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ABSTRACT

A Second Order Finite Element Method for the Solution
of the Transonic Euler and Navier-Stokes Equations

Guido S. Baruzzi, Ph.D.
Concordia University, 1995

The numerical solution of the compressible Euler and Navier-Stokes equations in
primitive variables form requires the use of artificial viscosity or upwinding.
Methods that are first order accurate are too dissipative and reduce the effective
Reynolds number substantially, unless a very fine grid is used. A first order finite
element method for the solution of the Euler and Navier-Stokes equations can be
constructed by adding Laplacians of the primitive variables to the governing
equations. Second order schemes may require a fourth order dissipation and

higher order elements.

A finite element appruach is proposed in which the fourth order dissipation is
recast as the difference of two Laplacian operators, allowing the use of bilinear
elements. The Laplacians of the primitive variables of the first order scheme are
thus balanced by additional terms obtained from the governing equations
themselves, tensor identities or other forms of nodal averaging. Finally,
considerable speedup in solution execution is obtained by parallelizing
significant portions of the finite element code, namely matrix assembly and the

linear equation solver.

To formally demonstrate the accuracy of this scheme, an exact solution is
introduced which satisfies the continuity equation identically and the

momentum equations through forcing functions. The solutions of several
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transonic and supersonic inviscid and laminar viscous test cases are also

presented and compared to other available numerical data.

Furthermore, the numerical error stemming from an arbitrary distributed mesh
can be reduced by dynamically adapting the grid to the solution. The adapting
method presented, applied but not restricted to structured meshes, is based on a
spring analogy, where each grid line is assumed to consist of springs connecting
each pair of nodes. Each spring coefficient is proportional to the gradient of a
selected solution variable. The adaptation criterion is tl.e mirimization of the
energy stored in the springs of each mesh line, for which there exists a variational
principle. The variational integral is discretized using the finite element method
and the resulting system of equations of each line of the structured grid is solved
using a tridiagonal solver. Additional constraints can be introduced to enforce a
measure of orthogonality and smoothness in the adapted grid. This procedure is
applied to supersonic flow over a wedge, Lo underline the substantial

improvement in the quality of the results that this method can provide.
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1. INTRODUCTION

From an aerodynamicist's standpoint a major goal in aircraft design is to obtain
the required amount of lift with a minimum of drag, so as to minimize the costs
incurred in producing the thrust needed to fly. The behavior of viscous fluids is
modeled by a set of nonlinear conservation laws for mass, momentum and
energy: the Navier-Stokes equations. Whereas both lift and drag strongly depend
on the aerodynamic body geometry, the drag is particularly influenced by
viscous effects. Except for simple geometries and flow conditions, few analytical
solutions can be derived for the Navier-Stokes equations. While such solutions
are of great value to physical understanding, they find limited practical
application because of the simplicity of the situations they cover. The numerical
prediction of the drag is the weak link in the aerodynamics design process and is

the current focus of computational aerodynamics research [Rubbert (1991)].

Currently, engineers still depend greatly on wind tunnel experiments of scaled
models to gain better insight into the properties of proposed designs. Despite the
continuing successes and a considerable amount of experience derived from such
tests, it is virtually impossible to simultaneously match the Mach and Reynolds
numbers of the model and the f{ull-scale aircraft. Correlations must then be used
to extrapolate the behavior in flight from wind tunnel measurements. A few
cryogenic tunnels can be used to alleviate this problem, but their availability is
severely limited and their cost prohibitive, providing an added economic
justification for the development of cost-effective computational techniques

suitable for modern civil transports flying in the transonic regime.



The numerical solution of the Navier-Stokes equations still has to wait for the
emergence of sufficiently powerful computers able to handle their exceedingly
demanding algorithms. Currently available computers do not have even a
fraction of the power required to study the full spectrum of turbulent
fluctuations characteristic of fluid flows. The direct numerical solution of the
Navier-Stokes equations is confined to the study of the mechanisms that generate
and sustain turbulence and to provide explanations for the causes and effects of

this phenomenon [Bestek et al. (1992), Lesieur, Comte and Metais (1992)].

The numerical approaches most in use today for viscous flows are based on the
solution of the Reynolds-averaged Navier-Stokes (RANS) equations, obtained
from the governing equations through a time-filtering process to eliminate the
small-scale fluctuations. The effect of turbulence in the solution of the RANS
equations is provided through suitable models, used to simulate the Reynolds
stress terms introduced by the averaging process [see Jaeger and Dhatt (1992) for
an informative review]. Direct numerical simulation also plays a role in
providing a database for the calibration of the wide variety of turbulence models

used in conjunction with the RANS equations [Miner ef al. (1991)).

The Euler equations are a simpler subset of the Navier-Stokes equations for the
simulation of high-speed flows outside the boundary layers, obtained by
ignoring the viscous lerms. From the computational point of view, even though
no information regarding the viscous friction forces can be obtained, the Euler
equations are an important stepping stone towards the solution of the
compressible Navier-5tokes equations because they can reproduce the physics of

wave propagation, an important feature of high-speed flows.




An artificial viscosity must be added to the Euler equations, which have no
entropy control mechanism, for the dual purpose of preventing the numerical
occurrence of unphysical phenomena, such as expansion shocks, and
suppressing the instabilities that can be caused by a symmetric discretization of
the first order derivatives. Even for the Navier-Stokes equations, in which the
molecular viscosity is the dissipative mechanism that permits the formation of
compression shocks, an additional artificial viscosity must be included, partly to
ensure the overall stability of the numerical schemes and partly because the grids

used for the solutions are not sufficiently fine to capture the physics of shocks in

detail.

1.1. Monotonicity and Total Variation

Research on the numerical discretization of scalar conservation laws or
hyperbolic systems with constant coefficients has led to a greater understanding
of the numerical difficulties associated with modeling wave phenomena. In
particular, two important concepts have emerged: monotonicity and control of

total variation. A scalar conservation law is written in the general form

ou  of(u)
ot * ox 0 (1.1)
with the initial condition
u(0,x)=g(x) on —o0< X <00 (1.2)

where u is the dependent variable and f(u) is a flux function. The solutions of this
scalar conservation law may admit discontinuities. However, since there is no
entropy control mechanism present, both expansion and compression shocks can
appear. The solution is said to be monotonic if the entropy can only increase in
the direction of the flow. This property is violated if spurious oscillations are

present in the numerical solution, particularly in the vicinity of a shock.



The other concept that has emerged is that of total variation diminishing, i.e.
TV[u(t™,x)) < TVIu(t", x)] (1.3)
where the total variation is defined as

TV[u(t" ,x)] = i‘lu,+1 -, (1.4)

= oo

Even though it has not been proven that the TVD property exists for nonlinear
multidimensicnal systems of conservation laws, such as the Euler equations, the
schemes developed for scalar conservation laws provide a general guideline for
the construction of schemes for the Euler equations with high shock resolution,

which are also free from spurious oscillations.

1.2. Discretization Methods

The numerical discretization methods available for the study of the Euler and
Navier-Stokes equations in primitive variables form can generally be divided

into four main classes:
i) Finite difference methods,
ii) Finite volume methods,
iii) Finite element methods,
iv) Boundary element methods.

Some schemes do not fit precisely in these categories, such as control volume-
based finite elements and others, but are rather combinations of two different
methods in an attempt to capitalize on the favorable characteristics of both. The

boundary element methods, while meeting some success for incompressible



flows, have not found any application in viscous transonic flows and hence will

not be included in the discussion.

1.3. Finite Difference Schemes

Boris and Book (1973) outline a Flux Corrected Transport (FCT) scheme for the
solution of scalar conservation laws based on a two-step, predictor-corrector
procedure: the transport stage and the correction (anti-diffusion) stage.
Hoffmann and Chiang (1993) give a simple example of this algorithm using the
Lax-Wendroff scheme as the transport stage. This step conserves the flux but is
quite diffusive. A flux-based corrector step is then introduced to diminish the
error of diffusion and, at the same time, preserve monotonicity. A limiter
function acts on the flux corrector to suppress oscillations by not allowing local
extrema to grow. In a sense, the FCT algorithm is a precursor of the TVD

schemes that will be mentioned in this survey.

Beam and Warming (1976) have developed one of the first successful implicit
procedures, based on central differencing, for the solution of the 2-D Euler
equations on structured grids. The time-stepping scheme is based on the
integration of the time derivative with a trapezoidal formula, while the flux
vectors of the governing equations are linearized with a truncated Taylor
expansion. The implicit operator is the product of two one-dimensional operators
that are solved sequentially in an Alternating Direction Implicit (ADI) manner.
The ADI factorization requires the decomposition of a pentadiagonal matrix for
each grid line, instead of a large global matrix, which results in an appreciable
reduction in storage. A fourth order artificial viscosity provides global second
order accuracy, while an artificial viscosity in the form of Laplacians of the

conservative variables is used for shock capturing. Two- and three-dimensional



versions of this scheme have been implemented by Steger (1978) and Pulliam and
Steger (1980) and the method has been considerably improved by Pulliam (1985)
and Pulliam and Barton (1985).

Variant of this scheme, using flux-vector splitting, have also been introduced.
Later, Pulliam (1985) as well as others have shown that such flux vector splitting
with forward and backward differencing are equivalent to a symmetric
discretization with an added artificial viscosity. Webster and Shang (1991) have
used Pulliam's code, ARC3D, to study t* 2 supersonic turbulent viscous flow over
a delta wing at high Reynolds numbers and high angles of attack. In another
application of the Beam and Warming scheme, Miyakawa ¢t al. (1987) have
conducted a 3-D simulation of high-Reynolds number transonic viscous flows

over a wing-body configuration.

Harten (1983), Yee and Harten (1987) and Yee (1989) have developed a new class
of explicit and implicit monotone schemes, based on the Total Variation
Diminishing (TVD) property of scalar conservation laws or hyperbolic systems.
Some of these schemes, based on central differencing, have an artificial viscosity
that can switch the stencil bias from upwind to downwind according to the signs
of the characteristics of the coefficient matrices of the system of governing
equations. The TVD property essentially provides a feedback mechanism that
suppresses oscillations of the solution near local maxima and minima. An anti-
diffusive flux is incorporated to ensure second order accuracy, but it must be
turned off by a limiter near shocks to prevent violations of the TVD property.
Several different limiters have been studied by Sweby (1982, 1985) and others.
However, Roe and van Leer (1988) have shownr that limiters may produce
spurious solutions not related to the real solution of the governing differentia:

equations.



When 2-D or 3-D curvilinear geometries are encountered, or if non-uniform grids
are required, a considerable degree of complexity is introduced and the
simplicity that originally made the finite difference discretization method
popular quickly vanishes. Usually, a mapping that transforms the geometry into
a rectangle or a square computational domain is required, along with an inverse
mapping to revert from the computational to the physical domain. For complex
geometries, the finite volume method has proven to be a more efficient
discretization method that retains part of the original simplicity of finite

differences without suffering from the same limitations.

1.4. Finite Volume Schemes

During the last fifteen years the finite volume method has become one of the
most, if not the most, widely used discretization technique in the CFD

community.

Perh=ms one of the most visible applications of this discretization procedure is
the explicit time-marching scheme for the solution of the Euler equations
developed by Jameson (1985) for aerodynamic components and then for a full
airplane. He proposed a multi-stage Runge-Kutta time-integration approach and
a symmetric discretization with an added fourth order artificial viscosity in the
form of a biharmonic operator for global second order accuracy and a Laplacian
operator for shock-capturing. The additicn of multigrid convergence acceleration
improved the convergence properties considerably. Mavriplis (1987) and
Mavriplis and Jameson (1990) have extended this scheme to unstructured non-
nested triangular grids for inviscid flows over multiple airfoils. By using linear
triangular elements and lumped mass matrices, they have also shown that this

scheme is equivalent to a Galerkin finite element formulation.



Cambier and Escande (1990) have proposed an explicit finite volume scheme for
the simulation of three-dimensional shock wave-turbulent boundary-layer
interaction in inte~nal flows. The time-marching scheme is based on a two-step
form of the Lax-Wendroff method with multigrid convergence acceleration.
Staggered grids are used: the first step consists in updating the fluxes at the
centers of the control volumes, while in the second step the fluxes are updated at
the nodes. An artificial viscosity in the form of a non-linear symmeiric second
order term and a fourth order symmetric linear operator is added for shock

capturing and stability.

Recently Jameson (1993) has incorporated several high resolution symmetric and
upwind flux formulae into his finite volume scheme to improve shock resolution.
Using these schemes and an algebrzic turbulence model, Tatsumi, Martinelli and
Jameson (1995) have captured transonic high-Reynolds-number viscous solutions
for flows over airfoils and wings. A comparative study of different flux formulae

for upwind schemes is also provided by van Leer et al. (1987).

The high resolution schemes, such as the TVD methods mentioned in the
previous section, can be viewed as modifications of the classical flux splitting
technique. The flux splitting method consists in linearizing and separating the
fluxes of the governing equations ii\to a positive part convected downstream and
a negative part convected upstream. Van Ransbeeck and Hirsch (1993) have
developed finite volume schemes for the solution of the 2-D Euler and Navier-
Stokes equations, based on a multidimensional approach to the flux splitting
technique, to model more accurately the multidimensional nature of wave
propagation. These schemes are more robust and may not suffer from grid-
induced problems when strong discontinuities present in the solution are not

aligned with the grid.



The eftort to produce monotone schemes which can convect waves with the
correct propagation velocity and capture both compression waves and contact
discontinuities within few grid points has led to several interesting schemes for
the solution of the 1-D Euler equations based on different forms of wave tracing.
These methods are based on Godur.ov's scheme, in essence an explicit method
that advances the solution to the next time level by solving a set of one-
dimensional Riemann problems, thereby projecting each separate wave along its
characteristic direction. Godunov's scheme is first order accurate because the
data is assumed to be piecewise constant between nodes. However, van Leer
(1979) has extended it to second order accuracy by considering a linear
distribution of the data between the nodes. This scheme is called Monotonic
Upwind Scheme for Conservation Laws, or MUSCL. In an effort to capture
contact and entropy discontinuities with higher accuracy, Yamr.amoto and
Daigujii (1991) have developed a fifth-order-accurate upwind scheme and a
fourth order-accurate TVD scheme. The higher order schemes are obtained by
introducing additional terms and widening the stencil of the second-order flux

formula.

