searching parameter spaces with
noisy linear constraints”, Conf. Computer Vision and Pattern Recognition,
pp 550-555 (1988).

Russell V. Benson. Euclidean Geometry and Convexity. McGraw-Hill,
1966.

Ho Bin, "Inputting constructive solid geometry representations directly from
2D orthographic engineering drawings”, CAD, 18(3), pp 147-155 (1986).

J. P. Bixler, J. P. Sanford, "A technique for encoding lines and regions in
engineering drawings", Pattern Recognition, 18(5), pp 367-377 (1985).

J. P. Bixler, L. T. Watson and J. P. Sanford, "Spline-based recognition of
straight lines and curves in engineering line drawings”, Image and Vision
Computing, 6(4), pp 262-269 (1988).

W. Black, T. P. Clement, et al., "A general purpose follower for line-
structured data”, Pattern Recognition, 14, pp 33-42 (1981).

Heinrich Bley, "Segmentation and preprocessing of electrical schematics
using picture graphs”, CVGIP, 28, pp 271-288 (1984).

James E. Bobrow, "NC machine tool path generation from CSG pant
representations”, CAD, 17(2), pp 69-76 (1985).

136

[Bro83]

[Bun81]

[Cas87]

[Cha74]

[Che89]

[Cho85]

[Chu8S]

[Cled1]

[Cow83]

[Cyp87]

[Dav84]

[Dor89]

{Dor90]

[Dud75]

C. M. Brown, "Inaerent bias and noise in the Hough transform”, IEEE
Trans. PAMI, 5, pp 493-505 (1983).

H. Bunke, "Automatic interpretation of lines and text in circuit diagrams”,
in Pattern Recognition Theory and Applications, J. Kittler et al. (ed.), pp
297-310 (1981).

D. Casasent and R. Krishnapuram, "Curved object location by Hough
transformations and inversions”, Pattern Recognition, 20, pp 181-188
(1987).

G. D. Chakerian. "A characterization of curves of constant width". Ameri-
can Mathematical Monthly, 81, pp 153-155 (1974).

Fang-Hsuan Cheng, Wen-Hsing Hsu and Mei-Ying Chen, "Recognition of
handwritten Chinese characters by modified Hough transform techniques”,
IEEE Trans. PAMI, 11(4), pp 429-439 (1989).

B. K. Choi, M. M. Barash, "STOPP: an approach to CADCAM integra-
tion", CAD, 17(4), pp 162-168 (1985).

Henry Y.H. Chuang, and C.C. Li, "A Systolic Array Processor for Straight
Line Detection by Modified Hough Transform", Proc. Comp. Arch. for Pat-
tern Anal. & Database Management, pp 300-303 (1985).

T. P. Clement, "The extraction of line-structured data from engineering
drawings", Pattern Recognition, 14(1), pp 43-5Z (1981).

A. E. Cowart, W. E. Snyder and W. H. Ruedger, "The detes n of
unresolved targets using the Hough transform”, CVGIP, 21, pp 2 3
(1983).

R. Cypher, J. L. C. Sanz and L. Snyder, "The Hough transform has O (V)
complexity on SIMD NxN mesh array architectures”, 1987 Workshop on
Computer Architectures for Pattern Analysis and Machine Intelligence, pp
115-121 (1987).

R. Davis and D. Thomas, "Systolic array chip matches the pace of high-
speed processing”, Electronic Design, pp 207-218 (Oct. 1984).

Dov Dori, "A syntactic/geometric approach to recognition of dimensions in
engineering machine drawings", CVGIP, 47, pp 271-291 (1989).

Dov Dori, "Self structural syntax directed pattern recognition of dimension-
ing components in engineering drawings”, Workshop on Syntactic and
Structural Pattern Recognition, pp 88-112 (1990).

R.O. Duda and P.E. Hart, "Use of the Hough transformation to detect lines

137

[Dye83]

(Eji841

[Eng88]

[Fis89]

[Fle88]

[Fuk84]

[Ful81]

[Ger87]

[Gia78]

[Gri90]

[Gue89]

[Han87]

[Hin90]

[Hof86]

and curves in pictures”, Comm. of ACM, 15, pp 11-15 (1975).

C.R. Dyer, "Gauge inspection using Hough transform", IEEE Trans. PAMI,
5, pp 621-623 (1983).

M. Ejiri et al, "Automatic recognition of design drawings and maps", Int.
Conf. Pattern Recognition, pp 1296-1305 (1984).

Jan R. Engelbrecht and Friedrich M. Wahl, "Polyhedral Object Recognition
Using Hough-Space Features", Pattern Recognition, 21, pp 155-167 (1988).

A. L. Fisher and P. T. Highnam, "Computing the Hough transform on a
scan line array processor”, IEEE Trans. PAMI, 11(3), pp 262-265 (1989).

