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ABSTRACT

Fundamental Issues in General Relativity:
Inertia, Gravitation and Electromagnetic Mass

Vesselin P. Petkov, Ph. D.
Concordia University, 1997

An opportunity for revealing the nature of inertia and gravitation in terms of both
general relativity and the electromagnetic mass theory may have been missed in the first quarter
of this century. If the entire mass of an elementary charged particle is regarded as
electromagnetic in origin, a hypothesis providing a consistent explanation of inertial and
gravitational phenomena emerges. Due to the anisotropy in the propagation of electromagnetic
interaction in the vicinity of all (massive) objects the electric field of an electron at rest on the
Earth’s surface is distorted which gives rise to an electric self-force trying to force the electron
to move downwards (hence the passive gravitational mass turns out to be electromagnetic); the
anisotropy is compensated if the electron is falling with an acceleration g - in this case its
electric field is the Coulomb field and the electron’s motion is geodesic (non-resistant) in
accordance with general relativity. The behaviour of an electron in an accelerated reference
frame is identical (the anisotropy in the speed of light in this case is caused by the frame’s
accelerated motion). This hypothesis can be experimentally tested and opens up the possibility
of (at least partly) controlling inertia and gravitation.

Even if one insists on the present understanding that only part of the electron mass is
electromagnetic it still follows that the possibility for (partly) controlling inertia and gravitation
and for an experimental test has been present since the beginning of this century when the
electromagnetic mass theory was proposed. It has not been realized up to now that it
immediately follows from this theory that part of the electron's active gravitational mass is
electromagnetic in origin too which means that part of its gravity being caused by its charge
(since part of its active gravitational mass itself is electromagnetic) is also electromagnetic in
nature. And if we can control other electromagnetic phenomena nothing in principle prevents us

from doing so to inertia and gravitation as well.
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Chapter 1

Introduction

According to the Newtonian gravitational theory a gravitational force is acting
on a body when it is falling towards the Earth and when it is at rest on
the Earth’s surface. This situation is quite different in general relativity. A
falling body is represented by a geodesic world line which means that the
body is moving by inertia with no four-dimensional acceleration (in a curved
spacetime) and no four-dimensional force (in a curved spacetime) forcing it
to move downwards. The question whether general relativity predicts that a
body on the Earth’s surface is subjected to a force has been carefully avoided
in the books and articles on general relativity (in fact, I am not aware of
a case whether this issue has been addressed). As a result the conceptual
picture of general relativity is not quite clear. On the one hand, the fact

1
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that a falling body is not subjected to a force and moves towards the Earth
due to the spacetime curvature implies that the gravitational field (unlike the
electromagnetic field) is rather a geometric than a force field. This means that
if there is no gravitational force there is no gravitational energy either. This
conclusion is reinforced by the stubborn refusal of the mathematical formalism
of general relativity to produce a tensor of the energy and momentum of
a gravitational field! . On the other hand, it seems that the experimental
evidence leaves no doubt - there is gravitational energy. It is sufficient to
mention only the tidal electric power stations converting what appears to be
gravitational energy into electric energy.

If the fact that a body on the Earth’s surface is subjected to a force (re-
garded as gravitational) is taken into account the picture represented by gen-
eral relativity becomes even more confusing. The theory is telling us that a

falling body is moving by inertia (despite the fact that it has a "flat space-

! In general relativity the energy and momentum of a gravitational field are represented
by a pseudo-tensor, but a real physical quantity should be described by a tensor [1] - [3].
It was Einstein who realized that it was not possible to represent the gravitational energy
and momentum by a tensor [4]. However, he kept the pseudo-tensor in order to have the
global, integral laws of conservation of energy and momentum observed - without it energy
and momentum of matter are not conserved globally; only the local, differential laws of
conservation hold. An attempt to account for the impossibility to construct a gravitational
energy and momentum tensor by assuming that the gravitational energy cannot be localized
still cannot solve the problem since it does not provide a full description of the energy of
gravitational field [5]. A closer look at the lack of integral laws of conservation in general
relativity suggests that it appears to be a direct consequence of Noether’s theorem according
to which "symmetries imply conservation laws” [6]: in a curved space-time there are no
symmetries (the spacetime is anisotropic) and consequently there are no global conservation

laws either.
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time” acceleration) which implies that the gravitational field is a geometric
field with no real gravitational force (and no energy-momentum tensor of the
gravitational field) and does not provide a clear answer on the nature of the
force a body on the Earth’s surface is subjected to. If the theory offered an un-
ambiguous explanation of the force acting on the body this would mean that
the conclusion about the geometric nature of the gravitational field within
general relativity should be subjected to a severe scrutiny. Such an internal
confrontation in general relativity might have produced a deeper insight into
the mechanism of gravitational interaction but, unfortunately, it has never
happened. At present conflicting accounts of the nature of gravitational field
coexist peacefully and this does not seem to bother too much the scientists
working in the field of general relativity.

Several questions must be answered in order to make the conceptual picture

provided by general relativity and its mathematical formalism consistent:

1. Why is no force acting on a body falling towards the Earth’s surface?
2. Why is a body on the Earth’s surface subjected to a force?
3. What is the nature of that force?

4. Why does the formalism of general relativity refuse to produce a tensor

of the energy and momentum of gravitational field?
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5. What is the nature of gravitational field and is there a gravitational

energy?

A closer look at the first two questions reveals some similarity with the
motion of a body described by special relativity (i.e. a body in flat spacetime).
A body falling towards the Earth’s surface is described by a geodesic worldline
and the worldline of a body on the Earth’s surface is not geodesic. A body
in flat spacetime is represented by a geodesic worldline if it is moving with
constant velocity (i.e. moving by inertia). The worldline of an accelerating
body is not geodesic. In both cases when the worldline is not geodesic there
is a force acting on the body. We call the force on the body on the Earth’s
surface gravitational force and the force acting on the accelerating body -
inertial force. This forces give rise to the gravitational and inertial mass of the
two bodies, respectively. It is a fact that a body’s inertial and gravitational
mass are equivalent, but no one knows why.

We shall start with studying the connection between the appearance of
force when the worldline of a body is not geodesic. This provides us with the
opportunity to address both inertia and gravitation®? . The examination of the

experimental fact of equivalence of inertial and gravitational mass (i.e. the

2 There has been another recent attempt to find a common nature of both inertia and
gravitation. It has considered inertia to be generated by the vacuum electromagnetic zero-
point-field [7]; gravitation has also been considered to be induced by the electromagnetic
fluctuations of the vacuum [8].
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equivalence of inertial and gravitational force) contains the key for answering

all of the above questions® .

Like the inertial mass which is defined as the resistance an object offers
to being accelerated (i.e. to being prevented from falling in an accelerated
reference frame), the gravitational mass is similarly defined as the resistance
an object offers to being prevented from falling in a gravitational field. The
world path of a body falling in a non-inertial frame (either an accelerated
frame N° or a frame NY at rest in a gravitational field) is geodesic and its
motion is characterized as non-resistant (offering no resistance to falling in N*®
and N9, respectively). If, however, the body is at rest either in N¢ or in N9,
an acceleration (a and g respectively) is associated with it and its world path
is deformed (not geodesic). In both cases the body resists its acceleration and
the deformation of its world path. This resistance to acceleration may be also
regarded as a four-dimensional stress which arises in the body’s deformed world
path and opposes the deformation, i.e. the acceleration of the body whose
world path is undergoing deformation. As the electric self-force with which
each non-inertial elementary charged particle acts upon itself (on account of
its own electric field) is the only known force with which a body may act

upon itself, it looks natural to identify this self-force with the source of the

3 Braginsky and Panov [56] in 1970 tested the equality of inertial and gravitational mass to
1 part in 102,
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resistance which a non-inertial body offers to being accelerated, i.e. deviated
from its inertial state. Stated another way, inertia and gravitation (or, more
precisely, inertial and gravitational force), defined as the resistance to the
accelerations a and g, respectively, may be regarded as an electromagnetic
resistance originating from the interaction of a non-inertial charge with its
own electromagnetic field. This approach effectively brings back the idea of
the electromagnetic mass of the electron [9-13] (for a brief history of this idea
see [14]).
It is now accepted that the electromagnetic mass of the electron

e

(L.1)

Me = ——
8mwegre?

where r is its radius, accounts for only a fraction of its mass. In fact, the
issue of what part of the electron mass is electromagnetic is presently open (if
not almost abandoned [15]). This issue cannot be adequately addressed from
quantum-mechanical standpoint since quantum mechanics does not provide us
with any model of the electron itself (and quantum objects in general), but
only describes the electron’s state and relates results of measurements. That
is why any treatment of the electromagnetic mass of the electron remains
essentially classical. There are attempts to construct relativistically invariant
quantum theories of extended objects such as strings [16], solitons [17, 18],

bags [19], and quantons (which despite being 4-points themselves provide a
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detailed model of the electron’s structure by bringing the idea of atomism
to its logical completion: atomism not only in space but in time as well -
four-atomism [20]), but up to now no attempt has been made to apply these
theories to the electromagnetic mass issue.

On the other hand, as Rohrlich [21] points out, the hope that the electron
mass is of purely electromagnetic nature has been abandoned long since it was
first proposed near the turn of the century and any attempt to go back to
this idea will hardly look justified. If, however, it is assumed that it is the
(equal) resistance to the acceleration a of an accelerated elementary charged
particle (a = —g) and to the acceleration g of the same particle at rest on
the Earth’s surface that is responsible for the inertial and gravitational mass
of that particle (leading to its entire mass being of electromagnetic nature), a
consistent theory of inertial and gravitational phenomena emerges. Not only
does such a theory, which for brevity will be referred to as GTMG (General
Theory of Motion and Gravitation) hypothesis, account for the equivalence of
inertial and gravitational phenomena (and mass), but also offers a way to be

experimentally tested. The main consequences of this hypothesis are:

1. All elementary particles which possess a rest mass should be charged.
This consequence is in agreement with the contemporary understanding

that an electrically neutral particle (a neutron, for example), at the most
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fundamental level, is thought to be made up of smaller constituents
(quarks), which do carry electric charge. In such a way the GTMG
hypothesis accounts for the mass of what we call neutral particles as well

since, according to it, there are no truly electrically neutral particles.

