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Abstract

A Study of Balanced
Incomplete Block Designs

Yuan Ding

In this thesis, we study two balanced incomplete block designs (BIBD).
For the (22,33.12.8.4)-BIBD. we correct some errors in a published paper
and provide the proofs for some unpublished results of Malcohn Greig. For
the (28,63,27,12,11)-BIBD, we construct all 246 solutions assuming that the
design is quasi-symmetric with block intersection numbers 4 and 6 and with
the further assumption that the design is fixed by an automorphism of order

T with no fixed point and no fixed block.
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Chapter 1

Introduction

Fxperimental design is a very active branch of statistics. W. T. Federer and
L. N. Balam’s Bibliography on Expcriment and Treatment Design, Pre-1969
(Hafner, New York, 1973) lists 8378 works under 44 subheadings.

Basically. there are three kinds of designs:

1. Block designs (randomized block designs, Latin squares, Greaceo -Latin
squares, balanced incomplete block designs, partial balanced incom-

plete block designs, Youdan squares and lattices etc.)

2. Factorial designs (2%, 3%, orthogonal array, confounding, partial con-

founding. fractional factorial, nested or hierarchical nested design etc.)

3. Designs for response surface (center compositing, A-, D-, U- and various

optimal designs. mixture design etc.)

In a balanced incomplete block design (BIBD), v varieties or treatments
are compared in such a manner that each treatment is assigned to r ex-
perimental units.  The units themselves are arranged into b blocks, each
containing A experimental units. Any two treatments are required to ap-

pear together in the same block A times. while the treatments appearing in




a given block are all different. In other word, a balanced incomplete block
design (BIBD) is a pair (1.8) where V is a v-set and B is a collection of b
k-subsets of V/, called blocks, such that each element (or called point) of 17
is contained in exactly 7 blocks and any 2-subset of 1 is contained in exactly
A blocks. Hence the design depends on the five parameters, v, 0,1k, and A,

Trivial necessary conditions for the existence of a (v,b,r, &, \)-BIBD are

o = bk, and (L.1)
rhk—=1) = Mv-=1). (1.2)

Parameter sets that satisfv (1.1) and (1.2) are called admissible.

Although particular series of BIBD's were known as carly as 1817, a
systematic treatment was not developed until 1936 when Yates [43] intro-
duced them as statistical designs. Since then rich contributions were made
by Fisher [20, 21], Fisher and Yates [22]. and Bose [8, 9, 10, 11, 12, 13, 14].
It has now become a standard part of the theory of the experimental design.
Because there is no formal procedure that can construct all designs, the ex-
istence question of some BIBD's presents interesting problems (8, 19, 20].

In this thesis, we are going to construct the (28,63,27,12,11)-BIB1 using
orbit matrices and explore the existence of the (22,33,12,8,4)-BIBD. Let us
define some concepts that will be frequently used:

We use the notation 1, to denote a column vector with p ones, I, to
denote a p x p identity matrix. J, to denote a p x p matrix of all ones, and

the superscript T to denote the transpose operation.

1. A BIBD is called symmetric if b = v. Such a design is usually called a

(v, k, N)-design. since in this case both b= v and r = L.

2. Two designs (11.8y) and (4, B3) are said to be isomorphic if there
exists a bijection a: 1] — V; such that a(B,) = By. In other words, if

{71.....2¢} is a block in By, then {a(ay),...;a(zx)} is a block in Ba.
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A (v.h,rk, XN)-BIBD is completely determined by its incidence matriz,
N, whose element in the i-th row and j-th column is 1 (or 0) if element

2 is (cvis not) in block 7. Hence

NNT = (r = ML, + M.

The infcrsection matrir S is defined to be NTN. The entries of S are

called the intersection numbers.

An aulomorphism @ of a design is a permutation of the points which
also permutes the blocks. In other words, ¢(B) = B. The set of all
automorphism forms a permutation group called the full automorphism
group of the design.

Let ¢ be the identity permutation. If ¢ = e and ¢ # e for any ¢ <p,

then pis the order of ¢

If a group G actson a set X and » € X, the orbit of is {g(x) : g € G}.

It is easy to sce that orbits form a partition of X. In fact, one may
define an equivalence relation on X by »; ~ 29 if 22 = g(x;) for some
¢ € G, and the equivalent classes of this relation are the orbits. The
automorphism group of a design D partitions the treatment set of D
into orbits, such that two treatments 2,y belong to the same orbit if

and only if there is an automorphism ¢ such that ¢(x) = y.

. A BIBD is quasi-symmetric with block intersection numbers x and y

(r < y) if any two blocks intersect in either & or y points.

JIf & is a vector and A is a symmetric matrix, when 274z > 0 for

any 2. then 2T Ar is a scmi-positive definite quadratic form and Ais a

semi-positive definitc(p.s.d.) malrir.




Theorem 1.1 Let N and S denote respectively the incidence matrir and the
intersection matrir of a (v, b, .k, \)-BIBD, then

NIy, = rl,, (1.3)
17N = il (1.4)
NNT = (r= NI+ M., (1.5)
Sly, = 7k, and (1.6)
5% = (r= NS+ N2, (1.7)

Proof: Relations (1.3), (1.1) and (1.5) are trivial from the definition of a
BIBD. Since S = NTN, from (1.3). (1.1), S1;, = NT'(r1,) = rkly. Finally,
by (1.5), Ju = 1,17, and (1.1). we have §* = NT(NNT)N = NT{(r - \) 1, +
AN = (r= NS+ A2,

Theorem 1.2 125, p.130] If N is the incidenee matrir of a symmelree
BIBD, then N satisfies the following conditions:
NANT = NT'N = (h=MNI+ M\, and
NJ= JN=II

In Chapter 2, we concentrate on the (22,33,12.84)-BIBD. Although it is an
admissible parameter set. it is not known at present whether or not the design
exists. For any design with a smaller o, their existence ot non-existence is
known. For this reason the existence or non-existence of a (22,33,12,8.4)-
BIBD is a challenging problem [26]. Hamada and Kobayashi [27] have made
a detailed study of patterns of intersection of a block with the remaining
32 blocks. In 1988, Hall, Roth, Rees and Vanstone derived the structure of
the first 5 columns of the incidence matrix. They also ruled out many of
these configurations. A simplification for finding these impossible cases was

made by Malcolm Greig. These studies leave a total of 7 possible 5 by 5



submatrices Sy of S for further exploration. In the thesis, we will synthesize
the above methods and results, giving their complete proofs and noting some
corrections.

