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ABSTRACT o .

©

. Jean-Pierre Vandelac . v

4

Resonaﬁ% DC-DC converters are usually operated in frgquencylmodulation
to achieve regulation. This has the disadvantage; of wideband
- frequency modulation. In this thesis an alternite rngxat

which employs fi&gd—frequency' Pulse-Width  Modulation (PWﬂ) is

{on scheme

propoééd. ‘Thig control scheme is applied gb the series loaded series
1 .

resonant ’conver er. '

Analysis shows that such ‘a“convefter operated at the resonant
frequency has two modes of operation dépendihg on shg load. The mades
are characterized by continuous or discontinuous resonant inductor
current. The converter can therefore be operated as a resomant or,
quasi-resonant conyerfér.- 'Quasi-resonance is ;mphgsized as it
presents low|switching stresses. When Qperated in a fullibridge
conf%guratio and a variation of PWM that can be de;criﬁed ai-phaJZJ“
shift modulation between the two sets of swifches, the converter .
presents even lower switching stresses. .

Analytical results include VA rating and stresses on critical active
and passive components as a function of input voltage variation.
Small-signal frequency response of the converter’'is also analyzed. A
200KHz, 7OOW, 48Vdc output, off line converter is realized using this
concept’ and expprimenfal results are presented to corroborate the

analysis. y . ]
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- 0 LIST OF SYMBOLS

i

When‘two symbols appear left‘of‘ a definition, 1in upper and lower

cases. the upper case —variable refers to the steady state solution -

and the lower case symbols mefers to the perturbed Variable. ”

n v
N

Aa is the large signal perturbation of variable a. &éa is the small
signal perturbation of variable a (3.4.1-8). ‘

A(t),AL : System matrix (3.2. 0-1) (3.2.0-3).
A : Normalized area under the resonant current waveform
(2.2.0-8). =
Atc : Area under the continuous resonant cyrrent waveform from
Jtt to tras.
Arq : Area under the discontinuous resonant current waveform
' from t;y to tieq. . .
A(s) : Error-amplifier transfer function (3.1.0-2)
B(t),B,: ¢ Input matrix (3.2.0-1), (3.2.0-3). B
C(t),.C, : Output maemix (3.2.0-2), (3.2.0-3). '
C,-‘ : Resonant capacitor. ~
CRy : Rectifier diode number {. n '
Co : Output capacitor. \ ’
D : Steady-state duty cycle. . ‘
D, d : Pulse train at the output o:f the pulse~width modulator.
D(t),D, aE Transmission matrix (3.2.0-2), (3.2.0-3). ’
D, " Anti-parallel diodé numbér . *
fo ' : Resonant 'frequency. '
fa : Switching frequency. ‘ °
£f Weighting factor for natural modulation (3.4.2-17),
(3.4.2-23).
G(s) : Converter transfer function.
&(sY - : Normalized converter transfer function.
T : Normalized current (2.2.0-7). o
Iavg .t Average current. , . .
. leo b : Steady-state output cépacitor current.
Io : Output current.
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\

Qrt
R,Re.Ro
Re

Rp

Rrt

. g .

- ‘ ) xi , ‘

: Steady-state resonant current: \

. State ,trapsltlon matrix (3.4.2-1). -7/ o ,
: Pulse—wldth modulator. gain : ’ v - -

: Resonant inducror or resonant inductor value

: Peak current. ' t ’ . ’

: Derivative of the steady—state resonant current at t:»tt S
¢ Derivative of the- steady-stdte resonant current at t~t¢ )
: Stress. current. Rms, peak or average depending on the y

device. 't
: Pole scaling factor'for dlscqntlnuous mode’ (3 6 0-6). .-
and Figure.

: Nomalized DC gain (3.6.0-5) and (.3 6. 0—7)
: Input transition matrix (3.4.2-1).

5

"~

: Voltage transfer ratlo. , v )

.

'+ mth half-cycle, *

E Ry,Rye,Ryo :

-

: nth cycle.

: time . .
: Pulse-width modulator delay "o '
: Half—cyole period. C )

S V2R A .

: Number of switched states. - . e Co- : . o
o L] . 1 y R + .
: Inpu¢ Power.! - L 4 / S

©

: Output power - ’ ‘

: Pulse—wldth modulator trapsfer function. (3 1.0-4)" .

: Load parameter (2.2.0-3). AR

: N9Fmalized load paragneter:.(‘z.z.o-'q). . Voo ] SN
: Output capac'it:or resistance ’factqr (3':‘3.——}:4)c : co C
: Resonant' t quality factor (3.3.1-3) ° " "
: State ‘reconstruction equation, (3.8.3-11), (3.5.3- 14)

Pl

: Output -capacitor equivalent séries resistance ‘(esr).

: Load resistance. . . . - ve .

-

: Resistance in series with, the resonant” tank ' :

Output reconstruction equation, (3 5i 0—l) (3,5.4- 3)
(3.5.4-4).

-

E Sample dat&-systém equation (3.5.0-‘1) B T A . -
: Switch number t '

: Parallel combination of a unipolar switth and of a diode '
connected in’the reverse direction(anti-parallel diode). Y,

1 4
! ~
L ] 2 N Pl

o



Yty, tg

Van
Vamﬁo\:amp
“VAop
VArat

-~ O

: Switching instant. Figures 2-2 and 2-4. ’ | .
: Sum of the T('s up to L-1 or up to 1-1"(3.5.3-9),

(3.5.3-18). ~ ,

: Period:of the ith switched-state.
: “Sampling’ wave offset time, Figure A-1.

: Main t;aﬂsform:r. ) . .
: Sampling period. * )
r ' v
: .Normalized voltage. (2J2.O-6)
: Volt-Ampere stress product. .

: Load branch voltage, Figures 2-1 and 2-3.
: Véltage.-erro;‘ amplffier output voltage.

: Volt-Ampere stress at a given operatiﬁg point. )

: Max‘:ln_\um ‘,st:ead;r-s tate resonant cﬁpaci tor voltage.

¢ Derivative of the §§eady—st'ate\vgg:tor at t=t} (3.4.2-6).

: Resonant current perturbation at start of the jth

*: Product of the worst voltage str%ss by the worg4/™ ’

current stress over_the range of operation points of
a converter.

: Resonarit capacitor voltage. ,

o

. Gate voltagé. _ -

Inﬁt voltage.:.

: Minifum input vol tage at which regulation is theore-

tically achieved for a given Vo. Normalizing factor.

: Stleady;-stp.‘te output voltage. ! R
: Volt-weonds product. & |
: Voltag?, stress, ') ’
: State vector (3.3.1-11)

1)

-

:_Derivatiie Jf the steady-state vector at t=tg (3.4.2-7).

: Out.put:"vec.tor., . . » CTe
: Output capacitor impedance at wo'(3.3.1-5).

: Normalized, output capacitance impedance (3.3.1-5).

: Resonant tank characteristic impedance. (2.1.1-2) :

: Switchin‘g ébrategy factor. ° ) -

: Resonant current perturbation at start of the jth

switched state.

¢

€ewltched state. c

: Sampled state perturbation. ' : ’ .

&
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“

: State perturbation at end of the j‘h switched state.
: Magnetic f lux.

¢ Switched-state transition matrix (3.4.2-2).

: First half-cycle tra:r:nsitiqn matrix (3.5.2-7).

: Second halflcycle transition mtrix‘(3.5.2—5).

: Magnetic flux linkage.
: Per turbed switching instant’ (3.4.1-6).

-

: Second order pole angular frequency (3 6.0~2)..
: First first order pole angular frequency (3.6.0-8).
: Second first order pole angular frequency (3.6.0-8).

: Angulg_r\?ﬁionaht frequency (2.1.1-3) (

: Angular switching frequency.

: State perturbation at start of the jth switched-state.



. CHAPTER 1: INTRODUCTION

1.1 DC-DC SERIES RESONANT CONVERTER

N

In the continuing search. for more "efficient” power conversion
séhemes. increasing attention is focused on resonant or
quasi-resonant, [1], power supplies . Advantages often cited include
low switching losses,. (which lead to higher switching frequencies),
utilization of.parasitic inductance as a circuit element and lower
Electro-Magnetic Interference (EMI) levels, [2], [3]. Amongst the
multitude of resonant topélogiesu the series resonant coﬁverter
{ntroduéed by Schwarz [4] stands out as a high efficiency power supply
topoloéy.' T ‘

This converter can be implemented in many different embodiments.
Figure 1-la) to to 1-1d) show four of these emgodiments vhere full-~-
wave rectification is assumed to be achieved~by a centertap secondary
winding. The converters in Figures 1-1b) and l-lc):.pan easily be
shown to be functionally equivalent to the éznverter of Figure 1-1a).
The ehbgdiment of Figure 1-la) 1is ‘therefore ;eferred‘ to as the
half-bridge “implementation ‘of ithe" converter and the embodiment of
Figure 1-1d 1is referred to -as éhe full-bridge implementation..

The half-bridge implementation of the converter  is operated. by
alternately sﬁitching S; and S, at a 50X duty ratio as illustrated in .

.Figure 1-2. Thischas the effect of impressing a square wave of

.-amplitude Vyn across the }oad branch, Vap, Qi:the conver;er. In thé

full-bridge implementation, S, and S;  are respectively switched
synchronously’ with" §; and S;. This also impresses a square wave of

amplitude Vipn across the load branch. Regulationo of the output

‘jbltage is obtained by varying the frequency of thé square wave. The

period, T, Gn.Figure 1-2 is varied.

o

‘ T
Inﬁ?ﬁf;:)hesis. attention is focused on the DC-DC application. of the
converter. Z;, on Figure 1-1, is therefore assumed to be a full-waye

¥
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Figure 1-2: Frequehcy Modulation

4



.4;? ;

.

rectifier feeding a filter capacitor in parallel_ with a resistive
load. Frequency-modulation control of this DC-DC converter was well
analyzed by Vorperian for both steady-state and small-signal behavior
[5,6,7]. -
. ‘ 4 ¢

The current-source nature of the converter implies that the frequency
band to gchie§é output voltage regulation over an appreciable range of
loads is very large. If regulation over a wide range of. input
voltages is also desired; the frequency band i{s even iarger.
Therefore, optimization of tﬁg converter is difficult. For example, a
series.resonant converter operated above resonant frequency switches
at very high frequency at low load and high input voltage. This puts -
Severe constraints on the design of the output filter or the gate or:
base tdrive design. It also has been reported that frequency
modulation control can be accompanied by entrainment problems [2]. *

For these reasons fixed-frequency operation may be desirable.

1.2 PULSE-WIDTH MODULATED DC-DC CONVERTERS

-
Half-bridge and full-bridge DC-DC conve}ters are usually operated as .
"squa;e—wazg" converters. Tﬁe " half-bridge "square~wave"
implementé%ion is 1illustrated in Figure 1-3. S; and S; are switched
in alternance to produée an AC Qoltage waveform. The voltage

impressed across the primarf' of the transformer is rectified and

_filtered on the on the secondary. When S or S, is turned on, a

voltage of magnitude Vp ‘ﬁh applied ac}gss the primary of the
transformer. Energy is transferred from the source to the output
filter inductance. - During the off-time, when Soth S, or S, are.off,
thg current of the output inductor shares equally between CR; and CR,
and\‘fhe voltage across the primary of the convertef is clamped to
zero. The resulting waveforms are shown in Figure 1-4. Full~bridge
operation is very similar as S, is controlled simultaneously with S,
and S; is controlled simultaneously with Sa.~ The commonly used term
"square-wave" converter is attributed taq the fact that both
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transformer current and voitage waveforms hav; sharp transitions or
"square corners”. As  energy 1is transférfed during the on-time of

S,(S4) or S2(S3), the control of the, output voltage is achieved by
modulating ton and by keeping a fixed period T. This type of control
scheme is referred to as fiTed-frequency Pulse-Width Modulationl(PWM).

In this thesis, the application of the PWM technique to the Series
Resonant Converter iswlinvestigated. PW¥M applied to resonant
converters has been known for some time, however, publ{cations on this
subject ‘are very limited, [2], [8]. Wﬁg;‘the resonant_ébnventer is
operated with a PWM control scheme, an important distinction is made
between ‘the half-bridge implementation, illustrated in Figure 1-1a),
and the full-gridge implementation of Figdré 1-1d). The distinction
arises from the greater flexibility in the sequence the switches can
be turned on and off in the full-bridge. Two possible switching

strategies have been identified and are now described.

In the first strategy, the switches of the half-bridge are used in.the
same way as in the "squgre—wave" PWM converter described above.
Specifically. S1 and S2 are turned on alternately, at a fixed
frequency, for a controllable equa] amount of time.  The full-bridge
implementation of the converter is functionally equivaleht to the
half-bridge version if S, and S, are turned on and off simultaneéusly ‘
and so are S; and S; as indicated in brackets in Figure 1-4.

' /

/

The second switching strategy applies to the full—bridge configuration
only. In this strategy the equivalent of the on-time, ton., {s also
achieved by turning on two diagonally opposing switches (S, gﬁd_giuor
S; and“S,). The difference lies in the—mechanism through which the |
off-time 1is achieved. During the off-time the load bragéh is clamped
through two transversely opposing switches (Sy and S; or'S; and S,).

" This results in the operation of S; and S; at fixed frequency and 50X

duty. ratio. S; and S; are operated similarly. 7 The pulse width '
modulation is achieved by shifting the S, S2. gating signal with
respect to the S;, S, gating signal. The switches timing diagram " and

-

y

/
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| the wavef'o}m resul ting across the load branch, Vap, are illustrated in

Figure 1-5. Note the similarity of the load branch voltage with the

transformer voltage of Figure 1-4. ) .

-

Since,'{ in the second switching strategy, the Pulse-Width ‘Modulation is
achie\;ed by shifting the relative phase of two 'square-wave signals,
this control scheme is referred to as “Phase-Shift Pulse-Width
Modulation (PSPWM). PSPWM is not specific to the control of the
séries resonant conver ter ‘and is commonly -used in irgverter

applications [9].

1.3 OPERATING FREQUENCY. '

3

The converter is to be operated with fixed—frequency %\ulse—width'
modulation. The switchqing frequency can be arbitrarily set, and
studies over a range of frequefxcies could therefore be carried‘ out.
To limqit‘ the scope of the thesis, the analysis is perforr?):ad at a
single switching frequency. The rationale for the selection of the
switching f requency is now exposed. '

N>
It can be seen from Figure 1-5, that when tgn is equal to T/2,
operation in PSPWM at a given frequency, is identical to the operation
in frequency modulation depicted in Fiéure 1-2 for the same switching

frequency.- This 1s also true for PWM operation of the converter.

Conclusions applicable to PWM or PSPWM operation can therefore be'/

drawn from fr;equency modulation operation of the converter. /

¥hen the frequency-modulated converter is pperated below resonance,
the switches are naturally commutated. This is very advantageous when
SCR's are used in low frequency (below 50Khz) application. However,
at turrﬁon‘. the switches must commutate large currents and the
paraéitic capacitaﬁce of the switches are also discharged through the
swituches themselves. These characteristics are not very attractive.
Although unimp:oriant at low frequency, losses from parasitieg™
capacitance discharge becomes significant at high frequency (above

«



50khz) and become dominant at very high frequency (above ‘500Khz). ° In
this thesis, emphasis 1is put on operatfon at’ high frequency.
Operation at a frequency below resonant frequency is therefore not-

considered. .

-

s It has been reported in [3]. that operation of the converter above
resonant, frequency yields zero-voltage swi tching.- Zero-vol tage
switching,‘ [10], 1is characterized as follows. The switch -turns on
while an anti-parallel diode carries the current in the reverse
direction. The turn-on occurs with zero voltage across the swi tch.
At turn—-off the ‘switch is rapidly 'turned off, while a small e¢apacitor —
placed in parall'el with the switch is charged by the resonant current.
The resulting voltage across the switch i:sz low during its extinc;ion.

- With the availability‘of fast switching devices such as MOSFET's,

P
operation above resonant frequency is therefore attractive.

2
-

As attractive as operation‘above reson;nt frequency may look, {t has

to be underlined that to retain zero voltage switching at all duty

<‘:ycles, the_ operating frequency would have to be selected much above

"...—the resonant frequency. This can be seen as foll;)ws. Consider the

Vap on Figure 1-5 and picture its fundamental component. It is seen

. ) that the current wouid have to lag by a large angle for the current to

~ - be negative (or positive) at the switching instant where Yab reaches
Vin (or =Vin). Keeping this in mind two facts are underlined.

The voltage transfer ratio of the resonant converter operated in
freqt.xency modulation above resonant frqquency is shown in Figure 1-6
“as a function of the ratio of- the switching frequency, fg, ,to the:
resonant frequency fo. A family of curves is given with Q as a
"parameter, where Q s defined as the ratio of the LC tankh
characteristic impedance to the load resistance. It is seen that at a
given frequency, the voltage transfer ratio is dependant on the load.
For ‘gxample_, at fg/fo = 1.2, the transfer ra%.io is equal to 0.22 for
e Q=10 and is equal to O.:72 for Q=2. With p'ulse—width "modulation
operation, these conversion ratios would therefore correspond tao the.

maximum voltage transfer ratios (at maximum duty cycle) for these two
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Figure 1-6: Voltage Transfer Ratio of the Series
Resonant Converter Operated in Frequency
Modulation Above Resonant Frequency.
(Based on Fig. 3-14 in [7].) :
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A .
loads. The_maximumgwoltage transfer ratio not being the same for all
Loads_impiies that the range of voltage over which regulation cgnld be
achieved would be different for each load. This is not a desirable
characteristic in DC-DC converters, which in general must operate over
a wide “range of onfput loads and a given range of input voltage. It
is seen from Figurezfgé/ that as the switching frequency is selected

closer to resonant frequency, the maximum available transfer ratio

B RS

A

becomes independent of load and approaches 1.

It can also be, caléulatgd from the material’ given 1in [7] and the

stress normalization procedure given in section 2.3.3 of this thesis
. .

that, for a given output power, component stresses are lower as. the

switching frequency approaches the resonant freqdency.
N ’ -

For these two reasons the study is performed for a switching f requency

equal to the resonant frequency..



CHAPTER 2: {-STATE ANALYSIS

L

2.1 CIRCUIT OPERATION DESCRIPTION '

When the converter is operated at resonant frequency wi th either PWM .
or PSPWM control, there are two modes of operations characterized by

continuous or discontinudus resonant inductor current.  The steady—
state operation of the converter is ?w described for PWM and PSPWM
-control in both modes. =

In the following description all inductors, capacitors and
transformers are assumed to be lossless. All diodes and rectifLers
have zero drop in the forward direction and no leakage current in "the
reverse direction. ' All switches are unid'irectional switches‘w}th’ zero’
forward drop. The output filter time constant RyCo is also assumed to
be much laréer than the switching period so that the outputs filter
can be modeled as a constant voltage . source of amplitude Vo. - To
simplify notation the transformer turns ratio is taken to be 1:1:1.

Generalization to an arbi trary turns ratio is trivial. 1

Y

2.1.1 PWM Operation 0 -

The PWM operation of the full-bridge embodiment of the converter\}* is
similar to that of the half-bridge. For this. reason the: description
will be restricted to the that: of the half—bridge

2

2’!1.1.1/) Discontinuous jMoc{l"e with PWM . - . . .
P ~ -
In the discontinupus mode, the reSonant inductor initial current is
zero. After the alosure of S1, at t=tg{ the current rises and CR,; is
forward biased. The current flows as indicated in Figure 2-la) and
de;er;nines the relative polaritie,s of Vin, Ve and Ve The current is

_ therefore expressed by
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Ip(t) = Yin= Ve(to) = Vo _stn(oot) . (2.1.1-1)

oo Zo
° ¢
+  where¢ ' ) o ’ . T
5 F . o
' h Zo = ( Lr / Cr )77, : (2.1.1-2)
- ’ * e Wo = 1/(LPCI‘)1/2 , (211"‘3)

<
-

At time t=t,, when the ’“Sl is turned off, the inertia of * tfme resonant
inductor current forces. the conduction of Dz The current flmgg as

indfcated in Figure2 lb). The resonant current can thereafter be -

’ ”
%z’ expressed as . .
Te(t) = Ir(t,) cgs(wot-uot,) - Lu¥elEd Vo inaugtraoe,)

\

: (2.1.1-4)

. . Y
- ‘i\‘\
\p - - | ,
) .  The resonant current decays until it reaches zero at t=t,; D, turns
. “ >
é " off. The current remains at zero until Sz is turned on at t=t,4.
Since the current is unidirection&i throughout the first half- cycle

¢ r and reverses at the turn-on of’Sz, the resonant capacitor vvoltage is

- ‘maximal from't; to tj.

\ . . v

) P
¢ I

T e Velt) = Ve 2§ t{ta . -(2.1.1-5)

. LN
e

From\»syn'u'netry of the dperation in eac}; hé.lf—cycle it is concluded that

( Volte) = —Vel(ts) . (2.1.1-6)

-

«E
) The value for Ve(tg) 1is obtained from equationb (2.1. 1—5) and
) (2.1.1-6). Substituting in (2 1.1-1), the resonant current can be

¢ H

- X expressed as . : o



A5Y

‘ . B
VLnl"‘ vcm - Vo.

Ir(t) = 7= sin(wot) . (2.1.1-7)

for to ¢t < t,.

Note tfnat at t, the voltage across Cy is positive and would naturally
tend to reverse the flow of current. If reversdl was to occur, the
current would  flow tl.'xrough CR, and D,, és igdicated in Figure 2-1c).
In this circu?t configuratibn, the output voltage Vo and V,n oppose
Ve, discontinuous operation therefore implies that ’

e Ve(tz) = Ve oo S Vin +t Vo . (2.1.1-8)

It 1is also noted that, in- physical implementations of the converter, -
energy 1is stored in the transformer as magnetizing current. The
magnetizing current cannot be interrupted at t=t,. CR; is therefore.
forward biased at this timg\ and the magnetizing cyrrent flows through
the load. The transformer voltage reverses to -V,. Consequently the
voltage at the poiq’t common to S; and S, designated as V5 on Figure

,2-1,15“ ¥ . . .

