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ABSTRACT

Robust Theory Applied to
Jewell’s Hierarchical Credibility Model

CAROLINE WARD

Introduction of robust theory is considered in Jewell’s hi-
erarchical credibility model. A comparison is made with the
classical linear credibility models, Kiinsch’s model and Gisler &
Reinhard’s model.

i1



Acknowledgement

I would like to thank Dr. Jose Garrido for his help and support
throughout the completion of this thesis. Without his patience
and encouragement, this thesis would not have been achieved.

iv



To my family and friends.



Contents

1 Credibility Theory 1
1.1 Introduction . . .. ... ... .. e e e e e e e e e e e 1

1.2 Classical Credibility . . . . ... ... ... ... .. ...... 3
1.2.1 Notations and definitions . . . . .. ... .. ... ... 3

1.2.2 Buhlmann’s model for a single contract . . . . ... .. 5

1.3 Exact Credibility . .. .. ... .. ... ... ......... 8
1.4 The Classical Model of Bihlmann . . . . ... ... .. .... 9

1.5 Buhlmann and Straub’s Model . . . . . . ... ... . ..... 10

1.6 Jewell's Hierarchical Model . . . . . .. .. ... ........ 16
1.7 Hachemeister’s Regression Model . . . . . ... ... ... .. 27

2 Robust Inference 31
2.1 Introduction . . . . . . . . .. ... 31
22 M-Estimators . . . .. .. ... ... ... 32
2.3 Optimal Robust Estimators . . . . .. .. ... .. ...... 38

3 Robust Credibility Models 40
3.1 Kinsch’'sModel . . .. .. ... ... ... ... ........ 40
3.1.1 Case I: The Distributions U and Fx, are known . . . . 41

3.1.2 Case II: The Distributions U and Fx, are unknown . . 44

3.2 Gisler & Reinhard’s Model . . . . . ... ... ......... 47
3.21 Definitions. . . .. ... ... ... ... ... 47

3.2.2 Weighted model with identical volumes . . . . . . . .. 48

3.2.3 Weighted model with different volumes . . . . . . . .. 52

4 Robustification of Jewell’s Hierarchical Model 58
4.1 Introduction . . . . . . .. .. . ... . 58

vi



4.2 Robust Estimator at the Contract Level with identical weights

4.3 Robust Estimator at the Contract Level with different weights

4.4 Robust Estimator at the Subportfolio Level With Identical
Weights . . . . . . . . .. .. ..

Results and Conclusions

5.1 Presentation of the Data Set . . . . . . .. .. ... ... ...
52 Results. . . . . . . ... L
5.2.1 Bihlmann’s Classical Model . . . . . . ... ... ...
522 Kinsch’sModel . . . .. ... ... .. ..... ...
5.2.3 Bihlmann and Straub’s Model . . . . . ... .. .. ..

5.2.4 Gisler and Reinhard’s Model . . . . . . . ... ... ..
5.2.5 Jewell’s Hierarchical Model . . . . .. ... ... ...
5.2.6 Proposed Robustified Jewell’s Model . ... .. .. ..
5.3 Conclusions . . . . . . . . . ..



Chapter 1

Credibility Theory

1.1 Introduction

What is credibility theory ? In statistical inference, credibility theory achie-
ves the compromise between the notions of stability, precision and respon-
siveness to the most recent events. In order to obtain a good data analysis
that allows for extrapolating into the future, a given population has to be di-
vided into homogeneous classes or cells. Having homogeneous groups enables
one to gain precision and to eliminate the bias caused by the evolution of the
distribution of the population. It also allows to anticipate the future tenden-
cies. Credibility theory studies how to incorporate the information that is
cell-specific with the information gathered for the whole portfolio premium
calculation. For the insurance industry, equity between different classes of
risk can be achieved through credibility, allowing the company to react more
swiftly to competition by recognizing individual and group characteristics.
Credibility theory is mostly used in the insurance field. “Credibility the-
ory is the study of a weighting process, including development of formulas
for assigning the credibility weights and estimation of the parameters or va-
lues that appear in these formulas” [Venter et al.(1990), p.380). The general
precepts of credibility can also be applied outside of insurance. As an illus-
tration, take a hockey example: at the beginning of the season, one player
can compare himself to his entire team based on past seasons statistics. How
does one achieve this goal? One way is through the means of credibility.
According to Goovaerts et al.(1987), p.7, “Credibility theory provides us



with techniques to determine insurance premiums for contracts that belong
to a more or less heterogeneous portfolio, in case there is limited or irregular
claim experience for each contract but ample experience for the portfolio. It
is both the art and science to adjust the insurance premiums and to improve
their accuracy”.

In the insurance industry, it is agreed that not all risks deserve the same
premium adjustment based on past experience and on their respective volu-
mes. A correction factor is introduced through the credibility factor. The
theory of credibility is concerned with the value that should be given to this
credibility factor, say Z, i.e. how much can one rely on the current data
based on one’s own experience and the industry’s experience?

When referring to the data, it is understood that individual premiums
could also be contract premiums and that the collective premiums could as
well be the portfolio premiums. The general credibility formula originated in
the United States and was firstly used in the field of Worker’s Compensation
insurance:

C=(1-2)B+ZA
where

e A is the mean of the current data at hand (or premium of an individual
contract)

e B is the prior data or past experience (mean premium of all contracts)
e (' is the compromise or the update of the data
e 7 is the weight given to the current data at hand, such that 0 < Z < 1

What happens if the volume of an individual class is sufficient? The
credibility factor, Z, is then equal to 1 and there is no need to use the entire
portfolio experience because the individual class is credible enough. When
Z is equal to zero, the comprise premium is entirely based on the portfolio
premium and the data at hand is not taken into account.

In credibility models, the heterogeneity is characterized by a random pa-
rameter value ©. For an individual, then consider the conditional distribution
of the claim size variable X given the value of the risk parameter ©. The vari-
ance of the risk is composed of the variance of the conditional mean E(X|©)
and the expected value of the conditional variance Var(X|©).
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1.2 Classical Credibility

The remainder of this chapter relies mostly on Goovaerts et Hoogstad(1987)
and Goovaerts et al.(1990).

1.2.1 Notations and definitions

Consider a portfolio of k& contracts observed over t periods. The parameter
©,s describes the risk characteristics of contract j (j = 1,...,k) in period
s (s = 1,....t). This means that for each contract, at each period, there
exists a parameter ©;, that describes the unique characteristics of this spe-
cific contract. The problem in practice is that the risk parameters ©;,’s are
unobservable and our goal is to estimate premiums that depend on these
parameters.

In simple credibility models, it is assumed that contract risk characteris-
tics are homogeneneous through time, i.e. they do not evolve through time.
Therefore the subscript s in ©j;s is dropped. In spite of the risk time ho-
mogeneity. the claim experiences, Xj,, of the random variables ©; are not
necessarily homogeneous through time. The X,’s are also considered as ran-
dom variables, with observable realizations z;s. Note that while here Xj,’s
will be referred to as claims severities, they could as well represent claim
ratios or claim frequencies.

If time homogeneity is assumed then ©; is a structural parameter and its
distribution U(;) is called the structure function.

Consider X for a fixed contract and a given period then

[(@) = [ F(=i6)dU (®).
The portfolio premium is given by
E(X) = [ of(z)dz,
and the contract premium is given by

E(X|© = 6) = A zf(z|0)dz.



Hence E(X|O) is a random variable. Assuming that the claim amounts are
positive, the integrals can be interchanged

E[E(X10)] = [ (/ zf(zlo)dz)av(®).

Then the following general result is given:

Lemma 1.1
E[E(X|9)] = E(X).

Consider X, Xs,...,X; the claims for a fixed contract over t time periods.
Then f(x1,z3,...,2:]0) is the joint conditional distribution and

f(z1ze . z) = [ fl@ze,....zl0)dU (@)

is the corresponding marginal distribution. From this formula one obtains
the second general result:

Lemma 1.2 Vr,s =1,2,...,t,
Cov(X;, X;) = E[Cov(X., X;)|O] + Cov|[E(X;|0), E(X;|0)]

Proof: Consider
Cov(X,, Xs|© = 0)

= E(X;X,|© =6) — E(X,|© = 0)E(X;|© = 6)
= [ [z = E(X.1© = 0)][z, — E(X,[© = 0)|f(zy, 2.(0)dr.dz,
= Cov(X,, X,|©) is also a random variable and hence
Cov(X;, Xs|0) = E(X; X;|0) — E(X,|O)E(X,|©)
Now by Lemma 1.1

E[Cov(X,, X;|9)]
E[E(X;X,|9) — E(X,|9)E(X,|9)]
= E(X:X,) — E[E(X;|©)E(X,|0)]
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And also by Lemma 1.1

Cov[E(X-|©), E(X;|9)]
E[E(X,|8)E(X,|0)] — E[E(X,|0)|E[E(X,[O)
E[E(X;|©)E(X;|0)] — E(X,)E(X;)

Then E[Cov(X;, X,|0)] + Cov[E(X,|0), E(X,|O)]

= E(X.X,) - E[E(X,|©)E(X;|0)] + E[E(X,|9)E(X,|9)] — E(X,)E(X,)
Cov(X,, Xy)

From the previous Lemma, we have:
Corollary 1.1
Var(X) = E[Var(X|©)] + Var[E(X|9)]

1.2.2 Bihlmann’s model for a single contract

In order to get a better grasp of Bithlmann(1967) credibility model, first
define it for a single contract: i.e. j=1andr =1,...,¢t.
Assumptions:

(i) Conditionally on ©, the random variables X;, Xs,..., X, are inde-
pendent and identically distributed, with known common distribution

F(z|6):
(ii) E(X?) is finite;
(iii) The structure function U(#) is known.

Structural parameters:

(1) u(©) = E(X;|©) is the policy or individual risk premium;

(2) m = E[u(©)] is the portfolio or expected average claim amount over
the entire portfolio;

(3) 0%(©) = Var(X,|©) is the measure of total claim dispersion for the
portfolio;



(4) s* = E[0?(©)] is the weighted portfolio claims variance;

(5) @ = Var[u(©)] shows the heterogeneity in the portfolio; the within
variance or the variance of the individual risk premium.

Buhlmann suggests to find the “best” function g(z;,z3,...,Z;) and to esti-
mate 1(©). He defines “best” as the function g(z;, Zs, ..., z:) that minimizes

E{[iu’(e) _g(‘X’hXQ""’Xl)]z} (11)
It is well known [Goovaerts and Hoogstad(1987) pp.25-26] that
g (X1, Xo, .., Xy) = E[n(©)| X1, Xa, .-, X (1.2)

is the exact value that minimizes (1.1). To approximate g*(z;,zs,...,1;)
with a simpler estimator, restrict the class of g functions to linear ones. A
linear non-homogeneous credibility estimator would be given by:

t
g(x17l'2""7xt) = CO+ZCPIT

r=1

Hence the following objective function has to be minimized
t
E{[(8) —co— > X}
r=1

with respect to cg,ci,...,¢. Differentiating with respect to ¢y and setting

equal to zero gives
t

co=m(l1-> c)

r=1
Now differentiate with respect to ¢, 7/ = 1,2,...,t, and set equal to 0
to obtain

E{[u(0) = m — 3 e (X, —m)}Xo} = 0

r=1

Which can be rewritten as

Cov[u(®), X] = ichOV(Xr, Xr)

r=1
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Which in turn, with the help of Lemmas 1.1 and 1.2, can be rewritten as

t
a= Z er(a+ 5,.,:32) where 6, is Kroneckers’ symbol.

r=1
Solving recursively each equation for v’ = 1,2,...,t, one finds that
. . a zZ
=Ch=...=C =C = = —
T ‘ s?+at ¢
at
where 2 = —
s“ +at
Therefore
co=(1—-2)m
and hence
_ _ 1
g (X, Xy, .., X)) =(1-2)m+ ZX with X = 7 ZX,— (1.3)
r=1

is Biithlmann’s credibility estimator for u(9).

Properties of Biihlmann’s credibility estimator:

Buhlmann’s credibility estimator is not a statistical estimator as it depends
on parameter values m, s? and a. Nevertheless the following properties hold:

(i) Asymptotic properties:

(a) ift > 0o then Z — 1
i1.e. the contract number of claims is infinite, there is no need for
portfolio claims data;

(b) if s2 — oo then Z — 0
i.e. the claim experience variable for fixed © shows a high degree
of randomness and we cannot rely on the information contained
in the contract;

(c) if a — oo then Z — 1.
i.e. the portfolio is extremely heterogeneous and it does not con-
tain credible information on the specific risk;

(d) ifa=0then Z =0
i.e. the portfolio is perfectly homogeneous and there is no need
for the credibility factor.



(i1) Unbiased: since
Elg'(X1,X2,..., X)]=E[(1 - Z)m+ ZX|=m

(iii) Forecasting: for future claims, the linear approximation to E(X,.1|X1, ..., X})
equals the linear (approximate) premium E[u(©)]| X1, ..., X|.

1.3 Exact Credibility

In Bayesian theory, if the prior U () and the posterior f(6|z;,z5,...,;) be-
long to the same distribution family then f(z,,zs,...,z:|0) and U (@) are said
to be conjuguate distributions. Jewell (1974) studied natural conjuguates.
He particularly considered conjuguates of the exponential family.

For the uni-dimensional exponential family, which he defined by

f(r[&):]%z)_az, zeXand O e (1.4)

he derives the following relations:

E(X|©=6) = -‘:('#

and hence

_ —9'(©) _ . 9.40),
u(®) = 2(0) and Var(X|0 =6) = 30 m] = —u'(6)

For natural conjuguates of the uni-dimensional family, Jewell(1974) proved
the following theorem:

Theorem 1.1 (Jewell) Let f(z|@) be a member of the one-dimensional ex-
ponential family in (1.4), then

(i) The natural conjuguate of f(z|6), u(6), is given by:

9 —toe—ol’o
(@) = L )
c(to, o)
where
52 m
to = — and g = —
a to



(ii) X = 13% | X, is sufficient for 6.