In Chapter 3, we construct some quasi-symmetric (28,63,27,12,11)-BIBD
with intersection numbers | and G, with the assumption that they are fixed

by an automorphism of order 7 with no fixed points and no fixed blocks.




Chapter 2

Restrictions on the
(22,33,12,8,4)-BIBD

2.1 Introduction

Hamada and Kobayashi (1978) have studied in detail the pattern of inter
sections of a block with the remaining 32 blocks. They reduced the nine
potential patterns to four. This will be discussed in Sections 2.2 and 2.1,

Section 2.3 will deal with the structure of the first five colunms of the
incidence matrix N. In particular. we will show that there are only 29 possi-
bilities for these five columns.,

Section 2.4 will introduce Greig's improvement. We provide all the de-
tailed proofs for his statements including the reduction of the nine block
intersection patterns to 4 and the reduction of the number of possibilities of
the first five columns of N from 29 to 7. It remains to he seen what attack

will either eliminate these cases or lead to the construction of a design.
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2.2 The Hamada-Kobayashi Restrictions on
Block Intersections

For a (22,33,12,8,4)-BIBD. the incidence matrix N satisfies
NNT =81y, + 4Jn.

Given a block B, let b, (i = 0.1,....8) be the number of blocks, which intersect

DB in i points. Then

by +by+by+0s+0y+b3+06+b+ b = 32, (2.1)
by + 2by + 3by + by + 5bs + 60 + Th; + 8bg = 88. and (2.2)
I)z -+ 3[)'; + (i[); + l()[)', + lc‘—)[)(; + 21b7 + QSbg = 84. (23)

The Eq. (2.1) counts the remaining 32 blocks. Eq. (2.2) counts the total
number of intersection points with B. that is, the remaining 11 occurrences
of the 8 points. Since any pair of the 8 points occurs together 3(or A — 1)
more times we have Eq. (2.3). It follows from 3 (2.1)-2 (2.2)+ (2.3) that

3y + by + by + 3D5 + Gbg + 10b; + 150 = 4, (2.4)

! - . .
where all the b;s are non-negative integers. Therefore, the only possible
non-zero terms are those with coeflicients not exceeding 4. Hence, Eq. (2.4)
simplifies to

3’)“ + l)] + l)4 + 31)5 =4, (25)

This leads to only 9 possible combinations as shown in Table (2.1).
In Section 2.4 we use Greig's method instead of Hamada-Kobayashi’s to

show that Types 5 to 9 are impossible.
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Table 2.1: Type 1 to 9

T)'])(‘ I)() b] bg 1)3 b1 1)5
1 0 0 12 16 4 0
2 o1 9 19 3 0
3 6 2 6 22 2 O
4 1 0 6 24 1 0
b 0 3 3 25 1 0
6 o 0 11 19 1 1
0 0 1 8 22 0 1
8 0o 4 0 28 0 O
9 11 3 27 0 0

2.3 S; in the (22,33,12,8,4)-BIBD

In this section. we introduce the basic terminology of coding theory first. For

a reference on coding theory. see [23. 39].

Definition 1 A word is a string rp2y...0 where the 1y s ave chosen from an

alphabet of m Ictters ay. ... a,,.

Definition 2 A4 code of lcngth n on i letters is a subset of the m™ words of

length n on m letters. The words in a code are sometimes called codewords.

Definition 3 If 2 = xry2x9..05 and y = yya...yn arve two words of the same
length n, the Hamming Distancc between them, dy(r,y), is the number of v's

for which a, # y,.

From now on we consider only the special case where the alphabet is a

finite field.

Definition 4 The wcight wt(a) of a word a 1s the number of lellers xy # 0.



We define the sum of two words as the string obtained by summing the
individual romponents. Similarly, we can define the difference of two words.
Since z, = ¥, if and only if 2, — 3 = 0, it is easy to see that dy(z,y) =
wi(z — y).

The collection of all words of length n where the alphabet is a finite
field forms a vector space 17, We shall consider only codes C that are linear
subspaces of V. Such codes C are called linear codes. A linear code C' of
dimension s which is a subspace of 17 of length n over Fj is called a linear
[n,8] code over F. 1l g =2, it is called a binary code. Note that for binary

codes, »r — y =0+ y.

Definition 5 Lef (u,n) = S, (mod q) be the inner product of u and

v. If (u,v) =0, we say that u and v are orthogonal to each other.

Definition 6 If C' is a code, we let
C* = {ul(u,v) =0, forallve C}. (2.6)

It is known that if C'is an s-dimensional subspace, then C* is (n — s)-
dimensional. C* is called the dual or orthogonal code of C.

IfCCC, then C s self-orthogonal, and if C'= C*, then C is self-dual.

Definition 7 The weight distribution of a code is the number of vectors of
any weight in the code. This is often described by the list of numbers A;

where A, is the number of vectors of weight 1 in the code.

The code C of a (22.33.123.1)-BIBD over F; = GF(2) is the subspace
of F3* spanned by the rows of the incidence matrix N. In N, every column
has eight 1's and cvery row has twelve 1’s, As A = 4, any two rows have
common 1'’s in exactly 4 columns. 1t follows that every codeword has weight

a multiple of 4. Also there is no word of weight 32 in C for the following

9



reasons. Suppose there exists such a word, by permuting columns, we can
assume that the word has a zero in column 1. Choose a row of N with a
one in column 1 and consequently, 11 ones in columns 2 to 33. The sum of
this row with the word of weight 32 will give a word with a zero in column
1 and 21 ones in columns 2 to 33. This word has weight 22, which is impos-
sible because 22 is not divisible by 4. Hence the weight distribution of (" is

AOs A~4’ AB-: Al?a Alﬁ’ A20~) -421 . ~428-

Define the weight enumecrator Ve (2, y) as
Wela, y) = Aor® + 4080y + 3Py 4+ Aty 24 4 Ap®y® (2.7)

