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ABSTRACT

- .

*

A Process Recoverable Multi-Processor System for Solving - o
Combinatorial Problems ‘ o S

«

.

Arun Kumar Nanda - P

4

This - thesis . proposes a process recoverable "i
‘multi‘processor system to solve'/‘!érge combingtorial
probiems. The loosely coﬁpled system Eonsists of mini/migro‘ :
processors and ’théir‘ storage devicgé.interconnected in a L ,’;

4

modified shared bus structure.

LY

In the proﬁosed multi-tasking system, a process is
created in a processor to éxqcute the assigned tqsk‘h@d may

7 .
. spawn slave processes over the system. These processes

communicate amohg themselves by passing messages. Unlike
systems in which processors are interconnected physically in -
a hierarchical structure, the hierarchy in the proposed

" system is logical.

A "Bqddy Scheme"” has been proposed to recover processes

¢ D
im .case of their processor's failure. Under the proposed

o 3

scheme, each pfﬁmarﬁ‘groeess is gaited with a buddy process
-on another processor. . whfle‘tﬁénifimhry process executes
the assigned. task, the buddy process remains in a “stgnd-by".
stagi. In the event of a processor's failure causing
,failﬁre of its primary processes,.their corresponding buddy

\
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the buddy scheme has also been done’ on' an  existing
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' CHAPTER 1

INTRODUCT 10N

'

Until the digital computer is built which
' . never malfunctions, programmers will have
to worry about what will happen to their ,
‘programs if a machine error does occur., te

In the case of computers used as ' integral

parts of real-time control systems "worry"

‘"is perhaps too weak a word. For.a machine

errqr in a, computer in such a system may

not Jjust cause trouble; it may cause

disaster. .
. .

‘ ~ [Ralston, 1957]

In the early days of computing, . computers were single
user maqhines‘ and the wuser had total .control over the
computer system. When a job failed, ‘the results were
discarded and'toréectfve action was taken to rerun thé<job.
Data integré&ty was achieved mainly through the use of copies -
of the 'data. When the job was completed, the user decided

\whether or.not to replace the old copies of the data and/or

l .

results by the newly created ones. Integrity was therefore
enﬁirely in the hands of the end user. Recovery.was rarely

. . ’ P
attempted; it did not seem worth the effort.

»

—_

The wunreliability of early computers caused relatively
little reliapce to be placed on the validity of their

Sufputs, at least wuntil appropriate checks . had been *

3
.

/
{
:
H
i
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performed. Even less réliance was placed on the continuity

of 'their operation, Lengthy and £requent:'pe;iods of

v
?

depntime were tolerated.

~
ow

Reliability was only one of many drawbacks in the early
computers. Speed was another cause of concerns A dedicated
computer maykrequire dayé or even months of processor - time

to sdlve certain mathematical problems. Moreover, certain

i e T e

kinds of probléms, e.g., air and space .related applications
required .computer systems which could provide correct
results uninterrupted 'services., Using a single computer e

!
. e

for such applications was simply not advisable. . () i
X i

Multi-processor systems, . designed as a result of this
situation, consist of multiple computers and devices
interconnected to form a coordinated system. Whileysuch
mulli~processor systems could be designed for applications
with large budgets, they were tog costly for small budget
' appliéatibns until the advent of inexpensive ‘mi;i/miéro
computers made it . possible to buy a fairly significant P

amount of  computing power.

. The objective of, the multi-processor project , at -
Conco;dia\‘ﬂhiversity [Lam et al., 1982], was to develop a
multi-processor. system to solve large combinato;ial
ﬁroblems., The system was required not only to be powerful
en;qgh ;o,ébtain solutions to/a prﬁblem’but also reasonably

. easy for a user to write 'programs to solve these problems.
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The system developed at Concordia [Wong, 1985];
[CabiYQO, 1986] consists of three mini/micro processors
physically connected in a tHOPle;;; hierarchical fone master
with t;o'slaves) structu%eﬂ ‘The master assignk tasks to the
slaves who coﬁpute concurrently with the master and return

the results\to the master on completion of their individual

, tasks. - B

Solving éohbiﬁatorial problems on~suéhnmuiti-processor
'systems'does reduce the computational‘.time considerably.
However, compared to’ ; f siﬁgle . processor /ﬁystgm, a
multi-processor sysfem (without ény‘reCOvery mégﬁanism) is
'more‘ vulneréb;e to failures because of the.involvement of a
‘large number of proceséors and. ‘the >épmmuniéation. ﬁetwo;k}-
Additional 'overhead is necessary for such system in the
event of the failurg'o? any of its indepgnaént processors;
This overhead'is especially significant because a failure of
any processor (slave or master) p#ecuéing ‘a ,£§ub)task
requires the user t@.te-initialize andure-run the taék. Th%
task may héve tp'ﬁe re-;tarted frbm‘”beginning uqlgss thé‘
programmer Ahas‘ designeg‘ the 'program such that it éan<pe

re-started from an advanced stage. -

a

An inherent quaiity of the multi-processor systems -is

that they - can recover from failures. ‘However, to exploit

v

this quality, the system and the applicatibp have to be: -

properly structured and designed. In the case: . of the

failure of a processor, the processor can be -removed from

TP U ERTO RPN

R T

o




. shut-down of thé processor. / o

\ Lo I
the system and availability of a number ofuproce?sors linked

)

_by a communication network, can be utilized in  recosering

) €
£

from the failure. The tasks of the failea‘procéssor can be~

a

resumed on & spare processor or the system can "gracgfully

degrade i.e., the task(s) a551gned to the failed processor

/4
n be added to the load of: the remaining processdrs.

v

Reliability) provided by such & failure recoverable
mhlti:processor system should S@ reasonable bt need not be

as high as reguired in the ¢time critical air borne

Tpplications. The degree of reliability provided in-such 3.

system can be compromised to some extent.

Le

cor ..

> The objective of this’ thesis is to propose a process
. ! ‘ '
recoverable multi-processor system for solving mathematical

» . . 4 : , .
problems of combinatorial nature. The  proposed

multi- proceggﬁr system ' consists of a set of mini/mxcro

processors cognected by a communication network The

processors of ;he system do not shgge the main memory but
S » M

the on-line<auxilkiary storage4of "a processor can be. accessed

by 6ther procéssors in case of failu;e of the -processor.

P .
The only malfunctioch assumed for a piggéssor is 'a complete

)

The #oposed éecovery‘, scheme, termed 'BUDDY ' SCHEME', has

a distributed strugture and is designed such that, in case

of failufe of a ptécessor, its tasks.are continued on other

b .o .
processons. The responsibility ¢f the recovery of the tasks

/ .

T

e * 4
- ""“’**Jw»,;..«f..w ot Smasaan b e fon &
- - E.J -
.
- . \ . .
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s ' .

és not, solely in the‘hands of a centralized processor but is
shared among the-processors of the Syskem. The * scheme' is
desiqned tb',defeCE 'fhe failure of a processor, removélrpf'
the failegd processor, and reconf1guratlon 'f thee system.
' The reconfxggratxon is such that the tasks asszgneﬂ to.the
failed processor are tg}en over by the rema1n1ng prdcessors,
witﬂ @inimumfloss‘of comﬁutetion. A lim ted impleméntion of

the -scheme has also been ‘effected lon "the existing

'
.

multi-processor system. !

>

In the second chapter, we provide an intreduction to the
pulti-processor systems and survey various interconnection
Astrateg1es, with emphasis,on recovery. In chapter three, qe~
mpresent the archmtecture and the recovery scheme of the

propose@ Qult1—prqcessor eystem. ,In‘ chapter four,  a
“Hetailed description of the impleggntati;h of the Trecovery
scheme ‘on the existing mult:-processor is pro<}dedi Chapﬁer

4

flve conc ludes the thesxs. " ‘ ' 4

1N
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. INTRODUCTIGN TO MULTI-PROCESSOR SYSTEMS N :

- ¢

L} . . \

- " The never ending gquest for increased, unintetfupted~
3
processing support at the lowest possible cost and smallest

incremental expansion capability combined with ‘the demand

! l' . ' . . q T
for enhanced user convenience are factors infpuencing the }

. trend towards mult{-processbr systems, The processing and

.
.

reliability - capabilities 95 a multi-prdcessor system are
gréatély influenced’by the interconnection strategiés which _' - f
are employed to construct a muL;i;processor éystgm and by -

) the d;sign of the supporting softyare. . ? o

\ :

The processors of a hplti-prodessor syééem . can be

;: interconnected based on., a master-slave or master-master
| urelationship. Further, a ﬁulti-ptocessor system based on
master-master relationship can be logically configured in a S
.master-slave stfuctureyfor processing of a particular task.
HoweWr, this can be achieved only. by a careful and
efficienf design of the architecture of the system and -the -
supporting software. The architecture and t:: software also

gréately influence the reliability of a ulti-processor

system, -

o
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In -this chapter, we' provide an intrdduction to the
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' describes a commercially available fault-tolerant
_ multi-processor system,
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2.1 MULTI-PROCESSOR SYSTEMS AND RELIABILIT

v
. LY

Consider a computing system consisting of a number of
autonomous ‘computerﬁ‘ (referred to 'as nodes) connected b§ a
.communication network that allows various nodes to 'exchange
. information. A .user- éomputation running on any node can

make Qse of other node facilities by suitable use of -the

L
.

communicgatio network.  Such a system can be termed as a

multi-processor system [Shrivastava, 1981]).
=T

S R

Multi-processing refers to the simultane;us/cbncurrent
execution ‘.o£~ processes’ on independent nodes of a
multi-processor system. Processes represent activities that
.are  themselves burgly sequential ‘but can be executed
concurrently with other tasks in a system. Thé goal of the
response oriented multi-processing is.to minimize system

response time for_éomputational demands. Applicationé for

such system are naturally computational intensive and.can be .

partitiohed into multiple tasks or processes to  run

- concurrently on various nodes of.the multi-processor.system.

P

A multi-processor system is subject to faults in its

independent nodes. A fault is the failure of a hardware or

-

software component . (in any node) that may lead%to a system .

failure or an error that can be detected by a user. A 1list

*

of fault categories can include hardware components failure,

communications faults, errors by users or operators, design

3




¢
§
i

‘absolute reliability is an unattainable goal [Wulf, 1975]. |
X

. .attention ta procedural seturity in. the management of

-

~— ’ S .
inadeguacies and software faults. A node is declared as ) J
» ' '

faulty - if that particular node fails to satisfy the
acceptability, criterion as chosen by some internal or

external monitoring agency.
»

A major feature of the multi-prq;essor systems is their
capability to provide  high reliability. Since-hardvare

malfunction must be assumed to have a non-zero probability,

Achieving high reliability involves careful scrutiny of the

system's roposed hardware facilities, = specific - -
P A

considerations in the software design stagg' and scrupulous

operatiofns. 9

[ []
The reliability requirements o£<~dxff Egifh~fyv1rﬁnments

differs .enormgpsly. One extreme is the case of air andg

space borne systems where only momentary cessatjon of -

(

service can be tolerated and incorrect results are
<

completely unaéceptablg. Alternatively, in many

envirohments, dbgpining' very high reliability ' from the”
) ]

system is not worth the expense because manf other . failure '

‘prone devices, e.g., lcomrminication lines and peripherals,, ' -

are being used or because the cost of . failure is

.

:comparatively low [Randell, Lee and Treleaven, 1978],

P




10
N | .
2.2 FAULT AVOIDANCE vs FAULT TOLERANCE .
~\ . t
The two approaches to attain high reliabiIiéy'Sre'as

follows [Siewiorek and Swarz, 1982]): L o

(A) Fault pvoidance

(B) Fault Tolerance

The goal of fault avoidance is to reduce the possibility
‘of a' failure in the system. This goal is attained by
accquisition of the most reliable components, use of refined
technigues " for interconnecting the components and
comprehensive testing to eliminate hardware and software

faults., - .

