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ABSTRACT

A Sheaf-Theoretic Characterization of
Commutative Hereditary Rings

W. John D. Osborne

This thesis studies a characterization of commutative
hereditary and semihereditary rings given by G. Bergman in
[1]). Following R. Pierce in [12], a ring R is associated
with a sheaf of rings over the topological space obtained
from its ring of idempotents and studied in this context.
The characterizations so obtained are consequently
sheaf-theoretic in nature. It is shown that the commutative
hereditary rings are the p.p. rings in which all the stalks
are Dedekind domains, non-zero divisors are "almost" units,
and the Boolean ring of idempotents of R is hereditary.

The ring associated with the one-point compactification
of a discrete space is hereditary. The ring of continuous
functions from a space whose associated ring is hereditary
to a field with the discrete topology is hereditary.

An oft cited but seldom presented result of
I. Kaplansky concerning the direct sum decomposition of
projective modules over commutative semihereditary rings is

proved in the appendix.
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INTRODUCTICN

A commutative ring R in which all ideals (respectively
all finitely generated ideals) are projective as R-modules
is called hereditary (respectively semihereditary). The
hereditary (respectively semihereditary) integral domains
are exactly the Dedekind domains (respectively the Prifer
domains) .

This paper presents a sheaf theoretic characterization
of commutative hereditary and semihereditary rings developed
by George Bergman in [1]. The characterization depends
ultimately on properties exhibited by the principal ldeals
of R and the Boolean ring of idempotents of R and the ring
properties of the stalks associated with R.

Using [9] and [12] as models, we present two topologies
connected with any ring R and demonstrate how they are used
to associate a sheaf of rings to R. With the tools made
available by this representation of R we retrace the path
taken in [1]. Liberties have been taken in expanding proofs
and changing the "flavour" of some (the different flavour
coming from the use of the Pierce stalk of [12] rather than

the direct limit of factor-rings in [1]).

Except when otherwise specified, R will represent a

commutative ring with a unit different from zero.
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CHAPTER 1
R AS A RINGED SPACE

1. The space of prime ideals of a regular ring.

Recall that a ring R, not necessarily commutative, is
(von Neumann) regular if for every a € R there is some b € R
such that a = aba. If R is reqgular then every a € R has a
quasi-inverse: an element c such that a = aca, ¢ = cac
(choose ¢ = bab where b is as above). If a = aba then (ab)2
= abab = ab and (ba)2 = baba = ba so ab and ba are
idempotents. If R commutes then quasi-inverses are unique.

Two immediate examples of regular rings are fields

(inverses are quasi-inverses) and Boolean rings (each

element its own quasi-inverse).

1.1 Proposition ([9], 2.2.3). If R is regular then
(1) Every non-unit of R is a zero-divisor
(2) Every prime ideal of R is maximal

(3) Every principal ideal of R is a direct summand.

Proof. (1) For a e R, a = a’b » a(l - ab) = 0 for some b €
R. If a is not a unit then 1 - ab cannot be zero so a must
be a zero-divisor.

(2) Let P c R be a prime ideal. R/P is an integral
domain so has no zero-divisors. Homomorphic images of

regular rings are regular so every non-zero element of R/P



is a unit; hence R/P is a field and P must be maximal.
(3) For a = azb, aR = eR where 2 = ab is idempotent

and R = eR o (1 - e)R.n

1.2 Lemma ([%9], 2.1.1). M -~ R is a maximal ideal if and

only if for every r ¢ M, 1 - rx € M for some x € R.

Proof. (») If r ¢ M then M maximal implies that M + rR = R
SO (m+ rx =1) » (1 - rx € M).

(¢) Let a ¢ M and consider M + aR. (1 - ax) € M for
some X so 1l - ax=mand 1 = m + ax is in M + aR.

Therefore, M + aR = R for any a ¢ M and M is maximal.D

The intersection of all maximal ideals of R is called
the radical (or Jacobson radical) of R and is denoted

Rad (R) .

1.3 Lemma ([9], 2.1.7). Rad(R) = (r € Rl1 - rx is a unit v

X € R}.

Proof. 1If r is in every maximal ideal then 1 - rx is not in
any maximal ideal for any x; hence 1 - rx is a unit for all
X and Rad(R) € {(r € RI1 - rx is a unit v x € R).

If be {(r e RI1 - rx is a unit v x € R) then 1 - bx is
a unit for all x. Let M be any maximal ideal and suppose bx
¢ M. There is some y such that 1 - (bx)y € M s0 1 - b(xy)
is not a unit which is a contradiction unless bx e MY x € R

and we have (r €e R|1 - rx is a unit v x € R) ¢ Rad(I‘.’,.D
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1.4 Proposition ([9], 2.2.4). If R is regular then
Rad(R) = 0.
Proof. If a € R then a = a’b for some b and a(l - ab) = 0.

If a* O then 1 - ab is a zero-divisor so by (1.3)

a ¢ Rad(R) ‘g

The intersection of all prime ideals is called the
prime radical and denoted rad(R). If rad(R) = 0 then R is
semiprime. Since rad(R) € Rad(R), regular rings are

semiprime.

If A € R is any subset then A" = {r e Rlra =0V a € R}
is an ideal of R—the annihilator of A in R. J is an called

an annihilator ideal if J = A‘ for some A S R.

1.5 Lemma. If R is semiprime and A an annihilator ideal of
R then A = eR for some idempotent e € R if and only if

.
A+A =R,

Proof. Suppose A = eR for some idempotent e. It is easily
checked that (eR)’ = (1 - e)Rand R = eR o (1 - e)R =

L ]
A+A.

Conversely, suppose R = A + A'. When R is semiprime,
An A" = 0. To see this suppose x is in the intersection;:
then x-x = %° = 0 is nilpotent and lies in rad(R) ([9],
2.1.8) which is zero; thus x is zero and R = A e A"

Wecanwrite1=a+bforaeAandbeA'. Then a =

a(a+b) = a’ + ab = a° =0 a is idempotent as is b =1 - a.




Since aR s A and (1 — a)Rs A'and R = aR e (1 - a)R it

follows that A = aR.n

It can be shown ([9], 2.4.2) that in a semiprime ring
the set of annihilator ideals forms a (complete). Boolean
algebra when the infimum of two elements is taken to be
their intersection and the complement of A is taken to be

*
A.

Let X be the collection of all prime ideals of R,
often called the spectrum of R and denoted Spec(R). It is
well known (see [9] for instance) that X is a topology,
often called the Stone-Zariski topology, when the open sets
of X are defined as those of the form

F(aA) = (P ¢ xRIA is not contained in P)
where A is any subset of R.

'(A) = I'( nJ) where J runs over all ideals of R
ACJ

containing A so it is enough to talk about ideals of R when

I

specifying open sets of XK. If {Ai}le is any family of

ideals then U F(A) =T(L A) (wvhere L A is the ideal
I 1

generated by the union of the Al) and I'(A) n I'(B) = I'(AB)
are open. Also, I'(0) =@ and I'(R) = XR are opert. For any

a€R

iaeal A, I'(A) =agAl"(a) so the sets ('(a)) form a basis

for XR.

1.6 Proposition ([9), 2.5.1). XR is a compact topological

space.

Proof. Let ilélll"(Ax) be an open cover of KR, where the Al's



are ideals of R. X, < U r@a)) = C(ZA) =(Pe XIY A is not
1 1 1

contained in P}. Since the set of maximal ideals is
contained in the set of prime ideals we know that [ A is in

no maximal ideal of R. Therefore, 1 € } A  for some finite
f€F

FcIand R=FA. It follows that ) [l"(Ar)] =T(L a) =
F F . F

F'(R) = X, so U r() contains a finite subcover.
1

o
[

A set that is simultaneously open and closed will be

called clopen.

1.7 Proposition ([3], p32). If R is regular then is an

Hausdorff space with a basis of clopen sets.

Proof [3]. First notice that if e is an idempotent then
e(l ~e) = 0 is in every P € X - Therefore, e € P or

(1 - e) e P by primality but never both (if both were in P
then e + (1 - e) = 1 would be). Consequently, '(e) and
'(1 - e) are disjoint open sets.

Let P and Q be distinct elements of X Since both are
maximal, P is not contained in Q and we can find an element
ae P, ae Q. Let b be such that a = azb, then (azb € Q) »
(e = ab ¢ Q) by primality of Q. P contains e since a e P so
(1 —e) ¢ P. It follows that Qe I'(e) and P € I'(1 - e) are

in disjoint open sets so X, is Hausdorff.

For the second part, Let 0 be any open set in X R and Q

any prime ideal in 0. 0 = I'(A) for some ideal A ¢ R and we



can find an element a = a’b € A that is not in Q by
definition of I'(A). Q eTI'(a) =T (aR) = I'(eR) =T (e) vwhere e
= ab so Q € I'(e) € 0. The complement of I(e) is X, = ['(e) =

(P € xnle € P) = (P € xRI(l - e) ¢ P) =T(1 - e) is open.

Since the complement of an open set must be closed I (e) is
open and closed. Therefore, every element of © is contained

in a clopen set in O and so 0 is the union of clopen sets.

A topological space with a basis of clopen sets is
called a totally disconnected space.

We summarize these facts in

1.8 Theorem. If R is a regular ring then X_ is a compact,

Hausdorff, totally disconnected topology.

Any space with these properties will be called a

Boolean space.

2. The sheaf of rings associated with R,

[12] was the main reference in what follows.

Recall that a Boolean ring is a ring in which every
element is an idempotent. It is immediate from the
definition that Boolean rings are commutative and of
characteristic two: ef = feand e + e = 0 for all ring
elements e and f.

B(R) will denote the Boolean algebra of central
idempotents of the ring R (see, for instance, [9]). B(R) is

a Boolean ring contained in R sharing the same




multiplication as R but with the addition: e + f =
e + £ - 2ef where the operations on the right take place in
R (so B(R) is not usually a subring of R).

For e,f in B(R), eR S fR ¢ e = ef since (1 - f)
annihilates eR. We also have that the ideal in R generated
by e and £ is eR + fR = (e + f - ef)R. To see this take x €
(e + £ - ef)R; then x = er + fr - efr = er + f(£fr - er) € eR
+ fR so (e + f - ef)R € eR + fR. In the other direction if
x = er, + frz then er, = (e + £ - ef)er1 and fr2 =
(e + £ - ef)fr, are both elements of (e + f - ef)R giving
the opposite containment. In particular, if e and £ are
orthogonal, so that ef = 0, we have eR + fR = (e + f)R.

X will be the collection of all prime ideals of B(R),
Spec(B(R)) . Since B(R) is a Boolean ring, hence regular, X

has all the properties described earlier for XR.

1.9 Proposition V s X is clopen if and only if V = T'(e)

for some e € B(R).

Proof. Let V be clopen. By definition, V = I'(A) for some
ideal A € B(R). V°, the complement of V in X, must also be
open so V¢ =T (J) for some ideal J < B(R). [(A +J) =

(P e XRIA + J is not contained in P}. Suppose A +J < P for
some P ¢ XR; then IS P3P ¢ I'(J) soP e I'(Ad), the
complement of I'(J). But then A is not contained in P and
for some a e A, a + 0 ¢ Pso A+J is not contained in P
which is a contradiction. It must be that A + J is not in

any PexR soI'(A + J) =xR and A + J = B(R).



To see that A + J is direct let x e AnJ. TI'(x) <
ra) N T(J) = eso I'(x) = e and x must be zero. Therefore,
B(R) = Ao J.

We claim that J = A’, the annihilator of A. Clearly J
< A'. Suppose X € A" but x ¢ J. We know that x = a + b for
some a e A, beJ. For anyy € A: 0 =xy = (a + b)y = ay +
by = ay =0 (sinceJSA') so ay = 0 for all y € A.
Specifically, a’ = 0 so a =0 since B(R) is Boolean and x =
0 + b € J, establishing the clain.

Therefore, if V is clopen then V = I'(A) for an
annihilator ideal A and B(R) = A ® A". In any semiprime
(hence regular) ring R we have seen that this can only
happen if A = eR for some idempotent e (lemma 1.5).
Therefore, I'(A) = I'[eB(R)] = I'(e).

Conversely, if V = I'(e) for some e € B(R) then V¢ =

r(l - e) which is open.

Therefore, the clopen sets in X are precisely the
basic open sets I'(e), e € B(R).

As mentioned in §1, the annihilator ideals of a
semiprime ring, such as B(R), form a Boolean algebra. 1In
such rings I' is an isomorphism between the direct summands
of B(R), which are precisely the annihilator ideals A such
that A + A" = B(R), and the clopen sets of X ([9], §2.5).

In particular, I'[eB(R)] = I'[£B(R)] « eB(R) = fB(R) « e = f.

1.10 Lemma ([12], 1.6). If R is any ring and P e X_ then

RP = P = (relr e R, e € P} is an ideal of R.
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Proof. This is obvious except for closure under addition.
Let re and sf be in P; then re + sf = (re + sf) (e + £ — ef)

and e + f - ef ¢ P.D

For a ring R and P € X, R, will denote the quotient

ring R/P. Let R be the disjoint union R =Ple)xRP and define
R

m: R — X by m(r + P) = P. Forr e R, let i: X — R be
given by £(P) = r + P and £[I'(e)] = {(r + PIP e I'(e)} where
e € B(R). Finally, let B = (r[I'(e)]Ir € R, e € B(R)} and
call the sets which are elements of B, and all arbitrary

unions of these sets, {he open sets of R.
1.11 Theorem. R is a topological space with basis B.

Proof. R will be a topology with basis B if each x € R is
in at least one member of B and if x is in B  n Bg then

B

there exists B, < B, N BB such that x e B, where B , BB' ¥

7

are in B ([8]).

Let x = r + P be any element of R. Since I'(1) = X we
always have x € r[I'(1)] so condition one is satisfied.

(Also, since I'(0) = @ we have that ¢ is open in R.)

For the second condition we need

1.12 Sublemma ([12], 4.3). If r(P) S(P) for some P € X,
then there exists e € B(R) such that P € I'(e) and

r(M) = §(M) for every M e I'(e).

Proof, r(P) =8(P) er+P=s+Per-sebPer-s=af

for some f e P. Set e =1 -f so e ¢ P and whenever e ¢ P
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we have £f e P, then r - s e M for all M € I'(e) (and P ¢

r'(e)). This gives us that £(M) = §(M) for every M e I'(e) .