(iii) If u(0) is the natural conjuguate of f(z|6) in (i), exact credibility occurs
e, g*(Xi,...,X.) is equal to the optimal in equation (1.3) and

9" (X1,..-, X:) = E[u(®)[X1,..., X = (1 — Z)m + ZX

Proof: the proof of this theorem can be found in the original paper by
Jewell(1974).

1.4 The Classical Model of Biihlmann

Bihlmann(1967) adapted his model described in the previous section to port-
folio data. The jth-contract is described by a vector (©;, Xj1, -, Xj) =
(©;,X;). Hence for each contract j = 1, ...,k we have:

Assumptions:

(B1) The contracts j = 1,...,k i.e. the pairs (©;,X;) are independent and
the random variables ©; are identically distributed;

(B2) For every contract j = 1, ..., k conditionally on ©;, the random variables
Xj1, ..., Xj: are independent and identically distributed.

(B3) Vr,s=1,..,tand Vj =1,....k
E(X;(9;) = u(8;)
Cov(Xjr, X;s|©;) = 6,s0%(9;)
Structural parameters:
(1) m = E(X;r) = E[u(6;)]
(2) a = Var[u(®;)]
(3) s* =Elo*(6;)]

Notation:
at

~ s2+at




Theorem 1.2 Under assumptions (B1) to (B3), the non-homogeneous linear
credibility estimate for u(9;) is given by

2(©0;)=01-2)ym+ ZX;

Proof: The proof is as in section 1.2.2 and it can be found in Goovaerts et
al.(1990), pp.143-144. One has to minimize

E{[u(©,) - co = 3" e X}

Again £(©;) is a credibility estimator but not a statistical one.

Lemma 1.3 The following estimators are unbiased for the structural pa-
rameters m, s* and a respectively:

1 k
a2 — e 2
S k(t _ 1) ;;(‘XJT XJ)
i= L SR -Xp-
(k=—1)z"" t

Proof: see Goovaerts et al.(1990), p.145.

Remark: Although 4(©;) = (1 — Z)m + ZX, is unbiased, in the sense
that E[1(0;)] = m = E[u(©,)], note that 2(0,) = (1— Z)m+ ZX,. does not
have an expectation of m.

1.5 Buhlmann and Straub’s Model

The Biihlmann and Straub (1970) model allows for the introduction of weights
wjs in the variance expressions of X;;. This is a first generalization of the
iid. assumption associated with contracts, enlarging the field of applica-
tions.

Assumptions:

Here the observations are still assumed independent and with constant mean,
but the variance is allowed to vary with the values of known weights:

10



(BS1) The contracts j = 1,...,k [i.e. the pair vectors (®;, X;)] are indepen-
dent and the variables ©;’s are identically distributed;

(BS2) Vr,s =1,..,tand Vj =1,....k
E(X;+19;) = n(©;)

)
Cov(Xj,.,stl@j) = r.s 02(@j)
ar
where the w;j, are known weights and (89;) and ¢%(®,) are unknown

functions.
Structural parameters:
(1) m = E(X};) = E[u(9;)]
(2) a = Var|u(©;)]
(3) s* = E[0?(9;)]

Notation:

ij=1 j=lr=1
aw; k
Z; = 2 2andZ=ZZJ
aw;, + s =1
¢ w
ar r
X =3 2 X,
r=1 2
k
w
< - J
/\ww - Z w XJw
j=1
k Z
sz = Z'E—Ajw
j=1 4.

From the previous hypotheses, one obtains the following Lemmas:
Lemma 1.4 V¢,5=1,...,k and r=1,...,t
Cov{u(©;), Xir] = 650

11



Proof: Follows from Lemma 1.2:

Cov[u(©;), Xer] = Cov{E[u(8;)0;], E(X|0;)} + E{Cov[u(8;), X«|0;]}
COVLU,(@j), E(Xlrlej)] + E{COV[:U'(@j)v Xirlej]}

= é;;a+0

= 6,-ja

since u(©;), conditionally on ©;, is a constant and the covariance of a cons-
tant with any random variable is 0. O

Lemma 1.5 Vr,u=1,...,t
COV(XJ‘,-, Xiu) = 0, lf] # 7
Proof: by Lemma 1.2

COV(.XJ',-, -Xiu) = E[COV(XJ',-, Xiul@j)] -+ COV[E(Xjrlej), E(X,uIGJ)]
0 -+ CO\'[E(XJ',-I@J'), E(){iu)]
= Cov[E(X;r|0;), m]

0
a
Lemma 1.6 Vj =1,...,k and Vr,u=1,...,t
A bry 52
Cov(Xjr, Xju) = a + w5
Proof: by Lemma 1.2 and by hypothesis (BS1)
Cov(Xjr, Xju) = E[Cov(Xjr, X;,19;)] + Cov|E(X;r[0;), E(X;.]9;)]
6r,02%(0;)
= E[———=] + Cov[u(0;), u(8;))
ar
G2
= +a
Wi
O

With the previous results, the following theorem can be shown:

12



Theorem 1.3 Under assumptions (BS1) and (BS2) the non-homogeneous
linear credibility estimator is given by

1(85) = (1 - Zym + Z; X, (1.5)

Proof: For fixed j = 1,...,k, u(©;) is estimated by a function

9i(X11, X2, -+ -y Xkt) =% + ZCZ,X,-T

i=1r=1
Again a square-loss function

t

E{[u(@)) -~ 4~ 33 X, %)

i=]r=1

has to be minimized with respect to cé,c{l,...,q’;t, forj =1,...,k. Fora
given j = 1,... .k take the derivative with respect to ¢ and set equal to 0
to obtain:

k t

Eu(®)—-d-m> S c, =0

i=]r=|]

Hence

Take the partial derivatives with respect to the CZ,,.,, replace ¢ by (1.6)
and set equal to 0. This gives the following system of equations, Vi’ =
1,...,k and V7' =1,...,¢t:

Z czir COV(Xir; Xi’r’)
i=1r=1

la + 2
1 W;typr

E

Cov[u(©,), Xem] =

2

I
Mﬁ

-

] (1.7)

9
I

The last line is obtained from Lemma 1.6 and Lemma 1.5; we can say it is
true only if ¢ = 7/, otherwise it is equal to 0. There are 2 cases:



1
[

g
i
Then by Lemma 1.4 equation (1.7) is equivalent to

t
0 = Cz?’r[a+
r=1 Wirr
o
y S ;!
= ac, +—

61‘7'/ 32

|

Wityr

which implies
0 = ad wy +5°c,
= d (awp. + 5%

Vi’ =1,...,k. Then since by assumption s2 and a are non-zero values

CZ,":-O Vilzl,...,k

And hence
=0 Vi'=1,....k and ' =1,...,t

=7
Then by Lemma 1.4 equation (1.7) is equivalent to

o s?

a=ac; +-L for r'=1,...,t (1.8)
wjr’
where ,
4=y
r=1

Again multiplying each side of the last equation by w;» and summing
each side over ' gives

t t
. .y
> awjr = acj 3wy +5°C}
r’=1 r’'=1
Since w; = S_L,_, w,, isolate ¢ to obtain
2 r/=1 37" J.
aw;

. aw;, + s? (19)

14



Therefore replace equation (1.9) into equation (1.8) to yield

. auY-
g = Wi
T aw;j, + s?
aw w;
- [aw —11-32” JT]
3.
= Z[=Z]
J.
Now, since for ¢ # j, cl. =0, then

t
Cé = TTL(I —Zc_;r)

r=1
t
_ _ er
= m(l ij;w]
= m(l-2Z;)

And

gj(‘X117X127""th) :/:l(ej) = d +Zc_;r‘¥]r

= m(l—Z +Zzw_7r ]r

r=1 Wj.

= m(l - ZJ) + ZJ.XJw

O

Lemma 1.7 The following are unbiased estimators for the structural pa-
rameters m, a and s respectively:

m = sz
4= Zf—l wj. (XJw - Xuww)? - (k — 1)52
w, Zf lw

Wi (Xjr — Xju)?

M“

1 1 k
a2 _ 2
s‘k(t—l)z

j=11‘

i



Proof: see Goovaerts et al.(1990), p.152.
Remark: m = X, is unbiased with Z; weights but not with

A aw.
J.
Zj

Caw; + 82
Also remark that

E[i(8;)] = E[(1 — Z)m + Z;X;u] # m.

1.6 Jewell’s Hierarchical Model

In certain cases, portfolios can be subdivided into subportfolios (or sectors)
which show more homogeneity within subportfolios that between them. Je-
well (1975) proposed a direct extension of Biihlmann & Straub’s model to
this problem. The model is constructed in such a way that

(1) Each subportfolio is given a structural variable ©, wherep = 1,2, ..., P;

(2) Each contract within subportfolio p is given structural variables (©,, ©,;)
for j =1,...,kp;

(3) Each year, within a given contract j, we observe a claim Xpjr, 7 =
l,...,%p;, possibly paired to a known weight wyj, given in advance.

The data for subportfolio p is the set of variables (©,, ©,;, Xp;») while for
the contract pj it is defined by the set (©,;, Xp;r)-
Assumptions

(J1) The subportfolios p=1,..., P [i.e. the pairs (O, Op;, Xp;-)] are inde-
pendent Vp # p’;

(J2) For each p = 1,..., P, the contracts pj = pl,...,pk, [i.e. the pairs
(©pj, Xpjr)] are conditionally independent given ©,;

(J3) Vp=1,...,Pand Vj = 1,...,k,, the claims Xpj,..., X are con-
ditionally independent given (©;, ©,;);

(J4) All pairs of variables (©,,0,;), forp=1,...,Pand j =1,...,k,, are
identically distributed;
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(J5) Vp,j and r
E(ijrl@p, @pj) = ,u(@p, @pj) Yr = l, ceey tpj

and
1

PIT

Var(Xp]-,.|@p, ep]) = 0'2(@p, 6pj) Vr = ]., ey tpj

where p and 02 do not depend on the subscripts p,j and r and Wpjr
are known weights.

Define
v(Op) = E[ﬂ(@p’ epj)lep] = E(-ijrlep)

Structural parameters:

(1) m = E[v(6,)] = E[u(Op. Op;)] = E(Xp;) represents the combined
expectation for the entire portfolio;

(2) s? = E[0?(©p, Op;)] measures the degree of fluctuation of the individual
contract i.e. the heterogeneity in time of the data;

(3) a = E{Var[u(©;, Op;)|0,]} is now the quantity measuring the degree
of variability (or heterogeneity) in a subportfolio;

(4) b = Var[v(©,)] measures the heterogeneity between the different sub-

portfolios.
Notation
kp kp tp;
Wp.. = prj- = Z Wpjr
j=1 j=1r=1
& Wpjr
Xpjw = ) o X
r=1 p2.
— Pi x-
Ko = 5 2 X
i=1 %p
P Z
_ P
Xzzw - VA szw
p=1 .



The credibility factor at the contract level is
AWp;.
s+ AWp;.

2]

The credibility factor at the subportfolio level is

bz,
Zp = a+bZ,

In order to avoid confusion, one has to be careful in differentiating between
kP
Z, and Z, =Y Zp;
=1

Lemma 1.8 For any p,q=1,2,...,P, i =1,2,...,k,, j = 1,2,...,kp and
T = 1,2,...,tqi
Cov (B, Oy;), Xqir] = bpg(bija + b)

Proof:

Cov{u(Op, Op;). Xqir]
= Cov{E[n(Op, ©p;)|O,], E(X4ir[0©p)} + E{Cov[u(©;, ©y;), Xqir|Opl}
= Cov{v(6y,), E(X,ir|©p)} + E{Cov{u(0;, ©y;), Xqir|©p] }

But Cov[u(Oy, Oy;), Xgir|Op]

= E[Cov{,u(G)p, @m’)v Xqirlepj}lep] + COV{E{H(epv epj)lepj}v E{Xqirlepj} lep]
bpq6:;Cov{u(Op, Op;), E(Xpjr|Op, Op;)]
= 5pq5ijvar[#(epv epj)]

And hence Cov[u(O;, ©p;), Xqir|
= 6pCov[V(©y), E(Xpir|Op)] + bp6i5E{ Var(n(©p, ©5)]}
= bpgVar[v(0,)] + bpebi5a
= 5qu + 6pq5ija
= 0pq(ija +b)
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Lemma 1.9 Forany p,q=1,2,,...,P,i=1,2,,...,kgand r =1,2,...,¢,
Cov[v(©p), Xgir| = bpgb

Proof:
Cov[(©p), Xgir] = Cov{E[r(9,)|Oy], E(Xqir|©p)} + E{Cov[1(O;), X4ir|Op]}
= Cov[U(O,), buE(Xpir[Op) + (1 — Gp)rm] +0
= by Var[v(6,)]
Opqb
O
Lemma 1.10 By (J1), for any p # ¢,= 1,2,...,P,j = 1,2,...,kp,j' =
L2, . kgr=1,2,.. . tp;and v’ = 1,2,... g5
Cov[Xpjr, Xojrr] =0
Lemma 1.11 For any p,g=1,2,...,Pand j =1,2,...,k,
Cov[v(Op), Xgjuw| = bpqb
Proof:
tQ]
Weir «,
Cov[(y), Xogul = Covli(©y), > 2 x|
r=] q7.
L
Y Wy
= > ﬁCov[l/(@p),qur]
r=1 q7-
Yas w..
= Y —T6,4b, from above,
r=1 Wqj.
= bpgb
O

Lemma 1.12 Foranyp=1,2,...,P,j=1,2,...,kpand r,7" = 1,2,... ¢,

51'1" 32

Wpjr

COV[ij,-, ij,d] =a+b+

19



Proof:

Cov(Xpr, Xyjrr] = Cov[E(Xpsr|Op, Opj), E(Xpir|Op, Opj)] + E[Cov(Xpsr, Xpjr'|©p, Ops)]
= Var[u(©p, ;)] + b E[Var(Xp;r | ©p, Op;)]

61'1"32
= Var{E[u(©,, ©,;)|0,]} + E{Var{u(©,, ©,;)|0,]} + w‘
pir
5rr's2
= Var{E[y(©,)|} +a+ —
pir
2
= a+b+ ade
Wpjr
a

Lemma 1.13 For any p = 1,2,...,P, 5,7 = 1,2,...,kp,m = 1,2,... .ty

Ot 52

Cov[Xpjr, Xpjr] = &557la + |+b

Wpjr

Cov[Xpjrs Xpjir] = E[Cov(Xpjr, Xpjir|©p)] + Cov[E(Xp;r|0,), E(Xpjir |©p)]
855 E[Cov(Xpjr, Xpjr|Op)] + Var[v(0p)]

5jj’{co"(-xpjrv Xpjrrr) — Cov[E(Xy;r9p), E(ij’r'lep)]} +b
8551{Cov(Xpsr, Xpjr) — Var[v(©p)]} + b

Oppr 52

= 5jj'[a+b+ —'b]-l‘b

Wpjr

2
Opri S [+

= bjpla+
piT

Lemma 1.14 For any p = 1,2,...,P,j,7' = 1,2,...,kp,7 = 1,2,... 255
and ' =1,2,...,tp5

Cov[Xpjr, Xpjru] = 855 Z)‘ +b
7

20



Proof:

I

W jrrs
COV[XPJ'r’ij’w] = COV(XPJ”Z 2! Xpjir)

-1 Wpj'.
tp ' w
pi'r!
= Z ; C V(X piTs X pi'r’ )
r=1 Yo'

tPJl

Wayjipt 5.'..,.132

Wpj'.  Wpy'r!

r'=1
(2 4 a)
= &;; +a)+ b
7' Wpj.
a
= b 4+ b
27 Zp]

Lemma 1.15 For any p = 1,2,...,P, 7,7 = 1,2,...,kp,v = 1,2,... L
and ' =1,2,...,t,;

Cov [XPJU-*‘ p3’ ] = 85 b

+
3’
ZPJ

Proof:

Cov [‘Xp]wa pi’ w] = Cov(tgpj: ijTijra-ij’w)
=1 Wpj.
= %‘%cov(xpﬁ,xpjlw)
r=1 ij-
t
- LBy, o
= 5]’1"2-%

O

The credibility premiums at the portfolio and contract levels, for a two-
level model, i.e. p = 2, are given by the following theorem.
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Theorem 1.4 Under assumptions (J1) to (J5), the non-homogeneous linear
credibility estimate at the portfolio level is given by:

U(ep) - (1 - )m+ VA szw

Proof:
Again minimize a mean-square expression which takes the form of
P kg tgj
E{[v(©p) — o — ZZZCQJT‘ Xos?}
g=1j=1r=1

By symmetry arguments, it can be shown that ¢, will be proportional to
wqjr. Therefore the following simplified expression has to be minimized

P kq

E{[v(©p) —co—D_ D cgiXjul’} (1.10)

Differentiate the last equation with respect to ¢y and set equal to 0 to obtain

P ke

Co = E[V(ep)] - ZZCQJ’E(quw)

Replace ¢y in equation (1.10) by the value previously obtained to minimize
the following objective function:

Pk

E[{v(6p) ~ E[v(© Z ZCqJXwa — E(Xg5u)}?]
g=1 j=1
Differentiate with respect to cgrj (¢’ =1,...,P and j'=1,...,k,;) and set
equal to 0 to obtain:

P kg

Cov [V(@p)a Xq'j’w] = Z Z cqjcov(xqu’ Xyjrw)

g=1 j=1

Replace the respective covariances by the results obtained in the previous
Lemmas to get

bpgrb = Z Z Cqjbqq’ (

+b)
g=13=1
As with the Bithlmann and Straub model, dlstmgmsh between two cases:
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Lp#¢q

P kg

0 = ZZ%%( by + b)
q_IJ 1
..,a
= Zcqj( ]J,, + b)
=1
Cqj'Q
Zq’J’

= Zgjceb+cyja

= Cob+ ——

Now sum on each side to obtain

0 = ZcqquJ—i—Zac,”
Jj'=1
= cqf,Zq:,b + acy.

cg.(bZy. + a)

Hencecy =0 Vg'=1,...,Pandcypy =0 Vj' =1,...

!

2.p=gq

kq va
b = ZzéqQ'CQJ( i + b)
g=1 j=1
kq 5.
= Cei (22— + b)
j=Zl q7 qu

Cpj'a
ZZU

Let &
o = == = lezl,...,k
P Zﬁ

Then

b = apa+apZ,b
= ay(a+ Z,b)
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Isolate o, to obtain

b %
L a+ Zpb o Zp.
And hence
Cpjt = Qplpj
_ ZpJ"
= Zp_ Zp
Hence
kp
Co = E[V(ep)] —Z ZmZ E(wa)
i=1 %p.
= m(l - Z,)
Finally
N kp 7
v(©,) = m(l —Z)—{-Z Zp] ZpXqiw
Jj= p-

= m(1-2Z,)+ prpjz
0

Theorem 1.5 Under assumptions (J1) to (J5), the non-homogeneous linear
credibility estimate on the contract level is given by

ﬂ((—)p’ epj) = (1 — ij)TTLp + ijijuy

Proof:
The following least-square equation has to be minimized
P Ky ty
E(E{[1(©p, 0p;) — o — 22; > CirXgir|21©5}) (1.11)
g=1i=1r=1

Differentiate with respect to ¢y and set the derivative equal to 0 gives

kq tqi

co = E{E[u(0;,0.)]|0p} - ZZZCQWE[E(qurl@p)] (1.12)
P kg tq

= E[ﬂ(epv@pj”@p]"ZzchirE(Xqir) (1.13)
g=1i=]r=1
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Replacing equation (1.13) into equation (1.11) yields
P kq tq:‘
E(E{(1(Op, Op;) — E[1(©p, ©y5)] — Z ZZ Cair [Xqir — E(Xqir)]]zlep})

g=1i=1r=1

Differentiate the last equation with respect to ¢y and set equal to 0 now
gives

ky te
E{Cov{1(©p, Op;), Xgirr|Op]} = Z Z Z Cqir B[Cov(Xgir, Xgrir|©p)(1.14)
g=1i=1r=1
But by Lemma 1.8, Cov{u(©,, ©,;), Xyir] is
= E{Cov[u(Op, Op), Xgir|Op] + Cov{E[u(Op, Op;)|Oy), E(Xqir|9p)}
= E{Cov[u(Oy, ©y)), Xgrire!|Op] + Cov[v(Op), bpgr(0)]}
= E{Cov[,u(@p, Op;), - q'i’r’lep] + Opgb

And hence

E{COV[/L(@;,, epj)’ Xq'i’r’lep]} = 6pq’(6i’ja + b) - 5pq'b

= bpgbija
And also by Lemma 1.13, Cov(Xgir, Xy irr)

E[Cov(Xqirs Xgin|Op)] + Cov[E(Xyir|©p): E(Xyrin0,)]
= E[Cov(Xgir, Xgir|Op)] + 8pgbpg Var|[1(© )]

And hence
E[Cov(Xgir, Xqirr|Op)] = gq¢ (i ( o s*+a)+ b] — Opqg'6gqrb
Weir
Equation (1.14) is then equal to
P kg tg
pq' 01150 = ZEZCW{&” [6s3r ( Srr s +a)+ b] — bpqiO4q'b} (1.15)
g=1 i=1r=1
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I cale be shown that for all other values than p = ¢ and ¢/ = j, cjir = 0. So
now let p = g’ and i’ = j to obtain

a = Zzchtr{‘qu[‘su )}
g=li=1lr=1
kp tp:
= ZZ%% )
i=1lr=1
f: 67'1" 2 )
= D Cpjr(——s"+a
r=1 " Wpjr
52
= Cpjri——— + aGp;.
pir
Now let
.= Pt Cpit _ Spi
pi = = ... = =
Wpj1 Wpjt  Wp;.
Then obtain
a = ap;s’ + acpjwy;

Qpj (32 + awp;)

and hence
a Zp;
ij = 2 =
2+ aw,; | wy
Then w
i
Cojr = QpjrWpjr = — -2
P3.
Now replace ¢
tpj .
G = MMp— Z =2 Zpi E(Xpjr)
r=1 Wpj.
= my(l — Zy;)
and hence
) tpj Wi
(O, Op5) = (1 — Zpj)my + Z W Zpi Xpir
r=1 P

= (1- Zpj)my + Zpi Xpjuw
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Lemma 1.16 The following are unbiased estimators for the structural pa-
rameters my,,m,s2,a and b respectively:

My = Xpzw

n = X::w
o2 — Zp=1 Z]_l r—1 prr()&er — Xpjw)?
1 T (e — 1)
— Z:;x Zjil ij()(m'w - szw)2
5:1(kp - 1)+

2 2K = Ko
(P—1)

b=

Proof: see Goovaerts et 2al.(1990), pp.168-169.

1.7 Hachemeister’s Regression Model

The Hachemeister(1975) model, like Jewell’s model, is a further extension
of Biihlmann and Straub’s model. It introduces regressors. Hachemeister
relaxes the identical conditional expectation of X,’s given ©;'sforr=1,...,t
to

E(X;r|9;) = u-(9;)

where p-(©;) = Y, 5(6;) is the product of a vector Y, of regressors and a
vector 3(0©;) of unknown parameters.
Assumptions:

This model departs from the i.i.d.case by allowing for different means, ex-
plained through regressors, and for different variances, which are again func-
tion of known weights as in Bithlmann & Straub’s case. In addition it allows
for possible covariances between observations and contracts.

(H1) For j = 1,...,k the contracts (©;,X;) are pair-wise independent and
the ©;’s are indenpendent and identically distributed;
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(H2) u(9;) = [111(©;), --., 4(0;)]" where

E(X,;]19;) =u(©;) = YB(6;)
= Y[,Bl(ej),...,ﬁn(ej)],;

where Y is a t,n design matrix (of rank n < t) of known coeflicients
and §(©;) is a n,1 vector of unknown parameters.

(H3) Cov(X,|©;) = 0%(©;)V; where V; is a t x t positive semi-definite
matrix of known inverse weights and 0*(©;) a scalar function.

Structural Parameters:

(1) s = E[0?(9;)] is a scalar;
(2) A = Cov[B(©;)] is a n x n matrix;
(3) b= E[(9;)] isan x 1 vector.

U; = (Y'VJ‘IY)’1 is a n X n matrix

C; = sV + YAY' isan X n matrix
Z;,=A(s°U; + A)™! isan x n matrix

Lemma 1.17 The weighted least squares estimators are
8(8;) = (Y'VyY)'Y'ViIX; and i(O;) = Y/(6)
Proof: The following sum of squares has to be minimized:
Qi = [X; = YB(©,)'Vy HX; — YB(6;)]
Differentiating with respect to §(9;) and setting equal to 0, one obtains:
—2Y'VilX,; - YB(8,)] =0
Which is equivalent to
Y'ViiX, =Y'ViYB(6;)
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And hence )
B(8;) = (YVY)'Y'ViiX,
(]

A simple algebric manipulation shows that é(@j) can also be rewritten
as

B(8;) = (Y'Cy1Y)'Y'Cyl X,

Theorem 1.6 Under assumptions (H1) to (H3), the non-homogeneous li-
near Bayes estimator for 8(©;) is given by

B} =Z;5(9;) + (1~ Z;)b
Proof: Consider
d(e) = E{[8(©;) — B — eDI'P(3(©;) — B} —eD]}

where D is a nx 1 linear combination of the Xj,’s and P is a positive definite
matrix. The theorem holds for d'(0) = 0 VL. Now differentiate to obtain

d'(e) = —2E{D'P{B(6;) — B} — D]}
Define the following centered variables
8°(9;) = B(©;) ~b

5(©;) = B(©;) — b
&3’- = :X_j - YQ

Then substituting B$ by the estimator defined in the theorem, and the above
centered variables in d'(€) for € = 0, for every D we have to prove that

, -0
E{D'P|°(8;) — Z;8 (©;)]} =0
But since D is a linear combination of Xj’s, it may be written as
D =hy+ hlig

where h, is a nx 1 vector and h, is an nt matrix. Therefore one has to prove
that
! il / ~0
E{[rs + (XJ)h}|P[8°(©;) — Z;5 (©;)]} =0
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Because of the centered variables, the linear term disappears, so what remains
of the last equation is the following expression for the left hand side:

E{(X)'N P[(6;) ~ Z,5° (0]} = E[Tr{(X3)'hP[E(O;) - Z;5 (&,)}]
— E[Tr{n,P[g°(6;) - “°< 0,)1(X%)'}]
= Tr[n'\PE{[8°(©;) — Z,8°(8,)|(X2)'}]

where the fact that a scalar random variable trivially equals its trace is used

and also the fact that Tr(AB) = Tr(BA). But the last equation is proven
to be equal to 0 as can be seen by:

E[8°(9,)(X9)] - Z;E8"(©,)(X?)]
= Cov|f°(8;), X% — Z;Cov |5’ (©;), X°]

Y ==71:

E{|8°(©;) — Z;8°(0;)1(X9)"}

= Cov[(©;), X,] — Z;Cov[B(O;), X,]
_ AY = Zy(A +5°U,)Y’
=0

a

Lemma 1.18 The following estimators are unbiased for the structural pa-
rameters s%, A and b respectively:

2 = L, 0,)|'V7lX,; ~ YB(9;)]

k

: 1) &= Z;(3(©;) — bl(B(©;) — b’

where

1o

= (Z szﬁ(e )

Proof: see Goovaerts et al.(1990), pp.183-185.
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Chapter 2

Robust Inference

2.1 Introduction

“Robust statistics is often defined by being the statistics of approximate
parametric models” [Gisler and Reinhard (1993)]. A robust estimator is an
estimator that behaves well for a wide variety of underlying distributions but
it is not necessarily the best for any one distribution.