~

N

. ' S -/

in the presence of faults and uses some form of reduntdancy
. . 4

to negate their effects. This redundancy can be e}ther

\

hardware and/or software). A system can be designed to be

repetitive algorithms which %attempt to ensure that
occurences of errors do not result in the failure of the

system.

multi-processor system would be to use only Treliable

components, putting them together only in accordance with

o,

Fault tolgraﬂiz\}s_;he correct execution of an é;gorithm/

temporal (repeated executions) or physica; (répr§catqd

fault-télerant by incorporating additional compdﬁents and

The most straightforward way of constructing.a reliable

\
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correct désigns. ‘In pracﬁjce however, one often has to try
to achieve reliagbility despité the unreliability of the
,h;tgware and the software components used. Moreover, one
may be unable to guarantee that the overall system design is
absolufely faultless. Th%s, strategies aimeé _at  fault
avoidance must be complemented byJ strategies aimed at
tolerating the presence of faults. 1t is much more
important to be able to recover from failures than to

4.
prevent them [Wulf,1975].

i

¢

Thus, the major goal in the design of a multi-processor
systems is its high reliability. Mult{-processor systems
offer new wways to achieve fault tolérance; when\ one
proﬁessihg element fails, others may be able to‘aid in fault
detection and recovery. ~ The prop;r choice of the
arcﬁitecture, e interconnect ‘structure and the ‘software
greately inf;uénces the sﬁeed, throughput, responsiveness
and fault tolerance of a multi-processor systeﬁ. Thus a
;eliable and survivable multi-processor ;}stem-must featgre

rgoqg operational design at three levels: the architectural

or .structural level, the processor interconnection level and

>

o

the software ‘implementation level. ’ ‘*iii




" 2,3 ARCHITECTURAL LEVEL S , B / .
‘ . fw@-)—. > '
? * )

The major issue in multi-processor system design is the
choice of its architecture., Basically there are two types

\;f_architecturés for multi-processor: systems, as follows:

"(a) Tightly Coﬁpled (figmre 2-11 . ‘
(B) Loosely Coupled Bfigure 2-2] . i o ‘
' Vo . o :‘
] . ] i} ‘ -
) t
| i
-~ ‘i' Common Memqrg i
1 )
| ' ' »
1 | ] ‘
[} t ]
] \ t
[} [} ]
1 t ] .
{ ] ¥ .
) t ]
f | ]
] } ]
} ) 1 “
o { . -
< ) - ] ]
! b b i ,
| Processor | ! Processor | ! Processor | .
| A : | B P c | 4
] O | 1 } ] |
] I ] ] ] ]

-

~Figure 2-1, Tightly Coupled SystemgStructuré

.
°
S N

Procesqyrs. in loosely coup}ed'systeﬁs are more or less

. independent of each other, but linked together Sy a
communication network; each has its own memofy and ; copy of
the _operating system. In ;ightly coupled systems,
brocessors have a  common ‘clock, common memory and common

-~

operating system as well.
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Figure 2-2. Loosely Coupled System Structure .
. 2.3.1 Loosely Coupled vs Tight.lly Coupled e
The advantages of .the loosely coupled Systemé include :x;:_\
relative ease in implementing a high degree of fault - g 3
isolation. Fault| isolation is designed ﬁ to keep a faulty
processor or incorrect memory segment from corrupting other ;
7 °  system ‘elements, W1t=h looseLy coupled processors, a faulty ' -

processor and its assocmted memory can be isolated w1thout'

affecting the other processor-memory pairs.
o ' .

: The mam dzsadvantage of loosely coupled systems is that
‘ they Qenerally process less effxc1ent1y than tightly coupled
systems. '~ They require, more extensive . 'cqmmumcations -'
. ér:otocol between processors, which reduces efficiency.

. ) 7 : \
o ' PN N .
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Although fault-tolerant systems, which have been.tightly

. coupled or have used some ®form of tiéht coupling in their

efficiencies; there exist drawbacks related to the common

-
n %

‘memory. For -example, the membry hardware is typicaily

non-redundant and is thus a potential single pqipt of
failure that could affect the whole system. Hard meﬁoﬂzv

failures, in which a segment of memory ceases to respond to

\\\read or writé commands, can be problematic; the failure may
AN .

. /
- - affect all processors if it occurs in a key .piece of

v

. e
’ software, such as the operating systems. Also, if the data
in the main memory is corrupted then it can spread quickly
to other processors because the main'\mgmory in’tightly

ceupled gystems is accessed by all processors.

- - 3 -

The .inter-processor interference of shared memdry in a

tightly .coupled system can also significantly degradel

. performance of the system. A botéleneck situation may
éevelop if several of the processors need to use the shared
memory simultaneously. Two technigues are used to minidize
- such’ memory interference. One is the use of cache memory

and the other is use of replicated shared memory structures.

Cache memor} ¢an be used by bach\processor‘to pold often
used progréms. " This reéuces: the number of times the.
processor needs to access the. main memory, Repiicated
memory cbnsists of a 'set of memories; one for each

.+ processor, with'identical contents. Use of such repliéated

architectures, generally have better . processing

t
i
i

o
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<

memory units allows reads to.occur concurrently since each -

. N
processor accesses its own.copy. To maintain shared memory

‘consistency, "WRITE" updateé ail copies “in parallel; The

" "WRITE" in such- a scheme requires arbitration .and

. . synchronization, Both of these schemes increase

bd A . —"’—-{‘ o~ . . X . . " -,
.multrfiggcessor throughput = because of . decreased

A, " e . '
_ 1nter¥pr6cessor interference. . ‘:ﬁ

Strategigs’fot'dynamically tYeconfiquring shared memory

multi-processor. systems, that are subject to common memory

-

‘faults- and ‘unpredictable . processbr failures, have been

investigated . further by [Clarke and Nikolaou, 1982), These

strategies aim ‘at determining a page GE common memory - that

A

.can be used bx a “group éf.processops for storing crucial
common resources while &hey aftempt to arrive at a cpnsénsﬁs
on the appropriate reconfiguration of the system through

+

varidus voting procedures. ’

. s

e
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- -~2.,4 PROCESSOR INTERCONNECTION LEVEL )

® |
- ,The processors of a multi-processor - system do not .
compute in i;olatiog,~'bﬁt distribute the'processing of a
v task among them. This generates a general requirement that

thelprocessors of a multi-processor system shpdld be able to
communicate among themselves and with shared resources, if

i . any, such as memories and secondary storage devices. The
N ' )
inter-processor connection defign is an important component
" . - (3 »
o ’ 6f a multi-processor system becausé in most cases the

system's fault tolerance capabilities depend directly on it.

/s

I . A lipk or ihterconnect‘g: in a multi-processor system is~
; ‘ .a path controllédl by the software. or the hardware in
contrast to a physical link that consists of a combination
h‘/P of electronic circui;s[ connectors and cables. .The_set of
T ¢ all physiCdl links to a single de¥ice or computer is also
termed as a l@gica} channel. Through éﬁitching -lnormallyz

under software control, a device or processor can be

connected to one of several phyéical channels or links.

Thé interconnection between two or more processors in a*
multi—procéssor systeﬁ can be either dedicated to meésaée
passing between two processors only [fiéure 2~3] or shared
among several ﬁroées;ors with access from more than two

4

pbints [figure 2-4].

¢ e

S e e
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Based on  ‘these features, several processor

interconnection designs have béen proposed. Among thgsavaf%

-

TREE STRUCTURE (fidure 2-5], STAR STRUCTURE [figure 2-6l,

and LOOP SRTUCTURE [figure 2-7].°

N
' Processor )
A S
4 -
N
I .
Processor | .| Processor
- P R
| ' ,. N
. | Processor . Processor l Processor Processor
) D - E ’ F ‘ . G

Figure 2-5. Tree Structure
*,

rA multz-processor system based on the loop structure.

for processor interconnection, consists of a unidirectional

b ]

communication channel which is arranged as a . closed loop.

Nedes, such as processors and peripherals can be attached to

‘the loap channel by a looﬂginterfaoe. For a message to be

‘ °

,passéd from one processor to another, the message is entered

on the ring: by the orzg1natgng processor., The message

.

1

" e bt "o
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destination processor. When a processor Pi wants tosend a - . | ¥

. processors and the leaf processors are the slave processors. -

. The' master proecessor may divide a given task and distribute

20 ;o ) I

i

, . . . ) i
v . . i 1

travels around the ring until it either reaches the v
| !
!

déstination node or returns to the originating node.

-
N o

'

Y

In a.  multi-processor system based .on a star

'configuration, one proiissor forms the centre, acting as the

system control switch, Aith dedicated lines to all others
précessors. . . . R

For message passing in a multi-processor —system '

’

structured as a star, the originator processor uses the

systehm control syitéh proceséor to establish link to the - o

message to another processor Pj, a request is sent to the .

v

system control switch. The~systéh control switch, in turn, .

checks if its path to the processor Pj is clear and if so,

, establishes ‘a path between Pi-and Pj, otherwise Pi must wait

for' the requested link. The star, onfigurétign can be

expanded into ‘hierarchies, where one slave processor can be
o 3

a master proéessor for another star confzguratlon.

¢

R

A " hierarchical configuration consists of processors|

interconnected in a tree structure, Messages are passed.

vertically between _various levels of the hierarchy. In a

three level’ hierarchical - multi-processor system the

' ' processor at the root level (level 0) is known as the ‘master

Processor, those at level 1 are known ‘as the intermediate

\
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it among the intermediate processors. The intermediate
processors maf' further subdivide the ‘'sub-tasks '~ ‘and

distributéithem to their slave processors.

E
- .

These three configuration strategies for interconnecting

processorg to form a muti-processor system have their own
angatagés and disadvantages. With the loop configuratiqn,
the problem of\messaée‘passing is éolved, since there is
only one path for the message to follow but the loop is very

vulnerable to jailures of the interface because of its

serial organization. In a star configuration, a bus failure’
between any processor and the central switch will only-

disable the processor connected to the failed link. The.

disadvantage of the star coffiguration is that the central

h processor can cause bottleneck and, in case

A

v
ure, the multi-processor system reduces to a set

-

of its fa/

of .independent processors. Intermediate level processors .

failure in a hierarchical configuration can cause the entire

. sub-tree to be out of--the muti—processdr"system. The

failure of the master processor can cause loss of the entire
system. P

13

Numerous modifications have been made to' these basic

"interconnections to, improve performance, to reduce

disadvantages‘?and for inclusion of recovery capabilities.
The reliability of the loop networks can bé increased b;
providing .a standby loop that parallels the main loop
[Weitzman, 19&0j. T ‘ -

w

°
Ny - %
+
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”daxsy chain loop network” has been proposed by

chain network [figure 2-8), each loop interface is connected

to four neighbour interfaces. A daisy chain network is more

fail before a node becomes disconnected from the loop.

’

»

-+ Figure 2-8. Daisy Chain Loop’ Network
(Grnarov, Kleinrock and Gerla, 1980)
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[tharov, Kleinrock and Gerla, 1980}. In the proposed daisyr

reliable than other loop networks because four 1links must -
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Redundancy can also minimize the loss in case of

hierarchically configured multi-processor systems, At one

éxtreme, redundancy ‘can double all communicétion paths as

well as the number of processors [figure 2-9].
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Flgure 2-9, A Fault-Tolerant Hierarchical Structure
*(Weitzman, 1980)
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2.5 SOFTWARE FOR FAULT RECOVERY

T singie ‘independent processor is controlled by" ah»

_operating system that consists of the following:

(a) Control Progféms

(B) Processing Programs

‘
12 A

Control programs manage the use of system resources,

r

LI

provide easier access to and more efficient. use of the

'phgsicql resources and perform data management. They

usually contain a scheduler that allocates CPU resources to:

processes; activates, suspends and destroy processes.
Processing program performs memory management, input and

output contrel, managemeﬁﬁ'of'étorage media among others.
i . . ’ ) ' i
. Thus, a single processor operating system is a
- o\- '
collection of programs that organizes a. central processor
unit and "peripheral devices into a working entity for the

development and execution of applications program.

The operating system for a multi-processor System'

differs 'from that of a single processor system, in both the

control and processing programs areas. Often, control

programs in (f multi-processor system must‘qot only managé

resources in the resident processor but also  on the

‘interconnected processors.

v

N

.f’
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' 4 tightly coupled system requires a control structure

and control mechanism quite different from a loosely coupled

.

system, The  ‘former, shares system resources, - requires

T

o 1
various mechanisms to resolve conflicts and contention, The

loosely coupled systems require K better communication
\ !
capabilities between the processors.

A multi-processor system software must also be able to
/

provide features such as diagnostics and recovery procedures

beyond the resident processor.” In case oné of -the processor
in the system. either stops - or starts,generﬁting f;ulty
messages, other proce;sor§ must detect this‘ and take
appropriate  actions so that the system'céq recover from the

fault and reconfigure itself,

‘

One of the most criticél‘system control functions of a

mqlt}-processor ‘system is to provide coherent communication’

between the system components such as input;output devices,
secondary storaée and proéesses residing at diffgrent
processors. Each. process may have its own data structure
énd‘caa be independen;ly schedulgd for exécuti&n on a ginéle

processor. In addition to communication between processes,

B ~

the operating system of a multi-brocessor system must also

provide across-the-system program’ development suppoff

capability and overall system security features.

“

A

P —"
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2.5.1 Fault Categorization .

it
Faults can be divided broadly in-two grpuJ;: software

faults and hardware faults.

Software faults are induced by such mechanisms as
undetected har@ware faults, }atent -program bugs and
e;roneous data enteries.‘égneré§ed through administrativp
errors. These faults result in mutiliatedudgta‘values and
incorrect execution 'sequences whose effect is pften
propagated, sometimes to catastfpphic' proportipps,

throughout the system [Kane and Yau, 1975].

Hardwate faults are caused by hardware compongnt(s)
failure. It could -be a memory failure, failure of the
physical link between the processors or even shut down of a

node due to failure in its poﬁer supbly,

2

Most of the multi-processor systems _ are  made

3

féult-tglerant by providing fedundapt software and hardware.
Whereas tightly | coup éd systems reveal a variety of
approaches ranging from| primarily software to primarily
hardware, in most loosei‘ coupléd fault-tolerant systems the
emphasis is on software. Wﬁile in some multi-processor
systems fault tolerance is the responsibility of a central
supervisor, in others this responsibility is shared among

the processors.,

&

i




2.5.5lhchieving Fault Tolerance r .
- . ' i al ' . i‘
Achievement of fault tolerance can be divided in the

following three steps:

Lo

(A) Fault detection °

{B) Reconfigura;ion“

(C) Fault recovery .

a
»

Fault detection is the fir§t step in fault tolerance
implementations.” If an. occurance of a fault cannot be

de;ected, its resulté can be éataStrophic to the system, An_
o£2urrence'.of a fault can be detected by“che;ks made by the :
fault detection mechanisms. Such checks could be performed
either by the brocessor itselt or{ by an independent .
processor, éhebks.éerformed by the processor itself'hcan
include duplicating all cohputations and comparing their
results. In case of inconsistency, the processor can decide SR

either to repeat the computat1on aﬁé validate the results or

to halt itself. In the second “type of testing mechanisms, a

procéssor is testéd by an ‘independent processor. The
simpleéi of such tests allows a proceésgr to send a meésage
to another processor. If no acknowledgement is returned to
the sending processor’ within a fixed éime’.period, the
requested processor is declared as unavailable. The basic , ti}

purpose of the fault detectlon mechanisms is to: enagg; the

\

reconf}guratxon strqteg;es.