Va_ = VLn + vcmax - VO . - s :(2.1.1“9)

The impoptance of .this point will be underlined later in section

-

4.2.1. Selected waveforms are shown in Figure 2-2a).

2.1.1.2 Continuous Mode with PWM

In continuous mode, before S;' turns on at t=to, the resonant curre?t

is non zero and 1is f‘léwing through 'Dz. When S; turns on, D; 1§’

-conmutated and the current remains positive. The current path 1is

illustrated in Figure 2-l1a). From circuit theory, the expression for
the resonant current is found to be '

-

¥

Ir(t) = Ix(to) cos(wot) + VL?—V§£t°)TV° sin(wot) . (2.1.1-10)

¥
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A . . ' : Co
At time t=t;, when S; is turhed off, the current is commutated to D,.
The current path rs that of Figure 2—lb) and the resonap\t current is
expressed by " : L
! . Ir(t) = Ir(ti)COS((ﬂot-wotl) - VLn"'v%(t‘)"‘VO 'Sin((dot-woti) .
! . n « w’ . 0o

1

v
i

(2.1.1-11)

14

v At "tkty, when the ~cx.u:rem: .gfosses zero, the capaéitor voltage is

L maximum and larger than V n+Vo., The current thprefo;:a rings back
h S ~through D, asg 1illustrated by the resonant current path of Figure
12112:). Recalling that .fr(tz) is zero, the initialg value of current is

) zero and the expression for the current has only.a sinusoidal term.

. , " VinVe_ +Vo ;o '
; () = maX___ sin(wot-votz) 2.1.1-18

[ zO

° v

0
~

The next’ half-cycle is symmetrfcal and starts at: the turn-on of S3.
Typical waveforms are shown in Figure 2-2b). . y

Y

2.1.2, PSPWM Operation

-

. o
> 2,1.2.1 Discontinuous Mode with PSPWM. /

3
S «

As for switching operation in PWM, the i‘nitial resonant current is

zero and the initial resonant capaci tor voltage is maximum. . Ss s

already on when S; is turned on at t=ty; the resonant current ’

increases and 'CRt is .forwarcll_'bi'ased. The current .ﬂow'S‘ as indicated’

in Figure 2-3a) and determines the relative polarities of Vin, V¢ and

Vo. From circuit.theory, the current is found to.be exprepse(i by
ol

VentVe o Vo - .
raX — sin(wot) . (2.1.2-1)

e . - Ir(t) =




<

o

At time t=t,, when S, is turned off, the ineptia the resonant
inductor current forces the conduction of D5. The current flows as
indicated in Figure 2-3b). The resonant current can theyéafter be

expressed as

Ir(t) = Ir(t;)COS(Uot"’(ﬂott) - Ydté—)-'.‘,'g‘ Sin(wot"(dot1)‘, (2.1‘.2"2)
o

At time t=t,, when the current crosses zero, V¢ is maximum. In this

case a reversal of fthe current would imply a current flow as indicated

in Figure 2-3c). The copdif]on for discontinuous conduction .in PSPWM

operation {s therefore
vc(tz) = vaax S Vo ) * (2.1.2"‘3)

Selected waveforms are shown in Figure 2~-4a).

>
3

2.1+.2.2 Continuous Mode with PSPWM : »

In continuous mode, before S, turhs on at t=to, thﬁ resonant is non
zeto and is floﬁlng inﬁthe positivé direction through D, and S4. When
S turns‘jn. Bz is commutdted and the current remains positive. The
current path ig illustrated in Figure 2-3a). From circuit theory the

expression for the resonant current is found to be
i 4

'

Ir(t) = Ir(to) cos(wot) + V(n-Vcéto)—Vo sin{wot) . ' (2.1.2-4)
M & O

A .

At time_t:t‘. vhen S¢ is turn&d off, the curréﬁt is commutated andl
flows through S; and Dy. The current: path is that of Figure 2-3b) and
the”rqfonant current is expressed by

- a*

Ir(t) = Ir(t,)cos(vot—wots) - M‘—igi"—" sin(oft-vot;) .  (2.1.2-5)

g “

At -time t=t3, when the current crosses zero, V¢ is maximum and larger

_than Vo. The current therefore reverses and flowsothrough S; and® Dy.
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3
- as illustraéed by the resonant current path of Figure 2-3c). Slnc:

Ir(t2) 1is zero, the expression for the current has only a sinusoidal

. N
~Ve. Vo

Ir(t) = '——Z—O——' Sin((dot"(dota) (2.1-2"6)

term.

a

The next half-cycle is symmetrical .and starts at the ~turﬁ—on of Sj.
) Typ}ca‘l waveforms are shown in Figure 2-4b). ' )

\ .



2.2 STEADY-STATE TRAJECTORY

The prece'diﬁg section_. describes the operation of the converter. In .
this section, equations that describe the steady state trajectories of
the resonant current and resonant voltage are derived The voltage
transfer ratio and the boundary between the;conductioﬂ'modes are also

determined. - . \

The t;quationslare a function of three quantities: the load, the ou'tput
voltage and the on-time. Any two of these quantities can be selected
as parameters the third one becoming the w)‘a.riahlg to be solved for
numerically. This is performed. for both switching strategies. The _
analysis is given for to < t < Th, where Th is the half-cycle period. '
.Resonant current and voltage for the second half—cycle are simply

' obtained from

.Ir(t)‘ SLe(t-Tn) . (2.2.0-1)

Ve(t) = ~Vo(t=Tn) . (2.2.0-2)

L4

Useful to the analysis. are the following definitions: ™ the load"
parameter, -analogous to the quality factor of a series resorant tank,

)

' s .%i;., e (2.2.0-3) .
the riormalized ioad parameter, T ) | . ’
: | (/ | 0 ,
o . a@=aQ- AL © o (2.2.0-4) -
‘and' the‘s\‘teady state voltage transfer ratio, . : \ .
L - i E~-v£ - o .(2.'2.0-5)’
. : : Vin. . N

e
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.o,
"

It is also convenient to normalize voltages to Vip (units in volts)
and to normalize éhrrents to Vin/Zo (units in anips)

v(t)

I(t) * Vl-n (202"0"6)
) L]
. o ' ‘
. I(t) = T(©) + 4o (222.0-7)
fﬁ? o '
0 / . '- ]
V(t) and I{t) are dimensionless wvariables which yield the actual
. |9
voltage and current once multiplied by the proper scaling factor
T used.

In section 2.3.5, normalization of the integral of the current is also
as follows

The area, A, under the current waveform is therefore normalized

SIS /T |
S A
difference between

(2.2.0-8)
\’&l .
It can be noticed, from the discussi®h of section 2.1, that the only
the PWM and PSPWM operations
impressed across the

‘is the' voltage
load branch during the off-time, t,<t <tj, In
PSPW¥M operation thé\woitage across the load branch 15 always
Comparison of (2.1.1-4), (2.1.1-11), (2.1.1-12)

(2.1.2-5), (2.1.2-6) reveals that ’
except for

zero.
to (2.1.2-2),
these expressions

-are
a missing term of magnitude V. in the set of equations
pertaining to PSPWM t1)
\

identsical
Multiplying the voltage

0

impressed across
load branch in PWM operation during the off-time by the factor

the .
1  for PWM operation -~ \\
B=E . . (2.2.0-9)
0 for PSPWM operation
allows the analysis of both switching strategies wi&h a single set of
equations ’
‘a N AN




2.2.1 Discontinuous Mode

It is seen, from the discussion in sections 2.1.1.1 and 2.1.2.1, that
the resonant current 1is unidirectional during a half-cycle and that

thé capacitor voltage varies from -chax to chax. The capacitor
voltage s%ihg during a half-cycle is therefore 2°chax. Ffom‘that 4
fact, a very useful relationship between the output voltage and the
maximum capacitor voltage is derived. Let 3
, ' ty . )
' Aca = J Ir(t) at ’ (2.2.1-1)
. ., to . .
and 2 : o
ta . :
Ajg = Ir{t) dt . (2.2.1-2)
t‘ ©

- [}

Since the voltage change  on the ' capacitor is the infegral of the

Th

current,
t .
Ve =L [Pr(gae = Aeathia 3) Ny,
. ?chax = t([, Ir(t) 9t = ronmnll (2.2.1-3) -
r ' o N,
The output voltage is equal to the average load current multiplied by
the load resistance. ’ \ o
Ry ' ; '
VQ = ( Aod"’.Agd ) (2-2-1-4)

<

Dividing equation 2,2.1-3 byfequation 2.2.1-4 yields

k vcmax - ‘ Th - ﬁ)oTh _‘ Q- (é 9 1_5)
‘ . ' Vo T 2ReCr ~ RpwoCr ’ e
or R .
g vci'llax‘ = m ® pr . (2.2. 1“6)



3
Ll

Using that felationship and the definiﬁion for B, the expressions for
the resonant current and voltage can be derived for each of the three
time intervals of the first half-cycle. /' ..

“to €t €ty

Substituting (2.2.1-6) into (2.1.1-7) and (2.1.2-1) the Tesonant

current is found to be

+

Ir(t) = (14MEY) - sin(wot) =~ —9iR .  (2.2.1-7)

Zo
i
Integrating (2.,2.1-7)
t r
Vc(t) = Vc(to) + —-1_— (1+W_M)- . ‘sin(wot) . l’ﬁ ac
.. Cr Zo
to=0
wot .
1 . 3 VLn. .
= Ve(to) + (1+MQ-M) - sin(wot) ° Bwot .
i Cr(do ZO
Wototo ' ‘
(2.2.1-8)" .
. It is easily shown from (2.1.1-2) and (2.1.1-3) that
. A
v 1

! ‘ Crwo = Zo . : (2-2.1_‘9)

The initial value on the resonant capacitor is —chax. substitution.of
(2.2.1-6) and (2.2.1-9) into.(2.2.1-8) results-in

.

CVe(t) = [ <MT + (1MTM)+( l-cos(uot) ) 1+ Vin . (2.2.1-10) | -~

'n
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. . AN S,
— . Normalizing (2.1.1-4) and (2.1.2-2) yields . f

e . ;
Ir(t) = [ Tr(t:) cos(wot-woty) =(B+Ve(ti)+M)* sin(wot-—wots) ]- éﬁ -

— o

y ‘ {/ : (2.2.1-11)F o
where I.(t;) and Vc(t;) are obtained by first substituting woty ufor;q
wot into (2:2.1—7) and (2.2.1-10),-and then normalizing according to
the definitions of (2.2.0-6) and (2.2.0-7). : Integrating (2.2,1-11)

- and adding the capacitor voltage initial condition results in

Ve(t) = [ Ve(ty) + Ir(ty) sin(wot~woty) p
—(ﬁ+Vc(t1)+M) ""( 1 - COS(,Uot"(A)otg) ) ]7 hd VLn . '(2.2.1"12)

ta <t <ty =Ty
I(t) = 0 ' (2.2.1-13) *
Ve(t) =M -+ Vg . (2.2.1-14)
. . T
The equations describing the resonant current and voltage trajecﬁories

contain an unknown, t,, the timé at which conduction stops.

. Substituting for Iy{t,) and Vc(t,) iﬁ§o (2.2.1-11) ’ \
R v N - y
I.(t) = [ (14M3-M) *sin(wots) * cos(wot-vot;) S
» (2l (%3

. \ ) ; :
- { B +1 -.(1+MQ-M)+cos(woty) } °* sin(wot-woty) ] ) vé: 2 |
. . : (2.2.1-15)

ta is found by equating (2.2.1-15) to zero with wot=wota. Sgtting‘
Wota 1in evidence: - S - - o .

. [y
1




< A
Ba

Q.

Asa = [ (144GM)( cos(uots) = cos(uots) )

O -1 1+4MQ-M) -si t
wotz = (A’ot1 + tan [ p ry 1 !GI_’_ S ?C(;: (:Jot1 ] . (2 2 1- 16)

To find the equaxion that will allow to find M, Q’or wot, s n
function of the two other quantities. the principle of conservntion of
energy is used. Letting P, be the average output power und Pin be the

average input power, these quantitigs are given by

2
)

© P s YT‘; [ "I0(t) 8t - p\‘f’?lr(c) gt ]

' - .." _'IT— { «Qd—. BAia) . PO (2.2.‘1-—17)
f
W
and , \
. A" T 4 .
A - Po = T: oh Ir(t) at\__
»‘ © v .
( ) e Y (hoa + A ) - . (2.2.1-18)

4
- /

¥

The.assumptionsooutlihed in section 2.1 implies that the canverter 1is

' lossless. Equating Po to Pyn results in

: . ) ) .
r . " \ ,
Vo ADdI‘_ﬁAld 2.2 ‘
= = .2.1¥19
M=V~ hoathra ( )
Aoq 1s found by integrating (2.2.1-7) from to to ty. ,
e " Aog = (1+MQ—M)-(i-cos(woc1)) . r""%o— N (2.‘2.1-20)

i

s "

A1d is found by integrating (2 1.1- 11) from t; to tz and substituting
for Tr(e) and Vo(s): 7~ o «

- ] T v
. =~ (ﬁ+l) . (l-cos(wot?-wott)) ] . uofno
) o L, (2.201-21)

~

Substituting (2.2.1-20) 'and (2.2.1-21) into (2.2.1-19) ytelds -

v
©
B

-
R

7



-

(1+M'Q'-M)‘[ 5 - 1 + (p+1)-cos(woty) — (M+B)-cos(uwotz) }
- -kB+1)°(M+B)'{ _L-cos(wotz—:ot,) y=0. (2.2.1-22)

_Sihc;: tz is a function of N, Q'ar;d wgti equation i2.2.1—22) is an
implicit equation of the quantii:ies M, Q and wot; which can be solved -

for -by ‘sett g any two of. these quantities as parameters.

The description of the resonant current and voltage Bteady state

-

trajectory in gliscontinuous‘ mode is complete.

4

Coe . /
2.2.2 Continuous Mode
. ) . ’ . o
As for :the discontifiuous conduction case, a relationship between the

output voltage and’ the maximum capacitor 'voltage can .Qasily be [
der fudd. \et, ' 2 '

¢ * 3 . » ' r 4
s ’ ‘ ti - f v
Aoc = f Ir(t) ot (2.2.2-1)
ty ‘ . \
/»\ ’ A 4 tz . * .
Aie = [ Ir(t) 8t % (2.2.2-2)
r tl
L o
’ . 4 _Eo Th :
‘Az = f Ip(t) 3t == [ -Ir(t) ot (2.2.2-3)
t>-Th ta

N !‘ - . ' i . ‘ 3
Referring to Figures 2.1-2b) and 2.1-4b), it #s “seen that the clffrent
"is zero at t=tp-Th and at t;. During t}';is 1nt:er°va1. the " current is
-~ . ‘ .
-positive’ and nthe‘_ capaci tor ‘voltage -varies from -chax'to +_chaxv.
Since the voltage change on the ‘capacitor is the integral of the .~

current, ) » ,




ty I
[T Ip(t) 8t = -Aoct é;d Ae | (2.2.249)
tz2-1h

Ve

'2+Vomax om

The output voltage is equal to the average rectified resonant current

multiplied by the load resistance,

Vo = _%_( Aoc * A *+ Azc ) (2.2.2-5)

Dividing equation (2.2.2-4) by equation (2.2.2-5) the relation sought

is

Vemax = MQ . (2.2.2-6)

This is the same expression as obtained for the discontinuous case.
Using that' relationship the expressions for the resonant current and
capacitor voltage are derived for each of the three periods of the
first half-cycle.

to €< t < ty

Normalizing (2.1.1-10) and (2.1.2-4) yields ,
\ )

Ir(t) = [ Tr(to) cos(uot) + (1-Vo{To)-M)*sin(uwot) ] Lérj .

g ' (2.2.2-7)

Integrating (2.2.2-7) yields the resonant capacitor voltage N

k]

vc(t) = [Vc(toj + Ir(to)'Sin(Uoti + .(1‘— cito;"M)‘(l-CpS(Uot)) ]'VLn .

]

(2.2.2-8)

ty, <ttty :

.
!

Normalizing (2.1.1-11) ‘and (2.1.2-5), the current is found to be



L3 i

YT
]

Ir(t) ; [ Ir(tg) Foskwot"wota) -(B+Ve(ty)+M)* sin(wot-woty) ] "!%f .

o

- - (2.2.2-9)

- ' »

where I;(t;) and Vc(t,) are obtained from (2.2.2-7) and (2.2.2-8) by
substituting wot; for wet. Integrating the current,

)

Vo(t) = | Vats) + Tr(ty) sin(vot-wots)

é ‘ -(B+Vc(ty )+M) » ( 1 - cos(wot-woty) ) ]° Vin - (2.2.2-10)

~
—e o

t, <t <ty =Ty

Fand
-

Recalling (2.2.2-6) which states that chax = MQ and normalizing

~ equations (2.1.1-12) and (2.1.2-6) the current is

.

L8 = (MOM) - sin(uot-wots) + R+ T (2.2.2-11)

0

The resonant capacitor voltage is obtained'by integrating the current.
Vo(t) = [ MO+ (B-MGHH) + ( 1 - cos(uot-vots) ) |*Vin  (2.2.2-12)

. ’
K] ]

The equaéioﬁs dg?cribing'the resonant current and voltage trajectories
contain two more unknowns than the discontinuous mode equations: the
initial resonant current; Ir(to) and the initial resonant capacitor

voltage, Vc(to). From boundary conditions and assuming t, to be
known, Ir(to), Ve(to) and a relation between M, T ‘and wot,” are
.obtained. " The first two boundary ‘ condition fall from hﬁlf-cycle
periodicity. '
¢ Io(Th) = =Ir(to) -~ (2.2.2-13)
Ve(Th) = =Ve(to) - ‘ X (2.2.2f14)

“@
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The third boundary condition is obtained from the definition of tg.

[

T Ir(tz) = 0 . ’ (2.2.2‘15)

Substituting for I-(t;) and Vc{t,) into (2.2.2-9), the expression for
I+(t) for t, < t < t, becomes ' :

Ir(t) = [ {(Ir(to) cos(woty)+(1-Vec(ta)-M) sin(wot;))} cos(wot-wot,)

= {B+Ve(to)+Ir(to)sin(uwoty)+(1-Ve(to)-M) *(1-cos(uoty)+H} *
. sin(wot-woty) ] . —!%ﬂ

X 1 o “ (2.2.2-16)

.Substituting (2.2.2-11) into (2.2.2-13), (2.2.2-12) into (2.2.2-14)

‘and (2.2.2-16) into (2.2.2-15) yields, after some manipulations,

¢

[ 1 0 (1~Q)°sin(moTb—wot2) . [ T;TT;& .
0 1 T+ (1-0)- (1-cos(woTn-vota)} | * | Valte)
cos(m°t2) -sin(%gtz) —sin(motz). M
[ ~B* s1n(woTh-vot2)
- | ~p+{1 - cos(onh-w;tz)) .o (2.2.2-17)

J(ﬁ+1).151n(wotzr-wot1)‘-Sin(wotz)

-
4

The solution to (2.2.2—17) is

Iy(to) = ~(B-MQ+M) * sin(woTh-wotz) . —!%f— , (2.2.2-18)

Vo(to) = [ =B - M+ (B-MTHH) cos(cThroota) | * Vin ,  (2.2.2719)



_ (B+1)- {sin(uot,-mot,) < sin(ugtz)} + B- sin(wJTh) (2.2.2-20)

ﬁ> 1&1)'sin(wo 5 ] ’ T

In oreler tog find t,, the'principle of conservation of energy is used.
Let Py be the:average output power and P;; be the average input power.
These quantities are found to be

»

Th
Pin = Yin [ / ‘Ie(r) 8t - p / 1e(e) 8t - B [ |1r(6)] ¢ ]
ta

‘ “LT—‘ [ oc— B(Aic+ Azc) ] ) ) (2.2.2-21)

‘ and , ) -

< \\ " - Vo-Thli()Ié ‘ )

'PO = . r t t .
. Th t? b

v . .
'ﬁ( Agc + Au_: + Azc ) (2.2.2-22)
Letting Po be equal tc; Pin yields

(-1)-Aoo + (WP)*(Ascthza) =0 . © *  (2.2.2-23)

. ..
.

Aoc A and Agzc are found by integrating 2.2.2-7,  2.2.2-16 and
2.2.2-11 over the periods where they apply. ‘ ‘

Aoc = [ Tr(to)* sin(woty) + (1-Vg (toS—M)'(i-cbs(wota)) ]- UZEQO '
[ (D—MQFM) &-‘05(‘A’oTh‘wotz)‘COS(UoTh‘Uotz'“"ot1)] + '

(146)+ (1-cos(uoti)) | * o=

wo*Zo

- # - . (2.2.2-24)
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Ajo = [ Ir(to) * ( sin(wotz)-sin(woty) )
+ (l—Vcitoj~M):( cos{woty )-cos(wotz) )
- (14B), (1~ éos(vota-vots) ) 1-
o R ot

9

- [ -(B-MEM) - (~cos(wsTn)+cos (ueThvotsuot, ) )

-(14B) * (1-cos(wotz~wot;) - cos(wots) + cos(wots) ] ‘;!%%6
. o
‘ : - (2)2.2-25)
Asc = - (B-MEM) * (1-cos(uoTh-wota)) *  otb- (2.2.2-26)

“+
.