L. A. Fletcher and R. Kasturi, "A robust algorithm for text string separation
from mixed text/graphics images", IEEE Trans. PAMI, 10, pp 910-918
(1988).

Youji Fukada, "A primary algorithm for the understanding of logic circuit
diagrams", Pattern Recognition, 17(1), pp 125-134 (1984).

M. C. Fulford, "The Fastrak automatic digitizing system", Pattern Recogni-
tion, 14, 65-74 (1981).

G. Gerig, "Linking image-space and accumulator-space: a new approach for
object-recognition”, IEEE Ist Int. Conf. Computer Vision, pp 112-117
(1987).

J. W. Giachino and H. J. Beukema, "Engineering technical drafting 4th edi-
tion", American Technical Society, 1978.

W. Eric L. Grimson and Daniel P. Huttenlocher, "On the sensitivity of the
Hough transform for object recognition”, IEEE Trans. PAMI, 12(3), pp
255-274 (1990).

Concettine Guerra and Susanne Hambrusch, "Parallel algorithms for line
detection on a mesh”, J. of Parallel and Distributed Computing, 6, pp 1-19
(1989).

K. Hanahara, T. Maruyama, T. Uchiyama, "A real-time processor for the
Hough transform”, IEEE Trans. PAMI, 10, pp 121-125 (1987).

S. C. Hinds and J. L. Fisher, "A document skew detection method using
run-length encoding and the Hough transform”, 10th ICPR, Vol. 1, pp 464-
468 (1990).

J. Hofer-Alfeis, "Automatic conversion of existing mechanical-engineering
drawings to CAD data structures: state of the art”, IFIP Conf. CAPE’86, pp
259-267 (1986).

138

[Hor89]

[Hos86)

{Hou62]

[Hua85]

[Hwa84]

[11187]

{11188]

[Ini84]

[Jay83]

[Jos89]

[Kar85]

[KaS83]

[KaR90a)

[KaR90b]

[Kri87a]

Alan Horwitz, "Reconstructing a function from its set of tangent lines",
American Mathematical Monthly, 96(9), pp 807-813 (Nov. 1989).

T. Hoshino, S. Suzuki and M. Kosugi, "Automatic input method for large
scale maps", 8th Int. Conf. on Pattern Recognition, pp 449-453 (1986).

P.V.C. Hough, "Method and means for recognizing complex patterns"”, U.S.
Patent 3069654, 1962.

K.Y. Huang, K.S. Fu, TH. Sheen, S.W. Cheng, "Image processing of
seismograms: (A) Hough transformation for the detection of seismic pat-
terns; (B) Thinning process in the seismogram”, Pattern Recognition, 18, pp
429-440 (1985).

Kai Hwang and Faye A. Briggs, Computer Architecture and Parallel Pro-
cessing, McGraw-Hill (1984).

J. Ilingworth, J. Kittler. "The adaptive Hough transform". IEEE Trans.
PAMI, 9(5), pp 690-697 (1987).

J. Illingworth, J. Kittler. "A survey of the Hough transform", Computer
Vision, Graphics and Image Processing, 44(1), pp 87-116 (1988).

R.M. Inigo, E.S. McVey, B.J. Berger, M.J. Wirtz, "Machine vision applied
to vehicle guidance", IEEE Trans. PAMI, 6, pp 820-826 (1984).

S. N. Jayaramamurthy and R. Jain, "An approach to the segmentation of
textured dynamic scenes", CVGIP, 21, pp 239-261 (1983).

S. H. Joseph, "Processing of engineering line drawings for automation input
to CAD", Pattern Recognition, 22, pp 1-11 (1989).

M. Karima, K. S. Sadhal and T. O. McNeil, "From paper drawings to com-
puter aided design", IEEE Comput. Graphics Applications, 5(2), pp 27-39
(1985).

S. Kasif, L. Kitchen and A. Rosenfeld, "A Hough transform technique for
subgraph isomorphism", Pattern Recognition Letters, 2, pp 83-88 (1983).

R. Kasturi et al., "A system for interpretation of line drawings”, IEEE
Trans. PAMI, 12(10), pp 978-991 (1990).

R. Kasturi et al.,, "Document image analysis an overview of techniques for
graphics recognition”, Workshop on Syntactic and Structural Pattern Recog-
nition, pp 192-230 (1990).

R. Krishnapuram and David Casasent, "Hough space transformations for
discrimination and distortion estimation"”, Computer Vision, Graphics and
Image Processing, 38, pp 299-316 (1987).

139

[Kri87b]

[Krig89]

[Ku87]

[Kun82]

R. Krishnapuram, "Hough-space associative processor for pattern recogni-
tion", Ph.D. Dissertation, Carnegie Mellon University (1987).

