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ABSTRACT

Nasser Saad. Ph. D.
Concordia University, 1998

We study a concrete class of eigenvalue problems in mathematical physics.
which arise from non-relativistic quantum mechanics and the Sturm-Liouville the-
ory. We develop practical techniques to obtain reliable bounds for the eigenvalues
of the Schrédinger operator H = —A + V(r),r = |r| € R™.

We introduce a three-parameter variational function. to determine an upper
bound to the ground-state energy, of the supersingular spiked harmonic oscillator
potentials V'(z) = r% + ;’\;,- (a > 1.A > 0). The entire parameter range A > 0
and a > 1 is treated by a single formulation. We employ the method of potential
envelopes to derive a simple energy lower bound formula, valid for all parameter
ranges A > 0 and a > 1, and for all the discrete eigenvalues.

The standard method of envelope potentials is extended and applied to analyse
the discrete spectrum of the generalized singular potentials V(z) = uz® + %a where
p.A > 0, cand 3 > 0 are arbitrary positive parameters. We analyse also the discrete
spectrum of of the generalized Kratzer's potentials V'(r) = —% +4&5 (Ap>03>
1). We obtain lower and upper bound expressions to the eigenvalues which are valid
for all dimensions N > 2.

We introduce the h-method to study smooth transformations V' (r) = ho(r) +
g(h(3r)). of the potentials Vo(r) = ho(r) + h(8r), for which exact bound-state
solutions of the Schrédinger equation are known for certain values of the positive
parameter 3. Eigenvalue approximation formulae thereby obtained provide lower
or upper energy bounds. depending on whether the transformation function g is
convex or concave. This enables us to give lower and upper bound expressions to
the perturbed Coulomb potential V(r) = —% + pr + Ar?, with arbitrary coefficients
{p, A}

Several new comparison theorems for the eigenvalues of a pair of Schrédinger
equations —u” + Q;(t)u = Au, t € [-[,l], i = 1,2, are introduced. These theorems
allow the comparison function @; (¢ = 1,2) to intersect at a finite number of points
within [—!,[], while maintaining the eigenvalue comparisons. The extension to more

general Sturm-Louvile problems is also discussed.

i1



ACKNOWLEDGMENT

I would like to express my sincere gratitude to my supervisor Prof. Richard
Hall for his guidance, encouragement and direct support during my graduate studies.
Without his constant support and advice, not only with respect to academic studies.
this work would never have been completed. The lively discussions I have had with
him have broadly enlightened my understanding of the meaning of the spectral
geometry and envelope theory. I am indebted to him for being my thesis director.

I especially wish to thank Dr. Attila von Keviczky for his guidance and sup-
port, and for his critical reading of the manuscript. I cannot find enough words to
express my thanks to him. I would like to thank Dr. M. Frank for her help and
advice, Dr. S. T. Ali for many valuable discussions and Dr. Z. Khalil for constant
encouragement.

I would also like to take this time to give a special note of thanks to my brothers.
especially Gamil Saad and Ezzat Attia, and to my sisters for their support during
this highly stressful period in my life. Finally, I should like to thank my fiancee
Yasuko Yamashita who stood by me with patience and understanding leaving me
to work those long hours in the office; I shall never forget that.

Using the facilities of CICMA in the department of mathematics and statistics
is greatly appreciated. The support of mathematics department and ISM is greatly

appreciated.

v



To the Memory of my Parents



Contents

List of Tables . . . . . . . . . . . . . . ..
List of Figures . . . . . . . . . . . . . . . . . ..

Introduction . . . . . . . . . . . . . . . . . ...

Chapter I: Min-Max Principle and the method

of potential envelopes . . . . . . . . . .
I. 1. Min-Max Principle . . . . . . . . . ..
I. 2. The Method of Potentia! Envelcpes . . . . . . .

References . . . . . . .

Chapter II: Energy Bounds For The Spiked
Harmonic Oscillator . . . . . . . . . .

I1. 1. Introduction and Main Results . . . . .

II. 2. The Domain Problem

11. 3. Variational Method . . . . . . . . . . . . . ..

I1. 4. The Envelope Method . . . . . . . . . Ce

II. 5. Numerical Results . . . . . . . . . . . . . . ..

II. 6. On the numerical integration of Schrodinger equation

o

e

(@1

with singular potential . . . . . . . . . . . ..
II. 7. Conclusion . . . . . . . . . . .. . . ...

References . . . . . . . . . . . . . .. ...

Chapter I11: Eigenvalue bounds for a class of
Singular Potentials . . . . . . . . . . .
I1I. 1. Introduction and Main Results . . . . . . . . . .
IIL.
III. 3. Numerical Results. . . . . . . . . . . . . . ..
III. 3. 1. The potential V(r) = Ar?+ & . . . . .

2

vi

. Transformed Potentials . . . . . . . . . . . .« o o . o o ..

X1

—
- — D e



References .

III. 3. 2. The spiked harmonic oscillator potential . .
III. 3. 3. The potential V'(r) = Ar® + L.a=3

Chapter IV: Smooth Transformations of

Kratzer’s Potential in N Dimensions .

IV, 1. Introduction and Main Results . . . . . . . . .
IN'. 2. Transformed Potentials . . . . . . . . . . ..
IN. 3. Numerical Results. . . . . . . . . . 0.
IN. 3. 1. The potential 1'(r) = -2 + ,_—b- .
I\ 3. 2. The potential 1(r) = —%[1 - -] + rl
References .

Chapter V: Eigenvalues bounds for transformations

of quasi-exactly soluble potentials

\". 1. Introduction and Main Results . . . . . . . . .
\". 2. Perturbed Coulomb Potentials . .

V. 3. Transformed Potentials . . . . . . . . . . . ..
V. 4 Numerical Resules . . . . . . . . . L.
V. 4. 1. The potential Vir) = -+ pur+X\r=. . . . . .
V. 4. 2. The potential V'(r) = -2 + uln(r +r°)

V. 4. 3. The potential V(r) = =L + yerr+rs
References . . . . . . . . . . . . . . .. ...

Chapter VI: Eigenvalues Comparisons

VL
VL
VI
VL
VI

o =

W

(S]]}

. New Comparison Theorems

for Quantum Systems in a box. . . .

Introduction

.........

Practical Method . . . . . . . . . . . . .. ..
Applications . . . . . . . . . . . ... ...
Elementary Results for a System of Sturm-Liouville .

vii

. 43
.34

o =1 =) =1
e O O N



V1. 6. Applications to Sturm-Liouville Problems . . . . . . . . . . . . . 99
References . . . . . . . . . . . . . . . . . o o ... 104

Conclusion . . . . . . . . . . . . . . ..o s 1e0

Appendix: Publications . . . . . . . . . . . . .. .. ... ... 107

viil



Lists of Tables

Tables Page

I1.1

I1.2

I1.3

IT1.1

IT1.2

IT1.3

I11.4

Upper bounds for H = — j‘;-; +1r2+ ﬁ: with different values of \. The values
ES were evaluated by formula (I1.3). and for E¥ we used formula (11.2). E}

1s from inequality (11.16) of the present work. The ‘exact’ values were obtained

by direct numerical integration . . . . . . . . . . . . . . . ... 98
Upper and lower bounds for the H = -—% + 1% + ?—STOOQ with different values
of a. by inequality (II.16) and the formulas (II.4-3) . . . . . . . . . 29

A comparison between the results EF of Ferndndez [27]. and the results E!
of the present work obtained from the inequality (I1.16) for ¢ = 4 and 6 and

various values for the coupling A . . . . . . . . . ... ... .. 29

Some lower bounds Ef and upper bounds E} using (II1.8) and (IIL9) for

H = —d%.-; +~ r? + 180 The “exact” values E;* were obtained by direct
numerical integration of the Schrédinger equation . . . . . . . . . . 46

Comparison between the ground-state energy E;; obtained by (I1.4) and the
eigenvalues E;;; obtained by (II1.8-9) of the present chapter. along with the
“exact” values Ej' obtained by direct numerical integration of the Schrédinger

equation. . . . . . . . ... ... AT

Upper bounds EY using (111.19) for H = — 3‘% +Ar!® + £ with different val-
ues of n. The “exact™ values E; were obtained by direct numerical integration

of the Schrédinger equation. . . . . . . . . . . . . .. .. ... 48

lower bounds EL using (I11.17) for H = — &5+ \z21 + -+ with different values
of n. The “exact” values E;’ were obtained by direct numerical integration of

the Schrédinger equation. . . . . . . . . . P ¢

1x



V.1

Iv.2

IV.3

IV.4

V.2

Some lower bounds Ef and upper bounds Ef, using (IV.20) for H = —\ —

% + rl: in 3-dimensions with [ = 1. The “exact™ values Ey; were obtained by

direct numerical integration of Schrodinger’s equation . . . . . . . . 62

lower bounds Ed; using (IV.20) for H = —A — 1 + -+ for dimension .\ = 2
to 10. The “exact™ values Eyq were obtained by direct numerical integration

of Schrodinger'sequation . . . . . . . . . . . . . . ... ... 63

lower bounds E&, using (IN.20) for H = —A — 2 + =7 for dimension V' = 2
to 10. The “exact” values Ego were obtained by direct numerical integration

of Schrodinger’'s equation . . . . . . . . . . . . . . . . ... . 64

Upper bounds Ef, using (IV.23) for H = —A— % [1 - %l + r]—: for dimension

N = 2 to 10. The “exact™ values Egg were obtained bv direct numerical

integration of Schrodinger's equation . . . . . . . . . . . . . . . 63

Eigenvalues of H = -1 A —1 4+ pr + Ar? for different values of y and \.
Comparison between results E & of Bessis et al [13]. using the moment method.

and the present work which vields the lower bound EX . . . . . . . 80

Eigenvalues of H = — A =1 + pur + Ar? for different values of y and A. Com-
parison between the lower bound E* given by formulas (V.25) and (V.26) and
1

N

accurate values E~ found by direct numerical integration

Eigenvaluesof H = - A —% + pIn(r +r?) for different values of u. Comparison

between the upper bound E U given by (23) and accurate values E~ found by

(04}

direct numerical integration 2



Lists of Figures

Figure Page

I1.1

I1.2

I1.3

I1.4

II.5
I1.6
I11.1

IvVa

Iv.2

Vil

VI.1

V1.2

The spiked harmonic oscillator potential 1 (r) = r? + M\z|~® for @ = 3 and

A=0.00l.1and 10 . . . . . . . . . . . . . . . . .. ... .. 130

Family of 'tangent’ potentials 17'/(r). for different values of ¢ along with the

graph of spiked harmonic oscillator for \=landa=5/2 . . . . . . 31

Comparison between the result of the present chapter with the result of Harrell
(I1.2) and of Aguileraet al (II.3) . . . . . . . . . . . . N 2.

A comparistion between the variational results (I1.16) for a = 2 and the "exact’

solutions found by direct numerical integration of Schrédinger's equation 33

The graph of the variation wave function (I1.26) . . . . . . . . . . . 34
The graph of the variation wave function (IL.27) . . . . . . . . . . . 34
Potential envelopes 1''*!"(r) for V(r) = 31 = ;_1— . |
Graph of €(t) = € (t) along with the exact eigenvalue E and corresponding
unnormalized wavefunction in 3-dimensions . . . . . . . . . . . . 6
The graph of the lower bound Ef, obtained by (IV.20) as a function of the pa-
rameter b. along with some exact eigenvalues Egq obtained by direct numerical
integration . . . . . . . . . . . . EEP N ¢
Two parametric regions: if 4 < v/A. the formulas (V.25-26) vield a lower bound
for the ground-state energy of the Hamiltonian H = — A —1 4 pur+ Ar2. while
p >\ yieldsan upperbound. . . . . . . . . . .. . .. ... . 83
The potentials t* + % sin(4t?). where s € {~1.0,1}. If the lowest "even

eigenvalues are written Ag(s). theorem (1) implies Ag(—1) < Ag(0) < Ag(1).102

The potentials ¢* + % sin(4t%)/t?. where s € {=1.0.1}. If the lowest "odd’
eigenvalues are written A;(s). theorem (3) implies A\;(—1) < A;(0) < (17103

X1



Introduction

This thesis deals with a concrete class of eigenvalue problems which arose in
the literature of mathematical physics in the past two decades and traces the origin
of the problem to non-relativistic quantum mechanics, and the Sturm-Liouville the-
ory. Continuing this approach, we develop herein practical techniques for obtaining

reliable bounds for the eigenvalues of the Schrédinger operator
H=-A+V(r), (0.1)

whose action is defined on a suitable dense linear manifold of L2(R").

The Schrodinger operator (0.1) appears throughout quantum mechanics as
well as in applications of the Sturm-Liouville theory. Since the eigenvalues are
not explicitly ascertainable in most cases, several approximation schemes have been
devised and improved over many decades. For concrete past examples, as well as the
history (although incomplete) of this problem, the reader is refered to the references
mentioned in [1].

It is well established [2-10] that. for suitable V'(r), this operator {0.1) is es-
sentially self-adjoint on the space of infinitely differentiable functions with compact
support C§(R") and can be defined as a sum of quadratic forms. Physically.
it represents the Hamiltonian (energy) operator of the particles in non-relativistic
quantum mechanics. after the centre of mass motion has been removed.

Adhering to the quotation of Weinstein et al [1]. “these connections between
theories and concrete problems proved to be most fruitful”. we emphasize these
connections in this thesis: in particular, we develop our constructive techniques out
of ideas behined concrete problems that have appeared in the literature.

In chapter II we study the supersingular spiked harmonic oscillator potentials
Vig) =22 + 2 >1,A>0) 0.2
(z) ==z +;; (a>1,A>0) (0.2)

We introduce a three-parameter variational trial function to determine an upper
bound to the ground-state energy. The entire parameter range A > 0 and a > 1

is treated by means of a single formulation. Further, we employ the method of

1



potential envelopes [11,12] to derive a simple energy lower bound formula valid for
all parameter ranges A > 0 and a > 1, and all the discrete eigenvalues.

In chapter IIT we extend the standard method of envelope potentials to obtain
more reliable and general energy bounds. We develop this technique through the

analysis of the discrete spectrum of the singular potentials
s A
Viz)=z* + prt A>0. (0.3)

Utilizing the eigenvalues expression, we derive an effective procedure for comput-

ing more precise lower potentials (0.2), as well as that of the generalized singular

potentials
, A
V(z) = pa? + =, (0.4)
T
where 1, A > 0, a and 3 > 0, are arbitrary positive parameters.
In chapter IV we use the exact solution of Kratzer's potential
A
Vi) =-2+ £ (0.5)
ror

in N-dimensional real space. We apply the new technique developed in chapter III

to investigate the discrete spectrum of the potentials

V(r) = g(=2) + £ ) (06)

r
in V-dimensions, where g and f are smooth transformations of —% and ;15 respec-

tively. Consequently we obtain a simple algorithm to ascertain a bound for the

spectra of the generalized Kratzer's potentials

and for the perturbed Coulomb potential

ar

1+r]+i 0<a<1,6>0) (0.8)

re

V(r)=-=[1-

valid for all dimensions N > 2.

N



In chapter V we introduce the h-method to study smooth transformations
Vi(r) = ho(r) + g(h(8r)) (0.9)

of the potentials
Vo(r) = ho(r) + h(8r), (0.10)

for which exact bound-state solutions of the Schrédinger equation exist. for certain
parameter values 3. Eigenvalue approximation formulae are obtained and provide
lower or upper energy bounds depending on whether the transformation function g
is convex or concave. This enables us to give lower and upper bound expressions to
the potential

Vir) = —%+yr+/\r2 (0.11)

with arbitrary coefficients {¢,A\}. We obtain, as a consequence of the h-method

developed, energy bounds for the potential
. 1 2
Vir) = - + uln(r +7°). (0.12)

Chapter V1is devoted to Sturm-Liouville theory. where several new comparison

theorems for the eigenvalues of a pair of Schrodinger equations

{ —u" + Q1 (t)u = \u.
—v" 4+ Qa(t)v = v,

are introduced (¢t € [—I.l]). These theorems allow the comparison function Q;
(i = 1,2) to intersect at finite number of points within [—!/.!], while upholding the
eigenvalue comparisons. The extension to regular Sturm-Louville problems is also
discussed. In the next chapter we review basic concepts from operator theory that

are needed, and introduce the standard method of potential envelopes.
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CHAPTER I

Min-Max Principle
and the method of potential envelopes

The majority of problems in non-relativistic quantum mechanics cannot. be
exactly solved. The usual approach is to use some approximation as a substitute
for the exact solution. It is, indeed. common in most of quantum mechanics texts
to include several chapters dealing with approximation methods. Some methods
even preceded the actual birth of quantum mechanics (Perturbation theory, Vari-
ational and WKB approximation among others). Some are quite recent. such as
the Padé approximation [1]. the approximation based on Hill determinants {2] or
continued fractions [3], the Self-Similar approximation [4] and the method of poten-
tial envelopes [5-8]. Among all these approximations, the variational method and
the method of potential envelopes both provide definite bounds. This is no coinci-
dence, because the envelope method employs the variationally obtained eigenvalues
with the advantage that it can contribute lower and upper bounds. The accurate

estimate of discrete eigenvalues of the non-relativistic Schrodinger Hamiltonian
H=-A+1V(r) (L.1)

requires. in principle. the calculation of a reliable lower bound. to complement a
variational upper bound. In practice however, all known procedures for computing
lower bounds are both more cumbersome. and less accurate, than the variational
procedure for upper bounds. In particular, many standard expressions for lower
bounds involve matrix elements of H?, and restrict the choice of admissible trial
functions. Furthermore, a priori knowledge of the spectrum H is always required.
On other hand. the variational method requires the computation of a matrix element
of H. with a suitable trial wave function of many parameters, to ensure the accuracy
of the upper bounds. The main advantage of the envelope method is that it yields
analytic expressions, obtained by simple extremization over one or two variables. as

shown below.



I.1. The Min-Max Principle

Since the reader has some familiarity with the theory of unbounded operators.
we will briefly review some essential basic definitions without comment. For a
comprehensive introduction to unbounded operator, refer to Refs.[9-18]. Herein the
following notation is adhered to throughout. H denotes a complex separable Hilbert
space. The symbols N, R, C and R" stand for the set of natural, real and complex
numbers and n-dimensional real space respectively. Further H and V" are (possible
unbounded) operators on a suitable domain D(H) in H - i.e. H: D(H) — H.

An linear operator H in the Hilbert space H is defined as a linear transforma-
tion H : D(H) — H. where the domain D(H) of H is a linear manifold of H. The
domain D(H) of H is assumed to be dense in H unless otherwise indicated. In this
case we call H densely defined in ‘H. Further, for densely defined bounded H the
domain D(H) is identical with H.

The graph T'(H) of the operator H is the set of all ordered pairs

I'(H) = {{¢,Ho}lo € D(H)}

and is a submanifold of H x ‘H. An operator H in H is called closed. if ['(H) is
closed in H x H (Cartesian product of two Hilbert spaces). Related to the concept

of closedness of an operator is the adjoint H* of the operator H. The operator H*
inH-ie H*:D(H*) = H - is defined as
D(H®) ={v € H: 3¢" € H satisfying (Ho, ) = (¢, ¢*)
Vo€ D(H)} and H*y = ¢*.

If Hy and H are operators in H and ['(H;) C ['(H), then H is called an
extension of H, and we write H; C H. Also, H, is called restriction of H to
D(H,), which is written as H|p(g,). An operator H is called closable if it has a
closed extension. The smallest closed extension is called the closure of H and is

written as H.

An operator H in H is called Hermitian if

D(H)C D(H') and Hé=H'¢ Vée D(H).

6



Alternatively, we can also say H is Hermitian iff H C H*. A Hermitian operator
H in H is called positive if

(6,H6) 20 Vo e D(H).

If (¢,Ho) >0 Vo€ D(H), ¢ # 0, then the operator H is called positive definite.

Moreover, we say that operator H is self-adjoint if
DH)=D(H*) and H=H".

As previously H is self-adjoint iff H € H* and H* C H. Bringing in the idea
of closure, a Hermitian operator H is essentially self-adjoint if its closure is self-
adjoint. Furthermore, if H is a closed operator, the subset D. C D(H) is called a
core or domain of essential self-adjointness if H|p, = H.

A number > € C is called eigenvalue of H if there exists a non-trivial o € D(H)
such that H¢ = z¢. The resolvent operator R(z,H) of H in H at = is

R(z.H) = (z] — H)™".

p(H)={:z €C| R(:.H) € B(H)}

is called the resolvent set of H. where B(H) denote Banach-algebra of bounded
linear operators on H. It follows that the spectrum o(H) is the complement of the
resolvent set p(H) in C. For Hermitian operators H. o(H) is a subset of (—oc. x¢).
The essential spectrum o.(H), of a self adjoint operator H, is the set of points of
o(H), that are either accumulation points of o(H) or isolated eigenvalues of infinite
geometrical multiplicity (the dimension of the eigenspace=o00). Therefore. the set
od(H) = o(H) \ 0.(H) is called the discrete spectrum of H. The operator H in H
has a pure discrete spectrum if o.(H) is empty.

Given the quadratic form ¢, which is a map q : D(g) — C, where the linear
manifold D(q) in H is the form domain, we write q(¢) for the evaluation of ¢ at
¥ € D(q). However, since every quadratic form is detemined by a sesquilinear form
and vica versa, we write also g for the sesquilinear form determined by the quadratic

form g, although we now mean g : D(q) x D(q) = C - i.e. q(¢,¥) € CV ¢ and

7



¥ € D(q). For the positive definite operator H in H, the sesquilinear form gy is a
map D(qn) x D(qu) — C defined by

qr(0.¢) = (H2¢, Hiy)

on D(qx ). where the form domain D(qp) is the dense linear subset of H consisting
of all € H such that |[H36| < co. Notice that the operator domain D(H) of a
self-adjoint operator H consists of all ¢ in H such that |H¢|| < <. Consequently.

because of

L, ,
1H29]* < |Hol|lo].

the form domain D(qy) of a positive self-adjoint operator H is larger than its
operator domain D(H) - i.e. D(H) C D(qy) in the sense of set inclusion.

For Hg and V positive self-adjoint operators in H, we write H = Hg + \V" with
D(H) = D(Ho)N D(V'). If D(H) is dense in H, then the form sum (Hy + AV is
defined as

g(6.0) = (HZo. Hio) + A(Viy. Viy)

V@ € D(Hp) and Vi € D(V'). This form sum concept is used in defining the domain
of the supersingular spiked harmonic oscillator operator in Chapter II.

A common thread running through all works dealing with properties of Hamil-
tonian operators (I.1), is the min-max principle.
Theorem 1.1.: (Weyl. Fischer and Courant)
Given a complex. separable Hilbert space H with norm (-, -)%, we consider a self-
adjoint operator H in H bounded below with spectrum E,4+; > E,(counting mul-
tiplicities). If D, denotes the family of all n-dimensional subspaces D, of H. then

the eigenvalues of {E,}nen can be calculated in following four ways!:

) /
E,=inf sup (v, HY)

: (12)
Du peD.nD(H) (¥.¥)

! The ratio (E"Jﬁf’) is called the Rayleigh quotient. The values {E,},en are

called the eigenvalues of Rayleight quotient. They are defined wherever (v'.4) is

non-zero and the quotient (f’w}fpﬂ)’) is bounded below.