2. Both inertial mass and gravitational mass of an elementary charged par-

ticle (an electron, for instance) are equal due to their common origin:
the distorted electric field of a non-inertial electron (represented by a
deformed world path) gives rise to a self-force with which the electron
acts upon itself and resists any acceleration (i.e. any deformation of its
world path). The fact that the instantaneous electric field E® of an ac-
celerated (with an acceleration a = —g) electron and the electric field
E? of an electron on the Earth’s surface are egually distorted producing
equal self-forces is regarded as the major justification of the GTMG hy-
pothesis (the instantaneous field E® is considered in order to obtain only
its deformation due to the electron’s acceleration). The distortion of the
electric field of an accelerated electron (a = —g) is caused by its acceler-
ated motion; if viewed by a non-inertial observer at rest with respect to
the electron, the deformation of its field is caused by the anisotropy of
the speed of electromagnetic interaction in the electron’s reference frame

[22]. The equally distorted electric field of an electron on the Earth’s
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surface is due to the greater speed of the electromagnetic interaction to-
wards the Earth than in the opposite direction which is caused by the
Earth’s mass. The self-forces (resulting from the identically distorted
fields of the accelerated electron and the electron on the Earth’s surface)

have the right forms Fg,, = —m%a (F2,; opposes a) and FZ,, 5 = mig

Fgelfl =

(F9, s has the direction of g) and F9, fl from where the equiv-
alence of the inertial and gravitational mass, m® = m¢, immediately

follows.

. According to the GTMG hypothesis there is no mass at all, but only
charges which means that it is these charges (and their fields) that rep-
resent the active gravitational mass of a body. As the active gravitational
mass of an object (i.e. its charges) is responsible for its gravity (i.e. the
space-time curvature around it), the anisotropy of the speed of electro-
magnetic interaction in its vicinity turns out to be the very space-time
curvature (the object’s gravity) and not a consequence of it if its mass is
entirely electromagnetic in nature: the larger speed of electromagnetic
interaction towards the Earth than in the opposite direction is respon-
sible for the free fall of an electron in the Earth’s gravitational field (as
we shall see in Chapter 3) and for the distortion of the Coulomb field

of an electron (at rest on the Earth’s surface) which in turn gives rise
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to its passive gravitational mass. It is the consequence of the GTMG
hypothesis that the anisotropy of the electromagnetic interaction in the
vicinity of a body is caused by the body’s charges (and their fields) that
makes an experimental test possible and which may lead to controlling

inertia and gravitation.

4. It follows from the equal anisotropy of the speed of electromagnetic in-
teraction in a non-inertial (accelerated) reference frame, N°, and in a
non-inertial frame, N9, at rest on the Earth’s surface, that the principle
of equivalence is a corollary of the GTMG hypothesis and not an inde-
pendent postulate: the distorted electric field of an electron at rest in N¢
gives rise to the electron’s inertial mass; the (passive) gravitational mass
of an electron on the Earth’s surface also originates from its distorted
electric field. The world path of the electron in both cases is equally

deformed - equally deviated from its geodesic state.

The main purpose of this thesis is to show that due to the questions of the
nature of gravitational field in general relativity and of the electromagnetic
mass of the electron being presently open, the GTMG hypothesis is worth
considering and testing because it gives a consistent and common explanation

of
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1. the nature of mass, inertia, and gravitational attraction;

2. the identical behaviour of a body in what we traditionally call a gravi-
tational field with intensity g and in an uniformly accelerated (a = —g)

reference frame (i.e. of the principle of equivalence):
3. the nature of space-time curvature;
4. why the speed of gravitational waves is equal to the speed of light, and

the relativistic increase of the mass.

'CJ!

It is also intended to imply that the GTMG hypothesis sheds some light

on the meaning of the following facts as well:

1. the tensor nature of the mass;
2. the energy-mass equivalence;
3. the mass defect;

4. the effective mass of the electron in solids.

It also provides the basis for further study of the Aharonov-Bohm and
Aharonov-Casher effects predicting that a similar effect should be observed

when laser beams are employed instead of electron and neutron beams (such
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an experiment can be carried out to test the electromagnetic mass hypoth-
esis). Since this hypothesis considers the anisotropy in the propagation of
electromagnetic interaction towards and away from the Earth (and the result-
ing self-force acting on an electron at rest on the Earth’s surface) to account
fully for the gravitational effects the electron is subjected to (in accordance
with general relativity’s result that there is no gravitational force, but only
space-time curvature), it follows that the very existence of the gravitational

force (interaction) should be reexamined.

The GTMG hypothesis is worth considering even if one insists on the
present understanding that only a part of the electron mass is electromag-
netic. This hypothesis reveals that the possibility for controlling inertia and
gravitation and for an experimental test has been, in fact, present since the
beginning of this century when it was discovered that part of the electron
mass is electromagnetic (which implies that the nature of an electron’s inertia
is partially electromagnetic in origin). It has not been noticed up to now that
it immediately follows from this discovery that part of the electron’s active
gravitational mass is electromagnetic in origin too which means that part of
its gravity being caused by its charge is also of electromag‘netié nature. And if
we can control other electromagnetic phenomena nothing in principle prevents

us from doing so to inertia and gravitation as well.
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In order to demonstrate that inertial and gravitational mass are in fact
electromagnetic mass it will be necessary to prove that due to the absolute
property of a worldline to be geodesic or not an association of a Coulomb field
with an inertial charge (represented by a geodesic worldline) and an association
of a distorted electric field with a non-inertial charge (whose worldline is not
geodesic) should be observerindependent (the same for an inertial and a non-
inertial observer). In other words, it should be shown that (i) for both an
inertial observer, I, and a non-inertial (uniformly accelerated or at rest in a
uniform gravitational field) observer, N, the electric field of an inertial charge
(falling in N) is the Coulomb field, and (ii) both I and N detect the same
distorted electric field of a non-inertial charge (at rest with respect to N). This
will be done in Chapter 2 and the obtained result will be also used to resolve
the controversial issue of whether or not a charge falling in a gravitational field

radiates and whether it violates the principle of equivalence.

In Chapter 3 the idea of the electromagnetic mass of the electron and one
of its consequences (the relativistic increase of mass) are briefly discussed and
the electric field of an electron in an accelerated frame and the resulting self-
force are calculated; it is also concerned with the calculation of the electric
field of an electron in a reference frame at rest on the Earth’s surface and the

self-force acting on the electron. Chapter 4 discusses the meaning of space-
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time curvature and the principle of equivalence. Chapter 5 considers whether

there has been an alternative path to general relativity.



Chapter 2

A Uniformly Accelerated
Charge and the Principle of
Equivalence

2.1 Introduction

The questions whether a uniformly accelerated charge radiates and if so whether
there is a contradiction with the principle of equivalence have been a matter of
controversy for a long time. On the one hand different authors come to differ-
ent conclusions regarding the radiation from a uniformly accelerated charge.
Pauli {1] and von Laue [23] found that there should be no radiation, while
Schott [24], Milner [25], Synge [26], Fulton and Rohrlich [27], Coleman [28],
Kovetz and Tauber {29], Boulware [30], and Ren and Weinberg [31] drew the
opposite conclusion. On the other hand, a radiating uniformly accelerated
charge gives rise to a paradox: by the principle of equivalence a static charge
in a uniform gravitational field (which, being static, does not radiate) should

15
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radiate if a uniformly accelerated charge radiates. The attempts to resolve this
paradox have been concentrated on exploring the idea that radiation is not a
covariant concept. Fulton and Rohrlich [27], Rohrlich [32], Boulware [30], and
Ren and Weinberg [31] argue that the paradox is removed if it is shown that

not all reference frames register radiation from the accelerated charge.

The purpose of this paper is to show that an approach to the problem of
radiation from an accelerated charge, explicitly taking into consideration the
inertial state of the charge, naturally agrees with the principle of equivalence
and leads to no paradox and to no need for regarding the radiation from an

accelerated charge as non-covariant.

The property of a worldline to be geodesic (or not) is an absolute one which,
apart from being an absolute geometric characteristic, is, physically, a direct
manifestation of the absolute distinction between inertial motion (represented
by a geodesic worldline) and non-inertial motion (represented by a worldline
which is curved, not geodesic). The worldlines of a charge which is falling in
an accelerated frame, N, and a charge, falling in a reference frame, V9, at
rest in a uniform gravitational field, are geodesic. Both charges are inertial
particles: the first moves by inertia in a flat space-time whereas the motion of
the second one is also inertial (force-free) but in a curved space-time. For this

reason both an inertial observer, J, (falling with the charge) and a non-inertial
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observer (at rest in N® and NY) associate a Coulomb field with them.

The worldlines of a charge at rest in an accelerated frame N°® and a charge
at rest in a uniform gravitational field (i.e. in N9) are not geodesic. As a
result the electric fields of the two non-inertial charges are distorted for the
observers at rest in N® and NY as well as for an inertial observer (the non-
inertial charges have equally distorted fields, as the principle of equivalence

requires, if their accelerations satisfy the relation a = —g).

In such a way, as the shape of the electric field of a charge is fully determined
by its state of motion (inertial or non-inertial), i.e. by its worldline being
geodesic or not, it is observerindependent - both an inertial and a non-inertial
observer detect the same shape of the electric field. The relativistic distortion
of the electric field of a charge (due to the relativistic contraction), which is
observerdependent, depends on the observers’ relative velocity. The distortion
of the electric field of a charge due to its acceleration, however, is clearly
distinguishable from the distortion due to the relativistic contraction. In order
not to confuse the study of the dependence of the electric field shape on the
charge’s inertial state with its relativistic contraction, this paper avoids the
relativistic deformation of the field by the usual procedure of considering the

accelerated charge instantaneously at rest {33, 34].

The assumption that the shape of the electric field of a charge is determined
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by the charge’s worldline being geodesic or not removes both the difficulty with
the principle of equivalence and the need for the radiation to be considered non-
covariant: the electric field of a non-inertial charge (a charge at rest either in an
accelerated frame or in a uniform gravitational field) will be distorted for both
an inertial observer, I, and an non-inertial observer, N, at rest with respect to
the charge. As only a distorted electric field may give rise to radiation and as
both I and N detect the same distorted electric field of the charge its radiation

behaviour should be the same for 7 and N.