The characteristics of nonlinear systems of equations are curved, hence at each
time step an additional iterative procedure must be introduced to accurately
compute their trajectory. To avoid this complication, Roe (1981) has shown that
for approximate discrete solutions it is not necessary to solve the Riemann
problem exactly as long as the general non-linear behavior is respected. Unlike
Roe, Osher and Chakravarthy (1983) use an integration scheme for the solution of
the approximate Riemann problem. A good review of these methods can be

foundin the articles of Roe (1986) and Harten et al. (1987).
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These complex schemes are not easily extended to higher dimensions. In two
space dimensions the characteristics are conical and the picture is even more
complex in three dimensions, where the number of waves increases and the
characteristics propagate in an infinite number of directions. However, Rumsey,
van Leer and Roe (1993) have obtained solutions for two-dimensional inviscid
flows over airfoil geometries using a finite volume multistage time-marching

scheme.

1.5. Finite Element Schemes

Some finite element schemes for the solution cf the Navier-Stokes equations are
based on Galerkin weighted residual integrals, wh re the weights are identical to
the shape functions used to interpolate the u .knowns across each element.
Schemes that use weights that differ from the shape functions are called Petrov-

Galerkin weighted residual methods.

Hood and Taylor (1974) introduced one of the first Galerkin finite element
schemes for the solutirm =€ the incompressible 2-D Navier-Stokes equations in
primitive variables form. In the absence of an artificial viscosity, stable finite
ditference approximations require staggcred grids for pressure and velocity. The
Galerkin finite element scheme of Hood and Tay'or dispenses with the
inconvenience of dual meshes by using unequal order elements for pressure and
velocity. The combination of quadratic interpolatiun for velocity and linear for
pressure or cubic interpolation for velocity and quadratic for pressure produces

stable and accurate solutions.

Fortin and Fortin (1985) have extended the concept of unequal order
interpolation to otier types of elements. They construct new elements for the

velocity by adding internal nodes to the standard triangular and quadrilateral
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elements. The extra node supports a bubble function, so-called because it
resembles a bubble over the element, which has value of one at the internal node
and is zero on the perimeter of the element. It can be shown that the bubble
function is equivalent to adding an artificial viscosity. The effect of the new extra
node can be transferred to the corner nodes of the element in a procedure called
static condensation. In this case, no new degrees of freedom are added to the
solution of the problem, while stability is maintained. Boivin and Fortin (1993)
have used unequal order triangular elements of this type and added an artificial
viscosity to solve the compressible 2-D Navier-Stokes equa.ons for flows with

shocks.

Fletcher (1979) devised a least-squares method for the steady Euler equations
based on group variables, where the group variables are the entries of the flux
vectors. If the energy equation is not sclved, the scheme has six variables instead
of the customary three. However, the discretization leads to a symmetric matrix
and from the computational standpoint the penalty in storage and solution times
is not excessive. The least-squares method is naturally dissipative and no

artificial viscosity is required.

Jiang and Carey (1990) introduced a least-squares method for the Euler equations
in primitive variables form. The method is based on a Newton linearization and a
backward-Euler first order time-accurate formula for the time derivative. An
artificial viscosity was, however, added io control the instability arising with

higher order elements.

Lefebvre, Peraire and Morgan (1993) have also applied the least-squares method
to the solution of the Euler equations in 2-D, and they also used an implicit time-

marching scheme obtained by discretizing the time derivative with a backward
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difference They obtained solutions with strong shocks for supersonic flows over
a circular cylinder and for transonic airfoils, using both linear and quadratic
triangular elements, with an adaptive mesh refinement strategy but without the

addition of artificial viscosity terms.

Hassan, Morgan and Peraire (1990) adopted a flux-corrected transport strategy to
reduce the effects of the artificial viscosity and improve the quality of the
solution. Lyra, Morgan, Peraire and Peir6 (1994) have formulated an explicit
multistage TVD edge-based Galerkin finite element scheme for unstructured
meshes. A variety of upwind and symmetric limiters have been developed for

the solution of inviscid flows with strong shocks.

Lohner, Morgan and Zienkiewicz (1984) used a Galerkin finite element
discretization of the explicit Lax-Wendroff scheme to solve the Euler equations.
An added artificial viscosity is required to capture shocks. Lerat (1985) has
shown that a simple implicit predictor-corrector scheme can be constructed, with
the Lax-Wendroff scheme as the predictor and a corrector step based on an
approximation of its first truncation error term. The convergence rate improves
dramatically and shocks can be captured within two mesh points. A one-
dimensional finite element discretization of this scheme has been reported by

Baruzzi (1989).

Hughes and Brooks (1982) and Tezduyar and Hughes (1983) have adopted the
Petrov-Galerkin weighted residual strategy for the solution of the Euler
Equations. In this method the weight functions are equal to the finite element
shape functions with an added perturbation which depends on the solution and
must be adjusted at each iteration. There are strong similarities between this

method and the least-squares method.
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Bey and Oden (1991) have developed a Runge-Kutta time-marching scheme
based on discontinuous finite elements (RKDG) for the solution of the Euler
equations. While the finite element shape functions are continuous inside each
element, they are normally discontinuous at the edges. A constraint can be
introduced to ensure that the fluxes are continuous at the element interfaces.
While this constraint cannot satisfy monotonicity and the TVD condition
together, by relaxing the TVD property into a Total Variation Bounded (TVB)
condition the total variation is allowed to increase within some bound, as long as
the solution remains smooth. Shocks not aligned with the mesh can be captured

within two grid points.

Nicolaides (1993) has outlined the principles underlying the co-volume
approach, which uses complementary pairs of control volumes, such as the
Delaunay-Voronoi mesh pairs, to discretize the fluxes, in an effort to find lower
order methods of discretization which do not produce spurious pressure
solutions. The Delaunay-Voronoi mesh pairs have the property that the edges of
each set of control volumes are perpendicular to the faces of the other set of
control volumes, hence the velocity vectors normal to one control volume are
tangential to the other. By evaluating the divergence of velocity on the faces of
the triangles and the curl of velocity on the boundary of the Voronoi tessellation,
the scheme exploits the orthogonality of the boundaries of the two control
volumes to provide a stable discretization of system of equations containing curl
and divergence terms, such as the Navier-Stokes equations. Natural boundary
conditions are provided by the continuity equation, while the curl component is
used to enforce no-slip at the walls. Unlike traditional discretizations, which

employ two velocity components and one control volume, this method uses one
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velocity component normal to the faces of the triangulation and two control

volumes.

Masson, Saabas and Baliga (1994) have proposed a Control Volume Finite
Element Method (CVFEM) that attempts to exploit the positive aspects of the
finite volume and finite element formulations for the solution of the
incompressible Navier-Stokes equations. The triangular elements posses linear
shape functions, similar to finite elements, however the integration of the
governing equations is performed on control volumes surrounding each node,
instead of over the surface of each element. Special care must be exercised to
prevent the appearance of negative coefficients in the discrete governing

equations, which would generate instabilities.

1.6. Justification for the Proposed Finite Element Method

All of the discretization methods mentioned in the previous sections have
attractive features that can be applied effectively to the construction of robust
schemes for the solution of the Navier-Stokes equations. The finite element
method, however, offers some advantages over other techniques: natural
boundary conditions, geometric flexibility, and the possibility of building a
library of specialized elements that may be easily interchanged or combined for

special purposes.

In particular, for turbulent flows it is possible to construct elements that mimic
the logarithmic behavior of the velocity near walls, removing the need to replace
the solution of the governing equations in near-wall elements with empirical wall
functions [Haroutunian and Engelman (1991), Manouzi and Fortin (1991),
Cochran (1992)]. Even though turbulence models are noi covered in this

dissertation, the possibility of including logarithmic elements is in itself a
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sufficient reason to warrant the selection of the finite element discretization
technique for the present work, in anticipation of its eventual extension to the

solution of high Reynolds number turbulent flows.

1.7. Justification for the Proposed Artificial Viscosity Scheme

The schemes for the numerical solution of the Euler equations in primitive
variables form require the use of artificial viscosity or of upwinding to eliminate
odd-even decoupling and for numerical stability. The viscous terms of the
compressible Navier-Stokes equations at high Reynolds numbers, on the other
hand, are dominant only in a thin layer outside which the flow is nearly inviscid.
For numerical stability, an artificial viscosity is needed in the outer inviscid
region, however it must be minimized throughout the viscous layer, or be
eliminated altogether, in order not to contaminate the numerical solution with

artificial dissipation.

The various types of formulations for the solution of the compressible Euler and
Navier-Stokes equations that were reviewed in the previous sections can be
classified as either artificial viscosity-based or as upwind-biased. The first type
uses symmetric discretization operators with the addition of an artificial viscosity
(with a symmetric operator) for stability and to eliminate unphysical phenomena.
To bias the computational stencil in a preferred direction, the second type of
schemes uses either directional operators or symmetric operator, but with an
artificial viscosity that is not symmetric. Symmetric schemes with artificial
viscosity are simple and are well-suited fc a canonical inite element
formulation, whereas TVD and Godunov-type upwind schemes are more
complex than symmetric schemes and trade better resolution for an in-rease in

computational cost and complexity.
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Baruzzi, Habashi and Hafez (1989, 1991) had proposed a simple first order
artificial viscosity in the form of Laplacians of the pressure and velocity
components, added to the continuity and momentum equations, respectively.
The amount of artificial viscosity necessary for stable solutions of such first order
methods is proportional to the mesh size and its detrimental effects can only be
reduced by mesh refinement. However it is impractical to use a uniformly fine
mesh throughout the solution domain, and a cost-effective grid should reflect the
disparate characteristic lengths of the viscous and inviscid regions. A practical
alternative to fine meshes would be either to adopt a higher order artificial
viscosity, dynamically adapt the grid to the solution or, preferably, a

combination of both.

The existing first-order-accurate finite element solver could be extended to
higher order by replacing the Laplacians of the artificial viscosity with fourth
order uperators, requiring high-order elements, or by introducing an upwind
formulation along the lines of the high-resolution TVD or Godunov's schemes
reviewed in the previous sections. Both options would have resulted in the
formulation of a very complex method. To avoid this, an alternative is to recast
the fourth order artificial viscosity as the difference of two second order
Laplacian operators. Thus, the Laplacians of the first order scheme can be
balanced with correction terms, effectively yielding a fourth order dissipation.
This type of scheme has been tested in the context of viscous incompressible
flows by Hafez and Soliman (1991), for transonic inviscid flows by Fernandez
and Hafez (1991) and for transonic viscous flows by Baruzzi, Habashi and Hafez

(1992a, 1992b).

The present work is a natural continuation of previous research work for a

Masters degree [Baruzzi (1989)]. It formalizes a common second order approach
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framework and addresses the issue of solution acceleration and precision by
parallelizing the major time-consuming parts of the finite element code, namely
assembly and matrix solution, and developing a mesh adaptation algorithm for

accurate and cost-effective capture of shocks and other flow features exhibiting

high gradients.
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2. THE EULER AND NAVIER-STOKES EQUATIONS

The full Navier-Stokes equations constitute a set of non-linear conservation laws
for mass, momentum and energy. These conservation laws provide an accurate
mathematical model of the physics of fluid flow. However, due to the
considerable variations in the spatial and temporal scales of the gradients of the
flow velocity, pressure and density, which may d ifer by several orders of
magnitude from one region to another, their numerical solution requires
resources that greatly exceed the capability of even the most advanced
supercomputers available now or expected to come into service in the near

future.

A more manageable set of equations can be obtained from the full Navier-Stokes
equations by filtering out the small-scale temporal variations with a time-
averaging process. The modified equations, known as the Reynolds-averaged
Navier-Stokes equations, are valid for laminar viscous flows only, but can be
adapted to the solution of turbulent flows with the addition of suitable models

for the Reynolds stress tensor resulting from the averaging proceciure.

For flows at moderate or high Reynolds number the effects of viscosity are
confined to thin layers near the solid surfaces in contact with the fluid, while the
bulk of the flow can be considered to be virtually inviscid. For a sufficiently
smooth flow, the thickness of these layers vanishes in the limit as the Reynolds
number approaches infinity, hence the flow in this conditions is convection-
dominated and reasonable solutions can be obtained even if the effect of viscosity

is completely neglected.
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Because of the mathematical and co aputational complexity associated with the
viscous stresses, the initial effort in the development of large-scale numerical
simulation techniques for compressible flows was initially directed towards the
apparently simpler Euler equations, obtained from the Navier-Stokes equations

by neglecting the viscous terms.

For transonic flows the Euler equations form a set of non-linear, strongly-coupled
conservation laws, therefore their numerical solution, which may contain
discontinuities or singularities whose positions are not known a priori, poses
considerable difficulties. Furthermore, by itself the discretization of the
governing equations is not sufficient to produce a solution. The formulation of a
well-posed problem requires the specification of boundary conditions that are

both physically relevant and mathematically valid.

In this chapter the nature of the Euler equations is analyzed in some detail and
the outline of a rational approach for the specification of the boundary conditions
for this system of equations is provided. The rules obtained from this analysis are

subsequently extended heuristically to the Navier-Stokes equations.