Since for any x,y € C, (r,y) = S22, 04 is zero modulo 2, hence
forx € Cly € C* and for y € C.r € CL. That is, ¢' C C* and
C is self-orthogonal. As cvery word in C' has even weight, the all | vee-
tor is not in C but in C*. Therefore, C' ¢ Ct. Furthermore, we know

dim(C) + dim(C*) = 33. Hence dim(C') < 16.
If Co,(1,....C5 are the weight distribution of C*, then the celebrated
identity of Jessie Mac\Williams gives
W& () = Welr + y,2 = 9)/IC). (2.8)

Here |C| = 2", when h = dim(C)). Hence

33
(N -CaM ) = Aur+ )P+ A+ ) - y) + A+ )"

1=0

(=) + .+ Al +y)(a - y)*. (2.9)

If we expand these (x4 y)' ters on the right hand side of kq. (2.9) and
compare the coefficients of different a'y’ terms on both sides, 1t is not hard

to see that each 2"C; is a polynomial of the 4,’s. The following table gives

10



details of the 2"Cj's:

28C, Ay A, As Ay Ajg Ay Az Ao
Go 1 | 1 1 1 1 1 |
G 33 25 17 9 1 -7 -15 =23
C; 528 296 128 24 -16 8 96 218
Cs 5,456 2,200 544 -24 -16 56 -320 -1,656
Cy 40,920 11,456 1,320 -240 120 -160 456 7,600
Cs 237,336 44,080 1,224 -288 120 -112 552 -25,021
Cs 1,107,568 128,296 -2.912 728 -560 904 -3,584 59,192
G 4,272,018 281.880  -11.968 2,088 -560 -4536 5,472 -94.392
Cs 13,884,150 H7T.876  -15.601 -108 1,820 -2,652 1,836 71,601
Co 38,567,100 429,780 5100 -6,140 1,820 3,380 -18,868 89,700
Cho 92,561,040 -15,210 47.680 -5,256  -4,368 4,264 23,712 -385.320
1 193,536,720 -1,040.520 62.560 9.096 -4,368 -10,088 8,832 609,960
12 354,817,320 -2.081,040 -2.760 16,896 8,008 -2,288 -56,488 -430,560
13 573,166,400 -2,241,120 -109,480 -3,969 8,008 18,304 50,232 -270,480
Cis 818,809,200 -880,440 -128.800 -27.720 -11,440 -5,720 30,912 1,090,200
Cis 1,037,158,320  1,520.760 0 -11.704 -11,440 -21,736 -97,888 -1,311.000
Cis 1,166,803,110  3.421.710 152950 26,334 12870 16,302 55,062 589,950
Since C; = Cyy; for i = 0,1....,16 and Cop = C33 = 1, we only list

i =0,....16 in the table. It is trivial that (] = 0 because no block is empty

and C = 0 as no two blocks are identical. These vield

[/ oh
2‘=2'C'() =

l’
=2’C'1 -

0’
0=2MCy =

which give the first 3 rows of the above table.

11
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Solving (2.10) for Ajp, 45,420 we get

Ap = 13(2"%) — 10 - 6.4, - 345 — Agg — 34y,
Agg 30(2"6) + 15+ 8.4, + 345 + 3421 + 845, and  (2.11)
Asg 21(2"-6) — 6 — 3.4, — Ag — 3Az4 — 6 Az,

i

Using (2.11) to substitute .49, Aj6,.420 into the fourth and fifth rows of the

table we have the following expressions for C4 and Cg

h=9¢C! = (=145)2"7% 490 + 284 + 5.4z + 34y + 204k, and
=9Cy = (=30)2"" £ 4T+ 924, 4 5A4s + 34y — 4l (2.12)

Now it follows that
h=9Cs = 2M9C, + 6(2"79) + 384 4 614y — 61.A4ps. (2.13)

If Agg > 6. then Cs = Chy_5 > A > 6; if A < 6, then from (2.13),
2h=9C¢ > 6(2"%) and C5 > 6. In cither event, Cs = 6 > 0, which micans that
there exist at least one codeword in C*, with weight 5. Since the codeword
is orthogonal to every row of the incidence matrix N, we have a submatrix of
N, say N, formed by such 5 columns, which corresponds to the components
of the five 1’s in the codeword of C*. The submatrix Ny is 22 by 5 where
every row has an even number of I's, that is 0, 2, or 4 ones.

We define the projection matrix P as P = 961 +32.J — 125, P satisfies

P? = 96P.

In [26], Hall et al showed that P is semi-positive definite. Hence 5 =
9615 + 32J5 — 1255 is also seini-positive definite. We use a computer program
to find all possible N5 subject to the condition that the row sums are even
and the corresponding Py is semi-positive definite. Up to isomorphism we
found 29 Nj's.



In [26), 31 cases of the S5 = N¥ Ny were listed. We compared our 29 cases
of the S5, coded L1 to L29, with their 31 cases, identified with a prefix “H”.

We note the following errors in the latter.

L2(H99) L1(H100) L5 L28
(844 42) (84433 (84433) (8322
48424 48442 48343 3821
44822 44813 43823 2 28 2
422384 34184 34283 2128
\21248) \32315) \3333s) (1223
1105 11102 11104 H10
(844 12 /84 412} (84432 (8322
48 2 144 18343 418343 3811
428 24 13814 43823 2183
44282 14183 34283 2138
\24428/) \23438) \23338) \1313

The case H105 is isomorphic to H99 by interchanging columns 3 and 4,
then rows 3 and 4 of H105. Also, H102 is isomorphic to H100 by inter-
changing columns 1 and 2, then rows 1 and 2, followed by columns 3 and 4
and finally rows 3 and 4 of H102. Thus, we reduce the 31 cases of [26] to 29.
Furthermore. we note that in H104, the sum of the off-diagonal entries in
row 1is 13 and in H10, the sum of the off-diagonal entries in row 3 is 7; both
of which are impossible. We suspect that there is a typographical error in
H104 and that its (1,5)-entry should be a 3. With this change, their H104
is exactly our L5. H10 has to match up with L28, but it requires several
changes. We have communicated the changes to one of the author of [26]
and he agrees with our corrections.