In Section 2 the electric fields of a charge at rest in an accelerated reference
frame, N¢, and of a charge falling in N° are calculated and is shown that an
observer in N® detects a distorted field of the charge at rest in N and a
Coulomb field of the falling (inertial) charge. Section 3 deals with the shape of
the electric field of a charge at rest in a reference frame N9 (which is static in
a uniform gravitational field) and of a charge falling in N9, and finds similarly
that an observer at rest in N9 detects a distorted field of the charge at rest in

N9 and a Coulomb field of the falling (inertial) charge.
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2.2 A charge in a uniformly accelerated refer-
ence frame

2.2.1 A charge at rest in a uniformly accelerated ref-
erence frame

Unlike an inertial observer I, a non-inertial (accelerated) observer at rest in an
accelerated reference frame N® can determine from within his reference frame
that it is an accelerated frame. All effects observed in N® and distinguishing
a non-inertial reference frame from an inertial one are attributed to its accel-
erated motion (there is no need for the principle of equivalence to be invoked
to explain the effects). One of these effects is the anisotropy of the speed of
light in N¢ which leads to another effect - a distortion of the electric field of a

charge at rest in N°.

In order to find the expression for the anisotropic speed of light in N¢ let
us consider the following thought experiment (Figure 2.1): two light signals
are emitted simultaneously in N® (an accelerating elevator) from two points
A and B separated by a distance 2r. The signal emitted at B is propagating
in a direction parallel to the acceleration of N® and the other one (emitted
at point A) in the opposite direction. A third light signal is emitted at point
C and propagates in a direction perpendicular to the frame’s acceleration. If

N¢ were an inertial frame the three light signals would arrive simultaneously
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Figure 2.1: Three light signals emitted at points 4, B and C in an accelerating
elevator arrive simultaneously at the point M’ which is displaced at a distance
6 from the middle point M (in a direction opposite to a).
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at the middle point M in a time t = r/c. N®, however, is an accelerating
reference frame and the signals in the same time ¢ will simultaneously reach
not point M but point M’ (why it will take the same time for the signals to
converge to point M’ is evident from the trajectory of the signal emitted at C -
to an order of ¢~2 the light still travels the distance r and the speed of light is
not affected since it is perpendicular to the frame’s acceleration). An observer
at rest in N¢ concludes that the three light signals arrive simultaneously at
M’ because during the time ¢ the light signals travel toward the middle point,
N¢ will move at a distance § = 3at? (IV* is moving with an acceleration and
this is an experiment allowing an observer in N° to establish from within N¢
that N® is not an inertial reference frame). In such a way an observer at
rest in the accelerating reference frame N¢ will find that the light signals will
simultaneously reach point M’ which is displaced from the middle point M (in

a direction opposite to the frame’s acceleration) by

where ¢ = r/c is the time it takes the three light signals emitted at A, B
and C to travel the distances r + §, r — § and 7, respectively as measured in
the accelerating reference frame. When the light signals meet, the observer in
N® will determine that the light signal propagating downwards (in a direction

opposite to a) has travelled a distance r + § while for the same time the light



22

signal propagating upwards (parallel to a) has covered a smaller distance r—§.
This shows that in N® the speed of light in the direction of a is smaller than

in the opposite direction and its average value is

The average anisotropic speed of light downwards (in a direction opposite to
a)is

a — —_— = —_— = _
€L t t+2 c+2c C1+2c2

_r+5_r at ar ( ar)

In vector form we have

c*=c (1 - 3-_r) . (2.1)

2c?
where c? is the anisotropic speed of light as determined in N¢, and r is a vector
with its origin at the point where a light (or more generally an electromagnetic)
signal is emitted and its end at the point where the signal is measured.
Up to now (as far as I am aware) an explicit! expression for the anisotropic

speed if light in a non-inertial frame has not been derived > . An average

1 An implicit expression for the speed of light contains in Rindler’s calculation of the grav-

itational red shift [40].
2 I am grateful to Dr. Bernhard Haisch who drew my attention to a paper by L. I. Schiff

published in 1960 [55] in which the following formula for the anisotropic speed of light

_ 1_GM:1:2_G'_M
c=¢ c2r3 c2r

is derived (for the case of deflection of light rays passing close to the Sun). Dr. Haisch
showed that this formula may be written as

c(p)=c (1 - gcz_r (1 + cos? ¢))
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anisotropic speed of light has not been defined and used either. Without
it, however, the electric potential of a charge in a non-inertial reference frame
cannot be calculated. Here it will be necessary to demonstrate that the expres-
sion for the anisotropic speed of light is in agreement through the principle of
equivalence with the general relativistic expression for ¢ in a curved spacetime
[35]:

d=c (1 + %) . (2.2)
This formula gives the speed of light at a given spacetime point - it is not an
average velocity (and does not contain the factor of 1/2 present in the second
term of 2.1).

Consider the propagation of light in an accelerating reference frame N¢

(Figure 2.2). A light signal is emitted at B and propagates upwards to point

where ¢ is the angle which the vector r (beginning at the point a light signal is emitted and
ending at the point where the signal is measured) forms with the gravitational acceleration
g. ¢ (¢) is the speed of light at a given spacetime point. This formula is a coordinate
velocity and cannot be applied for the case when the speed of light at a fixed point is viewed
from another fixed point.

The average speed of light between two points, separated by a distance r, is

Chy (¢)=c(l—%;—2£(1+cos2¢)).

This formula, however, cannot be used in a case in which both the source and the
observation points are fixed. This can be seen from the considered experiment with the
accelerating elevator - using ¢, (¢) to calculate § gives the value § = ar?/c? and not the
correct value § = ar2/2c2. Considering the elevator at rest on the Earth'’s surface and using
c., (#) we again get a wrong value § = gr?/c2.

The expression for the electric potential of a charge in a non-inertial reference frame
derived when ¢, (¢) is used is not the correct one - it does not yield the correct electric
field as calculated in the non-inertial frame. ¢, (¢) also leads to a wrong expression for the
self-force originating in the interaction of a charge in a non-inertial reference frame and its
own distorted electric field..
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Figure 2.2: A light signal emitted at point B in an accelerating reference frame
and propagating in the direction of the frame’s acceleration a.

A. Its average anisotropic velocity between the two points is given by (2.1). It
1s seen that c® is a function of the distance between the point B and A. The

speed of light at B is ¢ = ¢ (since r =0 at B). As ¢® is defined as

1
c“=§(c‘§+ci),

where c% is the speed of light at point A, we can determine ¢% from here and
A P o P ’ A

taking into account that ¢ = c:

. a-
cj=2c°—c‘g=2c<l—?2c—:)—c=c<1—-§£)

in agreement with (2.2). In the general case the speed of light at an arbitrary



25

point M (as viewed from the point where r = 0) is

a-r

@ =c (1 - —) (2.3)

c2

The speed of light at A is:

T a
4me(1-5) =<(1- ).

since the light signal is propagating in the direction of a. This means that
ci < g, i-e. c4 is smaller than ¢ which should not be interpreted to mean
that cj is smaller than ¢ in an absolute sense. This only means that the speed
of light at A is smaller than c% as viewed from point B. Since cis is a function
of the distance between two points equation (2.3) determines the speed of
light at one point (where the light signal is measured) relative to the point
where the light signal has been emitted (at this point r = 0). In the case of
Figure 2.2 the light signal is emitted at point B and at this point the speed
of light is ¢ (since r = 0). Let us, however, consider a different situation in
the accelerating reference frame N® - a light signal emitted at point A and
propagating towards B, i.e. in a direction opposite to the frame’s acceleration
(Figure 2.3).

In this case the speed of light at A is ¢4 = c (since at A r = 0). The speed

of light at B is
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Figure 2.3: A light signal emitted at point A in an accelerating reference frame
and propagating in opposite direction of the frame’s acceleration a.

since the direction of r (i.e. the direction of propagation of the light signal)
1s opposite to a and a - r = —ar. In other words, the light speed at B with
respect to A4 is larger than c%, i.e. larger than c.

The speed of light at the point of the source is always ¢ (provided that
the present convention that r begins at the source point holds). If the point
of detection of the signal is displaced in a direction parallel to a, the speed
of light at that point (relative to the source) is smaller than c; if the point
of observation is situated in a direction opposite to a, the light speed at that
point (relative to the source) is larger than c. Locally the speed of light is

always c.
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Now we can proceed with the calculation of the electric potential and the
electric field of a charge at rest in an accelerating reference frame N°¢. To do
this we will rather need the average anisotropic speed of light ¢* (2.1). Using

c?® leads to two changes in the electric potential (2.4) of an inertial charge.

e

p(rt) =~ et (2.4)

where r is the magnitude of the vector originating at the point where the

charge is located and ending at the point where the potential is determined.
First, r, determined as 7 = ¢t (where t is the time it takes for an electro-

magnetic signal to travel from the charge to the point at which the potential

is determined), will have the form:

a-r a-r
T Cc C 202 T 2¢2

in N2, Assuming a-r/2c? « 1 we have:
ay-1 -1 a-r
y =~ 1+—).
() r < * 2c2)

The second change in (2.4) due to the anisotropic speed of light in N¢ is
analogous to the change in (2.4) when a moving charge is described by the
Liénard-Wiechert potentials in an inertial frame I (Figure 2.4) - in that case
they result from an apparently larger dimension of the charge (in the direction

of its motion) as viewed by I (see for instance [33], [36], [37]).
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Figure 2.4: The length I’ of a charge moving towards an inertial reference
frame I (as determined in I') appears larger than its actual length .

In N° the dimension of the charge (in the direction of the acceleration of
N¢) also appears larger despite the fact that it is at rest in N* (Figure 2.5).

The reason is that the speed of the electromagnetic signal originating from
the rear end of the charge (with respect to the observation point) is smaller
than the speed of a signal originating from the front end (for r parallel to a).