2.1. Mathematical Classification of the Euler Equations

The Euler equations in the compressible conservative variables form can be
written in vector-matrix notation as follows

au+3£+£=0 2.1)

TR A

The vectors U, E and F are defined as

P pu pU

2 v
pv puv pv’+p
pe u(pe+p) v(pe + p)
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An additional relation is required to express the pressure as a function of the
other variables. The equation of state, which defines the link among pressure,
density, velocity and energy, represents a local scalar property and not a global
conservation law. For this reason it appears separately from equation (2.1) and is

written in the form

P=(Y—Up(e-£i§21} (2.2)

More information on the nature of Eq. (2.1) can be gathered by recasting the flux

vectors E and F in terms of the vector of the conservative variables U. Thus

Jau au au
—a—t-'}-A—a—x-'l'BE—O (2‘3)

The coefficient matrices A=0EfdU and B=dF/dU are the Jacobians of the flux
vectors E and F with respect to the conservative variables U. The components of

these matrices are shown below.
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where ¢ is the local speed of sound, obtained from Eq. (2.2) and defined as
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Y 2

c2=7§=7(7—l)te-" ;vz) (2.4)

To compute the eigenvalues of A and B, which are the characteristic speeds at
which information is transmitted from one region of the fluid to another, let
(A-As0)X, =0 (B-Apl)Xy=0 (2.5)
where (4,,4;) are the eigenvalues of A and B, respectively, (}?A,f(,,) are the
associated left eigenvectors and I is the identity matrix. The eigenvalues of the

matrices A and B are

Ap={u,uu+c,u-c} (2.6a)

Ag={v,v,v+c,v-c} - (2.6b)
Furthermore, each Jacobian matrix can be rewritten as a function of the diagonal

matrix of its eigenvalues, such that

A=X,D, X} B=XyDyXp'
D, = diag(u,u,u+c,u-c) Dy = diag(v,v,v +c,v-¢)

X, and X, are the matrices formed by the eigenvectors of A4 and B, and are

shown below.
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Their inverse matrices are

[ i i ) ]
- : 0 : 1 : 0
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Since the eigenvalues of A and B are real, the system of PDE; (2.1) or (2.3) is
hyperbolic. In addition, since the coefficient matrices A and B are functions of the
solution variables, the Euler equations are classified as non-linear hyperbolic

wave equations, where the waves are represented by the eigenvectors X.

If the fluid is moving, some of the waves produced by the fluid particles are
carried by the particles themselves, while others emanate radially outward from
the moving particles. Since all vectors in two-dimensions can be represented by
two independent components, the eigenvalues are the x- and y-componer:ts of

the actual speeds at which the waves propagate, namely the velocity of the
particle |V|=«]u’ +v? and the velocity of the particle plus the additional signal

speed ll7+E‘|. Note that, even though the fluid particles are moving in a definite

direction, some of the waves that they emit radiate outwards along circular

fronts (spherical fronts in 3-D), hence for subsonic flow |V+El may have

components directed upstream as well as downstream. In general, four
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characteristic speeds, or simply characteristics, are identified, namely

(V,V,V+c,V-c).

From Egs. (2.6), if 0<[V|<c it follows that three characteristics are positive and

one is negative. For supersonic flows 0<c<|f/", all the characteristics

(V,V,V+c,V-c) are positive, nevertheless one or both of the velocity components

(u,v) may actually be subsonic.

Four

different cases for the boundary conditions on the state vector

U ={p,pu,pv.pe}’ can be identified:

i) At a subsonic inflow boundary, ¢ <|V|< ¢ and according to the signs of the

ii)

iii)

characteristics, three waves are entering the domain and one is exiting.
Since part of the information reaching the boundary comes from the
interior of the domain, only three boundary conditions for the state vector
are required, and these are customarily, but not necessarily, the values of
(p, pu,pv). The outgoing wave carries information from inside the domain
to the boundary, hence the boundary condition on the fourth component
of the state vector is replaced with a value extrapolated from grid points

inside the solution domain.

At a supersonic inflow boundary, 0<c<|V|, therefore all four
characteristics are positive, four waves are entering the domain and all
four values of the state vector are specified.

At a subsonic outflow boundary, 0< i\'/' <c, hence three characteristics are

positive and one is negative. Three waves are exiting the domain and one
is entering. Three boundary conditions for the state vector are replaced

with formulae to extrapolate the values of (p,pu,pv) from inside the
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domain to the boundary, while the last condition, usually the value of (p¢)

or (p), is specified.

iv) At a supersonic outflow boundary 0<c<|¥7l, all four characteristics are

positive, hence all the values of the state vector are extrapolated from the

interior of the solution domain to the boundary.

Finally, it will be shown in the following chapters that one of the advantages of

using a finite element discretization is that it is unnecessary to explicitly replace

some of the boundary conditions with extrapolation formulae.

2.2. Steady-State Euler Equations — Mixed “rrmulation

If the numerical scheme for the solution of the Euler equations is specifically

designed to capture only the steady-state solutions, it may be convenient to

neglect the time derivatives in Eq. (2.1) and write the Euler equations in the form

Following Anderson et al. (1984), Eq. (2.7) can be rewritten as

where

— ——

dx dy

JW oW

N Ao
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uv -c? _
. P,
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(

0

0

0

u2—c

‘)

4

(2.7)

(2.8)

W is the vector of primitive variables and A is obtained from the Jacobians of E

and F with respect to the vector w.



25

The eigenvalues of the coefficient matrix A are

Ay =2 (2.9a)
u

A =2 (2.9b)
U

i +v? — 2

u -c

PO u?+v? - c? (2.9d)

©? —c*

The first two eigenvalues are real, while the last two eigenvalues are imaginary
for subsonic flow, when 0<V?=u?+v? <¢?, and real for supersonic flows, when
0<c?<V?=u? +2%. Thus this formulation has a mixed nature, elliptic for subsonic
flows and hyperbolic for supersonic flows. This mixed nature can create
difficulties in the implementation of the numerical solution schemes, limiting
them to the solution of supersonic flows. Furthermore, the numerical schemes
that could be developed for the solution of this system of equations may not be
extended to the time-dependent form of the Euler or Navier-Stokes equations,

limiting their usefulness.

2.3. Steady-State Euler Equations — Hyperbolic Formulation

In this form, the time derivatives are also discarded and the Euler equations are
writlen in the form of Eq. (2.7). The solution vector can either be based on the
conservative variables U ={p,pu,pv,pe}’ or any other set of primitive variables, for
example Q={p.u,v,¢}’, as for example in Baruzzi, Habashi and Hafez (1989). To
reduce the system from four to three equations [Lytton (1987)], it is possible to
avoid solving the energy equation by assuming that the total enthalpy is constant
everywhere in the solution domain, provided that the following four

assumptions are valid:
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i) the flow is steady,
ii)  the effect of heat-transfer is negligible,
iii)  the total enthalpy is constant along the entire boundary,
iv)  the fluid is chemically inert.

In this case the energy equation has the form

%[u(pe+p)]+—§y—[v(pe+p)]=0 (2.10)

The symbol e represents the total energy per unit mass of the fluid, which is the
sum of the internal and the kinetic energy, hence the term (pe + p) can be recast in

the form

p 109 9 P]
e+p=ple+=~ |=ple; +=(ut +1 )+ L+ (2.11)
pery p( P) p[' 2( ) p

where ¢ is the internal energy per unit mass and (1? +v?)/2 is the kinetic energy.

Eq. (2.11) can be rearranged to yield
p.1 kel -
e,+;+5(uz+vz)—h+5(uz+v2)-H (2.12)

where H is the total enthalpy per unit mass. The energy equation can be recast in

terms of the total enthalpy after substituting Eq. (2.12) into Eq. (2.10). Hence
F) J )
E;(puH)+E(va)- 0 (2.13)

Eq. (2.13) can be simplified even further by using the continuity equation from

the system of equations (2.1), to produce the final energy equation

and therefore

H =const.



27

provided that the total enthalpy is constant along the boundaries of the solution
domain. Since the total enthalpy is constant everywhere if the four assumptions

listed above are satisfied, the system of equations (2.1) can be modified as follows

JE JF
-5;4-—3-; =0 (2.15)
where
| e | e
= pu2 +p F=| puv
puv pvl+p

The system is closed by introducing the definition of total enthalpy, namely

H=-Y_P,

— %(u +D ) (2.16)

'0]’3

Finally, the system of equations (2.15) must be classified to ascertain whether it is

still hyperbolic. Initially one may be tempted to recast Eq. (2.15) in the form

A=—=+B (2.17)

s:l&’,
é»l?s.
O

where
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The eigenvalues of the coefficient matrices A and B are

1A={14,72L71u+-21—7 (r-12u? +4n?, yzﬂ;lu—-él? (y—l)zuz+4}t2} (2.18a)



- ‘)’+1 1 2 2 2 )’+1 1 2 2 2
An={v,L—v+—(r-1)" v’ +4p2 , T—v——J(y-1) v+ 4 (2.18b)
B { TRART: (r-1) w ZY\/(Y ) }r}

All characteristics are real and the system of equations (2.15) could be classified
as an . inear hyperbolic standing wave system. Note that for 0<u,v<c two

characteristics are positive and one is negative for each of the coefficient matrices.

The characteristics (2.18), however, are substantially different from Eqgs. (2.6).
This is very surprising be. »:se if system (2.1) is solved over a domain with a
constant value of the total enthalpy specified along the entire boundary, a
condition that must satisfy the energy equation identically as shown above, the
solution would appear to have a set of characteristics different from Eqgs. (2.18).
Note, however, that even though in this particular case the assumption of
constant tctal enthalpy satisfies the energy equation identically, removing the
need to solve the equation explicitly, the energy equation cannot be assumed to
have vanished simply because :t does not have to be solved. Whereas H is
constant everywhere in the solution domain, e is not. To avoid the inconsistency
caused by the discrepancy of the value of the characteristics of the two systems,
the boundary conditions will be applied according to Eqs. (2.6) rather than
according to Eqgs. (2.18). Hence for both subsonic and supersonic inflow
boundaries the values of (p,u,v) are specified, the pressure (p) is specified at
subsonic outflow boundaries and no conditions are imposed at supersonic

outflow boundaries.

2.4. Reynolds- Averaged Navier-Stokes Equations

The Reynolds-averaged Navier-Stokes Equations in primitive variables and

conservative form are
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ou JE JF 1{dG OJH
LA S L S I N L 3 .
3t+3x+8y Re(ax+ay) (219)
where
p pu pv
2 puv
u=|P o it I
pv puv pt+p
pe u(pe +p) v(pe+p) |
0 0 i
T T
— xx = L
G= T, H= T
UTyy + DTy ~ Gy UTy, + 0Ty, — 4y |

The components of the stress tensor 7 and the heat-transfer vector 7 are

T = 2?”(21;, —vy)

gy =—kT,
qy =—kT,
The system of equations is completed by the scalar equation of state

f+ﬁ)

p=(7—1)9(e-

and by an additional scalar equation to express the coefficient of molecular

viscosity as a function of the thermodynamic variables

1=u(p,p,T)
For steady, chemically inert flows without heat transfer, the system of equations
can be simplified by assuming that the total enthalpy is constant everywhere.

However, in this case the assumption does not satisfy the energy equation
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identically since the viscous dissipation term is not negligible. Some loss of

accuracy with respect to the full system of equations (2.19) should be expected.

There are no set rules for the classification of the Navier-Stokes equations. Even
though the characteristics of the Jacobians of the flux vectors are identical to
those of Egs. (2.6), the system (2.19) is not strictly hyperbolic due to the higher
order derivatives introduced by the viscous stresses. The thickness of the
boundary layers, however, is small for high Reynolds number flows, therefore
the convection processes are dominant almost everywhere. Assuming that the
effect of viscosity is negligible at the inflow and outflow boundaries, at least for

external flows, the boundary conditions outlined in Section 2.1 are applicable.
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3. ASECOND ORDER ARTIFICIAL VISCOSITY SCHEME

A simple, first order accurate finite element scheme for the solution of the steady
compressible Euler and Navier-Stokes equations will be briefly outlined. Even
though this simple scheme can produce good results for inviscid flows, a higher
order scheme is required for viscous flows. The objective of this chapter is to
show that by introducing a simpie modification into the first order scheme, it is

possible to extend the accuracy to second order.

3.1. A First Order Artificial Viscosity Scheme

The governing equations (2.19) can be rewritten as

v.(pi?)=o (3.1a)
V-(pVV)+Vp-V-"f‘=O (3.1b)
H_’ = _7_£+V_V (3_1C)
y-1p 2
_;L_(T,.+110°k)L3’2 3.1d)
., \ T+110°k \T. '

v.7= ilz[-%v(yv-V)+qu(VxV)+ z(v-w)V]

Eq. (3.1c) is the definition of constant total enthalpy, an approximation valid only
for steady flows without heat transfer and viscous energy dissipation. Eq. (3.1d)
is Sutherland's law for air. After replacing the density in Egs. (3.1a,b) by Eq.
(3.1¢), and lagging the viscosity coefficient during the iterative solution, the
system, in two dimensions, reduces to three coupled equations with variables

{uv,pl.
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If a symmetric discretization scheme such as the finite element method were
used to discretize Eqgs. (3.1) directly, with equal order of interpolation for all
variables, the convection terms would cause a numerical instability in the form of
even-odd point decoupling. To circumvent this problem, a pressure dissipation
term is introduced in the continuity equation to permit the use of equal order

interpolation polynomials for pressure and velocity. Thus Eq. (3.1a) becomes
v (p\7)— €1V2p =0 (3.2a)

An artificial dissipation (viscosity), proportional to the Laplacian of the velocity,

can be introduced in the momentum equation as follows
\% (pl7\7)+ Vp-V.T-V2V =0 (3.2b)

This first order artificial viscosity scheme successfully met the Pulliam challenge
[Pulliam (1990)] for inviscid non-lifting flows over circular cylinders and ellipses,
a set of simple test cases whose accurate numerical solutions, to our knowledge,
have yet to be obtained by other methods. This approach has also been extended
to internal flows by Peeters, Habashi ef al. (1991, 1992).