(¥, Ho)

E, =mi _— )
I%Ir.nweorilr%(m (V,¢) (1.3)
. (¢. HY)
E, = of —_— I-
Efﬂ weD,‘;l_lnD(H) (¥, v) (L4)
E, = max min M (L5)

Dy weDi_nD(H) (¥.¢)

Equation (I.2) and (1.3) occur most frequently in the literature of mathematical
physics [11.14.17.19,20]. Their equivalence follows if we write the function v in
Eq.(1.2) as a linear combination of appropriate basis elements {w;}n_, of Dn. It
is important to note at this point that the mini-max principle is valid even if the
spectrum o(H) is not purely discrete. If the number of eigenvalues E, < E, is
finite, where n counts multiplicities and E, is the infimum of the essential spectrum
of H, then each of (1.2-5) must be interpreted as Ex = E, Vk > n.

The stated result of Theorem I.1 makes it possible to estimate the eigenvalues
of H by means of finite-dimensional approximations, which is the basic idea of
the so-called Rayleigh-Ritz method or variation method. If D, C D(H). then the
eigenvalues

El(Dn) S E?(Dn) S S En(Dn)

of the matrix representing H in D, provide upper bounds E,(D,) > E,. In quan-
tum theory. the subspaces D, are generally unknown. In addition. there are some
quantum numbers associated with constants of motions, whose eigenfunctions have
known structure. This happens for example with angular momentum. Under these
circumstances, it is practical to choose trial functions with this quantum number
fixed so that the Rayleigh quotients of the Hamiltonian H are not lower than the
energy of the levels with this quantum number.

There are many other highly regarded important consequences of the minimax
principle in quantum theory, among these we consider the following theorems.
Theorem 1.2.: Let V be an non-zero negative function in C§°(R") (n = 1 or 2).
Then the Schrédinger operator —A+ AV acting on L?(R™") has at least one negative
eigenvalue for all A > 0.

Proof: Ref.[11], page 100.



Note that in the case of n > 3, the operator —A + AV acting on L?(R") where
1" is purely attractive (i.e. assuming nonpositive values only), may have no bound
state at all if the interaction is weak enough [11].
Theorem 1.3.: For non-zero V' € C§°(R), —j‘% + AV has a negative eigenvalue

for all positive A if and only if
/1’(1‘)(11 <0.

Proof: Ref.[11], page 338.

Theorem I.4.: Let V" € L] (R") be bounded from below and suppose that 1" — x
at infinity. Then H = —A + 17 defined as a sum of quadratic forms has purely
discrete spectrum and a complete set of eigenfunctions.

Proof: Ref.[11], page 249.

Theorem L.5.: If V" € L? (R") is positive and

loc

lim V(z) = oc.
|z]—=0

then H = —A + 17 has a nondegenerate strictly positive ground state.
Proof: Ref.[11], page 207.

On the other Hand, if V' is allowed to be very singular. then —A + 1", defined
as a sum of quadratic forms. can have a degenerate ground state.

Theorem 1.6.: If " € L? (R) and satisfies

loc

a+1l
/ [V (z)*dr = 0. as |a| = oc. (1.6)

a

then the essential spectrum a’e(—;d;z; + V) =1{0,00).
Proof: Ref.[15], page 53.
Theorem 1.7.: For V|, V, € L}, (R) satisfying

a+1
sup/ Vi(z)|?dz < 0 (I.7)

a
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and

a+1
[Va(z)[*dz — 0 as |a| = oo, (1.8)
we have P
de(—T5 + Vi + Vo) =ae(-A + ). (1.9)

Proof: Ref.[15]. page 56.
Theorem 1.8.: If 0. (H) = [0,) and V(z) < 0 for z < a, for some a > 0 with

oc

/V(x)dr = —oc,
then —24—_:7 + V' has infinite number of negative eigenvalues.
Proof: Ref.[15]. page 71.
Theorem 1.9.: If S, T are self-adjoint operators such that S < T. in the sense that
D(T) C D(S) and (¢.Sy) < (v.T¥¢) for all v € D(S), then the eigenvalues of S

are not larger than the corresponding eigenvalues of T - i.e.
En[S| < Eq[T] (n=1.2....), (I1.10)

where E,[S] denotes the n-th eigenvalues of S in ascending order.

This is known as The Comparison Theorem (or Monotonicity Principle) of quan-
tum mechanics, see Ref.[11.14.17.19.20] for the proof of this theorem and for an
interesting refinement Ref.[21].

Theorem 1.10.: (Sum of Operators)[11,22-23]

If for the sum S + T of two self-adjoint operators S and T. defined on D(S) N
D(T), we denote by {Ex[S]}2, and {Ei[T]};2, the discrete eigenvalues of S and
T respectively, then

Ei1-1[S + T] < E[S] + Ei[T). (I.11)

Unfortunately this result is weak [24] for k,I > 1.
1.2. The method of Potential Envelopes
The method of potential envelopes is a very general technique for approxi-

mating the spectrum of an operator. A brief account for our application follows

11



(for a complete account and further developement consult Refs.[5-8]). We suppose
that the energy trajectories? Fy,;(v) of the Schrédinger Hamiltonian —A + vh(r) are
exactly known, where h is the shape of a central potential. The energy trajectory
functions Fy(v) are restricted. if necessary, to only values of the coupling parameter
v sufficiently large for the corresponding discrete eigenvalues to exist. The quantum
number n counts the eigenvalues in each angular-momentum subspace; eigenvalues
so labelled have degeneracy of exactly (2/ + 1).

We now consider a new Hamiltonian — A+ V(r), whose potential V" is a smooth

transformation

of the potential h. We assume the transformation function g(h) is monotone in-
creasing and either convex or concave, that is to say ¢"” > 0 or ¢” < 0. These cases
give rise respectively to lower and upper energy bounds [5]. This sitution can be

summarized by the following two expression
—A + vh(r) = Fu(v). ([.12)

—A+V(r) = En. (I.13)

For definiteness. we suppose that g is concave - i.e. g” < 0. Because of the concavity
of g. we know that the tangent lines to g (as a function of h) all lie above g. and

thus we write

V(r) = g(h(r)) < A + vh(r). (1.14)

By calculus we have

{-4 = g(h(t)) — h(t)g'(h(2)), _
(I.13)
v= gl(h(t))v te (0,00).
where h(t) is the point of contact of V'(r) with its tangent potential
V(r) = A(t) + v(t)h(r). (L.16)

? Energy trajectory: Curve describing how the energy E depends on the poten-

tial’s coupling v, which we write as E = F(v).

12



This family of ‘tangent’ potentials generates the so-called envelope representation

for V'(z) expressed by

Viz) = E’:"j‘(’)pe {V(”(x)} . (L17)

Since the Hamiltonians are self adjoint and bounded below, we can employ the
variational characterization of eigenvalues to derive the comparison theorem (1.9) of
quantum mechanics. which tells us that the potential inequality (I.14) implies the

corresponding spectral inequality
Eni < A1) + Fa(v(t)). (L.18)

This means:

Eni < g(h(t)) — h(t)g'(h(t)) + Fri(g'(h(2)). (1.19)

We now minimize the right-hand side of inequality (I.17) by differentiation with

respect to t to obtain the best upper bound. That is

En < min{g(h(t)) — h(t)g'(h(t)) + Fui(g'(R(2))}. (1.20)

13
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CHAPTER II

Energy Bounds For The Spiked
Harmonic Oscillator

In this chapter we introduce a three-parameter variational trial function to
determine an upper bound to the ground state energy of the spiked harmonic oscil-
lator Hamiltonian (II.1). The entire parameter range A > 0 and o > 1 is treated in
a single formulation. We also apply the method of potential envelopes to derive a

lower bound formula valid for all discrete eigenvalues.

I1.1 Introduction and main results

Since the pioneering paper of Case [1], an extensive literature has developed on
the subject of singular potentials [1-27]. Detwiler and Klauder [10]. on their early
work of singular potential theory. introduced the term supersingular to distinguish
a potential that is so singular that the first nontrivial correction to the energy
(i.e. the matrix element) diverges. They investigated the so-called spiked harmonic
oscillator Hamiltonian

(II.1)

y A
PR T

where the constant A is a positive coupling parameter which measures the strength of

H =

the perturbative potential and « is positive constant. The importance of the spiked
harmonic oscillator Hamiltonian (II.1) is that it helps understand the behavior of
nonrenormalizable field theory and is a prototype for Klauder's phenomenon [10-
12], namely sufficiently singular potentials V' cannot be turned off (A = 0) in the
Hamiltonian H = Hy + AV to restore the free Hamiltonian Hg. The phenomenon
of supersingularity for (II.1) occurs for @ > 5/2. Its name comes from the shape of
the graph of the full potential which shows a pronounced peak near the origin for
A > 0. An illustration of the potential for @ = 3 and A = 0.01.1, and 10 is shown
in Fig. II.1.

The Hamiltonian (II.1) has fascinating properties from the point of view of

mathematical physics. First of all, there is no dominance of either of the two terms
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of the interaction potential z2 and }'\7 Thus, for all values of A > 0. A # 0, r%

always adds an infinite repulsive barrier near the origin; on the other hand. one
can never neglect the r? term, the potential being like a wide valley extending to
oo. Potentials of this type are of relevance in a wide range of physical situations,
namely chemical, nuclear and particle physics.

Although the Rayleigh-Schrodinger perturbation series for the eigenvalues of
the operator H, regarded as a harmonic oscillator operator Hy = —% + r2 per-
turbed by l;’\r; diverges, a number of research papers [10,13-19] have been devoted
to the study of a modified perturbation series for the eigenvalues and eigenfunc-
tions. Detwiler and Klauder [10] realized that normal perturbation theory could
not be applied for values of @ > 5/2, however, they were able to predict the kind
of dependence of the ground state energy E = E(\). for small values of the cou-
pling A. by investigating the asymptotic behavior of the lowest eigenvalue of H.
They discovered that E(\) is proporticnal to AIn(A) (a = 3) and to ATT2 (a > 3).
Therefore, they conclude that when the perturbation Ar~¢ is turned off (A — 0)
vestigial effects of the interaction remain. Using some elegant results of Kato's work
on the perturbation theory of linear operators [28] and approximation techniques
for differential equations, Harrell [13] was able to derive explicit expressions for the
lower-order corrections to the eigenvalues of H when A is sufficiently small. For
example, his expression for the spiked harmonic oscillator ground state energy with

a = 2 reads.

6 A1n()) + O(A?) (11.2)

for small values of A\. Aguilera et al [14], motivated by Harrell's results. have
developed a large-coupling perturbative expansion for the ground state energy and
they present an approximate analytic expression valid for a < 3. Their expression

for the ground state energy when a = 3 reads

77,4 .4 1967 9

(o) — () (o
288 '5A 276482

%(5/\)%+... (11.3)

s 9.1
)P+ (5)2 +
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In addition to analytical approximations for the ground-state energy of the
spiked harmonic oscillator Hamiltonian, direct numerical integration methods have
been used to compute eigenvalues for (II.1). Killingbeck [20-22] provided an inte-
gration method based on improvement of the finite difference algorithm. He was
critical of the numerical results of Detwiler and Klauder using the Milne method.
His conclusions confirmed the result of Korsch and Laurent [23]. W. Solano-Torres
et al [24] used the Lanczos/grid method [25] to integrate the radial Schrodinger
equation for the Hamiltonian H. They introduced some errors in their application
of Harrell's formulas for a = 4 and a = 6. For example, if A = 0.01 and o = 4, then
formula (4) of Ref. [24] yields E = 3.225 68 not 3.075 22, Table (2); if A\ = 0.01
and a = 6, then formula (5) yields E = 3.482 41 not 3.096 48. in Table (3): and
similarily for other values of A. These corrections demonstrate that formulas (4)
and (5) of [24], correctly reproduced from Harrell [13], yield results which are better
than Tables (2) and (3) of [24] would suggest.

The variety of approaches, and the complication using different approximation
formulas for different ranges of o and A, raises the following question: is it possible
to devise a reliable uniform treatment to cover all cases? Section (II.3) answers
this question: we describe a simple three-parameter variational wave function that
estimates E(a.\) for the ground-state energy of H, for all values of @ and \. In
addition. in section (II.4), the method of potential envelopes is employed to derive

a complementary energy lower-bound formula

n_Afa (4n + 3)?
en(a,Ait) = t.—a(§+l) +T, : (I1.4)

where £ is the positive real root of
4t* — 220> - (4n +3)2 =0, n=0,1,2,... (11.5)

valid for all the discrete eigenvalues {E,}32,. In section (II.5) we describe our
numerical results and compare them with previous work. In the next section we

discuss the domain problem associated with the spiked harmonic oscillator.
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I1.2 The domain problem

We may write the Hamiltonian associated with the spiked harmonic oscillator

as
d?

H(a,\) = _F+x2 + Az|7% = Ho + AV, (11.6)

where Hp is the simple harmonic oscillator Hamiltonian, and V' = |[r|™®. The

domain, denoted by D. of H(a,\) is D(H) = D(Hp) N D(V). To identify D(H)

explicitly we notice that

D(V) = {v € L*(R.dz)| / ™y (r)|Pdr < oc}. (I1.7)
R

But the condition [z~ ®|¢/(z)[{*dz < oo for a > 1 requires that v € D(Hp) must
R

satisfy the Dirichlet boundary condition, namely
¥(0) =0. (I1.8)
Thus the domain of the potential V'(z) can be defined as

D(V) = {v € L*(R. d.r)[/r'“lw(x)|2dz < oc, v(0) =0}. (I1.9)
R

This domain is not the whole domain of D(Hj). indeed there are functions of D(Hg)
that are not in the D(V’), for example the functions satisfying v'(0) = 0. In this
case when'A — 07, a fixed, the operator H(a, \) does not converges to Hg but
converges to an operator formally equal to the harmonic oscillator supplemented by
Dirichlet boundary condition (II.8). This is known as Klauder's phenomenon. We

may then identify the domain of H(a,\) as

D(H) = {v € D(Ho)| / = [i(z) 2dx < o0.%(0) = 0}.
R

Another problem is that the harmonic oscillator Hamiltonian Ho with Dirichlet
boundary condition (II.8) has a spectrum consisting of twofold degenerated eigen-

values. The degeneracy arises from the effective decoupling of the two half lines
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(—oc.0) and (0,oc). To remove this degeneracy, the operator H(a.)) will be re-
stricted to space L%([0, oc),dr), with ¥(0) = 0. This avoids problems stemming

from the degeneracy of the spectrum. Thus
DH)={y € D(H0)|/1'_°|w(1f)lzd:r < oc,¥(0) = 0}.
0

The situation that the domain of the quadratic form need not be the whole space
guides us to search for a meaning of + in Ho + AV (11.6) in the realm of quadratic
forms [11-12.20]. So we can interpret the sum of Ho and AV as the sum of quadratic
forms defined on functions v in L?([0.0c.dr) that satisfy ¢(0) = 0 and for which
(¢.HY) < oc.

11.3 Variational method

One advantage of the variational method is that it deals with analvtic ex-
pressions and is therefore amenable to symbolic manipulation employing existing
software. Since the variational wave function discussed in this section may serve as
a starting point for further refined techniques. we present detailed calculations.

We consider the following three-parameter trial function
W(x) = P exp(—317), 0<r< o0 (I1.10)

which satisfies the Dirichlet boundary condition ¢'(0) = 0, and vanishes at infiniry.
The €. J and q are three positive variational parameters. The parameter p will be
determined shortly. We have found that the optimal g is usually sufficiently different
from 2 , the value normally used for the harmonic oscillator wave function, to justify
the added computational difficulty. Convergence of the expectation value (v, — Av')
for the kinetic energy of (II.1) is immediately assured. Indeed, the expectation value

reads for the wave function (I1.10):

&> 1 2p$2e-1 2p+qg+2e-1
* — ———— = — 2 2 —

2p+2e-1
q

—§(p+e)(p+e—1)1"( ) (I1.11)
2 2 2¢ -1

~dpRrArie )y

= q
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where I'(a) is the gamma function.
The constant p > 0 can be determined as follows. Since it is necessary that
the wave function (I1.10) be in D(H), the convergence of the expectation value of

the spiked harmonic oscillator potential

V(iz) =1z + A (11.12)

|z|®
may be used to determine p in terms of a. Since there is no convergence difficulty for
1
large r, a sufficient condition for the convergence of (v, V'¢') is [ z7%¢?(z) dr < oc.
0
This in turn is guaranteed if

1
/ P2 dr<ocor 2p+2-—a> -1
0

for € > 0. Thus the minimum value of p (i.e. € = G) for an acceptable wave function

is given by

a-—1
p=—— (I1.13)

This criterion guarantees that ¢ will be in D(H) for each value of a. Thus the

expectation value of the potential (II.12) now reads as
1 2pt2cts I,(‘?.p + 243

2
(v V(o)) =(=)(53 )
q

> ! (I1.14)
2\ 1 zptzecaps Ip+2e—a+1 B
q 23 q )

where p given by (II.13). Finally.
, 2 1 zpt2etn  2p+32e¢+1
(ew) = (3)a5) 0 D(F2="m),
q 28 q
The variational method provides an upper bound E{ for the lowest eigenvalue Eg

of the Hamiltonian H. From this we obtain for the function (I1.10)

< EU — (e,8.q) =
Ey L Ej g{;f;oE (A a). (I1.15)

where the variational integral is
(¢, Hy)
(¥, )

= [g( B)3[(2p + g + 2 - 1) — 5(p+e)(p+e—1) 2 (I1.16)

ES? (N a) =

o

ga+ AM28)gs| /g6

2
q

-2 ]+ i.
93 ,3
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and P+ g+ 21 % +2— 1
2p+q+ 2e¢— 2 2e —
g1 =T ). gz=r(pT).
%+ 2% +2—1 % + % + 3
g3 =T(2 qq ), g4=F(p—q——). (IL.17)

2p+2—-a+1 2p+2e+1
) g6 =D(F="0),
q q
Note that g5 = I‘(%T‘) because of (I1.13). Inequality (II.16) is general enough to

gs = I'(

compute an upper bound for the lowest eigenvalue of the Hamiltonian H for all
a 2 1. The single inequality (II.16) also allows us to estimate Eq for all positive
values of the coupling A. It is desirable to derive an analytic expression for the
variational energy as A — 0. Thus we expand the minimum of the variational
integral (I11.14) about A = 0, which yields

0.250308, 0.500067, 1.999484
E(g ‘ )(/\, a =

[SS R

) =3+ 4.08521). (IL.18)

Similar analytic expressions can be generated for different values of a and \ in the
following way. For arbitrary values of @ and \ we minimize formula (II.16) over ¢. J
and g, we then substitute these variational values back in (II.16) to find an analytic
expression for the bound state energy in terms of A. Such an analytic expression
will be valid for A's sufficiently small.

I1.4 The envelope method

In the light of the comparison theorem discussed in the previous chapter. we
know that the ordering between potentials implies a corresponding ordering of the
eigenvalues. This observation is an essential feature of solving many problems in
quantum mechanics. The envelope method [29,30] makes use of this comparison
theory and provides simple formulas for lower and upper bounds. To use the enve-
lope method we need some kind of a solvable model that best fits the problem at
hand and proves itself useful as a comparison potential. The shape of the spiked har-
monic oscillator potential (see Fig. 1), for large z, suggests the harmonic oscillator

? as comparison potential. Therefore, we represent

potential h(zr) =z
Vi(z) = a+bh(z), h(z)=z? (I1.19)
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where the variables a and b are chosen such that the graph of the potential 17(z)
lies entirely above the graph of the potential h(z), but is tangential to it at a point.
say t. where V'(t) = h(¢) and V'(¢t) = h'(t). Therefore we can say

Vi(r) = a(t) + b(t)z>. (I11.20)

Elementary differentiation of V'!(r) with respect to z implies

a(t) = (1 + %)tia
b(t) =1 - 2:;12.
which leads to
V() = t%(% +1)+(1 - 2::’:2 o2, (IL.21)

This one-parameter family of ‘tangent’ potentials (Fig. 11.2) generates the so-called

envelope representation for V'(r) expressed by

... _ Envelope [ . .
Vie) = o0 {x (I)}. (11.22)

A simple calculation shows that the eigenvalues of Schrédinger’s equation with the

potential (I1.21) are

vt) = 2 (2 a1) +ant3)(1- 22 v 11.23
€n(0-/~)—t—a 7 Tl +lnt ) = a72 . (11.23)
where n = 0.1,2.3.... counts the odd eigen-states of the harmonic oscillator in

agreement with the Dirichlet condition ¥(0) = 0. The envelope theory provides
lower bounds for all the energies of the spiked harmonic oscillator Hamiltonian H

because

V()< V(z)Vt>0

and our claim follows from the application of the comparison theorem. We obtain

the greatest lower bound by maximizing over the contact point ¢, namely
E.(a,)) > EL = max en(a, A;t). (11.24)
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The maximization condition
Oen(a, A; t)

ot

implies that the optimal positive ¢ must satisfy the equation

=0

4 —2aM? ™ —(@n+3)2=0 n=0.1.2,... . (11.25)

This equation has only one positive root for any a > 2 because the left hand side
tends to —oc as t — 0% and tends to > as t — o¢ and it is monontone increasing

on the open interval (0.oc). For e < 2. the left hand side of (I1.25) has only one
=

minimum occurring at (%(2 - a) . Moreover, it tends to —(4n + 3)%> as t — 0
and tends to oo as t — oc. therefore we conclude again that the equation (I1.23)
has only one positive root for any 0 < a < 2.

By solving (I1.25) for ¢* and substituting this value into (I1.23). we obtain the

simpler form of the energy spectrum

o )+(4n+3)2.

- A
en(a, \it) = ?:(;'{-1 272

fisroot of 4t —2aAt?7° — (4n +3)° = 0.

Equations (II.4) and (I1.5) establish the energy bounds of the spiked harmonic os-
cillator Hamiltonian (II.1). Indeed solving (I1.5) with respect to t yields the optimal
solution f and consequently e,(a.A:t) in (I1.4) gives lower bounds for arbitrary o
and A.

A similar technique utilizing the square well potential, for example. as compar-
ison potential provides us with an upper bound for all the eigenvalues of H. For the
most important case, however, namely the ground-state, the variational argument

of section (II.3) is much more accurate.
11.5 Numerical results

An accurate eigenvalue analytic expansion, as suggested by Aguilera et al [15] should
involve two different expansions according to the values of the coupling parameter
A: a non power series expansion given by Harrell [13] when ) is small. and a large

coupling perturbative expansion given by them when A is large. For intermediate
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values of \(= 1) W Solano-Torres et al [24] claimed that they have constructed an
approximant to represent the energy in this region using a single Padé extrapolant.
They did not present any numerical results for eigenvalues in this case, however. In
this section we discuss the numerical results for the upper bound E§ (by (II.16))
and lower bound E} (by (I1.4-5)) of the ground-state energy of the spiked harmonic
oscillator Hamiltonian (II.1). These bounds are valid for small. intermediate and
large values of the coupling parameter A. In Fig.(I1.3) we illustrate the difference
between our variational approach and the work of Harrell {13] and of Aguilera et
al [15]. Fig.(II.4) illustrate the comparison between the variational results and the
exact solutions derived by direct numerical integration of Schrodinger equation.