’ - ' . . ' % )
. 4 '
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‘processors of the system.

The detection of an occurrence of a-fault in a processor
’ )

may  require reconfiguration of the system. Whether a-

reconfiguration is necessary depends on U-ne nature of the
v R

fault. Transient or intermittent software faults can be
recovered by the repetition of the failéd'fprocess.
Permanent %ardware faults require requal of thé faulty
processof, and the reconfiguration of the multi-processor

- »
system.

Two techniques -are used for neconfiguration. . One, -

involves use of a "stand- by“ spare processor and the other

1nvolves the reallocat;on of the work load to the remaining

+
’

* In the "stané-by“' spare ﬁecﬁﬁiéue, a' previously idlé
processor is directly~sub§tituted for the failed’ proceséo;.
Thg plugged-in processor takes -over kthel tasks of the
plugged-out "unit and the workload of the rémaining
lprocessorsﬁ‘remains unaltered. Consequently, there is no

©

degradation of service.

3

In the secondﬁtechnique, the faulty processor is ipmoved~

from the system, and its tasks are distributed among the
remanining processors. This technique necessarily involves

some degree of performance degradation, but 'all processors

' of the system tan bé used.to solve’a problem, whereas use of -

the "stand-by" .spare technique requires that some processoré

remain idle.
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'.Seéeral.lbosely coupled systems fely',for their fault
) tqlgrance‘ on a strategy pionéered by Tandem Corporation in

its multi-processor system, Tandem-16 [c.f. section 2.6].

—

L d

2.5.3 Task p‘storgtion
o . -
D ~ The rapid and smooth'reséoration of a system after an
- error ‘qf malfﬁngtion has been detected is~alwaysla majo;
design and operational goal. Once the recovery fro; a
malfunction is to beg%n,'the problem ariées as to where to
.restéré the task. The time lost in rerunning the task may

be substantial and,” in some applications critical. As such,-

it may not be feasible to rerun the entire task, either on

. account of time limitations or because the required data has -

) been modified. . . h ' S s

“

A better strategy is to maintain rollback points (also
-« . called check-pqints) within, the task where certain task and —~
processor statug information could be saved. The saved
R . information is the one - which is. requifea fog the

?
; i
for ‘ computations to proceed successfully. : N a AR
- v }
1
i

A state at’any stage in the processing, is defingq as \\\
the informatién kvériablqs, data, prpérams) wpich may be
subsequently used by the task. Saving the state of a task
is the processl of storing the staterin Secondary‘st§rage

such as  a large core storage unit, a drum or even magnetic

tape.  .Clearly, the time ‘spent in- saving a state is

‘propottioanal to the amount of information that has to be

v
¥

”
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;///;opied. Loading a Tting all %
f
/ ‘registers, primary and secondary storage'etc. to the values ?

%

stored in taﬂm when the state was saved.

.
Recovery timeigan be reduced by saving states of a task,

at intervals, as th§ task is péocessed; if an error is

detected then the task is restarted from its most recently

.saved*state. If the states are saved - too frequently, an

unnecessarily large amount of time may be spent in saving

——
"

states. Alternately, if the states are saved too

infrequently an unacceptable large recovery time may result.

Rollback points .can be established. by two differeq!’

W techniques. Either the programmer estimates the tagk

%

> requirements and specifies where to insert the rollback

'pdints or the rollback points are inserted by the operating

system at periodic intervals, irrespective of the task.

.The-xégcision to insert rollback points clearly depends

~ N

. on the importance of speedy error recovery i.e., the penalty

i
{
| %
1
{
l}

incurred if a program does not 'run to completion in a
prescriﬁed amount of time. Programs with short processing
: times may no£ need rol¥Back at all. Thus, a program ;hat is

" vorth aQalysing for tailor made rollbacks must have the

following characteristics:
< , ¢ R

(A) The program must require a substantial amount of

processing time. ©oa




R+ " ¥ N R ... .

<«

‘'their multi-processor.architecture to

work queue.

(B) The appl:catlon of the- program must be such that the

restoratxoo of a fa1led task is crucial.
[ Y

The fault-tolerant systems

increase throughput
1 4
under non-fault conditions. JFhe.efficiency of the system's

matching 6; processing tasks to processors depends on the

load balancing scheme used., .In a tightly coupled syst

all tasks awaiting execution can be entered into

queue. When a’processor»iS'ﬁn ideal stat turns to the

r

-

. \
The opexating system may restrict

inorder to enhance thexr eff1c1ency.

A

be based on the size of some tasks to be performed or on the

4]

processor 's other activities.

may also take advantage of

certain brocesSorg .

These restrictions may

(24
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2.6 FANDEM-16 : A FAULT-TOLERANT MULTI-PROCESSOR SYSTEM

This .section examines a commerciadlly- available
.r

A . '
fault-tolerant multi-processor “gystem, . Tandem-16

[Bartlett, 1978] [Katzman, 19771, The loosely coupled
Tandem system is prxmarzly meant for commercial applications
reguiring on-lzne transaction processing, such as airline

At

reservations. \\\ .
4

The Tandem-16 systemycons1st§ of up io 16 processors
‘1nterconnedtgd by dual 1nter-processor buses [figure 2-10].
Each processor has ,its own power supply, memory and
inputfouﬁput confroller. Each .input-output controllor is
connected to two different ‘input-output channels, 1/0

devices such as disc drives are connected to“two different

1/0 controllors.‘ Disk mirroring can be invoked, where ‘ the

°

operatingasystem automatically maintains identical copies of

the disk. As a result of this duplication, failure of a.

disk or 1/0 controllor doés not causes any loss of data.’

¥

;rocessor.. The message based operating Eysteh isolates the
user proqesseg“ from confiquration details. A us€r process
needing disk servicé; for example, addresses# a message to
the disk server process. The operating system determines

the location of the requested resource and “routes the

’message accordingly. Thus any 1/0 device or resource in the'

-

A copy of the operating system resides in each

. S
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system can be Yaccessed by a process,

resource and the process reside.

~
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All processes follow the pfocess—pair mechanism, where ’ .
each process is’ created in two dlfferent CPU's. On one CPU
it is the primary process and on the ot%er 1t is a backup

process. The program is executed only .on the primary

process and remains in a "wait-state"™ on the backup process
except when the backup ia receivihg checkboiﬁt dntormation r.
fram the przmary processﬂ The prihary process sends the
checkpoint information to the backup process periodically; | |
this  communication is tranSparant to the wuser. The .
checkpoint information defines. the current state .of the

primary .process and consists of all necessary data

~

mbdifications to synchronize the backué process with the

¢

primary process.

Each 'processor in the systenm broadcasts a "I M ALIVE"
',message at a regular interval. 1If a processor runn1ng the
primary process fails to broadcast -such a message{ ﬁhe‘
processor on which the backup process resides, detects the
fault immediately and transmits an enqhiry tonthe processog.
If there is no response.'the backup process transfers the
- process to itself "and becomes the primary process. The
backup also finds another backup for itself in another
processor and brings it ub to synchronization with itself,
If the backup proceas (now primary) attempté to repeat 1/0
operations successfully completed by the prlmary process :1 ‘
(before failure) then the system £11e handler detects it and

sends the process a successfully completed I/0 message.
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CHAPTER 111

A’ PROCESS RECOVERABLE MULT]-PROCESSOR SYSTEM

FOR ‘COMBINATORIAL PROBLEM SOLVING

o Ry \‘

. ZThié’_i chapter _proposes a process recoverable
mulpi-proceésor system ;sr solvipg‘méthématical problems of
combinatorial nature. The loosely cpupled architecture of
the p;;posed system allows any‘logjcal inte; onnection among
its processors. The"- ﬁodel émplpyed 'is\ that of a %ully

distributed, multi-taskiﬁg system ' in whiqh tasks may be

divided into sub-taski\izf/gssigned to various progcessors of
the system, ‘ '.

The recovery scheme proposed for the §ystem utilizes the

large number of processors available to recover tasks of a

: . »
failed processor. The tasks are taken over by the remaining

‘processors from an advanced state of computation. The first
. ' ' .
section of this chapter discusses the combinatorial problems

L]

. and multi-processing, and the section E:Z presenis th;g
proposed récove;y scheme, Thé architecture of the proposed
system is discussed in section 3.3, and the ;equjrements for
the cémmunication network are presented in séctioh 3.4.

\ ‘ .
1 .
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3.1 Combinatorial Problems and Multi-Processing

’

While the solution of some combinatorial problem;‘
involves  simple  integer a;ithmeti&:ﬂ " the number of
computations involved can be so enormous that it may take
weeks or Serhaps even months of a dedicated processor's time
on a typical mini/micro combuter. A common feature in most
of ti)mese problems is that they can be decomposed.ingo a
umber of sub-problems. These sub-problems are independent
of each ‘other and ' can be computed in parallel. Each of
these sub-problems can in its turn be diviéed into further

-

sub-problems and thus become amenable. to solutions-on a tree

~

structured multi-processor system.

‘A task can be assigned to a processor (master) which
W * - . .
divides the task 1into sub-tasks and delegates L other.

processors (slaves) to solve kthese sub-tasks. The slave

processors may in turn act as masters and further spb-divide -

the task assiéned 'to them and use other processors to solvé"
these newv sub-tasks., A‘ master obtains the results from its
slaves upon the completion of the slaves' task. Thé
communication requireq for @uch a system is limited.to the
master sending the sub-problem and its assocjated data to
the slave at sub—task execu‘tifon start-up and receiving the
results uSon the sub-task®s completion, The volume 'of data
transferred between the maslter and the slave processor in
such a system ‘is small in comparison to the éompu,tation time

required to Solve the sub-problem.

|
i
!
i
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. ) s # . {g ’
As specified in [Lam et al., 1983], such a system can

appropriately be used to solve problems with the following

characteristics: -

(A) They are processor bound; the amount of calculation

required is large in comparison to the amount of

input and output.

(B) They can be partitioned into sub-problems which can

'be solved independently from each other.

* (C) Most of the calculations can be done using. 16-bit’

A

integer arithmetic.

Tﬁe architectural ' emphasis of the multi-processor
) Eystem, propoéed'b§ [Lam et al., 1983) and implemented by
.,[wdng, 1985] is on- the logical rather than physiéal
donnecéions between the pro;essqf@. However, éhe'processors
of tﬁe’ system are phy§i§a11¥ coqneéted in a hierarchical
structure,i.e. a processor is declared as master or slave at
the physical 1level, with no communication possible between

9

the slave processors.,

The main drawback of the implemented system is 'that it

has no built-in recovery capabilities. In case of a

processor's failure, the entire system is halted, ‘the failed
processor is removed from the system (depending on the type

of the faylt) and the system is reinitialized and restarted.

a'@

,\\\\.

P

PESPER
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, Jhe multi-processor system proppsed in this chapter has

the capability of recovériﬁg e tasks assigned to a
malfunctioning processor. The malfunction assumed for a
processor is complete failure of ‘the processor. The loosely

3 .
coupled architecture of the proposed system allows any

logical interconnection among its processors. A processor
is assumed to be caﬁable of testing any‘éther processér and
iﬁnturn be teséed by any othe; processor of the-Eystem. The
model employeq is that of @ fully distributeé, multi-tasking

system in which tasks may spawn sub-tasks.

-

In order to make such a multieprgcessor'system failure
recoverable, it is necessary to develop a recovery scheme
which® detects failure of a ptocessor, removes the failed

processor from the system, utilizes the remaining processors

’ -

to reconfiguré the system and recovers the task(s) of the

failed processor. The proposed system uses a recovery

scheme named "BUDDY SCHEME" which depends on the mutual

e

cooperation of - the processors, to execute the . above

mentioned recovery functions of the sys{;m.

The - proposed recovery scheme is suggested for systems

with a limited number of homogeneous processors. Systems

'S
with' large nuymber of processors can be divided into smaller

groups of homogeneous processors and recovery can . be
ld B .

provided within each group.

o

Y

e s e .

[




" not know this difference.

*

3.2 The Buddy Scheme .
' -

~ A primary précess PPi is created in a processor PRi to

pefform'the task assigned to PRi. PPi may sub-divide the

assigned task sinto sub-tasks and request the supporting

software to .assign these sub-tasks to processors. ‘The

supporting software (includes operating system) acts.upon

tﬁE requests and attempts’ to distribute the sub-tasks evenly

among the processors of the system. In each processor which
Al A

is assigned a sub-task, a primary ‘process is created to
! ]

perﬁorm " the éséigned' (sub-)task. Each of these primary -

. * -
processes.is a slave process of PPi.