Substitution of (2.2.2-24) to (2.2.2-26) shows that (2.2.2-23) {s an
implicit function of the single variable wotz with parameters woil and
Q and M. Setting Eny two of woty, O, or M, equations (2.2.2-20) and
(2.2.2-26) can be solved for as a set of two equations, with two
unknowns. The actual algorithm‘hsed is 1illustrated in Figure 2-5,
where the subsqquentAkgesses are computed using a root solving routine
* like the secant metﬁod. [11]. ’

Although the solutiogy/is complete one fact is worth noting. The
analysis is performed for a switching frequency equal to the resonant
frequency. At the resonant frequency woTh is equal to 7. It is seen
that the denominator of (2.2.2-20) tends to zero as the switcbing .
‘ {requepcy tends to the resonant frequency. For a solution to exist
the numerator must also tends to zero and a finite limit must exist.
This can be numerically verified to be the case by repea:edly carrying
out the algorithm described by Figure 2-5 and letting woTh tend to w
from the left or right limit. For the numefator to tend to zero, the

term sin(wotz-woty)-sin(wot,) must also tend to zero as the switching
frequency approaches the resonant frequency. In the description given

above, t; is smaller than t, and each interval t; and t, must repeat



Set any two woti; QM

PWMorPSPWM:ﬁzlord

]
- ' ' I’
\

[ Provide initial ]

guess for wots

'>| ‘

[ f(wots, QM) = 0 (2.2.2-20) ]

[ Compute new guess for wgots ]

Ac:c = Arc(wots ,M,Q) (2 2.2-24)
Atc = Azc(wotx M) (2.2, 2"25)
Agc = Agc(woty ,M,Q) (2.2.2-26)

4

no

yes

wotaz, M, Q'..wot, are known.
Ir(t) and Ve(t) are described by
(2.2.2-7) to (2.2.2-12).

< o

[

Figure 2-5: Flowchart for the Determinat.ton of the
Steady State in Continuous Conduction.

— -
]
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' N
twice per cycle. This implies.t:hat:'
"0 < wot, S Wotsy S . . (2.2.2“27)

Y
v

At resonance sin(wotz—wot;) must be equal to sin(wot,). A graphical

solution for which respects the condition imposed by (2.2.2-27) is
given in Figure 2-6. " For the two sine functions to be equal the
angles between the x axis and the two hypotenuses must be equal. This
i!npl'ies that ) ’

{ Wotz = % 5 . '(2.?.5—28)

3

]

This can be used as an initial guess when the algorithm of Figure 2-5

is performed”with woTh approaching r. e .

2.2.3 Mode Boundary and Voltage Transfer Ratio .

It 1is seen from (2.1.1-8), (2.1.2-3) and (2.2.0-9) that the conditiony
for continuous conduction is

o " Vel(ta) = Vopax > Vo * BVin .- (2.2.3-1)

L N

This is..

MI>H+ B . (2.2.3-2)

For PSPWM operation, this equation :reduces to

a

o _ g1 X - (2.2.3-3)
and the boundary between discontinuous conduction and continuous
conduction is expressed explicitly as a function of the load only

» T Al
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. For PWM control the the expression is

o=
N MOD> M+ 1 (2.2.3-4)

for_‘any given transfer ratio M : it is seen that bqundary between the
discontinuocus and continuoué mode is a function of the load only.
Sefting M and Q the mode of conduction is readily determined. wot,
. can be then be found.

» S - '19;
Defining the duty cycle, )
\ . | \
D = Yot (2.2.3-5)

. (AJcTh

the mode boundaries are illustrated in thick lines_ in’ Figure 2-7.
Voltage transfer ratio is also illustrated for various values of T as
woTh tends to 7.1 For operation in discontinuous mode the vdltage
transfer ratio is .load- dependent. In continuous conduction the
*voltage transfer ratio 13 load independent. This is: for a given duty
‘cycle, the computed voléage transfer ratio'M is identical for any {q '
which satisfies (2.2.3—2).' ‘So the boundary between continuous and
discontinuous mode also illustrates the transfer voltage ratio in
continucus mode. This property is strikingly similar to that of
"square-wave' PWM convertérs for which the transfer ratio is load
dependant for discontinuous filter inductor current -and load

independent for continuous filter inductor current..

a

1The Gbltage transfer ratio was computed for woTh=0.9999w.
J . AY

L4

) N Lo
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2.3 STEADY-STATE COMPONENT 'STRESSES

¢

-

2.3.1 Volt-Ampere Product

Rating of electric power system components is usually expressed in
terms: of a Volt-Ampere °Pproduct or VA rating. For the study of the
converter, this practice is very convenient as it allows to quantify
the st}ess on the components in terms of output power independently of
the’ input voltage, output voltage, or output current. The stress can
be expressed as

P

» VAOD =y Po N . (2.3.1"'1)
/s

- . /
where P, is the® output power and y 1is a real number. This

representation 1is useful to compare the stress imposed on' the
components for different designs of same output powers. In particular
this formulation is useful to select the optimal operating point (M,J)

of the converter.

As useful as this representation may be, actual components must be
selected acéording to the actual current and ’voltage stress.
Converters are of ten reqﬁired to operate bxer a various range of input
voltage and output load. The worst operating point YAopmax. may not
be equal to the the product of the worst current stress by the.worst
voltage stress. For these reasons the VA rating ié‘defined as

. VArat = Worst current stress - Worst voltage stress .  (2.3.1-2)

.
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D

2.3.2 Device Stress Description T

3

The Volt-Ampere characterization of power ‘system components is ”

generally given in terms of RMS current and voltage. In switch-mode

applica¥ions, where current and vol tage are generally not ' sinusoidal,

the relation between RMS, peak, and average quantities is. not readily

determined. A discussion on the selection.of the quantities used in

this thesis to obtain a Volt-Ampere product is now given.'

’

«

2.3.2.1 Input Bus and Capacitors ~
The input bus stress is characterized as if the input bus was a
capacitor fed by a current source of amplitude equal , to the average

current drawn by the converter.

Capacitor voltage ratings aré generally given in terms of maximum
instantaneous voltage. The maximum instantaneous voltage is used to

characterize the capacitors voltage stress.

Current stress will result in heating of the capacitors, therefore RMS
current is selected to descrihe current stress. Maximum 3V/dt is also

sometimes specified for certain types of capacitors [12]. This is

~ . ~

relevant for the resonant capaci tor.

1

1 |, dVmax ' .-

[
Y

‘{s also calculated to be con_sidered separately.

| <
'2.3.2.2 Switch '

<

’

Switch voltage rating is generally given in terms of instantaneous

voltage. The maximum instantaneous voltage is used to characterize

the switch voltage stress. .



- , ]
étn‘rent handling capability of devices can. be specified in many
- different " ways. ! Maximum instantaneous current is one of the.

parameters given in data sheets. But most critical ‘s ' the the;ml

stress of the device. To implement the switches, several types of ~
device can be used. Presently. the most commonly used type of devices s
v:'h'ich have turn—-o.f f capability’ are the MOSFET and the bipolar.
transistor. The MOSFET "on" characteristic is “that of a resistor,
while ‘the characteris'tic of the bipolar transistor 1is that of a
constant voltage source 1n series with a resistance. The b’ipola’r
transi§tor power dissipation is .therefore dependant on both the
aave;age‘qurrent and the RMS current. One possible current Stress o
characterization to useé in the VA product would be .

‘\\ ’ { - Istr = (Ia.vz'Irms)”2 R (2.3.2-2) . .
However, since both tﬁes .of devices exhibit a résistivc—a drop, ﬂe RMS
current is used for the VA product. ) .

2.3.2.3 Diodes and l‘{ect'ifiers . g
The voltage ‘rating of diodes is given in terms of instantaneous K
voltage. Therefore, the maximum instantaneous. voltage 19" used to
ckllarrgcterizé the diode voltage stress. w0

’ ~ ' : .

Diode "ong 'characteristic is that of a constant voltaée source.
Current ‘stress is therefore expressed in terms-of average current.

One very conVenient: method to calculate conduction power di‘ssipation
in a diode is to multiply the forward drop of the diode at the max { mum
instan_taneous current by the average current.

) . Parss = Ve(Ipk) * Tavg "~ (2.3.2-3)

This procedure yields a reasonable evaluation af the power dissipatio
provided that Vf(ka) is not evaluated in or above the resistlve kne(



>

N

-

of the Vg¢-I¢ curve illuStrated in Figure 2.8. If the Vi(Ipk) falls
into or above this knee the estimate of (3.3.2—3) will be too
conservative. " . (

2.3.2.4 Transformer-and Inductor . ,

The size of magnetic components 1is dictated by the flux handling
requirement and by the limit on power dissipation. Power dissipation

is ;ffected by both the flux swing and the RMS current flowing in the:
) ' ' Q

windings. (

! .
‘To dgtermine the voltage stress, consider Lenz law.”

P

8‘5

=% © o (2.3.2-9)

It 1s seen that the flux swing is not expressed in terms Volts but
rather in terms of volt-seconds. For this reason the VA product 1is
replac¢ed by a V_olt—A'mpere—Seéond product for magﬁetic ‘components.

° -
. L3

EN
Thé current stress is expressed in terms of RMS current’
“\ .
.
2.3.3 Component Stress Normalization T ¢
_ + . \_/4 ~ > * ‘

e

To this point the voltages have been normalized to .the input voltage

_Vin and the currents have been normalized to V n/Zo. For a’ cohverter

which operates over a given input voltage range a further® step of
normli_zp.tion is required.3 Alsa, sfncg .the characteristic impedance,
Zo, 1is a design parameter, nsmna'lizing ‘to this quaritity is meaningless

-
“ J

until the desi{ is complete.
Taking into account the case where the converter-is to be operated

over a range of input voltages, the voltage stress is normalized to a
reference input voltage.

e
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For any given output voltage

VO = M . V‘_n = Mref . VLnref . (2.3-3_?—

and (2.3.3-1) can be rewritten

4

v=v. ey, . (2.3.3-3)

=

Mref can be arbitrarily <thosen, but selecting Mres as the largest

possible value achievable over the entire control range provides a )
common reference boint irrespective of the value of M. selected to
operate at any given input output voltage céimbination. For the
converter Phder study, it has bégn seen that \the maximum value for M
is 1 for any value of §. Substituting in (2.3.3-3) .yields,

I3

Vv=V- ¥ anQow s (2.3.3-4)

\'where Y"nﬁ‘ow is' the minimum input voltage at which regulation is
theoretically possible’ for a given output voltage. Note that, since
for the converter under study Mres is eqt}a.l to 1, v“"n.ow is equal to

. the ,outputxvoltage reflected to the primary side of the_xrqnsformer.

The norma‘.li;ation for the current can be made independ;.ent from Zo by -

realizing that .the output power is
\ ' . v

Py = Yo - ng_zﬁng . ' (2.3.3-5)

Zls%

Z, can be ;ubstit\fted for into (2.2.0-7); the norm:.iized current
expression. ‘ , )
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=T . Yun -
I1=1 Zo
: T+ 1 .Po
. .
=T ._Po (2.3.3:6)
¥ W MQ VLnQO' *

(2.3.3-4) and. (2.3.3-6) are convenient to;compute stresses using the

mathematical description of the trajectdries of the resonant voltag(b
and ‘current. These no;inalizations nevertheless seem abstract.
Realizing that

Vo _ o Vin | | }
‘To = g2 = MQ 72, - (2.3.? 7)

substituting)for MQ into (2.3.3-6), multiplsring the numerator and

- 'denom:lnatqr of both (2.3.3-4) and (2.3.3-6) by Vin yields:
. —_
. v -
v = mme ¢ v . ) 2.3-3—8
vo Lniow ( ) ,
r=L1. 2 . C o '(2.3.3-9)
T:; LnQO" W

Multiplying the voitage:across a device by the current through it at a
given operating point gives

.
¥

<

- I -
VAop = v—o' T‘; Po . (2.3.3 10)

- Therefore the normalizations of (2.3.3-4) and (2.3.3-5) are, in fact;

simple normalizations: to the output voltage and current.
. ° . b

N

[ \ J
2.3.4 Peak and-RMS Resonant Current - : -,

Peak and RMS value of the resonant cu_frent are véry useful in
calculating component stresses.

—



2.3.4.1 Ip

rms

The rms value of ~the resonant current can be calculated on a

half-cycle basis. S
Th )
2 1 2
Ifrms = T;;j I¥(t) at
0
s ti ‘ tz ) Th
1 2 1 [ ;2 1 [ .2
- ﬁf 12(t) at + Thj 12(t) a¢ + Thf HORE
to t, ' t,
42 2 ' . "
= Irmso"‘ Irmsi + ﬁmsé ) (2.3.4-1)
Integrating it is found that ‘ -

120 = e | Ti(E0)2 wot, + Sin(2wots) 1,
o 2weTh : 2

c-}

+ (lrj'v:(t—o)-‘n)%[ oty = _s_i_!ig_wgt_d_ ] +

.

. ' ’ 2
+ 2T;(ta)* (1-Va(ta)-H) *sinZ(wot,) ] ' [ﬁ%‘%{ ] °
) K K Low

A3

o

»‘&1



B e v o

ot ) in[2(wot t
Igms = -z_‘;iﬁ [ Il’v t‘ 2[ Qotz—wot‘ + in[ (“’022—“0 l)] ] +

1

+ (B+cht1;+M)2‘[ Wotz—woty - sin[2(mo;5-wot‘)] ] +

. v ’ 2
- 2:Tr (1) (B+Vo (€, )+M) *sin? (wota-wots) ]'[Wli’sﬁg -
v ow

S

(2.3.4-3) ;,

In discontinuous mode, the current is zero from tz to Th and

. N vy
- N
ERE &

s ’ Irmslz = 0 . ) I (2'3'4—%)

In continuous mode - ' .

e, 00 s sl e, T

. - (2.3.4-4b) .
¢ . . )

Note that in discontinuous- mode* Ir]tos is zero and V¢ (tg)= -Mﬁl'"
‘(2.3.4—2) reduces to '

» 4

- N v -

’

Irms 2@ T [(“‘MQ'H) ["’otx _s_i_n!_?x_oo_tLl ]] ‘\'l;"‘“ V]Q-

(2‘3. 4."'5)

- -

'2.3.4.2 Ir

The maximum instantaneous value of the current occurs in the interval

L

. to <t <t,. Taking the derivative of (2.2.2-7) and equating to zero
, yields . . . .



-

_T{E Y sin(votmax) + (1-Volta)-H)-cos(votmax) = O - (2.3.4-6)

This is'satisfied for

Woltmax = ta.n_i[ l—v‘f—M ] : (2.3.4'7)

The maximum current is found from . _ ,

ﬁ "
Iy, = Tr(to)-cos(votpn) + (1-Volto)-H)-sin(uotpk) *

JLo
v"'nQ.ow

(2.3.4-8)

Woty for wWoty < Wotmax- »

(Jotpk = (2.3.4‘9)

Wotmax fOT Wot; 2 Wotmax -

Note that.in discontinuous mode Ir(to)=0, Ve(to)=-M3d. (2.3.4-7) and
(2.3.4-8) reduce to ' ‘

.

i

i

'
i

a ' -

|

Wotmax = ..’2'_ . 7 (243.4-10) »
and ' ’ )
. . - 1 P ¢ . . ’
Ir.. = (1+4MQ@-M)-sin(wotpk) °* w=°v> ) (2.3.4-11)
pk MQ v-'.—l'-;g_o' . .
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2.3.5 Device Stress Calculations o

Component ' and bus stresses are given Yor the full-bridge

implementation only. The stress for the various Thalf-bridge
impl?mentations of Figure 1-1 can be derived from the full-bridge
- results in a straightforward manner. -
. r
s 2.3.5.1 Input Bus Stress ¥

" The input bus voltage is

. Vstr = Vin= % . v"“low (2.3.5-1)
* In PWM the current\siress is given by
. A
Istr = Ir v '(2.3;5-2)
. where Irrms is given by (2.3.4-1). ' For PSPWM operation
) Istr = Irms, » o ‘ (2.3.5-3)
. ' «. Where Irmg, is given by (2.3.4-2). - o ‘4\ '

2.3.5.2 Switch Stress

s

The maximum voltage any swifch must block is equal to the bus voltage.

vStr = %‘ hd VLnQo' ‘ , (2.3.5"4)

. . Current stress however diffe;s depending on the control scheme or dp
o T -, the mode. ‘ '
, | . , \
For PWM operation in either continuous or discontinuous conducfion
, | mode, S; and S, conduct from to to t;. Sz and S; conduct from t; to

ty. The current stress for any of the switches is therefore

\

-




) Irms . )
IstrsL = _5T7§ ’ (2.3.5—5)

° ;

2]

‘

where Irms, is given by (2.3.4~-2).
In ‘PSPWH discontinuous mode S, conducts from to, to tz and S, conducts -

from ty to tg. The current stress is .

2

2 2
Irmso + Irms1

j : ‘ IStr81 = JStrsz = N (2.3.5—6)
‘ 2 -
S, and S; conduct from to to t; and t, to t, respeqtively.;u' The
" current stress for these switches is ' T : .
o ~J , :
) Igms

2 2 . o
Istrg, = Istry, = " (2.3.5-7) .

In PSPWM continuous mode S, and S; also conduct from to to t; and t,

1

to tg and

@

‘2 2
Irmso + Irms‘

2 . 2 '
Istr31 = Iatrsz = (2.3.5-8)
: ) ‘ ) 2 . .
\ R . -
S; and S, conduct from tg to t; and tg'to t4 respectively. ,
2 2 .
2 . .2 Irms, + Irms, '
Ist’:rsa = Istrs‘ = (2.3.5-9)

2

2.3.5.3 Anti-parallel Diode Stress

The maximum voltage any anti-parallel diode hﬁét block is equal to the
- bus voltage. ' ' -




4

The diode average current depends on the switching strategy and on the

.conduction mode. The average currents are given fn terms of Ayq, Ajc -

and Azc which are given by (2.2.1—21), (2'262-25) and (2.2.2-26). The
normalization defined by (2.2.0-8) is used.

In PWM discontinuous mode D, and D, conducts from §4'to ts, Dz and Dy,

conducts from t, to ta. The’average current per diode is therefore,

.
v

MQ vl“iow .

Ag 1 Po
o

Istrdl_ = (2.3.5-11)

‘In PWM continuous mode, D, and,D; conduct from ty to ts and from t; to
ta,l vhile D, and Dj .conduét from t, to t; and from tg to ts. The

average current per diode is given by %
Ajct 1 P
= B1cThac . -
IstrdL, 21’_ m mg—' . (2.3.5 12)
\ = Low
# .

In PS \giscogtinuoué mode, D, and D, never coné@%t.

Istry, = Istry, =0 (2.3.5-13)

Dy and D, conduct from t, to t; and t, to tg respectively. The current
stress is therefore ) : \ - '

.

_ _Kkd .1, P  (2.3.5-14
Istrg, = Istrg, =55 * ¥Q Vingow (2.3.5-14)

Cow "

-

In PSPWM continuous mode, D,-andtbz conduct from tg to tg and(tz to ts

+

respectively. The current stress is ‘ . ‘
‘ Aze .1 P
Istrg, =1Istry, =522 * i@ " Vo (2.3.5-15)

Vser = g * Vinggy (2.3.5-10)



D, and D, conduct from t; to t; and t, to tg respectively. The

current stress is

1 . P -
Istr,, = Istry, = LS ‘v " e . (2.3..5—16)

Since the diodes can have more .than one conduction interval,
evaluation of the diode forward voltage is‘simplified"by conqiﬁeriné
its voltage drop at the peak resonant current (2.3.4-8).

2.3.5.4 Resonant Inductor Stressi

i
¢

The volt-second stress on the inductor is found as follows. 'Lenz lay -

states that: : : C . .
Ver = 24x(0) ¢ (2.3.5-17)
—~

where Vyr is the voltage across the inductor and Agy is the .flux
linkage of the inductor. Integrating (2.3.5-17), the Volt-seconds are

7

found to be

,

)
ty | Avr(tn) ‘
Veem [ve()ar = o= Mr()her(ta) . (2.3.5-18)
" tg Aer(ta) ‘
r -

where Agy(tp) is the maximum flux linkage during the cycle and Agp(ta)
1s the minimum flux linkagé. The flux linkage for linear inducto%s is
. N /

deflned‘qs ,<E§3], S /

A= Lel  (2.3.5-19)
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PHae
Consequently
Aer(ta) = Lr’(‘Irpk) (2.3.5-20)
ir * .
and
*—.-".\‘-‘-:‘,,{ . . . . ,
- i ["' Agr(tb) = Lr’('*'Irp.k) . (2.3.5:21)
. ‘ The volt-second stress during a cycle is
- = 92 T e !l:.ﬂ
V-sstr = @o Ly 2 Irpk Zo P
VLn ‘ .
P . Low _
=2 Irpk‘ 7 oo (2.3.5-22)
~ The current circulating in the inductor is the resonant current.
Therefore, the current stress is
Istr = Ir,.ms | (2.3.5-23)

2.3.5.5 "Resonant Capacitor Stress

The maximum instantaneous voltage across the .resonant capacitor has"

"' been found to be

»

Vorgy = M3 = Vin = T % Viny,, -/ (2.3.5-24]

. . J | . :
‘ AL -
The current circulating through the resonant capacitor is the resonant

~

current. Therefore, the current stress is
' ’ .
(2.3.5-25)

Istr = Irrms .

+

The maximum'instantaneous current for dV/8t calculations .is

°

:
T

(2.3.5-26)

-

S

T T
" . [ T 5
.

Lo eu sy



2:3'526 Transformer Stress

The trgnsforﬁer Volt-second stress depends on the switching strategy

and on the conduction mole.