To continue with the proof of (1.11), let x € i'[l‘(e)] N
§[I'(f)] so that x = £(P) = §(P) for some P in TI(e) N I'(f) .
By the preceeding, there is a g € B(R) such that I'(g)
contains P and r(M) = s(M) for every M € I'(g) . Therefore, x
= £(P) = §(P) € £[I'(gef)] s £[l(e)] n §[C(f)] since P is in

r(g) nT(e) n r(f) = I'(gef) . This is the second statement.o

Using [12] (definition 3.1a) verbatim we state the

following definition of a sheaf.

1.13 Definition. Let X be a topological space. Suppose
that for each x € X, a ring Rx with zero 0x and identity 1x
is given. Assume that R N R = o for x =Y. Let R = U R .
Denote by m the mapping of R to X defined by m(r) = x if re
Rx. Assume that a topology is imposed on R such that the
following axioms are satisfied.

(1) If r € R, there exists open sets U in R with r e U
and N € X such that m maps U homeomorphically onto N.

(2) Let R + R denote ((r,s)lin(r) = n(s)}, with the
topology induced by the product topology in R x R. Then the
mapping r — =x is continuous on R to R and the mappings
(r,s) — r + s and (r,s) — rs are continuous on R + R to
R.

(3) The mapping x — 1 is continuous on X to R.

With these conditions R is called a sheaf of rings over X.

The rings R are called the stalks of the sheaf R.
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We will show that R =ng RP is a sheaf and develop some

of its properties.

1l.14 Proposition. The mappings n: R — XR and r: X — R

are continuous functions.

Proof. First note that for P e X, (mex) (P) = m[E(P)] =

n(r +P) =P so net = 1, , the identity map on X for any r
R

€ R. Also, (Tem)(r + P) = £[n(r +F)] = £(P) = r + P so
Tom = 15, the identity map on R for any r € R.

Let V = I'(e) be any basic open set in X i) =
{r +Pin(r+P) el(e)) = (r+ PIP e '(e)) = U (£[T(e)]) is
a union of basic open sets in R, hence is open. Since any
open set in X is a union of sets of the type I'(e) it
follows that inverse images of open sets are open so m is
continuous.

Consider a basic open set S[I'(e)] in R with P e I'(e).

t1[E(P)] = (&

1°§)(P) = (T[°é) (P) =P (since mor = lx 5 T =
R

£ '). Therefore, i'"l{é[r’(e)]} = I'(e) which is open in X

and it follows that inverse images of any open sets are open

so r: X, —— R is continuous for each r e R.

In particular, i(P) = 1 + P is continuous on X to R

which is condition three of a sheaf.

For the first condition take Pe I'(e) and r + P in R.
Let U= r[l(e)]. TL:an meE(P) = PV P e I'(e) so n[f(l(e))] =

F'(e) and n and r are continuous inverses of each other. So,
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for any basic open set U in R, m maps U homeomorphically

onto the basic open set I'(e) in X

The second condition remains and will be accomplished
in steps. We introduce the notation r, for the image of r
in R, = R/P; r,=r + P = #(P) and this will later supplant

the r notation.

1.15 Lemma. The map p: R —> R given by r r— -r, is

continuous.

Proof. Let U = §[I(e)], a basic open set in R. ety =
{r, € Rl-r, € U} = (r+ Pl(-r) + P= s +P) for some P €
I(e). If ¢ '(U) *+ o (which is open) then (-£)(P) = &(P) for
some P e '(e). It follows that there is some £ € B(R) such
that P is in I'(f) and (-£)(Q) = 5§(Q) VQ e I'(f) by (1.12).

Either way cp'l(ll) is oper. and ¢ is continuous.

R+R = {(rp,sp)lr, seR, Pe X ). Endow R x R with
the product topology induced by the topology on R. A basic
open set in R x R will then be of the form (£[C(e)] x R} n
(Rx §[T(£)]) = (£[r(e)] x §[T(£)]) where r, s are in R and
e, f are in B(R). R+ R is topologized by taking as basic
open those sets in R + R that are intersections of basic
open sets in R x R with R + R. Then 0 basic open in R + R
means 0 = {(t,v,))it, ¢ zr(e)]., v, € s§[r(e)]) fl:r some t, Vv

in R e, £ in B(R).

1.16 Lemma. The map +:(R + R) —> R given by +(r,,s,) =

r, + s, is continuous.
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Proof. Let V = G[I'(e)] be a basic open set in R. We want
that (+)"'(v) is open in R.

Consider some fixed pair (r,s) in R such that r, +s, =
u, for some P e I'(e) so (r + s)(P) = a(P) and +(r,,s,) € V.
This equation must hold over a basic open set I'(f)
containing P. Specifically, (r+s)(P) = Ga(P) over I'(e) N
'(f) =T(ef). This implies that {(rp,sP)IP € '(ef)) =
(t[C(ef)] x §[I'(ef)]) n (R + R) is contained in (+)”'(V) and
is a basic open set in R + R. (+) (V) will consist of the
union of all such sets as we run through pairs (a,b) such
that a+b + P=u+ P for some P € I'(e). It follows that
(+)'l (V) is open and that addition is a continuous operation

on5~Z+RtoR.D

That the function x: R + R —» R given by x(rp,sp)
r.s, is continuous is shown by the same procedure so
multiplication is also a continuous operation. With this we

have the second condition and conclude that R = PQX RP is a
R

sheaf of rings. Taken together, (XR,fR) is called a ringed
space.
We now turn to some of the consequences of (XR,.‘R) being

a ringed space.

1.17 Definition. A continuous map o: X, — R is called a

section (of R over X)) if n[o(P)] =PV P« X_-

For example, we have seen that for any r € R,

I: X — R is continuous. n[#(P)] = m(r+F) = PV P e X so
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f is a section for every r £ R. Of paramount importance
will be showing that every section of R over X is of this

form.

1.18 Proposition. Let C(X ,R) = (f|r € R} and define
(r¥s) (P) = £(P) + &(P), (r's)(P) = ©(P)-8§(P) for all P € X,

then C(XR,R) is a ring.

Proof. C(Xﬁ,?) has 1 and 0 as unit and zero respectively.
It is straightforwaid to check that the map
P —— [£(P),5(P)] is continuous for any r, s € R. By the
second condition on sheaves then, P —— [E(P),8(P)] +—
£(P) + §(P) is a composition of continuous functions hence
continuous so (r+s)(P) = £(P) + s(P) is continuous.
Similarly, (r‘s) = rs is continuous.

Finally, n[(r#s)(P)] = P = n[r's(P)] so if r and s are

sections then so are © + & and ©-S. Upon this it will

follow that C(XR,R) is a ring.D

1.19 Proposition. If f and g are any sections of R that
agree at P e XR'then'they agree on an open set containing

P.

Proof. Suppose f(P) = g(P)) . f(Pb) is contained in some
basic open set U € R and we have seen that n maps v
homeomorphically onto a basic open set U’ < X_. Set V =
[fq(U)] n [gd(w)] n U’ which is an open set since f and g
are continuous.

P, is inv s U'. If P e V we have, by construction of




ey

e R e s,
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Vv, that £(P) and g(P) are in U. n[f(P)] = n[g(P)] = P since
f and g are sections and on any basic open set m is an

injection so it must be that f(P) = g(P) for all P e V.

Before we proceed to the main result of this section we

establish the important partition property of X in

1.20 Theorem. If {(’)i}"EI

is any open covering of X then
there exists a finite collection of clopen sets {l"(ej) }’;'=1

such that each l"(ej) s 0l for some i and l"(ej) N I"(ek) =0

n
if i # k and X = UI‘(el).
i1=n

Proof. Since X is compact (0’}I has a finite subcovering,

r
say X = Uol. Each of these is in turn a union of clopen
1=1

sets: X =181[U l"(eol)] where e,, is in B(R) and U T(ey) =

01 i

o,. Again, by compactness, this contains a finite subcover

k
X, = U I(e). Where each F(ej) S 0, for some i. Now, since
1=1

this is a finite collection of clopen sets we can turn it
into a disjoint union by a finite number of set operations
involving finite intersections and complements each of which
produce clopen sets, establishing the desired partition.

For instance, suppose X = TI'(e) U I'(e,) . We can write
X, = [r(1 - ee) n l"(el)] U T(ee,) U [rq - ee) n F(ea)]
=T(e - ee) UTl(ee,) U (e, - ee) and this is a
disjoint union of clopen sets each one of which is contained

in one of the original 0,
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We apply the partition property at once to show that

every section cver X is represented by a ring element.

1.21 Theorem. If o is any section of R over X, then o = r

for some r € R.

Proof. Recall that if e € B(R) and P € X then either e € P
or (1 - e) € P but never both. If e € Pthen é(P) =e+ P =
P

i>'=op. If (L -e) e Pthené(P) =e +P=e + (1L -¢e) +

1+P = 1,. Soalways &(P) = e =1 or 0 for any e € X_.
Let o be any section and P e xn. We must have o(P) =
T(P) for some r ¢ R so ¢ and ¥ must agree on a clopen set

containing P, say I'(e), so o(M) =r(M) VM € I'(e). Sets of

n

this type cover xR and we can choose {el)m,

{r)°

171=1

e € B(R), and
n

¢ R such that X = 1l=.lil"(ei), IF'(e)n I"(ej) =g if

i#3j and o(P) = i'l(P) VPel(e).

n
Set s = Yer and take any Pe X . P is in exactly one
1=1

of the I'(e)), say r‘(ej). For all P € r'(ej) we have fj(P) =
o(P) and é’(P) = 1 since e ¢ P. Therefore, (e;rj)(P) =
éj(p)i-j(p) = 1-0(P) =0o(P) on l"(ej). over T'(e), i=*73,

&€ (P) = 0 and £ (P) =0o(P) so (e[r)(P) = é‘(p)fi(p) = 0,.

This gives s(P) = 0P SRR 0P + rJ(P) + op S CREY OP = cr(P).n

With this result it is immediate that the map
At R — C(X_,R) given by ~(r) =r is a ring epimorphism.
To see that ~ is an injection just suppose that r is the
zero map: [Z(P) = OV P e X] e[r+P=PVPe X)] e xr=

ae for some a e R and e €  P. But B(R) is a regular ring
PEX
R
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and hence semiprime son P = (0) and it must be that r = ae
PEX
R

= 0. Therefore [~(r) = £ =0] «r =0 and ~ is an
injection. The upshot is that R and C(XR,R) are isomorphic
as rings and there is a one-to-one identification between
the sections of X, over R and the elements of R.

This fact together with the partition property enjoyed
y xR will allow study of R to take place in the context of
the topologies on X, and R and the "local" behaviour of
continuous functions (ring elements) can be "pieced

together" to give results about R.

For any commutative ring R we will say that the
equation a = b holds at P € X if a, = b, (i.e. if
a(p) = b(p)).

The support of r e R, denoted S(r), will be the subset
of X, over which r is non-zero, i.2. S(r) = (P € XﬂlrP * 0}
= (PeX]Ire P). In the case where e € B(R) then it is

clear that S(e) is precisely I'(e).

1.22 Proposition. For a and b in R and e ia B(R), a, = bp

for every P in I'(e) if and only if ae = be in R.

Proot. (») a ,=b ea+P=b+Pea-bebPoa-b=
rf for some f € P. Therefore, [ap=bPVPeI"(e)] e« [feP
VPel(e)]  [T(e) NT(f) =2¢] e ef = 0. Soa~-b =rf =
(a -b)e = rfe = 0 and we have that ae = be.

(¢) If ae = be for e € B(R) and 2 € I'(e) then (ae)P=

ae, =ajl =a. Similarly, (be.)P = bP'n
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1.23 Corollary. 1If a, = bp VPe )(R then a = b in R.

Proof. a, = bp holds on XR =T(R) =T(1) so a, = bP » a1l =

b-1.
o

1.24 Lemma. If I is an ideal of R and I its image in R,

and IP = Rp V P e I'(e) then Ie = eR.

Proof. T (e), being a clopen subset of a Boolean space, is

itself a Boolean space and inherits the partition property.

lP
l()

At each P € I'(e) there is an € T such that i:,P) =

1P and this must be true over a clopen set I"(fm

PEX
and so 1™ = £®, rThe sets {I‘(f(P))} R are an open

) < I'(e)

cover of I'(e) and by the partition property we can write

n
= = { =
I"‘Se) jléJ1 l"(fj) where I‘(fl) n l‘(fj) l"‘(fplfj) 2 and
Y fJ = e. Over each l"(fl) there is an i 'e I such that
3=1

(Pi) n (P)

i £ =f. Piecing these together we have ¥ i J f; -
j=1
n

¥ fj = e. It follows that e € I so eR c eI. Since el c eR
j=1

we have Ie = eR.u

Before leaving this section, we add that an almost
identical development can be given for an R-module over xR
with essentially the same results (see [12], §§1-4). If A
is an R-module then the stalk at P e X is A = A/PA where P

is as already described; X, and ¥ =PQX A are topologized in
R

a manner completely analogous to the preceeding. In




—

particular, an equation holding at a point in X must hold

on an open set containing that point.
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CHAPTER 2

PROJECTIVE MODULES AND BOOLEAN RINGS

1. Projective modules.

We will recall some results about R-modules. Since the
rings we are working over are all commutative the
distinction between left and right R-modules is unimportant.
When dealing with an R-module, homomorphism will mean

R-module homomorphism. First, the well known

2.1 Definition. The R-module P is projective if whenever
there is a surjective homomorphism f: M — N for any
R-modules M and N and ¢: P — N is any homomorphism then

there exists Y: P — M making the diagram commutative:

2 \QN i.e. p = foy.

Loosely, an R-module P is projective if P is a direct
summand of every R-module that maps onto it.
A sequence of R-modules

P__ P 4
> L2, M —2 p 2. is exact if Im(p_ ) =

Ker(g). An exact sequence of the form

f (%)

0 > L > M2 P — 0

is called short exact.
Clearly, (*) is exact if and only if g is surjective and £
is injective.

The exact sequence M 25, p » 0 is split exact, or

splits, if there exists a homomorphism g’: P — M

satisfying geg’ = 1,. The exact sequence 0 > L — M
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splits if there is f’: M — L satisfying f'of = 1. If the
sequence M —> P —— 0 above splits then M =2 Im(g’) o
Ker(g) = P e Ker(g).

The following equivalences about the (left) R-module P
are well known and presented without proof (see, for

example, [6] or [10]).

2.2 Theorem. If L, M, P are any R-modules then the
following are equivalent

(1) P is projective.

(2) P is a direct summand of a free module.