R. Krishnapuram and D. Casasent., "Determination of three-dimensional
object location and orientation from range images”, IEEE Trans. PAMI, 11,
pp 1158-67 (1989).

Kuo-Lung Ku, "Algorithms and architectures for the Hough transformation”,
Ph.D. Dissertation, University of Washington (1987).

H. T. Kung, "Why systolic architectures?" IEEE Computer, 15(1), pp 37-46
(1982).

[KuSY8o) S. Y. Kung, VLSI Array Processors, Prentice Hall, 1988.

[Kus85]

[Lea87]

[Lee89]

[Li86a]

[Li86b]

[LPJ89a]

[LPJ89b]

[Lig82]

[LinW83]

[LinX85]

M. Kushnir, K. Abe, K. Matsumoto, "Recognition of hand-printed Hebrew
characters using features selected in the Hough transform space”, Pattern
Recognition, 18, pp 103-113 (1985).

V. F. Leavers and J. F. Boyce, "The Radon transform and its application to
shape parameterization in machine vision", Image and Vision Computing, 5,
pp 161-166 (1987).

Andrew John Lee, "Optical processing techniques for satellite pose determi-
nation", Ph.D. Dissertation, Camnegie Mellon University (1989).

Hungwen Li, Mark A. Lavin, Ronald J. Le Master. "Fast Hough transform:

a hierarchical approach”, Computer Vision, Graphics and Image Processing,
36, pp 139-161 (1986).

H. Li, M. A. Lavin, "Fast Hough transform based on the bintree data struc-
ture”, Conf. Computer Vision and Pattern Recognition, pp 640-642 (1986).

H. F. Li, Derek Pao, R. Jayakumar, "Improvements and systolic implemen-
tation of the Hough transformation for straight line detection”, Pattern
Recognition, 22(6), pp 697-706 (1989).

H. F. Li, Derek Pao and R. Jayakumar, "Systolic arrays: present state and
issues", Int. Symp. Computer Arhitecture and Digital Signal Processing, pp
69-74 (1989).

Robert Light and David Gossard, "Modification of geometric models
through variational geometry", CAD, 14(4), pp 209-214 (1982).

W. C. Lin and R. C. Dubes, "A review of ridge counting in dermatoglyph-
ics”, Pattern Recognition, 16, pp 1-8 (1983).

Xinggang Lin, Shigeyoshi Shimotosuji, Michihiko Minoh, "Efficient
diagram understanding with characteristic pattern detection", CVGIP, 30, pp

140

[Mae85]

[McK90]

[Mea80]

[Mer75]

[Mil86]

[Mol82]

[Mur88]

[Nag90]

[Nib88]

|Oka88]

{Pao90a}

[Pao90b]

[Pao91]

84-105 (1985).

A. Maeda and J. Shibayama, "Application of automatic drawing reader for
the utility management system”, IEEE Workshop CAPAIDM, pp 139-141
(1985).

D. S. McKenzie and S. R. Protheroe, "Curve description using the inverse
Hough transform”, Pattern Recognrition, 23 (3/4), pp 283-290 (1990).

Carver Mead and Lynn Conway, Introduction to VLSI Systems, Addison-
Wesley, 1980.

P.M. Merlin and D.J. Farber, 'A parallel mechanism for detecting curves in
pictures”, IEEE Trans. Computers, 24, pp 96-98 (1975).

V. J. Milenkovic, "Multiple resolution search techniques for the Hough
transform in high dimensional parameter spaces”, in Techniques for 3-D
achine Perception, A. Rosenfeld ed., Elsevier Science, 1986, pp 231-254.

D. 1. Moldovan, "On the analysis and synthesis of VLSI algorithms", IEEE
Trans. Computers, 31(11), pp 1121-1126 (1982).

K. Murakami, H. Koshimizu and K. Hasegawa, "An algorithm to extract
conivex hull on 6-p transform space”, Int. Conf. Pattern Recognition, pp
500-503 (1988).

V. Nagasamy and N. A. Langrana, "Engineering drawing processing and
vectorization system", CVGIP, 49, pp 379-397 (1990).

Wayne Niblack and Dragut' . Petkovic, "On improving the accuracy of the
Hough transform: theory, simulations and experiments”, Conf. Computer
Vision and Pattern Recognition, pp 574-579 (1988).

Akio Okazaki et al., "An automatic circuit diagram reader with loop-
structure-based symbol recognition”, IEEE Trans. PAMI, 10(3), pp 331-341
(1988).

Derek Pao, H. F. Li and R. Jayakumar, "Detecting parametric curves using
the straight line Hough transform"”, Int. Conf. Pattern Recognition, Vol 1, pp
620-625 (June 1990).