Since the system has a multi-tasking environment, moére

thaﬂ\'one primary processes may be resident on the same

processor at the same time. Moreover, two primary processes

resident on the same processor may be logicaily related a

‘master-slave i.e., a sub-ﬁ%sk created by PPi can be assigned

to PRi,

The primary processes interact among themselves by

passing messages. The communication network is used to pass

messages between .primary processes residing on different
: N ES .

processoérs and may not be used for passing messages between
primarpy ,proceSSeé residing on the same processor. Such

local message-passing can be achieved faster in the memory.

However, the processes involved in the message transfer need °




With the implementation of the primary processes and the
use of messagps-passing: for communication among them, the
proposed system can bg viewed as a set of hierarchically
related processes which may interact with each.other via

8

& 1
messages, irrespective of their location.

«

. Under the buddy scheme, for each priﬁary procéss .
created, another process termed "BUDDY PROCESS", is created .
in another processor of the system. While the primary
prbcess berforms the assignéd task, its cérfesponding buddy

) process remains in a "stand-by" state, ?hé detection of\‘a

- »

processor's failure prompts the take-over of the primary

tasks assigned to it by the correspoﬁding .buddy processes -

residing in other processors. . o : :

1f K primary ﬁrocessés are resident on a processor than

theif corresponding K buddy processes need not be on one

o ' ‘processor only but can "be distributed evenly among the
processors ofcthe system. The data structures ané the
algorftﬁm "algol"™ given in'appehdix A, can be used by the

(’guddy

" supporting software to choose the processor where the
process be created. For obvious réasbns, the‘primary and
its buddy proéess ~should "not be resident on the same
processor.. The processor with the pr{mary‘process is termed
as thelprimary pfocessor, and the processor on which the$

« MJbuddy’process isiresident. is called the buddy processor. " .
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Each r.processor in the system maintaigg a PROCESSOR
STATUS RECORD of the following form for each processor of |
the system: ' B .

{processor id, processor *st'atus (Alive/Not_Alive)}

and a PROCESS STATUS RECORD of the following form for each

process in the system: C '

[N

‘{process id, primary processor id, buddy processor id}

These status records can be used while assigning a task to a

N 4 N 3 - . [
processor and// in recovering ~ processes, 1if required

lc.£. appendix A], ‘

Each proceséor in the system broadcasts a "I AM ALIVE"
message over the communiEatior; network at a .regull‘ar interval
_and this message is picked up,byo-the t}iier p'rocess‘ors of the
system. Also at a regular interval, each processor c¢hecks -
that it has received such , @ message from every *other

processor in the system, Absence’of such a Ypessage from a

re- of that processor.

- The recovery scheme-also probo es thg’t the ‘pro‘cess state

_ procefso'r can be interpreted as faj

be saved at a reguiar interval to allow process execution to
recommence, Ef needed, without a cofiplete restart and with -
minimun loss of the acquired information. The technigue.
proposed for the process restorati is the "Backward Error

‘ Récovery Scheme™ [Randell, 1975].
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The backward error recovery scheme, also termed

R - check-point techniqde requires proéess-state information . to

be recorded as the process executes. ZThe recorded

information is used to resume the interrupted brocess ‘on. -

| another processor, from the last check-pgint. | , ‘

The backward error recovery scheme can be implemgﬁted in |
software and requires minimal Zérdwafe éonsideratiéns. The
N scheme .results from a combination of check-pointing and ' |
rollback. 1In check-pointing, a subset of the process state
is saved at deveral points during the executipn of the

' process. Rollback is part of the actual recovery process

and occurs wafter the reconfiguration of the system. The ‘

rollback consists of resetting the' process .state to the S

& Sstate. stored at the latest check-point. The total loss is

the .computation time |petween' the ‘check=-point and - the

S -rollback. ’ ; ' .
i/ . . o - . X2
/' B . . ) ]A

7 “ The impleméntation 6% the backward error recovery scheme R
‘ raises the following issues: / *
. 1 v
i - (A) what information must be backed up for proper e
| - assurance of ‘successful rollback. : ‘
, ( \ L e
i~ (B) Where should ‘tﬁe information be'sto}ed so that it ‘ \
p - can,be acéeSseé by the buddy process, in the event | .

of the. primary processor's failure.
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9

s o,

~

(C) At » what point should the ‘information be’
" check-pointed such that the,compulation time befwgen
the —check-point- and the rollback is within

L ..

' reasonable bounds,

A . s

o . ' Atterfdant ‘to the above is the issue . of 1\
* communicating cencurrent processes, If one process
is rolled back, any other process vwhich has

' ' ; communicated with it since its last Ch&Ckpri?f“mﬁLt

ﬂg.’ also Be;rolled back. This gives rise to a "Doniino
Effect”™ [Randell, 1975), which causes multiple

rollbacks throughout the system. : ‘ >

The information td be stored is the subset of’the system
. state (data, programs, machine state) that .is necessary for

f ‘ the continued ekecution and successful completion of the

& L

~ ' process, past the cHeck-point. The amount of information o

e ' :
which has to be check-pointed is that which is not backed up

by any - other means and must be minimized;‘ Several
strategies have been proposed by [Mcdermid, 1981] for .
recording. chec;-ﬁoints. A highly optimized teéhnique has
been proposed by [Horning et al., 1974]. This technique, l 4 .
called the "recursive/recovery cache™ consists of recording°

%heck-poiﬂts in such a way that a minimum of recovery data

is maintained: . . )

"

Various techniques can also be employed to store the

-check=point information. The most popular technique is that

N

. - ! : \\ |

Vo
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by which the.check-ppint informatibn of a primary process ‘is .
stored with anothér process, as in Tandem-lé. T£e result is
that the check4point of a procéss is maintained in aﬁother
processor and the communicafion network is .used to store the
check-poiﬁt. "

»

The“ . proposed . recovery scheme -‘emp}oys a, different %

!
.technigue to store the check*points. It is designed so as

not - to increase the load of thé communication netwafk.
Also, the scheme makes an assumption on the architecture of
the system that either the on-line-auxiliary storage is

shared among the processors or in the case of a processor's

IR PRSI Ur ST DI

= - failure, its on-line auxiliary storage can be accessed by

other processors of the sysgef. . ' : *

3

In such a \mblti-processor system, the check-point

. ~

information need not be sent to the buddy process but can be ‘.‘;;
. .

stored on the on-line auxiliary storage of the :primary v

processor it;elf.' In the event. of the primary processor's o .

failure,o its buddy prgcessors can aécess its on-line ‘

auxiliary storage for the latest check-point. This o

£echnique also helps in solvihg the problem of . multiple
. failures because no matter where the buddy process is (i.e.

the process taking over the task is resident), it can access

-

the- latest check-point. Obviously the check-points must be

stored such - that they are protected against faultsd.
e . .
Multiple copies of the check-points 'max be stored on

,physica&ly separate magnetic ﬁgdia and they may be writfen~

. -
. o .
N .‘g A}
’
. L R
'

“

r
rl
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by such a mechanism which ensures’ that writing a :
' check-pointing is recoverable. _ \ @

\ '

The last issue of when to check-point a process and its

y

> associated issues of domino effect and multiple rollbacks

have special significance in the proposed multi~processor ' e

system.8 Due to the logically hierarchical structhre of the

system, a process may ‘create slave processes in other

1 . ' . .
processors which may further create their own slaves and so

(2]

. N \
on. In the event of a processor's failure, it should be

possible to recover its'processes without akfecting any of

¢

their slave ' processes. Since .the inter-process

' communication ~in the proposed system is limited mainly to

+ ~

creating a slave process and toé r'ecgiv’i'ng results from tlhg,\
slave pr’ocess; .~the recovery scheme 'proposes that a process - |
-b;e check-pointed at a regular interval and wvhenever iot ’

creates a slave process or receives results from its slaves. /:
This technique assures "tha.t multiple rqllbacké will not be

required and only processes of the failed processor need be

", recovered, : ﬁ :
o © !
, . ‘ o
-3.2.1 Recovering from Single Processor Failures !
2 As soon as failure of a processor is detected, - the . —
' following seguence of actions takes place:: .
) ' . : ’

- (A} Bach of the remai?g processors modifies ithe
processdr status re corresponding to’!\he failed

processor.




(c)

(D)
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The buddy's of the failed procesSor's primary
processes are enabled to take'over the téé&, access
the last check-point saved by the primér&'process,
create theirsnew buddy processes and save _their,

current state.
’ ¢

A process taking over a task, broadcasts a qggsage

specifying the change in the status.ofgthe process.

. The remaining processors of the system pick up the

broadcést‘messgge and update there process status

records.

The primary processes which had created buddy
£ R

processes in the failed processor create the

replacement or ‘the dupliéatg buddy ptocessesf

]
L]

We explain it further by the following example:

.t

3

Suppose a three processor (Pi's) system is currently

N :
executing six processes (Ti's). The information stored: as-

- /

part .of the processor status record and/;he pfocess'stafus

record isishown in ﬁigure'B-li)gnd the hierarchy formed by

A [y
. the processes is shown in figére 3-2,. s

+
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§ T ° Pl . P2
Pl Alive - . T11 P3 PRl
P2 Alive " . Tl2 P2 P3, ..
P3 Alive ' : Tl Rl P2
, ' ' T112 P3 Pl
T21 P2  P3 -

Figure 3-1. Processor 'and Process Status Records

(T1/P1)

L t ] . |
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b ‘ L21/P
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F{gu:é 3-2. Tésk((proceésor) Hierarcﬁy
The féilure of the;proqessor‘P3 in su;h,a.syétgmawili
.pfombt také err gf’th& t&sks T1l aﬁd Tllzlby,Pl énd ‘éhéif, ,
byédy processes will Sé created on P2, Buddy‘processés Qf
712 and T12] are also feaséiéqed (teéreat;az\on Pl. The ney
status’ records and the hie;archy‘is'as,shounlin‘fig:re 3-3

’

and figure 3-4.. -, S

g
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P2 Alive , .. T2 . P2 Pl
P37, 'Not_Alive =~ - © T111 Pl, P2

T1l2 Pl P2
T121 P2 Pl

1

Flgure 3-3. Processbr and Process Status Records
S (after failure of P3)
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-3
—
N
-
N
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Figure 3-4. Task(/processor) errarchy -
(after failure of P3) -

X The buddy scheme as explaxned above, is based' on the

assumption -‘that in the event of a processor s fa1lure, its

)
buddy processors are alive at least until .the buddy

processes are enabled, transform into prxmary&processes and

Icreate thexr buddy processes. This is however backed by an
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PR

alternative scheme to ensure tthat even if the assumption

fails, the recovery is still possible.

‘ . ~ ‘ \\ ¢
The recovery of . a primary process in the event of
simultaneous = failure of its proceséor and the buddy
processor is initiated bysits master or .slave process, With

N ’

-1 the. process and processor status information available on

each processor, any number of failures can be detected
o . immediately by all pr0cessors.: 1f any two failed processors - E
' lappggr tégether in any tuplé of the process status recorad
then the process specfied in that tuple is recovered-with
thé aid of its mgster or slave précess, The choicé between

t @

the master or the slave process debeddé_upon the location of

ooy .. the failed process in the process hierarchy. If it is the

root process then its recovery is initiated hy its slave, S
. and if it is the leaf process then its recovery is initiated

: , by - its master process; In 'the‘ case of an intermediate.
process,* the resposibility to initiqte recovery ' is first

with its master process and in the case of the master not

) "taking any action within a time limit, the ,§1aVe initiates I
.the " recgvery. We explain' it  further by the following e
i s f u ® s

b example ; : o .
The information stored in process and .processor ‘status o~
v . » or——
record of aé@ive proccessor system currently executing ten : B
© R ‘ ) ° ' . 2 s i - ]

) - ' processes are as follows: ‘ * LY
e " -
. ‘ .
. . ’ )
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; S _— s m PL P2
‘ * - T11 P3 P4
‘ T12 P5 Pl
Pl Alive . ‘ TI3 P2  P3
P2 Alive : : T1ll « P4 P5
P3  Alive T121 Pl P2
P4 Alive ) ‘7122 P3 P4 .
. PS5 . Alive . ~ . . T131 PS5 Pl ' .
SR , , T1311 P2  P3 C
C " . T1312 P4 PS5
. T . Figure 3-5. Processor and Process Status Records ' l
|
Case I: The simultaneous failure of: P5 and P4 will"
effect the processes as follows: - -
. . T11 creates a new buddy process,
T T;é is recovered by ité'buddy process on Pl,
- - Tl = initiates recovery of TIl1l by cfeatiq‘ a
; v : recovery process.,
/ B ’ r ' ‘ ' 'J b .
'&' o ma22 eates a nev buddy process. oo
T131 is‘recovered by its buddy péocess on P1.. =, -
I . oT131  initiates recovery of T1312 by creating a = - '
_recovery process, « Lo
C e w-,*' » ‘ . . ,
q " Y ’://
. ' “" "1—‘-\'*\“"/' ¥
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’ . .