A simple method to compute the upper bound E} from inequality (I1.16) is
to fix one or two of the parameters (5.¢.q) and then minimize with respect to
the remining free parameters. We found that the most convenient approach was
to explore the parameter space (J.¢,q) by using the downhill simplex method of
Nelder and Mead [31]. The initial simplex points for this method may be chosen
with the aid of few preliminary calculations. As an example. consider a = 5/2 and
A = 1000. simple loops over fixed ranges of € and ¢ give for the minimization of the
right hand side of inequality (I1.16) 3 = 0.89 and E§ = 44.955 66 when € = 27.6
and ¢ = 1.80. With these values of (J.¢,q) as a base for the simplex method. the
other three initial points can be chosen close to it. The downhill simplex method
now gives the more accurate eigenvalue EY = 44.955 49. In Table (1) we exhibit the
results of our computations of the upper bounds for different values of the coupling
parameter A\, where « is fixed at 5/2. For comparison. we include the partial results
given by the formulas of Harrell E¥ (I1.2) and of Aguilera et al EC (IL.3). and the
‘exact’ numerical results obtained by direct numerical integration.

In Table (2) we present some sample ground state energy eigenvalues of the
spiked harmonic oscillator Hamiltonian H for fixed A and different values of a. The
results for A = 1000 cannot be possible by any of the earlier analytic approximations
mentioned in the introduction. Similar tables can of course be constructed using the
inequalities (I1.16) and (I1.24) and any desired values for A\ > 0 and a > 1. The lower
bounds given by (I1.24) are weak, especially for small A, but the formula is simple
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and valid for all the discrete eigenvalues n = 0,1,2,.... Examples for a« = 5/2 (as
in Table (1)) are: A = 1000, Ef = 42.917: ) = 10, E¥ = 6.228;\ = 1. EL = 3.529.
The idea of using a trial wave function to determine variational upper bounds to
the eigenvalues of the ground-state of H for positive even integers a was used by
Guardiola et al [26] and Ferndndez [27]. In Table (3) we report a comparison
between the ground-state eigenvalues of H using formula (9) of reference [27] and

inequality (II.16) of the present work.

I1.6 On the numerical integration of Schrodinger equation with a singular

potential

The divergence of the singular potential at the origin leads to many difficulties with
the standard methods of numerical integration of the Schrédinger equation. In
this case one should usually start the integration far from the origin with a careful
adjustment for the step-size of the numerical method to ensure the accuracy of the
eigenvalues. How far may we go so that the start of our integration does not affect
the calculation of the eigenvalues? The variational wave function we introduced in
the previous sections helps to answer this question. In Fig.(I1.5) and (I1.6) we plot

the variational wave functions

v(z) = 110.6136—0.77311‘828 (I1.26)

for the ground state of the Hamiltonian (II.1) with A = 100 and a = -;- and

.73
w(z) = 1.11.0326-1.223:‘ s (I1.27)

for the ground state of the Hamiltonian (II.1) with A = 1000 and o = 6. respectively.
The interesting point in these graphs is the shifting to the right of the wave functions

along the r—axis: this shows where to start the numerical integration.
I1.7 Conclusion

The significance of the contribution made in the present chapter is that upper and
lewer bounds are simply and uniformly obtainable for all values of the potential

parameters. The upper bound (I1.16) for the ground-state energy is accurate and

26



also yields a trial wave function for which has already been used to estimate effective
starting points for numerical solution; other interesting applications could also be
considered for this useful by-product. The lower bounds we provide are not very
accurate for small A, but they are in the form of simple formulas (II.4-5), which is

valid for all values of the potential parameters and for all the discrete eigenvalues.

(8]
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Table(II.1): Upper bounds for H = —gf +z2 + |T|:\-'75 with different values of A.
The values E€ were evaluated by formula (I1.3), and for E¥ we used formula (I1.2).
E{ is from inequality (I1.16) of the present work. The ‘exact’ values were obtained

by direct numerical integration.

a=25/2

A E€ Ef E}Y Exact
1000 44.955 49 44.955 49 44.955 49
100 17.541 92 17.541 92 17.541 89
10 7.735 58 7.735 32 7.735 11
5 6.297 35 6.296 85 6.296 47
1 4.323 60 4.318 54 4.317 31
0.5 3.860 53 3.481 27 3.850 32 3.848 55
0.1 3.201 25 3.269 28 3.266 87
0.05 3.136 95 3.154 50 3.152 43
0.01 3.036 75 3.037 43 3.036 73
0.005 3.019 26 3.019 47 3.019 14
0.001 3.004 03 3.004 04 3.004 02
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Table(I1.2): Upper and lower bounds for the H = —d%za +z? + %’;0 with different

values of a. by inequality (II.16) and the formulas (II.4-3).

Table(I1.3): A comparison between the results E¥ of Fernandez [27]. and the results

E§ of the present work obtained from the inequality (II.16) for a = 4 and 6 and

A = 1000

a EY Ef
2.5 44.955 49 42917 48
3 33.316 78 31.186 55
3.5 26.108 98 23.894 13
4 21.370 26 19.076 98
4.5 18.102 87 15.737 60
) 15.763 56 13.330 60
5.5 14.036 26 11.539 28
6 12,725 65 10.170 24

various values for the coupling \.

a=4 a=6

A EF EY EF E{
1000 21.384 46 21.370 26 12.737 60 12.725 65
100 11.292 41 11.265 86 8.422 60 8.420 96
10 6.649 78 6.609 66 6.016 4 6.014 94

5 5.832 05 5.788 89 5.527 51 5.528 09

1 4.548 79 4.504 16 4.676 88 4.684 97
0.1 3.626 44 3.600 44 4.019 15 4.042 84
0.01 3.237 75 3.249 80 3.524 93 3.580 70




Fig. II.1 The spiked harmonic oscillator potential V(r) = z? + Az|~® for a = 3
and A =0.001. 1 and 10.
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Fig. II.2 Family of ‘tangent’ potentials V'(r) = E“;’;’S’pe {V9(r)} . for different

values of t along with the graph of spiked harmonic oscillator for A\ = 1 and a = 5/2.
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Fig. 11.3 Comparison between the result of the present chapter with the result of

Harrell {I1.2) and of Aguilera et al (I1.3).
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Fig. I1.4 A comparistion between the variational results (11.16) for a = % and the

‘exact’ solutions found by direct numerical integration of Schrédinger’s equation.
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Fig. I1.5 The graph of the variation wave function (11.26).
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CHAPTER III

Eigenvalue bounds for a class of
of singular potentials
In the previous chapter we applied the method of envelope representation to

obtain lower-bound expressions for the spiked harmonic oscillator
H=-A+1"+X/z° (a>1.1>0).

Although the lower-bound formulas obtained were simple in formulation and ap-
plied to all energy levels. the eigenvalues were not sufficiently accurate for small A.
This of course is easy to predict. because as A — 0, the term -ﬁ,— adds an infinite
repulsive barrier near the origin and, therefore, it cannot be expressed by the com-
parison potential, the harmonic oscillator (II.19). In this chapter we introduce a

new technique that gives to sharper and more general.
I11.1 Introduction and main results

We consider the one-dimensional Schrodinger equation (in units h = 2m = 1)
—¢’II + ‘/(I)uv = Ew

where V' (r) is continuous everywhere, except that [V(r)] — oc as z — 0%. The
potentials V'(z). then, can be classified into three classes.

i. A class of mildly singular potentials where

a

lim | V(z)dz < 0.

e—0
€

ii. A class of singular potentials where

Iim/:t[V(z:)Ida: <0
e—0

but

e—0

lim/V(z)d.r ~ 00.
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il. A class of supersingular (SS) potentials with
lir%/.z'ﬂ"(:t)ldr

divergent.

Recently. the S5 potential class has attracted many researchers for the following
two reasons:

1. In mathematics, the standard perturbation theory [1.2] fails badly in the sense
that the first or the second order correction to the energy either diverges or does
not exist. Thus a modified perturbation theory to deal with singular potentials is
highly desirable [3-10].

2. In physics. one often encounters phenomenological potentials which are strongly
singular at the origin: for example: the Lennard-Jones potential. the potential
Viz) = 2° + 7. the potential V(r) = az® + I—b.; + Zs(a.b.c > 0). and certain
types of nucleon-nucleon potentials. singular models of fields in zero dimensions.
etc [11-35].

In the literature very few SS type potentials give exact values for the energy.
These exact values of energy are either restricted to the ground state. or to several
excited states. provided certain constraints between the potential parameters are
satisfied.

Exactly soluble problems [36-47] in non-relativistic quantum mechanics pro-
vide simple and effective models, illustrating the most relevant features of actual
physical phenomena. Further, they may provide a starting point for more accurate
approximations, based on a variational or perturbative method. In the method
of envelope representation, exactly soluble models play a fundamental role in the
development of the energy-approximation expressions. Gol'dman and Krivchenkov
[37], for example, have provided a clear description of the exact solution of the
following one-dimensional Schrédinger equation (in units A = 2m = 1)

a =

a

2
- + Vo(— - —) % =Eny, z€[0,00) (I11.1)

T
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and ¢ satisfies Dirichlet boundary condition 1(0) = 0. They showed that the energy
spectrum, in terms of the parameters V5 and a, is given by

4 11
En=- %{n +54 _(\/maz +1- 2a\/%) } (I11.2)

4

To simplify the notation, we introduce the parameters A = %8 and g = Vya?, and

obtain an exact solution to the Schrodinger equation with a singular potential
Viz) = Az? + I"—z A>0.u>0, (II1.3)
where the energy spectrum is now in terms of the parameters A and p,
Ea=VA4n + 2+ 4p+1), n=0,1,2,.... (II1.4)
The wave functions have the form

Un(z) = Cpr31 TVt -3VAs? 1Fi(—- 3\/ 4p+141: \/_.L‘

where | F is the confluent hypergeometric function

-k

R N CIIT:
1F1(a.b,-) = zk: ———(b)kk' .

and the constant C,, can be found from the normalization conditions. The Pochham-
mer's symbol (a)i is given by

['(a+ k)

(@) =ala+1)(a+2)...(e+k=1) =~

where I'(a) is the gamma function.

We notice from the energy expression (III.4) that the exact solutions for
(II1.3) depend on the existence of the harmonic oscillator term z2. Secondly, the
Schrodinger equation with the potential Lr(x > 0) alone is exactly solvable, but
supports no bound state energy, that is, no discrete eigenvalue [47].

In this chapter we shall use such exact solutions (III.4) to investigate the

spectrum {E,}52, of the Schrodinger equation

—¢" + V(z)¢ = Eatp, %(0) =0, (IIL.5)
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where

V(z) =g(z?) + f{ ziz) (111.6)

is a sum of two C?>-transformations of r? and % respectively. We shall show in

section III.3 that E, can be approximated by the expression

Enmen = {alsh) = 20/ + f(3) ~ 3

(IIL.7)
VITDn +24\/4f( +1@.n=042“”

This simple formula provides a lower bound (= = >) or an upper bound (= = <)
to the exact eigenvalues. depending on whether the transformation functions g and
f are both convex (¢"(z), f”(z) > 0) or concave (g"(z). f’(z) < 0). This allows us.
for example, to obtain simple expressions which bound the spectrum of the spiked

harmonic oscillator potential
Vio)=x?+E . a>1n=0.1.2....
Ia

Indeed. formula (III.7) implies that the energy of spiked harmonic oscillator can be

approximated by
Enxen(f)=(1- %);“; + 2 +2VN(2n + 1). (ITL.8)
where { is the real positive root of
artt — 2uat?®~ -1 =0. (I11.9)
Here €,(f) is lower bound to E,, when a > 2, and an upper bound. when a < 2.

I11.2 Transformed Potentials

Our aim is to construct an approximation method which allows us to obtain

lower and upper bounds to the Schroédinger Hamiltonian

& 1
H = - +4(c*) + f(), (I11.10)
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where g and f are C*-transformations of z? and —r respectively. The method of
potential envelopes might suggest the following approach to deal with a Hamiltonian
of the form (III1.10). We might approximate the shape of the potential V(r) as a

smooth transformation G of the soluble base potential 2 + 1/r2. that is to say
. 9, 1
Vi) =G(z* + I—z-).

When G has definite convexity, this would lead to energy bounds. as found in
Chapter II. Now. instead of approximating V/(z) by a single potential. we use the
tangent approximation for g(z?) and f( ;l:r), separately. That is replace g and f by

their corresponding tangent approximations

g*(2?) = a(s) + b(s)<?.
1 ' d(t) (III.11)

respectively. where s is a contact point between g(z2) and its tangent approximation
g'¥(z?), and t is a contact point between f(-r) and its tangent approximation

Ff(Z). Elementary differentiation with respect to s and t repectively leads to

{ a(s) = g(s?) — s*g(s?).
(II1.12)
b(s) = g'(s*)
and 11,1
c(t) = flz) - zf(3)
vonr (IIL.13)
d(t) = /()
Therefore, V(z) in (III.3) can be approximated by
11 rel
veed(z) =g(s2)—s2g'(s2)+f(t%) -1 E? e+ 22 i52)~ (IL.14)

This two-parameter family of ‘tangent’ potentials generate the so-called ‘envelope

representation’ for V'(z) expressed by

+.\ _ Envelope 1
v = Bt e}
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With this representation of V(z), we may use the results of (II1.3) and (III.4) for

expressing the eigenvalues of the Schrédinger equation

—" + VD (1) = en(s, 1), (I11.15)
namely
1 1,1
en(s,t) =g(s%) — s%g'(s?) + f(t_2-) ) ,(t—g)

] (I11.16)
+ \/9'(32)(412 +2+ \/4f'(§) + 1) n=0.1,2.....

Theorem IIL.1. The eigenvalues E,, of the Schrédinger equation (II1.5) satisfy
(a) Ep < €n(s.t) if g and f are both convex,
(b) En 2 €n(s.t) if g and f are both concave.
Proof: For definiteness, we consider case (a). Since g and f are convex. their
graphs lie above their tangents. Consequently. from (II1.14), V(9 (z) < V'(z) for
s.t > 0. Case (a) then follows by an application of the comparison theorem. Case
(b) is proved in analogous way if ‘convex’ is replaced by ‘concave’.
It is appropriate to mention here. that the conclusions of this theorem follow even if
either of f and g in (III.14) is the identity transformation. It is also appropriate to
mention that if the transformations f and g are both the identity transformation.
then (III.16) exactly corresponds to the exact solution (II1.4). These bounds (III.16)
may, of course, be sharpened by optimization [48] with respect to s and ¢. and are

furthermore valid for the entire discrete spectrum n > 0.
IT1.3 Numerical results

An interesting point concerning the bounds just obtained (III.16), is the large
variety of approximations made possible by different choices of the transformations

g and f.
II1.3.1 The potential V(z) = Az? + &

For the Schrédinger equation (I11.15) consider the singular potential
V(z) = Ae? + ;‘f; (I11.17)
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or g(z?) = Az”? and f(?l;) £ (a,08 > 0) in (II1.14), for which it follows that

8
P)

oy B M sy, pa 1

r(s,t) — _
Virie) = A 2'ta T g 272 ta-2

)s% + (1 - (II1.18)

The graph of these enevelopes for A = ¢ = 1 and @ = # = 2.1 is displayed in
Fig.(II1.1) for some arbitrary values of s and ¢, accompanied by the graph of the
potential V'(z) = 22! + 3¢. The energy formula (III.16) reads in this case

€n(s.1) = M1 —

mltz,

\3si—2 2
2 +(1-;)t—a 5: (4 to4 t:“’,+1>. (I11.19)

-

While theorem III.1 entails

E,<ep(s.t) if a<2.3<2
and

E,>¢€n(s.t) if a>22.3>2

The best upper or lower bound can be obtained by any optimization procedure [37].
Indeed, using the conditions

O€n(s.t) _0 Oen(s.t)
ds ot

=0

We complete part of the search for the optimum, leaving the task to optimize (II1.16)

over t only since we find

s2 = 2(2uat?™® +1)"3(4n + 2 + /2pat?— + 1

1 1

enls.t) = g(s%) = 7g'(s?) + ()~ /()

+Vg'(s )<4n+‘>+\/4f'( =)+ 1) n=0,12,....

I11.3.2 The spiked harmonic oscillator potential

Since, for the spiked harmonic oscillator 3 = 2. it follows from (III.18) and
(II1.19) that

AWy (1 O pa 1
V¥ (z)=(1 2) + Az? +‘72t°‘2

(111.20)
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enlt) = (1= 3

2
e Va(an 2 /25 40), (trr.21)

If a > 2, then r{1>agc en(t) is a lower bound, whereas for ¢ < 2 we have rn>1(r31 €n(t) is an
t
upper bound. We can simplify this optimization further by differentiating (I11.20)

and solving for t. In this case, the optimal positive ¢t must satisfy the equation
4t = 2pat?™® -1 =0. (I11.22)

It is not hard to prove for an optimal ¢. that there is only one positive real root
given by (111.22). If we let h(t) = 4\t* —2uat?~® —1, then for a < 2: h(t) = —1 as

t = 0 and A(t) = oc as t = oc. On the interval (0.20) the function h(?) has only

. ua(‘z—a)y‘«‘*
min — 8/\

one minimum at

Consequently for a < 2, Eq.(1I1.22) has only one real positive root. For a > 2.
h(t) & —oc as t — 0" and tends to oc as t = oo. On the interval (0.00). h(t) is
monontone, increasing on the open interval (0.>c). and we conclude that (II1.22)
has only one real positive solution for all a. Now solving equation (I11.22) for t*~*
and substiting it in (III.21). we arrive at the simplified algorithm to compute the

energy bounds

en(d) = (1 - %)ti‘; + 2282 + 2V (20 + 1),

t is the root of 4At? — 2uat?™® — 1 = 0.
In Tables 1 and 2 we exhibit results of the lower bounds obtained by use of this
algorithm for different values of a and for A\ = 1 as well as different values of the
coupling parameter p, along with some accurate values determined by the numerical
integration of Schrédinger’s equation. We also present in Table 2 a comparison
between the results obtained by standard envelope method discussed in chapter

II, namely (I1.4) and (IL.5), with the results of the new approximation method
developed in this chapter, namely (III1.8) and (111.9).



I11.3.3 The potential V(r) = Az’ + £ a0 =3

ra:

For the potential

Viz) = A" + L (II1.23)
o

we let 3 = 1.9 and @ = 1.9 in formula (II1.17), which provides upper bounds in
this case because of Theorem III.1. A comparison of some results for eleven energy
levels obtained by formula (II1.19), and the corresponding results obtained by direct
numerical integration are presented in Table 3. Table 4 reports the corresponding
results for the case 3 = 2.1 and a = 2.1, that is to say. for the potential

V(z) = Az*! 4 £ (II1.24)
=
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Table(II1.1): Some lower bounds Ef and upper bounds E{ using (II1.8) and (IIL.9)
for H = —:—; +r24+ 12%. The “exact” values EY were obtained by direct numerical

integration of the Schrodinger equation.

A = 1000
Eg EY EY

- — - 415.889 79 416.309 77
_——— 190.723 31 190.992 13
-—— 104.410 22 104.539 93
— 71.061 58 71.086 86
65.253 46 65.253 46 65.253 46
60.127 04 60.152 01 —___
44.833 49 44.955 49 _——
33.079 40 33.316 76 ____
95.762 04 26.108 85 ____
20.918 65 21.369 64 —_—
17.552 18 18.101 83 ____
15.117 38 15.761 13 ————
13.298 42 14.031 07 —_—
11.901 53 12.718 62 ____
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Table(II1.2): Comparison between the ground-state energy E; obtained by (II.4)
and the eigenvalues Er;r obtained by (III.8-9) of the present chapter. along with

the “exact” values EJ’ obtained by direct numerical integration of the Schrédinger

equation.
a=35/2

A Ern Eirr E¢
1000 42,917 47 44.833 49 44.955 49
100 15.651 17 17.419 00 17.541 89
10 6.227 67 7.611 69 7.735 11
5 4.977 67 6.173 94 6.296 47
3.529 31 4.204 33 4.317 31
0.5 3.280 67 3.746 16 3.848 55
0.1 3.059 32 3.204 95 3.266 87
0.05 3.029 89 3.109 54 3.152 43
0.01 3.006 01 3.023 36 3.036 70
0.005 3.003 01 3.011 78 3.019 05
0.001 3.000 60 3.002 37 3.003 97
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Table(II1.3): Upper bounds EY using (II1.19) for H = —% + Az!? + A5 with

different values of n. The “exact” values EY were obtained by direct numerical

integration of the Schrddinger equation.

pH=p=1
n EY EY
0 4.160 38 4.116 28
1 7.946 96 7.850 41
2 11.684 36 11.544 96
3 15.389 87 15.211 95
4 19.071 75 18.857 7
5 22.734 85 22.486 48
6 26.382 39 26.100 75
7 30.016 64 29.702 60
8 33.639 30 33.293 52
9 37.251 69 36.874 71
10 40.854 86 40.447 12
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Table(II1.4): lower bounds EL using (III.17) for H = —fx—i, + Az?! 4+ -5+ with

different values of n. The “exact” values E.Y were obtained by direct numerical

integration of the Schrédinger equation.

A=pu=1

n EL EN

0 4.309 42 4.356 98
1 8.519 89 8.626 97
2 12.782 43 12.940 00
3 17.079 60 17.283 55
4 21.402 86 21.650 81
3 25.747 12 26.037 51
6 30.108 94 30.440 71
7 34.485 90 34.858 23
8 38.876 13 39.288 42
9 43.278 21 43.729 98
10 47.690 99 48.181 84
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Fig. IIL.1 Potential envelopes V! (z) for V(zr) = 12 + =5 for t = 2,3

.....
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CHAPTER IV

Smooth Transformations of Kratzer’s Potential
in N Dimensions
Using the exact solution of Kratzer's potential —% + 4 in N-dimensional
real space, we study smooth transformations V(r) = g(-1) + f(&) for N > 2
spatial dimensions. We obtain eigenvalue approximation formulas, which provide
lower or upper energy bounds for all the discrete eigenvalues E,; and all N > 2.
corresponding to the cases that the transformation functions g and f are either
both convex or both concave respectively. Detailed results are presented for V' (r) =

—¢+ L and V(r) = -21- 22+ 4 (a € (0.1),6 > 0).

IV.1. Introduction and main results

There is considerable interest in Kratzer's potential [1] as a model to describe

internuclear vibrations [2-4]. This potential can be expressed in the form

A
Uiry=-2+L%. au>o (IV.1)

r o r?
The model contains two parameters and the corresponding eigenvalue equation can

be solved in closed form [5.10]. Unlike the Morse potential. which has exact solutions
restricted to the zero rotation state, Kratzer's potential has exact solutions even
when the rotational effects are taken into account. The Kratzer potential also differs
from the Morse potential having an infinite number of bound states, while the Morse
has a finite number of bound states. Applications of Kratzer’s potential to various
molecular problems have been given by von Hooydonk [11]. Another interesting
application of the Kratzer potential is to use its eigenfunctions. in perturbative or
variational calculations of energy levels, for more realistic potentials [12,13]. For
example. Requena et al [12] developed a perturbative treatment of the perturbed
Kratzer potential based upon commutation relations. and the successive energy
corrections are obtained recursively.

The radial Schrédinger equation with Kratzer's potential (in units A = 2m = 1)

can written in the form
[ d® +l(l+1)+u A

dr? r? r

]u’) = Eq v, (IV.2)
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where [ is the angular momentum quantum number (rotational state). For u = 0.
the hydrogenic equation is obtained. As p increases, the relative impotance of
the centrifugal term diminishes. and the rotating oscillator is obtained in the limit

QU — oo.