In Appendix A, we list the 29 cases of S;, labelled L1 to L29. For each
case Li, we also list the corresponding case Hj from [26] using their labelling.

If a (22,33.12,8,4)-BIBD exists, its intersection matrix must contain a 5

by § submatrix isomorphic to one of the 29 cases listed in Appendix A. In

13
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the next section, we follow Greig's method to show that 22 of the 29 cases

are impossible.

2.4 Greig’s Improvement

In this section, we follow Greig’s method to show that Types 5 to 9 are
impossible in Table 2.1. We also reduce the 29 remaining cases of Sy to 7.

Greig's fundamental observation is elementary:

The incquality (y—1/2)* > 0 implies y(y—1) > —1/4. This can
be improved to y(y — 1) 2 0. if yis an integer. Morcover, if y is

an integer-valued vector of length p. then y7(y — 1,,) = 0 holds.

In [23], Greig give the following stateiments without proofl. We are now

providing the proofs.

Theorem 2.1 Lct y be a px 1 vector with at least T integral valucs, and lel
F=yT(y—1,). then
F > (t-p/4.

Proof: Let y = (11, ...,y,,)T. then
F=S0_ (5 = u).

If 4, is an integer. then y?2 — y, > 0: otherwise y2 =y, > —1/4. Therefore
F> —(p-t)/4, or
F> (t-p/s.

A vector y = (y;. ...,]/,,)T is said to be infegral if every y, is an integer.
In Corollary 2.2 to Corollary 2.5, we use d to denote the difference between

a given real value and its closest integer. We note that |d] < 1/2.

1]



Corollary 2.2 Let B b a px ¢ malriz, and © a ¢ x 1 vector, and let A =
1T Ber. If Br is integral, and d is choscn such that Afp—1/2+d is an integer,

then

2"’BTBe- A2 p-p(1/4-d) >0

Proof: Let y = Ba - (Afp—-1/2+ d)1,. Then y is integral and from
Theorem 2.1, y"(y — 1,) > 0. After simplification,

vy =1,) =2"B"Br - Lfp-p(1/4 - &).

Therefore,

2B By — 2 p-p(1J4=d) >0

Corollary 2.3 Lct S be the intcrsection mairir of a (v, b7, k, \)-BIBD, and
let 2 be anyhx 1 real-valucd vector. Let a = a1y be the sum of the entries of
2 and choosc d such that =\vafb—1/2+d is an integer. If [(r = N\)Iy — S

is integral, then
TS = (1= ND)r < a®hofb=b(1/4 = &) J(r = N).

Proof: Let B=(r— NI, - Sin Coro]lary 2.2. Then

A= 1/Dr

[ r— A1y - 5]l
(r—MJx~1]Sz
a(r—-N\) - 1‘1\‘1[.1'
a(r—A—1rk)
—afr(k=1)+ )
—a[Mvr—=1)+ ]
- Ara.

Since BT = B, ST = S and §? = (rr = \)S + M2J,. therefore
BBy = a1 [(r = N, - S

2l = NP1, =20 = NS+ (1= NS + M2y

.1'7 [( r - /'\)2[{, - ()' - /\)S+ /\A’2Jb]fl'

(r = N)aT[(r = NV — Sjr + AR2a?.

15




If Bx = [(r— A\, — S)x is integral and d is chosen such that A/b—1/2+d =
~Ava/b—1/2 +d is an integer, then we have

2TBTBr— A2/b - b(1/41 - &)
(r = NaT((r = N — Slx + /\1\"’(12 \20202/1) b ]/1 d?)
(r— Na2T[(r = M, — Sle + 2 \(#E22 M2y _f1/4 —
(r— /\)1T[(7 — My — Sl + a?\(b=Ae ’\"2 b(1/4 — (F
(r=NaT((r = M, — Sl + (22 ’\ 1/4 - d?%) >0,

therefore,
T[S = (r = ML < a*Aofh=b(1[4 = &) [(r = \)

From now on, we use Us refer to the right hand side of the inequality in

Corollary 2.3.

Corollary 2.4 Lct S be the inlcrscetion malrvix of a (v,0,v,k; N)-BIBD, »

be any rcal valued vector and let a = 271y, If S is integral, and d is chosen
y j

such that ]\‘2(1/'1’ - 1/2 +d isan intcger, then
7TSe > @k fo+ b1 1 = &) [(r = \). (2.14)

Proof: Let B = S in Corollary 2.2, Then A = vha and Afb—1/2+d =
k2afv—1/2+d. If Sxis integral and d is chosen such that Mafo-1/2+d

is an integer, then
aTSTSe > (rha)? b+ (1 /4 = d?). (2.15)

Since STS = 52 = (r— N)S+ M2, the left hand side of (2.15) evaluates to
(r = A)aTSr 4+ M2a?. Therefore we have

(r—NaTSr> 22 fh = \) + (1[4 - &?)
= ’\2(12(7 —/\ /7)+b 1/1—'([1

16



Hence

aTSx > Ka*fv+ b(1/4 - &) [(r - N).

We use L; to denote the right hand side of the inequality in Corollary 2.4.

Corollary 2.5 Let N be the incidence matrir of a (v,b,7,k,\)-BIBD, x be
any real-valucd veclor and a = ¥T1,. If N is infegral, and d is chosen such

thal ka/v— 1/2 +d is an intcger, then
T Se >l e+ w14 — ).

Proof: Let B = Nin Corollary 2.2, then p=v, A = 1TNa =kl z = ka. If
Na is integral and d is chosen such that A/p=1/2+d= kafv-1/2+d is

an integer, then
PINTNy — a?i? o= v(1 1 = d?) > 0.
Since S= NN, we have
2TSe > kv 4 v(1/4 = d?).
From now on. we let Lg denote the formula @?k2 fv + v(1 /4 — &).
In the case of the (22.33.12.8.4)-BIBD. Greig computed the following ta-

ble of values for Us. L7 and Lg. according to @ and an appropriately chosen

d.