(3) Every short exact sequence 0—— LM 3p— 50
is such that Im(f) = Ker(g) is a direct summand of M

(equivalently, every short exact sequence M——P——0 splits).

2.3 Proposition ([9], 4.3). If (P,} is a family of

i€l
R-modules then P = ® Piis projective if and only if each P

is projective.

Proof. (») Let p: P —> A be any homomorphism and
M: B——> A an epimorphism. For each i e€ I let Kl: P — P
be the canonical injection, ps P— P the canonical

projection of P onto P, (px°K1 = 1P) and p, € Hom(Pl,A).
1

For each i € I, go; = ¢,°P, is a homomorphism of
P— A. P is projective so for each i there is a
w(”: P — B such that now(” = qp;. Set 'ﬁx = Q/l“)°K‘ so

!Il‘: Pl — B. We have then nowi = 1t<>l.tl“)ol(i = qp;ol(l =
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i.e. P
'I.J} ---- ‘\”: is commutative for each i.
B ——n——) A

() Suppose each P, is projective. Let ¢: P — A be
any homomorphism and m: B — A an epimorphism. Since P,
projects, there exists wl: p — B satisfying mey = ¢K ,
K‘ as above.

Now, {wx)x is a family of homomorphisms P — B and P
is the direct sum of t+ P ‘s so there exists a unique
homomorphism y: P — B ‘'uch that WoK! =¥, for each 1€ I
([9], 4.1). This implies that no(woKi) = nowl = qpoKl and
(o) oK = p°K, implies moy = ¢ since Kl is injective. This

establishes the projectivity of P._

We focus now on Boolean rings, develop some of their
properties and examine when an ideal in a Boolean ring is
projective. B will denote a Boolean ring in what remains of

this chapter.
2.4 Lemma. Finitely generated ideals in B are principal.

Proof. It suffices to consider the case of an ideal
generated by two elements.

For e and f in B, er + fs = (e + £ + ef)er +
(e + £ + ef)fs soeB + fB < (e + £ + ef)B. Clearly,

(e + £ +ef)Bs eB+ fB so eB + fB = (e + £ + ef)B.D

[Lemma (2.4) is true for any regular ring R (using
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one-sided ideals if R does not commute): xR + yR = (e + f)R
where e and f are orthogonal idempotents (above we have that

(e + £) and ef are orthogonal).]

2.5 Lemma. If U < X, is an open set then the collection J

of elements of B w-nse support lie in U is an ideal.

Proof. Recall that the support of e € B is I'(e) =
{PEXBIé(P) *0) ={(PeXleeP). I'(0) =0 €eUsoO0ed
and J is non-empty. Let e, f be elements of J. I'(e) and
['(f) contained in U implies that I'(e) U I'(f) =T'(e + £ + ef)
S U. To see that I'(e + £f) s I'(e + £ + ef) consider Q €
e+ f), soe+fe¢e Q. If e+ f+ ef € Q then
(e + f)(e+ £+ ef) = e+ £ is in Q which it is not.
Therefore, e+ £ + ef ¢ Q so Q e I'(e + £ + ef) and we have
'Ne+ f) sT(e+ f+ef) SsUsoe+ f is in J.

I'(e) = T'(-e) and I'(e) = I'(eB) so it follows that J is

an ideal of B'u

To each open set U in XB we can, in consequence,
associate an ideal of B. 1In the other direction, to any

ideal J in B we associate the open set U = I'(J) = U I'(j),
jeJ

the union of the supports of the elements of J. If A S B

generates J then U =T(J) =TI( Y aB) = U T'(a). On the other
a€A A

hand, if J is the ideal associated with U = U I'(a) then
A

[x € J] » [[(x) s I'(a) for some a] » x € aB. Therefore,
A £ B generates J if and only 1f the union of the supports

of the elements of A is U.
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2.6 Proposition. Let {B‘}I be a family of ideals in B,

then I B, is a direct sum
1

(1) if and only if BlBj =0V i=3jinI
(2) if and only if the associated open sets in X are

disjoint.

Proof. (1) Y B, is direct if B, N XBJ = (0). Consider
1 1#)

i # ¢ (9 = 0.
BlBJ for any i = j B‘Bj B, n BJ €SB N 1§JB’ 0

Conversely, assume BIBJ =0 for i # j and take x €
B N ):Bj. Then)‘:=bleBl and x =} b
1#]) 1#)

2 3
Therefore, [b =i§jbj] >b =Db = 1§jblbl = Y0 = 0 since

BB, =0 for i = j.

| for bj € BJ.

(2) Suppose } B, is direct and consider the ideals B,
BJ and their associated open sets U, UJ in X,

Let Pel nU. B is not contained in P so there is
ab B with b ¢ P. Similarly, there exists bJ € Bj with
b ¢ PsoPel(b)nTl(b) =T(bb) = r() =e (BB, =0
by (1)) so lu1 n UJ = o.

Conversely, assume U f uJj =gV i # j and consider
b‘ € Bx' bj € Bj. I"(bl) N l"(bj) =9 = r‘(b‘bj) so bibJ is 1in

every P € X_. Therefore, [bibj enP=(0)] =» [blbj = 0] »
PEX
B

[B,B, = 0 for i # j] » L B, is direct.
2.7 Corollary. For any e € B, B = eB o (1-e)B.

Proof. If be Bthenb=eb + (1 -e)b so B =eB + (1 -e)B

and clearly (eB)-((1 - e)B) = O.D
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2. Projective ideals in Boolean Rings.

Recall that a ring R is right hereditary (respectively
semihereditary, a-hereditary) if every right ideal (resp.
every finitely generated right ideal, every right ideal
generated by s a elements) is projective as a right
R-module, where a is any cardinal. (Since our rings are
commutative, and ideals are two-sided, the qualifier right
(or left) ideal is irrelevant).

By (2.7) every principal ideal of a Boolean ring B is a
direct summand of the free B~module B so every principal
ideal is projective. Since finitely generated ideals in B

are principal, Boolean rings are semihereditary.

2.8 Proposition. If I € B is an ideal and U ¢ X its
associated open set then I has an orthogonal system of
generators if and only if U is a disjoint union of clopen

sets.

JeJ

Proof. (») Let E = {ej} be an orthogonal generating set

for I. U =U I‘(e)) and I'(e ) n I“(eJ) = l"(elej) =T(0) = @
J

if i+ 3.
(¢) Let S(I) =U = 9 F(e}) where F(ej) nT(e) =2 so
ee =0 if j # k and set I’ = @ eJB which also has U for

support. If x € I then S(x) =T(x) €U so I'(x) s U F(ej) =
JI

r ej) for a subset J' € J. [(x) =T(x) n (L ej) =
J’! 3’
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'(x) e) sox=xfe and xB< (J e)B=YeB soxel.
rR R FAR gt

Similarly, I' < I and the two coincide.D

2.9 Proposition. If I € B is an ideal then I has an

orthogonal set of generators if and only if I is projective.

Before proceeding we state without proof (see appendix)

the following

2.10 Lemma ([7], theorem 3). If R is a commutative
semi-hereditary ring and P a projective R~module then P is a
direct sum of modules each of which is isomorphic to a
finitely generated ideal in R.

Proof (of 2.9). (=») By hypothesis I = } e B where ee
jeJ

for all i # j in J so I is the direct sum of the efrs.

It
(o]

Therefore, I is the direct sum of projective ideals.

(¢) If I <€ B is projective then, since B is
semihereditary, (2.10) gives that I is a direct sum of
finitely generated ideals. Finitely generated ideals in
Boolean rings (in fact in all regular rings) are principal
so I is a direct sum of principal ideals. Pairwise products
of ideals in such a sum must be zero so it follows that the

generators of I are orthogonal.n
To summarize we state

2.11 Theorem ({1], lemma 1.1). For the ideal I S B and U ¢

X its associated open set, the following are equivalent:




(1)
(2)
(3)

I is projective.

I has an orthogonal family of generators.

U is a disjoint union of clopen sets.

2.12 Corollary. Every countably generated ideal of B is

projective.

Proof ([1]). Let I be generated by A = {31' a, a

B. Define A’ as follows: a ' = a

3’ LI ) }s

4 . '
1 1’ az az + a1az’ a,

= + + + ‘= + + +
a,+aa +aa +aaa, a a, +aa, +aa +aa,

+ a
1a2a‘

4

+ aaa + aaa +aazaa and so on. Direct

1 3 4 2.3 4 3 4’

calculation will confirm that a;a; = 0 for every i # j (each

term in the product will be repeated an even number of times

and B has characteristic two) so A’ is orthogonal.

If I' is the ideal genertated by A’ then clearly I' € I

since each a; is a finite sum of elements of I.

Direct calculation reveals: a = a’/, a_= a; + aza;,

3

1 1 2

= al + ‘ ! = a’' + 4 e oAl
a ay aa(a1+a2), y a8 = a’ an(a1+ an_l),

.... Therefore, each a is a finite sum of elements in I’

so I € I’ and I = I' has an orthogonal generating set.n

Thus, every ideal in a Boolean ring generated by = R,

elements is projective so Boolean rings may be called

Ro-hereditary. In particular, if B is a countable Boolean

ring then B is hereditary.

The remainder of this section is devoted to

demonstrating that if B < B’ are Boolean rings then ideals

in B that generate (i.e. extend to) projective ideals in B’

are themselves projective.
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To this end, let I € B be such that IB’ is projective.
By (2.11), IB’ must have an orthogonal generating set, S ¢
B’, so IB’ = .2 sB’. Following Bergman, call I,<Ian
S-I-ideal if I, is an ideal in I such that IpB is generated
as an ideal of B’ by a subset of S, say S, (for example, (0)
and I are S-I-ideals). Let I\Io denote the annihilator of
I, in I. We will show that if I, is an S-I~-ideal (with IOB’
= SoB" S, ¢ S) then so is INI, with (I\Io) B’ generated by
S\so and I = Io ® (I\Io)‘

We have IB’' = ® sB’ = (sgsosB') ] (g)osB'). Let p be
the canonical projection of IB’ onto the direct summand

SOB = IOB’ .

2.14 Lemma. With notation as above, if I, is an S-I-ideal

then p(I) < Io.

Proof. The proof will show that p applied to X € I can be
accomplished by multiplying x by some a € I, so p(x) = ax €
Io'

Take x € I. In B‘, X can be written as a finite sum
involving S. For notational convenience, suppose X =
S1b1 + e+ snbn. If none of the sl’s are in S0 then p(x) =
0 = 0x € Io. Suppose some of the sx's are in So' For
convenience suppose that S,1+++,8, are in S, with k s n and

k

ite = oo + s’ +:--+ s 'b where the
write x S1b1 + skbk sk“bm1 sn bn

indicates sj' € S\So' Each of the 5, v being in IOB', can be

written as a finite sum of the form { ijb)', ij € I.

Collect all of the ij's for each of the I EREVLN and let
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A< I be the ideal generated by them. Being finitely
generated, A = aB for some a € Io and in B’ the ideal AB’ =
aB’ ¢ SOB' and contains {sl,...,sk}.

For some c, € B and s € S, a =¢ s, +o+cC s+

+--++ C S
k+

in terms of the direct sum S B’
n k+ 0

C S
k+l k+1

where c, * OV j s k. Multiplying a successively by the

orthogonal si's gives as, = c s, for each i so a = as  +---+

as _+:--+ as,__ . Each of these s, are in aB’ so s, = ab’ =»
k+m

as = ab’ so as, = s, . Therefore, a =):sl and
1=1

—3 e & o LR B ] ’ LN B ] 4
ax (s1 + + s“m) (slb1 + + skbk + skubkﬂ + + snbn)

= slb1 S ARRE 2 skbk by the orthogonality of the si’s.
Therefore, multiplication by a annihilates the component of

x "outside" S0 and leaves the rest unchanged, precisely the

action of p; hence p(x) = ax € I ..

2.15 Lemma. With notation as above, I =1 o INI,.

Proof. For x € I write x as it appears in IB’ = SB’, say X
= 51b1’ +e ot snbn' . By successive mulitiplications by the
sl's we obtain x = x(s +---+ sn). For notational
convenience suppose s ,...,S are in Sg* Write x =

x(sl+---+ sk) + x(s +e ot sn). From the earlier

k+1

discussion we know we can find a € Io such that ax =

x(sl oot sk) SO X = xa + x(sk+1+"'+ Sn) and xa € IO;

hence x(sh L RERE sn) = x - xa € I. Clearly

1

x(s , +''+s)a=0 Vael (justurite a as it appears

in IB =8B ). So x(s , +-¢ sn) € INI and

I=1I,+ (I\Io) and since (Io) (I\Io) = 0 the sum is direct.c|
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Now, if A @ C is a direct sum in B we have (A e
C)B’ = AB’ + CB’ and since AC = 0, (AB’)(CB’) = 0 so
(A e C)B’ = AB’ ® CB’ is direct. It follows that
IB’ = I B e (I\I))B’ = S B’ e (S\S,)B’ and
IB’ =SB’ =S5 B’ e (S\s,)B’. So, up to isomorphism,

1 7

(INI_ )B’ = (S\S))B’.

We conclude that if I, s I is an S-I-ideal then so is

INI,; I = I, e I\NI, and (I\I)B’' = (S\S,)B’.

2.16 Lemma. If I is a non-zero S-I-ideal (IOB' = SOB’, S,

< S) then I0 contains a non-zero countably generated

S-I-ideal.
Proof ([1]). Let J© = aB where a is a non-zero element of
I, so J@ ¢ I, is finitely generated. Pick K'%¢ S, such

that 3'%’8’ ¢ K'°’B’ and K'® is finite (possible since a e
SOB’ is a finite sum involving So) . From the earlier
discussion we can find a, e Io such that (az) B’ = K.

set 3''= (a,a,)B < I, and pick K''¢ S, finite such
that K®'¢ k'?’ (so k'’ s K'*'B’) and 3'"’p’ < k'"'B".
Continue this process and let J = 1§0Jm = (a,aa,aa,...)B,
and K = 1§0K(“ S S,. By this construction, JB’ = KB’ is a

countably generated S-I-ideal contained in Iq

Let T be the collection of all families of pairwise
disjoint, countably generated S-I-ideals. ({(0)} is such a
family so T # 8. T is partially ordered by set inclusion

and if (T} is a chain in T then T = U T, is an upper bound
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of {T‘) in 7. 2Zorn’s Lemma then guarantees maximal elements
in T.