The difference between the two speeds is

a-(r—1/2 a- 1/2 a-1
Ac=c[1————(—2—-c;ﬁ}—c[1—(r—2;/—)J =Com

where 1 is a vector parallel to r, whose magnitude equals the dimension of

the charge . The apparent extra length Al due to Ac which “accumulates”
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Figure 2.5: The length of a charge at rest in N¢ appears larger in the direction
of the frame’s acceleration.

during the time t = r/c (the first-approximation of the time it takes the

electromagnetic signals to travel the distances r — | /2 and r + /2, where
lkr)is:
a-l1 a-r
Al = Ac e 502

The apparent length ', is then

a-r
=i+ ar=1(1+21).
v=1+ar=1(1+57)

It leads to an apparently larger (for r parallel to a) volume element in the

case of anisotropic speed of light in N¢

a-r
/e = — S y
di (1 +2 ) a1 (2.5)
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which leads to an apparent magnitude® of the charge, e, as determined in

N°¢ (which is not the total charge e):

e = /pdV“=/p<l+-aé—;2£)dV

e (1 + 2)

2¢2 )’
where e is the magnitude of an inertial charge determined in its rest frame,
1.e. e is the total charge; e® does not represent the total charge (this apparent
change of the magnitude of the charge in N° is analogous to the change of e
in the case of Liénard-Wiechert potentials when a moving charge is described
in an inertial frame [33]).

Up to now no attention has been paid to the apparent change of the volume
element which originates from the anisotropic speed of light in a non-inertial
frame. This explains why the famous factor of 4/3 in the electromagnetic mass
of the electron (derived from the expression of the self-force) still remains un-
accounted for. Taking the correct volume element into consideration naturally

removes the 4/3-factor without resorting to the Poincaré stresses (as will be

3 At first glance it appears that this contradicts the experimentaly established invariance
of the charge - its magnitude is the same in all reference frames. This situation is similar
to the calculation of retarded potentials: " [[p]dV’ does not in general represent the total
charge of the system. The reason is that the various contributions to the integrand [p]dV"
are evaluated at different times...” ([48], p. 342). In the case of anisotropic speed of light
e® does not represent the total charge due the different speeds of electromagnetic signals
originating from different parts of the charge.
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shown in the next chapter).

Now we can write the electric potential of the charge in N®:

e e a-r\?
t) = 14— .
" (r.t) 4’/‘(’601"( + 2c2)

2

Keeping only the terms proportional to ¢~? we obtain the final expression for

%

P (r.t) =

(1+ 7). (2.6)

47e,r c?

It is interesting to notice that the scalar Liénard-Wiechert potential (de-
tected by an inertial observer)

e 1
imwe, 7 ~v-r/c

p(r.t) =

e 1
4ime,r (1 —v-n/c)

where n = r/r obtains the form of (2.6) for uniform acceleration of a charge
v=at=ar/canda-r/c? K 1:

e 1
p(rt) = 4me,r (1 — (ar/c) -n/c)

e 1
47e,r (1 —a-r/c?)

Q

e (1+a-r)
4e,r cz /)’
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This result shows that due to the absolute property of a worldline of an
accelerated charge not to be geodesic, the charge’s potential is identically
distorted for a non-inertial observer at rest in the charge’s reference frame
and for an inertial observer.

The electric field of a charge at rest in N° can be directly calculated from

(2.6):

E® = —Vy® = — (n+9;’ln—ia)_ (2.7)

d7e, 2 c2p c?r

The electric field (2.7) of the charge detected by an observer at rest in N¢
coincides with the electric field of an accelerated charge (33, 38] determined
in an inertial reference frame (in which the charge is instantaneously at rest);
in such a way the electric field of the non-inertial charge is equally distorted
for an inertial observer I and for an observer in N®. The distorted field (2.7)
is regarded to give rise to radiation since it contains the radiation field terms
proportional to r~! [38]. This, in light of the just obtained result, means that
if an inertial observer detects radiation, so does an observer in V¢ (since both
I and N° detect the same distorted electric field) . In fact, whether or not I
and V@ register radiation is a secondary question; the most important result is
that an inertial observer and an observer at rest in N*° see the same distortion
of the electric field of a static charge in N¢.

Whether or not the distorted electric field of a non-inertial charge, as
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viewed by an observer in V¢, gives rise to radiation with respect to N¢, will
perhaps remain controversial for some time, but in the end it will be recog-
nized, I believe, that an unambiguous criterion for whether or not a charge
moving with an acceleration a radiates is the presence of the radiation reaction

force [33, 38]

1 2622’1
%4 7 Urep 383

(2.8)
which results from the distorted electric field (2.7). This criterion is a direct
consequence of the conservation of energy: the radiation reaction force must
be present to account for the energy loss due to radiation. That is why there is
radiation only if F,qq is different from zero. If the acceleration a is not constant,
the charge radiates. If, however, the charge is in uniform (hyperbolic) motion

(a = const), a = 0 and therefore there is no radiation. Hence, both I and N¢

will agree that a charge at rest in N*® does not radiate.

2.2.2 A charge falling in a uniformly accelerated refer-
ence frame

A charge falling in a uniformly accelerated reference frame, N¢, as viewed
by an inertial observer, I, (falling with the charge or moving with constant
velocity outside the accelerated reference frame) moves by inertia - its electric

field is not distorted and there is no radiation. With respect to a non-inertial
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observer at rest in the accelerated reference frame N¢, however, the charge
moves with an apparent constant acceleration a® = —a. Using the Liénard-

Wiechert potentials

o(rt)= = — 1 (2.9)

" 4me,r—v-r/c

€ A\’

t) =
A1) dwe,c?r —v-r/fe

(2.10)

it appears that its electric field should be distorted, having the form (2.7):

e n a*n 1
E= (—2+Tn“7a')v
d7we, \T cr cr

which suggests that one may expect radiation since the radiation reaction
force (2.8) can be obtained form the distorted electric field. Such a conclusion,
however. is wrong for two reasons: (i) the acceleration of the falling charge is
constant (Fr.s = 0), and (ii) the expressions for the potentials (2.9), (2.10)
hold only in an inertial frame. In order to use the Liénard-Wiechert potentials
in N® they must include the small correction due to the anisotropic speed of

light (2.1); taking it into account yields the correct potentials:

e 1 a-r
¢(rt) = 14+ — 2.11
@ (1) 4d7we,r —v-r/c Tz ) (2.11)
e v a-r
e = . 12
A% (rt) 4me,c?r —v-r/c (1+ c? ) (2.12)

The electric field then becomes:

E — e {(n+a‘-n 1a‘>+(a-nn la)}
T dwe, L\r2 ' ¢2r nT e cir cir '
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Noting that a* = —a, we obtain the electric field of the falling charge in the
accelerated reference frame N%, which is identical with the field of an inertial

charge determined in its rest frame:

e n
4me, 2’

This result is expected if we notice that for uniform acceleration of a charge
v =a't =a’'r/c(a’ = —a) and considering the charge instantaneously at rest,
(2.11) becomes the Coulomb potential and (2.12) - negligibly small since it is
of order ¢73.

We have obtained the result we have expected - as the falling charge being
an inertial particle is represented by a geodesic worldline, both an inertial and a
non-inertial observer detect a Coulomb field. In other words, the results of this
and the preceding section show that the shape of the electric field of a charge

is determined by the state of motion of the charge (inertial or non-inertial)

and is observerindependent.

2.3 A charge in the Earth’s gravitational field

2.3.1 A charge supported in the Earth’s gravitational
field

First E. Fermi [39] in 1921 calculated the electromagnetic field of a charge

supported in the Earth’s gravitational field. Unfortunately his work remained
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unnoticed. Fermi did not obtain the correct formula for the potential and came
to the wrong conclusion that the electric field of a charge supported in the
Earth’s gravitational field coincides with the electric field of a charge moving
with an acceleration a = —g/2 (evidently, by the principle of equivalence
a=-—g).

The electric potential of a charge supported in the Earth’s gravitational
field as determined by an observer at rest on the Earth’s surface can be ob-
tained by taking into consideration the fact that the speed of light is also
anisotropic in this case due to the presence of a gravitational field as follows

from the principle of equivalence

¢ =c (1 + gQ;;) (2.13)
where ¢? is the average speed of the electromagnetic signal between two points
separated by a distance r in a (weak) gravitational field. This formula is
obtained by substitutinga = —g in (2.1). As seen from (2.13) ¢? (determined
in a non-inertial reference frame /N9 at rest on the Earth’s surface) is also
direction dependent (as was the case in an accelerating reference frame). Like
in the case of the anisotropic light speed in an accelerating reference frame
here too the speed of light at a given spacetime point can be obtained from
its average velocity (2.13). In Figure 2.6 a light signal is emitted at point B

and propagates upwards towards point A, i.e. its direction is opposite to the
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gravitational acceleration g. At B ¢} = ¢ (since r = 0). The light speed at A

is then

& =26 — ¢ —2c:°—c(1+ 262)—c

or

& =c(1+g—c'2—r). (2.14)

Since the propagation of the light signal is opposite to g g - r = —gr and

g=c(1-%).

which shows that ¢} < cf, i.e. smaller than c. Again this is not an absolute
result; it only means that ¢ is smaller than ¢ as viewed from B.

As seen in Figure 2.7 when the light source is at A and the light signal
propagates downwards (parallel to g) the speed of light at A this time is

¢ = c (since r = 0). The speed of light at B is

4=c(+55) o (1+5).

which means that ¢ > ¢, i.e. larger than ¢. The speed of light at the point
of the source is always ¢ (provided that the accepted convention according
to which the beginning of the vector r is at the source point and its end

at the observation point holds; otherwise the speed of light at the point of
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Figure 2.6: A light signal emitted at B propagates upwards against the direc-
tion of the gravitational acceleration g.

observation will be always c). If the point of detection of the signal is displaced
in a direction parallel to g, the speed of light at that point (relative to the
source) is larger than c; if the point of observation is situated in a direction
opposite to g. the light speed at that point (relative to the source) is smaller
than c. Locally in a gravitational field (i.e. in curved spacetime) the speed
of light is always c. This conclusion is quite natural - in terms of spacetime
curvature a curved spacetime can locally be well approximated by the tangent
flat spacetime and as we know the flat spacetime physics is governed by special
relativity where the speed of light is constant and is equal to c.