Note that we have corrected the signs for some of the entries under column
“6d” in Table 2.2, All the entries with “—1" were listed as “1” in [23] and
those with 1™ were listed as “—17" in [23].

Corollary 2.3 and C'orollary 2.5 arc used to derive the remaining results in

this chapter. We use them by first choosing a specific ¥ and computing the

17



Table 2.2: Values of Uy, Ly and Ly

all a*dv/b 6d ol @hffv 22d L, | 22d Ly
0.0 000 3 0.00 0.00 11 0.00 11 0.00
0.5 067 -1 -0.25 0.73 1 1.75 T 100
1.0 2.67 1 1.75 2.91 -9 3.25 3 8.00
1.5 6.00 3 6.00 6.55 3 7.50 -1 12.00
2.0 10.67 -1  9.75 11.61 -7 12,25 5 16.00
2.5 16.67 1 15.75 18.18 5 19.00 -9 20.00
3.0 24.00 3 21.00 26.18 -5 27.00 9 28.00
3.5 3267 -1 31.75 35.01 7 306.25 ho10.00
4.0 42.67 IR ! 46.55 -3 4750 1 52.00
4.5 51.00 3 5100 5891 9 "v.25 -3 61.00
5.0 66.67 -1 6575 T2.73 -1 TR ST 7600
5.5 S0.67 I 79.795 38.00 11 88.00 11 88.00

left hand side of the corresponding inequalities. Then we compare the result
with the bounds guaranteed by the corollaries. To simplify the explanation,

we use the notation " to denote i copies of the value t. For example,
((1/2)3(=1/2)72,0"%) = (1/2.1/2,1/2,-1/2,-1/2,0,...,0).

From Table 2.2 we can see that Corollary 2.5 gives a better bound than

Corollary 2.1.

Theorem 2.6 Let

be a submatrir of S. Then u < 1.

Proof: Let a7 = (1.1,0"37) in Corollary 2.3. then a = 2 and U, = 9.75. Now
WS — (v =N =(1.1) < 2 g )(1,1)"' =2 < 9.75,

I

<



which leads to u € 4 as u is an integer. Since u is the intersection number of
any two blocks in a (22,33.12.8,4)-BIBD, the result shows that types 6 and

7 in Table 2.1 with b5 = 1 could be eliminated.

Theorem 2.7 Le!

S ¢c d e

c 8§ u v
S = N

d v 8 w

«c r ow 3§
be a submalviv of S. Then e +d+ ¢ +u+ 4 w>10.
Proof: Let o = (171.0"#) in Corollary 2.5, then Lg = 52 as a = 4. Now
dSr=1TS1 =32+ 2(c+d+e+ut v+ w) > 52

Therefore

c+d+ o+ u+ v+ w>10.
Corollary 2.8 Ifc =d= ¢ =1 in Thiorem 2.7, then max(u.v,w) 2 3.

Proof: By Theorem 2.7, u+ v+ w > Tifec=d = ¢ = 1. So that

max(u, v, w) 2 3.

Theorem 2.9 Lt

S u v
u S w
row 8

be a submalriv of S. Then u + v > w.

Proof: Let o7 = (=1,1.1.0"") in Corollary 2.3, then Us = 1.75 as a = 1,
and
2SS — (r— N = =2(u+ v—w) < 1.75,
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that is, u + v > w— 0.875. Since w. v, w are integers, Theorem 2.9 holds.

In Table 2.1, both Types 5 and 8 heve by > 3. Consider the Sy formed
by the four blocks By, B, . By, By where | 31N By =1 for ¢ = 2,3 and 4. By

letting the remaining entries of Sy be u, v and w, we get

31 1 1

1 8 u »
1 v 8§ w
1 » w 3

Corollary 2.8 implies one of the w.r or wis at least 3. Consider the 3 x 3

submatrix of Sy using this maximal entry r. We have

811
Il 8
] 8

since ¥ 2 3. we have a contradiction to Theorem 2.9. Hence types 5 and 8

are eliminated.
Corollary 2.10 [fu =0 in Theorcm 2.9, then v = w.

Proof: Theorem 2.9 implies 0 + » > w. To show w > r, interchange blocks

2 and 3.

Corollary 2.11 [fc = 0.d = 1.c =2 in Theorem 2.7, then v = 1o = 2,

and w > 4.

Proof: When c=0.d =1 and ¢ =2 in the matrix Sy, thenu+v4+w> 7
by Theorem 2.7.
Since ¢ = 0 in the first principal submatrix of Sy, we have u = d =1 by

Corollary 2.10. Similarly, for submatrix

S ¢ ¢
c S v
« v 8




of Sy, ¢ = 0 implies v = € = 2. Thus, w > 4 holds.

From Corollary 2.11, we have u + v = 3 and w > 4. This contradicts
Theorem 2.9, and we can climinate type 9 of Table 2.1, becuuse by = b; = 1
and by > 1 imply we can choose 4 blocks such that the first row of the cor-

responding S; is (8,0,1,2].

Some of the 29 cases of S5 can be climinated. An S; contains the intersec-
tion number of five blocks. Let N5 be the 5 columns of the incidences matrix
corresponding to these five blocks. In N, every point has an even number
of incidences and every column has eight 1's. Conventionally, we can place

this N5 in the first five columms of .,

We note the following facts:
(a) Ifa Nj has f rows with | incidences. then it has 8 x5 —4f = 2(20 - 2f)
I's in remaining (22 — f) rows. that is. it has (20— 2f) rows with 2 ones, and
(24 f) rows with no ones. To simplify the explanation, we use the “¢-rows”
instead of “the rows with # ones™ then. The sum of the off-diagonal elements
in 55 will he ¥ = fP(1.2) + (20 — 2f)P(2.2) = 40 + 8f. P(n,r) is the
number of permutations of n things taken 7 at a time.
(b) If the ith colummn of Ny has t incidences in the 4-rows, then it will have
(8 - 1) I's in the 2-rows. and none in the empty rows. The off-diagonal sum
in the first 5 columns for the ith row of S= (s;;) will be r, = (4 — 1) x t +
(2= 1) x (8 =t) =8+ 2t where 1y, = Y0, 8, — i, 7 = 1,2,3,4,5.
(¢) If the jth column of N (with j >5) has t incidences in the 4-rows, and
¢ incidences in the 0-rows. then it will have (8 — t — ¢) incidences in the
2-rows. The sum of the first 5 elements in row j of S, R, = Y2, s, is
4+ 0c+28 =1t =)= 1642 - 2c.
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Lemma 2.12 The valucs of .‘3/1. rory 4+ k,oand R, are even.