Apart from sensitivity to model specification errors, estimation in para-
metric distributions is affected by outliers. For instance location estimators,
such as the arithmetic mean, are highly sensitive to outliers. Outliers are
observations which fall outside the bulk of the data. They often occur in
observations found on the tail of distribution functions.

In insurance, data outliers might be caused by rare events such as hur-
ricanes. earth quakes, etc. Qutliers can also come from observation or data
entry errors or noise in the model. When rating a risk portfolio, one has to
look at the information given by the bulk of the data and identify outliers to
treat them accordingly. In more simple words, robust statistics is a way to
limit the influence of model specification error and of outlying observations
on the parameter estimation.

One must remark that nonparametric statistics is different from robust
statistics. Nonparametric statistics considers distributions subject to restric-
tions, such as a certain quantile p of a distribution, distribution symmetry
or linearity of estimators. But often nonparametric methods are robust (e.g.
the median estimator, Wilcoxon test).
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We give here a brief introduction to robust statistical theory using Ham-
pel’s approach. Hampel et al.(1986) states three questions that one has to
be able to answer in order to understand robustness:

(1) What is the effect of an outlier on a statistic (e.g. the arithmetic mean)?

(2) How much contaminated data can an estimator stand before it becomes
useless?

(3) How does one assert robustness of an estimator?

2.2 M-Estimators

Consider a sample of observations X, Xs,..., X, that are independent and
identically distributed and whose distribution Gg(z) belongs to a parametric
family {Gs; 0 € ©}. In classical statistics, one would assume that the obser-
vations follow a distribution of the above parametric family and estimate 6
based on these sample values.

More realistically, robust theory assumes that the model {Gy; 0 € ©} is
an approximation of reality, the exact distribution being in the neighborhood
of the parametric family.

Let GG, be the empirical cumulative distribution function of the sample
RCTR CH X.. By definition G, is:

Cal@) = 13" A, (2)

where Ay, () is the probability point mass 1 in z.

To estimate 6, consider the statistic T, = T,,(X}, Xs,...,X,) = T(G,)
defined by some functional T. This restricts the estimators considered to
functionals of G, or estimators that can asymptotically be replaced by func-
tionals, i.e. in probability

Ji_'nc}oTn(X11X27 LR 7Xn) - T(GG)

The estimators T;, considered here are assumed asymptotically normally dis-
tributed with expectation T'(Gy) and variance
Var(T, Gg)

n
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i.e. in distribution
V[T, — T(Gg)] — N[0, Var(T, Gg)] when n — oco.
They are also assumed Fisher consistent [see Kallianpur and Rao(1955)], i.e.:
T(Gg) =6 VOeO

Consider the statistic T,—y = Tn-1 (X1, X2, ..., Xn_1). How much does T,_;
change if an observation z is added to the sample X, X,,..., Xn_17

Definition 2.1 The sensitivity curve of the estimator T, defined for n > 2
at the sample values z{,z,,...,Z,_; is given by

SCn(I;Ilv s axn—lyTn) = n[Tﬁ(IlaI27' -9 Tn-1: I) - Tn—l(II’IQ7 s 1$n—1)]

Note that the sensitivity curve could also be defined if, say z,_;, is replaced
by z instead of merely adding the extra observation z.

Example: The sensitivity curve of the statistic T,(z;,rs,...,Tp) =
15" . z; (i.e the sample mean) is given by:

SCn(l‘;l'l, e ,l'n—l,Tn) =z —Th

In general, the sensitivity curve can be complicated to compute and depends
on the particular sample values on which it is calculated. A more global
measure is needed.

Definition 2.2 The Influence Function (IF') of T at Gy is given by:

T[(1 — €)Gp + €Az] — T(Gh)
€

IF(z;T,Gg) = lil’I(l)
Vr ¢ X where the limit exists.

If the influence function is identically zero over some set, then the contami-
nated data points with values in this set have no influence on the functional.
The link between the sensitivity curve and the influence function can be seen
if Gy is replaced by G,,_; and ¢ by % The influence function then measures
approximately n times the change in T caused by the additional observation
in z when T is applied to a sample of size n — 1. The influence function also
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measures the asymptotic bias caused by the outlier or contamination in the
observations. The sensitivity curve can be rewritten as:

T[(]- - %)Gn—l + %A:r:] - T(Gn—l)

SCr(x) =

n

In many cases SCn(z) will converge to [ F(z; T, Gg) as n — oo.
Under appropriate regularity conditions on I F(z; T, Gs) [Hoaglin et al.(1983)].
the following relations hold:

/ T IF(z; T, Gs)dCo(z) = 0,
and

o0

Var(T, Gg) = / [F(z;T, Cs)?dCo(z). (2.1)

The asymptotic relative efficiency of two estimators say {Tn;n > 1} and
{Snin > 1} can now be compared with the help of (2.1). One way to
measure the worst effect that a contamination of fixed size can have on the
value of an estimator is through the gross-error sensitivity.

Definition 2.3 The gross-error sensitivity of T at Gy is defined by

’7'(T, 6'9) = Slip IIF(.'I:,T, GQ)I

It is desirable that v* (T, Gg) be finite. The bound obtained by the gross-error
sensitivity can be looked at as the upper limit for the bias of an estimator.
The largest influence an observation, say z;, can have on the statistic T}, is

approximatively equal to
gdl (T7 GG)

n

In order to understand how large the gross-error sensitivity can be, one can
compare it to the asymptotic standard deviation, i.e.:

’Ytt(T, GG) - sup, IIF(xJT1 G9)|
VIS TF(z; T, Gs)2dGe ()
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One can show that v**(T, Gy) is always greater or equal to 1, in particular
for T=median(Gys), v**(T,Gs) = 1. Hence, in a certain sense, the median is
the most robust statistic.

Putting a bound on ¥*(T, Gy) will often conflict with the aim of asymp-
totic efficiency. Usually, robustifying an estimator is to try to put a bound
on Y*(T', Gy).

Another function measuring the effect of changing an observation for
another in the same neighborhood is the local-shift sensitivity.

Definition 2.4 The local-shift sensitivity is defined by

sup
z#y ly — z|

AT =

where .y € X.

If the underlying distribution Fy is symmetric and its center of symmetry is
zero, one can define the rejection point.

Definition 2.5 The rejection point is defined by
p* =inf{r >0; IF(z;T,G) =0 when |z| > r}

All observations beyond the rejection point p* are not taken into account.
Hence it is desirable that p* be finite.

An estimator is resistant if contaminated data affects it in a limited way.
If it is not resistant, the estimator breaks down as the proportion of contam-
inated data becomes too large. This remark leads to the following definition
by Hampel et al.(1986):

Definition 2.6 The breakdown point of an estimator is the largest possible
fraction of the observations for which there is a bound on the change in the
estimate when that fraction of the sample is altered without restriction.

An estimator is resistant only if its breakdown point. is greater than zero. For
instance let T" be the functional for the mean. If one observation is increased
in value then T, = T'(F3) increases without bound. Therefore the breakdown
point of the mean is 0. It can be shown that there exists no estimator that
treats observations equivariantly with a breakdown bound greater than %

35



Our goal is to find a functional T that could define an estimator T, with
bounded gross-error sensitivity. Consider the maximum likelihood estimator.
Given a sample X1, X, ..., X,, it is defined to maximize

i fo(Xi)

i=

with respect to 6. This is equivalent to minimizing
Z[— In fo(X3)].
i=1

Huber (1964) proposes to reduce this to

p(‘Xiv 0)

n
=1

?

where p is some function on R x ©. Now suppose that the derivative of
p(z, 8) exists and is given by

0
w(z,0) = 55p(z,9)

Hence, Huber generalized the idea to define “Maximum likelihood type” es-
timators:

Definition 2.7 A functional T defined implicitely by

/ : Wlz, T(C)dC(z) = 0

where 1 : R?2 — R is called an M-functional, and T,, = T(Gr), an M-
estimator defined implicitely by

5 w(X Tr) = 0 (2.2)

M-estimators minimize more general objective functions than the sum of
squared residuals associated with the sample mean. For instance

36



(i) For the median, one wants to solve for ¢ the following equation:
Z’w(Xi, t) = Zsign(Xi - t) =0
i=1 i=]

where sign() is the sign function.

(ii) For the mean, one wants to solve for ¢ the following equation:
DXty =S (Xi—t)=0
i=1 i=1

Theorem 2.1 Let 7, = T(G,) be an M-estimator as defined above and
[F(z;T,Gy) the influence function of T at G then

— JZ% 3[e(z, 0) () dCi(x)
—_ -z,/;[:z:, T(GG)]
Z %W (x, 0)l (e, dCa(z)

Hence it is easy to see that [ F'(x; T, Gy) is directly proportional to ¥z, T(Gy)].
For instance:

[F(SE;T,GQ) =

(i) if w[z,t] = sign(z — t) then the influence function (of the median) is
given by: '
sign[z — T(Gh))

[F(z;T,Go) = 2f6[T (Go))

which is bounded in z.
(ii) if ¥[z,t] = z —t, then the influence function (of the mean) is given by:

IF(z;T,Gg) =z — T(Gy)

This means that the desired shape of the influence function is achieved by an
appropriate selection of the function 1. By using equation (2.1) and Theorem
2.1, it is easy to rewrite the asymptotic variance of the M-estimator:

J ¥?|z, T(G)]dGe(x)

Var(l Go) = 7 2 by DircondCo )12 (23)
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Corollary 2.1 Consider the cumulative distribution function G¢ and the
density fo where 8 € ©. Assume that T(Gy) is Fisher consistent, i.e.

/ ‘: bz, T(Ge)]dClo(z) = 0,

or cquivalently T(Gy) = 6. Then integration by part gives

¥(z, )

[F(z;T,Go) = — 12 ¢(x,8)s(z, 0)dGe(z)

where

s(z,8) = ;9% In{fo(z)]

no derivatives of ¥:(z, 8) are required.
With the above result we can conclude that ¢(z,0) = IF(z;T,Gy) for
some Fisher consistent M-functional if and only if

| wle, T(Ga)ldCa(a) = 0

and

/oo d'(xy 9)~S($,9)d(1’9($) =1

2.3 Optimal Robust Estimators

From the above discussion it seems reasonable to seek Fisher-consistent
statistics 7" which minimize the asymptotic variance under the model, sub-
ject to a limit L on the gross-error sensitivity. Restated this means that one
needs to find a ¢¥(z, ) such that

(i) 2 ¥(x.0)dGy(z) =0

(i) S22, ¢(z,0)s(z,0)dCGe(z) =1

(iii) jw(z.0)! <[
\/f_“;o IF(z;T,Gp)2dGe(z)
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that will minimize

|z, 0)PdGa(a)

Now define the following function:
c ify>ec
W=q v fb<y<c
b ify<b
Then it can be shown [see Hampel et al.(1986)] that the solution is given by

_ 0]
W(z,8) = [3(33,9)M(6;§9)]—b(9)

where

M©) = [~ [s(z,0) - a(6)“Fl)s(z, 0)dGo(x)

and a(f) and b(f) are such that the other constraints are satisfied (which can
be done if L > 1).
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Chapter 3
Robust Credibility Models

3.1 Kunsch’s Model

Kiinsch(1992) proposes to replace the claim averages X, by a robust M-
estimator of location. He truncates claims at a truncation point which de-
pends on the data and is different for each contract. This robustifies the
classical model of Biihlmann by replacing the contract sample averages by
location M-estimators of Huber’s type.

Consider the basic credibility model with k contracts and ¢ time periods.
As usual, the risk parameters ©; are unobservable and all claims Xipr 2
0,vr=1,...,t.

Assumptions:
(K1) The contracts (©;, X;) = (©;, Xj1,.-.,X;:) are independent and iden-

tically distributed for 7 =1,...,k;

(K2) ©; is distributed according to the same U, for j = 1,...,k;

(K3) Given ©j, the claims X, Xj2,...,X;: are conditionally independent
and identically distributed with distribution Fyxe.
Kinsch distinguishes between two cases:
Case I: The distributions U and Fx g are known;
Case II: The distributions U and Fx;e are unknown and a semi-parametric
approach is used.

We will examine each case separately.
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3.1.1 Case I: The Distributions U and Fyx_, are known

In order to estimate u(©;) = E(X;r|©;) for some j = 1,...,k, Kiinsch
proposes to use Bihlmann’s non-homogeneous linear credibility estimator
and to replace the sample averages X; by an M-estimator Tj :

M} =m + Z|T; — E(T})] (3.1)

where

m = E[u(©,)] = [ n(6)dU(®)

is the known portfolio mean and T; = T;(Xj1, Xj2,..., Xj:) an M-estimator
defined implicitly as the solution of

t -X]r

X7 = (32)

where
x(k) = max{—c;, min(k — 1,¢2)}

and 0 < ¢; <1 and ¢c; > 0. It can be shown that T} exists and is unique
[Kinsch(1992), p.36].
With some algebraic manipulations equation (3.2) can be rewritten as

1 t
PR

(3.3)

where
x(k) = max{1l — ¢;, min(k,co + 1)}

i.e. claims on both ends are truncated if ¢; < 1.
Properties of Kiinsch’s estimator M:

i) M] is scale-equivariant, i.e. if all X;. are multiplied by a constant c,
J q j
then so will Mj’;

(ii) If ¢y = 1 and ¢c; = oo, then Bihlmann’s estimator is reproduced and

I} = %Z:—:l XJ',. = XJ,

(iii) It is unbiased, since by definition, an M-estimator is Fisher-consistent

and m = E[u(O,)};
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(iv) Under this pure Bayesian approach, the exact credibility premium
E[u(9;)|Xj1, Xj2,- .., Xj:] can be computed and is optimal. In most
cases 1t will be non-linear but possibly robust. To ensure linearity,
Kiinsch suggests instead to use a non-robust optimal linear approxima-
tion to the estimator and to robustify it. However, after robustification,
this destroys the optimality property.