Let T be maximal in T and set I = e J, clearly an
JET

S-I-ideal. Suppose Io g I; then I\Io is a non-zero
S-I-ideal and contains a countably generated S-I-ideal
disjoint form each J € T, contradicting the maximality of

T. Therefore, I = I is a sum of countably generated ideals
so, by (2.12), a sum of projective ideals. To summarize and

expand, we have

2.17 Theorem ([1], 1.2). If B s B’ are Boolean rings and I
€ B an ideal that generates a projective ideal IB’ in B’,
then I is projective. Any subring of an hereditary
(a-hereditary) Boolean ring is hereditary (a-hereditary).
Any quotient of an a-hereditary Boolean ring is

a~-hereditary.

Proof . The first statement has been demonstrated. The
second is immediate since any ideal (resp. a-generated
ideal) in B ¢ B’ generates a projective ideal in B’ when B’
is hereditary (resp. a-hereditary).

For the third statement, let B be a-hereditary and I s
B an ideal and B = B/I. Let J = SB be the ideal generated
by S where S has s a elements and J = SB its preimage in B
(so S is a preimage of S). J is projective so we can take S
to be an orthogonal set so § is also orthogonal. Then, by

(2.11), B is a-hereditary.



CHAPTER 3
HEREDITARY AND SEMIHEREDITARY RINGS

1. The ring of fractions of R/P.

In what remains, the ring of fractions of the
commutative ring R with respect to its set of non-zero
divisors—the total ring of fractions of R—will be of some
importance. In particular, we will be interested in the
total ring of fractions of R = R/P (P will always denote a
prime ideal of B(R)) and will therefore formally present

these rings.

Let S be the multiplicative set of non-zero divisors of
R, then K = RS will denote the ring of fractions of R with
respect to S. KP <€ K will be the ideal KP = (k.elk eK, ece€
P) where P € XR. That this is an ideal is the same proof as
lemma 1.10. We will show that if S is the set of all
non-zero divisors of R then the ring of fractions of R, with

respect to (S), is RP(S);,1 = K/KP.

Recall ({11]) that K is the ring of fractions of R with
respect to the multiplicative set S if and only if there
exists a ring homomorphism f:R — K such that:‘

(1) £(s) is a unit in K for all s e S

(2) if g:R — M is a ring homomorphism such that
g(s) is a unit in MV s € S then there exists a unique
homomorphism h:XK — M such that g = h-f.

Also recall that if f:R — R’ is a ring homomorphism
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and I €§ R and J <€ R’ are idesals satisfying £(I) € J then £
induces the ring homomorphism £’ :R/I — R'/J defined by

f’(r+I) =£f(r) +J.

3.1 Proposition. If P = RP is a prime ideal of P then KP

is a prime ideal of K.

Proof. Note that if s e¢ S then s ¢ P for any P e X since
if s = te for some e € B(R) then s(1 - e) = 0 which
contradicts that s is a non-zero divisor.

Let (r/s) € KP, so (r/s) = (u/t)e where s,t are in S
and e€ P. Then rt = (su)e is in P. But t cannot be in P
SO r ¢ P by primality. It follows that (r/s) €eKP e r e P,
or, by coni-aposition, (r/s) ¢ KP ¢ r ¢ BP.

Suppose (xr/s)(u/t) € KP but (u/t) e KP. (ru) / (st) =
(x/y)f for some ye S and £ ¢ P so ru = st(x/y)f is in KP.

Now, ru/1l e KP e ru € Pso r e P since u ¢ P. Therefore,

r/s is in KP and KP must be prime.u

As an aside, it should be noted that the full
hypothesis is necessary—the primality of P X does not
guarantee primality of P in general. To see this, let K =
{(a,b)la = bmod(c), c 2 2) where a,b,c are integers. B(R)
= {(0,0), (1,1)) and has only one proper prime ideal, the
zero ideal. So, if P is the zero ideal of B(R) then P is
the zero ideal of R which is not prime and in X = RS™ = @ x
@, KP is not prime. Notice that R is not p.p. (to be

defined presently) since, for instance, the ideal generated
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by (c,0) in R is not projective. (This example, in another

context, is found in ([1].)

3.2 Proposition. If P is a prime ideal then S, the image

of s in R, is a multiplicative set of non-zero divisors.

Proof. Forany se€ S, s ¢ P for any P sos, = 0, and 0 ¢

S,- If s_r = O then sr e P gives r € P by primality of P:

hence r, = 0 and s, is a non-zero divisor.

Clearly, S, is closed under multiplication.u

Define £:R — K by f£(r) = r/1 and suppose that
g:R — M is any homomorphism such that g(s) is a unit in M
V = ¢ S. Then h:K — M defined by h(r/s) = g(r)[g(s)]” is
the unique homomorphism such that g = hef whose existence is
guaranteed by the fact that K is the ring of fractions of R
with respect to S.

The homomorphism f induces the homomorphism
£’ :R/P — K/KP given by £’(r)) = [f(r)]mP (where the KP
subscript denotes the image of f£(r) in K/KP). Let s =
s + P be any element of S ; then f'(s)) = (s/1),, and has
inverse (1/s) ., in K/KP ((1/s) € KP since 1 ¢ D).
Therefore, f’ satisfies the first condition of a ring of
fractions.

Suppose that g:R/P — M is a homomorphism such that
g(s,) is a unit in M for every s, in Sg - Define
h:K/KP — M by h[(x/s) ] = g(r,) [g(s,)]”. That h is a
homomorphism is an easy check. To see that it is

well-defined suppose (r/s)“ = (U/V),u,' We have
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h[(r/s) ] - r[(wv) ] =h[((@xv - us)/(sv)) ] =

gl(xv - us)P]-[g((sv)P)]'i. However, rv — us is in P so
gl (xv - us) ] = g(0) = 0 and it follows that h does not
depend on the coset representative (r/s).

A straightforward check reveals hof’ = g. If h’ is
another homomorphism with the same properties as h then
h’ef’ = g = hef’. Uniqueness will follow from the fact that
when S contains no zero divisors of R *hen £ is an injection
(Ker(f) = (r € Rlsr = 0 for some s € S} since f(r) = r/1 =
(r/1):(s/s) for any s € S), forcing f’ to be an injection.
Thus the conditions are fulfilled and K/KP is the ring of

fractions of R, with respect to SP. We have shown

3.3 Proposition., If R is a commutative ring, S its set of
non-zero divisors, P e XR, and K = RS its total ring of
fractions, then the ring of fractions of R/P = R is K/KP =
_ -1
K, =R(87"),.

2. p.p. and regular rings.

3.4 Definition. R is (right, left) p. p. if every principal
(right, left) ideal is projective as a (right, left)

R-module.

3.5 Proposition. For R not necessarily commutative, the
right ideal aR is projective if and only if the kernel of

the left wmultiplication map is a direct summand of R.
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(In the following two proofs we are considering R and

aR as right R-modules.)

Proof. (») Define u:R — aR by u(r) = ar, the left
multiplicatlion map. u is surjective and has Ker(u) = {a}:,
the right annihilator of a. 1If aR is projective then the
sequence R H, aR — 0 is split exact with splitting
homomorphism p:aR — R, uep =1_. Now, any r e R can be
written as r = p(u(r)) + [r - p(u(x))] and r - p(u(r)) is in
Ker (u) for all r e R so R = Im(p) + Ker(u). If re

In{p) n Kexr(u) then r = p(x) and 0 = pu(r) = u(p(x)) = 1(x) =

x sSor=0 and the sum is direct. We have then that R =

In(p) ¢ Ker (u) and Ker(u) is a direct summand of R. Since

Im(p) = aR and Ker(u) = (a}: we can also write R «
aR @ {a}:.
(¢) Suppose R = A e Ker(u) = A e {a}:; then A = R/(a):

« aR. Therefore, aR is isomorphic to a direct summand of

the projective module R._

3.6 Proposition. For R not necessarily commutative, aR is
projective if and only if {a}: = {e}: where e° = e is an

idempotent in R.

Proof. (=) With the notation of the last result,

R = In(p) @ {a}: so 1l =x+ y for some x € Im(p) and Yy €
{a}:. Since y(x +y) = (x+ y)y, x and y commute, Therefore
1 =12=x°+ xy+yx+y2= x2+y(2x+y) = X + y where

x* € In(p) and y(2x + y) € {a}:. By unique representation

in the direct sum we see that x° = x is an idempotent in R
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(similarly, y2 = y). Also, a = a‘l = ax + ay and, since

y € {a):, we have that a = ax.

The claim is that (a}: = (x): . Clearly, (x}: < (a}:
since if Xt = 0 then at = axt = 0. Let t e (&) so at = 0.
We have xt € Im(p) since x € Im(p). However, u(xt) = axt =
at = 0 so xt € Ker(u). Therefore, xt € Im(p) N Ker(u) = (0)
so xt = 0 and {a): (4 {x): , establishing the clain.

(¢) Suppose {a}: = {e): where e> = e. Then R =
eRe (1 - e)R and (1 - e)R = {e}: = {a}:. Therefore, aR =«
R/{a}: =R/(1 - e)R = eR so aR is isomorphic to a direct

summand of a projective module.

3.7 Proposition. If R is commutative then the idempotent

of (3.6) is unique.

Proof. Let {a}' = {e}' where e° = e. Suppose we also have

(£)°= (a)" where £2 = £. It must be that f£(1 - e) = 0O and

that e(1 - f£f) = 0 and together these say that e = f ‘o

In the proof of (3.6) is contained the fact that if
(a}‘ = {e}' for some idempotent e then a = ae. We will call
e the idempotent associated with a. A commutative p.p. ring
R, then, is one in which every a € R can be uniquely

associated with an idempotent e: a = ae, {a}’ = (e}'.

3.8 Lemma. If R is a regular ring, not necessarily

commutative, then R is (right and left) p.p.-

Proof. If a is any element of R then a = aba for some b €
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R. (ab) and (ba) are both idempotents and it is a simple
check that (a}: = {ba): and {a): = {:-m):.l:l

3.9 Lemma. If R is p.p. and S is the set of all non-zexo

divisors of R then B(R) = B(RS™).

Proof. B(R) S B(RS™') always. Forr *# O and s € S suppose
that (r/s)® = r/s in RS!. Then sr’ = s°r » sr(r - s) = 0.
Since s is a non-zero divisor we must have r(r - s) = 0. If
r is a non-zero divisor then r = s and r/s = 1.

If r is a zero divisor then R p.p. » r = re where {r}'

= (e} = (1 -e)R. Then [r(r-s) =0] » [r-se (1 - e)R]

» [r-s =t -te] » re = se. Therefore r/s = re/s = se/s

e e R, so B(RS™') < B(R).
a

3.10 Theorem ([1], 3.1). Let R be commutative and S the
set of non-zero divisors of R and RS! the ring of fractions
of R with respect to S, then the following are equivalent:

1) R is p.p.

2) B(R) = B(RS™'), the support of a ¢ R is clopen and
R, is an integral domain for every P € X.

3) The stalk of RS is a field at each P e X

4) Rs™' is regular and B(RS™') = B(R).

Proof. (1»2) The first statement is lemma 3.9.

Let a, denote the image of a in R, = R/P. S(a) = (P ¢
Xl a, #0)=(PeX |ac¢ P). 1If a € B(R) then S(a) =
I'(a) which is clopen so we assume that a ¢ B(R). In this

case we can write a = ae where e is the idempotent
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associated with a; then [a =ae + P=* 0] » [ace B] «
[e¢P] « Pe I'(e) which is clopen.

For the third statement, suppose a, and bP are non-—zero
in R This means that a = ae, b = bf where e, £ ¢ P.

[a,b, = (ab), = 0] « [abef € F] » [ef € P] and ef ¢ P by
primality of P. It follows that R, is an integral domain.
(We have then, for free, that "R p.p. =» P is prime.")

(223) Since X_ =X -1, RS™! is made into a ringed
space by setting the stalk at P as KP = K/KP (and we have
that K, = RP(S-I)P) . To show that K, is a field we must
demonstrate that any non-zero a,6 €R is a unit in RP(S'I)P,
which amounts to showing that there exists a’ € S such that
(a’)P = a.

By hypothesis, S(a) = I'(e) for some e € B(R). a, # 03
a =re forsome e¢ P, Seta’ = a+ (1 -e). For all

Q e€I'(e) we have (a')Q=a #0 (since 1 - e € Q and a = re,

Q
e ¢ Q) so a’ is a preimage in R of a,. For all Q € I'(1 - e)

we have (a')Q =23, + (1- e)Q = (re)0 + 1Q - e,

e € Q. Therefore (a')Q is non-zero for all Q e XR.

=1 since
o in

Suppose a‘b = 0 for some b # 0 in R, then [:(a’b)‘J =
(a’) b, = ab, = 0] = b, = 0 for all Q € I'(e) since R, is an
integral domain and we have b e Q for all Q e I'(e) . For Q e
r(-e), (a’b) =1b =0 sob e Q for all Q eI'(1 -e).
Therefore, b € P for all P ¢ xR so b= ce for some c ¢ R and

[een P =(0)] =b =c0 = 0vhich is a contradiction. It
PEX
R

must be that a’ is a non~zero divisor, i.e. a’' ¢ S. It

follows that any non-zero element of RP has an inverse in
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RP(S'i)P and so the stalk of RS™ at P is a field.
(3s4) Let a be any element in RS'. For each P choose

(P) P _ -1 (P _
bP € R such that bp = (aP) if a, #0, and b, "= 0 if

= _ a2,
a= 0, then a, apb

, at P. Since an equation holding at

2, (P)

a point must hold on a basic open set, a, = ab, ' over say,

l‘(ep) R

As P ranges over X, the sets (I'(e)) give an open
cover of XR and by the partition property we can choose a
finite cover of sets {1"(ei))i:1 such that each I'(e)) € I(e)

for some P and I'(e) N I"(ej) =g if i*j and U C(e,) = X.

n
Since X = 1l;!il“(e[) is a disjoint union the el's are

n
orthogonal and 1L=J1F(e1) =U F(eR) = rl(e, ++ en)R] =
I'(fe,). Therefore, [{jel ¢PVPeX]->
- Je e PVPe xR] > 1-Ye =0 so Je = 1.
2 L (P)

over l"(el) we have a, = a/ b, 1" V¥ P e I"(el) so in R
1 11

(p)
b e. then aba =
1

(P)
2
we haveaei =ab iel. Iet b =

Mk

n () n n
Zazb lel = Yae = aYe = a'l= aand b is a quasi-

i=1 i

inverse of a.
For the second part, let k € RS be idempotent; then
. -1 .
[(k,,)2 = kp] » k,(k, - 1) =0, and since (RS), is a
field, k, =1lor 0 at each P € X..

