I* National Library Biblio!
of Canada

Acquisitions and

ue nationale
du Canada

Direction des acquisitions et

Bibliographic Services Branch des servicus bibliographiques

395 Wellington Street 395, rue Wellington
Onawa, Ontario Ottawa (Ontario)
K1A ON4 K1A 0N4

NOTICE

The quality of this microform is
heavily depenrndent upon the
quality of the original thesis
submitted for microfilming.
Every effort has been made to
ensure the highest quality of
reproduction possible.

If pages are missing, contact the
university which granted the
degree.

Some pages may have indistinct
print especially if the original
pages were typed with a poor
typewriter ribbon or if the
university sent us an inferior
photocopy.

Reproduction in full or in part of
this microform is governed by
the Canadian Copyright Act,
R.S.C. 1970, c¢. C-30, and
subsequent amendments.

Canada

Your tie Volto 10térence

Our tile Nolre rétérence

AVIS

La qualité de cette microforme
dépend grandement de la qualité
de la thése soumise au
microfilmage. Nous avons tout
fait pour assurer une qualité
supérieure de reproduction.

S'il manque des pages, veuillez
communiquer avec l'université
qui a conféré le grade.

La qualité d’impression de
certaines pages peut laisser a
désirer, surtout si les pages
originales ont été
dactylographiées a l'aide d'un
ruban usé ou si l'université nous
a fait parvenir une photocopie de
qualité inférieure.

La reproduction, méme partielle,
de cette microforme est soumise
a la Lol canadienne sur le droit
d’auteur, SRC 1970, c. C-30, et
ses amendements subséquents.

A SPECIFICATION OF THE XTP SERVICE IN LOTOS

YAOLIN ZHANG

A THESIS
IN
THE DEPARTMENT
OF
COMPUTER SCIENCE

PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF MASTER OF COMPUTER SCIENCE
CONCORDIA UNIVERSITY
MONTREAL, QUEBEC, CANADA

APRIL 1994
© YAOLIN ZHANG, 1994

l * . gl'attonal Library Biblc':loatma nationale

isitions and Direction des acquisitions et
e@;g'raphic Services Branch de‘:c se'orcices bibliographiques
wswmonareet 95, tue(Welmg)ton
onm K1A ON4
Your Ng Voire réidrence
Ow Me Notre rélerence
THE AUTHOR HAS GRANTED AN L'AUTEUR A ACCORDE UNE LICENCE
IRREVOCABLE NON-EXCLUSIVE IRREVOCABLE ET NON EXCLUSIVE
LICENCE ALLOWING THE NATIONAL PERMETTANT A LA BIBLIOTHEQUE
LIBRARY OF CANADA TO NATIONALE DU CANADA DE
REPRODUCE, LOAN, DISTRIBUTE OR REPRODUIRE, PRETER, DISTRIBUER
SELL COPIES OF HIS/HER THESIS BY OU VENDRE DES COPIES DE SA
ANY MEANS AND IN ANY FORM OR THESE DE QUELQUE MANIERE ET

FORMAT, MAKING THIS THESIS
AVAILABLE TO INTERESTED
PERSONS.

THE AUTHOR RETAINS OWNERSHIP
OF THE COPYRIGHT IN HIS/HER
THESIS. NEITHER THE THESIS NOR
SUBSTANTIAL EXTRACTS FROM IT
MAY BE PRINTED OR OTHERWISE
REPRODUCED WITHOUT HIS/HER
PERMISSION.

SOUS QUELQUE FORME QUE CE SOIT
POUR METTRE DES EXEMPLAIRES DE
CETTE THESE A LA DISPOSITION DES
PERSONNE INTERESSEES.

L'AUTEUR CONSERVE LA PROPRIETE
DU DROIT D'AUTEUR QUI PROTEGE
SA THESE. NI LA THESE NI DES
EXTRAITS SUBSTANTIELS DE CELLE-
CI NE DOIVENT ETRE IMPRIMES OU
AUTREMENT REPRODUITS SANS SON
AUTORISATION.

ISBN 0-315-97588-1

Canadi

Abstract

A Specification of the XTP Service in LOTOS

Yaolin Zhang

The Xpress Transfer Protocol (XTP) is a transfer (transport- and network-level)
protocol designed to meet the needs of distributed, real-time, and multi-media sys-

tems, in both unicast and multicast environments.

A service definition for XTP is proposed, covering both the unicast service and

the multicast service, and reflecting the features of XTP.

To provide a precise and unambiguous specification of the service definition, it
has been formally specified using LOTOS. The architecture of the specification is
presented, along with the approaches used, the data type definitions, and the process

structures.

The formal specification demonstrates the need for simpler interactions when clos-

ing a connection in XTP, and for better type-definition capabilities in LOTOS.

i

Acknowledgements

I would like to take this opportunity to express my sincerest thanks to my supervisor,
Dr. J.W. Atwood, for his advice, encouragement, and practical assistance during the

course of this research.

I would also like to express my gratitude to Dr. L. Logrippo from theUniversity of

Ottawa for sharing their LOTOS utility, ISLA.

I would especially like to thank Ted Ewanchyna for his many helpful comments on

this thesis.

Finally, I would also like to thank my wife, Guiling Guo, whose consistent support

and encouragement never waivered.

iv

Contents

List of Figures ix
1 Introduction 1
2 Overview of LOTOS 4
2.1 Abstract datatypes. e e e 5
2.1.1 Basicdatatyping i 5

2.1.2 Structured datatypes 6

22 Processalgebra i o i e 7
2.2.1 Processdefinition 8

2.2.2 Operators and syntax of behaviour expressions 9

2.2.3 Operational Semantics of expressions 13

2.3 Interprocess communication 17

3 An introduction to XTP 18

31 General e e e 18
32 XTPpacketformats, 20
321 XTPheader 20
3.2.2 Control and information segment 23

3.3 XTPoperation i 26
3.3.1 Connectionphase 26
3.3.2 Datatransferphase 28
3.3.3 Terminationphase, 23

334 Multicastmode o, 33

4 Informal description of XTP service 36
4.1 Conceptofservice. v v v i i i it i e 36
4.2 Serviceprimitives e e e 39
4.2.1 General considerations, 39
4.2.2 Service primitives forunicast 40
4.2.3 Parameters of service primitives 43
4,24 Service primitives for multicast 45

vi

4.3 Time sequence of service primitives 47

4.3.1 Timesequencediagram. 47

4.3.2 Time sequence diagrams for the XTP service. 43

44 ASUMMALY . . v v vt i i i e e it e s it e s i e 58

5 Unicast service specification in LOTOS 59
5.1 Specification design principles00, 59
5.2 Architecture of the specification,, 60
53 Globaldatatypes 62
5.3.1 Service access point identification L. 62

5.3.2 Connection endpoint identification 64

5.3.3 Serviceprimitives e e e 65

54 Processstructures. i e e 67
5.4.1 The initiatorserver o 67

5.4.2 Theresponderservero, 76

5.4.3 The Network-medium. 17

6 Multicast service specification in LOTOS 80
6.1 Architecture of the specification, 80

vii

6.2 The initiator server

6.2.1 The Mi-SPordering

oooooooooooooooooooooooo

6.2.2 The Broadcast and Timer processes

6.3 The responder servers

6.3.1 The Mr-SPordering
6.3.2 The Datareceiver v i i i i i e e e e e e
6.4 The M-Network-medium v i i v i e et e e e e e

7 Conclusions

References

Appendix A

viii

90

92

97

100

List of Figures

3.1

3.2

3.3

34

3.5

3.6

3.7

3.8

4.1

4.2

4.3

4.4

XTP packet: three major segments 20
XTP packet structures0 v o vttt v e e e 25
Connection handshakes 27
A 4-way handshakeclosure 30
A 3-way handshakeclosure, 31
A foreshortened close, 31
A foreshortened close oo L., 32
A6Gwaycrossedclose i 32
Layer model serviceand protocols 37
Model of service oo L., 38
Creation of contexts (Open.request fails) 50
Successful creation of contexts in bothsides 50

ix

4.5 Establishment of an association (manual response mode) 51
4.6 Establishment of an association (automatic response mode) 51
4.7 The legal start to send data (manual response mode) 52
4.8 The legal start to send data (automatic response mode) 52
4.9 The legal start toreceivedata 53
4.10 Data transfer procedure 53
4.11 A graceful close of one path of an association. 54
4.12 A forced close of one path of an association. 54
4.13 A close of an association with 4 primitives 55
4.14 A graceful close of an association with 8 primitives 5
4.15 A graceful close of an association with 6 primitives 56
4.16 A forced close of an association with 6 primitives 56
4.17 A crossed close of one path of an association LY
4.18 A crossed close of an association, 57
5.1 Architecture of XTP service (unicast) 61
5.2 Constraint-oriented decomposition of process Server-initiator 68
5.3 The first group subprocesses of initiator’s SPordering 72

5.4

5.5

5.6

5.7

6.1

6.2

6.3

6.4

6.5

State diagram of the subprocess Group 2-5
Constraint-oriented decomposition of process Server-responder . . .
The first group subprocesses of responder’s SPordering

The structure of the process Network-medium

Architecture of XTP service (multicast).
Decomposition of process Server-initiator
Decomposition of process Server-responder
Decomposition of process Mr-SPordering

The structure of the process M-Network-mediuvm

xi

Chapter 1

Introduction

To simplify the complexity of data communication systems, the International Or-
ganization for Standardization (ISO) proposed a layere darchitectural model called
the Reference Model for OpenSystem Interconnection (OSI) [ISO7498]. In the OSI
model, communication systems are broken down into several layers. Each of the lay-
ers is designed to perform a well-defined function, and to provide services to users at

the next higher layer.

Based on this model, each layer is described by two documents, a service definition
and a protocol specification. Protocol specifications describe how the transfer occurs,
how errors are detected, and how acknowledgments are passed, while service defini-
tions specify what services are provided to the next higher layer and how services are

used.

The importance of the protocol specification is widely accepted. However, a well-
defined service definition is also necessary for characterizing a layer in communication

systems, because it expresses the functions of a complex protocol in a simple way. In

addition, the definition of service describes the behaviors of providing the service to

the users, that is, the procedures to correctly use the services provided.

Besides the layered architectural model, the OSI system requires unambiguous,
precise, implementation independent, and standardized descriptions of services and
protocols. An informal description written in natural language can hardly avoid
ambiguity, resulting in incompatible implementations. Additionally, it cannot be
used to carry out extensive verification and validation at the design level, which is in

an early stage of the development cycle.

To deal with this issue, various formal description techniques (FDTs) have been
developed since the 1980’s. FDTs are languages designed to formally define and
analyze the structure and behavior of concurrent systems such as the OSI computer
network architecture. LOTOS is one of standardized formal description techniques
developed by the ISO. In recent years, some tools to support FDTs have been designed
and are now available. These tools make it possible to automatically check and
analyze specifications. Therefore, application of FDTs to the design of protocols has

been given more and more attention.

In this thesis, we will propose a service definition for the Xpress Transfer Protocol
(XTP). XTP is a high performance transfer layer protocol being devzloped by the
XTP Forum to meet the needs of distributed, real time, and multi-media systems.
XTP is intended to combine the facilities of the transport and network layers of the
ISO reference model, and to provide for boih unicasting and multicasting. The defin-
ing document for XTP, “XTP Protocol Definition, Revision 3.6”[XTP92], is mainly
concerned with defining the protocol. Only an incomplete and implementation-
dependent service definition is appended to the document. Qur intention is to define

a complete XTP service that is independent from implementations.

With this in mind, a formal specification of the XTP service, written in LOTOS,

will be presented in this thesis.

The thesis is organized as follows. Chapter two gives a general overview of LOTOS,
and introduces the main concepts such as abstract data typing and process algebra.
In chapter three we outline the XTP Protocol Definition Revision 3.6. Since the work
is concerned with the service interface of XTP, we introduce only the information that
should be provided by users and operations that are related to defining the service.
Based on the discussion in chapter three, we propose the definition of the XTP service
in chapter four. The proposal gives an informal description including definition of
service primitives, their parameters, and some typical time sequence diagrams. The
LOTOS specification of the XTP service is divided into two parts, the unicast service
and multicast service. These are discussed in chapters five and six, respectively. The
discussion includes the architecture, approaches used in the specification, data type
definition and process structures. Finally, the conclusions of this thesis and some

suggestions for future work are presented in chapter seven.

Chapter 2

Overview of LOTOS

LOTOS (Language of Temporal Ordering Specification) is one of the standardized
formal description techniques (FDTs) developed within the International Organiza-
tion for Standardization (ISO). It is used to describe open distributed systems, and in
particular those related to the Open Systems Interconnection (OSI) computer network

architecture, in an abstract way.

The OSI system requires unambiguous, precise, implementation independent, and
standardized descriptions of services and protocols. An informal description written
in natural language can hardly avoid ambiguity, resulting in incompatible imple-
mentations. Additionally, it cannot be used to carry out extensive verification and
validation at the design level, which is in an early stage of the development cycle.
Therefore LOTOS, as one of formal description techniques for OSI systems, has been

developed and became an 1SO standard in 1989 [ISO8807).

LOTOS is a mathematically-defined formal description technique. It consists

of two components: a process algebra that specifies the behaviour of the system,

and abstract data types that deal with the description of data structures and value
expressions. In the following sections of this chapter, the concepts of LOTOS used in

this thesis will be summarized.

2.1 Abstract data types

The representations of values, value expressions and data structures in LOTOS are
modelled as “abstract data types (ADTs)”. An abstract data type does not describe
how data value are actually represented and manipulated in memory, but only de-
fines the essential properties of data and the operations that manipulate the data.
Therefore abstract data types are independent of any concrete implementation. Most
notions of abstract data types in LOTOS are derived from the algebraic specification

language for abstract data types ACT ONE [Ehrig].