In PWM discontinuous mode the voltage impressed ‘across thie transformer-

during conduction is equal to the output voltage. At . ta, the
magnetizing ‘current must still flow. The current flows trough the
output rectifier and the transformer voltage reverses to -Vo.
Assuming a A{hear mégnecizihg 1nduc§ance and t, to be less than half
of the half-period, ' '

2 A4

t, < ih ‘ (2.3.5-27)

the magnetizing inductance will be reset at 2+tz. Since the voltage
‘ applied across :the transformer is -V, from tz to 2+t, and again -V,

from ts to ts the Volt-seconds are \

aniow

V-sgtr = 2*Vo°tz = 2°wotz * (2.3.5-28),

Wo
—

In. PSPWM discontinuous mode, the voltage across the transformer is
P
—chk from tz to ty=Th and is -V, from t; to ts the Volt-seconds are

e V‘?s;r = Vooty + vcpk(Th‘tz)
Vin

= [ wota + a . (UoTh“Uotg) ] ¢ % . (2.3.5"29)

In PWM discontinuous mode and t; > Th/2,'PWM continuous mode or PSPWM
continuous mode, the voltage across the transformer is a square wave
"of _period 2T and of amplitude Vo. For these three cases, the

volt-seconds applied across the transformer are
- Vl_n . B
T V-s = woTh M * VAR = T » —22% (2.3.5-30)"

. Wo (A)cl,
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The current flowing in any winding' of the transformer, neglecting
magnetizing current, 1s proportional to the current flowing in the

primary of the transformér. Therefore, the, current stress is

Istr = Irrms' : - * (2‘.3.5‘31)

2.3.5.7° Output Rectifier Stress ’ *

o

Y
¢ .

The output rectifier “voltage stress depends on the full-wave
" rectification scheme used. Rectifying with a four-diode bridge and
assuming perfect matching of the diodes, the voltage across each diode'

is half the output voltage |

3

: 1 '
Vstr = 5 v""ﬁ.ow . , (2.3.5-32)

For ,the center tap transformer of Figure 2-1, the maximim reverse

voltage across a'rectifying diode is

“

. o vStr = 2° anQ.OW . 4 B ' .0" (2.3.5"33)
The average, current for each diode 13~ .‘
_Io _1 . Po '
lavg = 32 = = * j . (2.3.5-34)
o, ’hz 2 «V"nﬁ.ow"

L (. . v

Since the average current 1is the same for any gplection of nominal .
H,Q, the current stress used to compare VAop for various selections ef”
M,Q is taken to be the peak current.

Istr = Irpk . (2.3.5-35)

“

2.3.5.8 Output Capacitor Stress

From the small-ripple assumption the maximum voltage across che\butput~

, capacitor is

3




Vstr = H hd v,L _’= anQOW (2.3-5"36)‘

- .
* e

.The ca*acitor rms current is found f{rom g S
- !
t=Th .
2 1 2
I°°rms = ™ f (lIr(t)I - Ip)” at
t=0 .
t=Th t=Th t=Th
1 2 Io L(t]| 8 12 5
= ﬁf Ir(t) at —2—hf JIr(t]| ‘t+ Tﬁj t-.
t=0 t=0 t=0
- (2.3.5-37)
. 1 .
The first term is recognized to be the squared value of - the resonant
. <
current rms value. . Division of the integral of the second ter{n by Th
yields the average output current, Io. (2.3f5-37) simplifies to:
) , - ¢ .

=12 -12 . (2.3.5-38)

12
. -
%l COrms Frms &y
i Y N \ E 3

Defining,
‘ Vin
= T, fow " : _

' I"rms = I"rms P (2.3.5 39)‘
The output capacitor stess is expressed as ,
2 —'——2' | . P 2

Istr = [ Ir s~ 1 ] . [v 2 ] : (2.3.5-40)
. . ingow
. ) i : v ) / /

-
-
°



CHAPTER 3: SMALL-SIGNAL ANALYSIS

3.1 CLOSED LOOP SYSTEM ’

o

In the previous chapter, the steady state-analysis of the converter is
carried out. DC—to—DC converters are generally operated in closed
loop to improve load and line regulation. Closed-loop systems must be

designed to be stable wunder all operation gopdi-tions. A stability

analysis is therefore performed. ~ ’

The' control method analyzed is voltage-mode control. In this mode the
ox.itput voltage is cc;mparéd to a voltage reference. The error voltnge '
is amplified by the voltage erﬂro"r-amplifier The output of the
error-amp is fed to a circuit that mf;dulates the pulse width of the
converter. This system is illustrated in block form in Figure 3-1
The ‘gé)en loop transfer function of a voltage—mode controlled PWM

converter can therefore be written as -

Yol3) _ = A(s)+PWM(s)+G(s) , ' (3.1.0-1)
Vo \|S .
where,
+ A(s) = wvoltage error amplifier transfer functior;a. (3.1.0-2)
PWM‘(s) = pulse-width modulator transfer func’t,ion v (3.1.0-3)
G(s) = converter transfer f\m_ct‘i ., ! (3.1.0-4)

.
>

The generation of transfer functions of voltage error amplifiers with
opera'tional amplifiers is a well-known subject and need not be

discussed here.

»

The pulse-width modulatgr is iIIUStrated ﬁa Figure 3-2. The output of
the error-amplifier vamp: is compared,to a constant’ frequency ramp..
When the ramp voltage exceeds the error-amp voltage, the output, pulse,
is terminated. The output pulse is re—initiated when the ramp is



: . ‘ +

A S » °

Vamp(t) . < -
. ‘ st ‘ D (t)
Vramp (t) //////’ '
N O - 4 — .
. Amplifier : :

”
t - ¥

. o - Comparator ,
- ) ' ) -
i ° S (x’
/ 1
' ) Figure 3-2: Pulse-Width Modulator
[ ;‘
- N ‘
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reset at the next clock pulse. FigurE—Sa) illustrates, -in time, the

ramp voltage, Vramp, the steady-state error-amplifier voltage, Vamp.
and a modulated error-amplifier output voltage, vamp. The resulting
steady-state pulse train, D(t), is illustrated in Figure 3-3b). The
modulated pulse train, d(t) is shown in Figure 3.3c). The
perturbation in pulse width, ~

»

Ad(t)g= d(t) - D(t) , ' * (3.1.0-5)
is illustra‘i in Figure 3-3d). In the small-signal limit, the
sequence of pulses\‘of Figure 3-3d) reduces to a sequence of weighted

impulses. The pulse-width modulatbr samples the voltage error-amp

ou t:but: voltage.

A pulse-width modulated converter is therefore a sampled data system,
and the tools of discrete time control systems can thus be wused to
analyze 1{t. ’I'hils fact , has been recognized before in the study of
switching—converte;'s [7,144.15]. More recently, a method named
Small-Stgnal Frequency Re;poftse Theory for Ideal DC-to-DC C‘omqerter
Systems has been introduced [16,17]. Th;s method is very general and
it 1is applicable to a wide range of converters. In particular, it is
applicable to the converter ur'\deI; étudy in th.is thesis.

Small-Signal Frequency Response Theory is ther'-efore used to find ‘the
transfer function of the converter under study. Some of the mter{al‘
, éiVen In [16,17] is re-exposed as the method given therein requires
some detailed explanation to be understood. The steps of the
procedur;e are also re-arranged to be able to us:e the ~familiar block
diagram approach. ) \ . ' '
’ !

*
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R A
Vamp
Vamp -
A
D (t) '
. D)
AN
d (t) ‘
; <)
- Ad (t)‘ / |

o d)
ﬂ:i(t)zﬁ ‘ ) -
o 1
R
e)

Figure 3-3: Pulse-Width Modulation
. a) Comparison with ramp ‘
oo . b) Steady-state pulse train’
_'c) Modulated pulse train
. d) Pulse-width perturbation
\- e).Small-signal pulse-width perturbation

[
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) 3.2 SMALL-SIGNAL FREQUENCY RESPONSE THEORY . .
y . ~,
{* .-
v .The structure of switch-mode DC-DC ‘converter varies in time, -and
\ ¢consequently the DC-DC systems are non-linear. In Chapter 2, the -
steady state with both PWM and PSPWM was determined. Small-Stgnal
Frequency Response Theory.'dutlines a method of linearizing DC-to-DC
converters . around their steady-state operating point. The
mathematical formulation used is that of State Space. " Since the
2 - structure, of a DC-to-DC converter -«is variable 1in time, the
coefficients of the state equation and output equatidn are a function
of time. The state and output equations are of the form
- ' .
x(t) = A(t) x(t) + B(t)eu(t) (3.2.0-1)
o and - ' S -
y(t) = C(t)*x(t) + D(t)-u(t) , (3.2.0-2)

where x(t) is the state vector, u(t) is the input vector,/y(t) is the
output vector, A(t) is the éystem matrix, B(é) is the {input matrix,
C(t) is the output matrix and D(t) is ‘the transmission matrix.

~ A converter’ must satisfy requirements listed in [17] to apply
Small-Signal Frequency Response  Theory. Summarizing these
requirements, the .converter ﬁust have the foLlowinz,prope;ties: ‘

\
-

.
¢ 9

1- A(t),B(t),C(t), and D(t) are plecewise constant functigns in
time.

©(A(£).B(8),C(),D(8)) = (AyBy,CouDy),  (3.2.0-3)

- for tj <t < ty,,
This implies that in between the switching instants, the system
is described bf a linear diff&ential equation. The system

differential equation has piecewise constant ‘coefficients in

#

Y




The system is controlled by modulating the switching instants.

"

LY

The switching time is zero. -
- )
] :

\

In steady state, the system is periodic. . That is:.
a) The sequence {(Aj,B;,Cy,Dy)} .is periaodic with period Ng;
i.e.;

“(Ag.By,Cy.Dy) = (AgengByang CoangsDyany) - (3.2.0-4)
b) Define Ty= ty+1sty.  The ' sequence TJ is periodic with

period N¢.
K 4

L4

Ty s Tyen, (3.2.0-5)

6) The tJ,g are modulated by a given control method with a

. %

period Ny .

d) The least common multiplier of Nq;Nt,Nm is defined to be Ng,

.the number of switched states.

!

o Ns = lem(Ng,Nt,Nn)  (3.2.0-6)

-

{

The.copventer*ﬁnd r study satisfies prope}ty 1. The stegdy state, of

the converter s determined using a differential equation with

as it is contro

piecéwise °°“5t7Pt coefficients. The converter satisfies property 2,
1

ed by varying the moment switches turn off. Property

3 is not a property of the physical copverters but a property of the

model used to represent it.. It is assumed that if switching times are

short enough, the model will yield significant information on .the

actual converter. : .
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In Chapter 2, it is assumed that the converters operation is periodic.
Solutions to ;he equations thus formulated are found, prdperty'4
therefore also satisfied. It is shown in Chapter 2 that the absolut
value of the resonant. current and voltage is periodic and that tbe
value of these variables reverse sign~'during the period Th. The
resonant ~current ., and voltége are therefore periodic with period 2Th.
From the analysis of Chapter 2, Nq=6 switched networks are therefore
identified. Each half-cycle being the mirror 1magé of the other, the
Ty are periodic with Nt=3. The duty cycle can be controlled twicelpér
cyclé;'gherefore. Nm=3. The least common multiplier of Ngq, N¢, Nn is
6, therefore, Ng=6; there are six switched states. The notation is
established on that basis by lettihg .

-

-

T S (3.2.0-7)

TSRE Tz , ' (3.2.0"8)
Te =Tg . . . (3.2.0-9)
- > M w

In thiQ’thesis, Small-Signal Frequency Response Theory is applied by
performing three steps: . ’

1- Describe mathematically the trajectory of the stgte vector.

2- Subtract the: trajectory of¢ the state vector of a perturbgd
system from the trajectory of the state vector of a system in
gtéady state, and describe the .trajectory of the state
perturba{ion in the small-signal limit.

3-"  From the time domain analysis of step 2, find the transfer
function of the éonvefter to the control 1ﬁput by using a block

diagram approach and by using transform methods.

N




3.3 STATE TRAJECTORY: Third Order System

»

.‘ In Chapter 2, the trajectories of the resonant current and resonant
voltage are found by replacing the 'o'utput filter and the load by a
constant vol tage source. Since it is precisely the trajectory in time
of the‘ougput voltage that is to be studied, this simplifica-tion must
be abaridoned. Nevertheless, the assumption of a much smaller output
voltage ripple compared to its steady state value must be retained for

the solution found in Chapter:-2 to be applicable.

The set of differential equations governing the trajectory of the
variables in time is now of the third order. Since this set |is
reformulated, the opportunity is used 1t:o include the effect of two
types of parasitic resistances. First, the resistances‘ \yhich are 1in
series wi £h the resonant branch are identified. These resistances are
the intrinsic resistances of the components used: switches, resonant
inductor, transformer, etc. These resistances are lumped as the total
resonant resistance th in Figure 3-4. ‘Note that the value of th‘ can
vary from one sv;itched state to the next. For simplicity of notation
*th is assumed to be constant mb the following discussion. The
variation of Ryt, can be easily taken into account when numerically
deriving the system matrices. The second type of parasitic resistance
is “the equivalent series resistance (esr) of the output capacitor.
The esr of the output capacitor is denoted as Rc in Figure 3-4.
&

Note that the parasitic resistances will effectively change the
steady-state trajectory qof the system. For the results found in

Chapter 2 to *remain valid, ‘the following must be satisfied:

Brovee r, (3.3.0-1)
o F
Re 1. (3.3.0-1)

>
b
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3 x‘t,;

b ! N
. -‘ . <
The complete cycle of the converter can be divided in ‘'six periods.
For convenience 1in notation, the beginning of the éycle is taken at

ty, the instant at which the pulse is terminated. R

©

The six differential equations for both continuous and discontinuous
. modes are hereafter derived. ’

K

3.3.1 Continuous Mode " . , )

The current path during .this first interval, t; < t. <ty, is z
illustrated in Figures 3-4a) and 3-4b) for PWM and PSPWM operation' .e
respectively. The resulting equiva(lent circuit is shown in Figure
3-5a), where B is defined by (2.2. 0-9) The differential equation for

“this equivalent circuit 1s written as:

a

. . s o
. P :1'_. Rc‘Rl “ ] . _—_l, . __1 RQ, 3
ir Lp [ RetRp, Rrt Ly Lr Rot+Ry. Ir
;r = ‘—]:.I‘ o'; 0 « hd Vr ' )
iy 1 Ry <0 . -1.'_,._._.1
Veo | | Co'RetRy 0 Co RotRy 1 |Ve° |
. y
.
w - 10 | BVin o (3.3.1-1)
, ‘ 0 . ‘ ' \ ' canl
. - - w/
o Fdctoring wo, . ' -
. b -
.C
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r QHQco - Qrt Zo

\./r = Wo * }g 0

“;‘co T Zo"z-co Qco 0
4 i Q"’_Qco

The normalized equation is obtained by multiplying the fir

[ 3 -1 [ Re*ReZo ] 1
ir 7o | RerRe Zo * Rrt Zs
\.fr = Wo Zo 0

", 1 Zo RQ Zo 0

Mad | Cowo Zo Rc"'RSL Zo

L
Zo
- wo* | 0 « B*Vin
O
. Defining ) i
-~ ’ ‘ Z
' Ql‘t = R € ’
_z ‘
QOO'= Eo '
:7 - 1 = ZCO -
co = ZoCQUo Zo ’

(2.2.0-3) into (3.3.1-2) yields

Zo G Qco

=1, Qco -]

0 , L4

‘ico * Q_‘—. Qco

“ COo |

Zo/Vin and -the second and third rows by 1/Vin.

. c 4

1 Ry Zo. .i .
zo Rc"’RQ. Zo r
0] *|l Vr
_1 1 Zo v
“Covo Rc"'RR. Zo. Ahad
-
(3.3.1-2) -
‘ 1
(3.§.1—3)
.(3.3.1-4)"
o ]
(3.3.1-5)
i!‘ B Zo
. vr - woo 0
. R EN
.VCOJ N J
. (3.3.1-6) .
row by
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i B = -1 i .
r QQco  Qrt co r p l
V—x: = Wo* 1 0 0 * V; - Wo"* 0
_.__ P Qco Q‘QCO ""—‘—' ‘ -
7 Zoo' 22 .0 -Zco® v 0 !
tco_ L co HQco co Q+Qco | L co. . J
: ,'(3.3.1-7)
: The outplit equation can be written as
. ’ .
ir : ' . . )
ReRy Ry ) y
Vo = [ R—;:'_R—Q_- 0 R(;_"'R—-Q_— ] . Vp . L (331"8)
. Vco

Normalizing the resistances to Zo, ' and divi‘dﬁxg both sides of the

equations by Vin, . , ’ & .
’ « S .
) ip W -
Vo "o 1 1 Qco ] ‘ ’ ‘
. Yo [ L 0 o e | 3.3.1-9
) Vin [ Vin QHQco . Vin QQco r : ( )
a ) v ’
. ‘ ‘ )L Cco .
2 Y . ' te ) Lt

. .. . 43

Normalizing according to (2.2.0-6) and ‘(2.2.0-'5) ’ . U -

L — N . ,
o ir F
) .

— 1 = Qco ] - '

K . = (0] A260 .y . 3.3.1-10]
. . Vo [ G+Qco Q*Qco L (3.3.1-10)
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i >
.o : ‘ y = va . (3.3.1-12) .
& !
. « ‘" the-3tate and output, equatigns can be written as follows: ' .o

' . Lo ° B
" 4 . ] ~ ,

, . 9. . o o ; = S‘JO’(AL.X + BL) . . i (3.3. 1—13)
o { T Sy = (3.3.1-14)

N ”
. \ [ : . i
' s oot A

¢ Equivalenr,scircuits «are given in Figures 3-5a) to 3—§f) for

CL'x .

the six ;

}
. LA -swi tched states. % Fhe matrices for each switching interval are now PO
' given. . ' : : R

- . ' . i

-

. [ . \ - ’ . w d “" H M
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where-the, subscript i can take the valué 3 or 6 and+where

)
te < t < s . !
' ~ -1 il 1 ~Qco
QQco  Qrt Q+Qco
‘ 4 .
A = 1 o ‘0 (3.3.1-30)
' . Qc;) | _m——_Q*Qco
Zeo" Qoo 0 Zeo'giag, |
‘ ¢ .
1 N
o By = | O (3.3.1-31)
’ ,L,A ' . : .
0ol . . *
L 4
I R _Qco ] ' -
G = [ o ° QQco (3.3.1-32)
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3.3.2 Discontinuous Mode

’
\

Continuous mode equations derived for t; < t < tzgand tq < t < k, are
alSo applicable to the discontinuous case. Left are the intervals t,<

t .ty and tg < t < t,.' The same set of equations applies for both

_intervals.

'l

Duriné the non-conducting 1;terval.'the resonant ‘current dand voI}age
do not vary. . The fesonant'current is zero and ‘the output capacitor is
discharged through the load only. The equivalent circuit is given in -
Figure 3-6. The equations describing the circuit are found to be

o ; 2% _ .
. x = Qm-x +B) . . (3.3.2-1)
‘ ” ’ y=C x, (3.3.2-2)

1
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Figure 3-6: Equivalent Circﬁit in Discontinuous Cbnduction
Mode for’ t2€t{ty and tg<t<{t,.
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'3.4 SMALL-SICNAL TRAJECTORY - “

[
’

The mafhemafiqal formulation of the state trajectoryyis complete. The
study' of the trajectory of a system which is forced tn deviate from
its steady-state trajectory by é signal of small amplitude added to
the steady-state value of the Voltage error-amplifier output is now be
» performed. Subtradting the _pgrturbed trajectoty from the steady
state,- attention. ‘is directed on the. trajectory of  the state

[
. 7 .

-

perturbation.
N

In the following sections, continuou$ conduction mode is used for .
illustration purpose. The discohtinuous mode can be seen as a special
case of the continuous case. The formulatton derived lereafter also

. g =
applies to the discontinuous case by using the matrices of section
€ 4 . s

30.3|20 " - . co >

n

3.4.1 Definitions . , o - , ’

' . . , *
L ) '
For the convenience of describiﬂ& the problem, several variables are

defined Figure 3-7‘111ustraces the definitions using the resonant :

v

current as an example.

o

L)

I X(t) S (3.4.1-1)

L

is the steady-state vector of the system. : - ' ,

——

i ‘ .

Cx(ey o (3.4.1‘-2)'

i's the,std§§-vector‘of the perturbed system.

| Ax(t) = x(t) - X(t) ’(3."21.1—3)

~ -

is the state perturbation of the system ‘

A\
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o

‘is’the'perturbation‘fn switching instarnt between switched state i-1

tL[n] = tisn-Ng (3.4.1—4)

is the steady-state switching instant between switched state {-1 and

° . ©

switched state { at_ the nth repetition of the cycle.

3 ¢ .

Ty = tees — tg ' (3.4.1-5) '
is the steady-state period of the switched state {.

L8

’ Ti[n] = Tien-ng (3.4.1-6) \
4 .
is the switching instant in the perturbed system betweernr switched

state i~1 and switched state L at the nth repetition of the cycle.

o

At [n] = 7¢[n] - ty[n] . i (3.4.1-7)

and switched state L.

Ax([n] = Ax [t +max(At,[n],0)] 53.4.1—8)

is the v: 'ue of the perturbed state at the beginningfof the switched ‘
dtate L, when the perturbed system or the unperturbed system makes

last the transition from the switched state i-1 to the switched state-

.