In an implicit form (2.14) has been used by Rindler [40]. It can be also
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Figure 2.7: A light signal emitted at A propagates downwards in the direction
of the gravitational acceleration g.

obtained from (2.2):

c’=c(1+g§>=c(l+§),
¢

c?

where A® is the difference in the gravitational potential. Let us consider a
light signal emitted at point B on the Earth’s surface (Figure 2.8). The light
signal propagates upwards towards point A situated at a distance R4 = Rg+7
from the Earth’s centre, where Rp is the Earth’s radius (and the distance from
the Earth’s centre at which point B is situated) and r is the distance between A
GM GM

and B. At A the gravitational potentialis ®4 = ———; at Bit is g = ———.
RA RB

Now we can see one more time how the direction dependence emerges.
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B [

Figure 2.8: Point B on the Earth’s surface and point A above it at a distance
T.

As the source is at B we want to see how the potential changes upwards

(from point B to point A):

Ab.. — _GM _ _GM) GM _GM
Ba = RB RA RB R3+T

_GM, __ GM
RB RB (1 + T/RB)

~

_%+€M_(1_J_)
RB RB \ RB
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= —gr.

This means that as we go upwards the speed of light (with respect to the

source) decreases:

c’=c(1+Aq>23A) =c<1—g—2).
c c

If the light source is at A and the signal propagates towards point B, we

want to see how the potential changes from A to B (i.e. downwards):

GM ( GJ\{) __ GM GM

Adgp = ——— — [
AB R_4 RB RB+T + RB

___GM ___GM
Rg(1+r/Rg) Rsp

Q
i

In such a way, as we go downwards from point A to point B the speed of light

increases:
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c’=c(1+é%)=c(l+g—z).
c ¢

Finally, in vector form we have:

d=c (1 + -g—cz—') , (2.15)
which coincides with (2.14). When light is propagating opposite to g its speed
is smaller than that when light is propagating in the same direction as g.

As we have seen the direction dependent light velocity (2.14) directly fol-
lows from (2.2). It is also seen that the average direction dependent velocity
of light between A and B can be calculated from (2.15). If the light source

isat A (thenr = 0) ¢ =cand at B: ¢ =¢(l+g-r/c?). Then the average

velocity is:

1 g-r g-r
c:w=§[c+c<1+c—2)J=c<1+-@>,

which coincides with (2.13) confirming its correctness.

Now we can proceed with determining the electric potential of a charge in
a non-inertial frame N?, at rest in the Earth’s gravitational field. Following
the same reasoning as in the case of an accelerated reference frame N° (or
applying the principle of equivalence and substituting a = —g in (2.6)) we can

write the expression for the scalar potential:

P (1) = — (1—8';), (2.16)

TELT c
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where @9 is the charge'’s potential in a gravitational field. The electric field of

the charge Ef = —V¢7 is directly obtained from (2.16):

g _ € (n_g-n i)
E n+c2r . (2.17)

4me, \r2 c3r

A comparison of the electric field of an accelerated charge (2.7), determined
in the frame N?, with the electric field of a charge supported in the Earth’s
gravitational field (2.17), determined in N9, indicates that the electric fields
of a charge moving with an acceleration a = —g and a charge at rest on the
Earth’s surface are equally distorted as required by the principle of equivalence.
One may expect the distorted electric field (2.17) to give rise to the radiation
reaction force (2.8), but it is zero since g = const. This means that a charge
supported in the Earth’s gravitational field does not radiate which agrees with

the result that a charge at rest in an accelerated frame does not radiate either.

2.3.2 A charge falling in the Earth’s gravitational field

All gravitational effects in general relativity are manifestation of space-time
curvature due to the presence of matter. The force-free motion of a charge
falling in a gravitational field is represented by the geodesic worldline of the
charge. In other words, the falling charge moves by inertia and its electric field

should not be distorted which means that there should not exist any radiation.



44

The charge’s electric field is not distorted as viewed by an inertial observer,
I, falling with the charge. However, if a non-inertial observer in /N9 (at rest on
the Earth’s surface) directly uses the Liénard-Wiechert potentials (2.9), (2.10)
to obtain the electric field of an accelerated charge, falling in the Earth’s
gravitational field (a = g), the expression obtained (considering the charge

instantaneously at rest in NY) is:

L (BLER, 1)
E_47reo r2+ c2r n cr)’ (2.18)

From the distorted field (2.18) the radiation reaction force (2.8) can be
obtained which implies that the falling charge may radiate. As we have seen in
the case of a charge falling in an accelerating reference frame such a conclusion
is wrong for the same two reasons: (i) the acceleration of the falling charge is
constant (so Frea = 0), and (ii) the expressions for the potentials (2.9), (2.10)
should include the correction due to the anisotropic speed of light in N9 (i.e.
in the Earth’s gravitational field) in order to be valid in N9. Taking this into

account, the correct potentials are:

e 1 g-r
o (rt) = dwe,T— V- -1/C (1 7) (2.19)
g - _° v ( — g_{)
A?(r.1) dmwe,e2r —v-r/c 1 c? (2.20)

The electric field then becomes:

__¢& [(n gn _i) (_g'n __1_)}
E—47reo {(7‘2+ 2 T 2 + c27~n+c2rg




which is the field of an inertial charge:

e n
4me, 2’

(2.21)

As in the case of a charge falling in an accelerated frame, this result is ex-
pected if we notice that for a uniformly accelerated charge v = gt = gr/c and
considering the charge instantaneously at rest, (2.19) becomes the Coulomb
potential and (2.20) is neglected since it is proportional to ¢=3.

The result (2.21) (i) confirms that a Coulomb field is associated with an
inertial (falling) charge by both I and N9, and (ii) is in perfect agreement with
the principle of equivalence: both I and N¢ detect a Coulomb potential of a
charge falling in N°® (in the case of an accelerated charge) and for both I and
N9 the electric field of a charge falling in N9 is the Coulomb field (in the case

of a charge supported in the Earth’s gravitational field).

2.4 Conclusions

It has been shown in this chapter that the shape of the electric field of a
charge is observerindependent since it is determined by the inertial state of
the charge: a Coulomb field is associated with an inertial charge (represented
by a geodesic worldline) by both an inertial observer, I, and a non-inertial

(uniformly accelerated or at rest in a uniform gravitational field) observer N;
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both I an N detect the same distorted electric field of a non-inertial charge

(at rest with respect to V), whose worldline is not geodesic.
The principle of equivalence is naturaliy observed in the proposed approach:

(i) both an observer at rest in an accelerated frame N® and a static observer
in a frame N9 (at rest in a uniform gravitational field) see the same distorted
electric field of a charge at rest in N® and N9, respectively (provided that
a=—g);

(ii) an inertial observer falling in N® and an inertial observer falling in
N9 detect the same distorted electric field of a charge at rest in N° and N9,
respectively. The inertial observers do not register radiation because the ra-
diation reaction force (2.8) is zero due to acceleration of the charge (a and g,
respectively) being constant. If one disagrees that the presence of the radia-
tion reaction force (2.8) is a criterion whether or not there is radiation from
a non-inertial charge and comes to the conclusion that the inertial observers
register radiation from the non-inertial charges (static in N¢ and N9, respec-
tively) because they see the electric field of the charges distorted (and thus
containing the radiation field terms, proportional to 7~!), the same conclusion
follows for the non-inertial observers (at rest in N and N9, respectively) as

well, since they see the same distortion of the fields of the non-inertial charges.

(iii) both an observer at rest in N® and a static observer in N9 detect a



Coulomb field of a charge falling in N® and N9, respectively.



Chapter 3

Inertia, Gravitation and
Electromagnetic Mass

3.1 The Electromagnetic Mass of the Electron

The concept of electromagnetic mass of a charged particle originated in 1881
when J. J. Thompson [9] realized that such a particle was more resistant to
acceleration. After that the idea was taken up by Abraham [12] and especially
Lorentz [13] who developed it further into the classical model of the electron.

The electromagnetic mass of the electron can be calculated by three inde-
pendent methods [41]: (i) energy-derived electromagnetic mass my = U/c?,
where U is the field energy of the electron at rest, (ii) momentum-derived
electromagnetic mass m, = p/v, where p is the field momentum when the
electron is moving at speed v, and (iii) self-force-derived electromagnetic mass
ms = F;/a, where F; is the self-force acting on the electron when it has an
acceleration a (these are non-relativistic expressions; the relativistic ones are

48
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easily obtainable). While my = m,, m, has been causing problems for a
number of years yielding %me. It was independently shown by several authors
[42-46] that m, = m,.. The self-force-derived electromagnetic mass has been
the most difficult to deal with, persistently yielding the factor 4/3. By a co-
variant application of Hamilton’s principle in 1922 Fermi [47] first removed
the 4/3 factor from the self-force (described in an inertial reference frame). In
1982 Pearle [15] showed by inclusion of Lorentz contraction in the self-force
calculation that m, = m, in the case of an accelerated electron described again
in an inertial reference frame. In this chapter we shall see how the factor of 4/3
1s accounted for in the case of an electron at rest in an accelerated frame N¢
and in a frame /N9 on the Earth’s surface described in N® and N9, respectively

The hypothesis that the whole mass of the electron is electromagnetic in
origin not only explains the nature of inertia but also accounts for the rela-
tivistic increase of mass. The fact that the electromagnetic mass rises with
velocity inversely as \/1_—_;27;2 was discovered before the theory of relativity
[12]. It had been shown that the calculation of the momentum p associated

with a moving electron’s electromagnetic field for an arbitrary velocity v yields

(see [36)):
mov
P= 02
-

where m® is the rest electromagnetic mass of the electron; more precisely the
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inertial electromagnetic rest mass which characterizes the resistance an elec-
tron offers to being accelerated as determined in its rest accelerated frame
(or in an instantaneous inertial frame). The relativistic increase of the elec-
tromagnetic mass can be also obtained from the electromagnetic energy U
"attached” to a moving electron [46] (so far this effect has not been deduced
from the expression for the self-force). In such a way, the relativistic increase
of the electromagnetic mass (i.e. of the mass if it is entirely electromagnetic)
turns out to be a direct consequence of the fact that the energy and momentum
stored in the electromagnetic field of an electron are larger as determined by an
observer with respect to which the electron is moving than those determined
in the electron’s rest frame. The relativistic increase of the electromagnetic
mass also follows directly from (1.1) due to the relativistic contraction of the

dimension 7 of the extended electron.