2.1.1 Basic data typing

The most basic form of data definition in LOTOS consists of defining the names of
sorts, operations and possibly, equations. Each sort represents a set of data values of
the data type. Every operation defines a total function that describes manipulating
procedure on sorts. The declaration of an operation will include its domain, which
consists of a list of zero or more sorts, and its range, which consists of exactly one sort.
The equations are used to specify relationship between operations. As an example,
the following data type definition is extracted from the specification of the XTP

service.

type Bittype

is OctDigit, Boolean

sorts bittype

opns
<>, yes no : = bittype
h : bittype —> OctDigit
Isyes : bittype —> Bool
-eq., -ne_: bittype, bittype — Bool

eqns
forall nl, n2, : bittype
ofsort OctDigit

h (no) = 0;
h (yes) = 1;
h(<>)=12

ofsort Bool
nl eqn2 = h (n1) eq h (n2);
nl ne n2 = not (nl eq n2);
Isyes (n1) = h (nl) eq 1

endtype (* Bittype *)

2.1.2 Structured data types

In order to build new types with existing data types, LOTOS provides the following

structuring mechanisms for abstract data type specifications.

1. Combination constructs a new data type by combining the types and adding
new sorts, operation and equations. The data type Bittype in the above example
is formed by combining pre-defined data types OctDigit and Boolean from the
LOTOS standard library, and adding some new operations.

2. Renaming defines a new data type by changing the names of sorts and operations

without any change in semantics. Sample 5.3 in chapter 5 is an example.

3. Parameterization allows one to add the formal sorts, operations and equations
as formal parameters to the data type specifications. Then, a new data type
can be defined by substituting the formal part of the type definition with actual

parameters. The substitution is called actualization in LOTOS.

2.2 Process algebra

Process algebra is the essential part of LOTOS and is developed from the Calculus
of Communicating Systems (CCS)[Milner]. The basic idea is that the system can
be specified by defining the temporal relation of the interactions that compose the

externally observable behaviour of a system.

In LOTOS a distributed and concurrent system is described by a set of hierarchical
processes. A process is an abstract entity that is able to perform both internal, un-
observable actions and observable actions (that are interactions with other processes,
which form its environment). The LOTOS term for an interaction is event, and it
occurs at interaction points called gates. An event is an elementary unit of synchro-
nization among processes. The occurrence of an event at a gate of the process implies

that the action is observed by the processes that participate in the synchronization.

To clarify the difference between unobservable actions and observable actions, a pro-
cess can be seen as a black box with some gates for interaction with other processes.
The mechanisms inside the box are not observable. Therefore, all actions occurring

inside a process are unobservable.

In LOTOS interactions, i.e. events, have the following features:

o Atomic: Events occur instantaneously, without consuming time. So interactions
are not able to be interrupted, and processes cannot carry out more than one

interaction at a time.

e Synchronous: Processes that interact in an event participate in its execution at
the same moment in time. In other words, it is necessary that all processes that

take part in the event must be ready for an event to occur.

o Multi-way: Interaction may take place between two or more processes.

2.2.1 Process definition

In LOTOS, the process definition consists of two parts, static and dynamic. The
static part includes declaration of its identifiers, formal gale parameters, formal value
parameters and functionality. The following is a typical structure of a process defini-

tion.

process process-identifier [gate-list] (parameter-list): functionality :=
dynamic part
where

local type definition

process definitions

endproc

Formal gate parameters are used to define the interaction ports of a process that may
interact with other processes, and will be substituted by actual ones when the process
is instantiated. As with functions or procedures in other programming languages, a
process in LOTOS may have a list of formal value parameters. When the process is
instantiated these will be replaced by actual values. Each process has a functionality

parameter to indicate its result. The three possible formats of this parameter are:
1. noexit. The process cannot terminate successfully.
2. exit. The process may terminate successfully.
3. exit[ty,-- -, 1), where #;,-+-,t, is a sort list. The process may terminate suc-

cessfully, and offer a list of values that belong to the sort in the sort list.

The concept of successful termination will be discussed in detail later.

In the dynamic part of the definition, the dynamic behaviour of a process is defined
by “behaviour expressions”, which describe the temporal relation between ohservable
actions. A behaviour expression is constructed by applying an operator to other
behaviour expressions. For convenience, given a behaviour expression B, it is also

called a process, even when B is not explicitly associated with a process name.

2.2.2 Operators and syntax of behaviour expressions

In this section, operators used in LOTOS and forms of basic behaviour expression will

be examined. As a convention we will use boldface for reserved LOTOS keywords,

9

and italics for nonterminal symbols.

1. name: inaction
denotation: stop

syntax: stop
stop represents a completely inactive process. That is, it cannot execute

internal actions, nor it can perform interactions.

2. name: action prefix
denotation: ;
syntax: a;B
The behavior of ;B will be the action a followed by the behaviour of
B, where a stands for either an internal action or event, and B for any

behaviour expression.

3. name: guarding
denotation: [guard] —>
syntax: [guard] — B
The behavior of [guard] —> B will be the conditional execution of the
behaviour B, where guard is a condition to be evaluated. If the guard
holds, then the behaviour B is possible, otherwise the behaviour expression

is equivalent to stop.

4. name: choice
denotation:]

syntax: B,[]B;
The behavior of B;[]B; will be the behaviour of either B or Bz, but not

both, where B, and B, are any behaviour expressions.

10

5. name: parallel composition

denotation; I [glsg'h' M 9gﬂ] I

syntax: By| [g1,92,:*,9n] |Bs
The behavior of By | [g91,92, -+ ,9a] | Bz will be a composition in which B,
and B; must synchronize with respect to the gates belonging to the gate

set [91,92, v agn]-

6. name: interleaving
denotation: |||

syntax: B|||B;
Interleaving is a special case of parallel composition, in which the gate set
is empty. The expression B|||B; expresses any interleaving of the actions
of B, with the actions of B,. For example, if B, is ready for an action «,
and B, for an action a3, then both action orderings (a, before a3, a; before
ay) are possible. Also, after an action (say a, or a;), B|||B2 transforms

into an expression which still involves the operator *|||’.
7. name: synchronization

denotation: ||

syntax: B||B;
Synchronization is another special case of parallel composition, in which
the gate set includes all user-definable gates. B,||B; expresses that B; and
B; are compelled to proceed in full synchronization except for possible

internal actions.

8. name: hiding

denotation: hide

11

syntax: hide ¢,,¢2,+:,9- in B
Hiding transforms some observable actions of a process into unobservable
ones. hide g1, ¢z, --,¢, in B means that any action occurring at a gate
in the set of hidden gates ¢;,¢2,:+,gn is transformed into unobservable

action.

9. name: process instantiation

syntax: P [ghy%""gn] or
-P [glag21"',gn](PlaP%"WPm)

where P is a process identifier, [g1,92,--,gn] is a list of actual gates
and (p1,p2,-++,pm) is a list of actual parameters. The process instantia-
tion is analogous to the invocation of a function or procedure in standard
programming languages. It is useful for the specification of recursive be-

haviours.

10. name: successful termination
denotation: exit

syntax: exit or
exit (v1,-+-,v5)
where vy,+++, vy is a list of values to be offered. The behaviour expression

exit is used to specify that a process terminates successfully.

In order to distinguish between successful termination and unsuccessful
termination, we need to introduce a special gate called § and the successful
termination action §. Both of them are unique and different from user-
defined gates and actions. They cannot be used in a specification. Only
exit performs the action 6, and then it transforms into stop. Moreover,

exit requires synchronization at gate & to succeed, which is used in the

12

sequential composition of behaviour as shown below.

11. name: enabling
denotation: >

syntax: B;>>B; or
B;>» accept z; : ¢, ,x, : 1, in B,
where z;,---,, are the variables used in B; and {y,---,t, are the sorts
related to the variables. The behavior of B> B, will be that if B, termi-
nates successfully, then the execution of B; is enabled. Additionally, the

second expression indicates that B, will accept the values offered by B,.

12. name: disabling
denotation: [>

syntax: By[>B;
Disabling resembles an irreversible interrupt. The behavior of B[>B,
will be one of three possible cases. One case is that the behaviour B, is
interrupted by the first action of B,, control is transferred from B, to B,
and cannot go back to B;. The second case is that By performs a successful
termination action. In this case, B; is terminated at the same time. The
last case is that B, performs an action that is not a successful termination.

B; is still expected to interrupt B,’s successor.

2.2.3 Operational Semantics of expressions

In the above section, we discussed the syntax of behaviour expressions in LOTOS, and
informally interpreted their semantics. More precise sernantics will now be defined in

terms of a formal system of inference rules.

13

Definition: Let B, and B; be behaviour expressions, a be an action. A labelled

transition is a triple,

Bl—(t-—-sz

in which « is called a label.

Labelled transitions are used to define the following inference rules of the operational
semantics of LOTOS. In these inference rules, the interpretation of a labelled transi-
tion of the form By — a — B, is that B, can perform action @ and transform into
B; after the occurrence of a. For the given behaviour expression, the actions that the
expression may perform can be systematically derived from its structure by using the

inference rules.
For defining the semantics, the following notations will be used.
G denotes the set of user-definable gates;

9, 91y "ty Gn range over G;

denotes the unobservable action;

A denotes the set G U {i} of user-definable actions;
a range over A;

6 denotes the successful termination action;

E denotes the value expression as a guard,;

G* denotes the set G'U {6} of observable actions;
gt range over G';

At denotes the set AU {6} of actions;

at range over At.

14

i
\

Operational Semantics:

1. inaction

stop has no associated inference rules.

2. Action Prefix

a;B—-a— B
3. Guarding
E = true
[El>B — B
E = false

[E]l> B — stop

4. Choice
B] - a"’ -_— B;
Bl[]Bg - a"‘ -—— B;
B; - a* — B}
Bll]Bg —-aqt — B:'z

5. Parallel composition

Bl—a_’Bis ag{glv tt gn}
Bll[gla *t gn]lBZ_a - B“[gh Tty gn]IB'.’

-BZ—a"_’Bé’ ag{gls M gn}
Bll[gla 'ty gn]|B2 - a-— Bll[gla tt gn]lBa

Bl"‘.q+_’Bia B2-g+ _"Bé’ g+€{glﬁ) gn}u{6}

Billgy, -+, gn)|B2— gt — Billa1, -, g»)|B}

6. Interleaving
Bl - a"' -— B;
B, ||| By - a* — B ||| B,
B; — a* — B
By ||| B, — a* — B, ||| B)
B, ~6— Bi, B,-6 — B}
B, ||| B, - 6 — By ||| B;

15

(2.1)

(2.2)

(2.3)

(2.6)

(2.7)

(2.8)

(2.9)

(2.10)

(2.11)

10.

11.

12.

Synchronization

By -i— B,
B B:~i— B! || B;
By —i— B,

B | B.-i— B | B;
B, - gt — B}, B, - gt — Bj
B || B; - g* — By | B;

Hiding
B-a"’—-»B’, at ¢{gh t 'y gn}
hide ¢y, :--, g, in B —a* — hide g1, -+, gn in B’

B-g— B, ge{gh Tty gn}
hide g, -+, go in B—i— hide g, *-+, gp in B

Process Instantiation

(2.12)
(2.13)

(2.14)

(2.15)

(2.16)

If ‘Plg},---,g.] := By’ is a process definition with the body By, and Plg1,--,gn] is

an instantiation by replacing formal gates g} with actual gates g;(i = 1,-- -, n), then

Bplo1/g1, 5 9n/9n) —at — B
P[gls"'agn]’_a+"“‘B'

where B,lg1/g1, « -+, gn/g}) is the body after replacing gates.

Successful Termination

exit — § — stop

Sequential Composition

Bl—a—»B{
B]>Bg—a-—+B{>Bg
B, - 6 — B

By >»B,-1— B,

Disabling
Bg ~at — B;
B1[> B; -at — Bé
B] -6 — Bi
Bil>B;-6 — B
B1 -aq — B;
B;[) B;—a— B“> B,

16

(2.17)

(2.18)

(2.19)

(2.20)

(2.21)
(2.22)

(2.23)

2.3 Interprocess communication

From the discussion in the last section, we know that the value passing between two
processes may occur when a process instantiation or enabling operation is performed.
However, the exchange of data is mainly achieved when an interaction among pro-
cesses takes place at a gate. LOTOS therefore allows interactions (i.e., events) at a
gate to be associated with variable declarations (‘input’) and value declaration (‘out-
put’). In LOTOS, input and output of data are represented by ‘”’ and ‘!". For

example,

g?x :t means that the process is prepared to accept a value of sort ¢ at gate g; after

the event has occurred the received value is stored in the variable z.

g'e means that the process is prepared to offer the value of e at gate g, where e is

an arbitrary value expression.

LOTOS supports three types of interaction between two processes. We illustrate

them by simple examples as follows.
1. value passing, gle and g7z :t
If value(e) € sort t then = = value(e) after the synchronization.

2. value matching, gle; and gle;

If value(e;) = value(e;) then the synchronization is achieved.

3. value negotiation, glz:ty and g?y:i;

If t; = t; then £ = y = v after the synchronization, where v € sort t.

17

Chapter 3

An introduction to XTP

3.1 General

The Xpress Transfer Protocol (XTP) is a high performance transfer layer protocol
being developed by the XTP Forum. Unlike traditional transport layer protocols,
such as DoD’s Transmission Control Protocol (TCP) and ISO’s Transport Protocol
(TP), XTP combines the functionalities of both the network and transport layers of
the ISO OSI model into a single layer.

The design goals of XTP are to meet the needs of distributed, real time, and
muliti-media systems. In order to support all of these kinds of systems, XTP provides

the following functionalities:

¢ implicit connection setup
¢ simple frame format

¢ message boundary preservation

18

e compatibility with multiple addressing schemes
o flow/rate/error control

e bulk transport service

o real-time reliable datagram service

e traditional stream service

e both unicast and multicast mechanisms.

XTP is a connection-oriented protocol, which sets up full-duplex virtual circuit
connection between end systems. In XTP, a connection is called an association, and
considered as a pair of active contexts, with one context at each end system. The
context denotes state information representing one instance of an active communica-
tion between two (or more for multicast mode) XTP endpoints. It is important to
note that a context must be created, or instantiated, before sending and receiving
XTP packets. Once an association is shut down, the related contexts revert to the

“null” state.

In the following sections of this chapter, we will briefly introduce the packet for-
mats and operations of XTP based on Revision 3.6 of the Protoco! Definition. Because
the work reported in this thesis is confined to the service interface of XTP, we are only
going to discuss the information that should be provided by users and operations that
are related to defining the service. The details of some issues, such as flow/rate/error
control, will be ignored. The complete definition of the protocol can be found in

[XTP92].