Even though good results have been obtained based on Egs. (3.2), the penalty is
that conservation of mass and momentum can only be achieved within an error
proportional to the magnitude of the artificial dissipation terms. Furthermore, for
viscous flows, first order schemes do not prodiice sufficiently accurate solutions.
The amount of extra diffusion produced by the artificial viscosity adds
significantly to boundary layer growth, producing solutions resembling flows
with a much lower effective Reynolds number than the one specified. These
flaws cannot be avoided completely even with massive grid refinement, therefore
schemes with lower dissipation and greater accuracy must be utilized for the

simulation of viscous flows.
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3.2. A Second Order Artificial Viscosity Scheme

The present work addresses the reduction of the artificial diusipation in order to
improve the quality of the overall solution to second order accuracy. Global
second order accuracy can be achieved by introducing fourth order operators in
place of the Laplacians in Egs. (3.2). Normally these operators would require
higher order elements for a correct discretization, however, at the discrete level,
they can also be recast as the difference of two Laplacian operators, which
require only linear elements. It is thus proposed to balance the Laplacian of
pressure in Eq. (3.2a) by the scalar quantity V-F and the Laplacians of velocity in

Eg. (3.2b) by the vector V-G, where G is a tensor, as follows

V~(p9)—£1V-(Vp—f)=u (3.3a)

V-(pVV)+Vp-v.7-V(VW-G)=0 (3.3b)
At the discrete level, the terms F and G must be constructed in a way that
guarantees that the differences between the Laplacians and the balancing terms
yield a fourth order artificial dissipation. It can be shown that, for the artificial
dissipation to be a fourth order operator, the balancing terms F and G must be
the averaged gradients of pressure and velocity, respectively. To illustrate this
point, it is more convenient to switch temporarily to the finite difference
notation. Starting with a five-point stencil, the Laplacian of p, for example, can be
written in terms of the gradient as follows

vZp= VPivy2 = VPliys _{pix1 = pi) = (pi = Pi1)
Ax (Ax)2

which reduces to the classical formula

V2p _ P "(ji’; + P (3.4)

Similarly, for the balancing term



— 1{Pia2 = Psr P-u"P-) 1(».-p.-1 Pn—-l"}’ad)
— + -

,,,'VPI,_1=2( ax ax ) 2\ ar | &

24Ax 24x

z

el

V.
Collecting terms

= -2
V.F=bs2 (2;:)‘: Pi-2 (3.5)

This is also a Laplacian . perator, however it encompasses a stencil with five
points instead of the three points of Eq. (3.4). The difference of Eq. (3.4) and (3.5)
yields

\Y/ _(Vp_ F:') = P~ 2}7,;'}7.-1 _Pis2 _zp: ;‘pl—Z == Pis2 —4pl+l +6p, ';4pl-l P2
(4x) (24x) (24x)

which is the discrete equivalent of
V-(Vp-l-:)=—%v4p (3.6)

The same argument also applies to the tensor G.

The artificial viscosity terms must also incorporate a function that removes the
balancing terms in the neighborhood of a shock, allowing the solution to become
locally first-order accurate to avoid spurious oscillations, at the same time
preserving the conservative nature of the equations. For these reasons, Egs. (3.3)

are modified as follows
V. (pl7) -V [(51 +&)Vp- ezf] =0 (3.7a)
V. (pVV)+ VWp-V.7-V {(s, +£)VV - 525]= 0 (3.7b)
The coefficients &, and &, denote the first and second order artificial viscosity

coefficients, which are functions of the solution, such that ¢, tends to zero in the

neighborhood of a shock and ¢, tends to zero away from a shock.

The weak-Galerkin weighted residual forms of Egs. (3.7) are
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Continuity
JLW.’{[P!J“(& +€7)Px + E2f ], + [pv-(ex +£5)py + €2fz]y }a’A =0
weak form
I I {lou=(er+ 2l + 2fs Wi, + [~ (1 + 2)py + eafo Wi, Jaa=
’ = (3.8a)
§w‘[pv'ﬁ“(£1+82)Pn+EzF-ﬁ]dS
S
x-momentum
ij {[Pu +p_ 3R \2ux vy)—(£1+£2)ux+ezg“:|x+
[Puv-—-‘-‘l—(u + 0 )"‘(E]"l'ez)u +£2g]2] dA=0
Re\'Y 7% y ’
weak form
” {[p“ TP- (2"1 vy )= (f1+€2)ux+£zgu]w.-,+
P“v—i(u +v )-(e +& Juy+E2812 Wi tdA=
Re\'Y % 1+ &2 Uy +E2812 (Wi,
‘ (3.8b)
§Wipdy+§Wi[puv.ﬁ_(£]+52)un +€zG~ﬁ°]dS—
s
H dx
£W[3R (2""_"’)ds Re (“V"“”*)ds]ds
y-momentum

”w"{[p"v'%(“y*”x)'(fl+€2)vx+62821] +
- X

[p’() +P' (Zvy ux) (€1+82)vy+82822]y}dA=0
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weak form

”- {[puv— %(uy +0y ) —(e1+ &2)v + €282 ]W,-x +

[pv +p_.2fi(2v u,)—(s,+52)v +e2g22]w,. }dA:
3Re
(3.8¢)
§W,pdx+§w [va - (81+82)v,,+€2G n]dS—

_y__Zu_ dx
§W[ Uy v, 7S "3Rs (2v u,)ds]dq
with W, denoting the weight functions. At the discrete level {f;, f2, 811,812, 821, 822}

are nodal variables and would be represented in the canonical finite element

framework as

4
[F, ¢) =z Fr. G JNi (3.9)
k=1

-

where {?k,ék} are the nodal values of { G} and N, denotes the finite element

shape functions. The functions &, and &, are

=(if7|+c)-w £2=(|V|+c)-¢ (3.10)
where
y= x(z)e(mfx Tf) (3.11)
¢=max(0, e - w) (3.12)
and

m;:xp}‘ +n;inp;‘ —2pl~|

T =1 (3.13)

k sk
m?xp,- +m’:np,- +2p;
is an operator for the detection of the shock. The notation (_):; refers to all the
neighbors k of node j. The artificial viscosity is controlled by the parameter ¢ and

the values of the coefficients x® and x™ are similar to those of Schmidt and

Jameson (1985) and Pulliam (1985), namely «{?) =4 and x*) = 0.009.
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After replacing the density by Eq. (3.1c), the system of equations (3.8) is
linearized by Newton's method, discretized with bilinear quadrilateral
isoparametric elements and integrated by Gauss-Legendre quadrature with (3X3)
Gauss points. At each iteration, a fully-coupled, sparse linear algebraic system of
the form:

[/[{au} =-af{Re s} (3.14)
is solved with a direct solver. Here AU = {4u,4v, Ap}, {Res} is the residual and «a is

arelaxation factor. The details of Eq.(3.14) can be found in the Appendix.

In this deferred correction approach for the introduction of the second order
artificial viscosity, the added balancing terms { f,, 5,811, £12, 821, 822} are functions
of the solution at the previous iteration, hence the Jacobian matrix [J] is
unaltered with respect to the corresponding first order approach. The residual,

howewver, is of higher order accuracy.

3.3. Boundary Conditions

The following boundary conditions are imposed with all contour integrals of

Egs. (3.8) evaluated, unless otherwise noted:
Inflow:  u,p are specified.

Walls:  For viscous flows ,0=0. For inviscid flows, the term pV-7 n the

continuity equation contour integral vanishes.

Outflow: For a subsonic outflow, p is specified in the contour integrals of the
momentum equations. For a supersonic outflow, no back pressure

is specified.
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For all other boundary conditions, the practice has been to replace the governing
equations by extrapolation formulae, locally one-dimensional equations or
Riemann invariants. However, since the finite element shape functions are
smooth continuous polynomials over the element, this situation can be avoided
altogether. Hence, once the influence matrices of the elements on the boundary
are assembled into a global one, no further treatment is required for quantities
such as pressure, velocities, etc. The advantage is therefore that the discrete
governing equations are not replaced by simpler approximations at the

boundary.
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4. EXPLICIT SECOND ORDER BALANCING TERMS

In the previous chapter it was shown that a second order finite element scheme
which does not require higher order elements can be produced by adding two
balancing terms, F and G, to the artificial viscosity of = first order scheme. Three
different methods to compute the balancing terms will be outlined in this
chapter. In the first method, the balancing terms ere ovtained from tensor
identities and nodal averaging, while in the second scheme the tensor identities
are discarded and the balancing terms are obtained directly through the
smoothing provided by nodal averaging. In these two schemes the balancing
terms are functions of the solution at the previous iteration and cannot be
linearized due to the intermediate procedure required for their evaluation. To
overcome the linearization problem a third scheme has been developed which
disperises with the intermediate Galerkin aver. g step and considerably

improves the efficiency of the overall second order finite element solver.

4.1. Method 1: Tensor Identities plus Galerkin Averaging

The term F of Eq. (3.3a) is obtained by rearranging the original momentum

equations (3.1b) and solving for the pressure gradient

F=fi+fa] =Vp==-V (pVV)+ V.7 4.1)
where
f,:—[pu —2——(214 - )] +[puv——’-1—(u +v )- j (4.2a)
3Re\TE Y Re'™¥ X/ '
f2 =—l puv——-(u +7 )] [P‘L _2_#(2v )- } (4.2b)
3Re Jy
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The artificial term of Eq. (3.3a), V?p-V-F, does not vanish identically, even in the
steady-state when the discrete momentum equations are satisfied, since the
divergence of the momentum equations is not necessarily zero in a discrete
sense. Nevertheless, conservation of mass is improved at least an order of

magnitude over the original method represented by Eq. (3.2a).

Similarly, the momentum equations are modified by adding artificial viscosity
terms proportional to the Laplacian of the velocity components, with these terms

balanced by a tensor obtained from the following identity:
VZV-V(V V)+Vx(VxV)=() (4.3)
VWV -Vs+Vxw=0 (4.4)
The tensor G therefore becomes:
81 =s 812 = ~0 (4.5a)

g1 =0 822 =5 (4.5b)
The correction terms f;,f2, 811,812, 921,822 are evaluated at the nodes in

accordance with the standard weak-Galerkin framework. For f,, for example, the

Galerkin integral is:

J'J.A W,{fl + [pu2 - '321%(2“‘ -v, )]x +[puv —-%(uy +u, )L }dA =0 (4.6)

Let

4
f!':Zﬂ,N) 4.7)
1=1

where N, represents the finite element shape functions and fi , denotes the value

of f; at the four nodes of an element. After integrating Eq. (4.6) by part: and

introducing Eq. (4.7)
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7 i I, Sl ol o o

(4.8)
iwi {[puz - ;_I‘;.;(Zux -, )]% —[puv —Eﬂe-(uy + 7, )]%;—}ds
[MI{Fi;}= I L {[puz - :_Ig‘e(u, -, )]w,-x + [puv— £ (g 0 )]w,-y }dA - )

2 d d
iw,- {[puz - 5—%(21«, = )]d_g - [puv - %(uy +v, )]%}ds

where [M] is the mass matrix and the integral on the right-hand-side is a function

of the solution at the previous iteration.

The other balancing terms can be written as

u 2
£y = —{[puv—-}g(uy +, )] [ -2 (20, -0, )]x} (4.10)
g =-V-V g12=VxV (4.11a)
g =-VxV 8 =-V-V (4.11b)

where g2 =811, 821 =-812 and

”Aw,-(gn +V-VjiA=0 J'Lw,-(g12 ~VxV}A=0 (4.12)

In summary, for this scheme, four new variables, {f;, f2, 811,812}, need to be

defined at the nodes as functions of the variables {u,v,p} at the previous iteration.

4.2. Method 2: Galerkin Averaging

In this scheme, the Laplacians of the artificial viscosity are balanced in a slightly

different manner

v-(oV)-&V-(Vp-vp)=0 (4.13a)

V-(oVV)+ Vp-V-T-£V-(VV -VG)=0 (4.13b)
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The vector V§ and the Cartesian tensor VG are constructed as follows:

VP=fii +faf =pii +py] (4.14)

VG =G, +Gy =(g11+8n)7 +(g12+82)] =(x +5,)7 +(1i, +5,)] (4.15)
where {fi,f2,811,812,821,82) are again evaluated within the weak-Galerkin

framework, outlined in Egs. (4.6), (4.8) and (4.9), such that

j Lw,.( f1-pyJdA=0 (4.16a)
HAW,-( fa-py)dA=0 (4.16b)
t:;w,-(gu ~uy)dA =0 (4.16¢)
d'd;w,-(g,z ~uy)iA=0 (4.16d)
.:.wa'(gzl -0, JdA=0 (4.16e)
‘.‘:‘W;(gzz—vy)dA=0 (4.16)

This is a more general scheme, allowing a balanced artificial viscosity even for
the full energy equation, should it be included. In this approach, the number of
extra variables to be computed increases from four to six. However, one should
note that the mass matrix in both schemes is identical for all the additional
variables and needs to be assembled &a~d decomposed only once, in a post-
processing step, during each global Newton iteration. Therefore the increase in
the number of variables of Method 2 represents a minor penalty in te.ms of

computational cost.

Four different methods can be used to compute the nodal values of the

additional variables: the mass matrix of Eq. (4.9) (CMM), the lumped mass
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matrix (LMM), and, as an alternative to the Galerkin averaging, extrapolation
from the Gauss points to the nodes (EXT) through a 9th order polynomial
[Hinton et al. (1975)] and, finally, least-squares fitting (LSQ) involving sampling
the derivatives of the variables at all the Gauss points of the elements

surrounding each node [Langtangen (1989)].

Note that the solutions obtained with the second order schemes are much less
sensitive to the value of the artificial viscosity coefficient than those obtained
with the first order formulation. The convergence rate of the second order
schemes, however, is directly controlled by the value of the artificial viscosity
coefficient since the balancing terms are lagged from the previous iteration and
do not contribute to the Jacobian of the Newton linearization. A partial remedy

to this situation is presented in the following section.

4.3. Method 3: Semi-Implicit Second Order Balancing Terms

The various schemes presented above for the construction of the second order
balancing terms have one common feature: the balancing terms are obtained
from an averaging procedure. Indeed some of the schemes are based on a
sophisticated but expensive weighted-averaging procedure, the Galerkin
integral. The complexity of this procedure requires both the solution of a matrix
and that the balancing terms be lagged at the previous iteration, with a
detrimental effect on both the convergence rate and the solution time. Since the
solution of Egs. (3.8) — the linear system of coupled equations of the Navier-
Stokes FEM scheme — can be an expensive urdertaking when a direct solver is
used, a fully-implicit scheme with quadratic convergence would be desirable to
minimize solution cost. A fully-implicit second order scheme, however, requires

a wider finite element stencil and would produce a system of equations with
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twice the current bandwidth, for which direct solvers would prove too expensive

and unwieldy. Hence, a compromise must be sought.