Case’ II: The simultaneous failure of Pl.and P2 will

., affect the processes as.follows:

\ ) © Tl initiates recovery of Tl by creating a
" recovery process. -\
|
‘ 2
T12 creates a hew buddy process. ?
T T13 is recovered by its bu&dy process on P3.
T12 initiates récovefy of T121 by creatiné'a'
- : . reébvgry'process. ‘ .
, - r
W ' T131 . creates a .new buddy process. .
. s ° - - \ .
’ ‘." ) - ,‘ »
V T1311 is recovered by its buddy process on P3,
Thus, ‘under the broppsed recovery schieme, in case of a - o
processor's failure, its primary proqeéses can'be taken over |
- ' by their respective buddy processes with minimum loss of the -
computations, already performed. - Only the p;OCesses'of the' o0
.- . : ¢ . ~ . V! ,
o failed processor need be recovered, i.e. it is possible.—tg\ , N
restart one part of the system which has been affected by a i
fault without disturbing the rest of the system, Savihg a ‘
process state also does not increase traffic on the L
: , / ) s ,\ . K
communication network. .
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3.3\The Proposed Architecture

An integral and necessary part’ of the system is the

inter-process communication ‘among - vastbus  concurrent
processes executing over their respeciive processors, The

" proposed recovery scheme also~dépeﬁds,on coope;étion between

. v

processors to provide recovery from processor fhilures. .

. Thus, the architecture of the proposed system must satisfy

s

the following: J

»

(A) The éystem ‘can be logically coﬁfigured -gih  a

master/slave structure. ’ o

(B) Every processor in the system cqn ac; as a master,

slave or both.

(C) Direct communication is possible between any two
processors i.e. from any processor to any other

‘- processor in the system. =~ . ;

« . X
¢ W
> 4

(D) Main memory is not shared among the processors ‘' of

the system,,

".. (B} In the case of a processor's failure, . the

‘information stored by the failed ‘processor on' the

on-line auxiliary storage is accessible to other

' processors. . - p
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{F) 'Failure of any one or more of the processors does e

~

not interfere in any way with the communication

- o 5
among the remaining processors.

- Although current ﬁulti-proceééor systems are normaly
structured according to one of the.posséble structures as
explained in the preQious\ chapter,’ they are "structurally

~inapplicable for the current’ design requirements for the

following reasons:

(A) The physical configuration of master-slan in a
tree-structured system fails to satisfy several of
the above noted conditions. 1In such a hjerarchical’

’. v t

system, a processor is defined as master or slave at

Zae e e et s e oot e At st g cwms

) ' . .. the physical level itself and thus, cannot assume

.any .other status. A processor in such a system can
. g i ‘

directly communicate only with its master and slaves
rather than with ' every other processor of the

. system. Also, failure - of a  processor's

V A .
N L : © communication ' link with its master can cause a “

complete isolation of a subtree of processors. SR

o

2
.

(B) The star structures cannot -safegaurd against

- o _ potentiai/ catastrophy on account of the failure of:

. the central switch processor, ~

(C) The loop structirure's potential failure of one ring - S
interface can cause complete failure of the

communication network.

N




]

Since the requirements of the proposed system is of a
low' cost 'an¢ highly secure ldosely coupled system, a
modified shared bus structure seems to be the beft
candidate. The reasons for thoosing this particular

structure are that all processors are connected. together

homogeneously and there is no central processor susceptible

to failure. Some modification is .required in the shared bus

structure so that a’ proéessor's auxiliary storage be
) .

acceséibliﬁpp,the other processors in the event that the

processor fails.

. Al

The pfoposed system employs processorﬁ connected by a

communication network. Each processor has its own main
memory, on-line auxili#ry storage and may also have its 6§n
off-line storage as well as 1/0 devices; The main memory is
not shared among the processors but provisions are made for
the on-line aukiliary‘storage to be i ccessible ’to,.ofher
précessors ih.sﬁecial cases. Off-line storage units can be

used for back-up purposes. On-linel |auxiliary .storage for

"each processor is not only conn ted to the processor but

also to the communication network. |A device controller is

required to control access to the on-line storage. Access

\

to' the on-line storage is limjted to the .processes executing.

on the processor (it is ded date% to) untill the processor

stays alive. If the,procegsor-is found to'be in-a failed
state tﬁen proce§ses' executing on other ‘processbrs are

permitted to .access the ow-linl memory _device. The
. : ~

|
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architecture for the proposed system is shown in figure 3.6. ‘
2 L
‘ \ : ! N ! ? .
-.{, ( . _.< I B s a..( I - '
- ‘ » : . L] ’ \
Figure 3-6. Architecture of the Proposed System  _ |
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3.4 COMMUNICATIONS NETWORK

The computing machines in any multi-processor system do
not compute in isolation,;énd with their proliferation comes
a need for suitable communication networks. Communication
network is the part of the system that transfers ‘messages

between the processors. The network consists of the actual

physical  network of commufiication lines and of communication:

' processes that control the transfer of ﬁessages.z;

While there is no single definition of a local

, ‘
‘communication network, there is a broad set of requirements

as fol&qws: '

- ability to support a large number of independent

: devices;

- simplicity, or the ability to provide the simplest

- possible mecﬁanisms* ‘that have the required

functionality and performance.

- good error charactetistics, good ‘reliability, 'and

minimal dependeﬁce upon any,centfalized components

or control,

47

s

.- fair access to the system by all devices,

-

'~ easy installation of a small system, withy graceful

growth as the system evolves,

- ease of reconfiguration and maintenance.




¢ ' - *  CHAPTER 1V

“ .
_ AN IMPLEMENTATION OF THE BUDDY SCHEME .

4

In ‘this chapter we detail the 1mplementat1on of the
‘recovery scheme proposed in the prev1ous chapter, effected
‘on’ an - existing multi-processor system. The extend of the .
ihplementatf5n is limited on laccounty of the constraints
imposed by ‘the existing system. We describe the existing

mhlti-processor sysﬁem, its original implementation,’ the

effects of the recovery scheme and modifications which are

redired to extend the recovery scheme.

]

The or1g1nal 1mpleﬁgptat1on is outllned in sect1on 4.1,
Section - 4 2 provides details of the concurrent programming
'language, Pascal-C. The function _ofn} the Pascal-C
prepvoceésbr‘ is described in section 4.3, A brief

i

description of the Pascal-C run-time - system’ and the

3
-
—

communication sub-system is provided in section 4.4. The

-

implementation of the recovery scheme is described in
section 4.5 and section 4.6 concludes this ‘chapter by
describing a task execution (with respect to "recovéry'

considerations) under the modified (current) system.




4.1 ORIGINAL IMPLEMENTATION
. > ‘ . I N
The multi-processor project for combinatorial computing,

-

N
e A

’ " at Concordia Unive sity, ;onsists of a hierarchical ‘
" multi-processor snyem and a high level programming

danguage, .Pascal-C.

% The processors of the loosély-coupled multi-processqr'
\gxstém are conngcted.phfsicaly in a master-siaVe structure.
.~ The brocessor ak the root of the tree is the’mﬁstef and at .
all levels except- the 'géot, the nth.{;vel processors are

g ' . slaves of a processor on level n41, as well as masters of a

set. of processors at level:- n+l, 1Initially .the master

o accepts .a problem, divides it into sub-problems and
# - .
distributes these to its slaves. -Each slave may then

decompose its sub-problem further and assign these smaller
units to its own slaves. A master process (in the master
processor) and slave processes (in the slave processors) run

"the tasks assigned to the respective processors, 'in parallel !

~" towards total probjem solution, Slaves report the solutibdns

. . - . to ;ﬁ%ir immediate master.. The master at the root,(reports '
s , the final result to the user. :
* N . %
\ .\ In the current implementation, the multi-processor )

'system  is  built from "off-the-shelf" mini .and micro L
computers, interconnected by .inexpensive ‘serial lines. ‘The

existing configuration [figure 4-1] consists of a micro




. . PDP;11/73. a Pb9—1£/34 and a LSI-11/23, each with its own
1 console and direct access’?uxiliaryvsferaae. In the currenb
‘twowlevel 1mp1emeﬂtatidn, eaeﬁ of these processors acts
eiEhez as a master or a slave. Tﬁe system has the felloﬁipg»
eperacteristicé: , ' R -

a ‘ct
‘w

. (A) There is no shared memory;

-

(B) The master instructs its\slaves to perform certain

tasks and subsequently obtains the results of the

R L e tasks from the slaves; "

(C) No communicetidn is possible Perween the élave'

- - = . . -~ .
: Yoo processors.

- . - .. PDP . c '
o 11/73 .

- PRI,
._.

. . PDP LSI ‘
. S E 11/34 A1/23 - | 7

Flgpre 4-1. Structure of the Existing System

. o ‘." ‘:‘ _ St
s Lo | | ~ . R
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. .
i .
‘
- ¢t
- 9 - .
! ! ! '
)

-

The ppéblems' are coded in a variant of the standard

Pascal - Pascal-C [Lam et al. 1983]," whie? " allows
‘ S R . A
programmers to _;xploit the tree-structured multi-processor

architecture for parallel proéessing [c.f. section 4.2].

L Y3

SR - Ve ., <y .

i . " .+ .Due to'the unavailability of a Pascal-C compiler, a
. _preprocessor,. [c.f. section 4,3] translates. the source
! .o : ’ , . !
program into Parallel Pascal [Real-Time Software, 1982)
’ ‘.

. I modulés vhich "are then compiled bf the Parallel Pascal ”

. Co cémpiler and linked with the Pascal-C run—timé system and
the cdommunication sub-system. “The Pascal-C run-time system o

implements the gxclusive features of Pascal-C, and uses the

’ ) ’ . ) . b R R . o ’
* . communzcatzdbn sub-system to provide logical communication i'
S ' “ S . : :
T between' the  master  and the: slave - processors . !
| . - R " PR ' ' »
[c.f. section 4.4]. ‘ , .
. ‘ R ~
‘ - The recovgry' scheme -effects user transparency via its - . . -
» } . /. . ’ .
‘ implementation through the run-time system and the RN
; , ~. '. ‘ . 13 0y ' )
b ‘ .communication sub-system; the Pascal-C language .and the , . .
. QS ) ' . . . ‘ ) N
oo - preprocessor are not affected [c.f. section 4.5], -
! . ) - P
’ ' ‘ i
!
v ) 1
4 ‘ - o <
E ] ° R * i .
4 - . ,
.. .
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i : S

4.2 ?ascal—c : A,Copcufrenteptggramming Languabe: o oy

Pascal-C is a hlgh 1eve1 language spec1f1ca11y desxgned ’
to ’ olve comb1nator1a1 problems op. a ,tree‘ structured , ; oy
multi*processor system. A ma;or'feature 6f‘Pa§da1-C is its o
1ndependence from the underlyzng communtcat1on network qu' ./‘ﬁ

A

. ‘I
- Amanagement of tbe underlyxng commun1cat1on fac111t1es which 'f

v {

';, . j’ " may - be 1mp1emented by a set of ded1cated lrnes or a. shared' o ‘ I

) 1,b" o bus,7xs entxrely hxdden from the programMer.

o

E '-\ co -‘
Pascal Cc 1nc1udes most features of. the standard Pascal,

IR bt . Mo R A s it

., and the followxng exclusxve features‘ S o >
.7 K (A) . DOWN PROCBDURE is 1nvoked by a master and executed .
g ‘ LT N , L
. . - Dby one of 1ts 1mmed1ate slaves. , After 1nvok1ng a ;- /o

:down procedure, the mgster meed'pot wait for the o
slave to complete its executicn* but can comtinue‘
. :thh the master prOCess.~ The 1nvoked down précedure
P ',2' - . is. executed concurrently by a slave process.A A down , B

. g

, . procedure Dpi can ‘be invoked as meny times as the. .
! L b ' . - \

programmer  requires. .The . slave  processes,
concurrently executing Dpi are said to be 'in the : o “
' ~.. .  same DP CLASS, c¢lass of Dpi. |, , R e

* : -
. . .

Variables and/on cénstants ‘may be pessed exther'
s by value or by reference to the down procedure. Any ' k
_change in the 'value of a variable parameter is L

neported,backltp the master on the completion of the

v : down “procedure.

IS



(J" .

(B) The COPY SECTION a segment of the down ﬁrocedures,;

(€)

(D)

¢

o
.
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. N ’
i o ¢
.

lxsts funct:ons, procedures and varxables inherlted:

by ‘the down “procedure from .’its  environment.

Variables mentioned in -phe:,copy‘ septidq. are

¢

' downloaded to the slave as value'lparémeters -along

7

'wéth the actual. parameters. All \pther\:objecﬁé'

s, . R i . .
mentioned in the copy section are copied to the

slave module by the”preprocessor.

The CRITICAL PROCEDURE .is a procedure in. the master

and although it 15 executed only by the master, {b‘
can be invoked by the. master or byAany\of itez
immediate slaves.’ A critical procedure .encloses ‘a'
‘critfcai regzon of code and therefore its executaon

can not be 1nterrupted by %he master process or ény,

other critical procedure.

When a slave executes a down procedure with.many
poséible solutions,‘ it need not wait for the

' completion of the down procedure to report the

solutions, but can report a'sélution as soon as it
s  found by invoking a critical procedure in'its
. . ‘ ! N N . .

master.

]

The statement TERﬂINATE(Dpi)\Ceﬁ be used by a ﬁaster

to 'termipate the DP- CLASS (Dpi). All slave

processes executing the dbwn_procedure Dpi, terminate

4

themselves, irrespective of the status of Dpi.




' More details about’the

y ! .

?ERMINATE(Dpi) mag be ‘used in sf{ﬁétioqs, where ‘the

slaves’ have  reported a sufficient

solutions to'a problem. AN .