Since Eq.(IV.2) has the form of a hydrogenic equation, characterized by an

effective angular momentum number s given by
I+ 1)+ pu=s(s+1), (IV.3)

the problem presents no special difficulties other than those arising from the possi-
bility that s is not integer. We introduce the usual substitutions for ¥' to obtain a
power-series expansion for y'. with the property that the ratio between any pair of
adjacent terms is known. The termination of the series yields the eigenvalues

A2

= ——  n=0.1.2....
Eni=-—tmmsze * =0 (IV4)

where s is the positive solution of Eq. (IV.3) and therefore

/\2
E =— s nd=0.1.2..... (IV.5)

(2n+1+RIFI2+ i)

The reason for choosing the positive solution of s. is that the admissible wave-
function ¢ in (IV.2) must be square integrable. and must vanish at zero. The

eigenfunctions are given in terms of confluent hypergeometric functions [5-10].

Another method to solve Eq.(IV.2) was proposed by Landau and Lifshitz [§].
They compared Eq.(IV.2) with the radial Schrédinger equation of the hydrogen
atom with the angular momentum number s satisfying Eq.(II1.3); consequently.
they immediately obtained the eigenvalue formula (IV.5). Mavromatis [14] on the
other hand extended the exact solutions of hydrogen atom to the N dimensional case.
replaced the angular momentum number s by s+ -12! - %, and derived the eigenvalue
formula for a Coulomb potential in N-dimensions. An interesting observation can

be stated: If Schrédinger’s equation with arbitrary potential U(r) is exactly solvable
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in 3-dimensions, then it is also solvable if we add a term % (u > 0) to the U'(r), and

is consequently solvable in N dimensions (and obviously vice versa), namely:

U(r) + 7%(/\ > 0) & 3 —dim. case & N — dim. case.

We should take into account the restriction of r to the interval [0,oc) in the one-
dimensional case to avoid the degeneracy arising from effective decoupling of the
two half lines (—oc.0) and (0, 00).

Another interesting case arises when 1 < 0 in (IV.1). Although the potential
in this case is a superposition of the two terms, such that in both the extreme cases
¢ = 0 and A = 0 the complete three-dimensional Schrédinger equation becomes
exactly solvable [13-16]. however the potential V(r) = -2 — L,%l does not support
the existence of ground states (n = 0./ = 0). This follows from the condition that
[(l + 1) must be greater than u to guarantee the existence of such eigenvalues.

Thus the exact solutions of Eq.(IV.2) can be generated by means of the well
known solutions of a Coulomb potential. using the following two simple transforma-
tions: first replace the angular momentum s in the Coulomb energy expression by

-—% +4/(+ %)2 + p. and then replace [ with [ + % - % Thus the exact eigenvalues
of the V-dimensional Schrodinger equation with the Kratzer's potential (IV.1) are

g(!\") /\2 -
=— ., nl=01,2.... (IV.6)

nl - 2
4(n+%+ (1+%-1)2+D

In this equation we notice that the discrete spectrum Sfl‘lv) is monotone increasing

in N and bounded above by zero energy. Therefore, for large N, the energy levels

get closer and closer to the minimum element 0 of the essential spectrum. Secondly.

the existence of bound states for (IV.1) depends on the existence of the Coulomb
: A

potential term —2(\ > 0).

The aim of this chapter is to use the eigenvalue formula (IV.6) to investigate
N)

a1 of the Schrodinger equation

the discrete spectrum E

[~A+V(r)y = EQ v, (IV.7)
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where

. 1 1 )
Vi(r) =9(—;)+f(r—2) (IV.8)
is a sum of two smooth transformations of —1 and % respectively (r = |r|, r €

R"). We shall prove in the next section that Efl';v) can be approximated by the

expression
; N 1 (-1 1 (%
EQUuSW&H—M—4+g(’)+ﬂ§)—fgj
lg'(=)P (IV.9)

valid for all N > 2, where the extreme value (min or max) provides a lower bound or
an upper bound to the exact eigenvalues. depending on whether the transformation
functions g and f are both convex, or both concave. This allows us. for example.
to obtain simple expressions which bound the discrete spectrum of the potential

Py =2+ 2 (3>0) (IV.10)

roor
for all dimensions NV > 2. a problem which is of considerable interest [17-24]. Indeed.
formula (IV.9) implies in this case that the energy of V'(r) can be approximated by
N 3. b 2

6( N)

a
ni (t)z(l“;)"j"
t 4(n+§+\/(l+%— )2+ 5352 )?2

(t>0). (IV.11)

("f)(t) is lower bound to ESIIIV) when 3 > 2. and an upper bound. when 3 < 2.

Here €,

IV.2. Transformed Potentials

We consider the Schrodinger equation
o , . 1 1 .
A+ V(r)|¥n = Enint, V(r) = 9(';) + f(r—;, )s (IV.12)

in N-dimensions, where g and f are smooth transformations of —% and ;15 respec-

tively. For example, when ¢ and f are the identity transformations, the problem
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has the exact solution (IV.6) for all n, [, and arbitrary positive values of A and U in
all dimensions.

The core of the approximation method lies in noticing that each term of the poten-
tial V(r) can be approximate by its tangential approximation. That is to say. we

approximate the transformations g and f in V(r) by

b(s
g(=1) = as) - 2
(IV.13)
d
FO(L) = ey + )
r r

respectively, where s is a contact point between g(-—%) and its tangent approxima-

tion g'*)(%), and ¢ is a contact point between f (&) and its tangent approximation

e -r%). Elementary differentiation of (IV.13) with respect to s and ¢ repectively

implies .
1 ,, 1
a(s) =g(—-=)+ -g'(--).
31 S S (IV.14)
b(s) =g'(—;)
and 11,1
c(t) = f(t_’-’) — R '(t—z)-
. (IV.15)
d(t) =f'(t—2)-
Therefore. 1°(r) in (IV.12) can be approximated by
re_ 1 1l 1 / _l_r
V() = g2y + Loed gy el g8 SE) g
S S te t r re

This two-parameter family of ‘tangent’ potentials generates the so-called ‘envelope

representation’ for V'(r) expressed by

Envelope [,
Vi =000 {veom}.

To this representation of V(r), we may apply the energy expression (IV.6) for the

eigenvalues of Schrédinger equation

[—A + VEO(r)y = en(s, t)y. (IV.17)
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which entails that €,;(s,t) is given by

! _L 1 11
cutsst) = o=+ £ 4 ) - D
(=) (IV.18)

Now. since functions with definite convexity lie on one side of their tangents. an
application of the comparison theorem in quantum mechanics allows us to conclude
the following. For the eigenvalues E,; of the Schrédinger equation (IV.12), we have
(a) Ent < €ni(s.t) if g and f are both convex.
(b) Epni 2 €ni(s.t) if g and f are both concave.
The proof of this claim is similar to Theorem (III.1). It is appropriate to mention
here. that the conclusions follow for the special cases where either f or g is the
identity transformation. These bounds may. of course. be sharpened by optimization
with respect to s and t, and moreover they are valid for the entire discrete spectrum

n.l > 0. and for all dimensions NV > 2.
IV.3. Numerical results

One of the interesting points concerning the bounds we have obtained in the previous
section is the large variety of approximations made possible by different choices of

the transformations g and f.
IV.3.1 The potential V'(r) = -7 + r%—

We consider the case where g(—1) = —2 and f(;lg) = r%— which vields the

generalized Kratzer potential

8.b a —‘Z":— ,
v(t)(r)_(l_i)ﬁ_;_*.z‘??_’ (IV.19)



whereas the energy formula (IV.18) reads in this case

)= 1= 9y 8 i . (IV".20)

2748 2
4(n SRRV Rt —;,—2,"‘12)

enl

This function is convex in t for 3 > 2, its maximum provides a lower energy bound
for the Schrodinger Hamiltonian with the generalized Kratzer potential, and concave
for 3 < 2. its minimum yields an upper energy bound. In Table 1 we exhibit some

results of the upper and lower bounds derived from (IV.20) for the potential
Vir)=-=+ =57 (IV.21)

in 3-dimensional space with n = 0./ = 1 and different values of 3. along with some
accurate values obtained by direct numerical integration of the Schrodinger equa-
tion. The graph of €g;(t) is displayed in Fig.(IV.1) along with the exact eigenvalue
E obtained by direct numerical integration, and also the corresponding unnormal-
ized wavefunction in 3-dimensions. for Schrodinger’s equation with V(r) given by
(IV.21). In Fig.(IV.2), we plot the lower bound obtained by (IV.20) as a function
of the parameter b. along with some exact eigenvalues obtained by direct numeri-
cal integration. The main advantage of an analytic approximation such as (IV.20)
is. that questions to do with the dependence of the eigenvalues on the potential
parameters are easy to answer. In Table 2 and Table 3 we exhibit the results of
the lower bounds. obtained by use of formula (IV.20). for 3 = 2.1 with a = 1 and
b=1 as well as a = 5 and b = 1 respectively, for the dimensions NV ranging from 2
to 10. along with some accurate values obtained by direct numerical integration of

Schrodinger’s equation.

IV.3.2 The potential V(r) = —£[1 - 2]+ riz

ar

1+r
parameters with ¢ < 1 and f(%) = ;b; In this case g is the well known screened

For this potential, we consider g(-—%) = —2£[1 — =] where v and a are positive

Coulomb potential {25-27], which is almost Coulombic everywhere, because it is like
—2 for small r and like —M for large r. Therefore, it is very effective in rep-

resenting the screened Coulomb potential as a smooth (concave) transformation of
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— 2 For this choice of g and f we have from (IV.16) that the envelope representation

1s

2

1 _ as
Ay — G o[l - 5%5e b - 09
V) (14 s)2 T + r2’ (Iv.22)
The energy formula (IV.18) is
, L'2[1 _ as® 12
ent(s) = ——— — el - (IV.23)

1+5s)? 2
(1+2) 4<n+;-+\/(1+%—1)2+b>

which is concave in s. Moreover. €ni(s) leads to a simple upper-bound energy for-
mula valid for all n. [ and arbitrary dimension N > 2. These upper bounds indicate
approximately how the eigenvalues E,; depend on all the potential parameters. We
display some results obtained by formula (IV.22) in Table (3) for v = 5. a = 0.5
and b = 1 for dimension N ranging from 2 to 10. It is approparite to mention here
that in the limit as & — 0 we recover the Coulomb envelopes used in [28] for the
special case N = 3.

For the bottom of each angular-momentum subspace. the bounds we have
obtained can be improved by the use of a refined version of the comparison theorem
[29]. However, the main point of the approach described in this chapter is to provide
a way to generate simple general approximate formulas to be used for exploratory

purposes and for ‘seeding’ direct numerical methods.

61



Table(1): Some lower bounds Ef; and upper bounds E{] using (IV.20) for H =
-A - % + ’_% in 3-dimensions with | = 1. The “exact” values Eq, were obtained by

direct numerical integration of Schrédinger’s equation.

3 Eq Eo; Eq
1.5 - - —— —1.111 34 —-1.073 66
1.6 - — —— -1.127 68 ~1.097 39
1.7 - ——— —1.142 44 —1.119 66
1.8 - — —— -1.155 77 —1.140 56
1.9 - - —— —1.167 79 -1.160 19
2 -1.178 63 ~1.178 63 —1.178 63
2.1 -1.195 96 —1.188 38 -— -
2.2 -1.212 28 -1.197 18 -——
2.3 -1.227 65 —1.205 08 -———
2.4 -1.242 14 -1.212 19 -———
2.5 —1.255 81 ~-1.218 58 -———




Table(2): lower bounds E&, using (IV.20) for H = -\ — 1 + ;21—, for dimension

N =2 to 10. The “exact”™ values Eqg were obtained by direct numerical integration

of Schrédinger’s equation.

N EL Eqo

2 —0.120 49 —0.116 90
3 —0.102 997 —0.100 70
4 -0.072 63 —-0.071 78
5 —0.049 50 —0.049 19
6 —0.034 68 —0.033 40
7 —0.025 27 —0.024 01
8 —0.019 09 —0.015 81
9 —0.014 87 —0.012 60
10 -0.011 89 —-0.007 55

63




Table(3): lower bounds Ef, using (IV.20) for H = —A — 2 + 4+ for dimension

N =2 to 10. The “exact” values Eqq were obtained by direct numerical integration

of Schrédinger's equation.

N EL Eqo

2 —-2.728 16 —2.650 75
3 -2.37192 ~231971
4 —1.720 24 —-1.699 15
5 —1.195 96 —1.188 39
6 —0.847 88 —0.844 98
7 —0.622 07 —0.620 84
8 —0.472 00 —-0.471 43
9 —0.368 78 —0.368 49
10 —0.295 33 -0.295 17
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Table(4): Upper bounds E§, using (IV.23) for H = —A — %

dimension N = 2 to 10. The “exact”™ values Fqq were obtained

integration of Schrédinger’s equation.

Ll_

N Eqo E&

2 —1.598 63 —1.502 02
3 —1.296 02 —1.213 58
4 —0.808 11 —0.754 90
5 —0.481 10 -0.452 67
6 —0.300 88 —0.286 88
7 —0.201 54 —0.194 66
8 —0.143 49 -0.139 97
9 —0.107 23 ~0.105 33
10 —0.083 20 -0.082 12
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FIG.(IV.1) Graph of €(t) = €o(t) along with the exact eigenvalue E and corre-

sponding unnormalized wavefunction in 3-dimensions.
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FIG.(IV.2) The graph of the lower bound E{, obtained by (IV'.20) as a function of

the parameter b. along with some exact eigenvalues Ego obtained by direct numerical

integration.
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CHAPTER V

Eigenvalue bounds for transformations
of quasi-exactly soluble potentials

The potentials in non-relativistic quantum mechanics can be classified, accord-
ing to the solvability of the corresponding Schrédinger equation, into four categories.
1. Exactly soluble potentials. The best-known examples of this category are
Coulomb and harmonic oscillator potentials. Several others are also known [1-15].
2. Conditionally exactly soluble potentials are those potentials for which the entire
spectra can be cbtained in an algebraic manner, provided one of the potential
parameters is assigned a fixed negative value [16-18].

3. Quasi-exactly soluble potentials are those potentials that are soluble for one or
two energy levels. if a certain constraint between the parameters of the potentials
is satisfied [19-38].

4. Non-soluble potentials.

The method of envelope representations deals mainly with two classes of this
category. The class of exactly soluble potentials represents the base potentials for
the envelope method. which approximates the spectra of the non-soluble potentials.
In 1981. Hall and Satpathy [39] introduced the envelope method to the class of
quasi-exactly soluble potentials. In this chapter we continue their approach and
introduce a new method, called h-theory, which utilizes the known spectrum of
certain Schrodinger operators for construction of a simple algorithm to bound the

eigenvalues of more complicated potentials.
V.1. Introduction and main results

Wigner [40] introduced an interesting method to generate exact expressions
for the eigenvalues by applying the kinetic energy operator, to an appropriate wave
function, and then constructed the Schrodinger equation which would correspond
to the result. For example, if we choose the wave function for the bottom of the

Y™ angular momentum subspace to be
w(r) = rle" 38y m g &) (V.1)
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then Schrodinger’s equation
Hyo=(-A+V)y=Evy
is satisfied if
, 1 9 1 .
V(r):——r- +8r 4+ (8r)* and E=(3+21);3—1. (V.2)

This gives us the exact solution to the problem of the hydrogen atom (in its s-states)
perturbed by the potential Ir + (3r)2. Such exact eigenvalues are certainly useful.

but they stop short of treating. for example, the more general problem
D 2 .
V(r) = —— 4+ Br + Ar® (V.3)
r

in which the coefficients {A. B. D} are arbitrary.
In this chapter we use exact eigenvalues. such as (V.2). to estimate the spec-

trum corresponding to a potential V'(r). of the form.
. 1 2 .
Vir) = —;+g(,3r+(,3r)'). (V.4)

where ¢ is a smooth transformation. We shall prove that the bottom of the spectrum

of H in the ¥} subspace may be approximated by the expression

t2 f'(¢)
2043

E = eql(t) = f(t) — h(

ERTHORES

where

f(t) = g(Bt + (8t)%). h(t) =t +1t2

This formula provides a lower bound, or an upper bound. to the exact ground-state
energy E according as the transformation function g is convex (= = >) or concave
(= = <). This allows us, for example, to estimate the spectrum corresponding
to V(r) = —D/r + Br + Ar? for arbitrary {A,B,D}. At the expense of more
complicated conditions on the coefficients, the collection (V.2) of exact eigenvalues
may be extended to certain excited states including ¢ # 0. In the next section we

summarize the more detailed exact results for the perturbed Coulomb case (V.3).
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Since similar results may be obtained for other families of potentials. such
as V(r) = ar? + br'* + cr®, we formulate the h-theory approximation, in Section
(V.3). in a general framework suitable for application to all exact solutions of this
general type. In Section (V.4) we present numerical results for a number of specific

examples. some of which are compared with known results by other methods.

V.2. Perturbed Coulomb Potentials

In his interesting work of solving Dirac’s equations in the presence of a magnetic
field. Hautot {19-20] introduced some methods for solving certain second-order dif-
ferential equations. One of these methods deals with the radial Schrédinger equation

with the potential energy operator:
. D 5 -
Vir) = —7+Br+:‘1r‘ (4 #0). (V.5)

The author obtained [20] exact solutions only for certain relations between the
constants 4. B and D. He achieved this by applying the kinetic energy operator to
an appropriate wave function and used the standard procedure of comparing the
coeflicients of the induced recurrence relations.

More precisely. introducing

n

w(r) = exp(—%(\/jr2 + %r)) Z akr*t! (n=0.1.2....) (V.6)
- : k=0

into the radial Schrodinger equation (in units h = 2m = 1)

(7425 - 2+ E+ 2-Br-a)un =0 (v

dr?  rdr r?

we obtain. after some algebraic manipulations, the following three-term recursion

relation between the coefficients

B
(O + 200k + 20+ Blaesa + [0 = =k + 2+ Dlawss )

2
+[E-\/.Z(2k+21+3)+f—]ak=o.

72



This recurrence relation terminates if a,+; = 0, that is to say

2
E=E.n=VA(n+21+3)- % (V.9)

Equations (V.9) and (V.10) give the following (n + 1) x (n + 1) determinant which

provides the relations between A.B and D (for a given value of n) to ensure the

existence of the solutions of (5) (note that a_,, =0,m = 1,2....), namely
(¢ bo
Ci a) b1
Co as bg
=0. (V.10)

Cn—1 Gn-1 bn_y
Cn Qn

where
ak=D—753:(k+l+1)
be = (k + 1)(k + 20 +2)
ck=En1—\/§(2k+21+l)+%.

For example: if n = 0 (s-states). then

B? B )
.E=\/_I(21+3)—E (D=7(1+1)): (V.11)
if n = 1. then
. _ B o
E=\/Z(:>1+a)-a (V.12)
with
(D——B—(l+1))(D——1—3—(1+2))—2\/Z(21+2)=0:
VA VA
and if n = 2. then
=VAQ2l+7 B V.13
E=VAQ2+T) - (V.13)
with
B B B
(D = Z= (1 +3)ID = =+ 1))(D = —=(l +2)) —2VA(2 +2)]
B
—4VA(D - ﬁ(l +1))(20+3)=0.
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Since this early work, the technique of generating exact solutions for a Schrédinger
operator has been widely applied either to obtain some interesting potential func-
tions with known eigenvalues. or to investigate the quality of perturbation theory.
This technique was used, for example, by Killingbeck [39] to prove that the Rayleigh-
Schrodinger perturbation series terminated after the first-order approximation for
the Hamiltonian

H= —%A—%+2/\r+2/\2r2 (3 > 0). (V.14)

Extending Killingbeck's work, Saxena et al [26-27] investigated the case A\ < 0.
and explained why the Rayleigh-Schrédinger series was invalid for A < 0 and suc-
cessfully constructed instead a perturbation series in powers of |,\|—% valid for
A < 0. Although Plesset [41] proved that the second-order differential equation
has no exact solution in terms of elementary functions, if the potential has the

k¥ with arbitrary constants ak. the problem of solving

form V(r) = Yi__, axr
Schrodinger’s equation approximately with the potential (V.3), where the param-
eters are no longer constrained. has fascinated many physicists. Bessis et al [28].
used the moment method to bound the ground-state energy for arbitrary D. B and
positive 4. Roychoudhury et al [29] examined the shifted 1/N expansion to obtain
accurate eigenvalues for arbitrary . In the next section, we construct a simple and

straightforward approximation to bound the eigenvalues of (V.3) for arbitrary D. B

and A. using the exact solution (V.2).
V.3. Transformed Potentials

To give a general framework to the approximation method we consider a
Schrédinger Hamiltonian of the form

H =~ A +ho(r) + f(r). (V.15)

where ho(r) is a fixed potential term and f(r) is a smooth transformation g(h(3r))
of a second scaled potential term h(8r) with 3 > 0. Such a transformation always
exists because of the monotonicity of h. For example, when ho(r) = —% and

h(3r) = Br + (Br)? and g is the identity transformation, the problem is exactly
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solvable for n = 0. Indeed, in this case, we have from (V.9) and (V.10) that Eg; is
given by (V.2).

The tools to develop our approximation theory arise from the geometric rela-
tionship between the potential shape and the set {en;} of the energy trajectories
generated by it. This technique was first introduced to analyse the spectrum of the
many-body problem [13]; a more complete account and recent applications may be

found in [16]. For the transformed Hamiltonian

H = —A—H—l-i-g(h(,dr)). (V.16)

we have at (h.g(h)) for the tangent line
a(t) + h(3(t)r) = fU(r). (V.17)

where t is the point of contact between h(3r) and f(r) = g(h(3r)). The parameters
a(t) and 3(t) are determined as follows. Suppose that ¢ is an invertible function
defined by

o(t3(t)) = tf'(¢). (V.18)

where ' denotes differentiation with respect to ¢t. Then, using (V.17). we have

{B(t
t)

Differentiation of (V.19) with respect to t gives

'(t
'(t)

The energy formula (V.2) with (V.17) leads to

Loml(tf'(1)) .
Foy ~ Mok, (V-19)

Q

~—

= —th/(t3(t)). (V.20)

fY)

callt) = alt) + B(1)(2L +3) - 3. (V.21)

By differentiating (V.21) with respect to ¢t and using the extreme condition () =

0, we get "
o (t .
0 - —(21 + 3). (V.22)
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Now. since

o(tB(t)) = tf'(t) = tB(¢)R'(tB(¢)). (V.23)
we have from (V.20), (V.22) and (V.23) that

_ tf'()

3(t) = 13 (V.24)
a(t) = f(t) — h(t3(t))
tf (¢t (V.235)
= £ - a(iY,
whence it follows that ,
ot f(2) i
th(5 ) = (20 +9) (V.26)
Finally we obtain using (V.19), (V.24) and (V.21) that
t f( 1 .
calt) = £(6) = LD e - L (v.27)

Equations (V.26) and (V.27) establish the energy bounds of the Hamiltonian
(V.135). Indeed. solving (V.26) with respect to t. for any smooth function f(r
g(h(3r)). vields the optimal solution ¢; therefore. ey(f) gives [16] lower bounds when
the transformation g is convex, and upper bounds when g is concave.