Ay

[

A% [n] = Ax[t;+‘+min(AtL+1,O)] (3.4.1-9) ‘ .

is the value of the perturbed state at the end of the switched state
i, when the perturbed system or the unperturbed system makes first the

transition from the switched state t to._ the switched state i+1. i‘

AY
+ - -

3.4.2 Linearization

L. o . : Bl . -
A linear relationship relating the state perturbation to its past T
history and to the control input 1s required. The equation relating
the value of the state perturbation.at the beginning of the switched
state { to the istate perturbation at the end of the switched state . . o

.
! S

o3 L ] .
\ - , C o
. . -
. .



i-1, and to the perturbation in the control variable at the instant te
is first sought. Letting dx and Jdr be the small-signal limit state
perturbation and. input control perturbation, a relation of the form

. ~

ax[n] = K(*ﬁi}_, +-ky*8r[n] : (3.4.2-1)
is found for each switching instant,

There are six instants where the switched state is changed. Generally
in é DC-DC converters all switching instants can be modulated. For
the conve;ter under study, the six transitions are classified into
thféé types: time-modulated, unmodulated and naturaliy—modulated )

transitions. ?

o

3

To completely describe tqe trajectory of the state-perturbation, a

'func;ion relating the state perturbatfon at the end of the switched

state i to that at the beginning of. - the switched state is also
required, and an equation of the form

LI

8%.[n] = &, +3x.[n] - .t (3.4,2-2)

is found for each of the six switched states.,

s
] .

Since the transition from one switched -=state to another 1s either
governed by, or easily recoghized from the resonant current, jattention
is focused on the resonant current. The results thus obtained in a

scalar fashion are thereafter generalized to vector notation.

o
3.4.2. 1w {Time-Modulated Transitions

{
i

The instants t, and t, are modulated by <the control circuit.  The
periods “ At; and At, are therefore the inpug control variables. The
state variable perturbation Airtfp] is to be related to.ATrb[n-IJ and
to Ati[n].« From the geometry ?f.F%gure 3-8 the«folloying is.obtained:

2

-
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“Ar,[n] = ATp [n-1] + { Ir, + O(4) + ... }+Aey[n]
“ - {ir + 0(4) + ... }+At [n]

= Ar,.b[n-1j + { I, - 17, }oat[n] + 0(a%) + ... . (3.4.2-3)

1

&
‘
-

i;i ) and i;i are the time derivatives of the steady—stgte resonant
current before and after the change in switched state. In the small-

signal limit, high order terms are neglected and (3.4.2-3) becomes:

-
2

sir,[n] = 6Tr [n-1] + { If, - IF, }+6t.[n] (3.4.2-4)
Genera}izing tp vector notétion'yields

v " . - >+ 14 .
¢ 6xi[n] = 8%i-y1[n]+ (X - Xy ) = 6ti[n] (3.4.2-5)

where s

Xi = wor(Ar-s* Xi y .  (3.4.2-6)
. . ' .

L | ) X; = wor( Ac* Xe + Bt) . ' (34.4.3—7)'
and );(t;_)i is,;le;-note'd a:sn Xe. -Th’erei't:)re. _
e where I is the identity matrix and ‘ |
| | -

ke= (R-%).' (3.4,2-9)

t

w}TeLr'e\ the subscript i can take the value 1 or 4.
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3.4,2.2 Naturally-Modulated Transitions .
When the resonant current reduces to ;;::/at t; and tg, there is a
change in switched state. In continuous mote, for example, the output

' rectifiers switch the load such that output capacitor voltage
polarity, " in series with the resonant branch, reverses. Before
relating 6x.[n] to 6%,-4[n] an expression for &t ;[n], which s
determiped by thé natural switching of the circuit, is first found.

The condition that must be met for the switching to occur can be’
<ﬁ“‘\ expressed as

[N

ir(t) = cst , . (3:4.2-10)
where cst is identically zero’for the cgges underustudy. Two cases
are identified as follows: At.[n] is positive and At;[n] is negative.
These two cases are illustrated in Figure 3-9. . Consider the case

where the At [n] is positive. Around t;[n], ir(t) can be expressed as

-

tr(t) ="Ir(su[nd) + &%r_ [n] + (§5,+0(4)) ( t-ea[n]) . (3.4.2-11)-

By definition, T is ‘the moment where ir(t) satisfies (3.4.2-10).
- Substituting 7([n] for ¢ into -(3.4.2-11) '

2

Cest = Ir(uilo]) + MTe,_[n] 4 (17, + 0(R) ) Abdln] . (3.4.2-12)

3

"In the chse where At, is negative, I (t) is exﬁanded around T;.

.
~ -

Ir(ﬁ) = dp(T([n]) - Afrl_‘[n] + ( i;L+O(A) )+ (t-1.[n]) (3.4.2—13)i

. At ty, Ir(t) is equal to cst )
4 . ~ _ x .
o ' Jdr(teln]) = dg(rin]) =est . (3.4,2-14)
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Substituting iR (3.4.2-12) yields

. \
s ’ "\\ (

LA

cst = Ip(te[n]) + ATy . [n] + ( Iz, + 0(A)\) Aty[n] . "(3.4.2-15)

- \ ¢ s ‘
’ Ked .

This is the same expression as (3.4.2-12). ‘Subtrac’:t'irig‘ the steady-

state component, Ix(t;) = cst, and linearizing

' &%r, _ [n]

'y

' '

S 6t¢[n] = - (3.4.2-16)

N

This eqliation canlpe obtained directly from Figure 3-9. Nevertheless,

the formulation of (3.4.2-12) and (3.4.2-15) 1is useful'.for ‘the

generalization ‘to v%stor notation. Defining the instant of a natural

modulation transition as the time where the weighted %um of ‘the state -

variable 1is equal to a predefined' constant, apd generalizing
&

(3.4.2-10) to- vector fotation yields

L 4 ' K‘A
£ffe x(r[n]) = esty . (3.4.2-17)

fy 1is the weight “~vector and cst; is the predefined constant.
Generalizing (3.4.2-15) to vector notation, taking into "account
(3.4.2-17), gives

" —— - ——

ﬁ[ X(t,,.[n]) + A% .,[n] + ( X +O(4A) )eAt¢[n] ] = csty . (3,4.2-18)
\ X .

v -

-

Subtracting the steady-state c‘omgporlent, ff-X(t_:L[n]) ’ ceste,” and

linearizing, the expression for dt, is _’

s

Bty[n] =~ [ £FX[ 7' - £} » 6% -4[n] .  (3.4.2-19)

6xi[n] can now be related to 65(1-,[n}./8ubstituti=ng (3.4.2-19) into

.
.

.,;,/



"+(3.4.2-5) gives the relationship sought.” -

. ~ o
N ) . \
. - o 2

Sxun] = [ [ -'( X0 - K )o[ FEKQ T76b ] #omuln]  (3.4,2:20)

“Therefore, A ’ s o
Ko =T~ (Xp - X0 )[ £b-% 17" ¢, (3.4.2-21)
and . : - . ‘ .
' k. =0. , (3.4.2-22)
- N . ) [ N .
The substript { can assume the values 2 or 5. Note that, since the -

instant of switching is determined by the resonant current,

- . ’
~ - 7

o . ¢
ff=[10 07]. (3.4.2-23)

3.4.2.3 Uﬁﬁéﬂulated Transitions

~
A

The transitions at t; and ts are initiated by a clock. The transition
is unmodulated, consequently . '

H

Aty[nJ=0 ! o~ (3.4.2-24)

ot

and
Airl[n] = éTrL-x[n] . (3.4.2+25)

This can be seen from Figure 3-7b). Generaliiing to vector notation

; is trivial and o ‘
Axi[n] = A%, -,[n] . , (3.4.2-26)
Consequently . ‘ . )
’ \ , Ki =1 . | © (3.4.2-27)
and ’ ' . \ :
“ k., =0. (3.4.2-28). .
‘ ’ ' .



L

a)Tl.leesubscript i can assume: the ‘values 3 or 6.

A

3.4.2.4 Switched-states
[ / ‘ T é o
The . felation between ‘the state perturbation at the,beginni@of.a
switched sta\te ?.nd thes state perturbatiof at the end of the switched
state is ‘easily found. Consider the differential equation that
governs the behavnioi' of the- ‘system for { max'(tt[p].n[n]) < ¢ «

min’(tlL+1[n]»TL+x[h]) }: v

-

a <‘L\

Ax(t) = x(t) = X(t) o
= wokes( x(t) - X(t) ) . " (3.4.2-20)

3

The solution ta this equation is
. ' : . o 0

v
&

Ax(t) = er)_cp( d)oAL(t—max‘(tL[n].'rL[n]) ) - A;cL[n] - | (3.4;.2—30)
» //

o

The state perturbation at any time during,'a switched - state is
therefore described. In particular the state pértur,bation at the end
of a-switched state is '

AR [n] = exp( wol( ;nin(t¢+1[;1],Tm[ﬁ])-mx(u[n].ﬁ[n]) ) * Ax¢[n])

" exp( woAi( Tu “ min(0,Aty,;[n])-max (0,At-4[n]) ) * Ax.[n]
exp( "’OAL'TL\E'(I + O(Aty[n]) + O(At(4a[n]) + ...) « Axi[n]

(3.4.2-31)
, “a . :
In the small-signal limft, neglecting higher order terms,
. 8%[n] = exp( woA*Ty ) » bxc[n] . . (3.4.2-32)
Therefore, . ' ) - ;
f - ‘P = exp( AgcwoTe ) ) (3.4.2-33)
for all values the subscript i can assume. )
! ’ . N v s .

LRI 0
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3.5 'STATE PERTURBATION TRANSFER FUNCTION +

The :'operatiz)n of the pulse-vfi.dth modulator has been described in
section 3.1 as that of a samplér The sample of &vamp(t), &d(t), is
fed to the converter. 6d( t\) is a discrete variable, therefore, it is
convenient to use discrete system, formulation to determine the
'response ofl the converter to -the sampled input and consider the
converter a’.s a sampled-data system. Using the material developed in

the preceding séection, ‘the state perturbation at a sampling instant .

can be related to the the state perturbation at the preceding sampling
instant. The pulse response of the sampled -data representation ¢f the
converter is denoted by S(t) on Figure 3-10. °

The outpt'lt ‘of the sampled-data system is 6x*(tj, a discrete v‘ariable.
Since the error voltage uamplifier is assuméd to be realized using an
linear amplifier which)conf'inuously 'senses the output voltage, the
variables of interest are the continuous variables. The system
between the sampling moments 1is governed by a piecewise linear
differéntial ‘equation. Therefore, the sta‘te perturbation between the
sampling instants is uniquely determined by the state perturbation at
the sampling ~instants. The continuous state perturbation and the
output vector car; be reconstructed using the differentialw “equation,
and .the output equati’én. The impulse response of the reconstruction
.proéess'is denoted by R(t), for the recor\xstruct:lon -of the state
perturbation, and by Ry(t) for the reconstruction of-the output 'vecto'r

perturbation.

To find the transfer function 6f the'system. the Laﬁlace tran'gform of
each block 1s taken to yield the block diagram of Figure 3-10b).

. by(s) _ Gy%s% 6%%5; . _6d(s) -
6vamp(s) ~ ox*(s 6d(s): o6vamp(s

= Ry(s) - S(s) * PWM(s) | (3.5.0-1)




. Figure 3-10: Small-Signalgnalysis Block Diagram

o ) a) Time do 1
' . 'b) Frequency- domain o .
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3.5.1 Pulse Width Modulator . ‘

* . —

The‘operation of the pulse-widtﬁ modulator is descriﬁjh in section
3.1. Esseﬂtially the output of the error—amplifier is compared to the®
ramp and the pulse is, terminated when the ramp reaches the level of
theerror amplifier voltage. In practice.. the comparator drives a
cascade of buffers which ultimately drive the switch. All 'stages of
this cascade, including the comparator and the  switches, have an
inhgrent pfopagation delay. Assuming that the t,’'s are offset from
the origin by an amount t,[0], and and assuming that , the__sampling
. period 'is Tg, then the output of the pulse-width modulator is a

sequence of i{mpulses defined by

‘o
“

) v s
.

6d(mTg+t,[0]) = Kpam'bvgmp(st+t1[0]—powm) , (3.5.1-1)
where Kpwm is a constant determined, by the amplitude of the ramp and
i powm 1s the delay 1n§;oduced by fhe pulse-width modulator and the
‘cascaded driving stages. Taking the Laplace transform of both sides

yields

8d(s) = Kpwn*e sTa,ym 2(ov. amp(nfrsﬂiﬁol)) . . (3.5.1-2)
In qrder to find the ratio of bd(sj to Svamp(s) tﬁe ratio of
2(5vamp(mTh+t‘[0])) 'to &vamp(s) must first be found. This ratio is
not well defined for an arbitrary signal.  In practice transfer
functions are measured by injecting a sinu;oidal _signal and by
measuring the réspopse at this frequency using" a nd?row band

iné}rument. It is shown in Appendix A, sectiom A.3, that for the ’

special case where cSvau“,,(t)=c.=,‘j“’t

4 avgm st+t1 0 - 1 _
..(__EST)_LD.GVMD * == (3.5.1-3)

The sampling period is Th, consequently »

Y



B, g0 /
/. /
. ;/
. /"’
PWM(s) = ﬁ%g prme-Stdp'm . ~ (35.1-4) ,

i -
o

In the next section,” the operation of the pilse-width modulator is
modeled as, that of ‘two samplers with outputs

%

o

59(?nTh+T1 [0] )“ = prm * 6\’;3mp(2n’rh+’r1 QJ'powm) (3.54‘1"4)
and - /
. . . ¢ ( /s
So((2n+1)Tn+T,[0]) = Kpwm ° S¥%amp((2n+1 Th+T;[0]—powm)
= Kpwm "55aﬁb(2“T +T4[0]—powm) . .(;-5-1'5)

The sampling period of the équival nt modulators 1is 2Tp and the

transfer functions are-found to be

: . PWMg(s) = zf— Kpwnwe SC9PYM (3.5.1-6)

and
PWMo(s) = Kpwnee > tdpwm | (3.5.1-7)

'

»

The duty cycle is ulated twice per cycle.. A dﬂ'ference equation
that relates the sample of the state perturbation to ‘the previous
samples aof state

rturbation and duty cyéle perturbation is sought.
Defining, o -

v

‘ o
» '

" x(m) = x(meTntt,[0]) (3.5.2-1a)

6d(m)- = 6d(m-Tn+t,[0]) . (3.5.2-1b)

" and noti - . : o .‘f
/ A



©

) at(me Th"’tl[o]) (3.5.2-2)

—~
14

8d(m) = Th ” /

e e ¢ ' .

.

(3.4.2-1):@d (3.4.2-2) are repeatgdly applied to

relate 6x(2n) to
Gx'(.‘zn-l) and to 6d( 4 a ’5&@ L .

6x4[n] o . |
Ky*6%[n-1] + Tnk,<6d(20) . - ]
. Ky®s?bxe[n-1] + Thk,* sdn) .
Kt‘l’exe'ﬁﬂs[p-l] + Thk,*6d(2n) .
v K PeKe®s*6xs[n-1] + Trk,+6d(2n) . - - ' o
K, ®cKobeKs * 5% [n-11/+ Thk,-éd'(zn) :

Ka"sKe‘bsKs’Ao‘Gh[n"l] + Thk1°6d(2n)/—\ T

L L3

.K1¢6K°¢5K6¢4-6x(2n-1) + Thk;* 6§(2n (3.5.2-3)
§implifying the notation, v . ‘
. , ~ . | . -
5%(2n) = ®zn* 65x(2n-1) + Tnk,8d(2n) ,- (3.5.2-4) \-
y . L .
where )
. ¥sh= K;PsKePsKeds . (3.5.2-5)
hY ‘ N hd

Similarly it can be shown that

(3:5.2-6)

5c(2n-1) = @ene Ex(2n-2) +/Trks+64(20-1) |
wher;e S . . .
f T On = Ke®oKa®Kod, . (3.5.2-7) |
éombining' (3.5.2-‘-4‘)t with .(3.5.2-6)‘ ] “
,le(2n) = ’3h¢fh‘6x‘(2n—2) + *b;h-Thk.Gd(?.n-l) +.,Thk18;l(2n). . (3.5.2;8)i

I



o‘\.

Proceeding in an identical fashion, the system's difference equation%

3S(m), can be completely defined by'fhe foliohing pair of difference

’equations ‘
. S
. 3s(6x(m),6d(m)) =
6x(2n) = Psh®rn*6x(2n-2) + Pgn*Thke*6d(2n-1) + Tk, *&d(2n)
6x(2n+1) = Prndsh+6x(2n-1) + th'fhk1'5d(2n) + Tphke*6d(2n+1)

3
(3.5.2-9)
» '

’

It is shown in Appendix A, section A.2, that the system described by
this difference equation is linear. It is specifically shown that the

system response can be obtained by summing up the response obtained by

modulating the t.’'s (6d(2n))- to the response obtained by modulating.
the to's (&d(2n+1)). Breaking the "system into two linearly —

independent equations facilitates taking the Laplace transform '6f the

reconstruction equation which |is 'derived in the next section. " The

block diagram of Figure 3-10 1is therefore-modified as in Figure 3-11°

)
where the subscript "e" refers to the system for which the 8d(m) are
modulated for even m's and the subscript "o" refers to the system for
which the 6d(m) are modulated for odd m’s. ’

' »

{

The difference equation that defines the system from sample to sample .

when only the t,'s are modulated is found, from (3.5.2-9), to be
6xe(2n) = fgﬁ?fh'gx(Zn—z)‘+ Tnk;6d(2n) . (3.5.2-10)
‘For mddulatiﬁg the t4's only, the differegce equation is

\ 9

6xo(2n+1) = ﬁfh§3h°6x(2n—l).+<Thk46d(2n+l) . (3,5.2-11)

1)

- L)

3

. The pulse response of these two systems can easily be found ta be

(4
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LAY

.a function v*(t), in a sample data sfstem where’ the sampling train of’

offset is t4[0]. Applying (3.5.2-16) ‘to (3.2.5-14) and (3!5.2-15)

. b%(2n) (4sn®en)™Tnk,+8d(0) . , - *(3.5.2-12)

" bxo(2n+1)

(Pendsn)™Thke8d(1) . | (3.5.2-13)

I
’
N -

The transfer function is the Laplace trénsform of the pulse Tesponse.
Rather than taking the Laplace transform of - (3.5. 2—12) and (3.5.2-13),
it is more convenient to first obtain the discrete transfer function
and then apply tﬁe Laplace transforﬁl' Applying the z,t}ansform to the
diffefence egquation yields ; -

- /

./ : ° i)

t o obxe(z) = [ T - 77 @bl Tnkibde(z)  (3.5.2-14)
and ’ [ ) ' B Co
bxo(z) = [ I - z-2+®sndrn] **Thksbdo(z) .  (3.5.2-15) °
3 &.
! . , - &y

It 1s shown in Appendix A, section A.4, that the Laplace transform of,

impulses is offset from thé origin by tofs 1is:

“ >

[}
\

v¥(s) = e SfS « yx(2) o (3.5.2-16)
LN ‘ Z =€ [N

For both systems, the sampding time is 2*Th. For the system modulated -
when m 1is even, the offset is t;[0] and fqr the m odd system the

yields‘ / /
[ / i
ot ' s

. «_ _., A .‘_ .
sxi(s) = eSO [ 1 - & 25Th. g 00 1Tk, bde(2)

=€

2sTh

- - f/ -
. . =€

9 . 5
-~

=[1-e2T h"bsh‘l’fh] “Tnk,6de(s) (3.5.217)

and

‘4




\

3
»

»

3

91.

- 4 A

() 3 o740 [ 1 - B TRginn] ! Thkusdo(2) |

’

= [ 1 - e > Meppnoan] " Tnkisdo(s) ; .

-1

Consequently, .

(A

Se(s)

1}

and

So(s)

s

3.5.3 State Perturbation Reconstruction

It is seen from §§q§;on 3.4.2:4 that for
4

. o max(ty,Ty) <t < min(tyes,Tyes) »

i
where

J’-'- n'Ns‘.'t ’
, g
the‘statﬁ‘perturbation 1s expressed by

Ax(t) = exp(ooh (tmax(ty, 7y))) Axy . .

zZ=e€

[I- 9-25Th.‘¢’fh‘l’sh]-1"rhk4. [e_St4[0] 8do(z) ]

The[ I - e 25Theggpden] ™ ok,

- -1
The[ I-e 25Th'fl’fh0sh] ks .

2sTh

L ]

z = eZsTh

.. (3.5.2-18)

é

o (3.5.2-19)

(3.5.2-20)
< v

‘a4

(3.4.2.-30~

Recognizing ' that in the sﬁali-bignal liﬁit T4 tends to tJ;‘the éxate

perturbation is approximated by

for
ty <t¢ tyes -

UV

‘o

-~

°

———

(3.5ﬂ3—?)

~ ,
It has been shown in [17] that the error introduced by -(3.5.3-3)

. 7
} ' )

%

- " ax(t) = exp(wohi(t-ty))-dxy ,\\\__;\_-/9K:5.3-3) ’

/43y
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. '
- * v ‘e
«

vanishes in the smgliisignal lific. USing thé following special -

L]

' notation, the state pértugbation is expresséd\for a éompleta cycle of )
the system with even arguments -~ S )
. b B . .
. . bxa(t)i= e RAITTHNL Ko Koty coxe(2m) . - (315.345)
. . ‘ . . lf ' .
’ & where ' ' ‘ . ’ '
. . L0 . o
© - Ki®o e Koy =X . (3.5.3-6)
-~ c S ' c S
- and where the prober ianx,t,must be used in the ekﬁresslon for - ° ;
) a ’ 3 é‘“ ’ & ‘ > .
Q - . " . . - » . .
- B ~ . . tien-Ng <t t5L+1+n-N‘s - S (3.5.3-7) ,
. ’ Lo BN : &
(3.5.3-5) describes 6xe(t) for - T T '
: , U . ‘ ; S ' oo
/ . . 2nTh+t1[03 <t (;ﬂ(nﬁ-l)Th+t-,[O] . (3.5:3-8)
“ ‘.‘ )' [ .. ¢ ° ’ . . ' )
* * Defining " ‘ C o
. ' . * A o ,“ kS .
- : t-1 oo s
‘ < Dty E 3 Tk, (3.5.3-9) ‘.
L'y k=° , . , » \ . - .
. Wwhere - , . L T T {‘@' o S o T
To =0 , (3.5.3-10) .. "
a . v ) : -
the impulse responsé of the }econstructibn"plock is* ' ’
5.' : : - SN ’ .o ' s B ot . 8 . ) " m
. 'The expression for Re('t) is verified to be correct by-performing a o
’ convolution integral:. . : ' i Lo
‘ o . » < . s N}
o . ’ . . ‘c . . . . , -
- ox (t) = JJ Ro(t-A) 6x*(A) aA . - ’
: e . -0 an e ’ . i : ' }
s . . ' © - .4 . -
From the bropérty of‘convqldting'wiph g? imp&lqe [26], UL B .' -

N o MR
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-

v -

ewoAQ’(t_tQ)"KQ_¢Q-1A...K6¢4 .. 19{'0"!‘ 0 <t < 2T){

‘Ro(t) = .