To obtain an estimate of T}, (3.3) suggests the following iterative algo-
rithmic formulation

n+ 1< - Xjr
T = 3 o x(=F
r=1

=5 2T forn >0, (3.4)
J

2

with a robust starting value of T}O) = median{Xj1, Xj2,...,Xj¢}. The con-
vergence of this algorithm can be found in Huber(1981), section 8.6.

To obtain the credibility factor Z in M/, the variance of Tj is needed.
With the help of Hampel et al.(1986), Chapter 2 and the influence function,
as defined in Theorem 2.1, consider the linearization of T;:

, 1
Ti{( X, Xjo,- -, Xje) = Tj(Fxe,) + = ZIF()\V, F‘X]G,-)_*_ﬂp(jz)(g's)

r—l

where 19,,( ;) is a remainder term vanishing to 0 at the stated rate. T;(Fye,)
is defined lmphcltely as the solution of

/ [m]dﬂrle, () =0 (3.6)

and by Theorem 2.1, the influence function (/F) is given by

[F(.’E;Tj,Fx|ej) ]T (FX[S,)M(G )

N
T;(Fxe;)
where

(1+c2)T;(Fx|e;)

M(O;) = /X'[m]xdf'xlej(x) - /( zdFye, (z)

1-a)T;(Fxie;)
3

1s a normalization constant. If we calculate the expectation of (3.5), since

E[/F(X;r; T3, Fxie,)|0;] = 0, by (3.6), we get that E[T;(X;1, Xz, - - -, X;e)|©;] ~
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T;(Fx:s,) and we can now calculate the variance

1
Var[T;( X1, Xj2, - .., X5)|©;] = ;EUF(Xjr;Tj’Fxxe,»)zl@j]

- lg Xjr

t {X2[7}(T)(|9,7]}T?(Fxlej )M—2(@]_)

The credibility factor Z is straightforward and is given in the following the-
orem:

Theorem 3.1 Under assumptions (K1) to (K3), the non-homogeneous li-
near credibility estimator is given by:

M = 4(©;) = m + Z[T; — E(T})]
where

7 Cov[E(T};19;), u(0;)]

~ E[Var(T319,)] + Var[E(T;|6,)] (3.7)

Proof: we want to minimize the sum of squares

E{[M] — n(©,)} = E{lm+ Z[T; — E(T})] — 1(©;)}*}
= Var[u(9;)] + Z*{E[T; — E(T})]*}
—2ZE{[p(©;) — m|[T; — E(Ty)]}

with respect to Z. Differentiate with respect to Z and set equal to 0 to
obtain:

ZE{[T; — E(T;)I} = CovlT}, u(8;)]

Hence
, _ CoviT3,u(8,)
Var(T})
which is equivalent to
Cov (T3, u(0;)]

~ Var[E(T316;)] + E[Var(T3]6;)]
Now

Cov[T;, u(©;)] = Cov{E(T};|9;), E[u(8;)|9;]} + E{Cov[T}, u(©;,)|0;]}
= Cov[E(T;]0;), n(©;)]
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since E{Cov{u(0;),T;|©,]} is equal to 0. We hence obtain a robust version
of Bihlmann’s credibility factor:

;_ __ Cov[B(Ty18;),n(8,)]

" E[Var(T;|8;)] + Var[E(T}6;))] (3-8)

The exact value of Z can be calculated if U and Fixg are known.

3.1.2 Case II: The Distributions U and Fx_, are un-
known

In Case II. since the portfolio mean m and E(7j) are unknown, we replace
the sample means by averages

MI"=X +Z[T; - T) (3.9)
where
_ 1 k t _ 1 k
X = — X, dT =-— S
S= ;; X an =1 jng]

Again T; = T5(Xj1, Xj2. ..., Xjt) is an M-estimator defined implicitly as the
solution of

> x( T,.- )=0 (3.10)

where
x(k) = max{—c,, min(k — 1,¢,)}

and 0 < ¢; £ 1 and 0 < ¢;. It can be shown that Tj exists and is unique
[Klinsch(1992), p.36]. Rewrite (3.10) to obtain

1¢ ;
T2 x(=)=1 (3.11)
; L X7
where
X (k) = max{1l — ¢;, min(k,c2 + 1)}

i.e. claims on both ends are truncated if ¢; < 1.
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Properties of Kiinsch’s estimator M} L.

(i) M]! is scale-equivariant, i.e. if all X}, are multiplied by a constant c,
then so will 1\/[]-1 L

(ii) If ¢; = 1 and ¢; = oo, then Bithlmann’s estimator is reproduced and
Tj = X; = 1 Zre Xiri

(iii) To achieve unbiasedness, the non-robust estimator X_is used for the
portfolio mean. From a robust point of view, the credibility premium
(1 — Z)T. + ZT; is preferable, but the latter is biased.

As in Theorem 3.1, an optimal credibility factor Z is given by Kiinsch:

Theorem 3.2 Under assumptions (K1) to (K3), the non-homogeneous li-
near credibility estimator is given by:

M = () = X+ Z|Ty - T
where

_ Cov[E(T}|9;), u(©;)]
E[Var(T;]©;)] + Var[E(T}]6;)]

Proof: To minimize the sum of squares
E{(M]" - u(©,)} = E{IX.+Z(T;—T) - w(©;)]*}
= B{X’+2ZX (T; -T)-2X _u(9;)
+Z3(T; ~ T)? + 12(8;) — 22(T; — T)u(©;)}

(3.12)

with respect to Z, differentiate with respect to Z and set equal to 0 to obtain:
ZE((T; - T.)%) = E{(T; — T)[u(8;) — X ]}
and hence
E{(T; — T)[p(8;) — X.}}
E[(T; - T)?
Cov([T5, (9;)]
Var(T3)
Cov[E(T;1©;), 1(6;)]

= BVar(318,)] + VarlE(T;[6,) (313
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Since the distributions U and FXxje are unknown, the numerator and deno-
minator of (3.13) need to be estimated. The denominator E[(T; — T)?] can
be estimated by (see Kilinsch(1992), p.40):

(3.14)

[V]w

(k -1) J=1
Now to estimate the numerator of (3.13), by definition we have
Cov[E(T3105), 1(8;)] = Cov[E(T3105), E(X;16,)]

and also

Cov(Tj, X;.) = E[Cov(T}, X;.10;)] + Cov[E(T}10;), E(X;.6;)]
It is then easy to see that

Cov[E(T;|0;), E(X;10;)] = Cov(Tj, X;.) — E[Cov(Tj, X;0;)]
where an estimator for Cov (7}, X;) is given by

Z§=1(Tj - T)(X] _ X-~)
(k—-1)

An estimator for E[Cov(T}, X;|©;)] can also be given using (3.5):
t —
ZZ F(X_,,.,T WX — X))
t(t — 1 J=1 r=1
where the empirical influence function is given by

X;+
tx(75)T;

[F(X;: T;) =

r=1 Xirlja—e)Ty <X, < Q+en)Ty)

The empirical credibility estimator for JWJ-” = [(©;) is then obtained by

replacing the parameter Z in (3.12) by a robust sample version:

5 =3 (T -T)X; — X)) - kt(t 1)2 St TR (X T (X — X))
e o (T = T)?
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Remark: Z is not optimal in the sense of Theorem 3.2 since the parameters
in the numerator and denominator are replaced by estimated values. Also
note that instead of the estimator of Var(7T;) in (3.14), a more consistent
robust estimation would use [see Kiinsch(1992), p.40]:

t

TEY X_:IIF(XJ-,;:/})%

3.2 Gisler & Reinhard’s Model

3.2.1 Definitions

Kinsch’s model uses robust location estimators T; = T;(X;1, ..., Xj) instead
of the usual contract averages X j.- These estimators perform reasonably well
in the neighborhood of the true model when Bayesian credibility is exact.
Gisler and Reinhard(1993) propose to divide the pure risk premium into two
components: an ordinary part for average claims, and an excess part for
outlying claims, which can be estimated separately. We will also see later
that it is possible to include weights in their model. Formally:

#2(0;) = 10(8;) + 1125(©;)

where 1:(0;) = E(X;+|9;), £0(9;) is the ordinary part and .,(9;) is the
excess part. The ordinary part uo(©;) is the expected loss-ratio generated
by the claim load of ordinary losses, whereas the excess-part 1zs(©;) is the
additional expected claims load generated mainly by extraordinary events
such as big fires, hurricanes, etc. The excess-part is the part that usually
generates outlier observations and hence affects the outlier ratio in a dramatic
way.

To estimate the ordinary part 10(©;), credibility and robust statistics
are combined, i.e. a credibility estimator based on a robust stastistic T; =
Ti(X51,...,X5t), 7 =1,...,k is used. By definition

#o(9;) = E[T}]9;].

All risks in the portfolio are assumed equally exposed to outliers events. This
can be expressed in the following manner:

,U,I_g(@j) = Uzs Vj = 1, cen ,k.
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Note that if an a priori assumption can be made to establish how certain
risks are more exposed to outlier events than others, then one can always
define a known matrix Ak such that p:5(9;) = Apzs.

The robust credibility estimator of u.(0;) is thus given by

/:‘z(ej) = [‘0(@_7) + Hzs (3.15)
where [10(©;) is estimated by standard robust techniques, without regard to
bias:

£0(©;) = E(T}) + Z;[T; — E(T)] (3.16)
= pr, + Zi[T; — pr, | (3.17)
where

7. — Var[E(T;|9;)] _ Var|ur, (6;)]
7 E[Var(T;]©;)] + Var[E(T;1©;)] ~ E[Var(T}]©;)] + Varlur, (9;)]

Note that ur, = E(T;) and ur, (©;) = E(T}|0;). The subscript T; is used to
emphasize the fact that the estimations are based on T} and not on the X, ’s.
To summarize, the main differences between Kiinsch’s model and Gisler and
Reinhard’s model are:

(i) The pure risk premium p-(©;) = E(X;+|©,) is divided into two com-
ponents: an ordinary part ug(©;) and an excess part p,,. which is
assumed constant Vj = 1,...,k;

(ii) No use of X is made in (3.16), disregarding the bias. Only T; and
E(T;) are used;

(iii) An introduction of different weights is allowed, giving a more represen-
tative description of reality.

3.2.2 Weighted model with identical volumes

To simplify the mathematical derivations, consider Biihlmann & Straub’s
model, as defined in Chapter 1, but for identical volumes, i.e. k contracts
and t time periods with equal weights Vj = 1,...,k and Vr = 1,...,t. As
usual the risk parameters ©; are unobservable, all claims X j~ = 0 and
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(BS1) The contracts j = 1, ...,k [i.e. the pair vectors (©;,X;)] are indepen-
dent and the variables ©;’s are identically distributed;

(BS2) ¥Yr,s=1,..,tand Vj =1, ...k,
E(X;r©;) = 1u(8;)

brs
Cov(Xr, X36l8;) = —0°(8;)

where the w are known weights (in this case all identical), 8, is Kro-
neckers’ symbol and where 1(©;) and 0%(0;) are unknown functions.

Now consider the M-estimator defined implicitly by

Zt:@’,r(Xjr,Tj) =0 (3.18)
r=1
where
¥(z,6) = 6(3) (3.19)
as in a scale model, with
¢(z) = min(z — 1, 1) (3.20)

The M-estimator is thus defined implicitely by

t
Xir
> min(ZEX -1,1)=0 (3.21)
r=1 ’1}
which can be rewritten as
t
r=1

An algorithmic solution to (3.22) can be given to calculate Tj.

Let d be the estimator of T". We use the letter d instead of ¢, in order
not to confuse it with ¢, the number of observations in contract 7. We hence
rewrite (3.22) as

1< .
f(d) = 3 >_ min(X;-, 2d)

r=1
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Consider the order statisitics Xy, 7 = 1,...,t of Xji,... ,Xjt- Let [; be the
number of observations equal to 0 in contract j. Therefore there are t — [;
observations that are greater than 0 in this contract j. Now let X, +1) be
the first observation not equal to 0. We are looking for f’(d), the derivative
of f(d).

Distinguish between three cases:
, 2(t—1
L. Xy, +1) > 2d. then f'(d) = 2th)

2. Xjuy < 2d, then all observations are smaller than 2d and therefore

f(d) = 0.

3. Xjm) < 2d < Xjem+1y, for some m = 1; + 1,...,t — 1. Then we get
f(d)y = 25

Hence
2o i X, 2 2d
fid) = 2=m5f Xy < 24 < Xjimay)

0 if X < 2d

We obtain T; with the following procedure: Calculate T(r) fl ’(')] for

r=t¢t,t—1,...until T(r) ’2(" and let m; be the first index for which this
inequality is fulﬁlled If m; > 1 exists then

ZJ 1 J(r)

T =
J 2m -t

otherwise 7; =0
Note that if X < QXJ;, then T; = Xj_ and if half or more of the observations
Xjr are zero, then T; = 0.