The Galerkin weighted averaging can be replaced by a simpler averaging
procedure which requires neither integration nor the solution of an intermediate
system of equations. This scheme will be outlined through the construction of the
balancing term f;, with the procedure being identical for the other five balancing

terms introduced in Method 2.

The definition of f, is:

fi=p. (4.17)
Introducing the finite element discretization into Eq. (4.17), the following

equation is obtained

fi= )_Z:,ﬁ, % (4.18)
where f; is intended to be a nodal value but py is defined only inside the element
in the discrete approximation. The nodal value of f, is obtained by an area
averaging of the values of the derivatives computed at the centroids of the
elements surrounding each node, such that

1 M 4 JON
f =-—Z(A,Zﬁ — ) (4.19)
A " ox |, ,

total =1 1=1

where p ; is the value of pressure at the nodes of the element and

=

Apa = A (4.20)

!

]
=

is the sum of the areas of the element surrounding each node, M is the number of
eleinents surrounding a node and the subscript ¢ indicates the centroid of the

element. Similarly, th. other balancing terms are
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fo= 2 i Ai‘ il (4.21a)
2 Acala! I=1 ”,:1 p’ ay “ )i .
M[ 4 )
1 _ N,

= A U, e (4.21b)
&n Alufal ;k l’-Z] ! x c )
MO & oN|)

8= L Alzﬁ 4 (4.21c)

M 4 ON
&= . Z AIZEI—"_’ (4.21d)
Alolal I=1 )=l x CJI
M 4 )
1 . oN,
- AY 7.1 (4.21e)

I

The expressions for {f1, f,, 811,82, 821,822} in Egs. (4.19) and (4.21) are substituted
directly into Egs. (3.8) and are eventually discretized like nodal-based quantities
via the finite element approximation. The areas of the elements and the
derivatives of the shape functions are constant for stationary grids, therefore,
since the balancing terms can be recast in terms of the dependent variables, the
intermediate Galerkin averaging procedure is eliminated and the balancing

terms can be linearized with Newton's method.

Since a full linearization would double the bandwidth, compared to the schemes
where the balancing terms are lagged, a partial linearization is suggested. The
balancing terms contributions to the right-hand side of Egs. (3.8) must be
included in their entirety. Some elements have balancing terms stiffness matrices
which can only be partially assembled into the Jacobian matrix without
expanding the bandwidth. It was found that if these stiffness matrices where
partially assembled, the Jacobian matrix would loose its topological symmetry

and the iterative procedure would diverge. Therefore only the balancing terms
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stiffness matrices which can be fully assembled should be included into the
Jacobian matrix to ensure stability. This is possible because the unknowns in Egs.
(3.8) are the changes in the solution and the Jacobian matrix can be viewed as a
preconditioner for the system of equations. This procedure is stable, conserves
the topological symmetry and, by including more information into the Jacobian

matrix, produces better convergence rates.
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5. PARALLELIZATION STRATEGIES

In the last decade, ever since the introduction of cheap DRAM memory units
capable of storing several Megabytes of data, most computer manufacturers have
switched from CISC (Complex Instruction Set Computer) to RISC (Reduced
Instruction Set Computer) architectures. Before these memory units became
available, the scarcity of on-board memory dictated that computers be able to
recognize complex instructions so that program size could be kept as small as
possible to maximize the amount of the limited data space available to the user

[Dowd (1993)].

In order to permit a wide variety of operations, the set of complex instructions
tends to be very large and requires a dedicated processing unit on the CPU for
each of these instructions. As the amount of on-board memory grows, however, a
smaller set of simpler instructions makes more efficient use of space on the CPU
and also lends itself to optimization, since the instructions that once required
special processing units are now composed of a string of commands that can be
executed in assembly-line-style in a limited number of dedicated processing units
arranged in pipelines. Most modern RISC architectures offer several pipelines to
handle the flow of commands and data with considerable efficiency and speed
and can also handle conditional branches more efficiently than CISC

architectures.

While CPU clock speeds are constantly increasing as computers evolve, the
access speed of the memory systems has not kept pace. The reason for this
discrepancy is economical rather than technical. The huge cost of modern

supercomputers is due in large measure to the very fast and very expensive
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memory systems installed. The installation of such expensive memory systems in
desktop workstation is out of the question, therefore computer manufacturers
provide slower but more economical memory units. A small amount of very fast
memory is built into each CPU to handle the local computational tasks more
efficiently. A moderate amount of fast memory, called the cache, also resides in a
separate buffer between the CPU and the main memory. The cact.e acts as an
intermediary, processing memory requests received in advance from the CPU,
storing and retrieving chunks of data and instructions from main memory and
passing them to the CPU as they are needed. Provided that the data and
instructions are organized sequentially in main memory, this arrangement can be

very effective.

Some of the techniques used in the computational sciences are easily amenable to
parallelization, hence some computer manufacturers offer lines of parallel-
processors computers that are almost as fast as multi-million dollar
supercomputers were just a few years ago, but cost a fraction of the price. These
parallel computers are progressively differentiating into two categories: coarse-
and fine-grained. Coarse-grained parallel computers are generally endowed with
a small number of very fast processors, generally from two to twenty-four, while
fine-grained parallel computers have thousands of cheaper and slower
processors linked by a sophisticated communication system. The memory units
are either pooled into a single shared-memory system or reside in small amounts

on each processor to form a distributed-memory system.

The computational aspects of the techniques developed in the previous sections
will now be examined in more detail to show how they can be efficiently
implemented on modern coarse-grained parallel workstations to take full

advantage of pipelining and cached memory systems. In actual practice the
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entire finite element solver boils down to a sequence of matrix assemblies and
factorizations. All other operations are secondary -—— as far as solution times are
concerned — and would actually make the computation inefficient if they were

executed in parallel.

5.1. Parallel Matrix Factorization

The finite element discretization shown above leads to large sparse linear
systems of equations which are not well conditioned. Two solution strategies are
available: direct and iterative solvers. An efficient direct solver has been
developed for the current two-dimensional applications for which speed, rather
than memory reduction, is the main requirement. For three-dimensional
problems, where the memory requirements of direct solvers would be
prohibitive, conjugate gradient-like iterative solvers are a more practical

alternative [Dutto, Habashi et al. (1993)].

Among the various direct solver techniques, the Gauss elimination algorithm
was chosen for its robustness and ability to handle matrices that are not
diagonally dominant, even without pivoting. The Gauss elimination algorithm is
divided into two processes: the matrix factorization and the back substitution,
with the former being the most expensive and the one that benefits most from

parallelization.

The matrix is stored with a constant bandwidth and its indices are reversed with
respect to the customary matrix notation, so that it resides in the computer
memory with all the rows arranged in sequential order, in the same way in
which it will be accessed during row-elimination. The factorization step, being
the most time-consuming, receives particular attention: IF statements are

eliminated by storing selected critical parameters into three integer vectors of



50

length N, the number of unknowns. The first vector maps the number of rows
scheduled for decomposition below each diagonal entry, the second maps the
address of the end of each row and the third is used during the back substitution
to map the number of the unknowns already solved that affect the calculation of
the current unknown. The three vectors are assembled before the global iterative

process and need not be evaluated repeatedly if the matrix size remains constant.

The factorization step is represented schematically by three nested loops: the first
loop sweeps all the entries along the diagonal of the matrix, the middle loop
sweeps all the entries in each column under the diagonal and finally the inner
loop handles the factorization of all the entrics in the rows. Either the inner or the
middle loop can be parallelized, however the parallelization of the inner loop
requires frequent synchronization and will yield modest speedups of the order of
Jn, where n is the number of processors, while the parallelization of the middle
loop generates much less synchronization overhead and easily reaches 100%
efficiency. The two parallelization strategies are shown below in schematic ferm.
The C$DOACROSS machine-dependent command is actually addea hy the

parallel pre-compiler, but is shown to illustrate the differences in parallelization.

Example 1: Inefficient parallelization

DO 10 I=1,N-1
DO 15 II=I+1,NO. OF ROWS TO ELIMINATE
RATIO=ELIMINATION COEFFICIENT

CSDOACROSS SHARE( I, II, RATIO, A), LOCAL(J)
DO 20 J=DIAGONAL,LAST ENTRY IN PIVOT ROW
A(J,II)=A(J,II)-(ENTRY IN PIVOT ROW) *RATIO
25 CONTINUE

RHS(ITI)=RHS(II)-RATIO*RHS(I)
15 CONTINUE
10 CONTINUE
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Example 2: Efficient parallelization

DO 0 I=1,N-1
C$DOACROSS SHARE(I, RHS, A), LOCAL(II, RATIO, J)
DO 15 II=I+1,NO. OF ROWS TO ELIMINATE

RATIO=ELIMINATION COEFFICIENT

DO 20 J=DIAGONAL,LAST ENTRY IN PIVOT ROW

A(J,II)=A(J,II)-(ENTRY IN PIVOT ROW)*RATIO
25 CONTINUE
RHS(II)=RHS(II)-RATIO*RHS(I)

15 CONTINUE
10 CONTINUE

In the second example, an efficient factorization is constructed so that each
processor handles the multiplication and addition of a complete row. If the
bandwidth is kept constant, a strict synchronization of the processors is no longer
necessary as all of them handle an equal amount of work, with little idle time at
the completion of the row operation spent waiting for the other processors to

complete their task.

An additional gain can be obtained by unrolling the inner row factorization loop.
In this case the processors memory caches handle the I/O of data in a more
efficient manner, reducing the overhead required for fetching and storing data by
increasing the size of the data blocks processed. The Parallel FORTRAN
Accelerator software on Silicon Graphics computers can automatically unroll
loops at the user's request, however since this operation is beneficial on virtually
any modern RISC workstation, it has been incorporated explicitly in the matrix
factorization routine. Furthermore, on vector architectures the inner loop could
also be vectorized, with dramatic gains in execution speed. The details of loop

unrolling are shown in the next example.
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Example 3: Efficient parallelization with loop unrolling

DO 10 I=1,N-1
CS$DOACROSS SHARE(I, RHS, A), LOCAL(II, RATIO, J)
DO 15 IT=I+1,NO. OF ROWS TO ELIMINATE

RATIO=ELIMINATION COEFFICIENT

DO 20 J=DIAGONAL,LAST ENTRY IN PIVOT ROW, STRIDE
A(J,II)=A(J,II)-(ENTRY IN PIVOT ROW)*RATIO
A(J+1,IT)=A(J+1,II)-(ENTRY IN PIVOT ROW) *RATIO
A(J+2,11)=A(J+2,I1)-(ENTRY IN PIVOT ROW)*RATIO
A(J+S,ITI)=A(J+S,II)-(ENTRY IN PIVOT ROW)*RATIO

25 CONTINUE
RHS(IT)=RHS(II)-RATIO*RHS(I)

15 CONTINUE
10 CONTINUE

The solver is written in FORTRAN, contains no machine-dependent instructions
and parallelizes automatically on Silicon Graphics parallel workstations with the
Power FORTRAN Accelerator software. Fig. 1 shows the performance gains
obtainable with this solver on an SGi Power Series 280 GTX shared-memory
computer with eight 25 MHz MIPS R3000 processors. The problem considered is
transonic flow over a NACAOQ012 airfoil at M.=0.8 and 1.25° angle of attack,
discretized using a 254X30 C-grid. The matrix size is (23,637X371) and the
solution requires 98 seconds with eight processors. Fig. 2 shows the performance
of the same solver on a Silicon Graphics Challenge workstation equipped with
twenty 50 MHz R4400 processors. The problem considered is M..=2 supersonic
flow in a channel with a 4% circular arc airfoil using a (80X200) grid. The matrix

size is (47,920X1,209) and the solution requires 295 seconds with 20 processors.

5.2. Paraliel Assembly of the Global Matrix

Two processes dominate the execution time during each Newton iteration: the

assembly and the factorization of the global matrix. With the factorization
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parallelized as shown above, the global matrix assembly becomes the dominant

process and it should also be parallelized in the interest of overall execution

performance.

The global matrix is the sum of all the element stiffness matrices and is normally
constructed in a sequential element-by-element order. Two strategies for the
parallelization of the assembly can be adopted. The first strategy is based on the
parallelization of the assembly of each stiffness matiix, with all the stiffness
matrices added sequentially into the global matrix, while the second strategy
requires the subdivision of the solution domain into n blocks of elements of
roughly equal size, each block of elements being assigned to one of the n

processors.

This second strategy is more efficient because it involves a minimum of
synchronization overhead, but requires some changes in the FORTRAN code
The operation is accomplished by nesting a call to a subroutine which assembles
a block of elements in a DO-loop that traverses all the element blocks. Because
the subroutine CALL statement is inside the loop, this DO-loop will not
parallelize antornatically, since the parallel pre-processor does not check inside

the routine to identify possible conflicts between processons.

The matrix assembly DO-100p must be parallelized manually by inserting a
simple C$DOACROSS directive which instructs the processors to classify all
variables as either SHAREd or LOCAL. The loop inuex and loop limits must be
explicitly declared as local variables since they differ irom processor to processor.
All the element stiffness matrices are declared as local variables by virtue of
being defined inside the routine, but the global matrix and all the ancillary

variables needed for the assembly are shared by ail the processors.
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A schematic arrangement of the parallel assembly process, complete with the

machine-dependent instructions, is shown in the next example.

Example 4: Parallel matrix assembly

CS$DOACROSS

C$& SHARE( XLONG . YLONG , ZMU , VISCL . UVAR '
Cs$& DNXGLBL , DNYGLBL , DETERJ , SHOKPTO , DNXVIStC ,
CS$& KOUNT . NVCYCLE , KMASSTR , VMASSTR , NPOINTR ,

C$& LOCAL( NTHREAD , NELBGN , NELEND )

DO 10 NTHREAD=1, NAPROC
NELBGN=NPOINTR (NTHREAD, 1)
NELEND=NPOINTR (NTHREAD, 2)

CALL GLOBMXV( XLONG . YLONG , ZMU , VISCL '
UVAR , DNXGLBL , DNYGLBL , DETERJ , SHOKPTO ,
NGAUSB , NBOUND , NELEMB , KOUNT ., NVCYCLE ,
KMASSTR , VMASSTR )
10 CONTINUE

The variable NAPROC identifies the number of parallel processors, NELBGN
and NELEND are the element numbers at the beginning and erd of each block
and GLOBMXV is the routine that performs the stiffness and global matrix
assembly in each block. The rest of the variables are needed for the assembly and
are included only to show that such complex constructions do not hamper the
parallelization process. The machine-dependent instructions that have been
included do not destroy the portability of the code since they are be identified as

comments by the FORTRAN compilers on other computers.