Derek Pao, H. . Li and R. Jayakumar, "Characterization and recognition of
2D smooth cuives using the set of tangent lines”, submitted to IEEE Trans.
PAMI.

Derek Pao, H. F. Li and R. Jayakumar, "Graphic features extraction for
automatic conversion of engineering line drawings”, 1st Int. Conf. on Docu-
ment Analysis and Recognition, in press (Sept. 1991).

141

[Pav82]

[Pfe85]

[Poe86]

[Pri90]

[PIK90]

[Rad86]

[RiJS89]

[Ric86]

[Roc70]

[Rus87]

[Sak83]

[Sha75]

[Sha78]

[Sha79]

[Shu87]

[Sil85]

T. Pavlidis, "Curve fitting as a pattern recognition problem", 6th Int. Conf.
Pattern Recognition, pp 853-859 (1982).

W. Pferd 111, "Entering drawings into CADDS with the Skantek automatic
digitizer - methods and results”, Proc. CAMP’85, pp 263-269 (1985).

W. Poelzleitner, "A Hough transform method to segment images of wooden
boards", Int. Joint Conf. on Pattern Recognition, pp 262-264 (1986).

J. L. Prince and A. S. Willsky, "Reconstructing convex sets from support
line measurements”, IEEE Trans. PAMI, 12(4), pp 377-389 (1990).

John Princen, John Illingworth and Josef Kittler, "A hierarchical approach
to line extraction based on the Hough transform”, CVGIP, 52, 57-77 (1990).

C. J. Radford, "Optical flow fields in Hough transform space”, Pattern
Recognition Letters, 4, pp 293-305.

J. S. Richards, "Real-time optical Hough transform and morphological
inspection techniques”, Ph.D. Dissertation, Carnegie Mellon University
(1989).

T. H. Richards and G. C. Onwuboln, "Automatic interpretation of engineer-
ing drawings for 3D surface representation in CAD", CAD, 18(3), pp 156-
160 (1986).

R. T. Rockafellar, Convex Analysis. Princeton University Press, 1970.

C. L. Russon, "Integrating 3D modelling and 2D drafting”, CADCAM'87
Conf., pp 233-236 (1987).

H. Sakurai, D. C. Gossard, "Solid model input through orthographic views",
Comp. Graphics, 17(3), pp 243-252 (1983).

S. D. Shapiro, "Transformations for the computer detection of curves in
noisy pictures”, CGIP, 4, pp 328-338 (1975).

S. D. Shapiro, "Properties of transforms for the detection of curves in noisy
images”, CGIP, 8, pp 219-236 (1978).

S. D. Shapiro and A. Iannino, "Geometric constructions for predicting
Hough transform performance”, IEEE Trans. PAMI, 1, pp 310-317 (1979).

D.B. Shu, C.C. Li, F. Mancuso, *7.N. Sun, "A Line Extraction Method for
Automated SEM Inspection of VLSI Resist", IEEE Trans. PAMI, 10, pp
117-120 (1987).

T.M. Silberberg, "The Hough transform on the Geometric Arithmetic Paral-
lel Processor’, IEEE Workshop on Computer Architecture for Pattern

[Smi83]

[Tay90]

[Tsuj78]

[Tsuk83]

[Van81]

[Wah82]

[Wal85]

[Wat88]

[Yam§81]

Analysis and Image Database Management, pp 387-393 (1985).

B. M. Smith et al, Initial Graphics Exchange Specification (IGES), version
2.0, U.S. Department of Commerce, NBSIR 82-2631 (AF), Feb. 1983.

Russell W. Taylor, "An efficient implementation of decomposable parameter
space”, 10th ICPR, Vol. 1, pp 613-619 (1990).

S. Tsuji, F. Matsumoto. "Detection of ellipses by a modified Hough
transform”, IEEE Trans. Computers, 27, pp 777-781 (1978).

H. Tsukune, Keisuke Goto, "Extracting elliptical figures from an edge vec-
tor field", Conf. Computer Vision and Pattern Recognition, pp 138-141
(1983).

T.M. van Veen and F.C.A. Groen, "Discretization errors in the Hough
transform”, Pattern Recognition, 14, pp 137-145 (1981).

F. M. Wahl, M. K. Y. Wong and R. G. Casey, "Block segmentation and
text extraction in mixed text/image documents”, CVGIP, 20, pp 375-390
(1982).

R.S. Wallace, "A modified Hough transform for lines", Conf. Computer
Vision and Pattern Recognition, pp 665-667 (1985).

S. Watson, "Relational geometry - a new generation of wo-dimensional
CAD", Computer-Aided Eng. Journal, 5(4), pp 169-172 (1988).

S. Yam, L. S. Davis, "Image registration using generalized Hough
transform”, Conf. Pattern Recognition and Image Processing, pp 526-533
(1981).

143