By the partition property we can find a partition

n (P) (P)
X =Ue where over I'(e ~ ) we have k, = CI I 5§, =
=1 i i
Py ()
0 or 1, and ke =8 e - These piece together to yield
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(Pl) n
e = k=Y 8e
1 i=

n (P )
Tke ' =%
i=1 1
)
1 and e € B(R).

€ B(R) since 8 is 0 or

"M

(4»1) RS™' is regular, hence p.p., and B(RS™') = B(R) .
Let a be any non-unit in R and write RS = aRrs™ o {a}'.

In RS we have 1 = as + s’ for some s € RS, s’ e
{a)' and e = as is the idempotent of RS associated with a.
But, since e is in B(R), {a}' = {e}'. To see this let x €
{a}‘, so xe = xas = 0 and {a}' < {e}'. If x e {e}' then xa
= xae = 0a = 0 so {e}' s (a}' and the two are equal.
Therefore, the annihilator of a in R is equal to the
annihilator of an idempotent in R so aR is projective and

R is p.p. 5

3.11 Corollary ([{1], 3.2). For the commutative ring R the
following are equivalent:

(1) R is (von Neumann) regular.

(2) R is p.p. and non-zero divisors are units.

(3) The stalk of R at each P € X is a field.

Proof. (1s2) “Regular =» p.p." is lemma 3.8. .

Let a be a non-zero divisor. Then a = a°b for some b «
R so a(l - ab) = 0 and since a is a non-zero divisor it must
be that ab = 1.

(2+3) If every non-zero divisor of R is a unit then

rs™

= R so R, is a field by the last theorem.
(3»1) R.P is a field at each P € XR so for each a € R,

. s . -1
a, has a quasi-inverse (i.e. a, ) on a clopen set
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containing P. Following the same strateqgy as in "3 =» 4" of
the last result we can piece together these clopen sets to

find a quasi-inverse of a in R..

3. Commutative semihereditary rings.

3.12 Definition ([10], 6.5). R is a Prufer domain if R is
an integral domain in which every non-zero finitely

generated ideal of R is invertible.

The aim of this section is to show that the commutative
semihereditary rings are precisely the p.p. rings with stalk
at each point of X a Priifer domain. We first confirm that
the commutative semihereditary domains are exactly the

Prifer domains.

Let K = RS}, the total ring of fractions of R, so S is

the set of all non-zero divisors of R.

Recall that A is a fractional ideal of R ¢ K if A is an
R-module such that dA < R for some non-zero divisor d € R.
If AB = R for some fractional ideal B then A is invertible
and we write B = A", If A is invertible then A™'= [R:A) =
{k € KIKA s R}). It is easily verified that A is invertible
if and only if 1. € A[R:A] and that A invertible implies
that A is finitely generated as an R-module (this follows

from AB=R > 1 = alb1  TRRE anbnfor a finite sum with

a € A, ble B).
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3.13 Lemma ([9], P86, ex. 1). An R-module P is projective

I

if and only if 3 {pl)le S P and P, € Hom(P,R) for each

t

i € I such that ¢, (P) = 0 for all but finitely many i e I
1

and for any p € P we have p= § ¢p (p)pf
I 1

Proof. (¢) Let F be the free R-module on I. Define
¢:F — P by setting ¢(i) = p, and extending linearly so ¢

)

is an R-epimorphism and F £, p— 0'" is an exact

sequence. Define yYy:P —> F by ¥(p) =7} e, (p)i (this is a
1 1

finite sum) where p =7¥ e, (p)pl. ¥ is an R-homomorphism
1 1

and poy = 1, so (%) is split exact and y is an injection.
Therefore, Im(y) = P and F « P @ K and we have P as a direct
summand of a free module.

(») If P is projective there exists a free module F
such that F = Pe Q. Let J ¢ F be a basis for F and
¢: F—> P a projection of F onto P and S = (p(Jj)Ij € J) =
{PJ} s P,

F-% p— o0 is split exact since P is projective so
there is a map Y:P — F such that ¢oy = 1P. Take f € F so

£f=3 rjj, a finite sum, and define pJ:F —> R by pj(f) =T
J

J
for each j € J and define fJ:P —> R by fj(p) = (pjoW)(p)
for each j € J. It follows that fj(p) = 0 for all but

finitely many fJ and that for any p e P, p =¥ fj(p)pJ.EI
J

3.14 Proposition. Let R be an integral domain and A € R a
non-zero ideal, then A is invertible if and only if A is

projective as an R-module.
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Proof. (#) If A S R is invertible with inverse B we can

write 1 = aibl +eoot anbn, a finite sum in AB. Then, for

n

any a € A we have a = } al(abi) since R commutes and abl € R
1=1

for all i. Fix S = (a,} ¢ A and define ¢, A — R by
1

¢ (a) = abi. Then P, € Hom(A,R) for each i and fulfills
1

a
1

the criteria of (3.13), giving that A is projective.
(¢) If A is projective then there exists (al}ls A such
that for each i € I there is a P, € Hom(A,R), wx(a) = 0 for

all but finitely many i and a = } wl(a)al. Let p,q, € A,
I

re Rand i €e I with p,q,r non-zero. Then wl(rpq) = rpwl(q)
= rqwl(p) and since R is an integral domain we can cancel
and we have that in K, the quotient field of R, ¢1(p)/p =

wl(q)/q. Set q, = ¢, (P)/P- Since there are only finitely

many non-zero wl(p) and wl(p)/p = q, for all non-zero p € A,

the set Q = (q‘}I is finite, say Q = {ql,...,qm}. For

ae€a, ¢1(a)/a = q, so wl(a) = aq, and a Y pl(a)al.
m

Therefore, in K, 1 = a/a = } (wi(a)/a)ai =Y q,a,. So, for
1

i=1
n

any a we can write a = a}, q,a, = Y a(wl(a)/a)ai = ¥ pi(a)al
1=1

m
€Y Ra so AcYRa. The opposite containment is immediate
1=1

and it follows that {al,...,a_} generates A.
Let Q' be the R-module generated by Q. We can always
find r € R such that rQ’ ¢ R since each q, € K, so Q' is a

fractional ideal of K. Let x = aq (a € A, q € Q'); then q

=frq =Lr ¢ (a)/a = (1/a)f r ¢ (a) so x = aq =
i=1
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Ezawt(a) € R and AQ’ € R. In the other direction r =
xr} qa = ) (ral)ql with ra €A and q, € Q' so R ¢ AQ’ and

-1

we have that Q' = A so A is invertible.u

(As an aside we notice that "invertible =» projective"

requires only that R be commutative.)

This then characterizes the Priifer domains as the
integral domains in which finitely generated ideals are
projective—the semihereditary commutative domains. This
will reduce to a special case of theorem 3.21.

A Dedekind domain is an integral domain in which the
non-zero ideals are invertible. The foregoing argument
above also demonstrates that R is a Dedekind domain if and

only if R is a commutative hereditary domain.

Before proceeding to the general case where R is any

commutative ring we need

3.15 Lemma ([10], 6.6). If R is an integral domain in
which ideals generated by two elements are invertible then R

is a Prifer domain.

Proof [10]. Let C = (c1,...,cn)R be any finitely generated
ideal in R. If C is invertible then C is Prifer. We
proceed by induction on the number of generators. We have
the result for n = 1 and 2; suppose it holds for ideals with

less than n generators. Let A = (cl,...,cn_l)R, B =

1

-1.-1 -1~
(cz,...,cn)R, D = (ci,cn)R, E = (clRA D" + cnRB D 7).

A,B,D are invertible by the induction hypothesis.
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CE = [A + C_R] (cl)R-A"D" + [c,R + B](cn)R-B"D“

(since C = A + cR = ¢,R + B)

1 1 1 1

- N R P R ‘n-
= (cl)RD + (cnci)RA D + (clcn)RB D + (cn)RD

= (ci)R-D'l[R + (¢ )R'BT] + (cn)R-D“[R + (c)R-A™"]

1 1

= (¢,)R'D"" + (c )R-D" = D'l[(ci)R + (c )R] (since

(cn)R S B> (cn)R-B'1 € R and similarly, (¢ )R-A < R)
-1

=D 'D=R. SoE=C"._

3.16 Proposition. If R is a commutative semihereditary
ring then R is p.p. and the stalk R, is a Priifer domain for

each P € Xn‘

Proof. That R is p.p. is immediate. For the second
statement, consider an ideal of R, generated by two
elements, say I = aR, + bPRP (a,b € R). We first show that
I is projective. For this we will consider, in this
instance only, a sheaf of R-modules over Xa' The R-module
in question will be the free R-module on two generators:

F = uR ® VR. The stalk at each P € X_will be F/PF. 1In R,
aR + bR is projective so (aR + bR) @ C = F for some R-module
C. At P we have [(aR + bR) e C]P x (uR @ vR)P so

(aPRP + bPRP) +C, =~uR_+ V.R, . We need that the right
hand side is free and that a R, + b R, is a direct summand.
To this end suppose that u R  + V.R, is not free. Then
there is some r  * 0, such that ur, + v;s, =0, and this is
true on a clopen set I'(e) containing P. This says that

ure = vse = 0 in F so re = se = 0 since F is free. But then

[(re), = re, =11 = OP] » r, = 0, which is a
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contradiction unless F, is free.

On the left hand side suppose aPr; + bpsP + cptP = 0P
and (aprP + h;sp) # 0 or cptP # 0. There exists a clopen
set I'(f) containing P over which this holds so
arf + bsf + ctf = 0 in (aR + bR) ® C. By unique

representation in a direct sum, arf + bsf = 0 and ctf = 0.

But then (ar + bs)P 0 and (ct)P = 0 and again we have a
contradiction unless the left hand side is a direct sum.
It follows that (aR + bR) @ C, = uR e VR « R/P @
R/P and that (aR + bR), = aR + bR, is a projective ideal
in an integral domain (RP is a domain by (3.10)) and by
(3.14) must be invertible. By (3.15) then, RP is a Prifer

domain.
=]

3.17 Lemma. Let R be a commutative p.p. ring and I S R a
finitely generated ideal. If U is the open set in X

associated with I then U is clopen.

Proof. Let I = (al,...,an)R. The support of a is I'(e,)
where e, is the idempotent associated with a,. For any r €
R, S(a‘r) = F(el) nr(f) s S(al) = F(el) vV r € R where

r = rf. Therefore, S(aR) = U S(a,r) < 8(a,) = I'(e,) and U
= S(I) s 1Q18(a1R) S 1Q1F(e1) = I'(e) where eB(R) is the
ideal of B(R) generated by € ,..00€ . That I'(e) s U is

clear.u

3.18 Lemma. Let I be a fractional ideal of R € K = RS™!

and suppose that for some k € K, kr € IP VP e XR (where kp,

I, denote the images of k, I in K, = RP(S‘HP), then k € I.
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: (P)

— ()
Proof. kp € IP > kP = i i

for some e I and this

holds on a basic set I'(e”) so ke®™ = i®e®™ in K. The
PEX
)) R cover X and by the partition property we

(P
)

sets {e(P

can pick {(T(e)) }321 such that for each j, T(e)) s I'(e
n

for some P and F(ei) N l"(ej) =@ for i # j and X =‘l=J‘r’(e‘)

(so ee =0 and [ e =1). Over I'(e) we have k, =i b
) )

*® ) n (P)
ke =i e € I since I is an R-module. And }{ i l e =
J=1

¥ kej = k(X ej) = k-1 € I'u

3.19 Proposition. If R is a p.p. ring in which R, is a
Prufer domain V P € X and I s R is a finitely generated

ideal with all of X for support then I is invertible.

Proof. Since R is p.p., K, = RP(S'i)P is the field

of fractions of R . We show that ([R:I]x)p = [Rp:Ip]x and
P

the result will follow from (3.18).
Let a € ([R:I]K)p, so a, =a + KP for some a € K with
the property that al < R, then (aI)P =al ¢ R, giving

([R:I1), s [R:L), -
P

For the opposite containment, suppose for some k € K ve

have kPIP = Rp so kP € [RP:IP]KP. Say I = (al,...,an)R.

For each a, kl:,(al)P =r, for some r and this must hold on a
basic set, say r‘(fl), containing P. So kaif1 = rf1 »
(kal - r)f‘ = 0 and kal -Tr € (fl}'. Then ka‘ -r =

(1 - f‘)r' and ka = r + (1 - fl)r’ € R. Since there are




50

only finitely many a, it must be that kI € R over a basic

n
open set containing P, call it I'(g), say I'(9) = n l"(fl) .
1=1

So, for any 1i, (ki)P =r, holds V P € I'(g) and kig = rg in
R. This implies that kg € [R:I], and (kg)P € ([R:I]‘)P.

But, g € B(R) so g, = lp and (]-:g)P = kp, so [RP:IP]lt <
P

([R:I]K)P, establishing the claim.
R, is a Prifer domain at each P € X, so I, being the
image of a finitely genetrated ideal, hence itself finitely

generated, is invertible and (IP)'l = [R;:L.], - Therefore
P

1P € IP[RP:IP]KP = (I[R:I]K)P VP e XR so by (3.18),

-1

1 e€eI[R:I) so [R:I]_=I" and I is invertible.
K K a

3.20 Proposition. If R is a p.p. ring in which R, is a

Priifer domain V P € X, then R is semihereditary.

Proof. Let I be any finitely generated ideal of R. By
(3.17) the support of I is a clopen set, say I'(e). We can
write X, = F(e) UT'(1 - e), a disjoint union, and thus
obtain a decomposition of R; R =eR @ (1 - e)R =R’ @ R”
into the factor rings R/(1 - e)R, R/eR. I =1’ e (0) for an
ideal I’ € R’ (otherwise I would have non-zero support in
I'(1 - e)). This reduces us to the case of a finitely
generated ideal, I‘’, having all of X for support and we
saw in (3.19) that such an ideal is invertible and hence
projective. Since (0) is projective we have written I as a
sum of projectives so I is projective and R is

semihereditary. o
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We summarize these facts in

3.21 Theorem ({1], 4.1). A commutative ring R is
semihereditary if and only if:
(a) R is p.p. and

(b) RP is a Priifer domain for every P € xR.

(If R is, in addition, an integral domain, then B(R) =
(0,1) and X_ consists solely of (0) and R so R, = (0) or R
for all P ¢ X . (3.21) is then the statement that the

commutative semihereditary domains are the Priiffer domains.)