(Ei‘WAIT(Dpi)‘is a syncﬁrohization statement exclusive

te ' the master processes. A master can invoke

WAIT(Dpi) to .sgspgnd itself until all slave

proceéﬁes executing fhg down procedure Dpi complete

3

"

- PN

their tasks. e ‘ s

a
‘

“structure of Pascal-C -can be

found in [Lam et al., 1982] and [Lam et al.,’19831.“ ‘
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4.3 Pascal-C Preprocessor A

¢

%

¢ L® -

- 8 !

E " A Parallel Pa§c§14 translation o ,_Pascal-C source
fa N . - - ) , - - ‘ :‘ ’ ) [ ‘ e 3
Lo . program is required, bgfore it can be comgiled "with  the

N 1

éqréilgl Pascal éompiler; A Pascal-C pfe

implemented to perform this translation.

-~ 'program as. a source program, the prepro®efSor generates

N . ) . g L, /
' feature used in the source program, the preprocessor jnserts

(declared as ‘external). The preprocessor output consists of

" the following two modules:

4 .

" - (a) The master module: program code to be executéd‘fby

‘ :: o the‘m?ster. . - ‘

(B) The slave modules: program .code, all or part of
which, may be executed by the slaves. '

~

in [Cabilio, 1986].

”;L» Co " éqﬁivalent- Parallel Pascal modules. For éacﬁ ,Pascal;q

R . -one or several call(s) to” the run-time system. procedures

A detailed description of this preprocessor is provided

L 4

ocessor has been -.
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4.4 Pascal-C Run-Time System & Communication Sub-System - - '
, . Lo
The Pascal-C run-time system which consists mostly of
. / ~ . N
"procedures coded in Parallel Pascal, is responsiple for the oot

. . implementatioﬁ ,of Pascal-C features and for the logical
communication between the master and the slave procgssdrst

‘The prbcedurgs of the run-time system arg invoked by célls

ca '\} ' from the Parallel Pascal code. Response is effected by one

or mo;e'actrén(é) from the following list:

Y ! ' . ¥
-, I

Y (A) Initiating the communication. sub-system. = g | o

? +» . (B) Reserving, a slave processor for execution of a down

e

. S ] prctedure. Terms used hereafter, for the down

procedure and the reserved slave processor are:

o " o E current down procedure and - current slave,

L - ‘ respectively.

(C) Activating execution of.the current down procedure : -

e : in the current slave,

(D) Downloading value(s) of a specified value/variable

-

parameter to the current slave.

b

(E) Scheduling and implementing execution of a ¢ritical N }

procedure.

\

(E),Sﬁspgnding the master process until the. completion’

v of down ‘procedures of a' specified DP class.

v

[ ~ L ' *

\ . ‘ . k2
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\

‘ (G) Upiéading variable parameters of a down procedure

v

from the slave, o SN

~

‘
.

(H) Updating variable parameters of a down procedure in

the master.

«

N

© -(1) Terminating execution of a down procedure in the

‘ slave(s).

4
~

- '(3) Terminating the coMhunication sub-system.
\ ‘ \
The run-time system uses the communication sub-system to

.pass messages. between the master and the slave. The

communication sub-system uses the qxiséing physical 1link:

between the master and the slave processor to provide

several virtual channels which can be opened or closed

_individually. These channels are used to send messages and

data from one processor to another,

' The, user need not be- concerned with the -“internal
structure of the communication sub-system and can consider"

it as an error free communication system. ‘Transmission

‘

error reécovery is built within the - system. If the
coyﬁunication éub-system détects any transmiésioﬁ errors, it
_attempts re-transmission, If fhé number of }e-trgnsmission
aétémpts exceeds a pre-specified limit (a. cbns;&pt),‘ the
communicatioﬁ sub-system. reports the error to:xhe user and
halts €he processor where the message originated, ‘
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A detailed description of the implementation of the
,Pascal-C run-time system and the communication sub-system .is
provided in [Wong, 1985]. .
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(/4.5 RECOVERY SCHEME IMPLEMENTATION .

68 j

.
[
- : !

4

?

As mentioned 'in section 4.4, if the commurication

sub-system is uhable to deliver a mesSage to the destination

. |
processor,. it halts the ' processor; where the . message
\ .

originated. As a result, all computations done-unt?ll‘thé'

failure point are lost, no recovery is possible and the task
has to be re-started. - _
“With ‘the recovery scheme in place, if the communication

sub-system is unable to dgljvér the,messageh the /destination

‘processor is removed from the system, the task assigned

. ! .
earlier to the " destination processor is taken. over by

-another _processor and only a limited computation is lost.
THE IMPLEMENTED RECOVERY SCHEME 1S . COMPLETELY TRANSPARENT
AND ' NO USER INTERVENTION IS REQUIRED EITHER FOR

RECONFIGURATION OF THE SYSTEM OR R RECOVERY OF THE TASK.

..~ Implementation of the recovery| scheme allows the

‘multi-processor system to operate in the following events:

(A) Unavailability 9£ a slave’ proceésor: during the

y ' initialization stage, the master tests each slave

processor for its availability. ' THE MODIFIED SYSTEM

DOES NOT_ REQUIRE THE AVAILABWY OF ALL SLAVE

PROCESSORS., It is operational even with
availability of a single slave processor.

v
!




‘slave processor. "The first and second events of “pe abbve

list

o

-(B)

(c)

(D)

(E)

(F)

_ An important and major part of this implementation is

the recovery of the down procedure assigned to the involved
. .

of the variable parameter(s) to the master..

do not require recovery of any down procedure becau

69

v

Failure of a slave processor after initialization

' stage but before assignment of a dbwn prochurel

Failure of a slave processor while being initiated

(el

for execution of a down procedure.

Failure of a slave processor while executing a down.

procedure: .the failure .may have occured due to

'

hardware or software fault, e.g. stack overflow.

Failure of a slave processor whiiq uploéding values

Failure of the physical link between the master a

: [
v -
. ) .

the slave processor.

the failure is detected before the assignment. of any down

o o .
Jbrocedure to the processor. While the next three events:do

‘requiré recovery of a down procedure, in the case of the

In

last event a down procedure may have to be recovered.

{

the modified system whenever ‘a processor is reserved

to execute a down procedure, ‘the run time system designates
another processor as the buddy /groceSsor. This buddy
_telationship between the processorss comes into existence.

vhen a processor 'is informed of its designation as buddy,

1

v
'
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ex15ts during the execution of the down procedure and is
dissolved by the buddy processor e1ther on the c0mp1et1on of
the down-ptocedure or on the failure of "the processor

exqcuting'the down' procedure,

BUDDY_CHECK, a process in every slave processor, is the
backbone of this implementation. This process is created by
the run-time system during initialization of the slave and

. remains 1active until' completion of the master's task.
Status of a slave is tésted at a regular interval by the
process BUDDY_CHECK of its app01nted buddy. . All Eesting is
done via the master because in the Current implemeﬁtatiqn

- ‘direct communication is not possile between the slave

~ processors. . , . __—
’ ' ( o

SUppose, lﬁ? down procedure Dpi 1is assigned to the
processor Pi, and the processor Pj is appoznted as the buddy
(BPi).  In such a situation, the process BUDDY_CHECK of BPi
(Pj) is responsible for tegting Pi. At a regular 'intervfl,
ﬁPi (Pj) sends a requesﬁ to the master to teé; the status of
”Pi. This testing of Pi conéinueé until either Pi completes
execution of Dpi or a failure.of Pi is detecfed. In case of
failure of Pi, BPi (Pi)‘takes over Dpi. | . ‘

RN . \ SR

.
! .

Modifications have been: ‘made to _the global " data
struct&;e [c.f. section 4.5.11, -the communication sub-system.
and the) run-time system in order to implemeni the

transpaxent recovery scheme. ¢
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‘

The communication sub-system has been modified in its"

: A approach to situUations where it is unable to deliver a

‘message to the destination processor, even after repeated

>

re-transmission attempts.. In such a situation, the

P communication sub-system issues a warning to the user and,

- . '

rather than halting the originating processor, returns the
control to the run-time system. The communication
sub-system also informs the run-time system that the message

could not delivered.'

. The run-time system has beén modified to keep pace with

S changes in the communiqation‘éub-system. On being informed

that the communication sub-system was unable to deliver the ~

message‘tc the destination processor, the run-time’ system
[ * . declares that the destination processor is in an
unavailable/dead state. Further, if the situatfon. warrants
recovery ‘of a down procedure, then ﬁhe run-time system
attempfs to recover'thq task. shb-secﬁion 4.5.2 provides’

‘ t ' - »
the implementation details of these modification.

v

4.5.1 DATA STRUCTURE MODIFICATIONS ; - v

‘In  order ,to incorpqrate recovery ppocedurés into the .
‘.exisfiné-run-time systen, minimal modifications have been
- <' made to the data structures of the run-time system and'tﬁé a0
.- communication shb-system. Modifications ' made éo the
Jrun-time system data stfucture~‘are as follows: (only t he

data types modified or added are listed) , o
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\ . ) ,
, (A) CURRENT_DP_INFO_RECORD .
This record keeps information regérding the down - '

‘brocgau}e beiné‘ downloaded onto a slgve. It's

0

' fields are as follows:

y ¢ .

3

(1)-Down_Procedure_1d
Existing field: ihdicates.identification number

of the down procedure ‘involved. 'ﬂ  L

(2) Number_of Var_Parameters

e Existing field: indicates number of variable
kol ' parameters associated with the down procedure.
= . (3) Slave_1d - , J

Existing field: indicates identification number R

of the slave protessofreserved to execute the

- i

down procedure,

(4) Buddy_brocessor_ld
Additional field: indjcates’ 'identification
;3 , .number of the assigned budd& processor, if any,

otherwise the field contains -1.

\




.w(.

73
- ) .‘ . s ' . q
' (B) SLAVE_STATUS_RECORD ’ S &

. The mastgr‘kge?s a élaye status record for ‘each
of its 'Slave procegsors. This record reflects the —f“"’g‘
cdrrent staté of the"glave:proqessor.° If §i is a ;X
slave processor then its 'master will maintain a
SLAVE_STATUS_RECORD for Pi with the following

information:

(1) state_of_Processor _ T
Modified fjeld: 1indicates current state of the
slave processor Pi. A slave processor cam be in

one of the'following states:

. .
1': Idle

(new task can be as

2 : Working

{normal working;- new task
assigned on the completion ~

current task)

e B 3‘£‘Dead

(last assifned task may havéf té 'be

rec

» 4 : Dead s
o ' (last assigned task recovered or

“ . , recovery not required) '



A

o

L}

L
'

.
X
»

”

Existing fxeld, 1ndzcates the current status’ bf

“the . slave ‘p;p;essbr Pi. Sfﬁtus of a slaVe
NAbrocessor can be’eif‘b& ALIVE or NOT ALIVE.
4 N a '
(3) Post. o b _
Existing ;ieldz iﬁdicat;s j&gntity of the slave
| processor ‘Pi. '
(4) Capacity :
: Eﬁisfing;, tield: contains i ormation aboué
slave(s) df:the pr?céssor Pi/if any. ’
(5)\Down Procedure_ID ‘ ) g
v Exﬁstlng field: indicates 1den£lf1cat1on number

“of the 1ast,down procedure assigned to the slave

R
" processor. P1. - ,

" 5 : Working . SR \\ '
(hnother task wa1t1ng to ﬁﬁjfecovered
1 b
no new task be assigned) ‘\
R B
6 : Recovery of a down procedure inifiated
d 7‘; Recovery of a’down procedure in progyess
~{ ’ .
(2) Status o ‘

/ . o R
(6) Budd{{of_?rocessbr v RN
- . .

Additional fields if Pi is buddy of Pnuwi this
field identification number &f the

)
processor Pj otherw1se ‘the field contains -1,

-

sp.ﬁﬁfies




. (7) ‘Buddy_ Processor — , ;f

Addztzonal fxeld° if Pk is buddy of Pl then th1s
field spec1f1es 1dent1£1cat1qn . number. of the
processor Pk otherwlse the field contains —l.

hd . R}

A STORED_INFO_ RECORD is malntazned by the master

'fon each of  'its slaves, currently asszgned a down

‘procedure. The record, conta1ns a- duplxcate c0py of

" the values qf the paramaters downloaded to the slave
.‘processor.‘ | | 4

! . s
X

The master uses this new linked 1list. structure

to keep information needed b} the buddy processor to.

restart a down procedure 1n the case of the failure

of .the slave processor.

. 1

4.5.2 COMMUNICATION MODIFICATIONS '

i

The run-time systeu prepares the frame of message/dateg,'

to be sent to. -another proc¢essor and inbomes “the ..

communication - sub-system to deliver the imessage. The

recovery scheme requires that if.  the communication

sub-system is unable to dellver a message it should return

v

control to the run- t1me system with the 1nformatxon that the :

mefsage could not delivered. t o

2

s

In the original implementation,;the information ﬁackagei K

. ‘passed on.to the communication sub-system” contained

o'kC{/STORED_INFO_RECéRD T ‘ L

i

'
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o7 1dent1fxcatzon of the destxna;ron processor, the channel to-

be used’ and the~£name to be delivered. In ' the mod1f1ed

, o

S

‘.imblementation, in addxtxon o the above information, the

w‘ﬁreseni.stétus of .the destldatxon processor ~ (ALIVE}’ is
. ’ T )
included as a vvarzable parameter. I1f the communication

sub-system is unable to deliver the message then it sets the

status pf the. destinaiion processor to NQT ALIVE, issues a

warnzng message to the user and transfets the control back '

L

“'to the run-time system. - o D ‘ ,
‘When . in confrol, the run-tiﬁe‘systgm checks the status
of the destination brocessdry and if the status is "NOT

"AtIVE“' then cqﬁcludes' that the’messaée was not delivered,

i b et o it Ak T v 38 7

and modifies the SLAVE_STATUS_RECORD ' of rthle destination -

processor to reflect its current status.