19

3.2 XTP packet formats

XTP contains two general types of packets: control packets and information packets.
Control packets are used to communicate the state of an XTP machine between
protocol entities, while information packets contain transport layer messages and
user data within an information segment. The information packets that can carry

user data are also referred to as data packets.

As shown in Figure 3.1, an XTP packet consists of three parts, a 40-byte header, a
4-bhyte trailer, and a middle segment, which is of variable length and can be a control
segment or an information segment depending on the type of packet. The XTP trailer

only contains a checksum of the middle segment.

XTP Packet

.....
- *a
o .
R -
. LS
. -
o® *e
. .
- -
.....
o
L0
.’
»
P
oe”

.
.
*.
e
.
.
.

Information Segment
XTP Header XTP Trailer

or
Control Segment

Figure 3.1: XTP packet: three major segments

3.2.1 XTP header

An XTP header has ten fields, namely route, ttl (time to live), cmd (command), sync,
key, seq (sequence), dseq (delivery sequence), sort, dlen (data length), and hcheck

(header checksum).

20

The field ¢md contains the following information:

1. the type of XTP packet. The ptype field in the field cmd sub-classifies the
control packet and information packet as nine types, that is,
o DATA: user data packet.
e FIRST: initial packet of an association, it may contain user data.

o PATH: reconnection packet, which is used to change an existing associa-

tion, or to join an in-progress multicast conversation.
e DIAG: diagnostic packet that contains peer-to-peer diagnostic messages.
o MAINT: network maintenance packet.
o MGMT: network management packet.

e ROUTE: route management packet used to exchange information with

XTP switches and routers.
o CNTL: control packet.

e RCNTL: intermediate system control packet.

The last two types of packets belong to control packets that contain a control
segment. The others are information packets because they each contain an

information segment.

2. the offset used to identify the beginning of actual data in an information seg-

ment.
3. the XTP version.

4. the service options used to select XTP operating mode, mechau-ms, and oper-

ations. XTP provides two groups of options. The first group is used to specify

21

operating mode and mechanisms. Once the options of this group are selected,
they will never be changed for the lifetime of a connection. The second group
of options, called control flags in the previous version(3.5) of XTP, are used to
indicate operations. They could be different on every packet. All the options

are defined as follows.

The first group:

e NOCHECK: disable checksum function
e NOERR: disable error control

e MULTI: multicast mode

o RES: enable reservation mode

e SORT: enable sorting

e NOFLOW: disable flow control

e FASTNAK: enable aggressive error control
The second group:

e SREQ: status requested
e DREQ: deliver status requested

e RCLOSE: reader closed, indicates that no further incoming packets are

expected
e WCLOSE: writer closed, indicates that all user data have been transmitted
e EOM: end of message

e END: end of association, indicates that the packet is the last one for a

connection

e BTAG: beginning data tag

22

3.2.2 Control and information segment

The control segments are used to exchange state information of a context between
endpoints. A control segment contains values of the flow, rate and error control
parameters. It also contains information used to synchronize the sender and receiver.
These are represented as fields: rate, burst, echo, time, techo, rkey, rroute, alloc,

rseq, nspen, and spans.

As mentioned in section 3.2 above, information segments are used in the following
of types of packets: FIRST, DATA, PATH, DIAG, MAINT, MGMT, and ROUTE.
The first two types are also referred to as data packets because these can contain user

data. The others contain network layer messages only, and will be omitted here.

The FIRST packet is used for initiating an association. Its information segment
contains an address segment and an optional data segment. In the address segment

the following fields are defined.

1. alen indicates the address segment length.

2. service type is used to indicate the type of traffic expected on the association.
The possible services are:
e Connection
e Transaction
e Unacknowledged datagram
e Acknowledged datagram
e Isochronous stream

e Bulk data

23

This information is provided by the user and transmitted without change to the
destination host. The receiving context will use it to select an interface for the

duration of the association.

3. aformat (address format) and address identify the network address syntax and
addresses of two endpoints, i.e., source and destination for supporting multiple

addressing schemes.
4. id contains the MAC address of the originator of the FIRST packet.
5. rate_req, burst_req and mardata are used to indicate the sender’s expected data

flow rate, burst size, and length of maximum information segment, respectively.

The information segment of DATA packets consists only of a variable-length data
segment. If BTAG is set in the header, the data segment contains an user-defined

btag field for identifying message boundaries as a part of user data.

As a summary, the structures of XTP packets are shown in Fig. 3.2.

24

-
-
-
-
-
-
-
-
<.

XTP PACKET

- -
-
-

Information Segment L
XTP Header or XTP Trailer
Control Segment
Pt "'~~\\ !
- ~—-o 1
L i N]
route | ttl | cmd | key |sync| seq| dseq | sort |dlen |hcheck "
:
1

-
-
e m—
- -
-

-
- -
-
-
-~

- -
=
-
————
- -

L Information Seqment

Appropriate format for ptype

Format for FIRST

B

.......................

dcheck

-
-

-
PR
- -
-
-
- -
-

.................................

adddress segment

optional data

Format for DATA

)

TTTTTTTTTT T T TTTTTTY T

btag data

data

btag data

[Format for PATH

)

address segment

@ormal for DIAG and ROUTE)

code| val

message

Tt it

Control Segment

)

rate

burst

echﬂ timtﬁecho

rsvd

xkey | xroute l 1svd

alloc [rscq lnspan

spanL‘

Figure 3.2: XTP packet structures

25

3.3 XTP operation

In this section we will discuss procedures for managing connections and exchanging
packets between endpoints. The lifetime of a connection in protocols such as TCP
and TP4 can be divided into three phases: connection phase, data transfer phase,
and termination phase. Although the boundaries between these phases in XTP are
not as clear as in the protocols mentioned above, we will still introduce the operations

of XTP in this way.

3.3.1 Connection phase

In XTP, transmitting a FIRST packet starts to establish an association between
contexts on the source and destination endpoints. For convenience, the source side
sending a FIRST packet is called an initiator, and the destination side receiving the

FIRST packet is called a responder.

Before a FIRST packet is received, a context in listen state must be waiting for it
on the responder. Otherwise the attempt to initiate an association will be rejected.
Upon receipt of a FIRST packet with matching expected options, the listening context
is transformed into the active state, and an association is established. Then the

responder may respond to the initiator by sending a CNTL or DATA packet.

Figure 3.3 depicts two styles of successful association establishment. In the ex-
amples of Figure 3.3, Host A is the initiator and Host B is the responder in listen

state.

Figure 3.3 (a) shows host A sending a FIRST packet with the SREQ bit requesting

an immediate acknowledgment, and waiting for a positive response. After the FIRST

26

pach.ct arrives at host B, a CNTL packet is sent as a response. This styl, as in TCD

and TP4, is called explicit connection set up.

Host A Host B
\
FIRST (SREQ)

_-—

————

DATA T

(a)

—

FIRST D

—_—
DATA (DREQ)

T
\\

data delivered to client

/‘ CNTL
()

_-—

Figure 3.3: Connection handshakes

In order to eliminate the latency of a preliminary end-to-end message exchange,
XTP also provides another style, that is, implicit connection setup, as shown in
Figure 3.3 (b). In this style, host A may transmit data immediately following the
FIRST packet, without waiting for any response from host B. Host B can also start
to transmit its outgoing data stream as soon as its context becomes active. This is

why the boundary between phases is said to be unclear.

27

3.3.2 Data transfer phase

After an association is set up, it provides for two separate data streams, one in each
direction. In fact, sending a FIRST packet implies that the data transfer phase starts
at the initiator side. We call an association at this point a half open association,
because the responder can not transmit data until it receivesa FIRST packet. When
an association becomes fully open, both endpoints can perform sending and receiving

behaviors.

To send a user message, the XTP sender side fragments the message into one or
more DATA packets and sends to another endpoint. After getting the acknowledg-
ment that indicates that the data have been delivered to the user space at the receiver

side, XTP will inform the user that the user buffers may be released.

For receiving messages, the XTP receiver will check the received DATA packets,
and deliver the data to user buffers provided by the receiving client. Then, it may
respond with an acknowledgment (a CINTL packet) or an outgoing DATA packet in
the reverse direction. When the receiver receives a CNTL packet with the SREQ bit

on, it immedi»tely sends back a CNTL packet to indicate its current receiving status.

In addition to the basic operations discussed above, XTP provides mechanisms
for dealing with flow, rate and error control. The details of these issues wilf not be

discussed here.

3.3.3 Termination phase

An association between a pair of contexts, say A and B, includes two simplex streams:

A-to-B and B-to-A. Each context is the sender for one of the data streams and the

28

receiver for the other one. For terminating an association, each data stream must be
closed, and both contexts must be released. The close procedure involves a handshake

with the following close control bits in the packet header:

e WCLOSE: a data sender wants to close its output stream.

e RCLOSE: a data receiver has closed its input data stream and will accept no

further data.

e END: the context is being released.

Unlike the procedure for connection setup, XTP allows either endpoint to initiate
the closure with WCLOSE, RCLOSE, both WCLOSE and RCLOSE or all of the close

control bits. The other end has several possible ways to respond.

The closure procedures of a simplex stream can be divided into two categories,
graceful and forced, by the effect on transmitting user data. A graceful close of a
data stream means that the sender initiates the close by setting the WCLOSE bit in
an output packet, and then the receiver responds to it with the RCLOSE bit after
all received data have been delivered to user space. Before responding to the sender,
the receiver may ask for retransmissions. A forced close of a data stream results
when the receiver’s close request with RCLOSE or/and END precedes the sender’s
WCLOSE. In this case, data transmission is forced to terminate. A close procedure
of an association can alse be indicated by the number of handshakes between the
two endpoints. Figure 3.4 shows a typical 4-way handshake for a graceful close of an

association.

XTP provides flexible ways to terminate an association. As shown in Figure 3.5,

a 3-way handshake also achieves two graceful closes. In this example, the endpoint

29

Host A HostB

———)
- \
DATA (WCLOSE) T ———

—————
|_— | coNTL®RCLOSB)
/ / -

/ CNTL (WCLOSE, RCLOSE)

.\
CNTL (WCLOSE, T
RCLOSE, END)

Figure 3.4: A 4-way handshake closure

B responds with RCLOSE and initiates another graceful close with WCLOSE at the

same time,

The number of handshakes can be further reduced as shown in Figure 3.6 and Fig-
ure 3.7. Figure 3.6 illustrates a 2-way closure called a foreshortened close procedure,

in which A initiates a graceful close for the A-to-B data stream and a forced close for

the B-to-A data stream. B then responds to A with WCLOSE, RCLOSE and END.

Figure 3.7 also shqws an example of the unacknowledged datagram style of opera-
tions. The endpoint A sends a FIRST packet that includes WCLOSE, RCLOSE and
END. The endpoint B received both the FIRST packet for setting up an association,
and control bits initiating closure of two data streams and indicating that A’s context
has been released. The endpoint B will therefore not need to respond to A with any
further message, and releases its context immediately. This example also shows that

the connection phase, data transfer phase and termination phase can be combined in

XTP.

30

Host A Host B

—_—
DATA (WCLOSE) ————

/
CNTL (WCLOSE, RCLOSE)

—

S —
CNTL (WCLOSE, T
RCLOSE, END)

Figure 3.5: A 3-way handshake closure

Host A Host B
—_—
\
DATA (WCLOSE, RCLOSE) T —

| — O
T CNTL (WCLOSE,
RCLOSE, END)

Figure 3.6: A foreshortened close

In the real world, two interacting XTP entities act concurrently. Besides the
normal closures discussed above, several other cases may take place. As discussed in
[Atwood92], both endpoints may issue a WCLOSE or/and RCLOSE simultaneously,
which leads to a close procedure called a crossed close. Figure 3.8 shows a typical
crossed close, in which each side initiates a graceful close at the same time, responds
to its partner, and then releases its own context simultaneously. In this 6-way close
procedure, the last one or two messages may be ignored, because the destination

context may have been released.

31

Host A Host B

—

FIRST (WCLOSE, T ———
RCLOSE, END)

Figure 3.7: A foreshortened close

Host A Host B

B —
— - >< CNTL (WCLOSE)
DATA (WCLOSE) —

. CNTL (WCLOSE, RCLOSE)
CNTL (WCLOSE, RCLOSE)

_— e ——————
CNTL (WCLOSE, ?< CNTL (WCLOSE,
RCLOSE, END) ~—_ RCLOSE, END)

Figure 3.8: A 6-way crossed close

32

3.3.4 Multicast mode

Multicast is a new functional capability for a high performance transport layer. It is
designed for transferring messages from one sender to multiple receivers simultane-
ously. This functionality is not provided in many existing standard protocols. XTP

supports a multicast mode, which achieves a multicasting service.

In XTP, the format of packets in multicast mode is same as in unicast mode except
that the MULTI flag in the header must be set and DRFEQ is never used. Duce to there
being more than one receiver in multicast mode, some issues, such as addressing and
operations rzlated to setting up and managing associations, differ from the unicast

mode discussed in the previous section.

In the multicast mode, the sender’s context will associate with nultiple receiver
contexts. Each association between the sender and one receiver is only a simplex
stream, that is, sender-to-receiver. This means that receivers never send data to the

sender.

Setting up a multicast association

For the multicasting sender, the operation of setting up an association is similar to
unicast mode. The sender issues a FIRST packet, which utilizes group addresses

rather than point-to-point address, and then may send DATA packets.

In the other side, there may be many receiving contexts, which are in the listening
state. For any receiver belonging to a multicast group, its context becomes active
after receiving the FIRST packet. Only one association is set up. In the unicast

mode, a receiver’s context must be listening state before receiving a FIRST packet,

33

otherwise the association cannot be established. However, in multicast mode, it is
possible that a receiver who did not catch the FIRST packet can join an in-progress

association by sending a PATH packet.

Data broadcasting

In multicast mode, because the receivers are not allowed to send any data back to the
sender, it seems that mechanisms in the data transfer phase can be simplified. The
multicast sender obeys the same rules for flow control and rate control as a unicast
sender. However, the error control is more complex due to the fact that a received
DSEQ in multicast mode only indicates correct reception by one receiver. This issue

also relates to when the sender’s data buffers can be released.