Prcof: Since © =40 + 8f. and b = &, we have
S/l= 205+ f).
ho= 244 1),
4+ k= 2(8+1). and
R = 28+t-o0).

The above fact allow us to use ! = (£1/2.....£1/2,0°%) in Corollary 2.3

and 2.5, because [(r — N, — S} and Na are both integral.

Lemma 2.13 ¥ € {10. 18.56}.
Proof: Take 2T = ((1 /2)72.0°%) in Corollary 2.3 and 2.5, then a = 2y =
5/2. From Table 2.2, U = 15.73. Ly = 20. Therefore
TS — (r = N = (1 /2)21HSs — (r = N5 = S < Upyand
2TSr=(1/2)2S +5x 8) > L.

That is
10 < S/ < 15.75.

or
10 £ ¥ <63

Since S =40+ 38f=8(5+ f). £ € {10.48.56}.
Lemma 2.14 », < S/1-2.01=1.2....,5.

Proof: Take 2T = ((1/2)"". =1/2.0"%) in Corollary 2.5, this establishes that
15 < £/41=2. Here the rg can be substituted by any r, for i = 1,2,3,4,5, by

interchanging components 1/2 and —1/2in .
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Theorem 2.15 The followings stalements are true:

(a) If S = 40, then {r,1m2,73,14,75} = {8°5}.

(b) IfS =z 48, then {1'1,7'2,7‘3,7‘4.7‘5} = {10.4,8}.

(c) If T =56, then {r),rg, 73,174,715} = {12'4,8} or {12%3,10%2},
Proof: We have 7y + 172 +...4+ 75 = &, Also, for each 7, r; > 8, r; is even and

r, € £ /4 - 2. Hence, the solution are as listed.

Lemma 2.1G The only possible values for sgs are given by

classification | (1) (2) (3) (4) (5) | (6) | (7)
) {0 Ix /8 56 56 56 | 56
Iy & N 10 8 10 10 12
I N 10 1 12 10 12 12
545 0.1.210,1,214.2510,1,2]1 0.1,211,2,312,3,4

Proof: Take o7 = ((1/2)".(~1/2)%,0=2%) in Corollaries 2.3 and 2.5. We
have @ = o'l = 1/2 and from Table 2.2, U = —0.25 and Lg = 4. Hence,

27TSr=Y/14 10 = (4 s — 2545) > 4,and

S — (r =ML =aTSr —8(5/4) = T Sr - 10 < -0.25.

That is,

A <SS +10= (r)+ 15 — 2845) <10 -0.25,
or

(r+15)2-X/8-3 <si5< (ry+7135)/2 - 5/8 —0.125.

For 8 =d0, ry+ 15 =84+8 X =48, 13 +r15=8+100r 10+ 19; ¥ = 56,
ri+1s =384+ 12,10410.10+4+12 or 12+ 12, The upper and lower bounds on

835 then follow,

Note that the sg5 can be substituted by any s;; for i # j = 1,2,3,4,5,

since the order of the elements in the vector @ can be changed.
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"Theorem 2.17 The only possible Sy are those numbered L 12, L15, LI0,
L18, L23, L2 and L29.

Proof: The cases L1, L2. L3. L4, L5, L6 and L9 have © = 61. These T
configuration are impossible by Lemma 2.13.

Classify the remaining 22 cases of S; by &, 7y and 75 according to Lemma-
2.16. We have the following possible cases:

Classification (1):

It contains the following cases: L27, L28 and L29. From Lemma 2.16, s,, < 2.
In L27, s35 = 3. In L28. 545 = 3. So both L27 and L28 are impossible. Only
L29 is left.

Classification (2):

It contains 3 cases. which are L21. L25 and L26. By Lemma2.16,0 < s < 2.
For r5 = 8,1y = 10, since 55, =3 in L21 and L25, both are impossible. Ouly
L26 is possible.

Classification (3):

It contains cases L21 and L22. From Lemma 2,16, 1 < sp< 3 forry =1y =
10. In both of L21 and 122, sj9 = -1 for 1y = 1 =10, so, they are impossible.
Classification {4):

It contains the cases L12 and L16. Both are still possible.

Classification (5):

It contains 7 cases. By Lenmma 2.16,0 < 5, < 29f ny = 75 = 10, Sinee
s45 = 3 in L7. L8, L10 and LIl and vy = r5 = 10, they are impossible. But
cases L15. L18 and L23 are left.

Classification (6):

It contains five cases LIJ. L1 LIT. L19and L20 with sg55 =4, where 75 = 10,
and r3 = 12. But according to Lemima 2,16, 1 < s, < 3ifry = 10,77, = 12,
so they arc all impossible.

Classification (7):



It is empty.

The 7 remaining configurations are listed as follows:
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It remains to be seen what attack will either eliminate these cases or lead

to a construction of the design.

D
~]
s



Chapter 3

Construction of Some
(28,63,27,12,11)-BIBD’s

In a symmetric BIBD. the intersection matrix S = (k= AT+ AJ. So, there is
only one intersection number, namely A, In a quasi-symmetric BIBD, there
are two intersection numbers. In this chapter, we construct some new quasi-
symmetric (28.63.27.12.11)-BIBD with block intersection numbers y = 6 and
2 = 4 by assuming an automorphism ¢ of order 7 with no fixed point and no

fixed Dblock.

3.1 The Orbit Matrix

We assume that the (28.63,27.12.11)-BIBD’s are invariant under an auto-
morphism ¢ of order 7. Suppose that the blocks are labelled By, DB, ... |
Bss and the points are labelled o, ... 220, By relabelling the blocks, if

necessary, we can assume that the action of g on the blocks is given by
g=(1.2.....7)(8.9,.... 14)...(57, 58, ..., 63).