The assembly can be parallelized without summation conflicts provided that the
stiffness matrices at the interfaces of neighboring blocks are not assembled and
stored in the global matrix simultaneously. If the elements are not numbered
sequeniially, or if the geometry of the domain is complicated, some checking of

the element assembly sejuence on the interfaces of the blocks is required to



55

ensure that potential storage conflicts are eliminated. More complicated methods
of block subdivision based on checkerboarding or coloring the elements can also

be applied, if necessary.
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6. GRID ADAPTING BASED ON A SPRING ANALOGY

A numerical scheme for the solution of fluid problems in an industrial
production environment must be both efficient and accurate. This is a
contradiction in terms, since for a discrete solution to approach the exact solution

the mesh has to be progressively refined, to the great detriment of efficiency.

Ideally, a grid should be constructed in such a way that the solution obtained
from it has a uniformly distributed numerical error that meets or exceeds the
level of accuracy required. A uniformly fine grid would seem to be a crude but
effective way of ensuring high accuracy, however this approach has two serious
flaws. First, even the most powerful computers available today cannot handle a
uniformly fine mesh for the solution of high Reynolds number flows over a
simple geometry. Secondly, a uniformly fine grid still does not guarantee that the
error is distributed equally everywhere, hence the features of some regions, free
of important details, will be captured with an accuracy that is several orders of

magnitude better than required, at the expense of solution speed and economy.

In numerical computations, given that the speed and storage capacity of the
available computer are the limiting factors, computational efficiency constrains
the finest mesh size that is practical and therefore the level of accuracy that cap
be attained. Once an estimate of the size of the mesh necessary to obtain a
specified level of accuracy is established, the crucial problern is to determine how
the elements should be distributed. Unfortunately the solution is never known a
priori, hence the construction of the grid customarily proceeds according to
empirical rules providing stretching and deformations to fit the geometry and

the expected solution.
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These difficulties can be circumvented by using the solution obtained on an
initial arbitrary mesh to change the grid distribution and minimize some norm of
the numerical error. Ideally the next solution, obtained on the adapted grid, will
have a constant numerical error throughout, but in practice several cycles of this
solution-adaptation strategy musl be completed before the error becomes
uniform everywhere. Grid adapting is therefore based on two main ingredients:
error estimates and mechanisms to distribute the elements according to the error
estimates. There exists a considerable variety of methods for both tasks, however
in this chapter the emphasis is on illustrating how the nodes of a structured mesh

can be redistributed with a simple mechanism based on a spring analogy.

6.1. Node Movement Generated by Spring Forces

The present grid adapting method traces its origins to the idea of Gnoffo (1983)
of using a spring analogy to adapt the grid to the gradients of selected functions
of the soluti~n. A sophisticated application of the spring analogy, with control
over mesh size and orthogonality, was introduced by Nakahashi and Deiwert
(1986, 1987) for 2-D and 3-D meshes. Subsequent improvements were reported
by Harvey et al. (1991,1992) who applied the method to supersonic 2-D and 3-D
viscous flows. A variant of this method developed by Baruzzi (1993) will be

outlined in this chapter.

Structured grids based on quadrilateral elements can be generated by two
families of lines, roughly perpendicular to one another. Each grid line is assumed
to consist of a chain of springs connected in series, the length of each spring
representing the length of the corresponding element edge, as shown in Fig. 3.

Each spring has a different stiffness coefficient, which is proportional to some
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local estimate of the error. The springs are free tc move along the grid line,

subject to the following constraints:
i) the stiffness coefficient is constant within each spring,
ii) the two ends of the chain of springs are stationary,
iii) the shape cfa grid line is not deformed as the springs move along it,
iv) the geometry of the boundary must be rigorously conserved.

In addition, it is desirable to retain full control over the minimum and maximum

spring lengths, 4x,, and Aax.,,.

The stiffness coefficient is a function of the local solution error. Since the solution
error is proportional to the truncation error and hence to the gradients of the
solution, a crude but effective approach is to obtain the stiffness coefficients from
the gradients of the solution. For inviscid compressible flows the gradient of the
Mach number or the pressure is a good choice for the stiffness coefficients. For

viscous flows the gradients of pressure or density are preferable.

Since the force stored ir. the stretched springs is constant along the chain, we can
cut the chain at any node and examine the force exerted on the node. From
Hooke's law:

F =k,Ax, = Const. (6.1)

where &, is the stiffness coefficient and 4x, is the length of the spring. The
stiffness coefficient can assume any arbitrary value. However, some constraints
must be imposed on it to ensure that the smallest springs will cluster in the

regions of highest gradients. Some control over the size of the smallest and
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largest springs must be imposed to prevent excessive stretching ~~ the grid. The
coefficient k, can be written as

k, =1+ AfE (6.2)
where 4 and B are constants and f is the non-dimensional gradient of the

soiution, computed as follows

it fe _fmm (6.3)

™ Fran = foin
such that
fe = fmin = fe=0 fe=frax = fe=1
where f is the gradient of the function that drives the system of springs. The
relationship between the shortest and longest springs can be determined from
Eq. (6.1) as
Kenax 3% cun = Kgun AXmax

which can be rearranged in the form

=

min A

kol

Consider Eq. (6.2): if the driving function has a constant value everywhere, ax,

must be constant throughout, therefore the lower limit of the constant A must be

zero. Define A as

A=——1=fm-1 (6.4)

The lower and upper values of k, can now be determined. From Egs. (6.2) and
(6.4)

f=0-kp,=1 f=1okn,=1+4
The constant of Eq. (6.1) can be determined from the first expression as

Const.= k,4x, = kpyn A% max = AXmax (6.5)
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and subsequently all the spring lengths 4x, can be expressed as functions of the

maximum value of the mesh spacing in the equation

ax, = —‘%—"ﬂi (6.6)

The value of the exponent B in Eq. (6.2) is computed as follows. Let

Y ax,=s 6.7)

where § is the length of the mesh line, which must not vary while the grid is
adapted. Substituting Eq. (6.6) into Eq. (6.7) yields

M

1
Axmaxg{z =5 (68)
Eq. (6.8) can be rewritten as
M
Y12 o (6.9)
ps k, Axpay

An expression in terms of B can be obtained by substituting Eq. (6., into Eq. (6.9)

F(B)=i—]———s——-=0 (6.10)
prl B Aff AX ax )

The value of B can be computed iteratively using Newton's method. Let
M By (7
Afe In\ fe
F’(3)=d—f,@=‘2—fl.(£'z)‘ 6.11)
B e=1 (!l + Afcp)
The value of the exponent B is updated using Egs. (6.10) and (6.11) as follows

B = B --}% 6.12)

The initial value of B for the examples shown in Chapter 8 is 2.

An expression for the spring coefficients has been derived which will force grid

clustering at the location of the steepest gradients, at the same time maintaining
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control over the minimum and maximum mesh sizes. An iterative scheme based
on Eq. (6.6) can be derived to evaluate the new positions of the nodes, however
the system of springs is undamped and therefore such a scheme would be
unconditionally unstable. A damping term could be added, however the
damping coefficient would negatively affect the convergence rate of the adapting

scheme.

6.2. Variational Approach

A different approach that does not require the addition of an additional damping

term can be constructed by considering Hooke's law in differential equation form

k, %s{ = Const. (6.13)

where s is the coordinate of the fixed frame of reference along the original grid
line and x is the new location of the nodal points along this line. The constant can

be eliminated by differentiating with respect to s

0 ox
Ll 22\ 6.14
2 (k, as) 0 (6.14)

From a variational principle standpoint [Brackbill and Saltzman (1982)], the
solution of this second order equation corresponds to the minimization of the

integral
1¢S5, (ox 2
I—-Z-J-oke(—a;) ds (6.15)

Note that the expression inside the integral represents the energy of a spring, so
that minimizing the integral is equivalent to finding the minimum energy state of
a system of springs along a given line. The positions of the nodes of the springs

cal. pe described by a finite element interpolation. Let

N
x= leNl
=1
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where the N; are linear finite element shape functions, %, denotes the nodal

positions and the elements are the segments of the original grid line. Substituting

this expression into Eq. (6.15) and omitting the summation symbol

s 2
=2 [i(f,w,)] ds (6.16)
To minimize the integral I, set the variation

51_;—’5:: -0

%)

which is satisfied either by 9l/6%, =0 or by 6%, = 0. In the first case

al ,J' oN, oN

3% s I

—Lds=0 (6.17)

In the second case Eq. (6.17) is replaced by the boundary conditions x=0 at s=0
and x=S at s=S. For simple linear one-dimensional finite element shape

functions, the integral in Eq. (6.17) is evaluated exactly.

Eq. (6.17) is nonlinear in k,. Even though the springs can move along a grid line,
the driving function remains fixed to the old grid. As the grid adapts, the values
of the spring coefficients must be continually updated. To improve convergence
to the final stationary position, it is useful to apply Newton's method to Eq.

(6.17). The linearized equation can be written as

A% jk" oN, aN j k"-a-’i’-fi-d (6.18)

The value of &/ is lagged at the previous iteration, therefore convergence will
only be linear. Eq. (6.18) yields a tridiagonal system of algebraic linear equations
of the form

[A){Ax} = -a{Res}
that is solved with the Thomas algorithm. Note that here ax represents the

change in nodal position, rather than the spring length. The solution can be



63

underrelaxed to overcome any instability created by the small radius of

convergence of Newton's method. The nodal positions are updated by setting

An+l

=37+ 4%, (6.19)
The iterative procedure consisting of the solution of Eq. (6.18), followed by Eq.
(6.19), is repeated until the RMS norm of the residual drops below a pre-set

tolerance, usually 1x107.

6.3. 2-D Adaptive Scheme

A general structured grid in two dimensions can be subdivided into two families
of lines. The adaptation procedure consists in relocating the nodes of the grid,
one line at a time, starting from a selected surface and moving to the final one

along the same family of lines, in a parabolic sweep.

It is also desirable to include orthogonality and smoothness control to ensure that
the final adapted grid is not excessively skewed. When the body surface is
adapted, all the discontinuities of the slope of the surface must be identified
before moving the nodes to ensure that they will be modeled properly by the

adapted grid.

After the surface nodes have been rearranged, the next grid lines of the same
family are progressively adapted, one by one. Starting with the second grid line,
an additional set of torsion springs, centered at the nodes of the previous grid
line, is added to control orthogonality. Similarly, starting with the third grid line,
another set of springs is added for smoothness control. The effect of these two
additional spring sets, however, makes control over the minimum and maximum
mesh sizes less accurate. Fig. 4 shows the location of the orthogonal projection

point H and the smoothness projection point S on the line being adapted.
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Fig. 5 shows how a torsion spring to enforce orthogonality can be replaced by a
conventional spring. The orthogonality and smoothness constraints are

introduced into the adaptation procedure by adding a new term to Eq. (6.16)

105, [ (s \F . Cra o V2
-1 ok,[a_s( -,N,)] s+ (2, - ) (6.20)
where iy =pxg +(1-B)xy is the location of %, that would maximize a blend of
orthogonality and smoothness controlled by the parameter 8 and C is the

orthogonality/smoothness spring coefficient obtained by averaging all the spring

coefficients along the line. The parameter C is given by

c-Af13y (6:21)

AB\ M + ¢ '
where M is the number of springs along the line, 4B is the distance between
consecutive lines in the same family, as shown in Fig. 5, and 1 is the parameter

that controls the magnitude of the spring coefficient C. For the tests reported in

Chapter 7, thevalues of the coefficients are §=0.1, 1=3x 107,
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7. RESULTS

The results of several test-cases are shown in this section. The tests, which are
well documented in the literature, have been selected for their difficulty, with the

intent to show the robustness of the present second order schemes.

7.1. Second Order Accuracy Test

A test case with an exact solution is ptoposed to verify the accuracy of the three
second order schemes. The Navier-Stokes equations are solved cn a square

domain, with a uniform mesh spacing, satisfying the following exact solution:
p=2sin(x)sin(y) wu =sin(x) cosly)  v=-cos(x)sin(y)
05<x <07 05<y<07

The original continuity equation, Eq. (1), is satisfied identically and a forcing
function for each of the momentum equations can be derived from the exact
solution. Five progressively refined grids have been used: (16X16), (24X24),
(32X32), (48X48) and (64X64) elements. The Reynolds number is set at 1,000. An

error norm defined as:

Error = J-.LluEmd -uNumrrlcalldA

is calculated for density, velocities and pressure. From Figs. 6-9 it appears that
the {p,u,v,p} errors of Scheme 1, for both the lumped and consistent matrices, do
not tend to zero as the mesh is refined, suggesting that only Schemes 2 and 3 are
truly second order accurate, irrespective of the method used to compute the

balancing terms.
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7.2. Inviscid Supersonic Flow

The second test case is for supersonic inviscid flow over a 15° wedge, at M=2.
The solution procedure is started with the first-order scheme and uniform
artificial viscosity coefficients. The artificial viscosity parameters are initially set
to g =0.05, &, = 0 uniformly throughout and ¢,is lowered to 0.01 and 0.005 at the
intermediate RMS residual value of 10-6. The first grid adapting is performed and
the code is switched to second order accuracy with the balancing terms of
Scheme 3 and artificial viscosity parametere =0.2. After the intermediate
residual is reached a second adaptation is carried out and the solution is finally
allowed to converge to the final residual of 10® withe = 0.1. The relaxation factor
in Eq. (3.14) is set to & =0.5 to stabilize the second order solution in the preserce

of strong normal and oblique shocks.