XTP provides two classes of multicast services: unacknowledged and acknowl-
edged. For unacknowledged multicasting, the sender sets the NOERR bit, thus its
buffers can be released as soon as the data have been transmitted. Acknowledged mul-
ticasting requires special consideration, because partial positive acknowledgements
do not mean that all expected receivers correctly received the data. XTP proposes a
“bucket algorithm” to deal with this issue. However, [Santoso] pointed out that the
bucket algorithm is inefficient and introduced an enhanced bucket mechanism. We do
not discuss this error control algorithm in detail here because we are only concerned
with the condition of releasing a user’s buffer. In the specification of multicast service,
we adopt a “time-stamp” mechanism to specify acknowledged multicast service. This

will be discussed in Chapter 6.

In addition to the complex error control mechanism, XTP allows the receiver to

drop-out, and rejoin an in-progress multicasting association with a special PATH

34

packet.

Termination of multicast

A multicast conversation is supported by multiple multicast associations. T-.minating
multicast implies closing all of them. Each receiver can only close or drop-out of its
own association by using control bits RCLOSE and END, as for a unicast receiver.
Note that a multicast association is simplex, thus RCLOSE will lead to completely

closing the association and control bit WCL OSE used by receivers is meaningless.

Multicasting cannot be terminated by one receiver, even all receivers, because

some receivers may rejoin the conversation. Only the sender can terminate multi-
casting by issuing WCLOSE or/and END, which will shutdown handshake with all

receivers. Certainly, RCLOSF is not necessary for the sender.

35

Chapter 4

Informal description of XTP

service

4.1 Concept of service

In the late 1970’s, the ISO proposed a layered architectural model [ISO7498] that
is called the Reference Model for Open System Interconmection (OSI). In the OSI
model, communication systems aic broken down into a number of layers, each of
which performs a well-defined function. Associated with a layer, say layer IV, are two
interfaces. As shown in Figure 4.1, layer N provides at the interface to layer N+I a
well-defined set of services. Layer N's protocol entities establishing the protocol of

the layer N are in turn built using the services provided through interfaces with layer

N-1.

In order to characterize each layer and the linkages between adjacent layers of

the OSI model, some new concepts and terms were introduced in [ISO82]. Each

36

{N+1)-protocol (N+1)-protocol

’ ‘ mTEmmTmemsses > .
entity (N+1) protocol entity
/
(N)-protocol < (N)-protocol
entity (N) protocol entity
/|
(N-1)-protocol L1)-
. e mmeeem = (N-1) pm'tocol
entity (N-1) protocol entity

Figure 4.1: Layer model service and protocols

layer is described in terms of two documents: a service definition and a protocol
specification. The service definition defines the services provided by this layer to
the next higher layer. The protocol specification defines the set of communication

conventions followed by the protocol entities in this layer.

For adjacent layers, say layers N+1 and N, the N+1 layer’s protocol entities, as the
service users, communicate with each other via the N layer’s entities, which serve as
the service provider. In order to communicate via the service provider, the service user
utilizes called service primitives. A service primitive is an abstract, implementation-
independent element of an interaction betwesn a service user and the service provider.
The interactions take place at the common boundary of a service user and the service
provider, called a Service Access Point (SAP). Based on the concepts above, the

example shown in Figure 4.1 can be simplified as shown in Figure 4.2.

37

Service Service
user * e user

Y

(N)-Service Provider
(abstract machine)

Figure 4.2: Model of service

A service provider is seen as an abstract machine accessible from a number of
service access points. The abstract machine hides its internal structures, such as
the protocol entities and underlying service provider. Therefore the definition of the
service defines the behavior of the provider rendering the service to the next higher
layer, which is expressed by the service primitives and the possible ordering of service

primitives.

The definition of service is indispensable to the design of a protocol for various
reasons. As a simple substitution for the protocol entities of a layer and the underly-
ing service, the abstract machine can be used to express in simple terms the functions
accomplished in the layer and to formally verify the operations of the protocol. Ad-
ditionally, the service is the user’s real concern. Most users are only interested in the
service provided to them. For more reasons for the importance of service definitions
see [Vissers], in which the authors point out that the specification of service should

precede or accompany, but definitely not follow, the specification of the protocol.

38

An informal service definition for XTP is presented in Appendix D of [XTP92],
which is taken from an XTP implementation. However it is incomplete and described
in an implementation-dependent form. In the rest of this chapter, we will propose the
definition of the XTP service. It includes tl.e definition of service primitives, their

parameters, and the time sequence of primitives.

4.2 Service primitives

4.2.1 General considerations

The service primitives are implementation-independent representations of interactions
between the service user and the service provider. They express both the user’s needs
and the capabilities of the service provider. From the user’s point of view, primitives
should possess characteristics of conciseness and generality in order to be suitable for
various protocols in the same layer. However our purpose is to propose the definition
of service for XTP rather than a general transport service. Our definition therefore
will reflect the features of XTP, for example, multicast service, flexible operation,

etc., as discussed in Chapter 3.

The ISO document [ISO82] recommends four kinds of primitives. They are re-
quest, indication, response, and confirm in time order. We will adopt this kind of
syntax, but in some cases the semantics are varied to meet the requirements of XTP.
The parameters of the service primitives are defined in such way that it is easy to

map them into protocol data units.

39

4.2.2 Service primitives for unicast

There are 23 service primitives for unicast mode. They are divided into 4 groups by

their functions as follows.

Group 1: Context creation

L.

o

OPEN.request (address-segment, options, service, flags, user-buffer)

This is used to request the creation a context, and to indicate that the user
wishes to initiate an association. It also serves as the request to establish an
association, similar to the “connection-request” in TCP/IP service. It will

he mapped into a “FIRST" packet, if the context is created successfully.

OPEN.confirm (key-indez, confirm-code)

This is used to confirm or reject the initiating user’s request for creation
of a context. If the confirm-code indicates success, the provider returns an
end-point identifier, key-inder. Otherwise, the user’s attempt to initiate

an association has failed locally.

. LISTEN.request (address-segment, options, service)

This is used to request creation of a context for the responder of an asso-

ciation. It will place the context in “listen” state upon successful creation.

LISTEN.confirm (key-indez, confirm-code)

This is used to confirm the responding user’s request for creation of a
context. If the confirm-code indicates successful, the provider returns an
end-point identifier, key-inder. Otherwise, the user’s attempt to respond

to an association has failed locally.

40

Group 2:

1.

Group 3:

Connection

ASSOCIATION.indication (address-segment, options)

This is used to indicate that a FIRST packet has been received, thus

establishing the association.

ASSOCIATION.response (address-segment, options, confirm-code)

This is used to allow the Responder to acknowledge receipt of the above
indication. This primitive may not be necessary if “confirm” in parame-
ter “options” of primitive “LISTEN.request” was not set. Details will be

discussed in the next section.

ASSOCIATION.confirm (address-segment, options, confirm-code)
This is used to confirm the success (or failure) of the association establish-

ment.

Data transfer

. SEND.request (user-buffer, flags)

This allows the user to provide a descriptor of an outgoing data buffer.
In the Initiator, this primitive is legal immediately after receipt of the
OPEN.confirm. In the Responder, this primitive may only be used after re-
ceipt of ASSOCIATION.indication (and issue of ASSOCIATION .response,
if adopted).

SEND.confirm (user-buffer, confirm-code)

This allows the user to release the outgoing data buffer provided in a

previous SEND.request. Depending on the semantics of the type of Service

chosen, this may also imply successful delivery.

. RECEIVE.request (user-buffer, flags)

This allows the user to provide a descriptor for an incoming data buffer.

41

Group 4:

In the responder, this primitive is legal immediately after receipt of ASSO-
CIATION.indication (and issue of ASSOCIATION.response, if adopted).
In the Initiator, this primitive may only be used after receipt of ASSOCI-
ATION.confirm.

. RECEIVE.confirm (user-buffer, confirm-code)

This indicates that the incoming data buffer provided in a previous RE-
CEIVE.request has been filled on successful “confirm-code”, and control of

the buffer has been returned to the user.

Disconnection

. CLOSE-SEND.request

This is used to close the SEND path in an XTP association.

CLOSE-SEND.indication
This indicates that the remote peer has (gracefully) terminated sending

data.

CLOSE-SEND.response
This is used to acknowledge receipt of the CLOSE-SEND.indication

. CLOSE-SEND.confirm

This indicates that the SEND path has been closed.

CLOSE-RECEIVE.request
This is used to close the RECEIVE path in an XTP association.

. CLOSE-RECEIVE.indication

This indicates that the remote peer has (forcibly) terminated the reception

of data.

CLOSE-RECEIVE.response
This is used to acknowledge receipt of the CLOSE-RECEIVE.indication

42

10.

11.

12.

CLOSE-RECEIVE.confirm

This indicates that the RECEIVE path has been closed.

CLOSE.request

This is used to close both the RECEIVE path and SEND path in an XTP
association.

CLOSE.indication

This indicates that the remote peer has terminated sending and receiving

data.

CLOSE.response

This is used to acknowledge receipt of the CLOSE.indication

CLOSE.confirm

This indicates that the association has been closed completely.

4.2.3 Parameters of service primitives

XTP primitives have to have more parameters than most other transport layer ser-
vice primitives, because XTP can implement association establishment, data transfer,
and association termination in a single (FIRST) packet, implying that a single prim-
itive was invoked (i.e., OPEN.request). Association termination can be performed in
company with data transfer, and two data streams of an association can be closed
separately, so primitives SEND.request and RECEIVE.request must have parameters
to indicate this. In addition to the quality of service, XTP provides the user with
a variety of modes of operation (NOCHECK, NOERR, NOFLOW, MULTI), which

must be indicated as parameters.

In more detail, the parameters and their semantics are as follows:

43

address-segment indicates the source address and destination address. It consists

of three parts as follows:

¢ address-family, which addressing domain is being used.
e destination-address, in one of the XTP address formats.

e source-address, in the same XTP addressing format.

options indicates the mode of operations. It includes Nocheck, Noerr, Noflow, Fast-
nak, Res, Multi, Sort, and Confirm. The meanings of these options are the
same as definitions in XTP except the last one. “Confirm” in CPEN.request
is like “SREQ"” in the FIRST packet. While “Confirm” in LISTEN.reques! is
used to indicate the response mode, manual or automatic. For the manual mode
selected by setting “Confirm” on, the user must issue ASSOCIATION .response
after receipt of ASSOCIATION.indication. For the automatic mode, the service

provider will automatically generate ASSOCIATION .response.

The “options” in OPEN.request, LISTEN.request and ASSOCIATION.response
are from the local user, while “options” in ASSOCIATION.indicate and ASSO-
CIATION.confirm are from the partner.

service indicates one of the six types of services as defined in XTP.

flags indicates one or more operations, that is, Rclose, Wclose, Eom, and Btag as

defined in XTP.
user-buffer indicates a descriptor of a user data buffer. It consists of a pointer to a
user buffer and the size of the buffer.

The parameter “user-buffer” in OPEN.request and SEND.request is used to
specify the location and length of data to be sent. The length may be zero,

which means there are no user data to be sent, so the pointer is meaningless.

44

In this case, the primitive will be mapped into the FIRST packet without user
data for the OPEN.request, or a DATA packet with a specially coded “btag™
field for the SEND.request.

The “user-buffer” in SEND.confirm is used to report which user buffer may be

released and how much data in it have been delivered to the partner.

The “user-buffer” in RECEIVE.request indicates the location and size of the

buffer used to put data received from the partner.

The “user-buffer” in RECEIVE.confirm is used to report which user buffer is

filled and how much data from the partner are in it.

key-index indicates an association endpoint identifier in erder to differ from one

installation of a given service to another. It corresponds to an “index” of a

context in XTP.

confirm-code is used to report the result of relative service primitives, success or

failure.

4.2.4 Service primitives for multicast

All the primitives for unicast are available for multicast. Note that the use of these

primitives in multicast mode must obey the following rules:

1. The Multi of “options” must be set on and the destination-address in both

OPEN.request and LISTEN.request should be a group-address.

2. Only one ASSOCIATION.confirm is issued for received multiple ASSOCIA-

TION.responses with successful “confirm-code”.

45

3. The Initiator determines the “options” of the association if the automatic mode

is adopted.

4. The primitive SEND.request is not available to the listen(;rs, and RECEIVE.request

is not available to the broadcaster.

5. The issued SEND.confirm with successful “confirm-code” means that the data

have been delivered to at least one listener.

6. For the listeners, the primitives that close the SEND path are not available,
and the primitives that ciose the RECEIVE path are identical to the primitives

that close the association.

7. For the broadcaster, the primitives that close the RECEIVE path are meaning-
less, and the primitives that close the SEND path are identical to the primitives

that close the association.

8. In the listener side, a CLOSE.confirm is sent back to the listener immediately
after the listener issues a CLOSE.request. It is not necessary to wait for a

CLOSE.response.

9. In the broadcaster side, the issue of CLOSE.confirm means that all associations

with listeners are closed.

The extra primitives for multicast are the following:

1. JOIN.indication

This is used to indicate that a FIRST packet has not been received in a certain

period.

46

2. JOIN.response (confirm-code)
This indicates that the user desires either to join an in-progress multicast asso-

ciation (set “confirm-code™ as success), or not (set “confirm-code” as failure).

3. DROP.indication

This is used to indicate failures, for example, unrecoverable loss of data.

4. DROP.response (confirm-code)
This allows the user to indicate whether or not to continue the conversation. If
the user desires to insist on the conversation (set “confirm-code” as failure), the
provider will provide the multicast rejoin service. Otherwise, the association

will be terminated.

4.3 Time sequence of service primitives

The possible ordering of service primitives is an important part of a service definition.
It defines both the allowed sequences of primitives at the provider/user interface (i.c.,
service access point) and the allowed sequences of primitives between peer users. It

also shows users how to correctly use the service.

4.3.1 Time sequence diagram

The ISO document [ISO82] introduces a notation called the time sequence diagram
to illustrate how sequences of primitives are related in time. In a time sequence
diagram, the two vertical lines separate the users and the provider. The service

provider is between the vertical lines, and on the right and left side of the provider

47

are the service users. The lines represent the service access points between the users

and the provider.