4. Commutative hereditary rings.

A simple criterion for a ring to be Noetherian is

presented in

3.22 Lemma. If R is a ring in which countably generated

ideals are finitely generated then R is Noetherian.

Proof. We will demonstrate the contrapositive. Assume R is

not Noetherian, so there exists an infinite, strictly

increasing, chain of ideals I, ceI,cI c- - . Define J
= alR, a € Il; .Zf2 = azR, a, € I2 - Il; ese 3 Jn = anR,

a €I -1 and soon. ThechainJd, ¢ J_c J c +-- 1is

n n n-1 1 2 3

[+ ]
strictly increasing and J = U J.=(a,a
1=1

countably generated but not finitely generated and this

2'a3'...)R is

gives us the contrapositive statement.




52

We now display an association between the ideals of R
and those of B(R) by considering the supports of ideals.
Recall that the support of I € R is the open set U < xR such
that U =1QIS(i), the union of the supports of the elements

of I.

3.23 Lemma. If I, J are ideals in the p.p. ring R then
INJ = (0) if and only if the supports of I and J are

disjoint.

Proof. (») Suppose I N J = (0) but S(I) n S(J) = . We
can then find some i €e I, j e J and P € X such that iP and
jP are non-zerc. Since R, is an integral domain when R is
P-p. (by (3.10)), (ij), is non-zero so ij ¢ P and, in
particular, ij # 0. But this is a contradiction since ij €
INnJdg= (0).

(¢) Let the supports be disjoint and suppose there is
a non-zero x € I NJ. Since [x, =0V PeX] »x=0,
there must be some P € X, such that X, # 0. So P e

S(I) n S(J) = & which is a contradiction.u

Let U = S(I) and B = (e € B(R)I'(e) S U). B is easily
verified as an ideal of B(R) with the same support as I. If
I = 18, IJ is a direct sum of subideals IJ S I (J can be
infinite) then to each ideal IJ we associate the ideal BJ =
{f e B(R)IT'(f) < S(IJ)). If e € BJ and £ € Bk then
I'(e) NT(f) = @ since IJ ni-= (0), so ef = 0. This gives

that B}a = (0) V j # k and the sum of the Bj's is direct.
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So I is associated with B =2 B, the direct sum of ideals

J )
associated with the Ij's.

Suppose R is p.p. and I € R is generated by A < R.
S(A) € S(I) since A € I. To see that S(I) < S(A) consider
i-= ra +---+ra e A‘-R=I. If P e S(i) then
ra +-+ra ¢ P. IfP¢ S(ra,) for some j then i= 0

sO P € S(rjaj) for some j and rjaJ

of P. Therefore P € S(a) € S(A) and it follows that S(I) =

¢ P~ a ¢ P by primality

S(A). So, a subset of R and the ideal it generates have the

same support in X

3.24 Lemma. If R is a p.p. ring and I € R is finitely
generated then so is B ¢ B(R), where B is the ideal

associated with I.

Proof. It suffices to consider I = (a,b)R. R is p.p. so
any single element has clopen support and from the remarks
following (3.23) we know that S(I) = S(a) U s(b) =

I'(e) UT(f) for some e,f € B(R). S(B) = I'(e) UT(f) and the
ideal in B(R) with this support is (e,f)B(R) =

(e + £ = ef)B(R) .

3.25 Lemma. If R is p.p. and a € R then
(1) a is a non-zero divisor if and only if S(a) = X,
(2) Any ideal containing the non-zero divisor a cannot

be an infinite direct sum of subideals.

Proof. For the first statement, if a is a non-zero divisor

then a g PV P e xR since otherwise a = ae for some
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non-trivial e € B(R) and a(l1l - e) = 0 then implies that a is
a zero divisor. Therefore S(a) = X.-

In the other direction, suppose an element a has X, for
support but is a zero divisor. We can find b # 0 such that
ab = 0 soab =0 VPeX. Since a is not in any P (a, =
0V PeX), bis in every P by primality. This means that

b = be where e e n P = (0). Therefore b = 0 which is a
PEX
R

contradiction unless a is a non-zero divisor.

For the second statement let I € R be an ideal and a €
I a non-zero divisor, so S(a) = S(I) = X, The ideal
associated with I is all of B(R) so if I = 9 IJ where J is
infinite then we have a corresponding decomposition of B(R):

B(R) = ¢ B (where Bj is associated with IJ) . It follows

J
that xR = lj S(Bj) and S(BJ) N S(Bk) = 2 and we have found an
infinite open cover of X, which admits no finite subcover
(I"(ei)}, where I"(ei) S S(BJ) for some j, as guaranteed by
the partition property of XR. It cannot be that I is an

infinite direct sum.

3.26 Lemma. If R is a p.p. ring and I <€ R has X, for

support then I contains a non~-zero divisor.

Proof. By hypothesis, X, = lQIS( i) and by compactness we
n
can select a finite subcover: X =Jl=JiS(iJej) such that each

iJ = ijeJ for some e e B(R) .

a n
X = jlSJIS(i"eJ) = Jg1r'(ej). By the partition property

n
we can write X =kL=Jil"(fk) where this is a disjoint union and
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each I'(f) < l"(ej) for some j. Let i’ =¥ i;fk € I, where
k=1

ix': = ij if l"(fk) < I’(ej) (so the i; are not necessarily

distinct). S(i’) = s(I if) = U r(f) = X since the union

is disjoint and by (3.25) i’ must be a non-zero divisor.n

3.27 Lemma. Let R be a p.p. ring in which R, is Noetherian
V P e X and any non-zero divisor a € R is such that a, is
invertible for all but finitely many P e X,- Then any ideal

of R that has X for support is finitely generated.

Proof. Let I < R be an ideal with X  for support. By
(3.26) I contains a non-zero divisor a so, by hypothesis,
a, is a unit for all but a finite set, P = (P ,...,P}, of

prime ideals in X - At each P, R is Noetherian so I is
1 X 1

finitely generated by, say, {bi”, ...,b:”)P . It turns out
1

that I is generated by the finite collection

(1) (1) (2) 2 (n)
{a' b1 ’...'bn ’b1 '...'bn '...bn )-
1 2 n

AteacthXR—lP, aoisaunitsoI°=R =

Q
<a,...,b:“)>o. At each P € P, IP is generated by
n i
(1) (1)
‘bl ’ L I BN ) 'b-

}P , and the imaces of the "left-overs" are in
1 1

I soI =<a,...,b"™> for each i.
Py Py " P

The result follows if I, =2J for all P e X, implies
that I = J. To see that it does, consider some x € I. Then

X, = jP for some j € J at each P € X . Over some finite

cover, (r‘(el) }1:1' we have xe = jle‘ for each i and these
n

add together to yield x =} jnex € J soIcJ. Similarly,
1=1




56

JcI and we have that I = J.u

3.28 Proposition ([1], 4.2). For a p.p. ring R and a an
infinite cardinal, the following are equivalent:
(1) Every ideal I s R generated by s a elements is a
direct sum of finitely generated subideals.
(2) a: The stalk at P, R, is Noetherian V P ¢ X, -
b: For any non-zero divisor a € R, a, is
invertible for all but finitely many P e X

c: B(R) is a-hereditary.

Prcof. (1»2a) Let IP be any non-zero countably generated
ideal of R, and I € R its countably generated preimage in R.
By hypothesis, I = ?I, where Ij S I is finitely generated.
If Pe S(I) then P € S(Ij) for precisely one of the IJ since
their supports must, by (3.23), be pairwise disjoint.
Therefore, (Ik)P== (0), V k # j and I= (;ﬂp wh?ch is
finitely generated. This gives us that countably generated
ideals are finitely generated and so R, is Noetherian at
each P € xR by (3.22).

(1=2b) Let a € R be a non—-zero divisor. If a e€ I for
some ideal I € R then I cannot be an infinite direct sum of
ideals by (3.25). The hypothesis then forces I to be
finitely generated. By way of contradiction, we assume a,
is not invertible at infinitely many P € X, and construct a
non-finitely generated ideal containing a.

Let P = {IH'PE'Ps"") be an infinite collection of

distinct primes in X, such that a, is not invertible for
1
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i=1,2,3,.... Since X is Hausdorff we can separate P, and
P, by a partition; say P e l‘“(el), P, e r - el). One of
these, possibly both, contains infinitely many elements of
P, say I'(1 - ei) does. Suppose P3 e I'(1 - el) and separate
P, and P, by a partition: P, e r(), p, e rr - £).
ra-e) = ri(ea - el)] urfa -f)( - el)] is a
partition of I'(1 - e) and P, € I‘(ez) » P, € ra-e - e,)
where e, = £f(1 - el) (so e, and e, are orthogonal). One of
these must contain infinitely many elements of P, say
riy - e - ez) . Take a point in here, say P‘, and separate
it from P, by a partition and "shrink" this to a partition
of T'(1 - e - ea) and continue the process. In this manner
is obtained a sequence of idempotents {f1'fz’f3’ ...} with f1
=e, £ = e1+e2, f = e +e2+e3, etc., such that

1 2 3 1

F(Xe) =191F(ex)' ee = 0if i # j and T(f) g r(f)) g
1=1

I‘(fa) g '+ and P is not contained in any I'(f)). This
gives a chain of ideals: aR, aR + flR, aR + f1R + sz,

Suppose the chain becomes stationary at some n z 1. Then
n n+1 n

aR + Y} flR = aR + } flR so fnnR S aR + Y} faR and fml =
1=1 1=1 1=1
n

ar + Y} f1r1 for suitable ring elements. By construction,
1=1

r(f) g r'(f ) so3Pe r(t) which is not in any I‘(fj),
= (ar), + (Zf‘rl)P]

> 1P = a r, since (fi)P =0V isnand (fnu)P = lp since P

j s n. Therefore, at P we have [(fnu)p
€ I"(fnﬂ) and £ € B(R). This says that a is a unit at P
which is a contradiction, so the chain is strictly

increasing and I = U (aR, aR + £ R, ...) = (a,fl,fz,...)R is
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not finitely generated yet contains a which is a
contradiction unless P is finite.

(Under this hypothesis then, p.p. rings are rings in
which non-zero divisors are "almost" units in the sense that
a non-zero divisor is almost everywhere invertible.)

(1»2c) Let B s B(R) be an ideal generated by s «
elements, say B = G'B(R). Let I = G'R be the ideal in R
generated by G. S(I) = S(G) = S(B) so I and B are
associated. By hypothesis, I = 9 Ij, a direct sum of
finitely generated subideals. This gives us the
decomposition B = 9 B,' where BJ is associated with IJ and
is finitely generated, hence principal. Therefore, B is a
direct sum of principal ideals and principal ideals are
projective in Boolean rings, hence B is projective and B(R)
is a-hereditary.

(2»1) Let I be an ideal of R generated by = a
elements, say I = G-R, and let B ¢ B(R) be its associated
ideal. Let e, be a non-zero element of B(R) such that
I‘(eq) = S(g) for each g € G, then S[(eq}geG] = S(I) and B
is generated by these elements which are s a in number.
B(R) is a-hereditary so B is projective and has an
orthogonal basis by (2.11) so B =2 eJB(R). Therefore I

€J
also decomposes as a direct sum of ideals: I =g, IJ where
IJ is associated with eJB(R) and has clopen support.
If an ideal with clopen support in a p.p. ring is
finitely generated then we are done. Suppose J is an ideal

with S(J) =T(e). Let J’ = J e (1 - e)R (the sum is direct



59

since J and (1 - e)R have disjoint supports). J’ contains a

non-zero divisor by (3.26) and a, is invertible for all but

finitely many P € X, by hypothesis. Therefore (3.27)

applies and J’ is finitely generated so J must follow suit.
We have then that I is a direct sum of finitely

generated ideals.n

3.29 Corollary ({1], 4.3). For a p.p. ring R, the
following are equivalent:

(1) Countably generated ideals are direct sums of
finitely generated ideals.

(2) R satisfies a and b of (3.28).

(3) Ideals containing a non-zero divisor are finitely
generated.

(4) 1Ideals of R with clopen support in X are finitely

generated.

Proof. (1»2) Take a = R in the preceding result.

(2+3) This is contained in "2+1" of (3.28).

(3%4) Let S(I) =T(e), then I’ =1 & (1-e)R contains a
non-zero divisor and is finitely generated.

(4»1) B(R) is Ro-hereditary so countably generated
ideals of R can be associated with countably generated,
hence projective, ideals of B(R) yielding a direct sum

decomposition of ideals of R with clopen support.

We now have all the tools at hand to characterize

commutative hereditary rings in
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3.30 Theorem ([1]), 4.4). R is hereditary if and only if

(a) R is p.p.

(b) The stalk of R at every P € X_ is a Dedekind
domain.

(c) For any non-zero divisor a e R and P € X,» a, is
invertible on all but finitely many of the stalks R,.

(d) B(R) is hereditary.

Proof. (») (a) is trivial. For (b), any ideal I € R is
projective so by (2.10) I is a direct sum of finitely
generated ideals and R, is Noetherian for every P € X, by
(3.28). By (3.21), each R, is also Frifer so every ideal of
R, is finitely generated and hence invertible.

(c) is true since R satisfies (1) of the last
corollary. For (d), any ideal B € B(R) can be paired with
an ideal of R which, since R is hereditary, decomposes as a
direct sum of finitely generated ideals, yielding a
decomposition of B into finitely generated, hence
projective, ideals.

(¢) Let I < R be any ideal and B € B(R) its associated
ideal. B(R) hereditary implies B is projective so B can be
written as a direct sum of principal ideals (by (2.11)).
This gives a decomposition of I into ideals with clopen
support and by (3.29) each of these is finitely generated.
R p.p. and RP Prifer for all P implies R is semihereditary:;
therefore each of these ideals is projective so I is

projective. a
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An immediate generalization is that R is a-hereditary
if and only if a, b, and c above are satisfied and d becones

"B(R) is a-hereditary."

3.31 Corollary ([1], 4.5). If R is commutative then the
following are equivalent:

(1) R is Ro-hereditary.

(2) R satisfies a, b and c of (3.30).

(3) R is p.p. and every ideal of R containing a
non-zero divisor is finitely generated and projective.

(4) R is p.p. and any ideal of R with clopen support

is finitely generated and projective.

Proof. (1s2) R p.p. is trivial. R senihereditary implies
R, Prifer for all P by (3.21) and R satisfies condition one
of (3.28) by (2.10) and any Noetherian Prufer domain is
Dedekind, giving b and c.