Now to find the empirical credibility estimator, the structural parameters
of Z; in (3.16) need to be estimated. In general there is no explicit formula
for pr;(©;) and for Var(T}]0;); pr,(©;) is replaced by the asymptotic ex-
pectation of T;(Fx|e,) as in Definition 2.7, and Var(T;|©;) by t~! times the
asymptotic variance Var(T}, Fxe,) as in (2.3). Therefore we obtain the fol-
lowing asymptotic non-homogeneous linear credibility estimator

£0(©;) = ur + Z;[T; — pr)
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where ;
ar
Zi= —_—

and where

ar = Var[T;(Fxe, )]
s7 = E[Var(Ty, Fxe, )]
pr = Elpr, (85)] = E(T})

To complete the estimation of 1.(©;), estimators of the unknown structural
parameters fis, 47, ar and s2 are needed. The M-estimator T} can be rewrit-
ten as

t
= lZTJr with T} = min(Xj,, 2T}).
r=1

We see from this expression that all losses included in an interval [0, 27;] will
not be truncated and can be considered as ordinary losses. For convenience,
denote by

Tir the ordinary portion of a claim amount
XS = Xjr — Tjr the excess portion of a claim amount
Note that the random variables T}, j = 1,...,kand r = 1,...,¢, are not

conditionally independent given ©;. Therefore an estimator of the asymp-
totic variance Var(T}, Fxje,) is needed Replace Fxe; by the empirical dis-
tribution of the X, r =1,...,t,j = ,k in (2.3). After some straightfor-
ward calculations and a change of normahzmg constant from ¢t~ ! to (¢ —1)7!
we get

52— _t= 1 Zr=1(Tr = T)?
7 (1= 350 Iix,semy)?

(3.23)

where [ [X;e>2T;] is an indicator function. Note that the denomimator in (3.23)
is equal to 1 in the case where all X < 27T}, i.e. in the case where T; = Xj.
In summary, the various estimators for the identical volumes case of the
Bithlmann & Straub model can be written as:

ﬂr—
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Hence the empirical robust credibility estimator is given by

,L:L,_.(@j) = .[1'1:3 + /:"T + ZJ[YWJ - /:LT] (324)
where y
7=t
7 tar + 8%

3.2.3 Weighted model with different volumes

The estimators derived in the previous section can be extended to allow for
different weights wj.. Define new random variables

1 o

> Yy

Jr v=1

)&jr =

where the Yj(r") fulfill the conditions of section 3.2.2 with identical volumes
w; = 1. The random variables X, are averages of wj. independent (al-
though unobservable) random variables YJ-(,_V) . Now replace the unobservable
ng'), (v = 1,...,wjr) by the observed averages Xj- and use the fact that

our M-estimator is scale invariant. Insert X, into (3.18), the M-estimator
definition, to give

t
Z wir(X;r, T;) = 0.
r=1

In section 3.2.2 we had noted that, by the definition of the M-estimator, all
observations belonging to the interval [0,277;] could be considered ordinary
losses. In the generalization of the model with different volumes, this interval
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should now depend on some function w;y, for instance [0, (1+ f(w;,))T;]. This
yields a new definition corresponding to (3.21):

t t
wjr . XJr - l
; ', min| T, ~ L f(wir)] =0; w; = ;r;wjr
Since /Var(X;,|9;) = '\/%J(ej), an optimal choice of function f is
fwz) = —
Wjr) = ———C

where ¢ is a suitably chosen constant. Gisler and Reinhard suggest the fol-
lowing natural choices for the constant c:

1 k 1 kot
Ci =/ 'LD__ with w,. = —ZU_)J', = — Z Z’UJ]‘,—
k I=1 k't j=1lr=1

czz\/median(wjr) (jzlv'-'ak;r=17""t)

They also recommend to use constant ¢, except when the wjr’s have a very
sweked distribution, when constant ¢, would be prefered. The M-estimator
can thus be rewritten as

t
> wjrmin(
r=1

After algebraic manipulation, we find that this implicit definition is equiva-
lent to

or

Xjr -1/2
—1.cw: =0
Tj 1 Jr )

t

T,=% t“’f’ min(X;, ¢;T;)

r=1 Wj.
where
er =14+ ij—rl/2
Again, an algorithmic formulation can be used to calculate T;. Let d be
the estimator of T'. The letter d is used not to confuse it with ¢, the number
of claims. Consider the following function
t Wiy

f(d) =3 —Zc¢;rmin(Z;,,d)

=1 tw 5.
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and Zjr), T = 1,...,t, the order statisitics of Z;. = )—:-’l
)T

the corresponding order statistics of w;, and ¢;.. Let [; be the number of
observations equal to 0 in contract j and Zjq, ;1) the first observation that is
greater than zero. We want to find f’(d). Consider the following cases:

, with Wii(r) and Ci(r)s

1. Zju;+1) = d. Then there are (¢t — l;) observations fulfilling this inequa-
lity. Hence we obtain f'(d) = i=l,~+1 ;—H#Cj(r)
2. Zju) < d. All observations are smaller than d. Then f'(d) =0
3. Zjmy < d < Zjim+y), for some m = l;,,,...,t — 1. Then f'(d) =
Wi(r
Zi:m-f—l iiﬁ(g,) cj("')
Hence
et %L-’,J.—'_Cj(r) if Zjg,+1) 2 d
fi(d) = Ziamer mocie) i Zigmy < d < Zjgmr)
0 if Ziyy <d

We obtain T; with the following procedure: Calculate T;T) = f(Zjw)) for
r=t,t—1,... until T}T) > Zj) and let m; be the first index for which this
inequality is fulfilled. If m; > 1 exists then

__ E2iwincin Zi)
805~ rmm, +1 S Wi(r)

T;

, otherwise T; =0

Note that Zj) < X’J—_ thenT; = Xj_ = & ﬁ=1 Wi Xjr- IfZ;lﬂ_1 Wjr)Cir) <
tw; then T; = 0.

To find the empirical credibility estimator fi9(0;), we have again to esti-
mate the structural parameters in (3.16). Because the distribution Fx\e,(z)
as well as the -function depend on wj,, Gisler and Reinhard argue that
a strict mathematical treatment becomes unfeasible. They believe that the
proposed estimators are reasonable and useful for practical purposes.

With the modification of the 1)-function, they assume that E(T}|©;) is
approximately independent of the underlying volumes wj.. E(T}|©;) is ap-
proximated by T;(Fxe;), the asymptotic expectation for a risk with identi-
cal volumes (wjr = 1) as defined in section 3.2.2. As for the within variance
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Var(T,©;), it is assumed small in comparison to the between variance and
hence

wjpr =wj, forj=1,...,kandr=1,...,t.
is used in
2(0.
Var(X;,|0;) = ”—1(0-—12 (3.25)
J

Furthermore, assume that

IR

Var(TJ-, FX!G, )

Var(T;(©;) i
J

(3.26)

where Var(Tj, F \'[e,) is the asymptotic contract variance with w; = 1. Hence
we obtain for £4(©;)

f0(©;) = pur + Z;|[T; — pr)

where _
o t'wj_aT
77T tw;ar + s2
J.9T T
and

1 t
W =7 X_,:wjr

where again

il

T;(Fxje,) = asymptotic expectation for risks with volumes w;,
ST E[Var(T}, Fxe, )
Var(T;, Fxie, ) asymptotic variance for risks with volumes wj, =

ar = Var[T}(Fme,-)]

Il
—

Now to estimate the structural parameters p., 441, ar and s%, consider

t
wjr
Ty =3 2
'r=1t ]

Wy,

T;r with Tjpr = min(Xjr, CJ”'T})
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For convenience, denote by

T; the observed ordinary claim
XSjr = Xjr —Tj the observed excess claim

and
{ wirTr the ordinary claim total

w;ir X Sjr = wir(X;r — Tjr) the excess claim total

Now by use of the empirical distribution function of the X;., (r =
1.....t). we find that:

Ty — T

t Wiy
=Yy Cirlimy e,

[F(X;;T5) =

By (3.23) and (3.26) suggested variance estimators are

-2 Z_l_lzt=le"'(’1} __1‘3)2

(= el e x,)?
This implies
1 &
5T = k >_5
Jj=1
and
ir = 1> L1y~ Ty — (k- 1)L
A T ktw.
where .
—_ . 'u_)j
T=21w5
Jj=1 -
h, — i w.] IDJ )
C Hkw kw
llT - §=1 ZjTj
Zj:l ZJ
Hence s
5 Ww;ar
d th&/r + é%



where

Thus the empirical robust credibility formula in the case of different volumes
is given by ) )
px(©;) = frzs + for + Z;{T; — pir). (3.27)
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Chapter 4

Robustification of Jewell’s
Hierarchical Model

4.1 Introduction

The new proposed model is a direct extension of Gisler and Reinhard’s model
as described in Chapter 3. Gisler and Reinhard introduce robust inference in
Bihlmann and Straub’s credibility model. We take it a step further when we
allow robust estimation in Jewell’s hierarchical credibility model. The first
two subsections will give the robust credibility estimator at the contract level
with and without weights. The last subsection hints at the robustification of
the estimator at the subportfolio level.

As with Gisler and Reinhard’s model, we propose to divide the pure risk
premium into an ordinary part and an excess part, which will be estimated
separately. Formally we write:

/J':r(@pv epj) = iu'O(epa epj) + .U:z:s(em 6)pj)

where 1,(Op, Op;) = E(Xpjr|O,, Opj), 10(©p,Op;) is the ordinary part and
tzs(©p, ©pj) the excess part.
To estimate the ordinary part 1o(9;, ©p;), we use a robust statistics Tp; =
ij(ijl, e ,ijt), ] = 1,. ..,kp and t = 1,.. . ,tpj.
By definition,
#0(©p, Op;) = E[T|0p, Opjl.
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All risks are again assumed equally exposed to outlier events, i.e.
pzs(Op, Opj) = izs
The robust credibility estimator of ux (G, ©,;) is then given by
fix (Op, Op;) = f10(Op, Ops) + fizs (4.1)

where f10(©y, Op;) will be estimated through standard robust techniques,
without regard to bias:

/10(@10’ @pj) = E(ij) + ij[ij - E(ij)] (4-2)
= pr, + Zpi(Tp; — ur,)

where
7 _ Var[E(ijlep, Op;)] (4.3)
Pi E[Var(T,;10,, ©,;)] + Var[E(Ty;0,, ©,;)]
_ Var|ur, (©p, Op;)]
E[Var(T,;|0,, ©,;)] + Var(ur, (©p, ©y;)]
and

Hr, = E(T55)
#Tp(Gm epj) = E(ijlep’ em‘)

4.2 Robust Estimator at the Contract Level
with identical weights

Consider Jewell’s hierarchical model such that:
(1) Each subportfolio is given a structural variable ©, wherep = 1,2, ..., P;

(2) Each contract within subportfolio p is given structural variables (9, Op;)
forj=1,...,kp;

(3) Each year, within a given contract j, we observe a claim Xpjry, T =
1,...,%pj, possibly paired to a known weight wy;. given in advance.
Here we assume that w,;; = w,Vp = 1,...,PVj = 1,...,kp, and
Vt = 11--'1tpj-
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The data for subportfolio p is the set of variables (©,,0,;, Xp) while for
the contract pj it is defined by the set (0,5, Xy;r).
Assumptions

(J1) The subportfolios p =1,..., P [i.e. the pairs (©p,Op;, Xpjr)] are inde-
pendent Vp # p/;

J2 FOI' each P = 1, ceey P, the contracts p'l. = pl, ‘e ,pk l.e. the pairs
D
(@pj, -ijr)] are conditionally independent given @p;

(J3) Vp=1,...,Pand Vj = 1,..., k,, the claims Xpjts - - -3 Xpjt,, are con-
ditionally independent given (©,,©p;);

(J4) All pairs of variables (©,,0,;). forp=1,...,Pand j = 1,....,k,, are
identically distributed;

(J3) Vp,j and r
E(Xpjr|Op: Ops) = pu(Op,Op;) Vr=1,..., tp;

and

, 1
Var()&pj,,|9p, Gpj) = ——02(6p, @pj) Vr = 1, ey tpj
w

where £ and 02 do not depend on the subscripts p, j and 7 and w are
known equal weights.

Also define
v(Op) = E[u(0y, ©,5)|0,] = E(Xy;+10,)
Consider the M-estimator defined implicitly by

tp; X .
x(/F) =0 (4.4)
1; TPJ'

where
x(k) = max{—c¢;, min(k — 1,¢;)}

and 0 < ¢; <1 and ¢; > 0. It can be shown that T},; exists and is unique
[Kinsch(1992), p.36].
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For simplicity purposes, instead of using the M-estimator proposed by
Gisler and Reinhard, we chose to use the one proposed by Kiinsch with

c; = 1. The choice of the M-estimator defines the truncation point.
Rewrite (4.4)

pj .
S min(er -1,c) =0 (4.5)
r=1 TP

J

After algebraic manipulations, equation (4.5) can be rewritten as

tpj X .
-1—Zmin( T ea+1)=1 (4.6)
tpi r=1 ij
The M-estimator is now implicitely defined by
1 W ' _
Tp' = i Z mm[ij,., (2 + 1)ij] (4.7)
PI r=1

An algorithmic solution to (4.7) can be given to calculate Ty; as in section
3.1.1.

We now need to find estimators for the structural parameters in order to
calculate Z,;. In general, we assume that there are no explicit formulas for
KT, (Op, Op;) = E[T};10,, O4;] and for Var(T3;(0,,0,5). pr,(©p, ©p;) is re-
placed by the asymptotic expectation of Tp;(Fx|e,e,,) and Var(T,;|0p, Oy;)
by (tp;)”' times the asymptotic variance Var(Tp;, Fxje,.e,,)- We therefore
obtain the following asymptotic non-homogeneous linear credibility estima-
tor

f0(©p: Ops) = pir, + Zpi(Tp; — bir,) (4.8)
where
_ __teiOT
P tpjaT + S%

ar = Var{E[T,;(Fxie,.e,; )]}
S?I‘ = E[Var(ij, Fxlep,epj)]

/‘l'Tp = E(TPJ)
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We nse the subscript T to emphasize the fact that a and s? will be estimated
from Tp; valies instead of using the raw Xp;,.