Arrows in the nuser areas indicate that primitives are to or from the user. Sequences
of primitives at each service access point are positioned along lines representing the
passage of time, increasing downwards. Necessary sequence relations between peer
users are represented by a diagonal dashed arrow between the lines representing ser-
vice access points. If one primitive is no consequence of another, the dashed arrow is

omitted.

4.3.2 Time sequence diagrams for the XTP service

In this section, we will discuss the ordering of XTP service primitives with time
sequence diagrams. The following figures will illustrate the typical orderings and

cvents involved in unicast mode.

Figure 4.3 and Figure 4.4 show the possible sequences of primitives for creating
contexts. In Figure 4.3, the attempt to create a context at the initiator side fails.
Figure 4.4 shows an example where the contexts are successfully created at both sides,
and that the creation of the context at the responder side must precede the arrival of

the OPEN.request from the initiator side.

Figure 4.5 and Figure 4.6, as the successors to Figure 4.4, show the possible
sequences of primitives for establishing an association. The responder sets the re-
sponse mode by the parameter in LISTEN.request. In case of manual response
mode, as shown in Figure 4.5, the user must respond to the received ASSOCIA-
TION.indication. Figure 4.6 illustrates the automatic response mode, in which the

ASSOCIATION.response from the user is no longer required.

48

Figure 4.7 to Figure 4.10 show some cases related to data transfer. Figure 4.7 and
Figure 4.8 show when the initiator and responder are able to send data in the manual
response mode and automatic response mode, respectively. Figure 4.9 shows that
the initiator must wait for ASSOCIATION.confirm to start receiving data, while the
responder is able to use the primitive RECEIVE.request after a successful creation
of the context. Figure 4.10 is used to show the relation between sending data and
recejving data in the normal case. Only when data have been received from the remote
peer, is it possible to confirm a previous RECEIVE.request. For the data sender. the
previous SEND.request cannot be confirmed until the data have been delivered to the

partner.

The rest of the figures show some examples of closing an association. Figure 4.11
shows a graceful close of one path of an association, that is, the path is closed by
using close send primitives. Figure 4.12 also shows a case of closing a path, but
in this case the receiver side of the path is closed first. Figure 4.13 illustrates that
an association is closed by using close primitives resulting in a graceful close and a
forced close. A graceful close of an association is given in Figure 4.14. Figure 4.15 is
another example of a graceful close of an association, in which only six primitives are
used. In Figure 4.16, the number of used primitives is also six, but the association
is forcibly closed. Figure 4.17 is used to illustrate a crossed close of a path, that is,
both sides of the path want to close at the same time. In this case, the send end
of the path treats the CLOSE-RECEIVE.request from the other end as a CLOSE-
SEND.re~ponse. Similarly, the receive end treats the CLOSE-SEND.request from the
peer as a CLOSE-RECEIVE.response. Finally, Figure 4.18 shows a crossed close of
an association, in which both ends of the association treat the CLOSE.request from

the peer as a CLOSE.response.

49

Provider

User User
LISTEN.req
il
LISTEN.con

OPEN.req »
o

OPEN.con
il

Figure 4.3: Creation of contexts (Open.request fails)

Provider

User User
LISTEN.ren
. M
LISTEN.con
OPEN.req ——
—1.
OPEN.con i \\‘*s
il

Figure 4.4: Successful creation of contexts in both sides

50

LISTEN.con
OPEN.req ——
D e IS -
Tl ASSOC.ind
OPEN.con = - - C.in
il
ASSOC.res
- - .
ASSOC.con Jetoas
et -

Figure 4.5: Establishment of an association (manual response modc)

LISTEN.con
OPEN.req S —
——1
Tl ASSOC.ind
OPEN.con &/ I
il —ecnen L7
//,
//
d
//
ASSOC.con ’/
B |

Figure 4.6: Establishment of an association (automatic response mode)

51

OPENM.req

—
OPEN Tt~ -~ ASSOC.ind
.con = -
.‘-—_
SEND.rei__> ASSOC.res
- . "..---
. P SEND.req
P -~ i h
ASSOC.con -7 °
e :

Figure 4.7: The legal start to send data (manual response mode)

OPEN.req
—]
OPEN.con DN ~~ -~ ASSOC.ind
/]
SEND.req //
—l e SEND.req
. // --.—-—-——
. ’
L) /,//
ASSOC.con .
sl ,

Figure 4.8: The legal start to send data (automatic response mode)

52

LISTEN.con

ﬁ-
RECEIVE.req
ASSOC.con .
h °

RECEIVE.req

Figure 4.9: The legal start to receive data

RECEIVE.req
h
SEND.req
T~ RECEIVE.con
fl I
SEND.con 24
’