(2»3) Under the hypothesis, R is p.p. and satisfies
condition two of (3.29) so every ideal containing a non-zero
divisor is finitely generated. (3.21) is also satisfied so
R is semihereditary and finitely generated jdeals are
projective.

(3+4) 1Ideals with clopen support are finitely
generated by (3.29). Suppose I < R has S(I) = '(e) and
consider I’ = I @ (1 - e)R which has X for support, hence
contains a non-zero divisor. Then I‘ is projective by
hypothesis so I must be also.

(4»1) Let I s R be countably generated. Under the
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hypothesis, (3.29) says that I is a direct sum of finitely
generated ideals. Each of these is then associated with a
finitely generated, hence principal, ideal in B(R).
Therefore the support of each summand of I is clcpen so I is

a sum of projectives and R is tto-hereditary.‘J

3.32 Corollary ((1], 4.6). A commutative regular ring R is
(a~)hereditary if and only if B(R) is (a-)hereditary. Any
regular subring of an (a-)hereditary commutative ring R is

(x~)hereditary.

Proof. By theorem 3.30, B(R) is (a-)hereditary when R is.
Conversely, by (3.11), R regular implies R p.p. and every
non-zero divisor is a unit and R, is a field (hence a
Dedekind domain) for all P e X, so if B(R) is (a-)hereditary
then so is R by (3.30).

For the second statement suppose R’ ¢ R is a subring
where R is commutative and (a~)hereditary. As Boolean
rings, B(R’) € B(R) and by (2.17) any subring of an
(x-)hereditary Boolean ring is (a~)hereditary. By the first

part then, R’ is (oc--)heredii:ary.c|




CHAPTER 4

EXAMPLES

This chapter will detail three examples of hereditary
rings cited by Bergman in [1]. Because they are
set-theoretic in nature it will often be more convenient to
discuss Boolean algebras rather than Boolean rings. These
are, of course, equivalent notions. If B is a Boolean
algebra with operations A, v, ° (meet, join and
complementation, which in our examples will be set-theoretic
intersection, union and complement) then B is a Boolean ring
with addition P+ Q = (P’ A Q) Vv (P A Q') (symmetric

difference), multiplication P-Q = PA Q and P’ =1 +P.

The simplest Boolean algebra is the integers modulo 2

and this will be denoted simply as 2.

The Boolean ring associated with a topological space X
is obtained from the Boolean algebra of subsets of X. It is

the algebra of all clopen sets of X. ([4])
1. The ring associated with the Cantor set.

Let € be the Cantor middle third set (all numbers of

o
the form } (al)/(3’) where a, is zero or two) and
i=1

X =1 2 ', the direct product of countably many copies of

2. If £: X — 21? is the projection of X onto the ith

copy of 2 (the ith "coordinate" of X) then

o0
£(x) = % (2f‘(x))/(3‘) is a one-to-one identification of X
i=1
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and €.

We endow X with the product topology induced by the
discrete topology on 2: Let 0‘ = (X € lel(x) = §) where &
is zero or one (then C)l is the set of elements of X with ith
coordinate fixed at & and all others free). The collection
of all finite intersections of such sets then forms i basis
for the topology on X. The complement of such a basic open
set is a finite union of such sets and hence is also open.
In other words, X has a basis of clopen sets. That X is
Hausdorff is immediate. X is compact by Tychonoff’s
theorem: the product of any number of compact spaces is
compact in the product topology. X is therefore a Boolean
space.

(In this example we need only countably many copies of
2 but this is no restriction—the space associated with
uncountably many copies of 2 is likewise Boolean. (Halmos

calls such spaces Cantor spaces.))

The collection of all clopen sets of X, the field of
clopen sets, is the Boolean algebra (ring) associated with
€, call it B.

Let R = Z[xl,xz,xa,... ], the polynomial ring over Z in
R, commuting indeterminates. An easy counting argumzat shows
that R is a countable ring. ILet I be the ideal of R
generated by two and all xi2 - X, . Then R/I = R =
(1/21)[;:1,)?2,. . .] where (’?:)2 = ;‘1’ R is therefore a
countable Boolean ring, the free Boolean ring on countably

many generators.
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We now associate B and R. To the clopen set consisting
of all elements with ith coordinate fixed at one associate
X in R (the bar over x will be dropped for notational
convenience, remembering that xf = X,). To the clopen set
consisting of all elements with jth coordinate zero
associate (1 + xj) (which is the compliment of the clopen
set associated with xj). Products in B (which are
intersections in the algebra B) become products of the
associated elements of R. Sums in B (which are symmetric
differences) are then the sums of the corresponding
associates in R. The null set (the zero of B) is then
realized in R as, for instance, X + x = 0. X (the unit of

B) can be realized in R as x, + (1 + xl) = 1, the symmetric

difference of a clopen set and its compliment.

The above association is an isomorphism of rings. B is
isomorphic to R, the free Boolean ring on ﬁ)commuting
generators, which is countable. Therefore, B is a countable
Boolean ring and it follows from the corollary to theorem
2.11 that B is hereditary (countable Boolean rings are

hereditary).

To obtain an example of a Boolean ring that is not
hereditary we can follow the same strategy as above only
this time considering the free Boolean ring on uncountably
many generators. The associated Boolean space is the Cantor
space X = 2° where S is uncountable, constructed as for X =

2' where I is countably infinite.
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To show that the Boolean ring B associated with X = 2°

(which is isomorphic to the free Boolean ring on S) is
non-hereditary we demonstrate that in such a space it is
impossible to have an uncountable collection of non-empty,
disjoint, clopen sets, and so B cannot fulfill the
conditions of (2.11).

Since X is a compact topological group there exists a
Haar measure, u, on X. That is, there is a Borel measure,
#, such that u(U) > 0 for all non-empty open sets U in X and
H(X) < » (since X is compact). ([5], §58)

Let D be any class of non-empty, mutually disjoint,
clopen sets in X. Set D = (D e D|u(D) > 1/n) for n =
1,2,3,.... It is easy to see that D is a finite collection
for each n and it follows (since u(L) > 0V D e D) that D
can contain, at most, countably many sets.

Let I ¢ B be any ideal that cannot be generated by less
than uncountably many generators. (For instance, an ideal
generated by an uncountable subset of the free generators of
B.) If I were projective then it would, by (2.11), have an
uncountable set of generators whose associated open sets
were disjoint and clopen and such a collection, we have just
seen, is impossible. Therefore, I cannot be projective and

B is not hereditary.
2. The one-point compactification of a discrete space.

Let X be the one-point compactification of an infinite

discrete space with compactifying point o (so X - {(»} is an
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infinite collection of points endowed with the discrete
topology). X is topologized by calling every subset of

X - {w) open and declaring a set containing = open if and
only if it is cofinite (has a finite compliment). It is
easily verified that A € X is clopen if and only if A is a
finite subset of X - {»} or A is a cofinite subset of X
containing «.

So topologized, it is immediate that X is a Boolean
space. The Boolean algebra (ring) associated with X, call
it B, is the algebra of clopen sets which, in this case, is
isomorphic to the finite-cofinite algebra of subsets of X -
{o}.

The thrust of what follows is that X so topologized is
homeomorphic to Xy topologized as usual (since B is Boolean,
X, and the spectrum of B coincide).

Consider the spectrum of B and recall that in Boolean
algebras maximal ideals and prime ideals are the same. For
a singleton {(a) in B, a # », define M = {e € Bl{a) is not
contained in e}). M is easily verified as a maximal ideal of
B (the relevant characterization being that an ideal M in a
Boolean algebra B is maximal if and only if for every p € B
either p e M or p’ € M but never both). Also immediate is
that if {a)} and (b) are distinct then M = M. Set
M = {all finite subsets of B} which is also a maximal
ideal.

If M is any maximal ideal of B distinct from M, then it

must fail to contain a singleton {(a) and it will follow that
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M= M. Therefore all the maximal ideals of B have been
found and we know its spectrun.

Define f: X — X, by £(x) = M (vhich includes
f(w) = M). f¢ is one-to-one and onto and a straightforward
check shows that f and f! are continuous. Therefore, X and
xB are homeomorphic and any statement about open sets can be
made with equal weight in either space. Let U be any open
set in X. If « € U then U is cofinite and hence clopen. If
w ¢ U then we can express U as the disjoint union of its
singletons which are clopen. Therefore, the support of any
ideal of B is either a clopen set or the disjoint union of
clopen sets and hence is projective by (2.11).

Consequently, B is an hereditary ring.

3. A4 ring of tions.
As abon ¢ X be the one-point compactification of a
discrete space ¢ ! B its associated Boolean algebra (ring).

Let F be any field and R the ring of functions from X to F
continuous with respect to the discrete topology on F. We
will show that R is an hereditary reqular ring.

With the discrete topology, the elements of R are
particularly simple. To see this let f: X — F be
continuous. Since F has the discrete topology, the sets
£ (k) are open for each k € F and I‘Q}_{f'l(k)} is an open
cover of X. X is a Boolean space and has the partition
property so there exists a finite subcover of disjoint

clopen sets {el}x'__' where each e, S f"i(k‘) for some kl €F

1
(so £(x) = k, if (x) s e ). For each clopen set e € X
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define f: X — F by f(x) =1 if (x) se and £ (x) =0
otherwise. Clearly, each f° is an idempotent element of R.
It is easily confirmed that £ above is then given by

f=k1f +kf + ---+kf . Inother vords, f
e1 202 nen

continuous implies that f(x) € {(k,«..,k} for some finite
subset of F depending on f. Conversely, If f: X — F has
this form then f is continuous and we have found all the
elements of R.

It is clear from this representation of f € R that the
idempotent functions (the elements of B(R) ) are precisely
the functions f such that f = £ for some clopen set e of X
and these are the continuous functions from X into 2.

Now consider X the collection of maximal ideals of
B(R). For x € X, let Kx be the kernel of the evaluation
homomorphism (i.e. the kernel of E : B(R) — 2 given by
Ex(f) = f(x)) so Kx = (fe € B(R)Ife(x) = 0). These are
maximal ideals for every x € X and so x—— K is a map from
Xto X. Ifx*#*Yy in X then K ¢ Ky (for instance, let
e =X - (x) which is clopen, then fe € K but £, ¢ Ky) so
the map is one-to-one.

To see that every element of XR can be so obtained,

suppose M is a maximal ideal of B(R) and that M = Kx for any

(x)

X € X. Then, at each x ¢ X, there exists an f € M such

(x)

that f ' (x) = 1. By definition, £ =1 on a clopen set

{x)

(
e™ and zero off of e™

. The sets (e} cover X so we
(x )
can find a finite disjoint subcover (e ' )121 where
(x.) (x.)

f = 1 on each e ! and zero elsewhere. It follows <that

s
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{x ) (x )
+ .-+ + £ " is in M and this is the unit of B(R)

so M = B(R) if M = K for some x € X. The map x+— K is
therefore one-to-one and onto.

The basic clopen sets of X, are all of the form U =
N(f) =(K eXIf ¢K)= [Kx € X I(x) s e]. The inverse
image of U is e which is clopen so the map is continuous.
We can conclude that X and XR are homeomorphic. So, if I ¢
B(R) is an ideal of B(R) then its support in X, is an open
set which, as we saw in the last example, must be clopen or
the disjoint union of clopens. Therefore B(R) is
hereditary. If it turns out that R is regular then (3.32)
will yield that R is hereditary.

R will be regqular, by (3.11), if the stalk at each
point of X is a field. For K e X the stalk is R/RKx =
R/l-<x. Consider g € K_ so g = £-f for some £ € R and
£ e K. We have g(x) = f(x)fe(x) = f(x)*'0 = 0 so g is in
the kernel of the evaluation homomorphism Ex: R — F.
Therefore, l_(x is contained in this maximal ideal. 1In the
other direction, assume g is in Ker(Ex) so g € R and
g(x) = 0. There are elements k1 in F such that g =

kKf + -+ kf for disjoint clopen sets e, that cover
1 n
X. Since x e eJ for precisely one of the eJ we have 0 =
g(x) =k-f (x) =k sog=Y% kf and {(x}) is not
1 e ) 123 %

contained in e for each i. If we let e =} e, then g =
1#)

g-fe and fe € Kx. Therefore, Ker(Ex) s Rx and the two are

equal giving that l-ix is maximal and the stalk at K is
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consequently a field and R is regular. (Since the

evaluation homomorphism is onto, each stalk is a copy of F.)

Less can be said if the structure on F is weakened. If
we suppose that F is an integral domain that is not a field
% then R is neither hereditary nor Rb—hereditary. To see this
let k # 0 be a non-unit of F. The constant function f(x) =
k is in R and the image of f is not invertible on any of the

stalks of X so (c) of (3.30) fails.

If F is a Priifer domain which is not field then each
stalk is Priifer (a copy of F). That R is p.p. can be shown
by considering the annihilator of £ € R. By (3.21) then, R

will be semihereditary.

(The last two assertions assume that X is infinite. 1If

X is finite then R will be hereditary.)

Finally, it should be mentioned that if X is any

Boolean space whose associated Boolean ring is hereditary
then an exactly parallel argument produces the same
conclusions about the ring of functions R. X was chosen to
be the one-point-compactification of a discrete space only

for concreteness.




A2

APPENDIX

In this appendix we prove the result of I. Kaplansky
cited in the proof of (2.9): projective modules over
commutative semihereditary rings are direct sums of modules,
each isomorphic to a finitely generated ideal.

The proof is complex and rests on four main facts.
These will be listed first as lemmas and used to demonstrate

the main result before turning to their proofs.

In the appendix, R is commutative only if so stated.

When R is not commutative, R-module means right R-module.

A.1 Lemma ([7], theorem 1). If an R-module M is a direct
sum of countably generated R-modules then any direct summand
of M is itself a direct sum of countably generated

R-modules.

A.2 Lemma ([7], lemma 1). Let M be a countably generated
R-module such that any direct summand N of M has the
following property: any element of N can be embedded in a
free (resp. finitely generated) direct summand of N; then M

is free (resp. a direct sum of finitely generated modules).

A.3 Lemma ([{7]), lemma 3). Let R be a commutative
semihereditary ring and P a projective R-module, then any
element of P can be embedded in a finitely generated direct

summand of P.

A.4 Lemma ([2}, p.14). If R is right semihereditary then
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M. where each

Proof of lemma A.1 ([7], [11] plO). Let M = A

®
A
MA is countably generated and suppose that M = P @ Q. We
show that P is a direct sum of countably generated modules.
This will be done by constructing, via transfinite
induction, a well-ordered family of submodules, {Sa}, of M
with the following properties:

(1) If B < x then S, ¢ S

B o
(2) M =Us
ad.