Inclusion .of the recovery §éheme increases the number of . A
types of messages passed'betueén the.master and the slave

’processors. : Accordxngly,' the message handling processes

\ - reguxred modxfxcat1ons.' o . . . S

s

. FROM_MASTER, a process created by ;he‘fun—time system.in.'
every . slave prdcessor, recexves messages from the master \
Asymetrxcally, a progess EROM SLAVE is created in the maste

for each slave and recexves messages from its ded;cated ;
;lave;' 7. ‘

o Twovﬂgew messages mgzN be 'received by the process /
S EROM;SEAVE.' The process FROM_MASTER-may receive four new ;

Sy




o .
messages. Thé'qomplefg‘list'of messages received by the
= 'prbbegses is provided in the appendix C. The new messages,. .
and the‘responsq of the run-time system is discussed below.
Details about the original list of messages is provided in

B . . . * -

[Wong, 1985].

.The two new messages, which may be'vreceived by the

A

Master from its slave processor Pi, and the response of the

-

‘master are as follows:'

-

(A) The processor Pi (buddy of the processor  Pj)
‘requests the master to test status of Pj. ' The
master sends a "HOW ARE YOU?" message to Pj who |is
to reply yigh, a "1 AM FINE" message. If no‘sqch
reply is fecéived within a fixed time limit then the
master declares Pj 'as NOT ALIVE and informs Pi
accqrd}ngly.‘

3

(B) The processor Pi (buddy of the processor Pj fof
Dpi),(requesfs the master to download the parameters
S - of Dpi. This messages is received only in case of
N the failure of Pj. The master, in 4response,
downloads the frames stored earlier as‘part of the

\ : STonsb;INFo_Réconn of Pj.
The four new messages, which-‘iby be received by the

‘slave érocéssor Pi, and its respbnSe are as follows:

o
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-(A) The processor Pi \is’ @hforméd that it has been

designated as buddy " of the processor Pj. The
S T ' message also contains. information indicating the
identification number of the dowﬁ procedure assigned
to Pﬁ,. ahd' the number of variable parameters

associated with the down procedure. In responsé¢, Pi

—— b e

4/ enables its process BUDDY_CHECK to start ;esting_the

status of Pj.

/) .. . ‘(B) The ‘processor %Pi (buddy“of the processor Pj) is
| | '\‘;nformed.that Pj,-hés completed execution of the
’ ! C ' assigned down prqcédure. In response, Pi disables
' its ﬁfocess BUDDY_CHECK and dissolves the budéy.

relationship.

(C) The processor Pi (buddy of the processor Pj) is
informed that the status of Pj is NOT ALIVE. Pi

prepares to take over the task assigned to Pj.

. 9 v s .
4 (D) The processor Pi (buddy of the processor Pj) is AR

instructed to prepare to receive information
required for the execution of the down procedure (it
is Y taking over). In response, Pi activates

execution of the down procedure.

. While the first two messages are sent by the master
1ndependent of the actions of Pi, the last two messages are o
“—\3¥rectly in _responge to the messages sent by Pi. ‘
A .

¢ *
L ] . . ‘. ! , .
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4.5.3 OTHER MODIFICATIONS AND TESTING"

‘

As noted earlier, the implemented recovery scheme is

transparent to the user and no user intervention is required

 for, the reconfiguration or for the recovery of any taskq,

g

However, the psér is kept' informed of recovery related
issyes "by means bf warning messages. Appendix B provides.
the complete list of warning messages issued. Events

concerning three warning messages are discussed below:

(A) 1f the run-time system is unable to assign a buddy

ﬁrbcessor, it issues an appropriate warning message.

(B) Only one frame can be sent on a channel at a time.

Any other frame to be sent on the same channel must

.

vait till the current frame is delivered and the,

- channel becomes available \again. If the
communication sub;system is unable to deliver the

current frame then it not only issues a warning

meSSage that the current frame was not delivered but

also issues a warnzng message for each of the queed

frames.

t

‘(C) Another event arises due to tlie failure of a slavexi.:

processor while uploading values of ‘variable

parametgrs to'the master. The buddy of the failed

sléve takes .over the task, computes the solutions

: and up ads the values of the'.variablé pﬂ@ameters.

::" - .Thé buddy may upload some valﬁes which the original
' ¢

- ' i w
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B " slave had already uploaded. The run-time system in
3 _such a situation issues a warning to the user, keeps
the first update, ignores the subsequent ppdafés and
. . - proceeds ahead. ' | \
el ‘ . Comprehensive testing 6f . the recovery features in the.‘ : ,1:
, current system . has been done using Pascal-C programs for o
e . - : - > ' ' : ’ [
' sorting. The sorting routines used for the testing involved ’
" large volumes of ‘data‘and thus provided enough opportunities .
L o, . Y . . ‘ ‘
;o \ to manually fail .the~ processors during various stages of o
o . there operation.
i3 At
. } B _
- . k L] ra
N ‘ ) | - 'E’
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4.6 DESCRIPTION OF EXECUTION OF A TASK
i
.
The master begins the execution of the master module.

on encountering a down procedure call, the master module

. invokes the run-time system to reserve a slave processor for ' “ |

execution of - the down procedure:. Identification number of
the down procedure (Dpi) is sent as a'valhe parameter to the

run-time system.

The run-time system checks the SLAVE._STATUS_RECORD, of

_both slave processors for an ideal slave; that is one which

¢ is. in "IDLE" state and has Dpi as identification number of

the last down procedure executed. Satisfaction of \éhe

N S

~second condition saves time in loading the down procedure in
. the slave procssqr.' 1f the run-time system is wuneble to

select such an ideal slave then the second condition is s

-t

5 . . dropped and a slave processor in "IDLE" state is selected. ' '

:L o ‘ ﬂThe“run*time system Ehénges the state of the selected

\i ' glave processor (Pi) trom‘IDLE to WORKING aﬁd thus resérves

| it to execute'thé aown procedure, II_ the second slave

i ' processor’® (Pj) is iq ALIVE stéte then it is assigned ;s the. NP

: :buddy‘processor (BPi); otherwise, 'no . buddy proéessor' is

'E o assigned; The ideﬁtificatioﬁ humber; of fhe down prqcedure

#« v (Dpi), the slave processor '?eéerQed (Pi) and the buddy -
‘processor. assigned (Pj), if any, are stored in fhg
;URhENT_DP_INFo;RECORD.' I1f no buddy has been assigngd,'then

!

. i
¥
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a Garning message is issued to the user. At this stage,

i

Nt g *

control -is handed back to the master ﬁ$du1e.

A\ © o .
v - 1

. . N ‘ ) - *"
The master module enters a critical section and' if the

’e

DP class of Dpi  has not been terminated then the master

invokes ‘the fun—time:éystem to‘activate\the execution of Dpi

in Pi, The down pr&cedufe's\identification (Dpi) and the

number of variable parameters associated\with 'Dpi are the

. ¢ s . . )
parameters passed onto the runrtime - system.

The run-time system uses the communication sub-system to

!
instruct Pi to initiate  execution of Dpi. Pi is also ©
inf;rmed- of ‘the number of variable parameters associated |
with Dﬁi. ’Next; tﬁe run-time system informs BPi (Qj) of its }
désigna;ion as such,‘identification Dpi and of the number of

variable parémgters associated with Dpi.  Contrel is

returned to the master module.

Subsequently, . w;he master “module mugt ‘download the
informatién vequ&red-bf Pi to e#eéute Dpi. This information
includes all ébriables specified in Dpi's header and in its°®
copy seétion. The master invokes the run-time system to

 d6wn1oad each item. requiréd.byDpi and passes on the item to\
_ be dowhloaded and the channel ;2\?e used.

v

The - run-time system does not download = the  items
individually but creates frames, each 128 bytes in length,
'and then downloads these frames. 1f sufficient space ‘exists

on the current ftame;and.the.lis; of down loadable items is




e
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. not empty, then an item is appended to thé,cuqrent frame and

control is  returned to the master module. Otherwise, the

. run-time system stores an identicél.copy of the frame as

part of the STORED_INFO_RECORD of Pi. If the current status
of Pi is ™“ALIVE"™ then the communication sub—systém is
invoked to délivgr the frame td Pi; Alternately, no aftempt
is made to delivér the massage and the contfol is handed

back to the master module.

L Tad

The run-time system calls the communication sub-system

to deliver the frame. Information passed onto the

communication sub-system indludes the frame to be déliv;red,
identification of the destingtion: brocessor (Pi), the
channel to be wused and current status of the destination
proC#SSOf’ (ALIVE). If the communication 4sub-s§stem is
unable ' tc¢ deliver the fréme, it issues a warning message to
the 'User, sets the current status of Pi to "NOT ALIVE" and

‘returns .control to the run-time system. The run-time system

" ‘checks the status Pi, and if it is. "NOT ALIVE", it declares

Pi to be in state 3 (Dead; last assigned task may have to be

recovered), and hands the coéntrol back to the master module.

t
‘ 2 . - , L
The master module exits the critical section and

¢ ' ™
proceeds with its own task. I1f the task includes assignment
of gnother down procedure then the above described process

can be assigned as the buddy processor (BPj). In such -a

situation, “both Pi and Pj will be concurrently executing

\

.is repepted.' A down procedure can-be assigned to Pj, and ‘Pi "

|
?
|
|
|
'




'module.

"‘relationship with Pi.

84

" their assiéned down procedures and acting as buddies of each

other.
\

After some time, the master receives.a request’ from Pj

to test the status of Pi. If the current status of Pi is

"NOT ALIVE" then the master run=time system avoids testing
. A ' R

the status Pi; otherwise, it changes the - status of Pi to

"NOT ALIVE", sends Pi a 'HOW ARE YOU?' message, activates a

. timer interrupt request and pasée; control to the master

©

On receipt of a "I AM FINE" message from Pi, the master

‘run-time- system changes the status of Pi to T"ALIVE",

However, this message must be received before the timer

“interrupt cccurs, otherwise, the SLAVE_STATUS_RECORD of Pi’

is modified"&nd its state is changed to 3 (DEAD; last
o ' :

. . ’ . a‘ .
assigned task may have to be recovered). Any change made in

the SLAVE_STATUS_RECORD of Pi is, also reported to BPi (Pj).

BPi (Pj) keeps requésting that the master test the'

status' of Pi, until it receives the message either that 'Pi

has completed execution of Dpi or that Pi is in dead state.

If BPi (Pj) receives the message that Pi has completed
execution ‘of Dpi then BPi (Pj) disables its prbcess

BUDDY_CHECK and thus ‘dissolvés its current  buddy
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4 . . .

_If'BPi (?j{':eceives the message Itga: Pi '§5  ih. dead
state then it disables its process BUDDY_CHECK. If BPi (Pj)
is in "IDLE" siate, then immed{a ély: otherwise immediately
after completion of its. curren jon procedure, BPi‘(Pj)
initiates ‘pecovety of the down proeedure Dpi (left

uncomplete by Pi). It requests the master to download the

e

items requi:éd for the execution of Dp.

In resbonse'to the request of BPi KPj),_ the master
processor first sends a message to BPi (Pj) to prepare to
"receive the items and then downloads those frames which were

stored earlier as part of the STORED_INFO_RECORD of Pi.

When BPi (Pj) completes the execution of Dpi and uploads
" the results, the recovery of Dpi is completed. Figg//lhis-
" moment onwards the system operates. with a single slave

2

- processor.
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CHAPTER V

R T CONCLUSION

; IR , . o . ‘.; ' ' 1

.‘?,\ ) ﬂ{ As a further extension of-theuéontinuing multiiprocéssor
s s © ' project at ‘Concordia University, this thesis investigates
the matter of reliability in multi-proqessor‘ systems and

proposes a multi-processor system for solving mathematical

problems .of comBinatorial nature in a reliable environment.

The proposed systemyis capéble of recovering tasks assigned - b

to a procegsor, in the“gvent of the processor's failure.

4 ' N = N t

=k * . The .proposed system consists of several mini/micro
processors linked in a modified shared bus structure. Each.

processor of the system has. its own memory, .console ‘and .an
14

on-line storage device. The"processors do not‘share the

main memory but the on-line storage device can' be accessed

P

s by other processors under special circumstances. .o - )

In the proposed system, a task assigned to a processor

may be divided into. sub-tasks and.’'distributed ‘among the

0 B ) -p;obeésors of the system. Under the model employed for the

, . N : ' , .
\ : system, a task and its sub-tasks may be assigned to the same o Y
. : o ha . . ,

i S processo%., Each task assigned‘Fo a %rocessor is executed by A

re
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a primary process, With the @mplementation of the primary

processes the master-slave relationship between the tasks is,
transformed into hierarchically linked primary processés.['

) r
The primary processes communicate with each other by passing

‘messages or by broddcasting certain type of messages. : C I

- . .