Figure 4.10: Data transfer procedure

53

CLS-SEND.req
et |-
~~~-__ | cLs-sEND.ing
‘\ 4
CLS-SEND.res
P h
CLs-SENDcon |-
h

Figure 4.11: A graceful close of one path of an association

CLS-RECV.req
% ~—
~~<___ | CLS-RECV.ind
k —»
CLS-RECV.res
_ h
CLS-RECV.con |-~
il

Figure 4.12: A forced close of one path of an association

54



CLOSE.req

CLOSE.con

q‘\

P

CLOSE.ind
q-

CLOSE.res
h

Figure 4.13: A close of an association with 4 primitives

CLS-SEND.req

|

CLS-SEND.ind

|

CLS-SEND.con

|

CLS-SEND.res

l

CLS-SEND.req
CLS-SEND.ind

CLS-SEND.res

CLS-SEND.con
et

Figure 4.14: A graceful close of an association with 8 primitives

55




CLS-SEND.req
# ~—_
T~ CLS-SEND.ind
bl e
CLOSE.req
CLOSE.ind -
+_ el
CL.OSE.res
T eeel CLOSE.con
= *

Figure 4.15: A graceful close of an association with 6 primitives

CLS-RECV.req
# ~~.
T~ CLS-RECV.ind
.
CLOSE.req
CLOSE.ind T
h l
CLOSE.res
T~ CLOSE.con
gy DR

Figure 4.16: A forced close of an association with 6 primitives

56




CLS-SEND.req
~
\\ . \&/
CLS-SEND.con e
h /

CLS-RECV.req

CLS-RECV.con
*

Figure 4.17: A crossed close of one path of an association

CLOSE.req
—* N

CLOSE.con ‘
h ,

CLOSE.req
<——

\H CLOSE.con

#

Figure 4.18: A crossed close of an association




4.4 A summary

In this chapter, we have proposed the definition of XTP service primitives, and in-
formally described some typical orderings of primitives with time sequence diagrams.
These diagrams only give us an overview of the basic features. However, it is very
difficult to show all possible sequences of service primitives by using time sequence
diagrams. This is why various formal description techniques have been developed,
and used by more and more people. In the next chapters, we will present a formal

specification of the XTP service in LOTOS.

58




Chapter 5

Unicast service specification in

LOTOS

The formal specification of the XTP service defined in the last chapter was divided
into two parts, the unicast service and the multicast service. This chapter will only

present the formal specification of the unicast service.

5.1 Specification design principles

A LOTOS specification can be organized in many ways. In this specification, the
approach called the constraint-oriented style will be used. In the constraint-oriented
approach, the service is decomposed into a set of concurrent processes that focus
on a collection of constraints. These constraints, as requirements, filter out only
those interactions that may take place at a given gate at each moment. Thus, the

allowed sequences of service primitives are specified. So a constraint-oriented style is

59




appropriate for the specification of the service.

The constraints consist of local and end-to-end constraints. Local constraints as-
sure the proper contents of service primitives used by service users and the permissible
sequences of events at one service access point. For example, OPEN.request must be

the first primitive issued by the user who wants to initiate a connection.

End-to-end constraints for the unicast service describe the relationships between
events at different service access points. For instance, a SEND.request in the local
end may be responded to with a successful SEND.confirm only if one or more RE-
CEIVE.confirm primitives occur at the far end setvice access point, {hat is, the user
data contained in that SEND.request have been delivered to the far end service user

(see Figure 4.10).

5.2 Architecture of the specification

In the section 4.1, we described the model of service with Figure 4.2. Similarly,
Figure 5.1 shows the global structure of the unicast service specification. In this
specification, there are no parameters, and the whole service boundary is represented
by a single interaction point, that is, gate XTPS. The interaction point is further
decomposed into service access points and connection endpoint identifiers. Events
at the gate XTPS consist of three values: the service access point, the connection

endpoint identifier and the service primitive.

The unicast service is decomposed into two kinds of servers, initiator and respon-
der, corresponding to the role of the user associated with the local endpoint. Ad-

ditionally, the service underlying XTP is described by the Network-medium, which

60




Cosery >

J

Coser, >

s o o
\XTPS

XTP-Service | J |
XTP-SERVER XTP-SERVER
(initiator) (responder)
NI NR
NETWORK-MEDIUM

Figure 5.1: Architecture of XTP service (unicast)

interacts with the initiator and the responder at the internal gates NI and NR re-

spectively, and provides FIFO queue mechanisms between them.

The skeleton of the specification text is as follows:
specification XTP-Service [XTPS] : noexit
(* global type definitions *)
behaviour
hide NI, NR in
( ( Server [XTPS, NI] (NAO, initiator)

I}
Server [XTPS, NR] (NA1, responder)

)
| [NI,NR]|

61




Network-medium [NI, NR,] (NAO, NA1)
)
where
(* subordinate processes and local data types *)

endspec

Sample 5.1: Specification of the unicast service

5.3 Global data types

The global data type definitions relate to the representations of service access points,

connection endpoints and ‘- rvice primitives.

5.3.1 Service access point identification

Service access points are an abstract means of interaction between service users and a
service provider, and are identified by addresses. In the XTP document, the addresses
are defined to support multiple addressing schemes. From abstractness of specification
point of view, the most important requirement for defining service access points is
to be able to distinguish any number of service access points. In this specification,
each service access point address, called a user-index, consists of two parts: “Network-
Address” and “User-Number”. The first part is used to locate the site of service users
and the service provider. The second part is used to distinguish the users within a

site. The definition of the sort “user-index” is shown in the following sample.

62




type UserIndex
is  Network.Address, NaturalNumber, Boolean
sorts user_index
opns
<> : => user-index
uid : Network_Address, Nat — user.index
hostaddr : user.index —> Network_Address
userno : user-.index —> NaturalNumber
-eq., -ne_: user.index, user.index —> Bool
eqns
forall a : Network_Address, n : Nat, il, i2 : user.index
ofsort Network_Address
hostaddr (uid (a, n)) = a;
ofsort Nat
userno (uid (a, n)) = n;
ofsort Bool
i1 eq i2 = ((hostaddr (i1) eq hostaddr (i2)) and
(userno (il) eq userno (i2));
il ne i2 = not (il eq i2);
endtype (* User_Index *)

Sample 5.2: Definition of the data type User-Index

On the basis of the sort “user-index”, the set of user-indexes is defined as a sort
of “user-indexes” by actualizing type Set in the library definition. The complete

definition can be found in the specification text.

63




5.3.2 Connection endpoint identification

In the XTP service, several XTP associations can be established by a given user
throug! 1 given service access point. To distinguish different connections at one
service  ess point, we employ the concept of key index in XTP. Each connection
endpoint identifier is defined as a key-index, which consists of two parts as the defi-

nition of “user-index”. The definition of sort “key-index” is shown as follows:

type Key.Index
is  Userdndex renamedby
sortnames
key_index for user.index
opnnames
keyind for uid
keyno for userno

endtype (* Key_Index *)

Sample 5.3: Definition of the data type Key-Index
Similarly, the set of key-indexes is defined as a sort of “key-indexes”. With the
definitions above, events at the gate XTPS will have the form:

XTPS ¢ ui: user-indexr ¢ key: key_index ¢ sp: ztpsp

where the sort “xtpsp” will discussed in the next section.

64




5.3.3 Service primitives

Service primitives are the main elements of interaction at service access points. The
specification is complex because of the large number of primitives, some of which have

many parameters. The specification includes:

o type definitions for each parameter;

o XTPSPtype (XTP Service Primitive type), which defines the sort of service

primitive, “xtpsp”, and functions for recognizing service primitives;

o XTPSPPS (XTP Service Primitive Parameter Selectors type), which is an en-
richment of the type XTPSPtype with functions that pick out parameters from

service primitives;

o ObjectType (Object Type), which defines the sort “Object” based on the XTP-
SPtype. The objects are used to represent the information in transit on the
network medium. The term “an object” referred in the rest of this chapter
and the next chapter means a primitive received from the remote end via the
network medium. For instance, a primitive RECEIVE.confirm to confirm the
previous RECEIVE.request primitive will also be transferred to the other end

as a data acknowledgment, which is called an object of RECEIVE.confirn..

For the sake of brevity, we simplify here the specification, show the definition
of the primitive “OPEN.request” only, and omit the definitions of parameters and
objects. Note that the primitive OPEN.request is presented as “open_request” in the

specification. Similarly, this convention is used for other primitives.

type XTPSPtype

is  AddressSegment, - - -, Boolean

65




sorts xtpsp
opns
open_request : address_segment, options, service,

flags, user_buffer —> xtpsp

Is_.open_request : xtpsp —> Bool

endtype (* XTPSPType *)

Sample 5.4: Definition of service primitives

The following simplified example shows the partial definition of the function “s-
address”, which is used to select the parameter “address-segment” from service prim-

itives.

type XTPSPPS
is  XTPSPtype, - - -, Boolean
opns
s_address : xtpsp —> address_segment

sflags : xtpsp ~> flags

eqns
forall a : address_segment, o : options,
s : service, f : flags, bf : user_buffer, - .-
ofsort address_segment

s-address (open.request (a, o, s, f, bf)) = a;

66




sflags (open_request (a, o, s, f, bf)) = f;

endtype (* XTPSPPS *)

Sample 5.5: Definition of the parameter selections

5.4 Process structures

The top-level decomposition of the service, shown in Figure 5.1, describes the services
that the service provider can offer, that is, the initiator and responder server. The
Network-medium represents the correct bi-directional transfer of service primitives,

In this section, we will discuss the structures of these processes in detail.

5.4.1 The initiator server

The initiator server is an instance of process Server with a parameter initiator. It
represents the XTP unicast service constraints on the users who desire to initiate an

association. Figure 5.2 shows the structure of this process.

According to the constraint-oriented approach, the initiator server is decomposed
into four processes, Addressing, Keymatching, SPordering and Datatransfer. These
processes also interact at a hidden gate K. The following is the corresponding LOTOS

specification, in which some parameters are omitted for the purpose of brevity.

process Server [XTPS, N] (NA : Network-address, R : serverrole) : exit :=

67




Server-initiator
. 4
Addressing
SPordering F —— Datatransfer
I K
Keymatching

|
5

Figure 5.2: Constraint-oriented decomposition of process Server-initiator

hide K in
( ( SPordering [XTPS, N, K] (R)
l
Datatransfer [XTPS, N, K] (---)

I
Keymatching [XTPS, N, K] (-- )

)

|{XTPS, K]|

Addressing [XTPS, K] (NA)
)

>
Server [XTPS, N] (NA, R)

68




endproc (* Server *)

Sample 5.6: Specification of the initiator server

The Addressing

The process Addressing focuses on the local constraint on the service access point
(also known as the address) at which the service primitives occur, i.e., all service
primitives must occur at the address given in the parameter. The value is determined

on the first event, in cooperation with XTP-service user, and thereafter is constant.

The Keymatching

The process Keymatching ensures that a unique connection endpoint identifier, i.c.,
a key, is used for every XTP association at the local side. It means that all service
primitives must occur with the key given in the parameter, and the same key is used

in the whole lifetime of the association.

The SPordering

The process SPordering for the initiator describes the constraints on the sequences of
actions at an initiator’s connection endpoint. In the normal situation, the ordering

of service primitives is essentially constrained as follows:

1. the first event may only be an OPEN.request;

69



2. the event following the initial OPEN.request may be an OPEN.confirm; if
OPEN.confirm is an unsuccessful one, the behaviour may be started again.

Otherwise, any sequence of SEND.request may occur; and

3. the expected event is ASSOCIATION.confirm; if the ASSOCIATION.confirm

is an unsuccessful one, the behaviour may be started again. Otherwise,

4. foilowing the occurrence of an ASSOCIATION.confirm, any sequence of RE-
CEIVE.request may occur;

5. SEND.request and RECEIVE.request with flags related to closing association

will trigger actions as a close-association primitive;

6. at any point after the successful ASSOCIATION.confirm,a CLOSE-SEND.request
(CLOSE-RECEIVE.request or CLOSE.request) or a CLOSE-SEND.indication
(CLOSE-RECEIVE.indication or CLOSE.indication) may occur; and

7. after the association is closed, the whole behaviour may be repeated.

As discussed in chapters 3 and 4, the intentions to gain efficiency and to provide
flexible operations in XTP mean that the lifetime of an association cannot be simply
divided into a connection phase, data transfer phase and termination phase. To
characterize these features, a state-oriented approach is used. In the state-oriented
approach a process is decomposed into a series of sequential processes that may be

regarded as the states in a final state machine.

In the specification, the process SPordering for the initiator is decomposed into a

series of subprocesses grouped as follows:

1. Halfopen, HopenWC (Half open and closing write), HopenRC (Half open and
closing read), Hopen WRC (Half open and closing write/read), HopenWCRC

70




(Half open, closing write and closing read);

o

Fullopen;

3. Lclosing (Local closing), LelosingWV (Local closing Write), LelosingR (Local
closing Read), Rrlosing (Remote closing), Rclosing!V (Remote closing Whrite),

RclosingR (Remote closing Read);

4. LclosingWR (Local closing Write and Read), Readonly, CrossedCW (Crossed
Close Write), CrossedCR (Crossed Close Read), Writeonly, Relosing\VR (Re-
mote closing Write and Read);

5. LRclosed (Local closed), ROLcloseR (Read Only and Local close Read), WOL-
close W (Write Only and Local close Write), RORclose W (Read Only and Re-
mote close Write), WORcloseR (Write Only and Remote close Read), RLclosed

(Remote closed).

Each of them represents a state of the association. The transitions from a state are
described by a choice of events followed by process instantiations. As an example,

the following is a partial specification of process Halfopen.

process Halfopen [XTPS, N, K] (sp : xtpsp) : exit :=
let f: flags = sflags (sp) in
(

[Is_close_receive_request (sp) or Isrc (frc (f))))
—> Hopenrc [XTPS, N, K]
[

[Isclose_send_request (3p) or Iswc (f-we (f)))]

—> Hopenwc [XTPS, N, K]

71




]
(Isclose_request (sp) or (Iswe (f_wc (f))) and Isrc (frc (f)))]

—> Hopenwrc [XTPS, N, K]
[
)

endproc (* Halfopen *)

Sample 5.7: Specification of process Halfopen

The constraints depend on which state the association is in. For example, after the
occurrence of a successful ASSOCIATION.confirm, the association is in state “Ful-
lopen”, both SEND.request and RECEIVE.request are available. Once the CLOSE-
SEND.request is issued by the local user, the association will be in a state “LclosingW
(Local closing Write) at the local end. In this state, any SEND.request is no longer

available to the local user. To explain the time sequence of these processes, the state

]

E First group @

:

t

]

|

: @ HopenRC
:

1

]

X {HopenWCROQ
]

Figure 5.3: The first group subprocesses of initiator’s SPordering

72







diagrams as shown in Figure 5.3 and 5.4 are used. The diagram in Figure 5.4 is also

applicable to the responder server, which will be discussed later.

The Datatransfer

The process Datatransfer focuses on the constraints on the data transfer between two

service users of an association. These constraints include:

o the occurrence of a SEND.confirm depends on either receiving an object of a
RECEIVE.confirm from the other end and the size of user buffers in the object
and in the SEND.request which is to be confirmed, or occurrence of events

related to closing an association;

o the order and number of occurrences of SEND.confirm must correspond to oc-

currences of SEND.request (including OPEN.request if it has user data);

o the occurrence of a RECEIVE.confirm depends on either receiving an object of
a SEND.request (including OPEN.request if it has user data) from the other end
and the size of user buffers in the object and in the RECEIVE.request which is

to be confirmed, or the occurrence of events related to closing an association;

e the order and number of occurrences of RECEIVE.confirm must correspond

with occurrences of RECEIVE.request.

Two local data structures are needed for the description of the constraints men-
tioned above. One is “sbg” (sending-buffer-queue), which is used to record the se-
quence of user buffer heads (i.e., buffer address and length) in SEND.requests. An-

other one is “rbg” (receiving-buffer-queue), which records the sequence of user buffer

74




heads in RECEIVE.requests. The basic operations on these data structures follow a

FIFO discipline defined in the type Buffer_queue in the LOTOS specification.
The process Datatransfer is decomposed into four processes as follows:

The process Sending takes care of primitives SEND.request issued by the local user
and objects of RECEIVE.confirm from the far end. For the former, the corresponding
user buffer is added to the sbg to record the order of user buffers that will be confirmed.
For the latter, it may trigger issuing one or more SEND.confirms to the user, and