Equations (V.26) and (V.27) represent a complete recipe for obtaining a bound
to the lowest eigenvalue (n = 0) of any Coulomb problem perturbed by a smooth
transformation g(h) of h(3r) = 3r+(8r)%. Although we shall not develop the more
general case in detail here, the method for n > 0 works as follows. If we consider
the Schrédinger equation (V.7) with A = B?, we then have from (V.9) that

Eai=B2n+2043)- %
The parameter D is related to B through a recurrence relation, which can be ob-
tained by expanding the determinant (V.10) about the last row or column and using

A = B?, namely

Di =[D - (k+!+1)]Di—y — 2Bk(k + 21 +1)Ds_,
(k=0,1,2,... D_y=0, D_, =1).
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For example. Dy = D — (I + 1) which implies the condition D = [+ 1. As discussed
above. we obtain the corresponding formulas (V.26) and (V.27). but instead of the

term (2! + 3). we have in general (2n + 2/ + 3); that is to say

2 ¢
th’(%t_+_—f2(lt_)*_—3-) = (2n + 2 + 3) (V.29)
d
- £27'(1) 1 .
fnl(t)=f(t)—h(m)+ff (l‘)—z- (V.30)

Of physical interest is the case [42] when n = 1 and B approaches 0. In this

case. we have from (V.28) that D = [ + 2, and this allows us to keep the potential

ho(r) = —D/r as a fixed term. Hence. we have
2 f'(¢t)
! — ) = (2] + 3),
() = (2 +5)
2R ]
ult) = ft) — hl5) +4118) - 7.

which gives a bound to the first excited state of

H=—n-"22 4 gihan).

where ¢ is any smooth tranformation of h.

V.4. Numerical Results

It is interesting that a variety of approximations is possible by different choices
of the transformation g. For example. we can let f(r) = g(h(3r)) = ur + Ar?
or f(r) = g(h(r)) = ,ue'\(r'”:) , for arbitrary u and A etc., where in each case
equations (V.26) and (V.27) give us a bound. A second point is the possibility of
using the approximation with different base functions h. For example, if we consider
ho(r) = r? and h(r) = —1/r + r and use an appropriate smooth transformation.
then the method we have discussed readily gives a bound for the eigenvalues of
the Harmonic Oscillator Hamiltonian perturbed by f(r) = g(k(r)). This particular
example can be discussed in terms of the theory presented in Ref.[39], but the
present method is much simpler and more general. It is simpler in that its derivation
and the formulas it produces are simple. It is more general in that, given an arbitrary
smooth transformation g, formulas (V.26) and (V.27) provide an eigenvalue bound

directly.



V.4.1 The potential 1'(r) = —% + ur + Ar?

Our first example is
1 2
H=—A—; + ur + Ar-,

where p and A are arbitrary real parameters. We consider ho(r) = —’; and f(r) =
pr + Ar?. It is clear that the transformation g exists for such an f. Equation (V.26)
vields

SN+ 2ut® + (A +3)t — (20 +3)2 =0, (V.31)

while the energy formula (V.27) leads to

pt? + 2X¢° pt? + 2A83 1
2143 20 +3 4

eor(t) = At + ut — (V.32)

For arbitrary A. u and (. equations (V.31) and (V.32) give the required approxima-
tion. We may use any root finding method [43] to solve (V.31) for {. and substitute
this in (V.31). to abtain the approximate eigenvalue. The natural question which
arises is whether €o(f) is an upper or lower bound? The answer depends on the con-
vexity of f(r) = g(h(r)). Indeed . if u < V/\. then f(r) > f(r) and therefore. eq;(f)
is a lower bound for the Schrodinger Hamiltonian with potential —1/r + ur + Ar?:
and if VA < p. then f(r) < fY(r) and €oi(f) is an upper bound. In figure (1) we
graph these two independent regions and note that along the curve A = ;2 we have
the exact solution. By means of a scale transformation (to remove the % in front
1

of the Laplacian in H = —3 A =1 + ur + A%r?), we can compare our bounds E*

through the relation

B ) z‘)LE.é
E%(p.\) = 2E (4’8)"

with the results E® of Bessis et al [28] as shown in Table (V.1). These results show
that our simple formulas can be used to obtain a satisfactory bound for a class of
potentials generated by g, without the lengthy derivations required in each case by
the moment method [28], or the shifted 1/N expansion [29]. In Table (V.2) we
present our results, using (V.26) and (V.27), for a range of values of 1 and \ and
for the sake of comparison, the corresponding accurate results obtained by direct

numerical integration of (V.15).
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V.4.2. The potential V(r) = —1 + uIn(r +r?)

Another example of a smooth transformation g(h(3r)) is f(r) = pln(r + r2).

where u is arbitrary real. The Hamiltonian becomes
1 2
H=-A - +uln(r +r°).

and the formulas (V.26) and (V.27) provide an upper bound if u > 0. or a lower
bound if u < 0. We have in this case

dpt® + (2u + 20 + 3)¢% — (2A +2)(2A +3)t ~ (21 + 3)? = 0.

and

1

o t + 2t2 po t+2t2 1
2A4+3\ 1+t ‘>l+31+t 4

A comparison of some results obtained by this formula and the corresponding results

eol(t) = pln(t + %) + ( 2)
(V.33)

obtained by direct numerical integration are in Table (V.3).
V.4.3. The potential V(r) = -1 + pe r+r?)

Our final example is f(r) = ye“"’*’"z). where A\ and p are arbitrary real. The
formulas (V.25) and (V.26) provide an upper bound if A, 4 > 0. and lower bound if
A < 0. p arbitrary real. The formulas (V.25) and (V.26) imply

At (1 +26)e M) L (2 +3)t = (2A+3) =0 (V.34)
d 2 3y A(t+1t2)
(12 4 2t3)e M+t
€0t = /,te'\““:) - ul )
20 +3 (V.35)
Aptd(1 + 2t)2e2Mt+19) s oacewrd) 1 '
— 9 (t+t%) _
ol 13 + Au(t +2t2)e T

The essence of the approach described, in this chapter, is to provide a means
to generate simple approximate formulas for exploratory purposes. Once the ap-
propriate ranges of the potential parameters are established, then the present direct

numerical methods can be used to estimate the eigenvalues more accurately.
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Table (V.1): Eigenvalues of H = —3 A —% 4 ur + Ar? for different values of x and
A. Comparison between results EZ of Bessis et al [13], using the moment method.

and the present work which yields the lower bound EL.

i A EB EL
0 1 0.593 771 0.514 269
0 10 4.150 124 3.979 871
0 100 16.805 248 16.475 256
0 1000 59.375 469 58.762 742
0 5000 138.557 196 137.624 947
“ A EB EL
~2.0 1 -1.171 674 —1.431 541
~1.0 1 ~0.226 187 —0.380 198
-0.3 1 0.196 002 0.081 963
0.5 1 0.971 616 0.922 717
1 1 1.332 845 1.311 628
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Table (V.2): Eigenvalues of H = — A —1 + pur + Ar? for different values of y and
A. Comparison between the lower bound E L given by formulas (V.25) and (V.26)

and accurate values EV found by direct numerical integration.

U A EVN Et
0.001 | 0.001 | —0.236 | —0.238
0.001 1 1.786 1.707
0.01 0.01 -0.152 | —0.153

0.01 1 1.795 1.717

0.1 0.1 0.378 0.354

0.1 1 1.885 1.814

0.5 1 2.278 2.239

1 2 3.657 3.629
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Table (V.3) Eigenvalues of H = — A —1 + pln(r + r?) for different values of p.

Comparison between the upper bound EY given by (23) and accurate values E

found by direct numerical integration.

7 EN EY
0.0001 —0.249 78 —0.249 75
0.0005 —0.248 89 -0.248 75
0.001 —0.247 78 —0.247 52
0.005 -0.238 97 —0.237 65

0.01 —0.228 10 —0.225 45
0.05 —0.145 68 -0.132 27
0.1 —0.051 53 —0.024 56
0.5 0.520 33 0.654 13




Figure(1l). Two parametric regions: if 4 < V'\. the formulas (V.25-26) yield a lower
bound for the ground-state energy of the Hamiltonian H = — A =1 + ur + Ar?,

while g > V/A vields an upper bound.

100 .

S0t '
|
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i
!
40 r ~
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CHAPTER VI

Eigenvalue Comparisons
for Quantum Systems in a box

We provide several comparison theorems for the first even and odd solutions

of Schrodinger’s equation
"+ Q) =M. —=I<t <

with boundary conditions v(—I) = v(I) = 0. These theorems allow the compari-
son function @; (¢ = 1.2) to intersect at a finite number of points within [—/.1],
while maintaining the eigenvalue comparisons. Immediate extensions are discused
for a more general class of Sturm-Liouville problems. as well as for problems in

unbounded regions.

VI.1. Introduction

We consider the pair of Schrédinger equations
—U"+Q1(t)u = A\u. (VL1)

—v" + Qa(t)r = A, (V1.2)

where the exact solutions u(t) and v(¢) satisfy the boundary conditions u(+!) =
v(£l) = 0 and @:(¢) (¢ = 1.2) are symmetric and monotone increasing on the half
interval {0./]. It is known from the Sturm comparison theorem [1.2] that A; > A,
if @1(t) 2 Q2(t) for all t € {—1,]]. Further, as a consequence of Leighton's criterion
[2.3], A = Az if

{
/ (Qilt) = Qa(t)* () 2 0. (VL3)

This result follows immediately, if u is applied as a ‘trial function’ for (VI.2). Our
purpose is to provide several comparison theorems that allow us to order the first

even and odd eigenvalues of the pair of Schrodinger equations (VI.1) and (VI.2).
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even if the functions Q,(¢), 1 = 1,2, intersect at a finite number of points within

(=1.1). Consider. for example, the following problems (illustrated in Fig.(VI.1))
—u" 4+ (£? + s a m(t)sin(bt®))u = Ms)u (=1 <t <), (VI.4)

where: s € {-1,0.1}, a and b are positive, ab < 0.5 and m(t) is a monotone
symmetric non-increasing function with m(¢) < 1/b. By means of the theorems
we prove, we shall be able to show that Ag(—1) < Ag(0) < Ag(l) for the first
even eigenvalue of (VI.4). The idea behind our comparison theorems is to replace
the condition @; > @ of Sturm’s theorem with the weaker condition "} > [%.
where U; = fc; Qi(z)p(z)dr. 0 £t <[, and p is a suitable positive non-increasing
function. These theorems. developed in the next section, allow the prediction of
spectral ordering, even when the comparison functions intersect. We present in
section V1.3 a simplified expression of our results for use in quantum mechanics.
In section VI.4 some examples using the known exact solutions of the square-well
potential are discussed. An extension to more general Sturm-Liouville problems is

provided in the section V1.5 and VI.6.
V1.2. New Comparison Theorems:

We start by utilizing the results of Sturm-Liouville theory [4-3] for a boundary

value problem. The spectrum of the differential equation
"+ Q) = v, =l <t <. (VL.5)

is an unbounded sequence of increasing eigenvalues {A,}3Z,. Further. each eigen-
value has a unique eigenfunction v,(t) with precisely n zeros in the given interval.
The eigenfunctions v,(t) are even or odd functions according as n is even or odd.
Consequently, the eigenvalues of (V1.5) can be obtained by solving the given equa-

tion on the half-domain [0, !] with one of the conditions
v'(0) = 0, v(0) =0 (VL6)

for the even and odd (subscripted) eigenvalues respectively. We consider first the
case of the lowest even eigenfunction. Since v(t) = vo(t) has no node, we may

assume v to be positive on (—I,1).
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Lemma VI.1.: The first even wavefunction v(¢) of Schrédinger’s equation (VI.4)

satisfies
() <0, 0<t<L. (VL.Y)

Proof: First the case where the eigenvalue lies above the function Q(t), when equa-
tion (VI.5) implies v(t) is concave, and from v’(0) = 0 it follows that v(t) is mono-
tone decreasing on [0.]. Secondly. if the eigenvalue lies within [@Qmin. Qmax]. then
(VL5). and the monotonicity of Q(t). imply that v”(¢) = 0 for some unique point.
say a. in the interval [0./]. Thus, v”(t) < 0 and v'(¢) < 0 on the interval [0.a].
Since v(t) > 0, and v"(t) # 0 for t € (a.l], and v(!) = 0. it follows that v'(t) < 0
for t € (a.l]. This proves (VL.7)w

Multiplying Eq.(VI.1) by v and Eq.(VL.2) by u. and subtracting the resulting
equations leads to

{ {

{
J = /uv — vu’ dt+/(Q1( — @Q2(t))uvdt = (N —,\g)/uvdt.
0

0 0

The term [(uv” — vu”)dt is equal to zero. because of (VI.6). and the boundary

conditions u(/) = v(!) = 0: Therefore.

{ {
= /(Q](t) — Q2(t))uvdt = (A = A2) /uvdt. (VL8)
0 0

Consequently
Q2t) <@ (1) (0<t <) implies A <Ay

The idea behind our comparison theorem is to replace the condition Q1(t) < Q;(¢)
with the weaker condition U; < U;, where U;(t) = j;) Qi(z)p(z)dz (0 <t <!, 1=
1.2) and p is a suitable positive non-increasing function. For the first even eigenvalue
we choose p = 1, and p = u(t) or v(t), where u(t) and v(¢) are the eigenfunctions
corresponding to differential equations (VI.1) and (VI.2) respectively. The first
choice of p leads to our first result. whereas the second allows us to recover Leighton’s

condition (V1.3) in a more general form.
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Theorem (VI.1): If the functions @, (¢) and Q2(¢) in the Schrédinger equations

(VI.1) and (V1.2) are monotonically increasing on {0, !], then

g(t) =/0 (Qi(z) - Qale))dr 20 (0<t<) (V19)

implies /\] 2 /\2.

Proof: Integration by parts of the left-hand side of (VI1.8) yields

{

[g(t)uv](l)—/g(t)(u'v)'(t)dt. (VI1.10)

0

J

However g(0) = 0 and the vanishing of the eigenfunctions u(t¢) and v(t) at [ makes
the first term of the right-hand side of (VI.10) vanish. From the hypothesis g(t) > 0
and from (VL.7) we know that (uv)'(¢) < 0 for all t € [0.!] and thus J > 0. We
conclude \; > \, as a result of (VI.8)e

An immediate illustration of this theorem is provided by the pair of differential
equations

—u" = Mu

and

—v" = (cos2t)v = Ayu

for t € [-7/2.7/2]. Using (VIL.9).
: 1
/ cos(2r)dr = 3sin(2t) >0
0 -

for ¢t € [0.7/2] and this non-negative expression implies the inequality A\; > A..
This result can also be derived using Leighton’s criterion which requires the exact
solution of the problem —u" = A\ju.

A more interesting example is the eigenvalue comparison of the pair of differ-
ential equations:

—u" — (cos2t)u = \u

and
o' + (t2 - 1v = Agv,
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where ¢ € [~-7/2,7/2|. Again, simple calculations using (V1.9) show

t
/(—cos(?z)—1'2+1)d:z=t—%ta——;)l-sm( t) >0 (0<t<w/2).
0

-

which yields the eigenvalue inequality A\; > A,. By numerical integration of the
coresponding Schrodinger equation Ay = 0.470 and A\, = 0.305. which results con-

firm our conclusion.

Theorem (VI.2.): If the functions @;(t) and @2(¢) in the Schrodinger equations

(VI.1) and (V1.2) are monotonically increasing on [0.!/]. then from

h(t)=/Q (z) = Qa(z))p(z)dr 0. (0<t <) (VI.11)
9]

it follows that \; > A;. where p(t) = u(t) or v(t).

The proof of the theorem follows the same argument as theorem (VI.1). We
observe here that theorem (VI.1) is stronger than theorem (VI.3). because the
condition of theorem (V1.2) is weaker, although it utilizes one of the exact solutions
u or v. This is evident because u or v is decreasing on [0.!] and therefore. the
functions @,(¢) and @2(t) can intersect each other ‘even further’ and still vield

A1 2 Ay This result. however is more general than Leighton's criterion (IV.3).
We now turn to the first odd eigenfunction of Eq.(VI1.5).
Theorem (VI.3): If the functions Q;(¢) and @2(t) in the Schrédinger equations

(VI.1) and (VI.2) are monotonically increasing on [0,/], then

t

t)-/(Ql(x) Qa(z))a?dz 20 (0<t<I) (VL.12)

0

implies Ay > A, for the first odd eigenvalue.

To prove this theorem we shall need to use the following monotonicity property
for the first odd eigenfunction. A result of this type was first obtained by Common
(10].
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Lemma (VI.2): The first odd eigenfunction v of Schrédinger equation (VI.3)

satisfies

v(t) ’

(—t—) <0 (0<t<). (VI.13)
Proof: For the first odd eigenfunction of (VI.5), from (V1.6). v(0) = 0. and further
v(l) = 0 from the hypothesis. Without loss of generality, we assume that v(¢) >
0 (0 < t < I). Rolle’s theorem guarantees the existence of a point n in (0.1), at

which v’(n) = 0. On the interval [0.7], v is concave and therefore its lies below its

v(t)

v(t) . . .
——. Differentiating ——

tangents and above its chords: consequently. 0 < v/(t) <

o)

. establishes the lemmas

and using v'(t) <

Proof of theorem (VI.3): Notice first that u(0) = v(0) = O for the first odd
eigenvalue and because the solutions of (VI.5) have only simple zeros {5]. it further
follows that u’(0) # 0 and v/(0) # 0. Thereafter. application of I'Hépital's rule

shows that
. u(t)u(t)
lim
t—0+ t2
has finite value. and thus the left-hand side of (V1.8) can be written as

= u'(0)'(0)

42 U(t):’(t)

-

!
J = [(Qi(t) = Q:(t)) dt.
/

Integrating this expression by parts with respect to the function k. as defined by

(V1.12). and making use of u(!) = v(!) = 0. leads to

{
(t)v(t) s
J=— [ kt)(= ) dt.
0/ :

t

Since k(t) > 0 by hypothesis and (i't)gv—“—))l < 0 from (VI.13). then J > 0: conse-
quently, (VI.8) lets A\; > Az »

By an exactly similar argument we may also demonstrate
Theorem (VI1.4): If the functions @;(¢) and Q,(t) in the Schrédinger equations

(V1.1) and (V1.2) are monotonically increasing on [0, !], then

t

K(t) = / (@1(2) — Qa(z))zp(z)dz 20 (0 <t < 1) (V1.14)

0
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implies A; > A, for the first odd eigenvalue, where p(t) = u(t) or v(t).
Example (The Schrédinger problem with ripple perturbations)

Consider the example mentioned in the introduction
—u" + (12 + s a m(t)sin(bt?))u = N(s)u (=1 <t <),

where: s € {-1,0,1}, a and b are positive. ab < 0.5 and m(t) is a monotonic

symmetric non-increasing function with m(t) < 1/b. Condition (VI.9) implies

t
/ a m(z)sin(bz?)dr > 0.
0

This follows because the successive positive and negative areas of the incegrand

decrease monotonically in absolute value. Therefore, by theorem (IV.1)
A(=1) < A0) < A1)

for the first even eigenvalue. More specifically. if | = 2. b=4.a=0.1 and m(t) =1
(Fig. VI.1). then by direct numerical solution A(—1) = 1.043. A(0) = 1.075 and
A1) = 1.107.

Similarly. if [ = 2. b = 4, a = 0.1 and m(¢) = 1/t* (Fig. VIL.2). because
fc: a sin(bz?)dr > 0. and with theorem (VI.3). A\(=1) < M0) < A(1) for the first
odd eigenvalue of the differential equations

-,
—u"+( +sa Smist ))“ = AMs)u, (=I<t<).

Meanwhile, direct numerical solution yields A\(—1) = 3.439, A\(0) = 3.530 and A(1) =
3.616.

VI1.3. Practical Method:

If the two functions Q;(¢) and @Q2(t) of Eq.(VI.1) and Eq.(V1.2) do not in-
tersect each other in a very complicated way on the interval [0,!], we can greatly
simplify conditions (VI.9) and (V1.12) for the ordering of the eigenvalues. Such

simplifications are useful in practical applications. For example, if we let a and b be
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the only two points of intersection of @;(¢) and @Q2(t) in {0,] with Q;(I) > Q2(I).
then for fOt(Ql(z) — Qa(z))dzr > 0, (0 <t <) to hold in theorem (VI.1). it is

sufficient that
a b
/ (Qu(z) - Qo(z))dz + / (Q1(2) - Qa(a))dz > 0. (VL.13)
0 a

Similarly. for fol(Ql(.l') — Qq(z))z?dz >0 (0 <t <) to hold in theorem (VL.3). it

is sufficient that

a b
/(le—QQ(r))z?dw/ (Q1(z) — Qa(z))adz 2 0. (VL.16)
(¢} a

The significance of inequalities (VI.15) and (VI.16) is that they reduce the condition
for ordering the eigenvalues, to the problem of comparing (signed and weighted)
areas between the points of intersection of the functions @;(t) and Q-(t) inside
[0,1]. Indeed. if A and B represent the (signed) areas between the two functions
Q. (t) and Q2(t) on the interval [0, a] and [a. b] respectively. then inequality (VI.13)
or (VI.16) is equivalent to the condition 4 + B > 0. This technique extends readily
to the case of any finite number of intersections. In the more general case of n
intersections (n > 1). we obtain a sufficient condition comprising (n — 1) area

inequalities.
V1.4 Applications:
Using the technique introduced previously. we can calculate bounds on the first

even and odd eigenvalues for the class of Schrédinger problems of the type discussed

in section (VI1.2). Consider the square-well problem
—u"+V(thu=du (-l <t <)

where

(VL1T)

-U for It| < a,
Vit) =

d for a<l|t| <Ll
Fliigge [6] provides the following transcendental expression for the eigenvalues

An (n=0,1,2,...) within [-U, d]:
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for even eigenvalues (n =0,2,...)

VU +d — e tan(ay/U + d — €,) = /&g coth((I — a)\/er) (V1.18)

and for odd eigenvalues (n =1,3,...)

VU +d—¢pcot(ay/U +d — €,) = —\/en coth((! — a)\/en), (VI.19)

where €, = —\, + d. The existence of such eigenvalues depends on the well-depth
U + d as indicated by these formulae {7]. For example, if d =0and 0 < U < 0.74.
then there is no eigenvalue within the interval [—-U, 0]; consequently. the spectrum is
entirely nonnegative [7]. In this case, Fliigge (6] provides the following expressions
for the eigenvalues that lie within [d. co):

for even eigenvalues (n =0.2....)

VU +d —eptan(ay/U + d — €,) = /e, cot((l — a)\/en) (VI.20)

and for odd eigenvalues (n = 1.3....)

VU +d—e,cot(ay/U +d—€,) = —\/en cot((l —a)\/en). (VI.21)

where ¢, = =\, + d.
Consider an arbitrary Schrédinger problem of the type discussed in Section
V1.2 and let
U = min{|Q()] : ~I<t<1)

and
d=max{Q(): -l <t <l}.