We now need estimators for the unknown structural parameters [izs, [T,
ar and s3. The M-estimator T},; can be rewritten as

tpj

i = —ZTPJ.,. with Tp]r = mln[ pirs (1 + 62) Pj]’

PJ r=1

From this last definition, we see that all losses included in the intervall
[0, (14 2)Tp;} are considered ordinary losses and will not be truncated. Note
that if c; = 1, then we obtain the same intervall as with Gisler and Reinhard’s
model. Denote by

Tpjr the ordinary loss ratio
X Spjr = Xpjr — Tpjr the excess loss ratio
Note that again the random variables Tpjr, 7 = 1,...,k,, t = 1,...,tp;

are not conditionally independent given (O, ©,;).

We need an estimator of the asymptotic variance Var|(Ty;, Fxie,.0,,)]-
We replace F X|e,.6,; by the empirical distribution. After some calculations
and a change of normahzmg constant from (tp;) to (t,; — 1)7}, we get

— Z:-ml(TPJ"" - ij)2

.9 tpj—1
o : (4.9)
pJ (1- §2_. 11 xm,>(1+cn)Tp;])

where [ix,. >(1+e,)T,,] is an indicator function. Note that the denominator is
equal to 1 when all Xp;. < (c2 + 1)T};, i.e. when T,; = X,;



and then

TPJ P 52
‘“"_Z TP"PZZ[( i

p=1j=

Hence the empirical robust credibility estimator at the contract level is
given by

,Ll,,(@p, @pj) = ﬂp—xs + ﬁ'Tp + ij(ij - [l’Tp) (4-10)
where .
~ o tm-aT
" tpj&T + 3”2r

4.3 Robust Estimator at the Contract Level
with different weights

As with Gisler and Reinhard’s model, the estimators derived in the previous
sections can be extended to allow for different weights wp;.. Define the
following new random variables

1 &
XPJ"" - Z )/p]r
Pir n=1

where the Yp(;;' fulfill the conditions of section 4.2 with identical volumes

wWpjr = 1. The random variables X;. can be interpreted as averages of wy;,
independent (although unobservable) random variables Yp(J,.). Now replace
the unobservable Yp(;:) , (n=1,...,wyj) by the observed averages Xpjr and
use the fact that our M-estimator is scale invariant. Inserting X, into (4.4),

the M-estimator definition, to give

tPJ

prJrX( mr) = (4.11)
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where
x(k) = max{—c;,min(k — 1, ¢,)}
and 0 < c¢; <1andc, > 0.

Again use ¢; = 1, the corresponding equation to (4.5) is

tpj .
Wp; min(er
b7 T .

1 P3

—1,62) =0

r=

In section 4.2, by the definition of the M-estimator, all observations be-
longing to the interval [0, (c; + 1)T;;] could be considered ordinary losses. In
the generalization of the model with different volumes, this interval should
now depend on some function of the different volumes wyj., for instance
{0,[1 + cof(wpjr}]Tp;}. This yields a new definition corresponding to (4.6):

lpj

1
~—— min| — Lcaf(Wpir)] =0; Wy = — ) wyjr
7=1 tpjWp;. Tpj a " tpi ; P

t
PJ s
Wpjr Xpjr

Since \/Var(ijrl@p, 0,;) = ﬁa(@p,@m), an optimal choice of function
fis

1
v Wpjr
where c is a suitably chosen constant. As with Gisler and Reinhard’s model,
we suggest the same following natural choices for the constant c:

c

fwysr) =

kp tp; Wos

— . _ T
e = /wp. witha, => Y 2L
j=1r=1 ]"ptpj

or

Co = /median('ijr) (F=1,...,k;r=1,...,t)

We assume the same position as Gisler and Reinhard: to use constant ¢
except when the wp;r’s have a very sweked distribution, where constant ¢,
would then be prefered. The M-estimator can thus be rewritten as

& X,

. pir -1/2
>~ Wpjrmin( T~ 1, cocwy,;,’ ") = 0
r=1 P.
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After algebraic manipulations, we find that this implicit definition is equiva-

lent to
tpj

w .
_ pir . ) o
Tpj = z D min(Xpjr, CpjrLps)
r=1 'piWpj.
where
. —1/2
Cpjr = 1+ c2cijr
and
1 tpy
Wpj. = P prjr-
PJ r=1

Again, an algorithmic formulation can used to calculate T,;. To find the
empirical credibility estimator fo(©;,0p;), we have again to estimate the
structural parameters in (4.8). Because the distribution F: X18,.0,, (T) as well
as the x-function depend on w,;,, we use the same argumentation as Gisler
and Reinhard: that a strict mathematical treatment becomes unfeasible.
Let us assume that the proposed estimators are reasonable and useful for
practical purposes.

With the modification of the x-function, assume that E(T};|0,.0,;) is
approximately independent of the underlying volumes wy;.. E(7,;|0,, ©,;)
is approximated by Ty;(Fxie,.e,, ), the asymptotic expectation for a risk with
identical volumes (wp;r = 1) as defined in section 4.2. As for the within vari-
ance Var(T5;|©p, ©p;), it is assumed small in comparison to between variance
and hence

Wpjr = Wpj, for j=1,...,kpandr =1,... t,.
is used in
02(0,, Op;5)
Var(Xp;r|Op, ©p;) = _ﬁ‘ (4.12)
pJ
Furthermore, assume that
Var(T,;, F: .
Va‘r(TPjIeP’ ep]) = ar( p; .’u-}xl.epyepj (413)
piWpj

where Var(T5;, F. X{ep,e,,,-) is the asymptotic contract variance with Wpjr = 1.
Hence we obtain for fig(©p, ©p;)

f20(Op, Op;) = M, + Zpi[Tps — Mp] (4.14)
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where

7 — _ tpiWei 0T
P tpiWpiar + 2
pjWpj. AT T ST
and again
Tpi(Fxie,e,) = asymptotic expectation for risks with volumes w,j, = 1

8% E[Var(ij Fx|ep’epj )]
Var(Tp;, Fxe,.e0,,) asymptotic variance for risks with volumes wpjr =1
ar = Var[T,;(Fxe,e,;)

Il

Now to estimate the structural parameters Mp—zss UT,, aT and 3%, consider

tp;
W jr . i
Tpj =Y 2Ty with Ty = min(Xpr, CosrTps)

r=1 tpiWpj.

For convenience, denote by

Tp; the ordinary claim
X Spjr = Xpjr — Tpjr the excess claim

Wpird pjr the ordinary claim total
Wpjr X Spjr = Wpjr (Xpjr — Tpjr) the excess claim total

Now by use of the empirical distribution function of the Xpjry (p =
L...,Pg=1,...,kp,v =1,...,tp;), we find that:

N T T
[F(Xpjr; Tps) = o 5

— s _Weir
1 r=1 tpj Wpj. cer[[TijTJ"XPj"]

By (4.10) and (4.17) suggested variance estimators are

1 tpj i . 2
" =1 2r=1 Wpir(Tpsr )

b2 tpj Wopiyr N
1= 320 i Crir [y #: X5

This implies
2 _ 13 1 & 8
Sr=plén=522
p=1 p=13=1 P
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and

12 .o
= k tmwp
where
1 &
P T prj-
kp - -
. w .
_ p3. pj.
h=2 k,w k@ )
=1 FpWp pWp.
kp -
_— w :
_ |5} )
TP- - lm I TPJ
=1 ~ApWp..
hence

Z:_I;';l Zm’ Tm‘

bt = :
7 Zl?f—.l ij

k | o r
. 1 1 P & Wpiir X Spir
l‘pwp §= kpip.. j=1r=1 tpi

Thus the empirical robust credlblhty formula in the case of different vo-
lumes is given by

.El’:r:(@pv epj) = ﬂp-—xs + /:"Tp + ij[ij - /}’Tp]- (4-15)
where - .
5 _ _ tpiWpiar
P tpiWps ar + 52
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4.4 Robust Estimator at the Subportfolio Level
With Identical Weights

In Jewell’s hicrarchical model, the credibility estimator at the subportfolio
level 1/(©,) is given by

2(©p) = m + Zp(Xpzm —m)

In our proposed model, the robustified estimator at the subportfolio level
will be given by

v(©p) = m+ Z,[T, — E(T,)] (4.16)
where
_ Var[E(T,(9,)]
2 Var(E(T|0,)] + E[\z;ar(Tp|@p)] (4.17)
Var(ur, )

Var(ur,) + E[Var(T,|9,)]

and where ur, = E(T,|9,).

At the subportfolio level, we use m instead of E(T,). In the insurance
industry, one the properties that is highly regarded is the unbiasness of an
estimator. At the subportfolio level, there is a lot of data and using m instead
of E(T,) will help to attain the unbiasness objective.

Now consider for 7}, the following M-estimator defined implicitely by

kp tp;

22 x(Xpjr, Tp) = 0

j=lr=1

The x-function is defined in the same manner as in section 4.2.
We rewrite this M-estimator to obtain
1 kp tp; 1
Tp =YY —min(Xpjr, 2T,)

kp j=1r=1 toj

We again assume that there are no explicit formula for E(T,|0,) =
pr, and Var(T,|©,). E(T,|©,) is replaced by the asymptotic expectation

P
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of Tp(Fxie,) and Var(T,|0,) by (kytp;)”! times the asymptotic variance
Var(T5, Fxje,). We therefore obtain the following asymptotic non-homogeneous
linear credibility estimator

9(0,) = m+ Z,[T, — E(Tp)] (4.18)
where i brZ,
P ar + 612,
and .
Z, = ; Zp;

br = Var{E[Tp(Fxje,)|}
ar = E[Var(Tp, FXIQP)]

Again, one has to be careful to distinguish between Z, and Z,.

We stop here as we believe that obtaining robust estimators at the con-
tract level is sufficient when the data set is important enough. A robust
estimator at the subportfolio level can be obtained with the robust estima-
tors at the contract level. A suggested way would be using an average of the
robust estimators at the contract level.
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Chapter 5

Results and Conclusions

This chapter is divided in the following manner: we first start by presenting
the data set used to illustrate some of the models presented in the previous
chapters. The following section consists of a brief summary of each of the
models and the results obtained for each of these models with the illustrative
data set. Finally the third and last section consists of a global comparison of
the results and some suggestions on how to use the models, the limitations
of the models and the data sets they may apply to.

5.1 Presentation of the Data Set

The illustrative data set we use is the well known Hachemeister data set (see
Goovaerts et al.(1987), pp.31-32). Hachemeister considered five different
states and twelve quarters of claim experience. This experience consists of
average claim amounts for total private passenger bodily injury insurance
from July 1970 until June 1973. Hence we have k = 5 contracts and £ = 12
periods. We also remark that since the Hachemeister data set consists of
claim averages, all averages are greater than zero. To illustrate the limitations
of the models and the effects of outliers, we will contaminate the data for
the last period of state 5 (contract j = 5) and observe the differences in the
estimation of the parameters.
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Table 5.1: Hachemeiste; Cl

irp Data Set

Claims | j=1

j=2

j=3

=4

=5

r= 1,738
21,642
31,794
4 12,051
512,079
6 | 2,234
72,032
8 12,035
92115
10 | 2,262
11 | 2,267
12 | 2,517

1,364
1,408
1,597
1,444
1,342
1,675
1,470
1,448
1,464
1,831
1,612
1,471

1,759
1,685
1,479
1,763
1,674
2,103
1,502
1,622
1,828
2,155
2,233
2,059

1,223
1,146
1,010
1,257
1,426
1,532
1,953
1,123
1,343
1,243
1,762
1,306

1,456
1,499
1,609
1,741
1,482
1,572
1,606
1,735
1,607
1,573
1,613
1,690

For each of the claim averages above, there is an associated weight. These
weights reflect the number of claims corresponding to these averages.

Table 5.2: Hachemeister Associated Weights

Weights | j=1

=2

j=3

j=4

j=5

r = 7,861
29,251

31| 8,706
4 | 8,575
517917
6 | 8,263
7 | 9,456
8 1 8,003
917,365
10 | 7,832
11| 7,849
12 ] 9,077

1,622
1,742
1,523
1,515
1,622
1,602
1,964
1,515
1,527
1,748
1,654
1,861

1,147
1,357
1,329
1,204

998
1,077
1,277
1,218

896
1,003
1,108
1,121

407
396
348
341
315
328
352
331
287
384
321
342

2,902
3,172
3,046
3,068
2,693
2,910
3,275
2,697
2,663
3,017
3,242
3,425

Observe that the number of claims in state 1 is rather high compare to
other states. The same observation applies but to a lesser extent, in state 5.
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5.2 Results

5.2.1 Biihlmann’s Classical Model

Consider a portfolio consisting of & contracts described by (8;, X;) with t =
12 periods, Vj = 1,...,5. We recall that Biihimann’s credibility estimation
of u(©;) is given in Theorem 1.2:

(8;) = m+ Z(X; —m)
Note that m is estimated by X and Z by the empirical credibility estimator

in Lemma 1.3.
The results obtained with Hachemeister’s data set are:

Table 5.3: Biihlmann’s Premiums
Outlier | 1,690 | 5,000 6,000 7,000

X1 2,064 | 2,064 2,064 ]| 2,064
X, 1,511 | 1,511 | 1,511 1,511
X, 1,822 | 1,822 1,822 | 1,822
X 1,360 | 1,360 | 1,360 | 1,360
Xs. 1,599 | 1,874 | 1,958 | 2,041
Z 0.9496 | 0.7546 | 0.6533 | 0.5521

) | 2,044 | 1,981 | 1,053 | 1,928
) | 1,519 1,563 1,501 | 1,622
4(0s) | 1,814 1,798 | 1,794 | 1,794
) | 1,376 | 1,450 | 1,493 | 1,539
) | 1,602 1,838 | 1,883| 1,915
X 1,671 1,726 | 1,743 | 1,760

Note that as the outlier value increases from 1,690 to 7,000, the estimated
credibility factor Z decreases from 0.9496 to 0.5521.