Ll

z

\

.o

-for t < O or ta>~2Th

(3.5.

The transfer function of the reco\nst*udtion.block is found by

~the ﬂaplaée transform 6f <he impulse response.

* Q * *
Re(s) = ﬁm.&(é) e " 8t
o . ~00 )
) N 6 L+1 - ~ -
" : ' . =L§1 ft ewoAL(t t")' KL\OL_1"'K2¢1 e st dt
N - tl’ -
l' 6 i "
= in Re, (s)

t=ti+1
“)()A(-(t t'-) KL¢L 1...K2¢f& * -

. . .\ ° t=‘t(_
é‘y . ‘ °

L+s - » -
.+ %Alr e(ﬂoAL(t tL)' KL¢L_1"‘K2¢1 e st at
t, NN } '

LOA

P v
é ~ -

. .
- 4 = aul
4 . »
: LN
s y . 3,
v o © N -

- bxe(t) = L 'ﬁe(c—zm.-u[on- Bxe(2nTh+t,[0]).

Therefore. for 2nTh+t [0] <t < 2(n+1)’l‘h+t,,[0]

'

Sxe(t) = e“’°““ ta).’ Kib_y Ko, 6x9(2n) L .

. .
. ..

3%11)

taking

(3.5.3-12),



A

o . . X
:
* Rey(s) = it Seroa, 17V (1 - &7 TeeAWRTl) Lok e Kt
. o 0 .
- ‘ \ (3.5.3-13)

Similarly the impulse response for the system with odd arguments is

N\
© - ( | |

ewoAQ'(t_tQ')'KQ¢Q—1...K5¢4 for 0 ( t ( 2Th
Ro(t) = ' . . '

0 for t <O or t > 2Ty

'7> L . - (3.5.3-14)

where -. .
’ *A_‘X : - ' (
~ Kby *+* Kebe = 1 . . (3.5.3-15) ‘
’
.The { sequence e '
1 /d_ - R
? te{...4,5, 6,7,8,9...} (3.5.3-16)
¢)orresponds one to one to the { tsequen‘ce"" o -
N te{...4,5,6,1,2,3...} (3.5.3-17)
¥ K2 Eg) o
and * . . '
C Rt ,
ty = 2 Tk-s (3.5.3-18)
k=a . . 0
wilerf T;, is identically zero.. B
" i . ’ \
The integration by parts over each switched states yields
' h
 Roy(s) = ™M [ Sox-a, T (1 - e STRMOTY) L Koty ekt
; Wo » Wo
- . . (3.5.3-19)
§ . A o w
'q “ L-4 * N v ,
de.g. *‘T-7=T, .
. L v kL



Consequently, :

9
Ro(s) = 154 Ro, (s) - ' (3.5.3-20) .

'

;}\.5.[4 Reconstruction of the Output Yariable Perturbation

The transfer function of the state perturbation to the perturbation in
control signal 1s’fo(md. However, .in the assumed mode‘of‘ control, the
variable of 1interest, the output voltage, is not a state variable.
The state vector x(t) is continuous in time, however, ﬂthe sequence of
matrices -C_L' is not. ° This can; be easily seen by comparing the ‘
expressions for C, and C,, (3.3.1--1'_7) and (3.3.1-—20‘) respectively.
This discontinuity has two 1mplication§. First, the discontinuity in
the sequence of output matrices introddtes a discontifmity in the
output variable at the switching instants. Secondly, since C(t) is
constant only betv;reen switching instants, the output variable ©&y(t)
can be expressed in between the switching instants as a plecewise
linear ‘combination of &x(t), but Gy(s) cannot be expressed as a linear

combination of 6x(s) -

It has been shown in [17] that the discdntinuity in butput matrix
introduces a'.train of pulqses of width 6t; and of:magnit}xde‘

’

Y

-«

- (Cea=Cu)X(t (3.5.4-1) .
For the‘ converter under study, it ‘is seen from the:deilelopn.\ent of
section 3.3-that C(t) is discontinuous at tg, and ts only. Considering
the transition at t;, substituting (3.3;1-17)van‘d (3.3.1-20) yields

° ’ - “h



(Cy—C3)*X(t3)

T 1
| L : Tr(ta)
- . Qc ] -‘[ -1 B _922_.] . | Vo
- [[ Q+HQco 0 QHQco QQco 0 QHQco vr(ta) ¥
J\\‘) L‘v?;(tn)
- 2. = l N
= Qoo Ir(ts) . (3.5.4-1)
Since Iggtgl_is zero, the amplitude of the'pulsé‘is zero. The same

conclusion also applies at tg. For the coﬁverter,of interest 8y(t) is
continuous and the discontinuity in output matrix does not introduce a

series of train of impulses at the output. v

-

\

Siﬂ@e 6y(s) cannot be expressed as a linear combination of 6x(s), the -
perturbation of the output variable is-first expressed as a pilecewise
linear -

combination of 6x(t). For the system where the t,‘'s only are

modulated, the following reconstruction eq&ation is found from
(3.3.1-14) and (3.5.3-5) to be ’ ,
Sye(t) = cL-[ evohi(t-ty), Kidi-s°° K@, *6xe(2n) ] . (3.5.4-2)

Proceeding as 1in section 3L5.3; the transfer functions of the output
variable reconstructing blpcks are found to be: °

.\

r - : Rye(s)

i

[ .
th Rye, (s)

0

(3.5.4-3)

Ryo(s) (3.5.4-4)

9
2, Rvay(s) .




»

3

Ryo,(s) = St ettt [ 1A, 171 (1 - & TteM00TE) - ki e Koty

Wo
(3.5.4-5)
-~ } — v - T l B
R.YOQ(S) = % sty [ I"AL ] ( - e STQeAQUo Q.) « Ko®o_,** Keds

(3.5.4-6)

o

3.5.5 Complete Transfer Function

C'The coﬁnplete.transfer function is found, by linear superposition, to

—— —

be.
Evgférgy Rye(s)+Se(s) PWMe(s) + Ryo(s)’so(S) PMo(s) .* (3.5.5-1) . °

where Rye(s),Se(s),PWMo(s),Ryo(s),So(s): and PWMy(s) are expressed by
(3.5.4-5), (3.5.2-19), (3.5.1-6), (3.5.4-6), (3.5.2-20) and (3.5.1-7)
respectively. The term 1/Th of (3.5.1-6) and (3.5.1-7) cancels the
factor Th of (3.5.2-19) and (3.5.2-20). From (3.4.2-6), - (3.4.2-7) and
(3.4.2-9), it is noted that wa can be factsred out of k, a.nd Kks. Vo

can therefore be factored out from (3.2.5-19) and (3.2.5-20) and be

canceled with the term 1/wo of (3.5.4-5) and (3.5.4-6). Factoring
prﬁafs':d'pwm. (3.5.5-1) can be rewritten as ‘

5 -st ) ’
m!é;?)gy = prme S dDVlm Gz'Ss . ‘ . (3.5.5f2)

where the dimensionless quantity G(s) is referred to as the normalized

. converter transfer function.
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3.6 EQUIVALENT MODEL

L 4

The mathematical formulation of the Small-Signal Frequencg Res‘ponse‘
Theory yields the frequency response of the c<converter that would

otherwise bé unknown. How‘ever.' this method suffers from two major

_ drawbacks. First, it is very.computationally intensive, and obtaining

the frequency response is time consuming. Secondly, the method is
very abstl:act and 1its use does not refer to concepts -for which a,
trained design e_ngineer'has an intuitive understanding. To overcome
these difficulties an equivalent model is'deve‘lo"bed in this section.

Numerous plots of G_(E)_.l;ave been done f?r various operating points.and
values of Zco. Four examples, for:which Rpr¢ and Re are assumed to be
negligible, are shown in Figures 3-12 to 3-15.

{
By comparing the plots for the various operating points, it l?ecome’s
apparent that, in continuous mode, the transfer func'tion is similar to
that of a second order filter. "I'he resonant frequency is noted to be
independent of M or Q. It is solely dependant of Zgo. The damping on
the other hand increases with the load. The converter behaves as If
an equivalent inductor Le was resonating with the output capacitor Co, .
the damping ‘belng a function of the load resistance. Figure 3-16
illustrates the equivalent circuit where the amplifier with gain Kac
models the DC gain of the converter.

[

Le = ¥ : (3.6.0-1)
. c .

the natural frequency of the ‘second -erder pole is

) 1 1/2
Wpo = | —m |* 7, (3.6.0-2)
Ll‘ . co - .
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- B - 172 -
54 ' 22_0 = %k . —t ?
' ) wo ke [ Lruo*Cowo ] a7
. o' . Q
. ;’\ 1/2 ‘/2
= ' «1;§<= kc" [ch'g] = kc he 2co . (3»6.0“3)
Tt et o
.s-’;:‘,‘gﬂ'}s‘ .
e
. &a
Studying. the plots, the numerical value for ke has been found to
approach B )
) . 21 s . . :
. ke = 10 - (3.6.0:—4)

The normalized transfer function in continuous mode is found, from the

‘equivalent circuit of Figure 3-16, to be

L

HOR 2 de =3 Kdﬁ @
Le elo
- LeCos™ + R s+ 1 LgCo s™ + _Rp,Co s + 1
N ‘Ech a

. . k ]
: = — ‘ > . (3.6.0-5)
i [t (] g
. wol . .

[4

In discontinuous mode, the converter also exhibits a second order’

behavior,, however the poles are distinct.and real. The first po‘le of
the system is heavily dependant on the load. The frequency of the
first pole is lower at low load. This behavior is similar to that of
a capaci tor filter in parallel ~with a Tresistor fed By a current
' source. Examining the plots, it is seer;%hat the frequency of the
\-fpole"is not sfrictly linear with load.and that it is also dependant on

/M. . The first pole frequency is therefore found to be
g h

* -
. . ¢
- ..

0. " ' l ~o o——-— ‘ -
o2t = Ky(MD) ¢ s = ka(MT) - TZeo - (3.6.0-6)

’
»

' ka(M,Q) is plbt\ted“ in Figure 3-17. - Since the system is of the second . -

o
L
.

/
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order, its transfer function can be expressed as .

N, . . . N *
', . A * \’) R
S Kde . . -
i e G(s) =7 ] . Y
- [/’1+—~—j“’ ] [1+Jﬁ_] : :
- T Wpy J, Wp2 .
. , = e (3.6.0-7)
' o 1 - Y + Juw | —+ ] L
' N wpim!)z * . (‘)Dl “’D? i N
| S

It is noied £ rom Figure 3-12 and 3-13 that, at wo, the phase lag {s
-90° for all valueés of §. This is the Ease for dnll’yalues of Zco -
‘From'(3.6—?0:f7), Wpz is therefore found to be*

-

' < [ —92— ‘- - -
Lm0

The DC:gain is obtained by" numerically performing the differentiation

A~
.

) ' o T :
. L Kd aD ' . v (3.6.0—9)

¢
The DC gain for PWM and PSPWM is shown in Figure 3-18. Note that for

. M greater than 0.9 the gain falls-sharply, so control of the ‘converter
in this region is not very effective.l - . . ° ‘

.
- \ /
. . .
. . b . b , ° ( !

Y . 5

rediciéions of the simplified model versus the results obtained
with'{the formal ‘me thod" are shown in Figures 3-19 and 3-20. The
agreement 1is very good up to O. 5(.:0 This, has been verii’ied to be the

case for many operating points. The simplified model "can therefore be

.used to design the . loop compensa;ion as, 1in general the loop

ci'ossqver frequency is designed to be be I'ow 0. Swe . ,‘

« P

- -
. . \
f . .
i .
. s

"

[
\ . - »
< <
%

‘For large values of M*Zco, ( eg.o MZco > 0.05 ),.up, and ¥p, hecome
‘complex conjugup.tes (3 6.0-8) still holds and the trangfer function
‘exhibits. a resonance at wpo.  If the use of Figure 3-17 yields Upg,

. greater than wpo, the transfer function is better modeled by using
(3.6.0-6) - and’ replacing T by 1/0 1in, the' denominator of this
gexpression. Kge is’ evaluated using the.correct value for g -
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CHAPTER 4: EVALUATION, SELECTION, VERIFICATION

In this . chapter, PWM and PSP¥M in continuous or discontinuous
conduction mode areé compared using material derived in the preceding
chapters'. A selection of switching strategy and conduction mode {s
méde based on the comparative evaluatign.‘ A design example and

experimental verification are carried out.

4.1 STEADY-SPATE STRESS
* : .

Component stresses are compared for various operating points. Since
the use of a transformer is assumed, the voltage transfer ratio M can
be arbitrarily selected. Once an operating M and turns ratio are
selected the value of the characteristic impedance can be arbitrarily
selected. Referring the 1?npedance of the load to the primary side,
selecting a value for Zo is synonymous to selecting Q. The stress
levels are therefore plotted for various values of Q. The operational
VA of critical components are shown in Figures 4-1 to 4-7, both for
PWM anc,lPSPWM operation. )

In constant output voltagé applications the gréphs can easily be used
to evaluate the variation of the stress with variation in input
voltage. A decreasing M 1is synonymous of an increasing output
voltage. The graphs cover the range Vi, = Vo (M=1) to V¢ n =40V,
(M=.025). The graphs can also be used in variable output voltage
applications. For that case, it has to be Kept in mind that actual.
power, for a given Q, is proportional to V2. Since the curves yield'
VA/Po, the stresses must be scaled by the square of the relative
output voltage. For example, if it is desired to compare the stress
at VLn=1.5*VmQ°' and Vo=VLn9_ow/2o that’ is M = .333, and to the stress
at V‘_n=V°=VLn9_°w,‘ that is M=1, then the reading at M=.333 must- be
divided by 4 to obtain the relative stresses. )
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‘ Figures 4-1 to 4-7 are now individually analyzed.

4.1.1 Input Bus VA ! . ) -

Figure 4-1 shows the input ‘VA stress. As the voltage is the bus
voltage, this figure Eonveys information on the input current stress.
Since operation\in PWM returns energy to the bus, it is expected that
this,mod; of operation will generate more Stress than PSPWM operation.
Figures 4;1a) and 4—1b)‘ allow to quantitatively @&valuate this
difference. s ‘ '

4.1.2 Switch VA

For simplicity, the VA of the switches and of the anti-parallel diodes _
are lumped. VAgw of Figure 4-2 is the product of the rms—eurrent
flowing into S; and D¢,

S

[ 9__ . Irrms . | , '
Isw. g = Sz \ (4.1.2~1)

&£ s
s

multiplied by the standoff. voltage. Since the standoff voltage is
simply expressed in term of the input voltage, Figure 4-2 yields
information on the rms current flowing in the switches and the
resonant tank components. It 1is seen that for high U there is no
difference in rms current st}ess between the two switching strategies.
This contradicts the intuitive notion that, since operation in PSPWM
does not return energy to the bus, the current stress in the switches
and resonant elements must be lower with PSPWM operation than for PWM
operation. This contradiction is explained as follows. For Q
approaching -infinity, the ;urrent in the resonant tank becomes
berfectly sinusoidal. Since the resonant current {s full-wave
rectified into the load, the amplitude _of thel resonant current is

dependant only on the outpdt voltage and current. This amplitude is

]
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not dependant on the mechanism used to generate it.

For smal ler loads.. PSPWM operation will generate smaller current
stress. One case of interest is the operation at the boundary between
continuous and discontinuous conduction. For PSPWM this boundary is
Q=1. Since the maximum value for M is 1, it is seen from (2.2.3-4)
: that -in PWM ;iiSContinuous conduction is guaranteed for for all duty
- " cycles for @ < 2. T =2 is the boundary between the ' two modes for
maximum duty cycle when M=1. Interpolating for Q=2 on Figure 4-2b)
and comparing with Q=1 on Figure 4-2a), 'it is seen that the current
stress is almost identical for both control strategies except for very

low M where the stress is less. in PSPWM.

/

4.1.3 Resonant Tank VA

it 1:-"3 seen, from Figures 4-3 and 4-4, that the resonant component

stresses are i{dentical at Msl and become larger for operation in PWM

as M tends to zello. The difference is even moré pronounced for the

resonant inductor as its volt-second stress fs, from (2.3.5-22), a
- v function of the peak current. Since peak current and rms current are
rrel?.ted, the dependence of The inductor stress is related to :the
current stress by a secohd order dependence. The difference between
| PWM and PSPWM stress is therefore more pronouncefi for low values of M

where the resonant current rms and peak values are larger for PWM

operation.

4.1.4 Transformer VA .

| LA

Transformer VA's are similar for the two switching strategies.

-

Detailed comparison between the two sets of curve families does not
yield significant information. Note that, in Figure 4-5b), the
changes in slope are coincident to the operation points where the core
résets just before the start on the next half-cycle.
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4.1,5 Output Components VA : o

. . . < . .
From .(2.3.5-32),(2.3.5-33), (2.3.5—35) and (2.3.3-10), the VA of the

output rectifiers-becomes

- ) . - \

Cl_zop - o - Vo Io

- f ‘s

Vin ) . } e
VA = cst ipk . Lo _ est - Ipk (4.1.5-1)

Figures 4-6 is plotted for a constant multiplier equal to 1.

*

From {2.3.5-36), (2.3.5-38) and (2.3.3-10), the VA of the output . -

capacitor becomes

! Ico- ] an Ico ,
o B yAc = fms fow - rms . (4.1.5-2)
OOD Io Vo Io

[ « v e

The output capacitor stress is plotted in Figure 4-7.

As for the resonant tank stress, it is séen that thé éoﬁﬁénent
stresses are identical at M=1‘and become larger for operation in PWM -
as M tends to zero. The asymptotic behavior of the current stressq
curves as M tends toward zero for PWM operation compared to the:
moderate increase for PWM operation can be understood as fcllows.
bonsider an operation point where M << 1. For ease of illustration it
is-also considered that g .<<'I. “The slope of the current aneﬁqr&o in
PWM s théreFore defined by VLn}Lr. The hﬁsonant current is
illustrated in Figure 4-8a). If the input voltage is doubled, and -the °
output voltage is kept constant, the ;rea under the current waveform
must remain constant. As seen in dashed lineslthis implies that the
peak current doubles. In PSPWM, energy is not returned to the bus
during the of f-time and the slope of the current is defined by Vo/L;.

For’ the same 2 to 1 input voltage variation, and the same area under

[3
H
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the current waveform, it "is seen , from Figure 4-8b) that the peak
i:u_r:rent' remains almost unchanged. If the assumption that § 'is small
1s relaxed, continuous conduction is approached. As Q approaches
infinity the resonant current waveform approaches a perfect sinusoid
and the ratios of peak and rms current to output current are constant
as seen on the curves for PSPWM. In PWM, continuous conduction is not
achieved for the values of Q@ illustrated and .the stress curves are

asymptotic as M tends to zero.

' ; 4,2 SWITCHING STRESS ,
2% 4.2.1 PWM, Discontinuous Mode
As can be seen from Figure 2-2a), turn-on switching losses in this
mode are low. The switches are closed on zero current. Turn-off
- losses are similar to "square-wave" PWM converters as an appreciable

) curr‘ex'x.t has to be commutated. Capacitive snubbing would reduce the
turn-of f iosseg. However, at turn-on, the snubber capacitor would be
;charged either to (1+MQ-M))*V(n, (2.1.1-9), if t, } Th/2 or otherwise

. ~--wquld be charged (1+MQ)*V.,. (See section 2.3.5.7, on transformer
reset). The snubber capacitdr thus charged, would ‘ havel to be
discharged trough the switch at turn-on generating a power loss.
Gap'aciltivg snubbing 1is therefore not advantageous.

B .
. ' . s
’

4’.g.\2 PM, Continuous Mode

' As seen from Figure 2'2b)', sgvitching' characteristics "in continu})us
‘ ' mode are not attractive. Large curl:ents have to be commutated both at
turn-on and turn-off. In applications where the input voltage is
preregulated, these losses ébuld acceptable.' With a preregulated

voltage, only a small modulat#on of the duty cycle is required. The

turns ratio of the transformer can therefore be designed in order that

the nominalfduty cycle is close to unity. (At unity duty cyclé the
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L]

current is in phase with the voltage and the switching occurs’ at the’
zero crossing of the current.)

Y

4.2.3 PSPWM,, Discontinuous Mode
] . -

 Figure 2-4a) shows that switching characteristics are different from
'one pair?of switches to the other. §; and S; turn on at zero current
and a voltage equal to Vyn. These switches also turn off on =zero
current. (Zero voltage turn off is also achieved as the delay
necessary to avoid cross conduction, insures that §; is off before S,
turns ‘on.) The switching characteristic of this pair of switch is
therefore that of Zero current switching converters [18]. S; and S,
present zero current, zero voltage turn-on, as their anti~parallel
diode conducts first. The ‘only switching loﬁﬁfs in this scheme occur
when S; or S, turn off. Since the switches*turn on at zero vol tage,
capacitive snubGing, as illustrated later in Figure 4:1T. is possible
and near zero turn-off voltége can be achiqyed. These switching

characteristics are that of zero.vdltage switching converters [101.