We introduce a square-well problem (VI.16) for comparison as follows. The value of
a is chosen so that the area between Q(t) and V/(¢) on the intervals [0, a] and [a.!]
coincide; thus expression (V1.18) yields a lower bound for the first even eigenvalue.
On the other hand, if we introduce a square-well problem with a minimum exceeding
the minimum of @Q(t), then the square-well function (VI.17) intersects Q(t) in the

two points a and b, where b is chosen such that the area between Q(t) and V(¢) on
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the intervals [0, ¢] and [a, b] coincide. Hence, the expression (V1.18) yields an upper
bound for the Schrodinger problem. The same argument can be used to obtain a
lower and upper bound to the first-odd eigenvalue. This technique provides us with
a condition guaranteeing that the spectrum of an arbitrary Schrodinger problem
(V1.5) lies within [d, 00). In particular, it follows that the minimum of the function

Q(t) of (VI.5) cannot exceed

8(U +d) .

e = T 99y

T AT - ) (V1.22)
where A = 2dl - fl Q(t)dt. To prove this condition. let Q(z) = vf(r) with
vf(0) = d + U. and define 4 to be the area between d = Q!l and the shape
f(z). Since we required vA4 = 2(d + [")a, thus we have

/[d— vf(z)ldr = 2(d + U)a. (VI.23)
Because fcot 8 > 1, the following inequality

6° )

1+ < <Bcotf+6 (V8>0) (VI.24)

holds. Let 8 = av/d + U. then we have from (VI.18) as ¢g — 0 that

ftanf = —=
[—a

or
(l—a)d =acoté

multiply by  and thereby obtain

2
6% + fcotf = ﬂ

a
=a(d+U)l
_ Avl
T2

Therefore (V1.24) implies
r
0>, = 8(U + d)

= AT +d) - A)
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with 4 = 2dl — [, Q(t)dt.

Furthermore, the interesting exact solution of the rectangular potential hole
between two walls (VI.17) allows us to obtain an estimate of the number of the
eigenvalues that lie within [-U,d]. Indeed from the horizontal asymptotes of the

tangent function in (VI.18) let us write

2.2 122
N et (U +d) < BEUTT
4q?

S 1a? (n=0,1.2,...).

As €, — 0. this vields

9 9
= U+d—1§n§:ﬂ2\/l"+d.

T

VI1.5. Elementary results for a system of Sturm-Liouville
We present. in this section, two elementary comparison theorems for the eigen-

values of the self-adjoint second-order linear differential equations
—(p1(z)uy) + qi(2)ur = (VI.25)

—(pa(z)us) + ga(x)ua = Aaua, (V1.26)

where: p;(z) > 0. p;(r) and g¢;(r) are continuous functions on a closed interval {a. b]
(i = 1,2), and a and b are two consecutive zeros of the solutions u;(r) and us(zr).
The simplest Sturm comparison theorem [1], dating back to 1836. demonstrates
that if py(z) = pa(z) and ¢ (z) > ¢2(z) in the differential equations (VI.25) and
(VI.26). then A\; > A,. It took almost a century for this result to be modified for
the case where p;(z) is different from ps(z). This modification, due to Picone [2].
states:
if p1(z) > p2(z) and qi(z) > g2(z), then Ay 2 As.

As an immediately consequence of Sturm-Picone’s theorem for
~(p(z)u')" + q(z)u = Mu (V1.27)

with m, < p(z) < M, and my < g(z) < M, for all z in [a, b], the eigenvalue bounds

(n+1)2x2

(n + 1)%n?
(b—a)?

mp+mg < Ap < 5 —a)? My,+M, (n=0,1,2....)
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holds.

Since Sturm-Picone’s theorem was stated, the question of the ordering of the eigen-
values A; and A, has been raised for the case [2] when the functions p; (z) and p2(r)
or q1(r) and g2(z) of equations (VI.25) and (VI.26) have common zeros on the open
interval (a.b). This question was partially solved by Leighton [3] using a varia-
tional lemma based on an elementary identity. He derived the following sufficiency

condition:

b
/[(pl(l') — pa(e)) + (@a(z) — gaz))ul]dz > 0 (VI.28)

for A; > A2. The proof of this condition is based on Picone’s identity

d 9 2
dr %(Pl(r)vu/ = p2(z)uv’)] = (A = M Ju? + (@ () — ga(z))u?+

(p1(2) = p2(e))u"? + o)’ = =22,

Integrating both side from a to b and using

a

%(P. (r)vu’ = Py(z)ur’)|® =0

yields

b b
(At - A2>/u2dx > /[(ql(z) — @22 + (pr(2) = palz))u'Yde.

To illustrate this result we consider an example. Let py(z) = pa(z) = 1. q1(r) = 0

and g2(r) = —cos(2z). It is known that u;(z) = \/2/mcos(z) is a solution of

equation (VI.25) with A; = 1 and [a,b] = [-7/2,7/2]. Condition (V1.28) now reads

as 4 w/2 ,

—/ cos(2z) cos®(z)dz = 0.5 > 0,
0

T
which implies A\; > A;. Indeed, a numerical integration of —uf —cos(2z)us = Aqus
yields A2 = 0.470. Leighton's result (VI.28) is certainly useful, but it stops short of
treating many differential equations because of the lack of exact solutions required

by (VI.28). We first present two elementary results that do predict the ordering of
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eigenvalues without appealing to the exact solutions. The proofs employ variational

methods.

Theorem IL.5.: If in the differential equations (VI.25) and (VI.26) p;(z) = p2(z)+
f(z) and qi(x) = q2(z) + g(x) where f(z) 2mys 2 0. and g(z) 2 m,,, then

2
™
Al > A+ (—b—:‘—a)—me + my. (VI.29)

Proof: After substituting pi(r) = p2(z)+ f(r) and ¢ (z) = g2(r)+g(x) in equation

(VL.25). multiplying it by u;(z) and integrating over [a, b]. we obtain

/[—”l (p2(z)u}) + qa(x 2]d1+/[-ul (x)uy) + g(z)ui]dx

b
= /\] / u%d.r.
a

It is a well known consequence of the min-max characterization [6] of the Sturm-

(VI.30)

Liouville problem. that the first integral of (V1.30) is greater than A, fab u?dr. In-
tegration by parts in the second integral of (VI.30) leads to

b 2 b
T
/ [(—ur(f(r)ul) + g(z)uf]dr > (mmf + mg)/ uidr
a a
since f(r) > my and g(z) > mym
Here we note that if we restrict our comparison to the case of po(z) = 1 and qa2(r) =
0, then theorem VI.5 reduces to the known result of Smirnov (8] for asymptotic

expression of the eigenvalues of boundary value problems.

Theorem VI.6.: If p,(z) = f(z)p2(z) and q,(z) = g(z)gq2(z) where f(z) > m,- >
0, g(x) 2 my, p2(x) 2 myp,, and g2(r) = my, in differential equations (VI.25) an
(V1.26). then

A2 A+

(b _ﬂ: a)? (mf = 1)mp, + (my — L)mg,. (VI.31)

Proof: By means of the substitution p,(z) = f(z)p2(z) and q;(z) = g(z)gq2(z) in
equation (VI.25) followed by multiplication by u,(z) and thereafter by integration.
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we obtain
b 5
A / u2dr = / [~y (f(2)pa(2)u}) + g(z)ga()udldz
b b
>(my - 1)/ pa(c)u} dz + (mg — 1)/ a2(z)uids

b
+/ (pg(r)u'12+QQ(17)uf)dr

b
(my —1)mp, + (mg — 1)mg, + /\2)/ ui2dzr.

which implies (VI.31)m

We illustrate this theorem by considering the following example. Let p,(r) =
p2(r) = 1. qi(z) = 7. q2(r) = z°. [a.b] = [0.5.1.5]. consequently f(r) = 1 and
g(r) =1/z or f(r) =1 and g(r) = r. A straightforward calculation from (VI.31)
shows A\ + 0.125 > A} > Ay — 0.08 or equivalently. the difference —0.125 < A\ =
Ay — A} € 0.08. The comparison condition (VI.28) of Leighton cannot be applied

to this example.
IV. Application to Sturm-Liouville problems

We have obtained some comparison theorems for the first even and odd eigenvalues

of Schrédinger’s equation
"+ Q) = . =I<t<L

with the boundary conditions v(—!) = v(l) = 0. These theorems allow the compar-
ison functions Q(t) to intersect at a finite number of points within [—{,[]. It is clear
that the results derived by Nehari [9] for a pair of differential equations of the form
u"” + Ag(z)u = 0 are radically different: neither set of results can be derived from
the other.

The comparison theorems we have derived herein also provide eigenvalue com-
parisons for regular Sturm-Liouville problems of the type we introduced in section
(VL.2), namely

—(p(z)u") +q(z)u =M, —a<z<a. (VI.32)



where p(zr) > 0 and both p(z) and g(z) are continuous symmetric with respect to
the midpoint of [—a,a], u(—a) = u(a) = 0, and two further conditions are met.

It is straightforward to show that equation (IV.32) can be transformed. using
Liouville transformations [3], into the Liouuville normal form, that is to say the

one-dimensional Schrodinger equation

0" +Q(t)v = M, =1 <t<], (VI1.33)

l:/ ! dz. t=/ ! dz. v=v/p(z)u
o V(=) o Vp(z)

and the transformed function

where

To apply the theorems we have developed in section (V1.2), the following condition

must be satisfied. The expression

-p"(r) (V1.34)

must be monotone increasing on [0,a], and further the functions p(r) and g(r) be
symmetric on the interval [—[./]. These conditions guarantee that the transformed
function Q(t) is monotone increasing on the right half of the interval [0.a]. Our
results can thus be applied to such a pair of Sturm-Liouville problems (VI.1) and
(V1.2) without any further change. The comparison results are, of course, invariant
with respect to vertical and horizontal shifts in space. Results of this type may
also be obtained for Schrédinger’s equation in an unbounded region [11]. Thus
the ripple examples discussed in section VI.3 here also apply to the problem in R.

Other illustrations of this type are straightforward to construct. For example if

Q=12

and
in(bt
Q. =t +aﬂ1;(—l (0 < ab® < 6),
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then it follows that @), and @, are symmetric and monotone on each half line.

moreover

t - /
/ smt(,t)dt’>0 Vit>O0.
0

Hence the ground state generated by Q, is above that corresponding to Q; for any

value of [.
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Fig. VI.1. Th i 2 4+ L sin(4t?
. 1 e potentials t? + 7% sin(4t*). where s € {—1,0.1}. If the lowest
igenv o . esteven
genvalues are written Ag(s), theorem (VI.1) implies Ag(—1) < Ag(0) < Ag( o
g 0 >~ /\0 1).
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Fig. VI1.2. The potentials t? + % sin(4t")/t*>. where s € {—1,0.1}. If the lowest
‘odd’ eigenvalues are written A;(s), theorem (V1.3) implies A;(—1) < A\{(0) < A\ (1).
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Conclusion

We have presented in this thesis a collection of practical techniques to obtain

energy bounds for Schrodinger Hamiltonians of the form
H=-A+1(r).

The main theory behind some of these techniques is the method of potential en-
velopes which is discussed in first chapter of the thesis. If we represent the potential
V'(r) as a transformation g of a soluble base potential h(r). and the convexiry of
the transformation function ¢ is definite. then the meihod of potential envelopes
vields energy bounds. Further. if hy(r) and ha(r) are two base potentials. then the
method we presented in Chapters III and IV yields eigenvalue bounds for a wider

class of potentials of the form
V(r) = gthy(r)) + f(ha(r))

where again the convexity of the transformation functions ¢ and f vields definite
upper or lower bounds according to theorem (III.1). This idea can be used. for

example. to obtain general energy bounds to the generalized supersingular potentials

valid for all dimensions .\ > 1. The method discussed in Chapters III and IV is
general and always yields analytical information concerning the dependence of the
eigenvalues on the components of the potential and the various parameters which
enter its definition. The exact wave functions of the singular potential (as presented
in Chapter III)

V(r) = Ar? 4+ ;fi

can be extended to the corresponding exact solution in N-dimensions. and can be
used to compute the diagonal elements of the Hamiltonian matrix for a potential
consisting of both positive and negative powers. without necessitating use of the

wavefunction. A promising direction for future work would be to develop all of the
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integrals necessary to perform first order perturbation theory on oscillators with
an interaction potential consisting of positive and negative powers. The method
extend naturally to sums with any finite number of terms.

Although the application of the envelope method to the class of quasi-exact
soluble potentials is rather limited by the parametric constraints necessary for sol-
ubility. we have presented an effective and simple method in Chapter V to dealt
with such a class of potentials. The method. for example. enables us to obtain
bounds for all the eigenvalues at the bottoms of angular-momentum subspaces of

the perturbed Coulomb potential
. 1 2
Vir) ==—4+pur+ Ar-.
r

These energy bounds are valid for arbitrary values of the positive parameters i and

A. The h-method can be applied equally well to the interesting potential
V(r)y =ar® +br* + cr®

for which exact solutions are only available when special relations exist between the
parameters: h-theory would allow us to reach bevond these limitations.

For Schrédinger systems in a box. we have developed some methods to obtain
eigenvalue comparisons for the first even and odd solutions. It would be very in-
teresting to extended these comparison theorems to higher eigenvalues. However.
because these theorems depend on the monotonic behaviour inherited by the wave-
function from the potential. we suspect that the generalization of the theorems to

higher eigenvalues. beyond the first two. may not easily be achieved.
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493

Energy bounds for the spiked harmonic

oscillator

Richard L. Hall and Nasser Saad

Abstract. A three-purumeter variational izl function is used to determine an upper bound to the ground-

. d - A .
state 2nergy of the spiked harmonic-oscillator Hamitonian H = TR The entire parameter
Ee

-

range » > 0 and @ > 1 15 treated in a sirgle elementan formulanon. The method of potential envelopes
18 alsa empioyed tc denve a complemenuary energy lower bound formula valid tor al! the discrete

e1genmvalues

Résumé - On utilise une fonction d'essai variationnelle 1 trois parametres pour déterminer une limite

supéneure de I'énergie de I'état fondamental de I"hamiltonien H = - — +x° + — de l'oscillateur

dr? lx|e

harmomique a pointes. Tout Pintervalle A > G et @ > 1 est traité en une seule formulauon éiémentaire Or
emplote auss: la méthode des enveloppes de potentiel pour obtenir une formule compiémentaire donnant
une hmite inféneure de I'énergie pour toutes les valeurs propres discrétes.

[Traduit par la rédaction}

1. Introduction

In early work on singular potential theory. Detwiler and
Klauder [ 1] introduced the term supersingular to distinguish
a potential that is so singular that every matrix element of the
potential is infinite. An example that has been given special
attention because of its importance in nonrenormalizable field
theory (2] and as a prototype for the Klauder phenomenon
[3. 4] 1s the so-called spiked harmonic-oscillator Hamtltonian

Hz—ifr:*—h— th

dv: A G

where X is a positive coupling parameter that measures the
strength of the perturbative potential. and a > | is a constant.
The phenomenon of supersingularity occurs for @ > 2. An
illustration of the potential fora = 3 and .= 0.01.1. and 10
1s shown in Fig. 1.

Aljthough the Rayleigh-Schrodinger perturbation series for
the eigenvalues of the operator H, regarded as harmonic-
oscillator operator H, = —d:/cir2 +x? perturbed by Lx G
diverges, a number of papers [1, 3-11] have been devoted to
the study of a modified perturbation series for the eigenvalues
and e:genfunctions. Detwiler and Klauder [1] discussed the
asymptotic behavior of the lowest eigenvalue of H for small
values of the coupling A. They discovered that £(1) is propor-
tional to Aln(A) when a = 3, and proportional (o A'/®~2 when
a > 3. Using some elegent results of Kato's work on the per-
turbation theory of linear operators {12] and approximation
techniques for differential equations, Harrell {5] was able to
derive explicit expressions for the lower order corrections to
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Fig. 1. The spiked harmonic oscillator potential Vi(r) =
x*+nx % fora=3and A =00l 1!, and |0

o

Vix)

the eigenvalues of H when A 1s sufficiently small. Aguilera-
Navarro et al. [6] developed a large-coupling perturbative
expansion for the ground-state energy and they present an
approximate analytic expression valid for a < 3.

Apart from the analytical approximations for the ground-
state energy of the spiked harmonic-oscillator Hamiltonian.
direct numerical integration methods have been used to com-
pute eigenvalues for H. Killingbeck [13] provided an integra-
tion method based on his improvement of the finite-difference
algorithm. Killingbeck was critical of the numenical resuits
obtained by Detwiler and Klauder using the Milne method.
These conclusions were later confirmed by Korsch and Lau-
rent [14]). Solano-Torres et al. [15] used the Lanczos or gnd
method to integrate the radial Schrddinger equation for the
Hamiltonian H. They have evidently introduced some errors
in their application of Harrell's formulas for a = 4 and 6.
For example, if A = 0.0} and a = 4, then formula (4) of ref.
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15 vields £ = 3.225 68 not 3.075 22. as quoted in Table 2
of ref. 15, if A = 0.01 and & = 6, then formula (5) yields
E = 3.482 31 not 3.096 48. as quoted in Table 3 of ref.
15; and similarily of other values of A. These corrections
demonstrate that formulas (3) and (5) of ref. 15. correctly
reproduced from Harrell [5]. yield results that are better than
Tables 2 and 3 of ref. 15 would suggest.

The variety of approaches and the complication of having
to usc different approximation formulas for different ranges
of a and A raises the following question: is it possible to
devise a secure uniform treatment to cover all cases? Sec-
tion 2 of this paper i1s devoted to answering this question:
we describe a simple three-parameter variational wave func-
tion that estimates E(a. ) for the ground-state energy of H
for all values of a and A. In addition, in Sect. 3, we apply
the envelope method {16] to generale a jower bound to the
ground-state energy of H. In Sect. 4 we report our numerical
results in detail.

2. Variational method

In view of the work of Simon [3] and DeFacio and Hammer
(4] on the domain problem of the spiked harmonic-oscillator
Hamiltonian (1), we conclude that an appropriate domain
for H. considered as a quadrauc form, is the subset D(H)
of functions y in L:({0.00).dx) that satisfy the Dirichlet
boundary condition w(0) = 0 and for which (y. Hy) < 2.
We consider in particular the following three-parameter trial

E¢ <EY = min _“!'H_‘V)
cfq20  wiv)
= min ‘—?("B):/‘ 2p+g+2-1) —;( +e)p
£..g20 - g+ g1 qp
where
g 2 1P+
lp+g+lde-1 Ip+le-1
=r] 2= | =T 2=},
9 2 3 9 Y —
g;:l‘(————"p+;£+"). g5=r(——————-p‘-£q (!+1). £6

This inequality is general enough to compule an upper
bound for the lowest eigenvalue of the Hamiltonian H for all
a > 1. V is supersingular 1] only when a > 2. The single
inequality (5) aiso allows us to estimate Eq for all positive
values of the coupling A.

3. The envelope method

The fact that ordering between potentials implies corre-
sponding ordering of the eigenvalues is an essential feature
of solving many problems in quantum mechanics. The enve-
lope method [16,17] makes use of this comparison theory and
provides simpie fortnulas for lower and upper bounds. The
shape of the spiked harmonic-oscillator potential (3) for large
x suggest the harmonic-oscillator potential h(x) = a+bx" as a
comparison potential where the variables a and b are chosen
such that the graph of the potential V(x) lies entirely above
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function

wix) = x"°¢ exp(—fr?). 0<xr<x (2
where the constant p > 0 will be determined shortly. and
¢.p. and ¢ are three posiuve vanational parameters. We find
that the optimal g is usually sufficiently different from 2 to
justify the added computational difficulty. Convergence of
the expectation value (y. —Ay) for the kinetic energy of H is
immediately assured. Since it is necessary that y € D(H), the
convergence of the expectation value of the spiked harmonic
potential

L’(.r):.\'z#% (3)
may be used to determine p in terms of a. Since there is no
convergence difficulty for large x. a sufficient condition for
the convergence of (y.Vy) is J; x®w*(x)dx < 0. This in
tumn is guaranteed if [ x*7*®~%dx < oo, for € > 0. Thus,
the minimum value of p for an acceptable wave function is
given by

p= a: ! 4)

This criterion guaraniees that y will be in D(#) for each
value of @ > | The variational method provides an upper
bound for the lowest eigenvalue Ey of the Hamiltonmian H.
Thus, by a long calculation by hand. we obtain

| 29 ()
+E—[)g:—gg3.'+(-"-ﬁ) g4+}.(2_B)a/qgs]l/g°
- J -
r(2p+2q;25-_£)
(6)

p+le+]
q

the graph of the potenual h(x), but is tangential to it at a
point, say r, where h(t) = V(1) and 'ty = V(). A simple
calculation shows that the eigenvalues of such a harmonic-
oscillator Hamiltonian with potential A are

A ak /2
a .
En(ﬂ-l;l):F(§+l)+(4n+3)(l-2—ra’—z) {7)

where n = 0.1.2.3.... counts the odd eigenstates of the har-
monic oscillator, in agreement with the Dirichlet condition
w(0) = 0. The envelope theory provides lower bounds for all
the energies of the spiked harmonic-oscillator Hamiltoman
H. We obtain the best lower bound by maximizing over the
contact point 1. Thus

E,,(a.l)?,E,‘;:rp)a&& EnlQ AL ) (8)
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Table 1. Upper and lower bounds for H = -—ddT 17+ m"— for

ditterent values of a The \alues EC were evaluated by formula
(4.33) of ref. 6. and thuse of EF. we used formula (3.1} from ref.
S EY and EL are from nequalities (5) and (8} of the present work.

The “exact”™ vaiues were obtained by direct numencal integration
[6.

a=32
A £¢ £H E}Y Exact

1009 44955 2% — 4495549 44955 49
100 17831 02 - 17841 92 17541 89
10 7735 88 - 773532 773511
s 6297 58 - £.296 83 6.296 27
! 4.323 60 - 431854 431731
0.5 3.860 §3 348127 385031  3.848 55
0.1 — 320125 326928  3.266 87
0.08 - 313695 315350 115243
0.01 - 303675 3.03743  3.036 73
0.008 — 301926 301947 201914
0001 — 300403 300504 300402
0.000 156 25 - 300064 3.000 64 -

A similar technique with the use of a square-well potential as
a comparison potential, for example, can also be used to pro-
vide an upper bound for all the eigenvalues of H. However,
for the most important case, the ground-state, the variational
argument used in Sect. 2 1s much more accurate.

4. Numerical results

For an accurate analytic eigenvalue expansion, Aguilera-
Navarro et al. [6] suggest considering two different expan-
sions according to the values of the coupling parameter 2,
a nonpower series expansion given by Harrell [5] when X is
small, and a large coupling perturbative expansion given by
them when A is large.

For intermediate values of A(x 1) Solano-Torres et al. [15]
claim that they have constructed an approximant to repre-
sent the energy in this region using a single Padé extrap-
clant. However, they do not present any numerical results
for eigenvalues in this case.

In this section we discuss the numerical results for the
upper bound EY’ (by (5)) and lower bound E} (by (8)) of the
ground-state energy of the spiked harmonic-oscillator Hamil-

Table 2. Upper and iower bounds for the

H= -——, +x° 4+ 1000 with different values
dy- jx e

of a. by inequalities (5) and (8).

» = 1000

a ES EL

3 33.316 78 31.186 55
is 26.108 98 13,894 13
3 21.370 26 19.076 98
4.5 18.102 87 15737 &0
5 15.763 56 13.330 60
55 14.036 26 11.539 28
6 12.725 65 10.170 24

tonian (1): these bounds are valid for small, intermediate, and
large values of the coupling parameter 2.