Here we will be concerned with the self-force-derived mass m,, which will be
denoted either by m?® (inertial electromagnetic mass) or by m¢ (gravitational

electromagnetic mass).
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3.2 An Electron in a Uniformly Accelerated
Reference Frame

3.2.1 An electron at rest in a uniformly accelerated
frame

When an electron is accelerated each volume element of it experiences a force
produced by the electron itself (by its own field) which gives rise to a resultant
self-force acting on the electron as a whole and opposing its acceleration. The
typical way of obtaining the expression for the inertial electromagnetic mass
m? is to calculate the self-force resulting from the distorted electric field of
an accelerated electron. Here we shall not follow the standard approach to
calculating the self-force [34, 38, 48] which describes the electron’s motion in
an inertial frame I. Instead, the electric field of an accelerated electron will be
calculated in an accelerated reference frame N¢ in which the electron is at rest.
This can be done since a non-inertial (accelerated) observer at rest in N® will
attribute the self-force acting on the electron to its acceleration (due to the
absolute nature of acceleration an observer in N¢ can establish from within N¢
that it is an accelerated frame). The advantage of calculating the electron’s
electric field in N is that it is obtained only from the scalar potential °® in
N¢ and the calculation does not involve retarded times. In order to obtain

the potential ¢® one should explicitly take into account the anisotropic speed
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of light (and electromagnetic interaction in general) ¢® in N® [22] obtained in
Chapter 2:
a-r
“=c(1-35) .
¢ =c ( = (3.1)
where a is the acceleration of N® and r is a vector with its origin at the point
where an electromagnetic signal is emitted and its end at the point where the

signal is determined. As we have seen in Chapter 2 the anisotropic speed of

light c? leads to two changes in the potential (3.2) of an inertial charge

p(r,t)= Trer’ (3.2)

where 7 in (3.2) and (3.1) is the same.

First, r, determined as r = ct (where ¢t is the time it takes for an electro-
magnetic signal to travel from the charge to the point at which the potential
is determined), will have the form r® = ¢% in N°. Assuming a-r/2c2 < 1 we
can write:

(r*) ' =l (1 + %cTr) . (3.3)

The second change in (3.2) takes into account an apparently larger dimen-
sion of the charge (in the direction of the acceleration of N°) - it is analogous
to the same apparent change of a moving charge’s dimension (in the direction
of its motion) as viewed by an inertial observer I. In N° the dimension of the

charge also appears larger despite the fact that it is at rest in N°%. The reason
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is that the speed of the electromagnetic signal originating from the rear end of
the charge (with respect to the observation point) is smaller than the speed of
a signal originating from the front end (for r parallel to a). As we have seen in
Chapter 2 this difference between the two speeds results in an apparent length

' of a volume element of the electron’s charge

a-r
I= 1 -
! l(+2c2)’

which leads to an apparently larger (for r parallel to a) volume element in the
case of anisotropic speed of light in N®

a-r

ave=(1+55

) dv, (3.4)

where dV is the actual volume element (i.e. the volume element determined
when the electron is at rest in an inertial reference frame). The anisotropic
volume element dV° affects the magnitude of the charge element de® contained

in dV¢ as determined in N¢%:

a-r

de® = pdV® = p (1 + 53

)av, (3.5)

where p is the density of the electron charge.
Now, taking into account (3.3) and (3.5), we can write the electric potential
of a charge element de® of an electron at rest in N%(keeping only the terms

proportional to ¢™2):

do® (rt) = 28 & P (1+£—r-) av. (3.6)

~
dmwegr® 4AWe,T c?
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The electric field produced by de® in N° can be directly calculated from

(3.6):

1 n a'nn—ia)pdV,

dE® = — ¢ =
vdp 4me, 2t c2r cr

where n = r/r. The electric field of the electron then is

E® = L /(B-+a.nn—-—1—)pdV. (3.7)

47e, r2 c3r c?r

The self-force which the field of the electron exerts upon an element pdVy

of the electron charge is

1 - 1
dF%,, = pdVoE® = / (3 +2 0 - ) P2dVdVE.

47e, T2 c3r

The resultant self-force acting on the electron as a whole is:

1 2 a
Foay = 47e, / / ( n B c—2_a) dvavy,

which after taking into account (3.4) becomes

_ 2 2
Foery = d7e, / / ( c2r ~n c2ra) (1 + ) avan. (3:8)

Assuming a spherically symmetric distribution of the electron charge [13]

and following the standard tedious procedure of calculating the self-force [34]
we get (see the Appendix):

self = =4, (3.9)
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where

U= //p—dedVl

87e, T
is the electron’s electrostatic energy. As U/c? is the mass "attached” to the
field of an electron, i.e. its electromagnetic mass, we can write (3.9) in the

form:

sely = —m°a, (3.10)

where m? is identified with the electron’s inertial mass.

The self-force Fg,,, to which an electron is subjected due to its own field
is directed opposite to a and resists its acceleration, i.e. the deformation of
its world path. The famous factor of 4/3 in the electromagnetic mass of the

electron does not appear in (3.10). The reason is that in (3.8) we have used

a-r

52 ) dVi. This apparent change of

the correct volume element dV* = (1 +
the volume element originating from the anisotropic speed of light in a non-
inertial frame has not been noticed up to now. Taking it into account naturally
removes the 4/3-factor without resorting to the Poincaré stresses (designed to
explain the stability of the electron).

Since its origin a century ago the electromagnetic mass theory of the elec-
tron has not been able to explain why the electron is stable - what keeps its

charge together. However, this problem cannot be adequately addressed until

a quantum-mechanical model of the electron’s structure is obtained. On the
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other hand, the problem of stability of the electron (which is often used as ev-
idence against regarding its entire mass as electromagnetic) does not interfere,
as we have seen, with the derivation of the expression for the self-force (3.10)
containing the electromagnetic mass. This problem can also be successfully
avoided in the case of the electromagnetic mass derived from the expression

for the momentum of the electron’s electromagnetic field [32, 46].

3.2.2 An electron falling in an accelerated reference frame

An electron falling in a uniformly accelerated (non-inertial) reference frame,
N¢, as viewed by an inertial observer, I, (falling with the electron or mov-
ing with constant velocity outside the accelerated reference frame) moves by
inertia: its world path is geodesic which means that its Coulomb field is not
distorted and there is no self-force acting on the electron. With respect to a
non-inertial observer at rest in N2, however, the electron moves with a con-
stant apparent acceleration a* = —a (a being the acceleration of N°) and if

one uses the Liénard-Wiechert potentials

e 1

1
4we, T —v-r/c (3.11)

p(r,t)=

e v
4me,c?r—v-r/c

Art) = (3.12)
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it appears that its electric field is distorted, having the form:

n a*n 1

E=-vp-22__° (;2— 28, —a‘> (3.13)

c?r c?r

for the electron considered instantaneously at rest in N° [33, 34]. This suggests
that an observer in N® may expect the distorted electric field (3.13) to give rise
to a self-force which forces the electron to fall. However, the potentials (3.11)
and (3.12) are valid only in an inertial reference frame; in the non-inertial

frame N® (due to the anisotropic speed of light (3.1) in N®) they have the

form [22]:
@ e 1 a-r
o (rit) = TET —V-T/C (1 + c? ) (3-14)
e e v a-r
A% (rt) = 47e,c2T — V- T/C (1 Tz ) ’ (3.15)

The electric field resulting from (3.14) and (3.15) is:

E— e {(n_{_a‘-nn la,)_*_(a-nn 1 )}
T dwe, L\r2 T c2r c?r cir c’r )

Noting that a* = —a, the electric field of the falling charge in the accelerated

reference frame N, turns out to be identical with the field of an inertial charge
determined in its rest frame:

e n
E=_— (3.16)

Consequently, a Coulomb field is associated with the falling electron by

both an inertial observer I and an observer at rest in N®. Comparing the
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electric field (3.7) of an electron at rest in N°(determined in N ¢) as calculated
in the previous section and its field determined in I [33] in which the electron
is instantaneously at rest shows that for both an observer in I and an observer
in N the electron’s field is equally distorted. In general, as shown in Chatter
2, due to the absolute property of a worldline to be geodesic or not, an asso-
ciation of a Coulomb field with an inertial electron (represented by a geodesic
worldline) and a distorted electric field with a non-inertial electron (whose
worldline is not geodesic) is observerindependent (the same for an inertial and

a non-inertial observer).

The Coulomb field of the falling electron (3.16) implies that it is not
subjected to any self-force. This result is quite natural - there is no four-
dimensional stress in the electron’s world path since it is geodesic which means
that there is no self-force acting on the electron. If, however, the electron is
prevented from falling, it starts to accelerate (with real, not apparent acceler-
ation) and leaves its inertial state. The electron’s world path deforms which
results in the distortion of the electron’s electric field; this in turn gives rise

to a self-force that opposes the deformation of its world path.
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3.3 An Electron in a Frame NY at Rest With
Respect to the Earth

3.3.1 An electron at rest in NY

In 1921 E. Fermi [39] first considered the question what is the "weight” of
the electromagnetic mass of the electron, i.e. the question whether the elec-
tromagnetic mass of an electron supported in the Earth’s gravitational field
coincides with its electromagnetic mass when the electron is moving with an
acceleration a = —g. Despite the fact that he did not obtain the correct
formula for the potential and came to the wrong conclusion that the electric
field of an electron supported in the Earth’s gravitational field coincides with
the electric field of an electron moving with an acceleration a = —g/2, Fermi
did obtain the correct expression for the electromagnetic mass of an electron
at rest on the Earth’s surface which coincides with the electromagnetic mass
of an accelerated electron. He got this result not by a direct calculation of
the self-force acting on the electron, but by making a covariant application of
Hamilton’s principle.