*4,.2.4 PSPWM, Continuous Mode

1 I
v

1

In continuous mode, it is seen from Figure 2-4b) that S§; and S; no
lonéer turn on at zero current but commutate the diode of the opposite
- switch. " Zero“current, zero voltage turn-off is guaranteed as current
flows in the anti- rallel‘diode at turn-off. S, and S, retain their
zero vol tage switching characteristics. It is seen that S, and S, are
only stressed upon’turn-op]‘ Inductive snubbing is therefore possible.
However inductive snubbing is always accompanied with voltage spikes
and is not reggingd for study in this thesis.
- !

«
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4.3 FREQUENCY RESPONSE ..

.

el ’

.For "t‘).peration in discontinuous = mode, ~’the frequeficy . response
characteristic 1s slightly better for PWM operation. Because energy
is immediately returned to the bus when the pulse is terminated, ‘there

is not 'as much phase shift when the perturbation signal approaches J:he

resonant frequency.
1

-

For operation in continuous mode, the frequency response
. M |

.characteristic s sljghtly better 'for PSPWM. The DC gain

characteristic is flatter over the range of M as seen by comparing

Figure 'a§—18a) to' Figure 3-18b). The boundary between continupus and

discontinuous conduction mode is also more readily ~determined. For a
given ‘load, the’ conduction mode will remain the same over the full

range of\inpu't voltages thus avoiding the suddeén change in gains of

Figure 3-18a). For a given M, the frequency range for which the phase )

lag is less than 1800 is 'generaily wider in PSPWM. )
Generally, d{scontinuous . conduction mode will allow for a wider loop
bandwidth as the phase shift is usually less than 1809, while . in

continuous mode the phase shift is already nearing 180° at Wpo -

A —

B

“a

4.4 SWITCHING STRATEGY AND CONDUCTION MODE SELECTION

As mentioned in the Introduction, one of the main reasons for using
resonant converters‘is to minimize or eliminate swi'tc]';ing stress and
losses.’ Of the fou'r combinations of PWM or PSPWM and c;mtinuous or
discontinuous conduction, it is seen from section 4.2 that the only

possibility . to eliminate switcﬁing losses is to use PSPWM in

discontinuous mode. This implies the ﬁ'se: of PSPWM over PWM and the,

choice of discontinuous conduction over continuous conduction. These
two choices are discussed separately.

As can be seen from Figures 4-1 to 4-7, tl}e stresses are generally

at



similar 1if a converter is to be operated with M relatively high. For

converters which must operate over a wide range of input voltages,
PSPWM operation presents lower stresses. Tﬁis is true for most
devices in the circuit, and it is particularly evident in Figure 4-1
which shows the stress imposed of the input bus. In general, the

selection of PSPWM over PWM is therefore advantageous.

Iy
Y

Operation 1n‘discontinuous mode rather than continuous mode is not as
easi}y Justifiable. As seen from Figures 4-1, 4-2, 4-6 and 4-7,
operating in é;ntinuous mode rather than discontinuous mode lowers the*
current stress of ;he devices. Sincéﬂlosses are proportional to the
square of the ' rms cﬁrrent. minimizing this variable is particularly
critical. Considering ‘Figures 4-2 and 4-7 versus 4-3 and 4-4, it
becomes evident that operating with a nominal Q above 3 does not yiéld

a signiffcant reduction in rms current stress while VA rating of the

resonant components, Lr and Cr, increase dramatically with Q. An
optimal selection for Q would appear to be a value of 3, which implies
continuous conduction. This selection would be adequate at low

frequency where: switching losses become 1insignificant compared with

"on" losses. At higher frequencies, nevertheless, minimization of
switching losses becomes more dmportant and operation in discontinuous
mode becomes more attractive. Selection of Q as close as possible of
the mode boun&é;y, Q = .1, minimizes the increase in rms current.
Selection of discontinous conduction also offers the possibility of

achieving a greater bandwidth as mentioned in section 4.3.

is retained for further study.

”

For these reasons PSPWM, and in particular PSPWM in discontiéj\%j mode

.
v




4.5 DESIGN EXAMPLE (

The design of a PSPWM Series Resonant Converter in discontinuous
‘conduction 1s fllustrated. by an example. 'Consider- a 48V converter
that has to be operated off-line, from both 200V and 100V nominal
line. In Europe the nominal line to line voltage, is 240Vrps. At the
converter input, ‘the voltage can be supplied continuously 10X above
its ' nominal. This represents a maximum instantaneous voltage of
375Vdc. In North America 110V is used. The power supply must meet
regulation even during line sag. For that reasons power supplies are
designed to regulate at 66% of the line voltage. Using a voltage -
“doubler” yields an average voltage which is approximately 1.8 times
the peak voitage; this is 185V. Allowing for ripple on the inpﬁt
filter capacitor, the minimum input voltage is taken to be 166V. The

following qucifications are therefore assumed.

166Vac ¢ Vin £ 375Vac  (4.5-1)
Vo .. = 48Vac - ‘ (4.5-2)
1.5A ¢ To_ _ & 15A . (4.5-3)

a

Since one pair of MOSFET's exhibit zero current switching and the
other zero : voltage switching, sWitch{ng losses are low. High-
frequency operation is therefore possible. Nevertheless, there are
losses associated with the turn-on of S; and S;. These switches do not
theoretically experience switching stress as, in discontinuous.mode,
the turn—on'current and turn-off- currentl is zero. In practice,
though, these switches discharge their parasitic capacitance at
turn-on. This discharge causes losses within the switches. This is a
well-known drawback of zero current switching converters [10]. “As
mentioned in the Introduction, these losses becoﬁ;~more important as
~“the frequency is increased. A frequency of 200Khz is selected as a
) conrromi se. .

Al
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1

Considering diode technology, the rectifier can be built using a
center-taphtransform.er and only two d‘iodes. The steady-state revers'T
voltage on the diodes will be roughly’ 100V.

As seen from Figures 4~1 to 4-7, it is desirable to select M as close
as possible to 1 to minimize the su_-esses: It is noted in section 3.6
that, above M=0.9, the gain drops dramatically, and consequently
control 1is poor. M=O.Qwis therefore selected for operation at th.e
minimum specified'input voltage. Lumping 1V of rectifier drop into

the output voltage, the transformer turns ratio is found to be

_ 0.9%166Vge . . _
N = o2 3. (4.5-4)

"

The load impedance reflected to the. primary of the ct;nverter is

4
therefore g} . / |
_n2.Vo_g.99 : _
Re = N T, = 9 s =~ 2090 . . (4.5-5)

The. characteristic impedance is seiected such that Q be as "close as
;;ossible to 1 (Q=.64). To leave some margin Q is selected totbe 0.6.
The characteristic impedance and the value -of the resonant componentd
are found to be )

1]
[

I

Zo = Q ®* Ry = 17.50 , N (4.5-6)

-

©_Zo _ _ 175 _ (4 e
Lr = 32 = oiogeqos = 144 _ (4.5 7)"

1 T ,
T Zowo ~ 17.5+2w200°103

[

Cr = 45.5nF . " (4.5-8)

/

I
~ .

For the small-ripple assumption to be‘%&l‘id, the output capacitor
impedance must be much smal lgr than Z,. The capacitor must also be
able to carry the ripple current. _The capacitor used in-the

realization of t\:he converter, reported in the next section, has a

Y
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value of 160uF. This is

’_ Zeo _ N2 1 _ , 1 — _
Zeo = Zo ~ N woCo*Zo ~ ° 2r*200°103°160°10-6°17.5 ~ 0.0025 . (4.5-9)

a

The actual design or selection of the components must account for
actual stresses. Current and voltége stresses must be plotted over
the range of M and §. These plots, not shown here, are summarized.
All current stresses and the resonant inductor ‘volt-second stress are
maximum at maximum input .voltage (M minimum) and maximum load (Q
maximum). The switches voltage stress is maximum at maximum input
voltage.‘ The resonant capacitor voltage stress is independent of
input voltage, and is maximum at maximum load. The output rectifier
.and output capacitor voltage stresses are independent of input voltage
and load. y The transformer volt-seconds is maximum at minimum input
voltage. Maximum diode current has not been calculated in Chapter 2,
However 1t can be verified that at M=.4 (V. n=375V) it is equal Ir,,-
The maximim stress values have been recorded and are now listed. A
discussion on component selection is beyond the scope of this thesis.
In particular, optimization of transformers and in'ductors c become
very involved [19,20]. X

EIn chapter 2, stresses are normalized to V,_ng'_ow, which for the example
under study is '

o

Vin,,, = 0.9 * 166Vac. = 150Vac - (4.5-10)

s

Since operation at low input voltage is usually an abnormal condition,

/

it is more 'customary to normalize to the maximum input voltage as is
~-done in [21,22]. Voltage and current stresses are therefore .
renormalized to vm=§75vdc. The normalized stress figures apply to any
.converter tRat 1is to be operated over a 2.5 to 1 theoretical input
voltage range with Q=0.6 -at full load and M=1 at leow. The
numerical values are specific to, this design. The stress are now
listed. The product of Istr by Vstr as defined in section 2.3.2 will

yield VArat, (2.3.1-2).
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The stresses are now listed for‘all devices.

- 81 Qr éz * " »-
. Py

. : Irms = 2.6 V. = 5.0A .

m

¢

ka = Vm = 375V
or D,

Iavg = 0
. ka =0

Vpk = Vm = 375V

w 3 !

\ i ’ Irms = l.6 b $'°—= 3.1A
\ . ' m,

‘ Vpk = Vm = 375V

or D,

Tavg = 0.8 5—;= 1.5A
Ipk' =7.6 + Yo = 14%6A

I\

ISR . . Vpk = Vp = 376V

y

- Lr o

Trms = 3.7 - (2= T.1A

Volt-seconds = 1.4 * ’go"- = 420V-us -

L]

o~

O

(4.5-11)

* (4.5-12)

(4.5-13)
(4.5-14)
(4.5-15)

(4.5-16)

L (4.5-17)

(4.6-18)

(4.6-19)

(4.5%20)

Y

i
+

et (4.5-21)

(4.5-22)



\ , 134
_ -
._ Cr -
- Po -
Irmg = 3..7 hd v—' = T.1A (45-23)
. m
o - " Ipk'=7.6 + 32 = 14.64 " (4.5-29)
Vpk = 0.4 + Vp = 150V (4.5-25)
" - Transformer
-
N p o
Irms = 3.7 i "; = 7 IA (4.5"26)
Volt-seconds = 1.3 '%E - 390V-ps (4.5-27)
'CR1 or CR;
. ) Io , .
I Iavz*""”- 7. 5A (4.5-28)
. 2 -
) ka =2,9 - Io' = 43.5A (4.5—29)
\ ' ' ST |
‘v'pk = 2:Vo =96V ! 1(4.5-30) '
-C ¢ '
| 'K ’ N N
Irms = 1’-0 * Io = 16A . (4.5—31)
' Vpk = Vo = 48V , © ' (4.5-32)

o/ |

To design the loop compénsation. it is required to know the range of M

over wvhich the converter operates. At the minimum input: voltage
. speoified M has been fixed at 0.9. . At maximim input yoltage M is -
therefore‘ N
.« % = Mmn =09 %f,%d—"_ 0.4 . (4.5-33)
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The actual gain of transfer function of‘the converter output voltage
to the amplifier output is: ‘ /

6vo(s = by(s ;_vﬂ‘. = oa"Std . . Vi -
SVamp(s) 37;&;%55‘ N Kpwmee =~ P"m + G(s) + P | (4.5-34)

Q

Niquist's.t:heorem implies that the output volfage loop cannot- be
controlled’ at frequgné'ies above half the '.sampling frequency. In
practice though the limit 1is generally around one fifth of the
sampling frequéncy. Since ° the output voltage is sampled twice per
cycle, -this is 0.4 of tﬁe fesonant frequency. At this frequency and
leer' the ra-mgé of T and M, the gain and the phase lag of G(s) are
maximum at full load (®1) and M=0.4. Since the the-input voltage 1is

- also maximum at M=0.4, maximum gain and and maximum phase lag of the

transfer function of (4.5-34) will occur at this operating point. For

.Q =1, M=.4, Zc0=0.0025,

I}

| G(3+0.400) | = -41dB , "~ (4.5-35)
| G(j0.4uo) = -160° (4.5-36).
Assuming,
Kown = =iecr | \ (4-5-3%)
. pYm = 5EY ) +0=3()
\
Tdpwm ® 0+ ~ (4.5-38)
. and substituting in (4.5-34), - -
3vo( 0. 4w, L [ 375Vgc 1 ‘]
l Evggﬁ%jfﬁfza%y l = -41dB + 20-log | =3 - 3BV,
= -41dB + 34dB = -7dB (4.5-39)

o ¢

A
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- vo(J°0.4wo) = -1600 (4.5-40)

. dvamp(J*0.4wo)

/ N ) ‘ . . ‘

2:' The voltage error-:amplifier of Figure 4-9 has been synthesized using
/

: . conventional techniques [23]. At w/wo=0.4, it has a gain of 7dB antl

. ’ gives a phase boost of 40°. The resul'ting open loop transfer function -
f - s , including the amplifier gain, is shown in Figure 4-10, forﬁ Yin =
R ' 375V4c. At lower input letages the gain is lower and the converter
T phase lag is smaller. Consequently, the gain and phase margins are
) ' ) wider. l o ' ¢ :
B T |
4.6 EXPERIMENTAL VERIFICATION - *

-

-

An experimental converter, %has been built to validate the analysis.
- The simplified schematic of the converter is shown in Figure 4-11.

@
»
' . Figure 4-12 shows the load branch roitage (Var. on Fiéul;ae 2.1-3) and
> resonant current for tworoperating points. , .
. L ) “
k . . ‘Figure 4—-13r shows the voltage transfer ratio for Q=0.6 (Q=.94) and
’ ‘ Q = 0.1 (3=0.157) for a constant input voltage of 160Vge. The actual
| voltage transfer ratio particularly departs #rom the calculated value
- at high Foad dnd duty cycle above 50%. This is mainly due to the
/ S drep? across the MOSFET's, which are more sighificant at highe.r
) currents. This factor is not taken into account in the theoretical .
\ develop'ment. ( - .
Next, the stress formulas are verified by checking predicted~
. efficiency versus measured efficiency. To perform the calculations,
the charact:eristics of the components were obtained by measurements on
an impedance bridge or from data sheets. : The c%lculated losses at the
worst operating point‘ maximum load and maximum input voltage are

calculated from the stress figures given in the preceding. section

[ \ °

, . :
. . .
o . M . A N .
. “\ . ' Py
.
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. Lo ) ' Figure 4-11: Experimenta] Converter Simplified Schematic
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Experimental Waveferm
a) Vin=240V4c, Io=14A
b) Vin=375Vac: Io=14A
top trace : Vgy, 200V/cm
bottom trace: Ir, 10A/cm

. 4

~a
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"‘ 81 or Sz

"On" resistance at 80°C Jupctiop temperatur; is 0.60.
Pross = 0.60 [ 5.0A 1% = 15W. (4.é—'1)
- Dy or D, |
Pioss -0 ' , ‘(4.6-—2).
- S5 or S, _

°

"On" resistance at 80°C junction temperature is 0.60.

ST - .. : .
Pross = 0.60 [ 3.1A 1% = 5.0¥ (4.6-3)
- Da or Dﬂ
¢, 5 "
Forward voltage‘ drop is approximately 1V. -
Pross = 1.5A * 1V = 1.5W° (4.6-4)

Ly 5

The winding resistance measured at 200Khz and compensated for

o

temperature rise is 0.112. The copper losses are therefore:

Pooss = 0.110 « [ 7.1A 12 = 5.6W. " (4.6-5)

: . ] .
From (4.5-22) there 420V-us applied to generate the peak-to-peak flux,

4 -

g

»

&
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winding is S8m2. The DC copper losses ére therefore

143 ' .

@

swing. "For the core selected and the number of turns used this
represents 0.4W of core losses. ‘

Pcore = 0.4W (4.6-6)

- Cr

. The equivalent series resistance of the resonant capacitor is 12mQ at

2 zZ. . . ,
. . . *
Pross = 0.0120 * [ 7.1A ]° = 0.6W (4.6-7)
. <, ’ o

h;¢Transformer . “s

The equivalent AC resistance seen from the primary Qf the transformer
vhen the secondary is shorted is 0.11. The AC copper losses are
therefore \

\.' 3

Pac = 0.110¢[ 7.1A 2 = 5.6W . (4.6-8)

In addition, each half of the secondary winding carries a direct
current of 7.5A. The DC resistance of each half of the secondary

<

© Pge =2+ 0.0080 « [ 7.1A > = 0.0W . (4.6-9)

" Although maximum flux swing does not occur for maximum input vol tage

the figure of 390V-pus is used to estimate the core losses. For the

‘core'selected and. the number of turns used, this represents 0.8W of

core lgsses. ,

Pcore = 0.8W : (4.6-10)

-



- CR, or CR,'

&

The forward voltage drop is approximately 0.9V.

Pioss = 7.5A + 0.9V = 6.8 - (4.6-11)

- Co

rd

" The series resistance of the bank of capacitox;;used is 1.25mf.

Pross = 0.001250 + [ 15.0A 12 = 0.3 | (4.6-12)

]

Adding the “losses together yields 72W. The calculated éfficienpy is

-

therefore:

_ T20W
M =730 + ToW

J

= 0.91 . (4.6-13)
The actual efficiency was measured at 90%X.
' ',

_Although the correlation between predicted and measured-efficiency is
very good, the losses due to parasitic capacitance discharge are now
evaluated. At turn-on of S,, its parasitic capacitance must be
dischgrged from ‘Vin to zero while the capacitance of S; is charged
from zero to Vip. 'The switches in this circuit being realized wit:h
MOSFET's, using the body diodes as the anti-parallel diodes, this
capacitance is composed of . the non-linear drain-sourge capacitance
(Cas) and arainfgate capacitance (Cqg). - At this turn-on transition,
the charge required to raise the voltage across Cqs of Sz, from zero
' °to Vin, Qas(Vin), is drawn from the bus. The energy drawn from the’

bus, which'is equal to the energy -stored in C.{s of Sz_ is N

° =

Y’d; = Qas(Vin) * Vin - - (4.6-14)

S‘l discharges its drain-source capacitance within its own body. This
¢ ~ capacitor is discharéed from Vi to zero and an amount of energy equal

a
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[y

to Wgs is therefore dissipated.’ -

The energy.dissipation related to Cga is Jore difficult to evaluate as

there are interactions with the gate drive circuit, Provided that Vi

is much larger than the gate drive voltage, this energy can be
- approximated by

f

Wag = Qag(Vin) * Vin (4'6-15:)

Recognizing that Qas(Vin) + Qag(Vin) is Qoss{Vin), and since there are
two turn-on transitions per cycle, the power dissipation is

4

- ’ , Pswon = 2'Qoss(Vin) * Vin * ;—%; - (4.6-16) ._

0 . %
Qoss(375V4c) for the IRF450 is 75nC, the additional power dissipation .

at 200Khz 1is therefore 11W. Recalculating the efficiency‘*wi th ‘this
additional loss yields 90%. This coincidence of :the measured
.efficlency 1is fortuitous, as a different evafuation of the “on"
resistance of the mosfet could easily raise or lower the calculated
efficiency by 1X%. .
3 . -'
Frequency response predictions are also verified. A sinusoi_daﬁg‘nal
.of small amplitude 1is superimposed to the DC signal at the input of
the pulse-width modulator. The exciting signal is automatically swept
across a preset range of frequencies. The component of the output
‘ voltage ripple% at the exciting frequen.cy is extracted using Fourier
transform methods. This operation is carried out using a special
> purpose Frequency Analyzer [24']. Since the upper frequency of the
Frequency Analyzer is 100Khz, and since it has also been experienced
in the past that measurements performed/ above 50Khz are not very
reliable, the resonant frequency of the converter is lowered to 25kKhz.
The value of the resonant inductor 1is changed to 900uH. The
transformers are also changed to operate at this frequency. Figures
4-14 and 4-15 show the results for M=0.3 and various values of a.
Some of the data points are scaled and put onto the corresponding
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. theoretical predictions of Figure 4-16 and 4-17. The input voltage
for this test is 120Vgqc. The gain scaling. factor 1is therefore

*

Gain.Factor = 20 log [ 12ngc §l§V ] = 24dB (4.6-17) .

F

* -
The resonant frequency of the converter is 25Khz, the scaling factor

for the frequency is:

1
Frequency Factor = RNz = 40us . (4.6-18)

Except for Q=1, experimental and predicted results agree. For Q=1, it
is seen that around wpo the measured values depart from the
prediction. This is due to the fact that the transition between the
system with two real poles to the system with a second order resonance
happens for a very small va;iation in Q. Great accuracy in
constructing the test conVe;ter would be necessary to obtain matches
around wpo for § around 1. This is not necessary as in practice
compensation of the voltaée error-amplifier is usually designed for a

)

‘crossover frequency away from the filter resonant frequépcy.

Although operation in the continuous mode was not retained for
in-depth investigation, the theoretical .~ prediction of load
independence 1is verified. To minimize the drop across the mosfet the
characteristic impedance of theP200Khz version of the converter is
increased. Ly is set at 85uh and Cr at 7.5nF. Volta&e transfer ratio
is measured for a constant input voltage of 100V. The results are
shown_in Figure 4-18 for discontinuous mode, {=0.333, for thé limiting
case, O=1 and for continuous conduction 3=3. The voltage variation
‘for a three to one load change in discontinuous conduction between
Q=0.333 and =1 is evident, while the voltage variation for a further
three to one load increase to U=3 is minimal and mainly due to drops
across the MOSFET's.. L ,

N -
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«
5: CONCLUSION

- d s

In this thesis ’di,rect application of fixed frequency pylse-width
modulation to the ‘series’ resonant converter is investigatedﬂfhe
study'is limited .to operation at the natural resonant frequency of the

. - !
LC eircuit to maximize the control range and enhance power transfer.