A simple method to compute the upper bound E§ from in-
equality (5) is to fix one or two of the parameters (B.€.q) and
then minimize with respect to the free parameters. However.
we found that the most convenient approach was to explore
the parameter space (B.e.q) by using the downhill simplex
method of Nelder and Mead {20]. The initial simplex points
for this method may be chosen with the aid of a few pre-
liminary calculations. As an example, consider a = 5/2 and
A = 1000. simple loops over fixed ranges of € and g give
for the minimization of the right-hand side of inequality (5)
B = 0.89 and EY = 44.955 66 when € = 27.6 and ¢ = 1.80.
With these values of (B.€.4) as a base for the simplex method,
the other three initial points can be chosen close to it. The
downhill simplex method gives now the more accurate eigen-
value EJ = 44.955 49.

In Table 1 we exhibit the results of our computations of the
upper bounds for different values of the coupling parameter
A, where a is fixed at 5/2. For comparison, the partial results
given by the formulas of Harrell EH [5] and Aguilera-Navarro
et al. ES [6], and the “exact” numerical results of Aguilera-
Navarro et al. [6] are also included. It is clear from these
data that the wave function (2) provides an excellent approx-
imation for the ground-state energy of the spiked harmonic-
oscillator for all values of the potential parameters.

Lower bounds by (8) are weak, especially for small 2,
but the formula is simple and valid for all the discrete
eigenvalues. Examples for @ = 5/2 (as in Table 1) are:
L =1000.Ef =42917:1 = 10.E} = 6.228: and A = 1LEf =
3.529.

In Table 2 we present some sample ground-state energy
eigenvalues of the spiked harmonic-oscillator Hamiltonian H
for fixed A and different values of c. The results for A = 1000
are not possible by any of the earlier analytic approximations
mentioned in the introduction. Similar tables can of course
be constructed by using the inequalities (5) and (8) and any
desired values forA>0and a > 1.

The idea of using a trial wave function to approximate the
upper bound eigenvalues of the ground state of 4 variation-
ally for @, a positive even integer, was used by Guardiola
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Tabie 3. A companson bemween the results EF of Ferndndez {19}, and the resulis
EL of the present work obtained from the mequahiry «5) for @ = 4 and 6 and vanous

values for the coupling .

g=4 a=6
. EF EY £F Et
1000 21 384 de 21.370 26 12737 60 12725 65
100 11.262 3 11.265 8¢ §32260 8.42C 96
to 6620 78 6.609 b6 6016 4 6.013 94
§ 583205 5.788 89 5.527 51 552809
| 451879 4504 16 4676 88 4.684 97
ul 3626 34 3.600 34 2.019 15 4042 84
oo 323778 324980 3.524 93 3.580 70
and Ros. |18] and Ferndndez [19]. In Table 3 we report a References

comparison berween the ground-state eigenvalues of A using
formula (9; of ref 19 and inequality (5) of the present work.

5. Conclusion

The spiked harmonic-oscillator Hamiltonian is interesting for
mwo principal reasons: it has played an important réle as a
madel for non-renormalizable interactions used in field theo-
ries; and it has provided a useful model for a certain class of
curious difficulties. which may arise in perturbation theory.
The key feature of this potential, leading to the so-called
“Klauder phenomenon.” is that if the limit is taken to zero
perturbation (A = 0), there 1s a dramatic change 1n the pos-
sible interpretation of the operator (or quadratic form)

The sigmncance of the contribution made in the present
paper 1s that upper and lower bounds are provided simply
and umiformly for all values of the potential parameters. The
upper bound (5) for the ground-state energy is accurate and
vields also a trial wave function whose possible further use
has not been explored in the present paper. The lower bounds
we provide are not very tight for small A. but they are in the
form of a simple formula (8), which is valid for all values of
the potential parameters and for all the discrete eigenvalues.

Acknowledgment

Partial financial support of this work under Grant No.
GP3438 from the Natural Sciences and Engineering Research
Council of Canada 1s gratefully acknowledged.

[ I e e B

~4

i

13
14

16.
. R.L. Hall. J. Phys. A: Math. Gen. 25, 3472 (1992

18.

19.
20.

L.C. Detwiler and J.R. Klauder Phys. Rev. D: Part. Fieids. 11.
1436 (1975).

J.R. Klauder. Acta Phys. Austriaca Suppl. 11, 341 (1975

B. Simon. J. Functional Anal. 14 295 (1973)

B. DeFacio and C.L. Hammer. J. Math. Phys. 15, 1071 ¢1974,
E. M. Harrell. Ann. Phys. (N.Y.). 105, 379 (1977,

V.C. Aguilera-Navarro, G.A. Estévez. and R. Guardiala. J
Math. Phys. 31. 99 (1989).

V.C. Aguilera-Navarro and R. Guardiola. J. Math. Phys. 32,
2135 (1991).

. MF. Fiynn. R. Guardiola. and M. Znojil. Czech. J. Phys. 41,

1019 (1991).
. M. Znojil. Phys. Len. 169A. 415 (1992).
E.S. Estévez-Breton and G.A. Estévez-Bretdn. J. Math. Phys
34,437 (1993).
M Znojil. . Math. Phys. 34. 4914 (1993).
T Kato. Perturbation theory for linear operators. Spnnger-
Verlag, New York. 1976.
1 Killingbeck. J. Phys. B: Mol. Phys. 15, 829 (1982).
H.J. Korsch and H. Laurent. J. Phys. B: At Mol. Phys. 14,
4213 (1981).
. W. Solano-Torres. G.A. Estévez, FM. Ferndndez. and G.C.
Groenenboom. J. Phys. A: Math. Gen. 25, 3427 (1992
R.L. Hall. J. Math. Phys. 24, 324 (1983).

R. Guardiola and J. Ros. 1. Phys. A: Math. Gen. 28. 1351
(1992).

F.M. Fernindez. Phys. Leu. 160A. 51! (1992

H.W. Press, P.B. Fiannery, A. S. Teukolsky, and T.W
Veuterling. Numerical recipes in Pascal: The ant of saiennfic
computing. Cambridge Press. 1989.



1. Pbys. A: Math. Gen. 31 (1998) 963-967. Printed in the UK PII: SO305-4470(58)86202-1

Eigenvalue bounds for a class of singular potentials

Richard L Hall and Nasser Saad

Department of Mathematics and Suustics, Concordia University, 1455 de Maisonneuve
Boulevard West. Montréal, Québec, Canada H3G M8

Recetved 24 July 1997, 1n final form 22 October 1997

Abstract. We study smooth transformations V (x) = g(x*) + f(?',) of the solvable potentials

ol e ﬁ Eigeovalue approximation formuloe are obtained which provide lower or upper
epergy bounds for all the discrete energy eigeavalues E,. n = 0, 1,2... .. accordingly as the
transformation functions g and f are both convex or both concave. Detailed results are preseated
for the special case of rwo-term singular potentials of the form V(x) = a4+ 5.a.8>0
and also for the potentials V(x) = JULE N ;#' and V(x) = Ax*! & ;4_‘1 A>0 u>0 for
010

1. Introduction and main result

In many cases the exactly solvable problems in non-relativistic quantum mechanics provide
simple and effective models illustrating the most relevant features of actual physical
phenomena. Further, they may provide a stanting point for more accurate approximations
based on a variational or perturbation method, or on geometric properties of the Hamiltonian
involved [1,2]. In envelope theory [3], for example, the exactly solvable models play a basic
role in the development of the energy approximation expressions. There are many excellent
sources available in the literature for exactly solvable models in quantum mechanics [4~10].
Gol"dman and Krivchenkov (5], for example, have provided a clear description of the exact
solution for the following one-dimensional Schrodinger equation (in units & = 2m = 1):

-1{1"+(k12+%)w=&,¢ v0) =0 A>0, u>0 N
They showed that the energy spectrum of (1) is given by
&.=\/i(4n+2+,/4y.+l) n=012.... @)

The purpose of the paper is to use such solutions to investigate the spectrum of the
Schrodinger equation:

V" + V@)Y = E ¥ v@) =0 3)
where

Vix)=g(x®)+ f (%) 4)

is a sum of two smooth transformations respectively of x? and 7, and E, is the eigenvalue.
We shall show that E, can be approximated by the expression

=~ — 3 2 2,102 l l ’ l
En en—‘r_!,lg‘l){x(S)-sg(s)-i—f(ﬁ -,—zf %)

0305-4470/98/030963+05519.50 © 1998 IOP Publishing Lid 963
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+ 8'(52)(4n+2+ /4}"(;15)4»1)} n=0.12..... 3)

This formula provides a lower bound (=~=2) or an upper bound (==<) to the exact
eigenvalues according to whether the wansformation functions g and f are both convex or
both concave. This allows us, for example, to obtain simple expressions which bound
the spectrum of the spiked harmonic oscillator potential V(x) = Ax? + Loa 21,

n = 0.1.2 ..., a problem which is of considerable interest [11-18). Indeed, formula
(5) implies that the energy of spiked harmonic oscillator can be approximated by
E,ze,.m=(1—§)§+2AF+2Ji(mx+1) (6)

where 1 is the real root of
2uart™® —4n* +1=0.
Here ¢, (1) is lower bound to E, when a > 2 and an upper bound when a < 2.

2. Transformed potentials

In order to lay down a framework to the approximation method we are about to construct,
we consider a Schrodinger Hamiltonian of the form

d? - |
H=-dx2+g(x)+f(;5) 7N

where g and f are smooth uansformations of x? and ‘l respectively. For example,
when g and f are identity transformations, the problem has the exact solution (2) for
all n and arbitrary positive values of A and . Standard envelope theory [3] suggests the
following approach to treat a2 Hamiltonian of the form (7). We may approximate the shape
of V(x) = g(x?) + f(4) by some suitable potential, called base potential, with known
spectrum. Using the well known comparison theorem (or refinements thereto (19]) for
V (x) with this base potential, we can obtain eigenvalue bounds for H. This method has
been applied to obtain a simple lower bound formula for eigenvalues of the spiked harmonic
oscillator V(x) = x? + 1/x%, o > | using a harmonic oscillator as a base potential {18].

Here we add a new idea which leads to energy bounds which are both more general
and sharper. Instead of approximating V(x) by a single potental, as in [18], we use the
tangent approximation for g(x*) and f (;'1). separately. That is to say, we replace g and f
by their corresponding tangent approximations

g9 () = als) + b(s)x?
8
A (.12.) =c( + 1(;—) ®
X X

respectively, where s is a contact point between g(x?) and its tangent approximation g’ (x?),
and 1 plays a similar role for f. Elementary analysis implies that V(x) in (4) can thus be
approximated by

1 Il- rl’
)_f(,) AT

vi(c) = g(s?) - 28’ + 8'(32)4‘2 +f (,’2 rr + 22

With this approximation for V (x), we may use the result of Gol’dman and Krivchenkov (2)
for the eigenvalues of Schrodinger equation

="+ V() = € (5. DY (10)
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Table 1. Some lower bounds E,{' and upper bouands E,';’ usiog (6) for H = —I‘E +xi 4+ |_:n:_n
The "exact’ values E',’,v were obtained by direct numerical integration of Schrodinger’s equatioa.

u = 1000
a E§ Ef E§
085 — 41588979 416.30977
1 — 190.72331 19099213
1.5 - 10441022 104.53963
19 — 71.061 58 71.08686
2 6525146 6525346 65.25346
2.1 60,2704 60.1520f —
25 4483349 4495549 —
3 33.07940 3331676 —
3.5 2576204 26.10885 —
4 2091865 2136963 —
45 1755218 18.10183 —
S 15.11758 1576113 —
§.5  13.29842 14.03107 —
6 11.90]1 83 1271862 —

Table 2. lower bounds E{ using (6) for H = —%’: +x3+ 4= with different values of . The
*exact’ values £y were oblaiged by direct numerical integration of Schrodinger’s equation.

a=

[FIVY

N E} E}

1000 4483349 4495549
100 1741900 17.54189

10 761169 7.735 11
] 6.17364 6.29647
1 420453 431731
0.5 374616 3.84855
0.1 320498 3.266 87

0.05 310954 3.15243
0.01 3.03336 3.03670
0.005 301178 3.01908
0.001 3.00237 3.00397

Thus we have

] 1 4,1 1 1 ’ ]
€n(s, 1) =g(s7) - 578 (S')+f(l—2) -=f (-3)

1
+vg'(s?) <4n+2+ 4f'(r—2)+l). (1

For the eigenvalues of Schrédinger equation (3), we have

(a) E, < €,{s,1) if g and f are both convex.

(b) En 2 €n(s, ) il g and f are both concave.

The proof is obtained by the following simple argument. For definiteness we consider
case (a). Since g and f are convex, their graphs lie above their tangents. Consequently,
we have from (9) that V*(x) € V(x). Case (a) then follows by an application of the

—
[}
~
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Table 3. Upper bounds EY using (12) for H = ':T:- +ix'? + 4y with differeat values of n.
The ‘exact’ values £* were obtained by direct sumencal integration of Schrodinger’s equation.

3
m

c
%

4160138 4.11628

7.94696 7.85041
11.68436 11.54296
1538087  15.21195
19071175 18.85779
2273385 22.48648
2638239  26.10075
3J0.01664  29.70260
3363930 33.29352
3725169  36.87471
40.85386 4044712

OOV A0 WNhREWII—OD

Table 4. Lower bounds Ef using (12) for H = '.1% + x> + % with different values of n.
The 'exact’ values E¥ were obtained by direct sumerical istegration of Schrbdinger’s equation.

Ai=u=1

E- EN

"

3

4.309 42 4.35698

8.51989 8.62697
1278243 1294000
17.07960 17.28355
2140286 21.65081
2574712 26.037 51
30.10894 3043071
3448590 34.85823
38.87613  139.28842
4327821 43.72998
47.69099 48.18184

OV IO & wid—O0

v—

comparison theorem. Case (b) is proven in an analogous way if ‘convex’ is replaced by
‘concave’. It is appropriate to mention here that the conclusions follow even if either forg
is the identity transformation. These bounds may, of course, be sharpened by optimization
with respect to s and 7, and moreover they are valid for the entire discrete spectrum n 20

3. Numerical results and conclusion

One of the interesting points conceming the bounds we have obtained, in section 2, is the
large variety of approximations made possible by different choices of the ransformations
g and f. We consider, for example, the case where g(x*) = Ax? and f(3) = %. From
(11) it follows that

B ay\ K ABsh-1 2ua
S D=A11~= s -\ 1}. 2
€n(s. 1) ( 2): +(1 2)'°+,/ 3 4n+2+ ,0_2+ (12)
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For the spiked harmonic oscillator § = 2 and therefore it follows from (12) that the
eigenvaluc approximation is given by (6). In wbles ] and 2 we exhibit the results of
the lower bounds obtained by using formula (6) for different values of @ and for A =1 and
different values of the coupling parameter u, along with some accurate values obtained by
direct numerical integration of Schrodinger equation.

For the potential V(x) = Ax'9 + %, wetake § = 19 and o = 19 in formula
(12), which provides upper bounds in this case. A comparison of some results obtained
by this formula and the corresponding results obtained by direct numerical integration, for
11 energy levels, are reported in table 3. In table 4, we report the corresponding results
for the case 8 = 2.1 and @ = 2.1, that is 1o say, for the potential V(x) = x4+ ?‘j-,
Similar numerical results could also be obtained by using perturbation methods such as the
renormalized hypervirial perturbation method of Killingbeck [20].

The main point of the approach described in this paper is t0 provide a way (o generate
simple general approximate formulae to be used for exploratory purposes. Once the
appropriate ranges of the potential parameters are established, direct numerical methods
could be used to find more accurate eigenvalues.
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Abstract. We study smooth transformations V(r) = ho(r) + g(h(fr)) of potentials Vo(r) =
hutr) + h(Br) for which exact bound-state solutions of Schrodinger's equation are known.
Eigenvalue approximation formulae are obtained which provide lower or upper energy bounds
according to whether the tansformation function g is convex or concave. Detailed results
are presented for perturbed Coulomb potentials of the form V(r) = —a/r + br + cr? and
Vi) = =1/r + ulntr + 7).

1. Introduction

Interesting exact solutions of Schrédinger's equation may be generated by first choosing a
wavefunction ¥ and then finding the corresponding potential V. This idea goes back to a
paper published by Wigner [1] in 1929 and has enjoyed a considerable amount of attention
since then [2.3]. The following simple example will serve to fix ideas. If we choose
the wavefunction for the bottom of the ¥/ angular-momentum subspace to be ¥(r) =
rlexp(~1(r + Br*))¥"(6. ¢}, then Schrodinger's equation Hy = (-4 + Viy = Eyis
satisfied if

1 2
V(r)=—;+ﬂf+(ﬂf)’ and E=(3+2D8-1 (N
Such exact eigenvalues are certainly useful but they stop short of treating, for example,
the more general problem V(r) = —a/r + br + cr? in which the coefficients {a, b, ¢} are
arbitrary.

In this paper we use exact eigenvalues such as (1) to estimate the spectrum corresponding
1o a potential V(r) of the form

1
Vir)=—=+g(Br + (Br)hH )

where g is a smooth transformation. We shall show that the bottom of the spectrum of H
in the ¥ subspace may be approximated by the expression

. 2 f(1) ey ]
E~rp>lg{f(r)-h(u+3)+rf(:)—zl

where
f)=g(Bt + (B h(t) =t +12.

t E-mail: rhall@abacus.concordia.ca
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This formula provides a lower bound or an upper bound to the exact ground-state energy
E according to whether the transformation function g is convex (X = ) or concave
(= = ). This allows us, for example, to estimate the spectrum corresponding to
V(r) = —a/r + br + cr® for arbitrary {a, b, ).

At the cost of more complicated conditions on the coefficients, the collection (1) of
exact eigenvalues may be extended to certain excited states including ¢ # 0. In section 2
we summarize the more detailed exact results for the perturbed Coulomb case. Since similar
resuits may be obtained for other families of potentials such as V{r) = ar? + br* + cr®,
we formulate the approximation theory ir section 3 in a general framework suitable for
application to all exact solutions of this general type. In section 4 we present numerical
results for a number of specific examples some of which are compared with known results
that have been obtained by other methods.

2. Perturbed Coulomb potentials

In his interesting work of solving Dirac's equations in the presence of magnetic field, Hautot
[4] introduced some methods for solving certain second-order differential equatic..s. One of
these methods deals with the radial Schrdinger equation with the potential energy operator:

D 5
V(r)y=—-—+ Br+ Ar? A#0. (3)
r

The author obtained [5] exact solutions only for certain relations between the constants
A, B.and D. He achieved this by applying the kinetic energy operator to an appropriate
wavefunction and using the standard procedure of comparing the coefficients of the induced
recurrence relations. More precisely, introducing

| . B -
Y(r) =ex (—— (ﬁr'+—r)) ar*! =012 ... (4)
P\72 7)) & !

into the radial Schrodinger equation (in units i = 2m = |)

dr:  rdr r?

d> 2d lil+1 .
( s )+[E+$—Br-Ar'])t,IJ(r)=0 )

we obtain, after some algebra, the following three-term recursion relation between the
coefficients g, for (k =0,1,2,...):

B
[tk + 2)tk + 21 + 3)]ac.2 + [D - 7—;(/( +2+ 1)} ir|

2
+[E-ﬁ(2k+21+3)+%]ak=o. (6)

This recurrence relation terminates if a,4, = 0, that is to say
BZ
£=E",=ﬁ(2n+21+3)-a. 0

Equations (6) and (7) give the following (n + 1) x (n + 1) determinant which provides
the relations between A, B, and D (for a given value of n) to ensure the existence of the
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solutions of (5) (note that gm =0.m =1.2,.. .}

ap b
C, a b|
2 ar by
=0 (8)
Ca-t Gn-1i bno
Cn an

where
a =D~ (B/VAYKk+1+1)
by = (k+ 1)tk + 20 +2)
cr = Em = YAk + 2 + 1) + (B/VA).

Since this early work the technique of generating exact solutions for a Schrédinger operator
has been widely applied [6-14], either to obtain some interesting potential functions with
known eigenvalues, or to investigate the quality of perturbation theory.

3. Transformed potentials

In order to lay down a general framework for the approximation method we are about 0
construct, we consider a Schrodinger Hamiltonian of the form

= — A +ho(r) + f(r) €)

where ho(r) is a fixed potential term and f(r) is a smooth transformation g(h(fr)) of a
second scaled potential term h(Br), § > 0. Such a transformation always exists by the
monotonicity of k. For example, when ho(r) = —1/r and h(Br) = fr + (Br)* and g is the
identity transformation, the problem is exactly solvable for n = 0. Indeed, in this case, we
have from (7) and (8) that Eg is given by (1).

The tools required to develop our approximation theory arise from the geometric
relationship between a potential shape and the set {€,} of the energy trajectories generated by
it. This technique was first introduced to analyse the spectrum of the many-body problem
[15]; a more complete account and recent applications may be found in [16]. For the
transformed Hamiltonian

H = -A—I—-:—]"I'S(h(ﬁ')) (10)

we have for the tangent line at (h, g(h)) that
a(t) + h(B()r) = fOr) (1

where 1 is the point of contact between h(8r) and f(r) = g(h(Br)). The parameters a(t)
and B(1) are determined as follows. Suppose that ¢ is an invertible function defined by
@(tB(1)) = tf'(1), where ' denotes differentiation with respect to . Then, using (11), we
have

lﬂ(x) =(1/0¢7' (tf' (1)) a2
a(t) = f(t) = h@~'(f' (1))
Differentiation of (12) with respect to ¢ gives

2O g (13)

B®
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On the other hand, the energy formula (1) with (11) gives

€a(t) = a(r) + B2 +3) — 1. (14)
By differentiating (14) with respect to r and using the extreme condition €,,(r) = 0. we get
a'(r) ;
—_— = = (2] + 3). 15
0 ( (15)
Now. since
PUBW)) = 1f'(t) = 1B (1B() (16)
we have from (13). (15). and (16) that
tfien)
) = ————. 7
B(1) 7 +3 (17N
Thus
NS
Al —— )= .
! (21+3) 2l +3) (18)
Finally we obtain using (12), (17), and (14) that
rf) o]
= -h (1) — -.
€ (t) = f(1) (21+3>+rf )= (19)

Equations (18) and (19) establish the energy bounds of the Hamiltonian (10). Indeed solving
(18) with respect to ¢, for any smooth function f(r) = g(h(8r)). yields the optimal solution
f then o (f) gives [16] lower bounds when the transformation g is convex and upper bounds
when g iIs concave.

Equations (18) and (19) represent a complete recipe for a bound to the lowest
eigenvalue (n = 0) of any Coulomb problem perturbed by a smooth transformation g(h) of
h(Br) = Br + (Br)*. Although we shall not develop the more general case in detail here,
the method for n > O works as follows. If we consider the Schrodinger equation (5) with
A = B* we have from (7) that Eyy = B2n + 2 + 3) - } The parameter D is related to
B through a recurrence relation which can be obtained by expanding the determinant (8)
about the last row or column and using A = B*:

Dy =[D—(k+14+1)]Dgey = 2Bk(k +21 + 1) Dy
k=012, ... D=0 D_ =1

For example, Dy = D — (I + 1) which implies the condition D = [+ |. In the same manner
as we discussed above we obtain the corresponding formulae (18) and (19), but instead .of
(2! + 3) we have, in general, (2n + 2/ + 3).