(3) If a is a limiting ordinal then s_=U s

(4) San/sa is countably generated
(5) Sa = Pa ® Qa where Pa =P N Sa’ Qa =QnN Sa

(6) S_ is a direct sum of the M,’s for a suitable

o A

subset of A.
Assume first that such a family is at hand. A quick

check yields San/sa = Pau/Pa ® Qau/Qa and hence Pah/Pa
is a homomorphic image of a countably generated module and
so is likewise countably generated. Further, P, is a direct
summand of Sy which is a direct summand of M so P, is a
direct summand of M. Since P, <P, which is also a direct
summand otr M we know that Pa is a direct summand of Pwu by

(A.6). Therefore, Pau = Pa ] Paﬂ and Pau is countably
generated. We claim that for any o, P, =0 Pé. This is
B=a

shown by transfinite induction. It is clearly true for the

least P: P = (0). Assume the claim for all PB with

B<a. If a is a limiting ordinal then set P& = (0):

P =P S =P (U s,) =U (P s,) = U P
@ n o n B<a R B<a n B B<o B
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U ® P | = ¢ P, o P.oP « e P’
B<a [7<B 7] B<ax 8 B<a B « Bsa @

(] , =
since Poz (0).

If o is not a limit ordinal then a« = 8 + 1 for some B.

Then PB+1 = PB ® Péﬂ = (723 P;,) ® P"E,”1 (by the induction)
= @ P’ and this establishes the claim.

TR+
Now,P=PnS=Pn(USa)=U(Pnsa)
o a

=UP =U (e P.) =e P and each P’ is
« ® o Bsu © o« & o

countably generated as desired.

To complete the proof we construct the well-ordered
family {S,)- Let So = (0) be the least element. For any
ordinal o assume that we have S‘3 for all B < . If o is a

limiting ordinal then set s = U s,.
@  gex P

If a is not a limiting ordinal then o has the form a

B + 1. Let Q be any of the MA's not contained in SBH (if

there is no such M, then the induction stops: SB =8). Q

is countably generated by, say {(X,r X, /%Xs-.-), and this

will be the first row of an infinite matrix. Write

X, =P, + q, where p, € P, q,. € Q. Let Q2 be the

direct sum of the finiicly many Mh's needed to express p_,

and q,, in the sum M = ¢ MA' Q2 is countably generated by,

A

say {xa1'xaz'xza""}’ and let this be row two of the

matrix. Next decorpose X, X, =P, +4q,. Let Q3 be the

direct sum of Mh's needed to express P, and q,, in

M=o M,. Q
A A

be the third row of the matrix. Continue this process,

= < e s ors
5 x31'x32’x33' > and let these generat
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4

pursuing the elements of the matrix along successive

diagonals, that is, in the order Xoyr X0 X0 X o0 X0

p 14 X ««.« The matrix thus prcduced has countably many

317 14’

elements X, Let <x”> be the R-module generated by them

and set SB+1 = SB

That (S a) so constructed has all the properties

+ <x, >.
i)

required is immediate except possibly property (5). We will
check this one and leave the rest.

We want Sa = Pa ® Qa' That the sum is direct is
immediate from the definition of P, and Q,. Also immediate
is that Pa + Qa c Sa for all o and we need only demonstrate
the opposite containment.

Suppose first that « is a limiting ordinal. S _ =

o
U S, so x € S, implies x € S, for some B < a. Therefore,
g<a * @ g
X € P‘3 ® QB by induction and PB = PnSB cPns, =P, since

SB c Sa' Similarly, QB C Qa [=Yo) Sa C Pa + Qa and we have the

case for a a limiting ordinal.

Suppose a = 8 + 1. SB+1 = S'g + <XU> =

8 ® QB) + <x”> by the induction. If x e SB+1 then

X=p+q+ 7 ro¥, where p € PB c PB+1' q € QB c QBﬂ and

(P

)) T X, is a finite sum involving the generators X

Consider any one of the x We can write x = p  + ¢

13° 1) 1) 13

for P, € P, q,, € Q. By the construction of SB+1 there is

a module Qk C SB+1 which is the direct sum of the MA’s

needed to express P,,r 9, inM=o M
A

(xkl,xkz,xm,.. .} which are included in <xU>. Therefore,

A and Qk has generators

xU = pu + qu where pU and qU can each be rewritten as a



<X, > That is, x = p

0 + qU where pU € PN

1]

1

M = F1 (and Nal o N1” = 0) and we can stop.

in its F1’ Nl’, qu components: x, = f1 + nl’

P

There exists a free module F2 such that Nl’ =

ni’ € F2 and a free module F3 such that qu =

TagTr NP Rt ey

nl” € F3. Therefore, M = F o N2 ® N3 where F
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finite R-linear combination of generators X oy contained in

SBH ’

q,, € QN SBH and the stactement follows from this.

Proof of lemma A.2. Let {xi,xz,xa,...} be a generating
set for M and let N, be any direct summand of M containing
x: M=Noe N1’ . By hypothesis, there is a free module
F1 such that N1 = F1 ® N1” and X, € 1"‘1 and we can write
M=F e (N1’ ® N1“)' 1f F contains all (%1%, 000} then
Otherwise,
consider the "next" generator of M that is not in F .

Without loss of generality, suppose that x ¢ F . Write X,

+ ni’ -
Fz @ N2 and
F3 ] N3 and

F1 ® F2 ® F3 is free and le + xaR c F. If F contains all

contained in F and repeat the process.
< After, at most, countably many steps we

written M as a sum of free modules.

(xl,xz,xa,...} then it follows that M = F is free (and

b N,eN, = 0). If not, consider the "next" generator not

will have

The proof of the parenthetic statement is parallel.

- Proof of lemma A.3 ([7]). Let P be projective over R
commutative and semihereditary and let x bz any element of
P. There exists a free module F with a basis {ul)I such

that F~ Pe Q. Let S = (y € F|by = cx for some b,c € R and
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b a non-zero divisor). S is a submodule of F containing x.
It is also contained in P. To see this let s € S and write s
=p + q where p € P, q € Q. There is a non-zero divisor b e
R such that bs = cx so we can write bs = bp + bq = cx and cx
€ P. This implies that bq = 0 and so g = 0 (write g in terms
of F components and recall that b is a non-zero divisor).
Hence, s = p € P and S is a submodule of P containing x. We
will show that S is a finitely generated direct summand of
F, and therefore of P, yielding the result.
J Suppose x = au +---+ au in F. Let G =
Ruiew--e Run, the free submodule generated by U ,e.0,0.
We first claim that S € G. For this let y €e S so by = cx
for a non-zero divisor b € R and we have

r

by = cau +--4 cau . InF, y=Y dﬂﬂ where r = n.

i=1
n

Hence: by = bd1u1 S RRE bd“un SRR bdrur =i)=:1calul and

this implies that bdk =0V k >n so dk = 0V k >n since b

is a non-zero divisor. It follows that y € G, establishing
the claim.
We will now proceed with the proocf under the
: assumption that at least one of the R coefficients of x is
a non-zero divisor in R and show, after the fact, that this
is a reasonable assumption. So, without loss of
generality, assume that a is a non-zero divisor.

n
Let y =} d“ﬁ be any element of S. We know by = cx
n 11 n
so by =} bdlu‘ =7 cau . Because a is a non-zero
1=1 1=1

divisor ca # 0, so bd1 # 0 either and this implies that
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d1 # 0 since b is a non-zero divisor. Thus, every element
of S has a non-zero coefficient of .

We now claim that the factor module G = G/S is
projective. Let v, = v.-l1 =u + S and set H=

sz +oo ot Rvn. H is a free submodule of G since if

n n
Y rv, =0 then } ru is in s but any non-zero element
=2

1 1=2

of S must have a non-zero coefficient of u, so it must be
that r == r =0 and v,...,v is a basis for H.

2 n 2 n

If t € F and alt € S then t € S because if b(alt) = cx
where b is a non-zero divisor then (bal)t = cx and ba1 is a

non-zero divisor. Define u:6 — G by u(g) = ag. If g-=
n n
ZriuieSe Lru €S and so

n
)X r v, then ag=0w+a
1

i=1 ! 1=1 i=
4 is an injection. Actually, Im(u) € H. To see this
n n
suppose that [ au €8S so [ av =0 in G, then
1=1 1=1

n
av, =-av, —-:--av e H. Therefore, if g = rv, then
’ 1=1

u(g) =
i

u(G), an isomorphic copy of G, is a finitely generated

Mo

1r‘alvl € H since rav, e H. This means that
submodule of H which is free and (A.4) states that u(G) is
then a sum of projectives so G = G/S is projective as
claimed.

Since G/S is projective, the exact sequence
0———->S—w——>G—n———)G/S splits (where y is the inclusion map and
n is the canonical map) and we can state that G = S e G/S.

G is finitely generated so S is and we have S as a finitely
generated direct summand of F. S < P which is also a direct

summand of F so S is a direct summand of P by (A.6) and the
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result is proved.

The assumption that a is a non-zero divisor in the
above must now be justified. To this end suppose that a, is
in fact a zero-divisor. Since R is p.p., (ai}' = (81). =
(1 - el)R for some e e B(R) and R = elR ® (1 - e)R «

aRe (1 - e )R. 1In the ring eR, a = ae, is a non-zero

1
divisor. With notation as above, eF is a free (e,R)-module

n
with basis {etul}I and eIF e e1P o eIQ and ex = Y aeu
1=1

is in elP. We have the result for ex e eIP s0 there exists
a finitely generated module A c e1P such that e1P « A e B
and e x is embedded in A.

n

n
(1 - el)x = ¥y (1 - el)aiu1 = ¥y (1 - el)alul since
1 =1 1=2

(1 - e) e (al)'. If (1 - e ) also annihilates a,,..0,a
then (1 - el)x = 0 and ex = X. This would give x € A and
P eIP © (1 - ei)P ~A e®Boe (1 - ei)P and we can stop.

On the other hand, suppose, without loss of generality,
that (1 - e)a, = 0. Then ((1 - e)a,) = {e,) = (1 - e)R
for some e, € B(R). |:e1 € {(1 - el)az)'] »

[eIR < (1 - ez)li] » [e1 =e (1 - ez)] » ee = 0. Then

ez(l - ei)x = 1§ze2(1 - el)alul € eaP and (1 - el)a2 =

ez(l - el)a2 is a non-zero divisor in eZR. The foregoing
argument applies to e (1- e )x to give that eP x A" o B
where A’ is finitely generated and e (l - e)xen.

(1 - ez)(l - ei)x = 1Ejz(l - ez)(l - ei)alul =

n~s

(1 - ez)(l - el)alul. If (1 - ez) annihilates A peee @

1=3
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then (1 - ez)(l - el)x = (1 - e - ez)x = 0 and
x=ex+ex=ex+ (1 - e)eXx with ex € eP and

(1 - el)ezx € eZP. P« elP ® eaP o (1L - e - ez)P o

1
AeoeBeAdA’ ¢ B @ (1 - e - ez)P and we have x embedded in
Ao A’, a finitely generated direct summand of P. 1If

(1 - ez) does not annihilate a ..., We need only repeat
the process a finite number of times to achieve the result

and thus the assumption that a is a non-zero divisor is a

reasonable one.

Proof of Lemma A.4 ([2]). Let F be free over R with basis
(x‘f and A ¢ F a finitely generated submodule. A is
contained in a finite free summand of F, say A ¢
XRo -0 XR = F'. Let B be the submodule consisting of
all elements in A that can be written in terms of
XpeeosX - Then any a € A has a unique representation a =
xnh + b; beB, A €R.

Define ¢: A—-R by p(a) = A. ¢ maps A onto I = ¢(A),
a right ideal of R

We proceed by induction on n, the number of generators
of F'.

I is a finitely generated R-submodule of R, being the
homomorphic image of a finitely generated module and, since
R is right semihereditary, I is projective. It follows that

Yy

the exact sequence 0 —— B —/—— A P ,1 »y 0, where ¥ is

the inclusion map, is split exact. This implies that

A=Boeol.

If n=1 then B =0 and we have the result. Assume its
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truth for less than n generators. A« Be I » B « A/I so B
is finitely generated since A is. We have B, then, as a
finitely generated submodule of a free R-module on (n - 1)
generators and the induction applies to B. Therefore,

B =« B o--oe B where BJ « I, a finitely generated right

J
ideal of R. This gives us that A « B o e B e I.,

With these proofs the purpose of the appendix is
accomplished. Out of interest we present some further

results contained in [7].

If R is an integral domain then R is p.p. since any
principal ideal is, as an R-module, an isomorphic copy of R.
An integral domain in which finitely generated ideals are
principal is, in consequence, semihereditary. Therefore, as

a corollary to theorem A.5 we have

A.7 Corollary ([7]). If R is an integral domain in which
finitely generated ideals are principal then any projectiva

R-module is free.

Proof. If P is projective then, since R is semihereditary,
P x ¢ P, where each P, is isomorphic to a finitely generated

ideal of R, say P = J, by (A.5). J, = aR for some a € R

l'

SoP~gaRuog R“’.IJ

A.8 Lemma ([7)], lemma 4). If P is a projective module over
a regular ring R, R not necessarily commutative, then any

finitely generated submodule of P is a direct summand of P.
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Proof. 1If P is projective then there exists a free module F
such that F « P @ Q. Let A ¢ P be finitely generated. Lemma
A.4 applies to A: A =« 1§1 B, where each B ~ J , a finitely
generated right ideal of R. R is regular so J = eR for
some idempotent e and we have A = o elR:

RxeReo (1~ e‘)R. F is free so F is isomorphic to the

direct sum of copies of R:
(1)

F~oR for some index set I.
o [elR e (1 - ei)R] @ --e [enR e (1 - en)R] ®
[?,Ru’)]
= [elR @0 enR] ® +o- A @ -

and A is a direct summand of F. Since P is also a direct

sumand of F and A ¢ P we have A as a direct summand of P.n

A.9 Theorem (([7], theorem 4). Let R be a regular ring,
not necessarily commutative, and P a projective right
R-module; then P is a direct sum of right R-modules each of

which is isomorphic to a principal right ideal.

Sketch of proof. Apply lemmas (A.l1l) and (A.8).‘:l




(1]

(2]

(31

(4]

{3]

(el

(7]

(8l

(2]
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