-

Two switching strategies to obtain pulse width modulation are

identified and analyzed. For each of the switching strategies, two
mogies of operation characterized by continuous or discontimlous
resonant current are ldentified. At low load, the converter operates
in discontinuous mode while, at higher load, it operates in continuous*
conduction mode. Steady-state ‘solutions for both switching strategies
aqd both modes are derived. The voltage transfer ratio is calculated
for each switching strategy. Stresses for all components are also
calculated and normalized to {:he output power. .
S

Frequency response of the systemf]is analyzed using Small-Signal

£

Frequency . Response Theory [16 17¢ 1t is found that the response of
&\e system is of the second’ order In  conf?nuous éonduction mode the
poles are complex conjugates and .the transfer function has @ resonant
peak at a frejuency wpo. wpo is easily expressed in terms of the
ratio of the output capacitor impedanq\e; to the charecteristic
impedance of the LC resonant ,circuit. ' Damping of this‘ transfer
function 1is expressed in terms of the load. A simple equivalent

model is therefore derived. In discontinuous mode the poles, wp; and

‘Wp2, Aare real and distinct. It is also found that the product of wp,

by wpa is always equal to ugo. Although, in discontinuous conduction’
mode, the behavior of ,the converter is similar to the case of a
capaci tor in parallel with a resjstor fed By a current . source. wp,\

cannot be simply expressed in terms of the load and outptxt capacitor. s

Graphs are therefore supplied to calculate wp,. o

/

ﬁ\
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After evaluation, thé second switching strategy, PSPWM, 1is found to
generally yield lower component stresses. Switching stresses are
found to be minimum for PSPWM operation in discontinuous mode. One
pair of switches 1is found to have zero-voltage switching, while the
other pair exhibits zero-current switchhﬂff Using normalized stress
curves the optimal operating point 1is found to be at the boundaFy-
between the two conduction modes.

i .

To verify the analysis, a constant output voltage coéverter. " that
theoretically operates over an input Voliage nahge of 2.5 to l?’is\
désigned: The “measured voltage transfer ratio approaches the
predictions. The difference between the measured and the predicted
voltage transfer fatio is due to series drops not accounted for in the’
theoretical development. The predicted|effic1ency is also compared to
the measured one. The calculated and the measured efficiency are both
90% for the 720W, 48Vdc, 200Kez confértér. Frequency response is also
measured and is found to, generally, be 1in agreement with the

0

predictions. -

Although discontinuous conduction 1is préferred in order to minimize
switching losses, it is noted that operation in coniinuoué conduction
mode yields lower cuyrqnt stress on the Qevices for a given output
power. In particular, it 1is shown that operation. with a
_characteristiq?impedanbetto logd'resistance ratio of 6/7 (Q=3), yields
lower: rms .cdrrent without having to- pay a heavy penal;y on the total
VA rapiﬁg of the resonant capacitor and iﬂducuor.'-lt also has to be:
noted that in PSPWM discoééin ous mod;. the parasitic capagitance of
the switches has to be discharged tﬁrough the switches . causing pQWér
loss. For the 200Khz power -supply this causes only an-efficlency
degradatfon of '1%. But at higher frequency theses lossed become much
more significant. . It has been shown in [22] thac‘these losses would
become domMmant at 1Mhz. . \

It is reported in [3], that continﬁbus conduction operagion of the

converter’ ‘'above resonant frequency, of the frequency modulated
- ¢

s
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converter, yields a resonant current which is lagging. This property
is also retained for operation in pulse-width modulation. The current-
" being negative at the start of the cycle, zero—voltagé switching could
be achieved for all switching instants. Operation above resonant
Jfrequency woyld therefore offer the possibilty of minimizing the

-

switching 1 es while operating in continuous conduction.
It iéw showni in this thesis ' that the voltage- transfer ratio ig
independent of the load wbén operated in continuous conduction at
- resonant frequency. It is pointed out in the Introduction that this
much desiraﬁie property is lost when oﬁerating above e'resonant
frequency. Also, the maximum achievable transfer ratio is different
for the Qarioug loads. It is also mentioned in the Introduction _that
current hﬁd vo}tége stress are larger for an operating frequency above-
resonance. Future work could therefore be devoted gvéluating the
trade-offs between minimization -of switdhing stresses versus the
incregse in rms current, peak current, peak voltage and ihcreased
'volt-seconds when operating above resonant frequency.

. ‘ gt
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APPENDIX A

)

HALF-CYQLE SAMPLING PROBLEMATIC

)
A problem arises from the fact that the s}ate variables, are periodic
with period 2Th, while the sampling of the pulse—width modulator is
perfotmed on a halff-cycle basis. The nature of the difficulty
attrfg&ted to this fact is described in section A.1.| To  overcome this
difficulty, the response of the system is found by adding the response
of the system found when pulse-width modulator is controlling the t;'s
only to the response of the system found . when the pulse-width
modulator is controlling the t3's only. This direct application of
linear superposition causes an intuitive difficulty. For example
although the higher order terms of (3.4.2-3) have been neglected to
yield ' '

dx;[n] = %s[n-1] + ( X - X1) * 8ty[n] , (A.0-1)

the system has a mémorf; and 9%[n-1] is a function of dt,[n-1]vand
therefore so is axi[n]. Intuitively the effect of modulating the t,’s
cannot be segregatéa from the effect of modulating the t;'s. This is
true in the large-signal case. But in the small-signal limit' this
dependence vanishes. This ' falls directly from (3.4.2-1) and -
(3.4.2—2). Applying repetitively these two first order (linear)
equations demonstrates how the systém satisfies the -condition for _

Ay

linearity. .This is simply verified in section A.2

] This spli}ting of the system into two linearly independent systems ,
causes some notation problems. Although the two systems are linearly
independent, the two systems must be referenced to a same t;méframe.

. This is, the state perturbation at any-instant is the sum of the state
perturbation of each system. N

“
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.

x(t) = Ixe(t) + xo(t) ) (A.0-2)
Texts on sample data systems generally ect the train of sampling
‘impulses ‘such that one of the impulse§ be coincident with the origin
[25]. If this is done with\t

train of impulées can be coipcident with the origin. The other train

he case unde , only one of the

of impulses will be offset from the origin by Th. In this thesis, .

neither of the two sampling waves 1is assumed to have one of its
jmpulses coincident with the origin. The, two trains of impulse are
assumed to be offset from the origin by t,[0] and t,[0] respectively.

This fact has a‘ effect in the notation for the description of the
pulse-width modulator and in the transform treatment of the two sample
data systems. These two subjects are treatedyin section A:B‘*and A.4

respectively.

A.1 DESCRIPTION OF THE PROBLEM

‘.‘ \

The difference equation describing the behavior of the system is given

by (3.5.2-8), which is rewritten as:

ax(m) = Psnden-Ix(m-2) + dgn-Tnkedd(m~1) +.Trhk,dd(m) (A.1-1)

¢

- There 1s nevertheless a restriction on this difference equation.
"m"must be an even number for thdq equation to apply. Usually
‘difference equations describing system do not contain tﬁis
restriction. (For this reason (3.5.2\8) has been completed with a
twvin equation to cover the case for which m is odd.)

Proceeding nevertheless, the following transfer function can be found
in the Z domain. ’

.

x(z) = Th. .

Z_‘k4¢sh + kj ad

T - z-20gn®rh (z) (A.1-2)

Taking the Laplace transform:

T



I-e 25Th¢sh¢fh

Q

-sT i
ax¥(s) = Th = & "Moanks t ki 5069 (A.1-3)

¢ s

A discrete transfer function being found,. the reconstruction process .
to obtaih a continuous representation is undertook. The Laplace

transform of the of the state perturbation is:

-

+9
sx(s) = f bx(t)-e~5t 8t (A.1-4)
- .
Defining ’
In(tysa,Tg41) :
ox¢ ,n(s) = Jm ' . 5x(t)fe'~5t at, (A.1-5)
) max(ty,Ty) ' )

summation of all the 8x( n(s) covers the complete range of the .

integrand of A.1-4, except during the dtj's. In the interval
max(tJ.'rJ)'< t < min(tys+y,Ty+eq), the goverx{ing differential equation ‘
is . . . h
/ ' R
ox(t) = woAy Sx(t) . . (A.1-6)

As is done in section 3.5.3, it is recognized that in the small~signal
limit the 7y's tend toward the tj's. Subject to the same remark as in
section 3.5.3, (A.1-6) 1is assume o apply for the- interval
ty <t < tjsy. Under this approximation (A.‘l—é) becomes ‘

‘ tiee :
6xt,n(s) = 6x(t)+e St gt . (A.1-7)
QN

tj “ ’ %

The: simmation of all the &x¢, n(s) therefore covers the complete range

ofZ(A.1-4). Substituting (A.1-6) into (A.1-7) leads. to,
\

-
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- Summing over the i's yields,

161 w

' CALEP ’ st
woA ¢ bx  n(s) =I ox( n(t)-e™®" 8t .

(A.1-8)
ty ’

Integrating by parts,

tJ+ . -

1 C 8
woAquL’n(s) = bx,_.n(t)'e"’t .+ :-5“5!((,'“(9)

ty
[woA¢-sI]6x,n(s) = 6%;-e e ””

S ~ )
’ [woAr—sI]*6x¢ ,n(s) = e St { ¢L°6)§J°e_

. 6% § 'e_s‘ tJ

g,T" - 5".!, }

6%y, n(s) = e-StJ'[sI—w(,A;]-"( I- e %Tley) « bxy
R TR xi[n] . (A.1-9)
' where, o R 0.
Hl(s) [sI-woA, ]~ L I- e 5Ty}, (\A.\i.-IO)
Substituting (A.1-9) into (A.1-4) yieiéis a "
' 6x(s-) ) e‘StL[;l H;(s)° saln] L (A1-11)
G 1

-

ax(s) = 2

n. *

.

{ ‘(ST1+ST2)H3(s)K3¢2Kz¢1+e ‘Hz(s)K2¢.+H,(s) ] 8T gy, [“]

v [T (K bire sT*mcs)mo.+m(s) |-e72 (1™ g, n]

-~
' .

(A 1- 12)/



If the two factors in bracket were the same, then, the following would

be true

~“

ax(s)

( o~520Th gy rn] + e-s(2n+1)1‘n 8);4[n])
“SMTh gy (m)
s

Ye
n
HL's) , (A.1-13) .

"

By
An expression relating 8x(s) to dx*(s) would therefore be availab‘le.ﬁ’.'

Thé terms in brackets in (A.1-12) not being equal, another meq.ﬁ mustz
be used to find the spectrum of the continuous variable, Lin&dr

superposition is therefore used.(

‘>

A.2 LINEARITY OF THE SYSTEM DESCRIBED BY (3.5.2-9)

+

(3.5.2—9) is repeated here for convenience.

3S(5x(m) , 6d(m)) =

-~

6x(2n) = bghdsn-6x(2n-2) + dsn°Thke+6d(2n~1) + Tnk, +8d(2n)

5x(2n+1) = Orhban 6x(2n-1) + OeneTpk,+5d(2n)  + Tnks*5d(2n+1)

(3.5.2-9)

¢
L

. \ R
A;suming 9x(0) to be known, the response of the systyﬁ is found‘to‘ be
N ' L 4

h
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S(6x(0)).&d(m)) =
) : ‘ n
5x(2n) = (Penbrn)"+ox(0)+ Th) (®sndrn)™ ' (Psnkasd(21-1)+k,5d(21))
‘ - i=1 : o
n ‘ !
5x(2n+1) =(®¢ndsh) " ®rnox(0)+ Thz (‘Pfh‘bsh)n_i(‘l’fhk&d(m)+k45d(2}§1))
. i=0
4 . .
‘ ‘ " (A.2-1)
wher'"e 8d(0) is defined to be zero for notationa:I convenience, ,q
Fr‘om?(A.Z—l) it can be shown that,
! S(adx(0),add(m)) = a+S(6x(0)),sd(m)), . (A2-2)
where a is an arbitrary multiplying constant. - Homogeneity is

therefore satigfi’ed. Next it must be shown that superposition holds,
that 1is:

o

»

i('A.z-a)

S(0, 6da(m)+8dp(m)) = S(O,8da(m)) + S(O,6dn(m)) .

Again this property falls directly from (A.2-1). The system |is

therefore linear. The property of superpositign is illustrated for

the case of interest, this i?,fox‘

0 ~ for m odd
6d(m) for m even '

&da(m)’ . (A.2-1)

> | 6d(m) for m odd
0 for m even °

6dy,(m) ‘('A.2‘5)

L

The-substitution of (A.2-4) and (A.2-5) into (A.2-1} leads ‘to the

following zero' state response,



n

m Bx(2n) =Th)  (Benben)™ '+ 5d(21)
. S(0,5da(m)) = | O
fextznen) =Th ) (ensn)" o denkisd(21)
~ i=0
' (A.2-6)
and :
. n

5x(2n) = Tn') (enbrn)™ ' -@ankisd(21-1) |

5(0, 8dy(m)) = =1 o L
6xg2n+l) = ThE (th¢sh)n_i'k45d(2i+1) . _
‘ . 1=0 A
’ (A.2-T)

where ad(O) ia still identid:ally zero for notational purposes Adding
(A 2-6) to (A 2-7) results into

5(0,64a(m)) + S(0, B4u(m))
. f o ==
ox(2m) =Tn ) (Qanbrn)” (@snkedd(21-1)+k,54(21))

. i=1
n

| : ox(2n+1)-=Tn ) (Brn®sn)™ " (Prnki5d(21)+ke5d(21+1))
o - : 1=0 - i

Lo . ='8(0, 5da(m)+5dy(m)) T pees)

which i{s the zero-state response of the gystem. as -described by
(A.2—1’)v. Linear superposition is therefore illustrated, '

T
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A.3 TIME-SHIFTED PULSE-WIDTH MODULATOR TRANSFER FUNCTION

N

Consider the ideal sampling wave, s(t), of Figure A-1, where the train
of unit impulses is bffset from the origin by a time tdé, The task

is to find the Fourier. Transform of a function of time, vamp(t)

sampled by such a wave. The demonstration follows those steps given //‘?"'\

in [26] for the case where tgrs=0. \

" The sampling wave being periodic,y)th period Ts. its Fourier series

representation is first derived. The Fourier. series goefficients are
. . .

The two-sided Laplace transforin of the sampled ignal As

|13

P

-

given by: y N ‘
; Cn = -7:}'.-— I s(t) e_anst dt : .
e~ s TS
- " . Ts/2 _
. = ,}, 6(t—to{»‘s) é Jnust dt o
4 SJorgr2 - . ‘ o
. ) " » [
4 . . . = 2 1 e"’JMst . -
T? , t=tofg d r
: : = —x— ¢ JPUsfofs : (a.3-1y
S . . v
- ? s . &
h ) \ . .
e 4 .The Fourier series representation for the sampling wave. is therefpre.
L s(e) = Z., L ‘?““8“0“ cedMst o (A3i) =
- : g

h"
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, . -st . "
© Vinp(s) = r vimp(t) e St ae .
' * . =00 . B
l‘ ' -sth, ay .
= vamp(t)-s(t) e de .- (A.3-3).
-0 .

. N ' '
. " Lo &
At this point, raJther than finding the Laplace transform and t)‘\,en .

"later substitute s=jw, s=jo is substituted befere the transformation.

{
This yields . ~

-

v (jo;) = v (‘::)' (‘t) “JOt ge (A.3-4)
amp = . amp s e . . . .

LY
<

* The term on the right hand side is ;recomizeNo ‘be the Fourier
. ! 4 '
transform. Since multiplication in the time domain corresponds to

' -» . <
convolution in the frequency domain [24],

s .-

T vimp(39) = S(vam(0)) X F(s(t)) (A.35) . *

h Y
* .
aWhere "®*" is the convolution operator. Recallkxg that
e

i~

a

o (™) = 5(jo-jnws) (A.3-6)

'
™
:

[26], the Fourier transform of the sampling wave is : -

3s() = s(0) = —p; ) e IURtOro(gumgag) o (A3D)
.‘ . ) n=- . i . . . )

Q

. Convolut,ing this impulse train with v(Jw‘) yields the sample specttum, .,
T o . . ' * ® . y . . ' r "
B ! ' - t B
° vgmp(jw) = —%;- Zs e Jn“.’l Of"I‘ VQ.mp(Jy—an‘) , (A.B—e)
‘ . oon= e , ) . . .
: . . A

¢ S N s . -

The pu}se-w{hth Mulator transfer fﬁgpbjon of is found from (3.5.1-2):.
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: &
() 2 (8] = Kpune” ""'m'a"-y"ﬁs) (39

6vamp(s) 5Vamp(
- . . f . . ( .

Substituting (A.3-8) yields,

5

¢

o 0
. —%‘—- Zn e JMWstofs | &vamp( ju-jnws)
n=

’ ?Wli(s:jw) = Kpwm e-ip"‘ )
f Svamp(Jw)

- (A.3-10)

This function is difficult to v'vork with! In'cqntinuous systems, the
t'ransfer function isl identical to the impulse response‘. Letting;
5vamp(t) be an impulse results in a non~converging sum in (A.3-10).
“This 1is because the Fourier transform is a constant in the fref;uency
domainl-. To circumvent the problem, it 1is noted that in practice,
tra.nsfer functions are measured by injecting a s}nusbidal signal at
the input of the modulator and by mea:suring the disturbar;ce at the
‘output of the converter by using a narrowband meter tuned at the
frequency of the injected s:lgna.l Letting 6vamp(t) be a phasor of

<unity ampli‘t:ud’e and of frequency wy,
‘ (]
n \ / '
/ , 5vamp( t) Sedovt (A.3-11)
. §

cy

The spectrum of:dvgmp is
4

t - LIS L]

- ‘ ‘SVamp(J“) = F(6vamp(t)) = 6(jw—juy) . - (A.3-12)
v N — . .
/ =]
The spectrum of &v%,, is found to be, . -
o' ;t " . , . s | . N ) ‘
. . \
. . t
v . .
~ »
. A n . , “°




}..

© . } :
'—.}.—s. Zm e-sttot“s @ Svamp( Ju-jnws) . )
n= ' ‘

]

- Vs (40

.

o

1% cdrusters | peuimon C(A3-
Ts,pz.;f stofs + 5(Ju-jnus-joy) (A.3-13)

’

(A.3-13) can be rewritten as follows,

’ 1

o
{ i R
%— e IMstofs . for wnws= wy n= ...-1,0,1..
6Vimp(Jw) = | "% SR s
. s otherwise r ’
- . (5-3‘(14)

evaluating this at the ex;:it{ng' freciuqncy wy, or measuring at the
exciting frequency as the narrowband voltmeter -would, ‘the condition
expressed by (A.3-14) is satisfied for n=0 and '

7

° Einp(J0v) = Spo © \iap-15)

Since évamp(jwv)=1, sﬁbstituting in (A.3-10) of (A.3—-'15)f gives

-

w

: . (A.3-16)

' ° ; PWM(s=jwv) = Kpwm e“Stdpwm )
. . 1 s=juy N

A.4 SAMPLED-DATA SYSTEM WITH A TIME-SHIFTED SAMPLING WAVE

3 1

o

Consider _a sampled-data system where the ‘sampl‘jng moment is offset by
tofg. The difference equation gdwerning ‘the behavior * of a variable
[ ° -

= can, in such a system, be expressed as '
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o

.

. P ' .. q .
v(nTs*tors) = kz ak*v((n-k)Ts+tors) + Zo bg'u((;thlfiftofs)‘-
& -l

(A.4-1)

Multiplying both sides by z-n.

* p : q _
z-0v(nTattors) = kz z-Nag v((h-k)Ts+tors) + zohz;nbl'“((n‘L)Ts*tofs),
. 31 L&
(A.4-2)
letting kk=n-k and ((=n-(,
. P
z-Pv(nTs+tofs) = 2 z-%eap v(kk-Ts+tors) z-kk
k=1 - ' .
q 4 ‘
' + 'Zo z-%by-u(Ll-Tsttoss) z-%% (A.4-3)
& .
Recalling the definition of the Z transform,
¥ -
) ) ) 0 .
Pw(mTsttors) = Z; w(mTs+tors)*z-D , (A.4-4)
‘ m= , ’
and applying this definition to (A.4-3) yields,
P qQ . :
z-Tv(z) = Zak'z'k°v(z) + Zobp,'r%fu(z) : (A.4-5)
' k=1 A o '
The discrete transfer function is therefore found,to be
. l q : " ' .
i o Zo byez(P-2) ,
" ov(z) = ¢ cu(z) . (%.4-6)
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This is the same expression as if the sample moment was not shifted
with respect to t=0. '

Pl '

Given the ¥ transform of a s'ample data sjystem variable, the Laplace

Transform 1is found as follows. Consider the function v*(t) in a
sampled data system with a sampling ' time offset. The Laplace-

transform of such a function is

- - ' ' ]
2(v*(t)) rnv*(c) oSt g¢

‘ «© ) a Yy -
JM [ Zn V(m’rs‘*tofs)'G(t’ng"'tofg) ] e st dt
-» m=fw

.

, © o
- = ¢ Stofs ZD v(mTs+tofs) é-mSTs %  (A.4-7)

N ~

Recalling the definition of the Z transform, (A.4—4) it 1s seen that

0

>

ve(s) = 2((t)) = e “fS (vx(c)) [ _ sTs
s
= e Stofs y(z) |° 5Ty . (A.4-8)
' = €
l o -
» o
~ *

. ' ¢ 4 . ! ‘
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