The (120X48) grid was initially nearly uniform in the streamwise direction and
during the solution procedure it was adapted using the mesh adapting strategy
based on a spring analogy outlined in Chapter 6. The initial, intermediate and
final grids are shown in Fig. 10. The Mach number contours obtained from the
three grids are shown in Fig. 11. The final grid was obtained by specifying
minimum and maximum mesh spacings of 3.5% and 150% of the average mesh
size along each grid line, respectively. Fig. 12 is the convergence c¢''rve which
shows the effects of the five cycles of artificial viscosity and mesh refinement.
Solution times are of the order of 30 seconds per iteration for Scheme 3 on a

Silicon Graphics Challenge computer, with four 150 MHz R-4400 processors.

7.3. Inviscid Transonic Flow Around an Airfoil

The third test is the AGARDO1 case [Pulliam and Barton (1985)], namely that of

transonic inviscid flow over a NACAOQ012 airfoil, at M.=0.8 and 1.25" angle of
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attack. This test is very demanding because a strong shock, a very weak shock
and a slip line should appear simultaneously in the solution. However, due to
their excessive diffusion, most first order schemes are unable to capture the very

weak shock and the sl.p line.

A (200X32) O-grid is used, with 200 elements on the airfoil surface (Fig. 13). For
this test case, the solution is started with the second order dissipation but with
the viscosity coefficient set to a large value in order to stabilize the Newton
method. This high value is then reduced in 4 successive st~ps, £=0.25, 0.15, 0.10
and 0.05, converging at each value to an intermediate residual of 5x10-6, with the
last step carzied to 10-12. The relaxation factor in Eq. (3.14) is set to «=0.5 to
stabilize the second order solution in the presence of the strong shock. The three
discontinuities are clearly captured, as shown in the Mach number and pressure
contours of Figs. 14 and 15. The Mach number distribution on the surface is
compared in Fig. 16 to the results of Pulliam and Barton (1985) obtained on a

(561X65) C-grid and to those of Jameson [Viviand (1985)] on a (320X64) O-grid.

Note that in spite of the finer grids, the results of Pulliam and Barton and those of
Jameson show shocks captured across several grid points. The convergence of the
solution is shown in Fig. 17. The saw-tooth appearance of the convergence
history is due to the four artificial viscosity cycles. Solution times are of the order
of 33 seconds per iteration on a Silicon Graphics Challenge computer with eight

150 MHz R-4400 processors, achieving speeds of 20 Mflops per processor.

74. Viscous Transonic Flow Around an Airfoil

The fourth case is for transonic viscous flow over a NACA0012 airfoil, at Me=0.9,
Re=5,000 and 0° angle of attack. A detail of the (200X48) C-grid, with 120

elements on the surface, is shown in Fig. 18. The solution w.s started by
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marching in Reynclds number from 1,000 to 5,000 with uniform first order
dissipation and g, =0.005, ¢, =0. Fig. 19 shows the convergence curve, with
machine accuracy reached in 10 Newtnn iterations. The fully converged first

order scheme was then used as input for the second order schemes 1,2 and 3.

To illustrate the difference between the first and second order accuracy of the
finite element schemes, consider the following: the scale factor of the natural
viscosity terms of Eq. (2b) is 1/Re, while the scale factor of the artificial viscosity
terms isg; The overall scale factor of the combined wviscosities is
1/Re'=(1/Ke)+£,=0.0052 for this particular test case, yielding an effective
Reynolds number, Re', of 192.3. The second order accurate scheme at this
Reynolds number and Me=0.9 produces results that are almost identical to those
of the first order scheme at Re=5,000, as can be seen by comparing the Mach
numler contours on the upper and lower halves of Figs. 20. The uniform
artifiaial viscosity of the first order scheme nas therefore effectively lowered the
Reynolds number by a factor of 26! Note also that above Re=200 the first order
artificial viscosity dominates over the natural viscosity, hence the value of ;must
be kept lower than the inverse of the Reynolds number. The only way to achieve
this objective is to refine the grid progressively as the .leynolds number

increases, ' vith the solution cost quickly becoming prohihitive.

Fig. 21 shows the Mach number contours for Me=0.9 and Re=5,000 obiained with
Scheme 3. The artificial viscosity parameters were set at &, =0,&, =0.001
throughout the solution domain. The relaxation factor in Eq. (3.14) is set to
o =0.9 to stabilize the second order solution. The improvement in the resuvlts
achieved with the second order scheme is noticeable. The surface Cp distribution
obtained with the first and all the second order schemes is compared in Fig. 22 to

the results of the finite volume scheme of Hollanders and Ravalason (1986). Note
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again the good agreement between the Cp distribution of the first order scheme
at Re=5,000 and the second order scheme at Re=192.3. Fig. 23 is a comparison of
the convergence rates of Scheme 1, 2 and 3 using the various methods to compute
the balancing terms. Scheme 1 and 2 with balancing terms eva'nated via a
consistent mass matrix (CMM) have the slowest convergence rates. Convergence
is improved by switching to other methods of evaluating the second order
balancing terms. Scheme 3 has the best convergence rate for this transonic test
case. Solution times where of the order of 13€¢ seconds per iteration on a Silicon

Graphics Challenge computer with four 150 MHz R-4400 processors.
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. CONCLUSIONS

This Thesis has presented some developments in terms of finite element methods
for the solution of the compressibie Euler and Navier-Stokes equations. By itself a
straightforward discretiza’ion of these governing equations is not sufficient to
produce a solution: the formulation of a well-posed problem requires the
specification of boundary conditicns that are both physically relevant and

mathematicaily valid and a discretization method that is accurate and stable.

An analysis of the nature of the Euler equations and a consistent methodology
for the specification of their boundary conditions, formulated according to the
theory of characteristics, was outlined in Chapter 2. The ruies obtained from tl "<

analysis were also adopted for the Navier-Stokes formulation.

In Chapter 3, a first order accurate finite element scheme for the solution of the
steady compressible Euler .nd Navier-Stokes equations is briefly outlined. Even
though this simple scheme can produce good results for inviscid flows, a higher
order scheme is required for viscous flow simulations. A second order scheme is
constructed by balancing the Laplacians of pressure and velocity of the first order

scheme with additional terms obtained from an averaging procedure.

In Chapter 4, three methods are presented to compute the balancing terms with
vector and tensor terms obtained from the averaged gradients of the pressure
and velocity. In the first scheine, the balancing terms are obtained from tensor
identities and nodal averaging. In the second scheme, the balancing terms are
obtained directly through the smoothing provided by nodal averaging, with four

different methodologies for the evaluations of the averaged gradients. In the first
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two schemes the balancing terms are functions of the solution at the previous
iteration and cannot be linearized due to the intermediate procedure required for
their evaluation. To overcome this limitation, a third scheme was developed to
dispense with the intermediate Galerkin averaging step. A partial linearization of
the balancing terms considerably improves the convergence rate without

affecting the bandwidth of the linear system of equations.

Chapter 5 addresses the issues of computational speed and efficiency. A simple
and effective strategy for the parallelization of the finite element global assembly
prc edure is presented. The finite element scheme is linearized by Newton's
method and a highly efficient parallel banded solver is developed for the fully-
coupled linear system of equations. The solver demonstrates a parallel efficiency
of nearly 100% on coarse-grained superpipelined parallel architectures such as

the Silicon Graphics R8000 family of advanced workstations.

To overcome the fact that the grids used in CFD applications are generated
heuristically, a grid adaptation procedure is developed and proves to be a
powerfui tool for mesh re-distribution to smooth solution error estimates. The
adaptaticn procedure is based on a spring analogy, allowing control of the
maximum and minimum mesh spacing as well as grid smoothness and
orthogonality. The advantages of grid adaptation were clearly shown in the case
of supersonic flow in a channel. The small Mach stem at the top channel wall did
not appear in the first solution with a uniform grid, but was clearly captured

after the mesh was twice adapted.

In Chapter 7, the second order accuracy of the scheme was formally
demonstrated through a test for which an exact solution exists. Other test cases

were used to assess the performance of the second order solver for more
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complicated geometrivs. The viscous test case showed clearly t 1t physically
meaningful solutions can only be obtained with schemes that are at least second

order ~ccurate.

Current work is concentrating on extending and improving the techniques
developed in FENSAP (Finite Element Navier-Stokes Analysis Package), a code
based on this work. The extension to 3-D of the second order scheme, with grid
adaptation and iterative solvers, is perhaps the most important current project
and has been initiated at the Concordia CFD Lab. It will lead to a M.A.Sc. Thesis
in 1995 by Mr. Martin Aubé. While a 3-D approach based on direct solvers cannot
be considered because of the prohibitive size of the matrices that would be
generated, preconditioned iterative solvers are continuously improved,
sometimes combined with acceleration techniques such as multigrid, at the CFD

Lab [Dutto (1993)].

The development of a flexible and reliable library of turbulence models is
underway at the CFD Lab and will lead to a M.A.Sc. Thesis by Mr. Guillaume
Houzeaux in 1995. The first order scheme has already been extended to the
simulation of hypersonic reacting flows in the current Ph.D. work of Mr. Ait Ali

Yahia et al. (1994)].



73

REFERENCES

Ait Ali Yahia, D., Habashi, W.G. and Baruzzi, G.S. (1994) A Finite Element
Method for Hypersonic Reacting Flow, Advances in Finite Element Analysis in Fluid

Dynamics, ASME.

Anderson, D.A., Tannehill, ].C. and Pletcher, R.H. (1984) Computational Fluid

Mechanics and Heat Transfer, Hemisphere, New York.

Baruzzi, G.S. (1989) Finite Element Solutions of the Euler Equations in Primitive
Variables Form, Master Thesis, Department of Mechanical Engineering,

Concordia University, Montreal, Canada.

Baruzzi, G.S., Habashi, W.G. and Hafez, M.M. (1989) Non-Unique Solutions of
the Euler Equations, Advances in Fluid Dynamics, eds. W.F. Ballhaus, Jr. and Y.M.
Hussaini, Springer-Verlag, New York, 1-10.

Baruzzi, G.S., Habashi, W.G. and Hafez, M.M. (1991) Finite Element Solutions of
the Euler Equations for Transonic External Flows, AIAA Journal, 29, 11, 1886~
1893.

Baruzzi, G.S., Habashi, W.G. and Hafez, M.M. (1992a) A Second Order Method
for the Finite Element Solution of the Euler and Navier-Stokes Equations,
Proceedings of the 13th International Conference on Numerical Methods in Fluid
Dynamics, eds. M. Napolitano and F. Sabetta, Springer-Verlag, Rome, Italy, 509
513.

Baruzzi, G.S., Habashi, W.G. and Hafez, M.M. (1992b) An Improved Finite

Element Method for the Solution of the Compressible Euler and Navier-Stokes



74

Equations, Proceedings of the First European Computational Fluid Dynamics
Conference —~Volume 2 (ECCOMAS), eds. Ch. Hirsch, J. Périaux, E. Oate, Elsevier,
Brussels, Belgium, 643-650.

Baruzzi, G.S. (1993) Structured Mesh Grid Adapting Based on a Spring Analogy,
Proceedings of the CFD’'93 Conference, CERCA (Centre for Research on
Computation and its Applications), Montreal, 425-436.

Beam, R M. and Warming, R.F. (1976) An Implicit Finite-Difference Algorithm
for Hyperbolic Systems in Conservation-Law Form, Journal of Computational

Physics, 22, 87-110.

Bestek, H.,, Thumm, A. and Fasel, H. (1992) Direct Numerical Simulation of
Three-Dimensional Breakdown to Turbulence in Compressible Boundary Layers,
Proceedings of the 13th International Conference on Numerical Methods in Fluid
Dynamics, eds. M. Napolitano and F. Sabetta, Springer-Verlag, Rome, Italy, 145-
149.

Bey, K.S. and Oden, ].T. (1991) A Runge-Kutta Discontinuous Finite Element
Method for High Speed Flows, AIAA Paper 91-1575.

Boivin, S. and Fortin, M. (1993) A New Artificial Viscosity Method for
compressible Viscous Flow Simulations by FEM, International Journal of

Computational Fluid Dynamics, 1, 2541.

Boris, J.P. and Book., D.L. (1973) Flux-Corrected Transport. i. SHASTA, A Fluid
Transport Algorithm That Works, Journal of Computational Physics, 11, 38-69.

Brackbill, ].U. and Saltzman, ].S. (1982) Adaptive Zoning for Singular Problems

in Two Dimensions, Journal of Computational Physics, 46, 342-368.



75

Cambier, L., and Escande, B. (1990) Calculation of a Three-Dimensional Shock
Wave-Turbulent Boundary-Layer Inicraction, AIAA Journal, 28, 11, 1901-1908.

Cochran, R.J. (1992) Laminar and Turbulent Incompressible Fluid Flow Analysis
with Heat Transfer by the Finite Element Method, Ph.D. Thesis, Department of

Mechanical Engineering, University of Washington.
Dowd, K. (1993) High Performance Computing, O'Reilly and Associates, New York.

Dutto, L.C., Habashi, W.G., Fortin, M. and Robichaud, M.P. (1993) Parallelizable
Block-Diagonal Preconditioners for 3D Viscous Compressible Flow Calculations,
AIAA Paper 93-3309, Proceedings of the 11th AIAA Computational Fluid Dynamics
Conference- Volume 2, Orlando, Florida, 135-143.

Fernandez, G. and Hafez, M.M. (1991) Finite Element Simulation of
Compressible Flow with Shocks, AIAA Paper 91-1551.

Fletcher, C.A.J. (1979) A Primitive Variable Finite Element Formulation for

Inviscid, Compressible Flow, Journal of Computational Physics, 33, 301-312.

Fortin, M. and Fortin, A. (1985) Newer and Newer Elements for Incompressible
Flows, Finite Elements in Fluids-Volume 6, eds. R.H. Gallager, G.F. Carey, ].T.
Oden and O.C. Zienkiewicz, John Wiley & Sons, New York, 171-157.

Gnoffo, P.A. (1983) A Finite-Volume Adaptive Grid Algorithm Applied to
Planetary Entry Flow Fields, AIAA Journal, 21,9, 1249-1254.

Hafez, M.M. and Soliman, M. (1991) Numerical Solution of the Incompressible
Navier-Stokes Equations in Primitive Variables on Unstructured Grids, AIAA

Paper 91-1561.