Here the expression for the gravitational electromagnetic mass will be de-
rived from the expression for the self-force acting on an electron supported in
the Earth’s gravitational field. Like the potential (3.6) determined in N°, the

electric potential of a charge element of an electron in a non-inertial frame N9
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at rest on the Earth’s surface is distorted as a result of the anisotropic speed
of light (electromagnetic interaction) ¢ in N9. The speed of light in N9 is
anisotropic due to the presence of matter as shown by Einstein [35] and its
average value (between two points separated by a distance r) in the Earth’s

gravitational field is

g'r
o=c(1+5) .
c{1+52 (3.17)
This expression can be also obtained from (3.1) by substituting a = —g as

follows from the principle of equivalence.
The general form of the electric potential of a charge element de? of an

electron at rest in N9 is:

ded
dy? = .
¥’ 47eqry

(3.18)

Following the same reasoning as in the case of an accelerated reference frame
N° (see Chapter 2 and the previous section) we can determine the expressions

for de? and 9. The charge element de? in N9 has the form

g r
deS = pdV? = p (1 - '272) % (3.19)
where
9 (1 _ E)
avs = (1-83)av (3.20)

is the anisotropic volume element in a gravitational field. Taking into account
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that in N9 19 = ¢9¢ and assuming g - r/2c> < 1 we can write

(r) (1 - %) (3.21)

for r in N9. Substituting (3.19) and (3.21) in (3.18) and keeping only the
terms proportional to ¢~? we get the final expression for the potential of the

charge element de?

dg® = P (1 _ ﬁ) av. (3.22)

degr c?

‘The potential (3.22) can be also obtained by applying the principle of equiva-
lence and substituting a = —g in (3.6) .
The electric field of the charge element de? in N9 is calculated by using the

scalar potential (3.22):

1 n ‘n 1
dES = —Vdp? = —— (72' gl n+§;g) pdV

and the field of the electron is

1 n g-n 1
g — _ —_
E‘ = yeomy / g n+ c2rg) pdV. (3.23)

A comparison of the electric field of an accelerated charge element (3.7),
determined in the frame N®, with the electric field of a charge element sup-
ported in the Earth’s gravitational field (3.23), determined in N9, indicates
that the electric fields of a charge element moving with an acceleration a = —g
and a charge element at rest on the Earth’s surface are equally distorted as

required by the principle of equivalence.
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The self-force with which the electron field interacts with an element pdV{
of the electron charge is

1 n g-n
dFsy; = pdVYES = — [ (5 -
setf = PAVTE de, r2 c?r

1 2
n+ —c-,;g) p*dVdVy.

The resultant self-force with which the electron acts upon itself is:

1 n g-n 1
9 —_ - - 2 g
Foets 47e, / / (r2 o czrg) pavavy,

which after taking into account the explicit form (3.20) of dVf becomes

1 n g n 1 g .r 9
4’/T€O ././ (7"2 c2r n+ c2r ) (1 9¢2 )p dVd‘/l (324)

Assuming a spherically symmetric distribution of the electron charge and

g —
Fself -

calculating the self-force as in the case of an accelerated electron we get:

U .
Fley = 58 (3.25)

where

1 p?
U= 8we, //7dVdV1

is the electron’s electrostatic energy. As U/c? is the electromagnetic mass of

the electron, (3.25) obtains the form:
Fley =m'g (3.26)

where m? here is interpreted as the electron’s passive gravitational mass. As

in the case of the self-force acting on an accelerated electron the factor 4/3 in
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the electromagnetic mass does not appear in (3.26) for the same reason: the
correct volume element (3.20) was used in (3.24).

The self-force Fj,;; which acts upon an electron on account of its own field
is directed parallel to g and resists its acceleration arising from the fact that
the electron (at rest on the Earth’s surface) is prevented from falling, i.e. from

moving by inertia.

3.3.2 An electron falling in NY

General relativity describes an electron falling in a gravitational field by a
geodesic world path. It implies that it moves by inertia and its Coulomb field
should not be distorted which means that there should not exist any self-
force acting on the electron. The electron’s Coulomb field is not distorted as
viewed by an inertial observer falling with the electron. In order to obtain
the electric field of an accelerated electron in the Earth’s gravitational field
(a = g) with respect to a non-inertial observer (at rest in NY9) one cannot use
the Liénard-Wiechert potentials (3.11) and (3.12) in N9 since N9 is not an
inertial frame. In order to be used in N9 they should include the correction
due to the anisotropic speed of light (3.17) in N9. As shown in Chapter 2 in

N9 the potentials (3.11) and (3.12) have the form:

o (rt) = -1 (1—51) (3.27)

dwe,r — v-r/c c?
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g - _¢€ v (__g_r)
A?(rt) dme,c?r —v-rfc 1 ct /]’ (328)

The electric field of the electron falling in N9 (and considered instantaneously

at rest in N¥9) obtained from (3.27) and (3.28) is:

Be-vp AT e ((miem, L (B 1)

ot 4me, L\7r2  c?r c3r c2r cir

The electric field of the falling charge in the reference frame N9, proves to be

identical with the field of an inertial charge determined in its rest frame:

€E n

E= (3.29)

dme, T2’

As in the case of an electron falling in an accelerated frame, here too both
an inertial observer (falling with the electron) and a non-inertial observer (at
rest in N9) detect a Coulomb field of the electron falling in N9. In other words,
while the electron is falling in the Earth’s gravitational field its world path is
geodesic (as general relativity tells us) and its electric field at any instant is
the Coulomb field which means that no force is acting on the electron (i.e.

there is no resistance to its accelerated motion).



Chapter 4

Some Insights

4.1 The Curvature of Space-Time

In general relativity the curvature of space-time is considered to be caused
by the presence of matter. The anisotropy in the propagation of light in the
vicinity of material bodies is a consequence of the space-time curvature due to
the mass of the bodies. If, however, the entire mass of a body is electromagnetic
(originating from the self-force acting on each elementary charged particle of
the body), it follows that its active gravitational mass also originates from
its charges (since according to the GTMG hypothesis there is no mass but
only charges) which means that it is the charges (and their fields) that change
the properties of space-time around the body in such a way that the speed
of electromagnetic interaction towards the body is greater that the speed in
the opposite direction. This means that the anisotropy in the speed of light

around the Earth (i.e. inside a non-inertial reference frame N? at rest on the

65
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Earth’s surface) is caused by all elementary charged particles constituting the
building blocks of the Earth. Due to this anisotropic speed of light in N9,
expressed by (3.17), the electric field of an electron on the Earth’s surface
(determined in NY) is distorted and the resulting self-force (3.26) pulls the
electron downwards. Hence, what we have called gravitational force turns out
to be, according to the GTMG hypothesis, the electric self-force acting on an
elementary charged particle due to its own electric field (so we have obtained
the answer to the question what is the nature of the a body on the Earth’s
surface is subjected to - it is not a gravitational force; its an electric force).
As we have seen in Chapters 2 and 3 the electric field of an electron falling
towards the Earth’s surface (determined in N9) at any instant is the Coulomb
field. In other words, the electron is falling because it tries to keep its electric
field symmetric (the Coulomb field); if the electron is prevented from falling, its
electric field becomes distorted due to the greater speed of the electromagnetic
interaction towards the Earth than in the opposite direction and a self-force
which tends to force the electron to move downwards with an acceleration g
arises. The anisotropy in the propagation of the electromagnetic interaction in
the Earth’s vicinity is compensated if a charge is moving downwards with an
acceleration g (as shown in Chapters 2 and 3) which explains why all bodies are

falling with the same acceleration towards the Earth and why a falling body
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is not subjected to any force (as the formalism of general relativity predicts).

In such a way, the anisotropy of the speed of electromagnetic interaction
caused by the elementary charged particles (the Earth is built of) is respon-
sible for the distortion of an electron’s electric field which in turn accounts
for the gravitational attraction the electron is subjected to. That is why the
anisotropy in the electromagnetic propagation turns out to be the very curva-
ture of space-time according to the GTMG hypothesis. The interpretation of
space-time curvature in terms of anisotropy is not so unexpected since there
have always been two options for understanding the meaning of Riemann cur-
vature tensor in general relativity - it represents either a real (geometrical)
curvature of space-time or some kind of anisotropy in the (physical) properties
of space-time. Considering the mass to be of purely electromagnetic nature
leads to the latter option. This conclusion implies that the gravitational field
does not possess its own, separate existence - it is rather a change in the
properties of space time which is caused by the charges of (massive) objects.
The consequence of the GTMG hypothesis that the anisotropy in the propa-
gation of electromagnetic interaction in the vicinity of a body (which we call
the body’s gravitational field) being caused by its charges and their fields is
electromagnetic in origin also sheds light on the question why it has not been

possible to construct an energy-momentum tensor of the gravitational field in
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general relativity: what we have called gravitational energy turns out to be

electromagnetic energy.

The motion of an electron is completely determined by its field - (i) if it
is the Coulomb field, there is no (resistant) self-force acting on the electron,
its world path is geodesic which means that the electron is moving by inertia
- both an inertial observer I and a non-inertial observer N detect a Coulomb
field of the electron and agree that its motion is inertial (force-free or non-
resistant) ; (ii) if the electron’s field is distorted (both I and N detect the
same distortion), its world path is also deformed (not geodesic) and a self-
force arises and opposes the deviation of the electron from its inertial state,

i.e. opposes the deformation of its world path.

In general, planets are orbiting the Sun, light is bending when passing
near the Sun, and bodies are falling towards the Earth due to the greater
speed of the electromagnetic interaction towards the Sun/Earth than in the
opposite direction. A more descriptive definition of inertial (geodesic) motion
can now be given. An electron is moving by inertia if its Coulomb field is not
distorted. Such a non-resistant motion is represented by a geodesic world line.
If the geodesic world lines are straight lines the space-time is isotropic with
respect to the propagation of electromagnetic interaction (flat space-time); if

the geodesic lines are curved the space-time is anisotropic (curved space-time).
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The property of a world line to be geodesic is an absolute one determined by
the structure of space-time (in accordance with general relativity).

As we can in principle control and manipulate any kind of electromagnetic
phenomena and as the anisotropy of the speed of light being caused by charges
is an electromagnetic phenomenon in origin as well, one day we can produce
such an anisotropy and make a body move in whatever direction we want
(this possibility still holds, but partly if the mass turns out to be only partly

electromagnetic as presently believed).