A case of physical interest occurs [17] when n = | and B approaches zero. In this
case, we have from (20) that D = [ + 2, this aliows us to keep the potential ho(r) = =D/r
as a fixed term. Thus, we have

2 ¢t
o (r S
2045

(20)

12 f'(1) , |
21+7)+'f(')'2

which gives a bound to the first excited state of H = — A —(I +2)/r + g(h(Br)), where g
is any tranformation of h.

eu(t) = f(t)y=nh (
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4. Numerical results and conclusion

One of the interesting points concerning the bounds we have obtained is the variety of
approximations made possible by different choices of the transformation g. For example, in
section 3, we can take f(r) = g(h(fr)) = ur + irior f(r) = gh(r)) = u{e“'*”‘ -1},
for arbitrary 1 and A elc. where in each case equations (18) and (19) give us a bound. A
second point is the possibility of using the approximation with different base functions h.
For example. if we consider h(r) = —1/r<+r and use an appropriate smooth transformation,
the method we have discussed can easily give a bound for the eigenvalues of the harmonic
oscillator Hamiltonian perturbed by f(r) = g(h(r)). This particular example can be
discussed in terms of the theory presented in [16]. but the method presented here is much
simpler and more general: simpler in the sense that its derivation and the formulae it
produces are simple; more general in the sense that, given an arbitrary smooth transformation
g. formulae (18) and (19) provide an eigenvalue bound without any further ado.
Our first example 1s

! )
H=—-A—--+yur+ir-
r

where u and A are arbitrary real parameters. That is to say, we consider f(r) = ur + Ar?.
It is clear that the transformation g exists for such an f. Equation (18) gives

4ar +2ur’ + 2+ - (A +3)P? =0 1)
while the energy formula (19) gives

2 12+ 2 12+ 2a0?
€qlr) = 307 +2ur - RIS+ oAl ( “_L_) -

1
A+3 2A+3 ra

100
8 +
60 r Upper Bounds
A
o +
20 ¢
0
0 2 4 6 8 10

Figure 1. Two parametric regions: if u < +/X. the formulae (21) and (22) yield a lower bound
for the ground-state energy of the Hamiltonian ¥ = - A —;' + ur +Ard, while u > VX yields
an upper bound.
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Table 1. Eigenvaluesof H = —é & =1+ ur +2r? for different values of 42 and A. Comparison
between results EB of Bessis er ! [13], using the moment method. and the present work which
yields the lower bound EY

“m A EB EL
0 I 0.593 771 0.514269
0 10 4.150123 3979871
0 100 16.805 248 16475 256
0 1000 §9.375469 58762742
0 S000 138557196 137.624947
=20 1 —=1171674 —1431541
-1.0 I -0226187 -—0.380198
-05 I 0196 002 0.081963
05 1 0.971 616 0922717
1 I 1.332845 1311628
Table 2. Eigenvaluesof H = - A -;' + ur + ir? for different values of u and A. Comparison

between the lower bound EL given by formulae (18) and (19) and accurate values EV found
by direct numencal integration.

n A EN EL

0001 0001 -0.236 -0238

0001 1 1.786 1707

001 0.0 -0.152 -0.153

0.01 ] 1.79 L7177

0.1 0.1 0378 0.354

0.1 ] 1.885 1.814

0.5 | 2278 2239

1 2 3.657 3629

Table 3. Eigenvaluesof ¥ = - A —;’ + uln(r + r?) for different values of u. Comparison
between the upper bound EY given by (23) and accurate values £~ found by direct numencal
integration.

n EN EY

0.0001 -0.24978 -0.24975
0.0005 -0.24889 -0.24875
0.001 -0.24778 024752
0.005 -0.23897 -0.2376S
001 -022810 -0.22545
005 -0.14568 -0.13227
0l -0.05153 -0.02456
05 052033 065413

For arbitrary A, u, and !, equations (21) and (22) give the required approximation. We
may use any rootfinding method {18] to solve (21) for t and substitute this in (22) to yield
the approximate eigenvalue. The natural question which arises now is whether €u(f) is an
upper or lower bound. The answer depends on the convexity of f(r): the proof of this
may be found in [16]. Indeed we can easily demonstrate using elementary differentiation



Eigenvalue bounds for transformations of solvable potentials 2133

that if 4 < +/&. then €g () is a lower bound for the Schrodinger Hamiltonian with potential
—1/r +ur+ar% and if VA < u, then ey(7) is an upper bound. In figure 1 we plot these
two independent regions: along the curve A = u? we have the exact solution. By means
of a scale transformation (to remove the % in front of the Laplacian) we can compare our
bounds with the results of Bessis er al [13]: these are shown in table 1. These results show
that our simple formulae can be used to obtain a satisfactory bound for a class of potentials
generated by g without the lengthy derivations required in each case by the moment method
[13] or the shifted 1/N expansion [14]. In table 2 we report our results using (18) and (19)
for a range of values of u and A and, for comparison, the corresponding accurate results
obtained by direct numerical integration of (3).

As another example of a smooth transformation g(h(8r)) we consider f(r) = uln(r +

r*). where y 1s arbitrary real. The Hamiltonian becomes
! )
=—-A-—-=+ypuln(r+r9)
r

and the formulae (18) and (19) provide an upper bound if 4 > 0 or a lower bound if u < 0:

Aur’ + Qu+ 2+ 3 = QU+ 2@+ - @2 +3) =0

€a(t) = pin(t +17) + <1+2’) H (r-i-i‘.rz)(l-L u ,+212) 1
ally=u K 1+¢ A+3\ T+¢ TA+3 |+t 2

(23)

A comparison of some results obtained by this formula and the corresponding results
obtained by direct numerical integration are reported in table 3.

The main point of the approach described in this paper is to provide a way to generate
simple approximate formulae to be used for exploratory purposes. Once the appropriate
ranges of the potential parameters are established, direct numerical methods could be used
to find more accurate eigenvalues.
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Abstract

Companson theorems are obtained for the first even and odd solutions of Schrodinger’s equauon "+ Q= Ar =l €
¢ € I with boundary conditions 1 { —=/) = +({) = 0. The companson funcuons Q.(/).¢= 1.2, may intersect at a finite number
of points within [—/./] Immediate extensions are possible for a more general class of Sturm-Liouville problems. and for
problems in unbounded regions. € 1998 Published by Elsevier Science B.V.

PACS- 0365

1. Introduction
We consider the pair of Schrodinger equations

"+ 0 (Du= A, (h
="+ Qa0 = A (2)

where the exact solutions «(r) and v(r) satisfy the
boundary conditions v = v = 0.1 = =/ and Q,(r).
{ = 1,2. are symmetric and monotone increasing on
the half-interval [0./]. It is known from the Sturm
comparison theorem [ 1.2} that A, 2 A2 it Q1 (7) 2
Q->(r) for all r € [=1.1]. Further, as a consequence
of Leighton's criterion [2.3]. A} 2 A2 i1

i
/(Qlfr)—Q:(!))u:(r)drzo, (3

-1

' E-mail rhall@abacus.concordia ca

This result follows immediately if u is applied as
a “trial function” for (2). The purpose of this Letter
is to provide several comparison theorems that allow
us to order the firsr even and odd eigenvalues of the
pair of Schrodinger equations (1) and (2). even if the
functions Q,(r).i = 1.2, intersect at a finite number of
points. Consider, for example, the following problems
(illustrated in Fig. 1),

—u" = (1P =sam(1)sin(brt) ) u = A(S)u (4)

(-1<rgh.

where 5 € {~1.0.1}. a and b are positive. ab € 0.5
and m(r) is 2 monotone symmetric non-increasing
function with m(1) £ 1/b. By means of the theorems
we prove. we shall be able 1o show that Ag(—-1) <
Ag(0) < Ag( 1) for the first even eigenvalue of (4).
The idea behind our comparison theorems is to re-
place the condition @y > Q. of Sturm’s theorem
with the weaker condition U; > U.. where U, =
fo' 0,(x)p(x)dx. 0 < 1 < /. and p is a suilable pos-

0375-9601/98/519.00 T 1998 Published by Elsevier Science BV All nghts resened

P11 S0375.9601(97)00849-9
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a2 e ¢ e —— -

Fig 1 The potenuals r* + (5. 10) sin(4r7), where v € {=1.0.1}
If the lowest “even™ eigenvalue: are wntten Aaty). Theorem |}
imphes An(=1) € Au(0) € Autl)

itive non-increasing function. These theorems, devel-
oped in Section 2, allow the prediction of spectral or-
dering even when the comparison functions intersect.
We present in Section 3 a simplified expression of our
results for use in quantum mechanics. In Section 4
some examples using the known exact solutions of the
square-well potential are presented. An extension to
more general Sturm-Liouville problems is discussed
in the conclusion.

2. New comparison theorems

We utilize the results of the Sturm-Liouville theory
[4.5] for a boundary value problem. The spectrum of
the differential equation
"+ Q0(ne=Ae, -1<1<U, (5)
is an unbounded sequence of increasing eigenvalues
{A,} %, Further, each eigenvalue has a unique cigen-
function ¢, (+) with precisely n zeros in the given in-
terval. The eigenfunctions ¢, (1) are even or odd func-
tions according 1o whether n is even or odd. Conse-
quently. the eigenvalues of (5) can be obtained by
solving the given equation on the half-domain (0, !/]
with one of the conditions

(0)=0, ¢(0)=0 (6)

for the even und odd (subscripted) eigenvalues. re-
spectively.

We consider first the cuse of the lowest even eigen-
function. Since ¢ (r) = rot7) has no node. we may as-
sume ¢ to be positive on ( ~/./). Moreover. we claim
that ¢(1) s monotone decreasing on |0./]. that is 10
sav

iy 0. 0 g/ (7

To prove this. we consider first the case where the
eigenvalue lies above the function @ (1), in which case
Eq. (5) implies that ¢'( ) is concave. and from ¢'(0) =
0it followsthat ¢'( 1) is monotone decreasing on [0./].
Secondly. if the eigenvalue lies within [Qmia. Qmai].
then (5) and the monotomicity of Q(r) imply that
¢" (1) = 0 for some unique point, say a. in the interval
[0./]. Thus. ¢ (r) < Oand /(1) € 0 on the interval
(0. a]. Since v(r) > 0.and v''(¢) = 0 forr & (a.l].
and (/) = 0. it follows that /() < 0 forr € (a.l].
This proves (7).

Multiplying Eq. (1) by ¢ and Eq. (2) by u. and
subtracting the resulting equations, we obtain

!

J=/(Q1m - Qa1 yurdr

0

!
=(A.—A:)/m'dl. (8)
0

The term fol(uv” — t1') dr is zero because of (6)
and the boundary conditions u(/) = v({} = 0. Conse-
quently, from (8) we see that Qx(r) < @,(¢), 0 €
t < I, implies Az € A;. The idea behind our com-
parison theorem is the replacement of the condition
Q. (1) < Q) (1) with the weaker condition U2 < Uy,
where U, (1) =fo'Q,(.r)p(x) dx.0<r < i= 1.2,
and p is a suitable positive non-increasing function.
For the first even eigenvalue we use the choices p = |
and p = u(r) or c(r). where u(r) and v(¢) are the
eigenfunctions corresponding to differential equations
(1) and (2), respectively. The first choice of p leads
1o our first result, whereas the second allows us to
recover Leighton's condition (3) in a more general
form.
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Theoren: 1. 1f the funcuions Q. (r)and Q:(1) in the
Schrodinger equations (1) and (2) are monotonically

increasing on {0.7]. then

!

g(n:/(Q.(,\-)—Q:(.\-))d.v;O. (9)
0
ogrgl.

implies Ay 2 Al

Proof Integration by pars of the lefi-hand side of
{8) yields

J={glrhu']é,—/g(r)(m)'(l)dl. (10)
0

However g(0) = 0 and the vanishing of the eigenfunc-
tions u(r) and v(1) & ! makes the first term of the
right-hand side of (10) vanish. From the hypothesis
g(t) > 0and from (7) we know that ()’ () €0
for r € [0.1) and thus J > 0. We conclude A, 2 Az
as a result of (8).

An immediate illustration of this theorem is pro-
vided by the pair of differential equations —u'" = At
and —¢"' — (cos2n)u = A fort € [-w/2.7/2].
We have. using Theorem 1. that Jycos(2x)dy =
Lin(2n > Ofor 1 € (0.7 2] and this non-negative
number implies the inequality Ay > A>. This result
can also be derived by the use of Leighton’s criterion.
However. unlike the latter, our argument does not re-
quire the exact solution of the problem —u" = A A
more interesting example is the eigenvalue compar-
ison of the following pair of differential equations:
—u'" = (cos 2 u = Ayu and M+ (P = D= A
(-7/2< <7/ Again, simple calculations show

that

/(—cos(lx; —x-=1dr= :-§13-'351n(2m > 0.
]
0 S ! s 7:'/2

which yield the cigenvalue inequality A 2 Ax. Indeed.
by numerical solution we find A, = 0.470 and Az =
0.305.

Theorem 2. 1f the functions Qi (1) and @=(1) 10 the
Schrodinger equations (1) and (2) are monotonically
increasing on {0,/]. then

1]
h(!)=/(Q1(.\')-Q;(.r))p(.\')dA\'ZO (1
0

(0l

implies A1 2 Az, where p(1) =u(t) or ().

The proof follows by the same argument as The-
orem 1. We observe here that Theorem 2 is stronger
than Theorem 1, because the condition of Theorem 2 is
weaker, although it utilizes one of the exact solutions
« or v. This is evident because u of U' is decreasing on
(0.!] and therefore, the functions @, (1) and Q2(7)
can intersect each other “even further” and still yield
A 2 Ay. We now turn to the first odd eigenfunction
of (1) and (2).

Theorem 3.1f the functions Q1 (1) and Q- (r) inthe
Schrodinger equations (1) and (2) are monotonically
increasing on {0.1]. then

!
k(l)=/(Q;(.\')—Q:(.\')).\':d.\‘ZO. (12
0
ogrgl.

implies A} > A: for the first odd eigenvalue.

To prove this theorem we shall need to use the fol-
lowing monotonicity property for the first odd eigen-
function. A result of this type was first obtained by
Common {10].

Lemma 1. The first odd eigenfunction = of the
Schrodinger equation (5) satisfies

NGAY .
— 0. 0grgl (13

Proof. For the first odd eigenfunction of (5} we
have from (6) that v(0) = 0 and further ¢(1) = 0 from
the hypothesis. Theretore, without loss of generality.
we may assume that (1) > 0.0 < r < . Rolle’s the-
orem givesus a point 7 in (0.1). at which c'(n) =0

On the interval {0.7m] ¢ 1s concave and therefore.



i RDOHCDN Saad Pl

fros betow s tangents and above s chords. Conse-
quentiy. 0 < ¢'t2h < o) oo Dulerentaung cory
and using ¢ 1) <o) estabhishes the lemma.

Proot of Theorem 3. We notice first that 1(0) =
100 = 0 1or the Arst odd ergemvalue and because the
solutionsof {33 hatc only simple zeros [3]. it turther
foliows that 2 10y = Qand ') = Q. Thereafier. an
appheation of FHapual’s rule shows

ey (o) . ,
lim ——— =1 (O’ (0)
P i) I
has finite value. and thus the left-hand side of (8) can
be written as

saenelr)

J= / Qicr) =@t ——,——dr.

U
Integrating this expression by parts with respect to the
function & as defined by ¢12) andusing u(!) = v (/) =
0. leuds to
t

(et
Jz-/k(/) (L—[—f—-'-) dr.

0

> 0 by hypothesis and (w#(1)c(1)/r)’ <
0. Conseguently.

Since k()
0 from ¢ 11) we conclude that / 2
from '18). we have Ay 2 A:.

By an exactly similar argument we may also prove

Theorem 4. 1§ the functions @, () and Oa(t) in the
Schridinger equations ( 1) and (2) are monotonically
increasing on [0./]. then

'

k(!)=/(Q:(.\')—Q;(x)).\'p(.\')d.\'ZO (14)

implics A; 2 A lor the lirst odd ergenvalue, where
plry=ultyori(r.

Example (Schrodinger problem with ripple per-
wurbations). We consider the example mcmioned
in the Introduction (4) and observe that Jo am(x)
sin(x=) dv 2 0. This follows because the successive

Lovery A 2371988 10742

Fig. 2. The potentials r° + (s/10)sin(3°)/r’, where

£ {=1.0.1} Wthe lowest “0dd” eigenvalues are wnaen 4, (s).
Th:orem} implies A1 (—1) € Ap(0) € A().

positive and negative areas of the integrand decrease
monotonically in absolute value. Therefore, by The-
orem | we have A(=1) < A(0) < A(!) for the first
even eigenvalue. More specifically, if we choose [ = 2,
b=4,a=0.1and m(r) =1 (Fig. 1), then we obtain
by direct numerical solution A(—1) = 1.043, A(0) =
1.075 and A(1) = 1.107.

Similarly, if we have [ = 2, b = 4, a = 0.1

and m(r) = |/r* (Fig. 2), we obtain, because of
fy asin(bx?) dx > 0 and Theorem 3, that A(-1) <
A(O) < A(1) for the first odd eigenvalue of the

differential equations
-u" + (,2 -:-sa%-)-) u=Als)u, —-I1<r<l

Meanwhile, direct numerical solution in this case
yields A(=1) = 3.439, A(0) = 3.530 and A(]) =
3.616.

3. Practical method

If the two functions Q,(r) and Qa(r) of (1) and
(2) do not intersect each other in a very complicated
way on the interval {0, /], we can greatly simplify con-
ditions (9) and (12) for the ordering of the eigenval-
ues. Such simplifications are useful in practical appli-
cations. For example, if we let a and b be the only two
points of intersectionof Q; (¢) and Qa(¢) in [0./] with
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11> Qa2 then for fo(Q1(x) =Qa(x))dx 2 0.
< 1 < /. 1o hold in Theorem 1. it is sufficient that

o

(Q(x) = 0-(x))dx

o .

h
"/(Ql(—f)—Q:(.V))d.rZO. (15)

Similarly. for [ (@i (x) = Q2(x) )x2dx 20.0< 1 <
[, 1o hold in Theorem 3, it is sufficient that

/(Q:(:) - Q;(.r)).r:dx
0

b
‘-'/(Ql(-\’)—Q:(x))x:d.rzo. (16)

u

The significance of inequalities (15) and (16) is that
they reduce the condition for ordering the eigenvalues
to the problem of comparing (signed and weighted)
areas between the points of intersection of the func-
tions 0, (1) and @2 (¢) inside [0.!].Indeed.if Aand B
represent the (signed) areas between the two functions
0. (1) and Q2(1) on the interval (0.a] and [a.b] re-
spectively. then inequality (13) or (16) is equivalent
10 the condition A + B 2 0. This technique extends
to the case of any finite number of intersections. In
the more general case of n intersections (1 > 1), we
obtain a sufficient condition comprising (n— 1) area
inequalities.

4. Applications

By means of the technique we introduced in the
previous section. we can calculate bounds on the first
even and odd eigenvalues for the class of Schrédinger
problems of the type discussed in Section 2. We con-
sider the square-well problem

W+ Vu=An =l <l
where
vin=-U forjtf<a.
=d fora< |rf €1 (1N

Fligge [6] provides the following transcendental ex-

pression for the eigenvalues A,. 1t = 0.1.2..... within

{-U.d]: for even eigenvalues (n = 0.2....)

VvU-+d-—e,tan(a U+~d-e€)
= Jercoth( (! - a) Veu) (18)

and for odd eigenvalues (n=1.3....}

mcomz U+d-¢€)

= —/ercoth((! - a) Ve ). (19)
where €, = —A,+d. The existence of such eigenvalues

depends on the well-depth U +d as indicated by these
formulae {7]. For example, fd=0and0 £ U <
0.74, then there is no eigenvalue within the interval
[-U.0] and consequently, the spectrum is entirely
non-negative [7]. In this case, Fliugge [6] provides
the following expressions for the eigenvalues that lie

within [d,oc): for even eigenvalues (n= 0.2,..))
VUiu+d- e tan(a\/ U +d —€)
= /e cot((I - a) Ver) (20)

and for odd eigenvalues (n = 1.3,...)

VU T d = ecoi(ay/U+d = e
= ~Jecot((l - a) e, ). (2H

where €, = =7, +d.

Consider an arbitrary Schrodinger problem of the
type discussed in Section 2 and let U =min{}|Q(1):
~1 <1< I}and d=max{Q(): -1 <1<} We
introduce a square-well problem ( 17) for comparison
as follows. The value of a is chosen so that the area be-
tween Q (1) and V(r) on the intervals [0, a) and [a.!]
coincide; thus expression (18) yields a lower bound
for the first even eigenvalue. On the other hand. if we
introduce a square-well problem with a minimum ex-
ceeding the minimum of Q(1). then the square-well
function (17) intersects Q (1) in the (WO points a and
b, where b is chosen such that the area between Q (1)
and V(r) on the intervals [0.al and [a.b] coincide.
Hence, the expression ( 18) yields an upper bound for
the Schrédinger problem. The same argument can be
used to obtain a lower and upper bound o the first odd
eigenvalue. This technique provides us with a condi-
tion that guarantees that the spectrum of an arbitrary
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Schriadinger problem (2) lics within {d.>2). In par-
ueular. it follows that the mimmum of the function
Qi) of (2) cannot exceed

S ~d)
r, = .
ALY - A

(22)

where A =20/ - fil Qgun dr.

3. Conclusion

We have obtained some comparison theorems for
the firsr even and odd eigenvalues of Schrddinger’s
equation —t”' + Q(N)v = Av. =l < 1 < [, with the
boundary conditions ¢(—=/) = ¢(!) = 0. These theo-
rems allow the comparison functions Q(r) to intersect
at a finite number of points within [=/./]. Itis clear
that the resulis derived by Nehari [9] for a pair of dif-
ferential equations of the form 1" + Ag{(x)u = 0 are
radically different: neither set of results can be derived
from the other.

The comparison theorems we have derived herein
also provide eigenvalue comparisons for regular
Sturm-Liouville problems of the form

—(ploy’) +q(xyu=Au, —-agx<a. (23)

where p(x) > 0 and both p(x) and q(x) are con-
tinuous symmetric with respect to the midpoint of
[-a.a]. u(-a) = u(a) = 0. and two further condi-
tions are met. Firstly (A) the expression

[pl(x)lz |
q(x) = m +3p (x)
must be monotone increasing on [0, a]. Itis straight-
forward to show that Eq. (23) can be transformed,
using Liouville transformations (8], into the Liou-
ville normal form, that is to say the one-dimensional
Schreadinger equation

—('”'—Q(I)L‘=/\L'. -1<r <l (24)

where

and the transformed function

.

- —

- . : l 4 .

Qurny=q(x) = :‘T('__ﬁ—d—{s\/p(\).

Condition (B) is that the Q so constructed is sym-
metric and monotone increasing on the right halt’ of
[ =1.1]. Our results can thus be applied 10 such a pair
of Sturm-Liouville problems (24) without any fur-
ther change. The comparison results are. of course.
invariant with respect to vertical and horizontal shitts
in space. Results of this type may also be obtained for
Schrédinger's equation in an unbounded region [11].
Thus the ripple examples discussed in Section 2 here
also apply to the problem in R. Other illustrations of
this type are straightforward to construct. For examnle
if 0y =1° and
Or=rt+ asin(rbr) '
then it follows that Q, and Q- are symmetric. and

monotone on each half line; moreover,

0<ab <6.

!

/Sm(”dr'>0 vr>0.

g
0

Hence the ground state generaied by Q2 is above that
corresponding to Q, for any value of /. We are indebted
to the Referee for suggesting this illustration.
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