then popping the queue sbq.

The process DiscardS describes the constraints related to ending an output data
stream. It will forcibly confirm all previous SEND.request primitives with a failure

flag.

The process Receiving concerns primitives RECEIVE.request issued by the local
user and objects of SEND.request from the far end. For the RECEIVE.request, the
corresponding user buffer is added to the end of rbgto record the order of buffers that
will be confirmed. For the object of SEND.request, the length of user buffer inside
the object is added to a variable recording the length of data to be delivered. Both
of them may trigger issuing one or more RECEIVE.confirms to the user, and then

popping the queue rby.

The process DiscardR describes the constraints related to ending an input data
stream. It will forcibly confirm all previous RECEIVE.request primitives with a

failure flag.

75




5.4.2 The responder server

The responder server is another instance of process Server with a parameter responder.
It represents the XTP unicast service constraints on the users who desire to respond

to an association. Figure 5.5 shows the structure of this process.

? XTPS

Server-responder
a4
Addressing
. K
SPordering F i—— Datatransfer
Keymatching Admission
I
‘T
O wr

Figure 5.5: Constraint-oriented decomposition of process Server-responder

The structure of Server-responder is similar to the process Server-initiator except
that there is one more process, Admission. The process Admission represents the
constraint that an object of OPEN.request is accepted if and only if its address-

segment matches the address-segment indicated in the listen-request.

Processes Addressing, Keymatching and Datatransfer are identical to those of the

Server-initiator. However, the SPordering is different from that of the Server-initiator

76




because constraints on establishing an association are different as follows.

1. the first event may only be a LISTEN.request;

2. the event following the initial LISTEN.request may be a LISTEN.confirm; if
LISTEN.confirm is an unsuccessful one, the behaviour may be started again.

Otherwise,

3. the expected event is an ASSOCIATION.indication and ASSOCIATION response;
if ASSOCIATION.response is an unsuccessful one, the next expected event is

still an ASSOCIATION.indication.

4. following occurrence of a successful ASSOCIATION.response, any sequence of

SEND.request and RECEIVE.request may occur; and

5. before receiving an ASSOCIATION.indication, issuing CLOSE-RECEIVE.request

is illegal.

Therefore, the first group of processes in the decomposition of the responder’s SPorder-
ing includes Listening, ListeningWC (Listening and closing write), Listened, Lis-
tenedWC (Listened and closing write), as shown in Figure 5.6. The other groups are

the same as those in the initiator’s SPordering.

5.4.3 The Network-medium

The network service upon which XTP operates is not observable by the XTP service
users. Nevertheless, it should be noted that we are modelling a totally reliable medium
for both this and the multicast case. It is described by the process Network-medium,

which provides two FIFO object queue mechanisms between the initiator and the

7




First group

Figure 5.6: The first group subprocesses of responder’s SPordering

responder. The sorts of the queues are defined in the definition of *ype Object-queue,

which is a local data type of the process Network-medium.

Network-medium
Linker (4-B) objects
---------- T =
primitives
O
™ Linker (B-A) NR
et TMT -
"""" L T
primitives

Figure 5.7: The structure of the process Network-medium

As shown in figure 5.7, the process Network-medium consists of a pair of interleav-
ing processes, Linker. Service primitives, as the input of Network-medium at one end,

are converted to the objects of these primitives and put in the object queue. Then

78



these objects will be transferred to the other end as the output of Network-medium.
The following is the specification of process Network-medium, in which we omitted

the definition of local data structure Object-queue.

process Network-medium [NI, NR] (NA, NB : Network-address) : noexit :=
Linker [NI, NR] (NA, NB, newobjq)
I
Linker [NR, NI} (NA, NB, newobjq)
where
process Linker [In, Out] (a, b : Network-address, q : object-queue) :

noexit :=

In ? Key : key-index ? sp : xtpsp [hostaddr (key) eq aJ;
Linker [In, Out] (a, b, addobjq (object (sp), q))

)

I

[not (Isemptyq (q))] >

(
Out ? key : key-index ! first (q) [hostaddr (key) eq b);

Linker [In, Out] (a, b, removelst (q))
)

endproc (* Linker *)

endproc (* Network-medium *)

Sample 5.8: Specification of process Network-medium

79




Chapter 6

Multicast service specification in

LOTOS

In the last chapter, we presented the formal specification of the XTP end-to-end
service, that is, the unicast service. Based on this specification, we will now discuss
the specification of the multicast service. Both the design principles and global data
type definitions in the multicast service specification are the same as those discussed
in the last chapter. Therefore, the emphasis in this chapter is on presenting the

structure of the processes.

6.1 Architecture of the specification

The one obvious difference between unicasting and multicasting is the number of
users involved in an association. In the unicast case, an association has exactly

two users: one initiator and one responder. However, there may be more than two

80




users connected to an association in the multicast, i.e., one initiator and multiple
responders. This is why the multicast service is very difficult to describe by time

sequence diagrams.

The global structure of the multicast service specification is shown as Figure 6.1,
in which there are m responders. In the specification text, we only represent two
responders. In fact, all responders are identical and two responders are enough to

specify the possible sequences of primitives for multicasting.

XTP-Service(multicast)
l |
XTP-SERVER XTP-SERVER

XTP-SERVER

(initiator) (responder ) ** | (responder m
NI %“1 O NR
M-NETWORK-MEDIUM

Figure 6.1: Architecture of XTP service (multicast)

One should note that components of the multicast service are different from those
in the unicast service even although their names are very similar. For example, the
underlying service of XTP multicast, called M-Network-medium, provides the same
object-queue mechanisms as Network-medium in the unicast service. However, it
also provides mechanisms for broadcasting objects amongst several communication

partners. This will be covered in detail later.

81




The behaviour part of the specification text is as follows:

behaviour
hide NI, NR1, NR2 in
( ( Server-m [XTPS, NI] (NAO, initiator)
Il
Server-m [XTPS, NR1] (NALl, responder)

i
Server-m [XTPS, NR2] (NA2, responder)

)
| [NI, NR1, NR2] |
M-Network-medium [NI, NR1, NR2] (NAO, NA1, NA2)

Sample 6.1: Specification of the multicast service

6.2 The initiator server

The initiator server is an instance of process Server-m with parameter initiator. It
represents the XTP multicast service constraints on the users who desire to initiate

a multicasting association.

As Figure 6.2 shows, the initiator server is decomposed into five processes, Ad-
dressing, Keymatching, Mi-SPordering, Broadcast and Timer. The first two processes
are the same as those in the unicast case. The processes Mi-SPordering and Broadcast

are variants of SPordering and Datatransfer from the unicast case.

82




? XTPS

M-Server-initiator l

Addressing

Mi-SPordering > ” Keymatching

Timer —-O— Broadcést

O w

Figure 6.2: Decomposition of process Server-initiator

6.2.1 The Mi-SPordering

The process Mi-SPordering describes the constraints on the sequence of actions for a
multicasting initiator. To determine what kinds of constraints it focuses on, we need

to compare it with Spordering in the unicast initiator.

First, in the phase of opening an association, the process M-Opening is the same
as Opening in unicast except that the multicast initiator may get back more than
one acknowledgment of OPEN.request because there may be multiple responders.
Even though it is possible to have multiple ASSOCIATION.responses back, only one
ASSOCIATION.confirm occurs at the gate XTPS, and results from the first response

to arrive. On the other hand, the rest of the responses are still acceptable.

83




Secondly, the multicast initiator will use the association in a different way from
unicast initiators. The multicasting association only carries a one-way data stream,
that is, from the initiator to the responders. Therefore, all events concerned with
receiving data are disabled at the initiator side. For the same reason, all primitives
for closing the receiving direction of the association cannot be used by the multicast
initiator. The process M-Whriteonly, as a direct successor to M-Opening, describes all

constraints in the data transfer phase.

Thirdly, during the data broadcast phase, the object of a DROP.responsc may
be received from some responders. Additionally, it is possible to receive an object
of JOIN.response from a responder who missed the FIRST packet and wants to join
the in-progress association. In fact, it may take place at any point after sending the

OPEN.request, even if the association is being closed.

Finally, constraints on the action of closing a multicasting association are very
different from the unicast case. To clarify these differences, let us imagine a multicas-
ting association as a “tree”. The initiator’s end of the association is just like the root
of the tree, and responders’ ends are the “branches”. Any responder’s close will cut
away only a branch of the tree. The tree is still alive even though all of the branches
have been cut. Only a close from the initiator will result in the root of the tree being
cut. This implies that only a close request from the initiator causes the transfer from
M-Writeonly to the process M-Lclosing. Additionally, in the disconnection phase, the
association is completely shut down after all existing responders have responded to

the close request.

With the above analysis, the process Mi-SPordering in the specification consists

of processes M-Opening, M-Writeonly and M-Lclosing.

84




6.2.2 The Broadcast and Timer processes

The process Broadcast focuses on the constraints on the data transfer from the ini-
tiator to the multiple responders. Unlike Datatransfer in the unicast case discussed
in the last chapter, the constraints on receiving data are no longer of concern. The
emphasis is on how to deal with reliable multicasting, that is, acknowledged multi-
casting, which requires that all responders receive data correctly. Although this issue
of error control is outside the scope of specifying the service, we have to consider the

constraints on when and how a SEND.confirm is returned to the initiator.

To specify the acknowledged multicasting, we employ a “timestamp” mechanism.

The idea behind it is the following:

1. keep a list of existing responders, L = {r;}(i =1,2,--+,N) and

2. for each responder r; in the list, record the length of data that have been

delivered, say d;;

3. for each SEND.request, record its buffer address, buffer length and a “time-

stamp” in the timed-sending-buffer-queue (tsbq);
4. a SEND.request within tsbq is confirmed, when

e all of responders have delivered the data in the SEND.request, that is,
di 2s,(i=1,2---N)
where s is the sum of the length of confirmed data and length of buffer to
be confirmed. At this point, the SEND.request is confirmed with a success
flag.
¢ timeout. The occurrence of timeout means that the data in the SEND.request

have been delivered only by some responders within a certain period. The

85



reliable multicasting is downgraded to unreliable. A special case is when
no responder delivered any data of the SEND.request. in this case, the

SEND.request is confirmed with a failure flag.

To describe the constraints mentioned above, the process Broadcast uses local data
structures, “tsbq” (timed-sending-buffer-queue) and listeners. The tsbq data structure
is similar to the sbg discussed in the last chapter except timestamps are attached to
each buffer head. The listeners data structure is used to record the existing responders
and their delivered sequence numbers. In addition, it needs a variable to keep the
length of confirmed data and a constant to specify the amount of time the sender

waits for a reliable SEND.confirm.

In order to generate timestamps, the process Timer, a timing mechanism, is in-
troduced. Timer interacts with the process Broadcast at the gate T to offer a logical

timer.

The process Broadcast is decomposed into the following processes:

e Connected is used to deal with the object of ASSOCIATION.response, update
the list listeners, and maybe issue an ASSOCIATION.confirm to the initiator.

e Join is related to the object of JOIN.response, and similar to the process Con-

nected.

e Rejoin focuses on the object of DROP.response, and updates the responder’s

length of delivered data.

o Disconnected deals with the objecis of CLOSE.request or CLOSE.response, and

updates the listeners.

86




e Sending takes care of primitive SEND.request and adds it to tsbg

o Sent looks at the object of RECEIVE.confirm, decides whether to issue a

SEND.confirm.

o Unreliable-send is triggered by the interaciion with the process timer. It may

result in issuing an unreliable SEND.confirm.

6.3 The responder servers

Each responder server is an instance of process Server-m with a parameter responder.
It describes the XTP multicast service constraints on the users who want to respond
to an association, and consists of four processes. Its structure is shown in Figure 6.3.

We only discuss two processes here, Mr-SPordering and Datareceiver.

6.3.1 The Mr-SPordering

Unlike the responder’s SPordering in unicast, the process Mr-SPordering has nothing
in common with Mi-SPordering because their behaviors for transferring data and
closing an association are totally different. Besides this difference, Mr-SPordering

needs to focus on new constraints like joining and rejoining an existing association.

In the period of waiting for an object of OPEN.request from a multicast initiator,
the process M-Listening is also monitoring the occurrence of objects of data sent
by the initiator to determine whether an in-progress multicast association already
exists. If it happens, the passive responder may take the initiative in joining the

existing association. The process Joining will substitute for M-Listening to wait for

87




M-Server-responder

Addressing

Mr-SPordering > ’/

T ” Keymatching

Datareceiver

J)NRi

Figure 6.3: Decomposition of process Server-responder

the confirmation of the initiator.

Either M-Listening or Joining will lead to the process M-Listened, then the process
M-Readonly may be activated. M-Readonly, like M-Writeonly, describes all possible

primitives in the data transfer phase at a responder side.

During the data transfer phase, the primitive DROP.indication may be used to
inform the local user of a failure for some reason. Then the normal process of receiving
data will be interrupted to wait for the user’s decision to rejoin or drop out. These

constraints are specified by the processes Dropout and Rejoining.

The specification about closing an association is much simpler than that for uni-
cast. The reasons are that the number of available close primitives to the user is

reduced, and that it is no longer necessary to wait for the initiator’s response to the

88




responder’s close request. However, the user is still required to respond to the close

request from the initiator, which is described by the process M-Rclosing.

As a summary, Figure 6-4 shows all subprocesses of Mr-Spordering and their

@

relationships.

Figure 6.4: Decomposition of process Mr-SPordering

6.3.2 The Datareceiver

The process Datareceiveris a simplified Datatransfer. The local data structure shg and
processes related to data sending in Datatransfer are not necessary because responders

are not allowed to send data.

89




6.4 The M-Network-medium

The process M-Network-medium consists of a set of processes, M-Linker, each bouud
to a communication partner in the multicasting. Similarly to the Linkerin the unicast
service, the process M-Linker provides an object-queue mechanism to keep the objects

received from the other partners.

Notice that there may be more that two communication partners in the multicas-
ting. M-Network-medium needs to be able to broadcast objects among partners. To
model this mechanism, an internal gate M is used. All of M-Linkers will synchronize

at the gate Al for exchanging objects.

M-Network-Medium l !

.
(5

e
(5
e

M-Linker M-Linker

P[] A A
IR '
5 1 H
L(_)' H
O
NR P NR 2
----- ) easevecene b
from the initiator from the responder 1 from the responder 2

Figure 6.5: The structure of the process M-Network-medium

Figure 6.5 shows the structure of M-Network-medium and streams of objects. The

simplified specification is shown as follows.

90




process M-Network-medium [NI, NR1, NR2}
(NAO, NA1, NA2 : Network-address) : noexit :=
hide M in
(
M-Linker [NI, M] (NAO, newmobjq)
[[M]|
M-Linker [NR1, M] (NA1, newmobjq)
M)}
M-Linker [NR2, M] (NA2, newmobjq)
)
where
(* definition of process M-linker *)

endproc (* M-Network-medium *)

Sample 6.2: Specification of process M-Network-medium

91




Chapter 7

Conclusions

The layered architecture model of ISO simplifies the complexity of data communica-
tion systems. Based on this model, the concept of a service provider is introduced.
To abstract the service provider, the definition of the service is as important as the
definition of the protocol. The definition of the service, as an abstract interface be-
tween the service provider and service users, expresses the functions of a complex
protocol in a simple way. It also defines the behaviors of the provider rendering the