Similarly, we relabel the points such that ¢'s action on the points is given by




In general, let X, X3, ...,.\}, be the point-orbits and Oy,0;,...,O, be the
block-orbits of a BIBD fixed by a group G. We define the orbit matrices
with respect to G to be the m x n matrices Cg = (C;;) and Rg = (R,,)
where Cj; = |\, N DB| fora B € O, and Ry; = |{Blx € B,B € O,}] for
an = € X,. Because O, and .\, are orbits, the values of Cj; and R, do not
depend on the choice of B € O, and x € X,. When g is an automorphism,
we let C, and I}y be the matrices with respect to the cyclic group generated
by ¢g. If the order of g is a prime p. then the size of the orbits are either 1 or

p. In other words, a column (row) is either fixed or its orbit is of size p.

Another way of viewing the orbit matrices is that the point orbits and
colun orbits induces a partitioning of the incidence matrix N into an m xn
block matrix. The entry (), corresponds to the sum of a column in the (7, 5)-
block. The entry IRy, corresponds to the sum of a row in the (z,))-block.

When the size of X equals the size of O,, then G, = R,;.

The following result is well known:

Lemma 3.1 If g, is the sizc of point-orbit X, and 7, is the size of block-orbit
O,. then

Ao, fi#3,1<,5<m (3.1)
'\ 1 ' — I A j .q —_— -_— [}
Ska G G NP4 (r=No,. ifi=7=1,...,m.
SisCam=ro,c t=10.0m. (3.2)

Proof: We note that

NNT = (r = M.+ M\,

(r = ML, 4 A, Mo, .. Moy
_ /\']0-_)(71 (7' - /\).Ig2 + /\J¢72 cee /\Ja2gm
’\Javn”l ’\']O'nna'.’ t (7‘ - ’\)Iﬂ'm + A‘]'¢7m

(8]
-~}




and

Ja.a, = la.lg:l, where 14, = (1 1)7‘,
()
IZ':JGﬂ’JldJ :(T.(TJ‘

Let u, be a v by 1 vector,

uf'T=( 001 e 00’._1 17 00:+l e 0(7,,. )s

a,

then
WTNNTy, = IZ:(/\J,,,U))I,,) = \a,0,, il 7 # j,and

'lllTArl\TTU, = IZ:[( r— /\)Iﬂ' + ’\'](I.]ld, = (7' - /\)U, + /\U;z, if 1= I,...,nn
This is the right hand side of (3.1).

Since C, is the column sum within the submatrix formed by row orbit .\,

and column orbit O,, we have

TAr ! T
TN(uJ."\)T = | | e 15)(‘31"'C"111|' |G- J")l

e

Tn g ™

= Si':]C',kC',kT/,-. ij=1,..m
Since uT NATu, = u! N uz‘.\')r. the left side of (3.1) equals to the right side,
thus (3.1) holds.
It is easy to see th!

A " =1LnTh = (C'nl C’Hl‘ lcm : m)lb
\-W

Tn

’\lb
l
u;, rl,
= ro,. t=1,..,n

These equations allow us to find solutions to the orbit matrices.  In our
case we have o, = 7, =7. (}, = Ry, for all ¢ and 3. The orbit matrix of a
(28,63,27.12,11)-BIBD is a 4 l)y 9 matrix. The equations thus reduce to
. 11(7) if 7 1 <6, <4
S?:]C’ILCJL = { _‘_) # J» 1J ?

11( +(>¢ )y =93, ifi=j=1,..,4.

)G =27 1 =1,



Using a computer, we found a total of 284 orbit matrices satisfying these

equations.

3.2 Non-Existence Condition on Orbit Ma-
trices

In this section, we will try to reduce the number of possible orbit matrices.

Lemma 3.2 In « 4 by 9 orbit mairiz Cy = (Cjj) of the (28,63,27,12,11)-
BIBD, the possible values of S1_,C (j =1,..,9) are 36, 40, 44, and /8.

Proof: Let the incidence matrix N = (N}, Ny, ..., Ng) = (N,,), where the
Nj(j = 1,....9) are the 28 x 7 submatrices of N and the Nj;(z =1,...,4,5 =
1,...,9) are the 7 x 7 submatrices of the N. As usual, $ = NTN = (NTN;).

Let Ny = (no.ny,....16). where each n, is a 28 x 1 vectors,

(1 (1) 4) (4
1y = (Mg yseees TG g e nf,J,.. 116])) ,

and the subscripts are taken modulo 7. Since N is fixed by an automorphism
of order 7. the N}, are circulants, then in Ny we have

k (k) . -
;,',) =0, g1 M= load, pg(mod 7) = 0,...,6.

Hence, the non-diagonal element syq.l = 1,....6, of the first row in the N N,

are given by
Sol = 71{, m

Tl ,z,-onf‘o’n‘”

iz 12;—0”:-!0 Ini-:)ll l
oy Do) .-lnff)lo
= Tl T n nl).

So7-1 = n?, ns_y

— (k) (k
- Z& 121—0 1,07, 7) I
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Therefore, we have

Sog = Soi-1, | =1,...,6.

Now, let S01 = Sp6 = b].So,z = Sp,5 = by, and 80,3 = Spq = by, where
bi(z = 1,2,3) should be either 4 or 6, because the design is quasi-symmetric.
Thus the first row sum of NTN; is Yoondng = 12 + 6(4) + 2(21), for

t=0,1,2,3, where 2t is the number of sp; that is equal to 6.

On the other hand, this first row sum of N¥ N, is also given by
1’71‘,/\”;[‘.7\'1(:, = (1¥1’V;l,, ceen ]-‘-T]\q;)]\r](‘l

= [T CulTNyle
Zr‘=l C'tzl’

where e; = (1,0,..0)7 is a 7 by 1 vector. Therefore,
4
YOG =124 6(4) +2(2t),t = 0,1,2,3.
1=]

That is )
ZC?, = 36.40,-14,0r 48.

Replacing Ny by N), we get a more general equation

4
STCE =124+ 6(4) +22t),j = 1,..,9,t = 0,1,2,3,

1=1
which shows that the possible values of the sum of square for any column of

the orbit matrix C are 36. 40. 44. and 48.
Example. The orbit matrix of case 3 is

033333444
143333304 4
4 22335413
4 44331431




Since the sum of square for its second column is 32432+ 22 442 = 38, which
does not equal 36, 40, 44, or 48, so it can not be an orbit matrix. We can

eliminate it from the 284 cases.