5.2.2 Kiinsch’s Model

Since Kinsch’s model is a robustified version of Biithlmann’s classical model,
we now compare the results obtained under his model to those above. Here
the estimator of 1(©;) is given in Theorem 3.2 by

M8;)=X +2Z(T;-T)
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We recall that the only differences between Biithlmann’s classical model and
Kiinsch’s model are that m is unknown and that X is replaced by the M-
estimator Tj. For the derivation of the M-estimator T}, Kiinsch recommends
to use ¢; = ¢, = 1 for small samples (Kinsch(1992), p.39). ¢, being the
upper truncation point, we illustrate different choices of ¢, to observe its
effect. We use ¢; = 1 since our portfolio of data consists of claim averages
and hence they are all greater than zero.

Table 5.4: Kiinsch’s Premiums
ci=1lca=1
Qutlier | 1,690 | 5,000 | 6,000 7,000

T, 2064 | 2064 2,064 | 2,064
T 1,511 | 1,511 | 1,511 | 1,511
Ts 1,822 | 1,822 | 1,822 | 1,822
T, 1,360 | 1,360 | 1,360 | 1,360
Ts 1,599 | 1,749 | 1,749 | 1,749
A 0.9496 | 0.8247 | 0.7958 | 0.7668
2(0,) 2044 | 2,025 2,031 2,038
(93) 1,519 | 1,569 | 1,591 | 1,613
(©3) 1,814 | 1826 | 1,839 | 1,852
2(O4) 1,376 | 1.445| 1.472| 1,498
(Os) 1,602 | 1,766 | 1,781 | 1,796

T 1,671 | 1,701 { 1,701 | 1,701

When the claim data for state 5 is not contaminated (i.e. when outlier
value is equal to 1,690), we obtain the same results as with Bihlmann’s
classical model.

However, as the outlier value increases, we note that with Kiinsch’s trun-
cated means, the estimation of the credibility factor decreases more slowly
than with Bithlmann’s model. Also note that the M-estimator for state 5
(Ts) becomes constant and hence so does the average of all the M-estimators
(T'). The resulting estimators of 1(©;) are also more stable, i.e. they slowly
increase with the outlier value.
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Table 5.5: Kiinsch’s Premiums
C; = 1, Cg = 0.5

Outlier | 1,690 | 5,000 | 6,000 | 7,000
T, 2,064 | 2,064 | 2,064 | 2,064
T, 1,511 | 1,511 | 1,511 | 1,511
T 1,822 | 1,822 1,822 1,822
T, 1,360 | 1,360 | 1,360 | 1,360
Ts 1,599 | 1,666 | 1,666 | 1,666
Z 0.9496 | 0.8697 | 0.8419 | 0.8207
(1) | 2,044 | 2,056 | 2,063 2,071
4(02) | 1519| 1,575 | 1,596 | 1.617
4(©3) | 1.814| 1,846 1,859 | 1,872
a(0,) | 1,376 | 1,444 | 1,469 | 1,493
A(0s) | 1,602 | 1,710 | 1,727 | 1,744
T 1,671 ] 1,685| 1,685 | 1,685

With ¢; = 0.5, the truncation occurs at a smaller value than with ¢, = 1
and we therefore obtain an estimated credibility factor Z that decreases more

slowly.

Table 5.6: Kiinsch’s Premiums
ci=1,c0 =2

Outlier | 1,600 | 5,000 | 6,000 | 7,000
T, 2,064 | 2,064 | 2,064 | 2,064
Ty 1,511 1,511| 1,511 ] 1,511
Ts 1,822 | 1,822 | 1,822 | 1,822
T, 1,360 | 1,360 | 1,360 | 1,360
Ts 1,509 | 1,874 | 1,944 | 1,944
Z 0.9496 | 0.7546 | 0.5681 | 0.5268
#(©1) | 2,044 | 1,981 1,927 | 1,930
2(02) | 1,519] 1,563 | 1,612 1,639
4(©s) | 1,814 | 1,798 | 1,789 | 1,803
a0 | 1,376 | 1,450 | 1,527 | 1,559
2(©s) | 1,602 1,838 | 1,859 | 1,867
T 1,671 | 1,726 | 1,740 | 1,740
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With ¢, = 2, the truncation point is larger than with ¢; =1 and it takes
more time for the estimation of Z to stabilize to a smaller value.

5.2.3 Biithlmann and Straub’s Model

Here contract j is still defined by (©;, Xj1,..., Xj12) but to each claim ave-
rage Xj- there is an associated weight wjr. The estimator of u(©;) is given
in Theorem 1.3 by

#(8;) = m + Z;(Xju — m)
Note that m is estimated by X,,,.

Table 5.7:

Bihlmann and Straub’s Premiums
QOutlier | 1,690 { 5,000 | 6,000 | 7,000

Xiw 2,061 | 2,061 ] 2,061 | 2,061
Xou 1,511 1,511 1511 ] 1,511
Xsw 1,806 | 1,806 | 1,806 | 1,806
Xaw 1,353 { 1,353 | 1,353 | 1,353
Xsw 1,600 | 1,914 | 2,009 | 2,103
Z: 0.9847 | 0.8130 | 0.6077 | 0.1954
Zo 0.9276 | 0.4634 | 0.2353 | 0.0460
Zs 0.8985 | 0.3735 | 0.1752 | 0.0322
Zs 0.7279 | 0.1527 | 0.0603 | 0.0096
Zs 0.9588 | 0.6105 | 0.3583 | 0.0805
FACH) 2,055 | 2,018 | 1,997 | 1,979
nED) 1,524 | 1,684 | 1,806 | 1,938
[(O3) 1,793 | 1,823 | 1,881 | 1,954
(1(©4) 1,443 | 1,760 | 1,864 | 1,953
(Os) 1,603 | 1,883 | 1,937 | 1,971

Xow 1,684 | 1,834 | 1,897 | 1,959

We observe that as the outlier value increases, it affects the estimated
credibility factor Z; in a drastic way.



5.2.4 Gisler and Reinhard’s Model

Again we illustrate Gisler and Reinhard’s model after Biihlmann and Straub’s
to show the effect of robustification. Recall that here the pure risk premium
is divided into two components: an ordinary part and an excess part.

The estimator of 1(©;) is given by (3.27):

(12(03) = fizs + o1 + Z5(T; — 1)

We observe that the X jw in Bihlmann and Straub model are replaced by
M-estimators 7; and m by an estimator based on the Tj’s.

Table 5.8: Gisler and Reinhard’s Premiums
c;=1l,co=1
Outlier | 1,690 | 5,000 | 6,000 | 7,000

T, 2,061 | 2,061 | 2,061 | 2,061
T, 1,511 1,511 1,511 | 1,511
Ty 1.806 | 1,806 | 1.806 | 1.806
T, 1,353 | 1,353 | 1,353 | 1,353
Ts 1,600 | 1,777 | 1,777 | 1,777
Z 0.9848 | 0.9315 | 0.9315 | 0.9315
Z, 0.9278 | 0.7300 | 0.7300 | 0.7300
Zs 0.8987 | 0.6511 | 0.6511 | 0.6511
Z, 0.7283 | 0.3606 | 0.3606 | 0.3606
Zs 0.9589 | 0.8307 | 0.8307 | 0.8307
ACH) 2,055 | 2,071 2,001 | 2111
[(©2) 1,524 | 1,608 | 1,628 | 1,648
nED 1,793 | 1,820 | 1,839 | 1,859
EN 1,443 | 1,642 ] 1,661 | 1,681
2(6s) 1,603 | 1,793 | 1,813 | 1,832
Lizs 0| 31.26| 50.94 | 70.62
L 1,684 | 1,756 | 1,756 | 1,756

Again, when the data from state 5 is not contaminated (i.e. when the
outlier value is equal to 1,690), we obtain the same results as with Bithlmann
and Straub’s model. Also notice that even if the outlier value increases, the
estimated credibility factors Zj become constant as the ordinary part is no
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longer affected by the increase. The estimation for ur, the mean ordinary
claims, becomes constant as well. The only part affected by the increase in
the outlier value is the estimation of the mean excess claims, Uzs-

5.2.5 Jewell’s Hierarchical Model

To illustrate Jewell’s hierarchical model, consider a split of Hachemeister’s
data set and form the following subportfolios:

e subportfolio 1: states 1 and 3
e subportfolio 2: states 2, 4 and 5.

Each contract is defined by the set (©,, Oy, Xpj1,- .., Xpje) with P = 2
subportfolios and A, = 5 and t,; = 12, for all contracts. The estimator of
1(Op, ©,p;) is given in Theorem 1.5 by:

(®p, Op;) = my + Zpi(Xpjuw — myp)

Note that m,, is estimated by ijw. We kept the original contract subscripts
I and 3 to allow for a comparison between the previous models and the results
for subportfoiio 1 and 2.

Table 5.9: Jewell’s Premiums
subportfoliol,c; =1,c =1

Outlier 1,690 | 5,000 ] 6,000] 7,000
Xiw1 2,061 | 2,061 | 2,061 | 2,061
Xiwa 1,806 | 1,806 | 1,806 | 1,806
Z 0.4174 | 0.5006 | 0.3971 | 0.2842
Zs 0.0895 | 0.1209 | 0.0828 | 0.0516

2(©1,01;) | 2,035 2,036 [ 2,035 | 2,033
a(©1,013) | 1,997 | 1,986 | 1,999 | 2,011
Xizw 2,016 | 2,011 | 2,017 | 2,022
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Table 5.10: Jewell’s Premiums
subportfolio2,c; =1,ca =1

Outlier 1,690 | 5,000 | 6,000 | 7,000
Xow2 1,511 1,511 1,511 1,511
Xowa 1,353 | 1,353 | 1,353 | 1,353
Xows 1,600 | 1,914 | 2,009 | 2,103
Zs 0.1247 | 0.1660 | 0.1157 | 0.0731
Z4 0.0288 | 0.0400 | 0.0266 | 0.0162
Zs 0.2053 | 0.2655 | 0.1919 | 0.1252
1(02,02) | 1,544 | 1,689 [ 1,753 | 1,821
f1(©2,09) | 1,544 | 1,710 | 1,773 | 1,837
f(02,0495) | 1,560 | 1,775 | 1,827 | 1,877
Xo:w 1,549 | 1,725 | 1,784 | 1,845

The estimation of the credibility factors become unstable for all states,
but is particularly bad for state 3 and 4. This is partly explained by the
small weight values for both of these states.

5.2.6 Proposed Robustified Jewell’s Model

As with Gisler and Reinhard’s model, the pure premium risk is divided into
an ordinary part and an excess part. By anology, the estimator of p(©,, ©,;)
is given by (4.15):

/fl,_.,_.(ep, epj) = /lp—xs + /:LTP + ij(ij — /}/I‘p)

The X,;,, are replaced by M-estimators T,; and m,, is replaced by an estima-
tor based on T5;.
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Table 5.11: Proposed Model’s Premiums
subportfoliol,c; =1,co =1

Outlier 1,690 | 5,000 | 6,000 7,000
T 2,061 | 2,061 | 2,061 2,061
Tis 1,806 | 1,806 | 1,806 | 1,806
Zi 0.8778 | 0.8667 | 0.8667 | 0.8667
Zi3 0.4962 | 0.4714 | 0.4714 | 0.4714

4(0:,091;) | 2,050 2,049 | 2,049 | 2,049
(0:,013) | 1,888 | 1,893 | 1,893 | 1.893
[Ll—rs 0 0 0 0
o, 1,969 | 1,971 | 1,971 ] 1,971

Table 5.12: Proposed Model's Premiums
subportfolio2,¢c; =1,co =1

Outlier 1,690 | 5,000 | 6,000 | 7,000
Toz 1,511 | 1,511 | 1,511 | 1,511
Toy 1,353 | 1,353 | 1,353 | 1,353
Tos 1,600 | 1,716 | 1,716 | 1,716
Zo 0.5879 | 0.5636 | 0.5636 | 0.5636
Zos 0.2274 | 0.2123 | 0.2123 | 0.2123
Zas 0.7214 | 0.7010 | 0.7010 | 0.7010

(02,04) | 1,519] 1,664 1,721 1,778
1(02,00,) | 1,489 | 1,659 | 1,716 | 1,773
f(02,025) | 1,580 | 1,804 | 1,861 | 1,918
H2-zs 0| 118.73 | 175.67 | 232.60
i, 1,529 | 1,590 | 1,590 | 1,590

When comparing the above results to those obtained from Jewell’s classi-
cal model, one notes how the estimators for the credibility factor ij are less
affected by an increase in the outlier value. They in fact become constant.
Since the claim averages are truncated, the estimation of the ordinary part
also becomes constant. The only estimation still affected by an increase in
the outlier value is the excess part.

79



5.3 Conclusions

One cannot rule out the possibility of outlier contamination of data sets
nor can one eliminate them completely. Since the classical models (such as
Biithlmann. Bihlmann and Straub and Jewell’s models) use linear estimators
composed of averages, robustification allows to take the outliers into account
but limits their effect on the parameter estimation.

It becomes obvious by looking at the comparison of the classical models
to the robustified models (Kiinsch, Gilser and Reinhard and the new pro-
posed robustified Jewell’'s models) that there is a gain in robustifying. The
estimators of the credibility factors are more stable, sometimes become cons-
tant and are often greater than with the classical models, especially when
the data set is contaminated. The estimators of the pure risk premium are
also more stable than when compared to the classical models.

Also note that Hachemeister’s data set, used as an illustration, is rather
small. When we split this data set into two subportfolios, the effect of the
outlier is magnified. We suggest to use the robustified models with a larger
data set.

It would be interesting to apply robustification to regression credibility
models such as Hachemeister’'s model.
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