service to the next higher layer. In other words, it not only describes what services

are provided, but also how the services are correctly used.

The first objective of this thesis was to contribute by proposing a definition of
service for the XTP protocol. In chapter 4, a complete service definition is presented.
It covers both the unicast and multicast service, and reflects the features of XTP as

much as possible.

It may seem odd that there are 27 service primitives in the definition. In fact,

12 primitives related to the closing of an association are designed as ones without

92




parameters. To reduce the number of primitives, we can alter the form of these
primitives to be primitives with parameters. For example, CLOSE.request(path)
could be used to substitute for CLOSE-SEND.request, CLOSE-RECEIVE.request,
and CLOSE.request by indicating the parameter “path” as send, receive, and null,
respectively. Similarly, other close primitives can be grouped together. Thus, the
total of primitives could b~ reduced to 19. However, this alteration does not improve
the definition of the functionality of XTP, or simplify the interactions of closing an

association.

By defining the service of XTP, we came to the conclusion that the procedure for
closing an association in XTP should be improved. XTP provides implicit association
setup to get the benefit of efficiency. It also provides flexible ways to shut down an
association, that is, both graceful and forced close are allowed as discussed in chapter
3. The cost of this flexibility is an increase in the complexity, which seems contrary
to the intention to gain efficiency. Additionally, to adapt the service interface for this
flexibility the close primitives must indicate which path is to be closed, i.e., send or
receive. This results in either the number of primitives being increased as presented
in chapter 4, or the syntax of the primitives becoming complex as discussed above.
From the user’s point of view, it is not convenient in either case. For instance, every
user needs four interactions with the service provider for either graceful or forced

close of an association, as shown in Figure 4.14.

To eliminate the forced close from XTP may be a possible improvement. If so, 12
close primitives proposed in chapter 4 can be simplified as the following primitives

with new semantics:

1. CLOSE.request
This is used to close a SEND path in an XTP association. Note that only the

93



SEND path, rather than both the SEND path and the RECEIVE path, is to

be closed.

2. CLOSE.indication

This indicates that the remote peer has terminated sending data.

3. CLOSE.response

This is used to respond to receipt of the CLOSE.indication, and to close its own
SEND path. After issuing this primitive, the user will no longer interact with

the service provider.

4, CLOSE.confirm

This indicates that the association has been closed completely, and is issued

after all data received from the remote peer have been delivered.

In the case of a crossed close resulting from both users issue a CLOSE.request
simultaneously, the service provider will return a CLOSE.confirm to the local user
after all data received from the remote peer have been delivered. This implies that

CLOSE.indication and CLOSE.response are omitted in this case.

With this improvement, only two interactions between the user and the service

provider will be necessary at both endpoints of an association.

Based on the improvement discussed above, the restriction on using forced close
may be lifted for some special cases in the following sense. When a receiver indicates
forced close, it probably means that the receiving user has expired, the correct proce-
dure is to send the END bit in the protocol. So the issue of forced close can be dealt.

with by adding an “abort context” primitive.

94



The second objective of this thesis was to contribute by presenting a formal spec-
ification of the XTP service in LOTOS. Chapters 5 and 6 discussed the LOTOS

specification for unicast and multicast, respectively.

In the specification, a mixture of constraint-oriented and state-oriented approaches
has been used. Based on a constraint-oriented approach, the service decomposed
into a set of concurrent processes that focus on a collection of constraints. These
constraints, as requirements, filter out only those interactions that may take place a.
a given gate at each moment. As discussed before, the lifetime of an association in
XTP cannot simply be described by three phases as in usual protocols. To deal with
this issue the specification has also used a state-oriented approach, in which a process
is decomposed into a series of sequential processes. Each of them may be regarded as

a state in a final state machine.

The completed specification has successfully passed syntax and static checks, and
been verified with the LOTOS utility, called ISLA (Lotos Integrated Static Analyser),
developed by the University of Ottawa [Logrip88, Logrip91]. The ISLA utility pro-
vides a tool to verify a specification written in LOTOS in a UNIX environment. ISLA
consists of a LOTOS translator and an ISLA interpreter. The LOTOS translator is
used to analyze the LOTOS specification, syntax and static semantics, and to produce
a suitable PROLOG format of the specification for testing. The ISLA interpreter is
used to simulate execution of the translated specification, which allows the user to
verify the semantic correctness. To verify the specifications, we have simulated more
than twenty different situations, in which all types of primitives have been used. In

the appendix, a simulation result produced by ISLA is given.

Because LOTOS is a constructive formalism that expresses behaviour explicitly,

but cannot explicitly express properties, we cannot directly prove the safety and the

95




liveness properties to verify our specifications. If an utility of non-constructive formal-
ism such as Temporal Logic and a relevant translator to convert LOTOS specifications
are available, our specifications can be verified by automatically proving the safety

and the liveness properties.

The specification of the XTP service shows that LOTOS is a powerful formal
description technique, which has successfully been applied to specification of a com-
plete service interface for a real communication protocol, XTP. The existing XTP
document is defective in the service definition. The proposed specification provides
a precise and unambiguous service definition for XTP. It is hoped that this formally

defined XTP service will help the further development of XTP.

Future work

At the present stage, the specification of the service is divided into two parts,
unicast and multicast. A future improvement on this work would be to combine

them. A future extension to this work would be an attempt to specify XTP itself.

A lesson drawn from our practice is that the poor data typing notation and insuffi-
cient library in LOTOS result in specifications being diffuse. In addition, it is difficult
to express absolute timeout in LOTOS because of being lack of timing mechanisms.
Therefore, to enhance LOTOS in the above two aspects will be attractive topics for

future research.

96




References

[Atwood92] J.W. Atwood. Validation of the XTP Context Machine, Technical Re-

port, Department of Computer Science, Concordia University, July, 1992,

[Blyth) D. Blyth, et al.. Architectural and Behavioural Modelling in Computer
Communication, Proceedings of the IFIP WG 10.3 Working Conference
on Distibuted Processing, pp.53-70, 1988.

[Bochm88] G. v. Bochmann. Specifications of a Simplified Transport Protocol Using
Diffident Formal Description Techniques, Computer Networks and ISDN
Systems, Vol. 18, pp.335-377, 1989/1990.

[Bochm90] G. v. Bochmann. Protocol Specification for OSI, Computer Networks and
ISDN Systems, Vol. 18, pp.167-184, 1989/1990.

(Bolognesi] T. Bolognesi and E. Brinksma. Introduction to the ISO Specification Lan-
guage LOTOS, Computer Networks and ISDN Systems, Vol.14, pp. 25-59,
North-Holland, 1987.

[Brinksma] E. Brinksma. Specification Modules in LOTOS, in Proceedings of Formal
Description Techniques, I, pp.101-115, North-Holland, 1990.

[Ehrig] H. Ehrig. Fundamentals of Algebraic Specification 1, Springer-Verlag,
Berlin, 1984.

97




[1S07498]

[1S082]

[1508807]

[15090]

[Karjoth]

[Leduc]

[Logrip88]

[Logrip91]

[Madel]

ISO. Information Processing Systems - Open Systems Interconnection -

Basic Reference Model, 1ISO 7498, 1988.

ISO. Data Processing - Open Systems Interconnection - Service Conven-

tions, ISO TC97/SC16 N897, Jan. 1982.

ISO. Information Processing Systems - Open Systems Interconnection -
LOTOS - A Formal Description Technique Based on the Temporal Or-
dering of Observational Behaviour, 1ISO 8807, 1989.

1SO. DTR 10167, Guidelines for the Application of Estelle, LOTOS, and
SDL, ISO TC97/SC21 N4259, Jan. 1990.

G. Karjoth. Implementing Process Algebra Specifications by Stalc Ma-
chines, in Proceeding of Protocol Specification, Testing, and Verification,

VIII, North-Holland, 1988.

G.J. Leduc. The Intertwining of Data Types and Processes in LOTOS,
in Proceedings of Protocol Specification, Testing, and Verification, VII,

pp.123-136, North-Holland, 1987.

L. Logrippo, et al. An Interpreter for LOTOS, a Specification Language
Jor Distributed Systems, Software-Practice and Experience, Vol. 18, pp.
365-385, 1988.

L. Logrippo. The University of Ottawa LOTOS Toolkit, Formal Descrip-
tion Techniques, I1I, pp. 563-566, 1991.

E. Madelaine and D. Vergamini. Specification and Verification of a Sliding
Window Protocol in LOTOS, Formal Description Techniques, IV, pp. 495-
510, 1992.

98




[Milner]

[Murphy]

[Navarro)

[Santoso]

[Turner]

[Vissers]

[Vissers]

[XTP92]

R.Milner. A Caleulus of Communicating Systems, Lecture Notes in Com-

puter Science, Vol. 92, Springer-Verlag, 1980.

S.L. Murphy and A.U. Shankar. Connection Management for the Trans-
port Layer: Service Specification and Protocol Verification, IEEE Trans-
actions on Communications, Vol. 39, No. 12, pp. 1762-1775, Dec. 1991.

J. Navarro and P.S. Martin. Ezperience in the Development of an ISDN
Layer 3 Service in LOTOS, Formal Description Techniques, II1, pp. 327-
336, 1991.

H. Santoso and S. Fdida. Transport Layer Multicast: An Enhancement
Jor XTP Bucket Error Control, in Proceedings of High Performance Net-
working 92, pp. G2-17, 1992.

K.J. Turner. An Architectual Semantics for LOTOS, in Proceedings of
Protocol Specification, Testing, and Verification, VII, pp.15-28, North-
Holland, 1987.

C.A. Vissers and L. Logrippo. The importance of the Service Concept in
the Design of Data Communication Protocols, in Proceeding of Protocol

Specification, Testing, and Verification, V, pp. 3-17, North-Holland, 1986.

C.A. Vissers, et al. Architecture and Specification Style in Formal De-
scriptions of Distributed Systems, in Proceeding of Protocol Specification,

Testing, and Verification, VIII, pp. 189-204, North-Holland, 1988.

XTP protocol Definition, Revision 3.6, XTP Forum. 1900 State Street,
Santa Barara CA 93101, Jan. 1992,

99




Appendix A

A simulation result

The following is a result to verify the specification of the XTP unicast service with
ISLA. For convenience, the gates XTPS, NI and NR are relablled as H, A and B,
respectively. In this simulation, there are 35 events occurred at these gates. These
events simulate a typical situation, in which the behaviors between the XTP service
provider and the users for setting up an association, sending and delivering data, and

terminating the association are included.

The result shown is the script of ISLA’s output on the screen. For the purpose
of brevity, only the outputs related to the first two events and the last event are
presented. However, the omitted events can be found in the history of events listed

in the output related to the final event.

100



In the simulation, some predefined constants used are as follows.

$u00, $ull
$k00, $ki1
$a0

$opl

$ball

$bsl

$b01, $h02,
$b10, $b15
$sp0

$spl
$swe
$rrc

$r10

user indexes (SAPs);

key indexes (endpoints);

an address-segment used in the primitve open_request;
options used in the primi.ve open_request;

a buffer address;

buffer size;

user buffers;

a primitive open.request with pararmeters $a0, $op1,
and $b01;

a primitive listen_request;

a primitive send_request with the flag Wclose;

a primitive receive_request with the flag Rclose;

a primitive receive_request.

101




ISLA
Interactive System for LOTOS Applications

== == ===== xtpservice —— 33 3 3 3 F T
CP/MANUAL IW/100 ED/50 IA/skip FG/skip Level/0

Path/[]

Events:

No Internal actions

<1>- H ?ui,ui,uiuserindex ?key,key keykey.index ?sp2,spl,spxtpsp [and(Is.open_request(sp1),
Is.conn(s_service(sp1)))] [eq(hostaddr(ui),NA(0))] —> bh1 [1121,1098,1054]
<2>- H ?ui,ui,uiuser.index ?key, key keykey_index ?sp2,spl spxtpsp [and(Islisten_request(spl),
Is.conn(s.service(sp1)))] [eq(hostaddr(ui),NA(1))] —> bh2 [1137,1098,1054]

ACT: la[ctions]{<N>] | ? | h[elp] | <action number> | <command>

==>1

The existing predicate(s) for this action : and(Is_open_request(sp1), Is.conn(sservice(sp1))))
[ea(hostaddr(ui),NA(0))]

Enter a set or a value for ui,ui,uiuser_index
=> $u00

Enter a set or a value for key, key keykey.index
=> <>

Enter a set or a value for sp2,spl spxtpsp

=> $sp0

Evaluating Predicate(s) ...

Predicate evaluated to true

Applying inferences rules !

102



ISLA
Interactive System for LOTOS Applications

s=moss=s=oms=o======== x{pservie *========= ====
CP/MANUAL 1IW/100 ED/50 IA/skip FG/skip Level/1

Path/[1]

Events:

[1] H 78u00:user.index ?<>:key.index 7$sp0:xtpsp

No Internal actions

<1>- value for k:key_index is needed for ’choice’ —> bhl [1124]

<2>- H ?ui,ui,uiuser.index 7key,key,keykey_index ?sp2,spl,spxtpsp [and(Isisten.request(sp1),

Is_conn(s_service(sp1)))] [eq(hostaddr(ui), NA(1))] —> bh2 [1137,1098,1054]

ACT: la[ctions][<N>] | ? | h[elp)] | <action number> | <command>
==>1

103




ISLA
Interactive System for LOTOS Applications

CP/MANUAL lW/100 ED/50 iA/slup FG/skip Level/35
Path/(1,1,1,2,1,2,2,2,25,2,2,8,1,17,7,13,8,8,15,10,8,9,2,2,2,7,2,9,1,2,2,2,4,2]
Events:
[1] H 78u00:user_index 7<>:key.index ?$spQ:xtpsp
{1,1] choice(k:key_index = $k00)
[1,1,1] H !$u00:user-index !$k00:key.index lopen_confirm($k00, succ_code):xtpsp
[1,1,1,2] A '8k00:key_index !$sp0:xtpsp
, 1] H '$u00:user.index !$k00:key.index ?$swe:xtpsp
.1,2] A !$k00:key-index '$swc:xtpsp
.1,2,2] H 7$ull:user.index 7<>:key.index ?$spl:xtpsp
,1,2,2,2] choice(k:key_index = $k11)
1,2,2,2,2] H !8ull:user.index !$k11:key_index listen_confirm($k11, succ_code):xtpsp
1,2,2
1,2,2

, ,2,5] B !8k11:key_index !object($sp0):Object
,2,5, 2} H !$ull:user.index !$k11:key.index !association_indication($a0,80p1):

i Rk ]

[N RO

)y &y &y

xtpsp

[1,1,1.2,1,2,2,2,2,5,2,2] B 18k11:key.index 'association.response($al, $opl, succ_code):xtpsp
(1,1,1,2,1,2,2,2,2,5,2,2,8] A !8k00:key.index !object(association_response($al, $opl,
succ.code)):Object

(1,1,1,2,1,2,2,2,2,5,2,2,8,1] H !$u00:user_index !3k00:key_index !association_confirm($at,
$op1, succ.code):xtpsp

(1,1,1,2,1,2,2,2,2,5,2,2,8,1,17] B !$k11:key.index lobject(8swc):Object
1,1,1,2,1,2,2,2,2,5,2,2,8,1,17, 7 H !$ull:user-index !k 11:key.index !close_send.indication:
xtpsp

1,1,1,2,1,2,2,2,2,5,2,2,8,1,17,7, 13] H !$ul1:user.index !$k11:key_index ?$rrc:xtpsp
1,1,1,2,1,2,2,2,2,5,2,2,8,1,17,7,13, 8] H !$ull:userindex !$k11:key_index
Ireceive_confirm($b15, succ_code):xtpsp

{1,1,1,2,1,2,2,2,2,5,2,2,8,1,17,7,13, 8, 8] B !$k11:key.index !receive_confirm($b15,

succ_code):xtpsp

[1,1,1,2,1,2,2,2,2,5,2,2,8,1,17,7,13, 8, 8,15] B !8k11:key_index !close_send_response:xtpsp
[1,1,1,2,1,2,2,2,2,5,2,2,8,1,17,7,13, 8, 8,15, 10] H !$ull:user_index !$k11:key_index
?close_send._request:xtpsp

{1,1,1,2,1,2,2,2,2,5,2,2,8,1,17,7,13, 8, 8, 15, 10, 8] A !8k00:key.index !object(receive.confirm
($b15, succ_code)):Object

1,1,1,2,1,2,2,2,2,5,2,2,8,1,17,7,13, 8, 8,15, 10, 8,9] A !8k00:key.index lobject(close_send.
response):Object

104




1,1,1,2,1,2,2,2,2,5,2,2,8,1,17, 7, 13,8,8,15, 10,8,9, 2] H !$u00:user.index '$k00:key_index
Iclose_send.confirm:xtpsp

{1,1,1,2,1,2,2,2,2,5,2,2,8,1,17, 7, 13,8,8, 15, 10,8,9, 2, 2] H !$u00:user.index !$k00:
key.index 'send_confirm(u_buffer($ba01, $bsl), succ.code):xtpsp
(1,1,1,2,1,2,2,2,2,5,2,2,8,1,17,7,13,8,8,15,10,8,9, 2, 2, 2] H !$u00:user_index '$k00:
key.index Isend_confirm($b02, fail_code):xtpsp
1,1,1,2,1,2,2,2,2,5,2,2,8,1,17,7,13,8,8,15,10,8,9, 2, 2,2,7] B !$k1l:key_index
tclose_send.request :xtpsp

[1,1,1,2,1,2,2,2,2,5,2,2,8,1,17,7,13,8,8,15,10,8,9, 2, 2,2,7,2] H $u00:user.index

18k00: key.index 7$r10:xtpsp

(1,1,1,2,1,2,2,2,2,5,2,2,8,1,17,7,13,8,8,15,10,8,9,2, 2,2,7,2, 9] A 1$k00:key.index
lobject (close_send_request):Object
(1,1,1,2,1,2,2,2,2,5,2,2,8,1,17,7,13,8,8,15,10,8,9,2, 2,2,7,2, 9, 1] H !8u00:userindex
13k00:key.index !closesend_indication :xtpsp
[1,1,1,2,1,2,2,2,2,5,2,2,8,1,17,7,13,8,8,15,10,8,9,2,2,2,7,2,9, 1,2] H !$u00:userindex
18k00:key.index ?close.send_response:xtpsp
[1,1,1,2,1,2,2,2,2,5,2,2,8,1,17,7,13,8,8,15,10,8,9,2,2,2,7,2,9, 1.2, 2] H '$u00:user_index
18k00:key.index receive_confirm($b10, fail_code):xtpsp
(1,1,1,2,1,2,2,2,2,5,2,2,8,1,17,7,13,8,8,15,10,8,9,2,2,2,7,2,9, 1,2,2, 2] A '$k00:key index
lclose_send_response:xtpsp
(1,1,1,2,1,2,2,2,2,5,2,2,8,1,17,7,13,8,8,15,10,8,9,2,2,2,7,2,9, 1,2,2,2, 4]

B !8k11:key.index lobject(close_send_response):Object
(1,1,1,2,1,2,2,2,2,5,2,2,8,1,17,7,13,8,8,15,10,8,9,2,2,2,7,2,9,1,2,2,2, 4, 2]

H '3ull:user.index !$k11:key index !close_send_confirm :xtpsp

No Internal actions

<1>- H ?ui,ui,uiuser.index ?key key,keykeyindex 7sp2,sp1,spxtpsp [and(Is_open_request(spl),
Is.conn(s.service(sp1)))} [eq(hostaddr(ui), NA(0))] —> bhi [1121,1098,1054]
<2>- H 7ui,ui,uiuser.index 7key,key,keykey_index 7sp2,sp1,spxtpsp [and(Is.listen_request(spl),
Is.conn(s.service(spl)))] [eq(hostaddr(ui), NA(1))] —> bh2 [1137,1098,1054]

ACT: la[ctions][<N>] | 7 | hlelp] | <action number> | <command>
==> exit
EXIT ISLA 7 (n/y) => y

Bye Bye!!

105