76

Haroutounian, V. and Engelman, M.S. (1991) On Modeling Wall-Bound
Turbulent Flows Using Specialized Near-Wall Finite Elements and the Standard
k-e Turbulence Model, Advances in Numerical Simulation of Turbulent Flows, ASME,

Vol. 117,97-105.

Harvey, A.D., Acharya, S., Lawrence, S.L. and Cheung, S. (1991) Solution-
Adaptive Grid Procedure for High-Speed Parabolic Flow Solvers, AIAA Journal,
29, 8, 1232-1240.

Harvey, A.D., Acharya, S., Lawrence, S.L. and Cheung, S. (1992) Solution-
Adaptive Grid Procedure for the Parabolized Navier-Stokes Equations, AIAA
Journal, 30, 4, 953-962.

Harten, A. (1983) High Resolution Schemes for Hyperbolic Conservation Laws,
Journal of Computational Physics, 49, 357-393.

Harten, A., Engquist, B., Osher, S. and Chakravarthy, S. (1987) Uniformly High
Order Accurate Essentially Non-Oscillatory Schemes 11, Journal of Computational

Physics, 71, 231-303.

Hassan, O., Morgan, K. and Peraire, J. (1990) An Implicit Finite Element Method
for High Speed Flows, AIAA Paper 90-0402.

Hinton, E., Scott, F.C. and Ricketts, R.E. (1975) Local Least Squares Stress
Smoothing for Parabolic Isoparametric Elements, International Journal for

Numerical Methods in Engineering, 9, 235-239.

Hoffmann, K.A. and Chiang, S.T. (1993) Computational Fluid Dynamics for

Engineers-Volume I, Engineering Education Systems, Wichita, Kansas.



77

Hollanders, H. and Ravalason, W. (1986) Résolution des Equations de Navier-
Stokes en Fluide Compressible par Méthode Implicite, La Recherche Aérospatiale, 1,

23-46.

Hood, P. and Taylor, C. (1974) Navier-Stokes Equations Using Mixed
Interpolation, Finite Element Methods in Flow Problems, eds. J.T. Oden, O.C.
Zienkiewicz, R.H. Gallager and C. Taylor, UAH Press, Huntsville Alabama.

Hughes, T.J.R. and Brooks, A. (1982) A Theoretical Framework for Petrov-
Galerkin Methods with Discontinuous Weight Functions: Application to the
Streamline Upwind Procedure, Finite Element in Fluids—Volume 4, eds. R.H.

Gallagher et al., John Wiley & Sons, New York, 47—65.

Jaeger, M. and Dhatt, G. (1992) An extended k-¢ Finite Element Model,
International Journal for Numerical Methods in Fluids, 14, 1325-1345.

Jameson, A. (1985) Euler Solvers as an Analysis Tool for Aircraft Aerodynamics,
Advances in Computational Transonics, ed. W.G. Habashi, Pineridge Press, UK.,

371-404.

Jameson, A. (1993) Artificial Diffusion, Upwind Biasing, Limiters and Their Effect
on Accuracy and Multigrid Convergence in Transonic and Hypersonic Flows,

AIAA Paper 93-3359.

Jiang, B.-N. and Cerey, G.F. (1990) Least-Squares Finite Element Method for
Compressible Euler Equations, International Journal for Numerical Methods in

Fluids, 10, 557-568.

Langtangen, H.P. (1989) A Method for Smoothing Derivatives of Multilinear
Finite Element Fields, Communications in Applied Numerical Methods, 5, 275-281.



78

Lefebvre, D., Peraire, ]. and Morgan, K. (1993) Finite Element Least Squares
Solution of the Euler Equations Using Linear and Quadratic Approximations,

International Journal of Computational Fluid Dynamics, 1, 1-23.

Lerat, A. (1985) Implicit Methods of Second-Order Accuracy for the Euler
Equations, AIAA Journal, 23, 1, 33-40.

Lesieur, M., Comte, P. and Metais, O. (1992) Direct Numerical Simulation of
Turbulence, Proceedings of the First European Computational Fluid Dynamics
Conference (ECCOMAS), eds. Ch. Hirsch, ]. Périaux, E. Onate, Elsevier, New
York, 37-42.

Loéhner, R, Morgan, K. and Zienkiewicz, O.C. (1984) The Solution of Non-Linear
Hyperbolic Equation Systems by the Finite element Method, International Journal

for Numerical Methods in Fluids, 4, 1043-1063.

Lyra, P.R.M., Morgan, K., Peraire, J., and Peir6, J. (1994) TVD Algorithms for the
Solution of the Compressib:. Culer Equations on Unstructured Meshes,

International Journal for Numerical Methods in Fluids, 19, 827-827.

Lytton, C.C. (1987) Solution of the Euler Equations for Transonic Flow over a
Lifting Aerofoil—The Bernoulli Formulation, Journal of Computational Physics, 73,

395-431.

van Leer, B. (1979) Towards the Ultimate Conservative Difference Scheme. V. A
Second-Order Sequel to Godunov's Method, Journal of Computational Physics, 32,
101-136.



79

van Leer, B., Thomas, J., Roe, P.L. and Newsome, R. (1987) A Comparison of
Numerical Flux Formulas for the Euler and Navier-Stokes Equations, AIAA Paper

87-1104.

Manouzi, H. and Fortin, M. (1991) A Treatment of Wall Boundaries for Turbulent
Flows by the Use of a Transmission Finite Element Method, International Journal

for N'imerical Methods in Fluids, 31, 113-126.

Masson, C., Saabas, H.J]. and Baliga, B.R., (1994) Co-Located Equal-Order
Control-Volume Finite Element Method for Two-Dimensional Axisymmetric
Incompressible Fluid Flow, International Journal for Numerical Methods in Fluids,

18, 1-26.

Mavriplis, D.]J. (1987) Solution of the Two-Dimensional Euler Equations on
Unstructured Triangular Meshes, Ph.D. Thesis, Department of Mechanical

Engineering, Princeton University, Princeton, New Jersey.

Mavriplis, D.J. and Jameson, A. (1990) Multigrid Solution of the Navier-Stokes
Equations on Triangular Meshes, AIAA Journal, 28, 8, 1415-1425,

Miner, EW., Swean, T.F. Jr., Handler, R.A. and Leighton, R.I. (1991) Examination
of Wall Damping tor the k—¢ Turbulence Model Using Direct Simulations of
Turbulent Channel Flow, International Journal for Numerical Methods in Fluids, 12,

609-624.

Miyakawa, J., Takanashi, S., Fujii, K. and Amano, K. (1987), Searching the

Horizon of Navier-Stokes Simulation of Transonic Aircraft, AIAA Paper 87-0524.

Nakahashi, K. and Deiwert, G.S. (1986) Three-Dimensional Adaptive Grid
Method, AIAA Journal, 24, 6, 948-954.



80

Nakahashi, K. and Deiwert, G.S. (1987) Self-Adaptive Grid Method with
Application to Airfoil Flow, AIAA Journal, 25, 4, 513-520.

Nicolaides, R.A. (1993) The Covolume Approach to Computing Incompressible
Flows, Incompressible Computational Fluid Dynamics. Trends and Advances, eds. M.

Gunzburger and R.A. Nicolaides, Cambridge University Press, 295-333.

Osher, S. and Chakravarthy, 5. (1983) Upwind Schemes and Boundary
Conditions with Applications to Euler Equations in General Geometries, Journal

of Computational Physics, 50, 447-481.

Peeters, M.F., Habashi, W.G. and Nguyen, B.Q. (1991) Finite Element Solution of
the Incompressible Navier-Stokes Equations by a Helmholtz Velocity
Decomposition, International Journal for Numerical Methods in Fluids, 13, 2, 135-

144,

Peeters, M.F., Habashi, W.G., Nguyen, B.Q. and Kotiuga, P.L. (1992) Finite
Element Solutions of the Navier-Stokes Equations for Compressible Internal

Flows, AIAA Journal of Propulsion and Power, 8, 1, 192-198.

Pulliam, T.H. and Steger, J.L. (1980) Implicit Finite-Difference Simulation of
Three-Dimensional Compressible Flow, AIAA Journal, 18, 2, 159-167.

Pulliam, T.H. (1985) Implicit Finite-Difference Methods for the Euler Equations,
Advances in Computational Transonics, ed. W.G. Habashi, Pineridge Press, U.K.,

503-542.

Pulliam, T.H. and Barton, J.T. (1985) Euler Computations of AGARD Working
Group 07 Airfoil Test Cases, AIAA Paper 85-0018.



81

Pulliam, T.H. (1990) A Computational Challenge: Euler Solution for Ellipses,
AlAA Journal, 28, 10, 1703-1704.

van Ransbeeck, P. and Hirsch, Ch. (1993) New Upwind Dissipation Models with
a Multidimensional Approach, AIAA Paper 93-3304.

Roe, P.L. (1981) Approximate Riemann Solvers, Parameter Vectors, and

Difference Schemes, Journal of Computational Physics, 43, 357-372.

Roe, P.L. (1986) Characteristics-Based Schemes for the Euler Equations, Annual

Review of Fluid Mechanics, 18, 337-365.

Roe, P.L. and van Leer, B. (1988) Non-Existence, Non-Uniqueness and Slow
Convergence in Discrete Conservation Laws, Numerical Methods for Fluid

Dynamics, eds. K. Morton and M. Baires, Clrendon, Oxford, England, UK.

Rubbert, P.E. (1991) On the Leverage of Computational Fluid Dynamics (CFD)
for Airplane Design, Proceedings of the Fourth International Symposium on
Computational Fluid Dynamics, University of California, Davis, California, 983~

986.

Rumsey, C.L., van Leer, B. and Roe, P.L. (1993) A Multidimensional Flux
Function with Applications to the Euler and Navier-Stokes Equations, Journal of

Computational Physics, 105, 306-323.

Schmidt, W. and Jameson, A. (1985) Euler Solvers as an Analysis Tool for Aircraft
Aerodynamics, Advances in Computational Transonics, ed. W.G. Habashi,

Pineridge Press, U.K., 371-404.

Steger, J.L. (1978) Implicit Finite-Difference Simulation of Flow About Arbitrary
Two-Dimensional Geometries, AIAA Journal, 16,7, 679-686.



82

Sweby, P.K. (1982) High Resolution Schemes Using Flux Limiters for Hyperbolic
Conservation Laws, SIAM Journal of Numerical Analysis, 21, 5, 995-1011.

Sweby, P.K. (1985) Flux Limiters, iVumerical Methods for the Euler Equations of Fluid
Dynamics, ed. F. Angrand et al., SIAM, Philadelphia, 48-65.

Tatsumi, S., Martinelli, L. and Jameson, A. (1995) A new High Resolution Scheme
for Compressible Viscous Flow with Shocks, AIAA Paper 95-0466.

Tezduyar, T.E. and Hughes, T.J.R. (1983) Finite Element Formulation for
Convection Dominated Flows with Particular Emphasis on the Compressible

Euler Equations, AIAA Paper 83-0125.

Viviand, H. (1985) Test Cases for Inviscid Flow Field Methods, AGARD Advisory
Report No. 211, 6-21,22.

Webster, W.P. and Shang, ].S. (1991) Thin-Layer Full Navier Stokes Simulations
over a Supersonic Delta Wing, AIAA Journal, 29,9, 1363-1369.

Yee, H.C. and Harten, A. (1987) Implicit TVD Schemes for Hyperbolic

Conservation Laws in Curvilinear Coordinates, AIAA Journal, 25, 2, 266-274.

Yee, H.C., (1989) A Class of High Resolution Explicit and Implicit Shock
Capturing-Methods, NASA Technical Memorandum 101088.

Yamamoto, S. and Daiguji, H. (1991) Higher-Order Accurate Upwind Schemes
for Solving the Compressible Euler and Navier-Stokes Equations, Proceedings of
the International Symposium on Computational Fluid Dynamics, Davis, California,

1269-1274.



APPENDIX

This section illustrates the detailed form of Eq. {3.14). Eq. (3.1¢) can be solved for

the density so that
p=-"L (A1)

where

2y

a=——

-1
b=2H_ —(t12 +vz)
The canonical finite element discretization is introduced as follows
4
{ap, au, a0} =Y {4, ait), 45 N, (A.2)
1=1
Newton's method is applied by setting
{pu,0}"" = {p,u,0}" +{4p, 4u, 4v} (A.3)
After substituting Eqs. (A.1), (A.2) and (A.3) in Egs. (3.8), Eq. (3.14) can be written

in detail as
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where the [J,,-] are component matrices of the Jacobian [J]. The component
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matrices are shown below
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Figure 10. Initial, intermediate and final adapted grid

for supersonic flow over a 15° wedge.
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Figure 11. Initial, intermediate and final Mach number contours

0.65, AM=0.05).

for supersonic flow over a 15° wedge (Mmin
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Figure 14. Mach number contours for inviscid flow over a NACA(0012

airfoil at M=0.8 and a=1.25° (M, =0.1, AM=0.05).
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Figure 15. Nondimensional pressure contours for inviscid flow over

a NACAOQ012 airfoil at M=0.8 and a=1.25"; (P,;,=0, AP=0.05).
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Figure 17. Convergence history, showing the effect of four artificial viscosity

cycles, for inviscid flow over a NACA0012 airfoil at M=0.8 and a=1.25".
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Figure 20. Comparison of the Mach number contours of the first order
solution at M=0.9, Re=5,000 and a=0°, at the top of the figure, with those
of the second order solution at M=0.9, Re=192.3 and 0=0° at the bottom
(Mp,in=0, AM=0.05).
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Figure 21. Mach number contours of the second order solution for laminar
transonic viscous flow over a NACA0012 airfoil at M=0.9, Re=5,000
and ¢=0° (Scheme 3 ,M_; =0, AM=0.05).
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Figure22. Cp distribution of the three second order schemes for transonic
laminar viscous flow over a NACA0012 airfoil at M=0.9, Re=5,000 and 0:=0"-
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Figure 23. Convergence histories of the three second order schemes for transonic
laminar viscous flow over a NACAQ012 airfoil at M=0.9, Re=5,000 and a=0°.