According to this Lemma, we reduce the 284 possible cases to 9. They
are cases 1, 2, 26, 164, 171, 235, 237, 262 and 283. These cases are listed in
Appendix B.

3.3 The Results

Given an automorphism ¢. if point j is in block ¢, then point 79 is in block
9. Therefore, cach block can be assumed to be a circulant. Within each
block, the row sum equals to the column sum, which is a constant. So,
given a particular orbit matrix, we can try to extend it to a complete BIBD
by using a computer program BDX to try out all possible circulant matri-
ces with the correct row sumi. We found a total 246 new quasi-symmetric
(28,63,27,12,11)-BIBD.

In Table 3.1, we give the distribution of solutions according to the size of
their automorphism groups. In Table 3.2, we give the distribution of solutions
according to their orbit matrices.

It would be interesting to try and construct more quasi-symmetric designs

with these parameter set by assuming a diflerent automorphism.
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Table 3.1: Distribution of solutions according to size of automorphism group

Group order | Frequency

7 47

14 50

21 95
28 12

42 3
84 15

168 2

22 8

672 8
1311 q
10752 1
1151520 1

Table 3.2: Distribution of solutions according to orbit matrices

Case | Number »f new solutions
1 2]
2 12
26 69
161 36
171 HhH
235 20
237 10
262 12
283 11




Appendix A

The 29 submatrices Sy of the

incidence matrix S

L1 (H100)
84442
48433
44813
43184
23348
LS

84433
48343
43823
34283
33338
L9 (H108)
84422

L2 (H99)

84442
48424
44822
42284
24248

L6 (H107)
84431
48334
43834
33383
14438

L10 (H94)
84422

L3 (H101)
84433
48433
44822
33284
33248

L7 (H90)

84431
48332
43814
33183
12438

L11 (H91)
84422

33

L4 (H103)
84442
48334
43823
43283
24338

L8 (H89)

84431
48323
43823
32283
13338

L12 (H64)
84422




48
4 3
24
23

L13
8 4
4 8
4 2
33
13

L17
8 4
4 8
33
33
22

L21
8 4
4 8
31
13
22

L25
83

343
8 34
383
4 38

(H80)
4 31
233
8 24
282
4 28

(H88)
332
332
8 24
282
4 28

(H35)
312
132
8 42
4 8 2
228

(H55)
331

4 8
4 3
24
21

L14
8 4
48
4 2
24
22

L18
8 4
4 8
33
32
23

L22
8 4
4 8
22
22
22

L26
8 3

341
814
183
4 3 8

(H87)
4 2 2
242
8 24
282
4 28

(H81)
332
323
833
382
328

(H36)
222
222
8 4 2
482
228

(H38)
322

4 8
4 3
23
22

L15
8 4
4 8
4 2
23
23

L19
8 4
4 8
32
33
23

L23
8 3
3 8
33
33
33

L27
8 3

332
823
283
338

(H82)
422
233
833
382
328

(H78)
332
233
8 34
381
418

(H74)
333
333
833
381
318

(H2)
320

31

4 8
4 2
24
22

L16
8 4
4 8
33
33
22

L20
8 4
4 8
22
33
33

L24
83
38
33
33
11

L28
8 3

242
8 42
48 2
228

(H65)
332
332
842
4 8 2
228

(H73)
233
233
844
480
408

(H52)
331
331
813
183
338



38
33
32
12

L29
8 2
28
22
22
22

322
8 22
283
238

(H1)

222
222
822
282
228

N W o d W

8232
2832
338
222

[ V)

0o

(H104)
4432
8343
3823
4283
3338

O N W W
W N O ™

W = = 0 W

023
8 23
282
328

(H10)
221
113
8 31
383
138

38212
22822
21283
12238




Appendix B

The 9 orbit matrices

solution 1, autogp size = 2880
row_type_id = 1 1 11

0 3 3 3 3 3 4 4 4

4 3 3 3 3 3 0 4 4

4 3 3 3 3 3 4 0 4

4 3 3 3 3 3 4 4 0
solution 2, autogp size = 48
row_type_id = i1 2 2

0 3 3 3 3 3 4 4 4

4 3 3 3 3 3 0 4 4

4 1 3 3 3 5 4 2 2

4 5 3 3 3 1 4 2 2
solution 26, autogp size = €

row_type_id = 1 2 2 2
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0 3 3 3 3 3 4 4 4

1 3 3 3 5 2 2 4
4 3 3 3 5
4 5 3 3

4

1 2 4 2

3 4 2 2

1

164, autogp size = 4

solution

2 2 2 2

row_type_id =

2 2 3 3 3 4 4 5

1

1

3 2 4 3 3 5 2 4
3 4 4 3 5

5 4 2 3

2 2 3
3 4 2 3

1

1

171, autogp size = 6

solution

= 2 2 2 65

row_type._id

2 2 3 3 3 4 4 5

1

1

3 2 4 3 3 5 2 4

5 2 4 3 3

1 4 2 3

3 6 2 3 3 3 2 2 3

235, autogp size = 32

solution

= 2 2 2 2

row_type_id

2 2 3 3 3 4 4 5

1

3 6§ 2 2 3

1
3 4 4 5 3

3 4 4

2 2 3

1

37




5 2 2 3 3 3 4 4 1

solution 237, autogp size = 8

row_type_id = 2 2 4 6

Ol W W -
N PN
SIS S N
o W = W
W w W w
W = o w
NN WD
OIS ORI
W = W v

solution 262, autogp size = 48

row_type_id = 2 2 § §

w W ;e
DN NN
N O NN
W W w w
W W w w
W W w W
N N W b
N N D b
w w = o

solution 283, autogp size = 2880

row_type,id = 5 5 5 §
2 2 2 3 3 3 3 3 6
2 2 6 3 3 3 3 3 2
2 6 2 3 3 3 3 3 2
6 2 2 3 3 3 3 3 2
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