The recovery scheme propbsed in this thesis is intendeé;
for multi-tasking systems “with no central supervisor, and

depends on the cooperation of a set of processors to execute

(/‘[\\ ' the recovery -functions. The scheme proposes pairing a
primary processw.ujth: a buddy pfocess on another ©processor.

While the task 1is executed by thg primary process, its | ' 1‘ L

3 J .

corresponding buédy process remains in’'a "wait" state. If N

" the primary process completes the assigned task -successfully ' i

then 1its corresponding buddy process is  terminated. ‘ b

——

Alternately, 'if a processor failure is detected then the

tasks assigned to its primary processes are taken over by

-

their corresponding buddy précesses. ’ et ’

The buddy scheme 'hées the “"backward error récovery L Lo
scheme"” to resume the execution of a task from an ‘advanﬁpd
stété of computatidn, ~and proposes that checkJEOints’be
stored onvfhé’on—line storage device of processor executing
the primary process. -1f required, the buddy process can
lacéess the latest check-pﬁint&@%oredlby thé-érémary process.

To §olve the prbblem'of "domino effect", a p}imafy prqiesé
is cﬁeék;pointed whenever it ‘creates a slave procqés. or - o

;eceives results from the slave processes.

@ 7

e




< A limited implementation of the .buddy scheie has also

been effected on an éxisting‘ multi-processor system which ;

1

bcessors physically :
. 4 s '
interconnected in an hierarchical structure, With the ;

consists of three 'mini/micro p

inclusion of the buddy scheme, in the event of a slave

processor's failure, itslgurrenf task is' processed by its
\

buddy . Failure of the master or both slaves i§ not

~

N IO At . Skl M T W oM i Al e« 5 oS s Ao T

]

recoverable in the gxistfng‘syst$m. ' o T,

4

Finally, Cff proposed multi-processor system( a;;? its .
associated recovery scheme are structured specifically for ' .
; - ,
solving combinatoigrl problems but the basic concepts have

sufficient gener‘lity to cover many applications, The

’

! *o} T 4
inpovative aspects of ‘the system lie not in any new concept
. introduced but fatheﬁ in synthesis of pre-existing ideas.

4

.
K
!
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: APPENDIX A / :

The ‘following Pascal based‘daﬁz structure can be used to
store the procgss and the processbr status records. While
the processot‘g tatus records Q;e maintained in" an array, the
process status -fecords use a linked list structure. Pointer
references are used to i entify the primary, buddy
processors and the hierarchy of« the processes. Graphical
representation of the data/ tructure is given on the next
page. Algorithms algol and algo2 can be used to process
recovery related functions of/ ‘the system. .

-

°

/ RN

Data/Structures

TYPE
processor status

L1
>
(o}
[o 1
®
—

“nodel record .
) ¢ integer;
alive : boolean; °,
# pp : integer; : g
# bp : integer; . ‘
end;
process_statu Anode2
node2 = record o
' process : integer; . o
primary : processor_status;
buddy : processor_status;
child : process_status;
master : process_status;
next ! process, status;
end;- : ’

VAR \
root ¢ process_status; '
procgssor : ar:ay[l..num of processor] of processor_ status

’ ,
o : «£
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Procedure algol; A
¢ T Algorithm for Selecting a Processor for the Buddy Process
¢ The ,algorithm first checks 1f any processor other than the )
processor executing the primary process{resident processor)
is in the alive state, The algorithm next selects
~~ processor with the least number of processes and requests
this processor to create the buddy process. If the selected
processor is unable to create the -buddy process then the
algorithm is repeated until the reguest to generate the
buddy process is satisfied.
¥
BEGIN
.
Check 1f any processor, other than the resident t.
processor, is in allve state. -
p Py
. - -
i := resident.id+l ; start := 0; . e
REPEAT ' f
‘ IF  (processor[i].alive) !
" THEN start := i ;
ELSE i = ((i + 1) mod num_of processors)). .
UNTIL {(start <> 0) OR (i = reszdént id)); ;
. If processors are avallable to,act as buddy then
~find the processor with the least number of ;
processes and request it to create buddy process. :
1F (start = 0) -
THEN {all rema1n1ng processors are dead;
no buddy avallablel . .
ELSE BEGIN
buddy_ selected += FALSE; ideal := start ; j := ‘start;
REPEAT ! . ) .
FOR i := 1 TO num_of processors Do . ;
beg1n ) Lo
1) mod num of_processors) ¢ ?
I? ((J<>reszdent id) AND (processorlji. alxve) AND
processor(jl.4 b p + processor{jl.#_p
: processor[zdeal] # b p+processor[1deaT? $p_ p))
. . 'THEN ideal := j; i
endw : .
. _ ~

{send .a request to the processor 'ideal' to create
a buddy process}; ¥ ‘
IF ({request accepted})
. " THEN buddy_selected := TRUE;
- UNTIL (buddy_- serected)
END; . N
END; - .




. The recd{Elgz’algor1thm traverses the linked list structure
‘containing ‘the pﬁ@cess status 1n£ormatxon. it checks the
status of the primary and the buddy processors of each .
process and takes the follow1ng actions: -
if both primary and buddy are alive then no attion;
. else _if the prxmary is alive X
ﬁyﬁwﬁx zn activate the buddy process '
e if the buddy is alive . i :
: then signal the primary to create duplicate
e ,*" _ buddy process
' else if the process is not a root master
. then signal its master to ‘create a
T~ recovery process

_ else s1gnal its slave to create a
° ) recovery process
" BEGIN
IF  (root <> nil) ! R
THEN BEGIN

. IF ((root”.primary”.alive) AND (root”.buddy”.alive))
THEN {all normal; do nothing; check next process}

ELSE IF (rootﬁ»pr1%zry .alive) :
THEN IF (root’.,primary”.id = resident.id)
oy : THEN {s1gna1 the process 'root/A.process' to
: create another buddy process}
ELSE IF (root”.buddy*.alive)
THEN IF  (root”.buddy”.id = resident.id)
THEN {signal the buddy process of
root“.process to begin execution};

" ELSE IF (root“.master <> nil)
THEN IF (root”.master”.primary”,id =,
\ ' resfﬂ;nt.id)
g . THEN {signal the process
. root”.master”.process to
' S ' create a recovery process)

. . . ELSE IF (root”,child <> nil)
. THEN IF (root”.child*.primary”.id
= resident.id)
THEN {signal the process
root”.child”!process
to create a recovery

process}; _}

'algo2(root”.child);
algo2(root”.next) ; - .
END' . ' )

SN

L
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APPENDIX B

[}

Steps to use the multi-processor system with PpP-11/73
as the master, PDP-11/34 and LSI-11/23 as the slaves are as
follows: . ‘ '

-

7 -

l, Enter the Pas¢él-c source program on the Cyber-835
and use the .preprocessor to generate the Parallel
Pascal modules as follows: ) .

GET, PCPREP, PCTABL /UN=KAESF02
PCPREP, <source>

the ocutput files and their contents are as follows:

PCLIST: Source program .listing., = -
#»HPCMAST: Master module.

PCSLAV: Slave's main module.

PCDOWN: Slave's external module.

2. Use the PDP software VTCOM.REL to downiocad the files
., PCMAST from the Cyber onto the PDP-11/73 and PCSLAV,

_PCDOWN from>the Cyber onto the PDP-11/34., PFile-

names on the PDP's should have the extension ,PAS,

— .

3. Compile the three downloaded Parallel Pascal
modul®s, and generate their corresponding, object
~ mogdules, , Sample sequence of the commands for the
module PCMAST.PAS is as follows: ("."™ and "*" are

. " system prompts)

‘/" L4
.RUN PPAS : ’
*PCMAST=PCMAST (Generates PCMAST.INT)
.RUN CODE ‘ N 4
"*PCMAST=PCMAST (Generates PCMAST.MAC)

—_ .RUN OPT (Optional optimizatibnal pass)

*PCMAST=PCMAST

»

.MACRO/OBJ PCMAST (Generates PCMAST.OBJ)

L]
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- 5, “Gené;ate.the“execuﬁablé modules by using the command
o . -.file RTS73.COM (available. on the PDP-11/73) for the
e master - module, .and. RTS534.COM .and RTS23,COM (both
available on -the PDP-11/34, disk pack §18) . for the
slave’ modules. Modules ' generated by the command .
. .- files are MAST73,SAV, SLAV34.5AV and DOWN23,SAV
. . respectively. \ . { :
- \“ < ) ‘ . ’ ¥ * ; . N
| - . 6. Connect/ the floppy disk drive unit (of the -
- - ) LS1-11/23) to ~the PDP-11/34, «copy the' file
o DOWN23.SAV onto ‘a floppy and reconnect the floppy . =~ '
. disk drive unit to the LSI-11/23,
-]

) : 'As_of this moment, the file MAST73:SAV should be
' i : ) - available on the PDP-11/73, the file SLAV34.SAV on
| S ‘the PDP-11/34 and the file DOWN23,SAV on the
' : L§1-11/23. The files RTSINI.DAT (run-time system
. debugger options), CSSDAT.DAT (communication
sub-system debugger options) and CRCTBL.DAT should
m also be .available on each machine. 4

‘.

o, .. 3 3
7. Connect the machines as follows: o ‘ 4

Line '2.to Line 12 ' . R
Line 8 to Line 11 ‘ '

K . ' : ! . i.

) 8. Start execution of the exécutable modules  as Y
~ follows: ‘ : ' ' .
6 . .RUN DOWN23 (on LSI-11/23)
. o -RUN SLAV34- (on PDP-11/34)
J .RUN MAST73 - (on PDP-11/73)
T More details can be found in the files RTSiAJNS.ana

RTS2.INS in the disk pack number 19.




;//”\ S o000 L o | b

ot

. a
. _ APPENDIX C  ° “ * ‘ .
> . , - D . ‘ .

2

List of recbyegy related messages’ 6enerat§d~ by ;he”"‘

system:. _ : | o | , ‘ . '
| & o o -'x?\

1. SLAVE ASSIGNED: ## * BUDDY ASSIGNED: #4 L .
"2. SLAVE ASSIGNED: #4 '* BUDDY ASSIGNED: NONE * |

NO RECOVERY POSSIBLE IF (slave) FAILED * L e
3. FRAME SENT 70 SLAVE 44 ;
4. FRAME NOT SENT TO SLAVE 4% = e ' o
* ‘ ; % ' {
5. SLAVE ## 1S DEAD; NO ATTEMPT MADE (to deliver the '
-frame) - : A , ¢
. . N .
6. * WARNING * SLAVE #4 1S DEAD ' ‘
7 7. * ERROR ¥ TOO MANY DEAD SLAVES, (master halts) - ‘
8. ATTEMPT TO UPDATE VAR(iable) AGAIN ST R
9, WARNING 269:. UNABLE TO SEND MESSAGE TO SLAVE: #4 e
10 WARNING 308: FRAME NOT, SENT SLAVE ##, CHkNNEL ##
The warn1ﬂg messages l1sted in 3 4 and 5 of the above, .
~are .displayed "only, if the option 22 in the run-time system - e
debugger (file RTSINI.DAT) is sw1tched on., '\ ~ by
The warning messages listed in 9 and 10 of the above are”
réplacements for the error numbers 269 and 308 respectively,
of the original implementation. ‘.
#- |
. B .
. \\ ’ 24
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LY

o

List of messages received by the master process FROM_SLAVE:.

»

~ :
56 - The slave has already terminated the current ¢

w ‘down‘procedure.

57 ‘The slave enquires the. status of the other
. = Slave. : - . A C

58 The slave informs that it is ready to take-over
o the task left uncompleted Dy the other slave.

<
- .

‘s

'

Iy

Cd . ‘(' . 1t ) ’ N /
CODE ' MEANING
44> B " . l * . - . 1
49 The/ slave acknowledges that it is in ALIVE
state, . )
Y . ; ,
50 The slave. is wuploading the new values of ‘g |
: Jariable parameter. .
‘51 .The . slave requests execution of a critical
; © procedure. ‘
52 The slave uploads the CP-Package,
53 The .slave informs thht it has completed ', - .
execution of the current down procedure.
. ” y v v
54 The slave agrees to terminate itself, S
55 'The slave refuses to terminate itself.

/
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. List
the slave- processor Pi:

CODE

10

.o

- 11

<« code {not

102

of messages recexved by the process FROM MASTER in

'MEANING o
: ] ; .
The master EEquests Pi to prepate for execution
of the down procedure DP1. .
)

The haster
execution. of the curren down procedure,.
The master begins. downloading: the down procedure
_code (not appticable under the current
implementation)

The master signals the end of the down procedure
applicable under the current
implementation)

‘The master informs that Pi's ‘requests’ for . the
execution of «critical
accepted.

The master requests P1 te term1nate 1tself

aThe master requegts a .simple acknowledgement
message (HOW ARE YOU?).

he master . informs that Pi has been ‘designated
s buddy of the other slave (Pj). ‘

The master xnforms Pi that Pj  has completed
execution of the current down procedure (iff Pi
- is designated buddy of Pj).. .

"~ The master informs Pi that)the status of Pj is

"NOT ALIVE' (iff Pi i5 designated buddy of Pj).

L]

The master requests Pi to prepare for recovery :

of the down procedure ‘left uncompleted by Pj
(iff Pi is des1gnated buddy of Pj).

‘ .~, . N

requests} Pi to terminate the.

procedure has been.
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