4.2 The Principle of Equivalence

The principle of equivalence is a direct consequence of (i) the fact that the
speed of light is equally anisotropic inside an accelerated reference frame N°®
and a reference frame N9 at rest on the Earth’s surface (as seen form (3.1)
and (3.17)) and (ii) the determination of the motion of an electron by its field.

The anisotropy in the speed of light in N is caused by the accelerated
motion of N¢; in N9 it is caused by the Earth’s charges. The electric field
of an electron at rest in N® (as viewed by an observer in N ¢) is distorted
due to the anisotropic speed of light (3.1) in N° giving rise to the (inertial)
self-force (3.10) and the inertial mass of the electron. The electric field of an

electron at rest in N9 (as viewed by an observer in N9) is distorted due to the
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anisotropic speed of light (3.17) in N? which gives rise to the (gravitational)
self-force (3.26) and the gravitational mass of the electron. The inertial and
gravitational mass of an electron are equivalent since they are the same thing:
the electron’s electromagnetic mass arising from the electromagnetic resistance
an electron offers to being deviated from its geodesic (inertial) state.

An observer in N° at any instance detects a Coulomb field of an electron
falling in N® which means that it is moving by inertia since no self-force
is acting on it; if something prevents the electron from falling, however, its
electric field becomes distorted and the self-force (3.10) appears opposing the
change in the inertial state of the electron. An observer in N9 at any instance
also detects a Coulomb field of an electron falling in N9 which implies that
there is no self-force acting on the electron; in other words, the falling electron
is (as in N*) moving by inertia. If the electron is prevented from falling in N¢,
its electric field deforms, the self-force (3.26) arises and resists the deviation

of the electron from its geodesic (inertial) state.



Chapter 5

Has There Been an Alternative
Path to General Relativity?

5.1 Introduction

An opportunity for revealing the nature of inertia and gravitation in terms of
the electromagnetic mass theory may have been missed at the time (and after)
Minkowski gave the four-dimensional formulation of special relativity. In 1911
Einstein [35] showed that the speed of light in an accelerated reference frame
was anisotropic and realized that it should be anisotropic in a gravitational
field as well. If the electromagnetic mass theory had been explored thoroughly
it would have been possible to notice that it is the anisotropy in the speed of
electromagnetic interaction in an accelerated frame N° and in a frame N9 at
rest in a gravitational field that is responsible for the distortion of the electric
field of an electron at rest in N® and N9, respectively which gives rise to the
electron’s inertial and gravitational mass.
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Substituting the anisotropic speed of light ¢? in the expression for the
interval yields:

ds? = (¢9)2 dt? — dz? — dy? — d2?,

where ¢9 here is the anisotropic speed of light defined at any space-time point

(2.2). Substituting ¢? in the interval and noting that

c"=c(1+%)=c(1+-q—;),
¢ c

where & is the difference in the gravitational potential, the interval obtains

the form

q) 2
ds? = (1 + 55) c?dt? — dz? — dy? — d2?,

or in a more compact form

where
2

( (1+3;) 0 o o
C
0 -1 0 0

Guv = (5.1)

0 0 -1 0

|0 0 0 -1

is the metric tensor in the case of anisotropic speed of electromagnetic inter-

action. It is immediately seen from here that the metric in this case is not
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the metric of a flat spacetime. This observation may have lead to an alter-
native path to general relativity in which the emphasis on the mechanism of
gravitation may have been greater than that on its mathematical description.

To answer the Chapter’s question it will be necessary to demonstrate that
general relativity can be fully constructed from the metric tensor (5.1) (this is
the subject of future work). It will be shown in this chapter that the Newtonian
limit of general relativity follows immediately from (5.1) without any additional

assumptions.

5.2 The Newtonian Limit of General Relativ-
ity
The standard way of obtaining the Newtonian limit of general relativity is the

following [5], (49] -[54]. It is assumed that in the limit of weak and slowly-

varying gravitational field (which means that the velocity of the object produc-
2.
dt?

and Einstein’s equation (5.3) reduces to the differential form of Newton’s law

ing that field is smaller that c) the geodesic equation (5.2) reduces to =g

of gravitation (expressed by the Poisson equation V2® = 47Gp).

d’z¢ . dz®da?

sz Tleo g7 =0 (5-2)
1 871G
Rag - ERgaﬁ = TTQB (53)
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In equation (5.2) I';; are the metric connections which can be expressed

by the metric tensor g.g
1
Luve = '2'(9;1”,6 + Gvou — Gopw) (5.4)

and ds is the proper time.
In equation (5.3) Raz is the Ricci tensor obtained by a contraction of the

Riemann curvature tensor Ryqps :

Ra‘a = gpaRang.

R is the scalar (spacetime) curvature (the contracted Ricci tensor R = g®®R,5.),
9ap is the metric tensor of curved spacetime, G is the gravitational constant
and T, is the stress-energy tensor (of matter).

In the classical (Newtonian) limit of general relativity the curvature of
space time can be regarded as a perturbation of flat spacetime. Mathematically
this can be expressed by representing the metric tensor of curved spacetime
gop by the metric tensor of flat spacetime 7,, and another ”perturbation”

tensor h,, whose components are much less than unity:
Gop = My + h'l-l”' (5'5)

The components of g,s are of the order of unity since
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( 10 0 O )
0 -1 0 O
Ny =
00 -10

\ 00 0 -1 )
and the components of h,, are proportional to ¢~2 as we shall see below.

As the velocity of an object whose gravitational field is slowly varying is

much less than ¢, we have
dz® = cdt > dzt,

where as usual roman letters 7,k,[, ... take on the values 1, 2 and 3, while the
Greek letters a, 3, 7... vary from 0 to 3. Also the proper time ds = ¢dT in the
non-relativistic approximation becomes equal to cdt. In this approximation
dz°/ds > dz*/ds. When this is taken into account the geodesic equation (5.2)

reduces to [54]:
d%z’
dat?

+ ey =0 (5.6)
since in the Newtonian limit Ty, are the only components of the metric con-
nections that are not negligible.

Only from (5.6) we cannot obtain the classical equation of motion. It
1s necessary to presuppose the classical result and to identify the terms of

equation (5.6) with the corresponding terms of the classical equation.
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Consider a case of a constant acceleration g in the ¢ direction:

d?zt

oz =9 (5.7)
A comparison of (5.6) and (5.7) gives
i, = _E%‘ ' (5.8)
Substituting (5.8) in (5.6) yields
d2zt
az = 9

To obtain the differential form of Newton’s law of gravitation it is necessary

to use an alternative form of Einstein’s equation (5.3) [54]:

T 1
R, = 57C (TQ,, _ -gaﬁ:r;) . (5.9)

Reo = oF (Too _ —goo:rg) (5.10)

since in this limit (with velocities <« ¢) the spatial components of momenta
are negligible compared to energies; that is why only the energy density Ty
of the stress-energy tensor is kept. The corresponding approximation for the

Riccl tensor is [54]:

1
ROO = §Tlaa (h'ao.Oo: - h'OO,ao: + hOa,c'O - haa,OO) s (511)
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where 77 is the metric tensor of flat spacetime and hgq is the "perturbation”
tensor of equation (5.5); as usual comma denotes differentiation. As was the
case of the classical limit of the geodesic equation here too the time derivatives
are negligible compared to spatial derivatives (since each time derivative is

d
proportional to ¢~ - E) Then equation (5.11) reduces to
1, 1
= ‘577 hooi; = EhOO.ii- (5.12)

Equation (5.12) by itself again does not yield a term of the classical gravita-
tional equation. It is necessary to use the result of the gravitational red shift

experiment to determine hgy [54]:

_2GM 23

rc? c?’

hoo =

Then (5.12) representing the left-hand side of equation (5.10) becomes

Rpp= =& = : (5.13)
If it is supposed that the rest density of matter is p we can write
Too = pc?
and then the right-hand side of (5.10) takes the form of

1 c?
Too — 5900T8 = %‘ (5.14)
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Substituting (5.13) and (5.14) in (5.10) we get
V2® = 47Gp,

which is exactly the Poisson equation representing the differential form of
Newton'’s law of gravitation.

As we have seen general relativity does not transform naturally (by itself)
into the Newtonian gravitational theory in the limit of weak fields and slow
velocities of the bodies producing those fields (we have twice identified gen-
eral relativistic quantities with the corresponding classical quantities to get
the classical gravitational equations). By contrast special relativity naturally

transforms into classical mechanics in the limit v?/c2 — 0.

5.3 The Newtonian Limit of General Relativ-
ity Without Assumptions

Now we shall see that using the metric tensor for the case of anisotropic light
speed naturally leads to the Newtonian gravitation laws without the unavoid-

able assumptions necessary to get the Newtonian limit of general relativity.

If the metric tensor is determined on the basis of the anisotropic speed of

electromagnetic interaction it has the form (5.1). Only its diagonal elements
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are different from zero: g;; = —1 and
d\? 29
oo = (1 + 6—2) ~1+ = (5.15)

A comparison of (5.5) and (5.15) shows that in this case it is not necessary to
make the assumption to represent g,, by the metric tensor of flat spacetime
Nu and a "perturbation” tensor h,, (as was the case in (5.5)). Here goo
contains two terms by itself. The "perturbation” term (equivalent to hgg) is
proportional to ¢~2. This demonstrates that the gravitational effects we are
subjected to in our everyday life result from perturbations to 7 . Which are of
the order of ¢~2.

As all g; = —1 (i.e. constants) substituting (5.1) in the equation for the
metric connections (5.4) shows that only I'fy = g#*T .0 is different from zero.
3

', is negligible since it is proportional to ¢~

_ 1 00dg00 _ 1 g0dgoo _ 1 d®

o __ 00 -
Too =9 Too = 59 cdt 29 edt 39 at

This means that the geodesic equation reduces to
d?zt

—7 iy = 0. (5.16)

The explicit form of [y, is

. 1 ..
T = 59“ (gi0,0 + Goi0 — Joos)



1 1

= —59 goo,: = 5900,;-

19
2 8:1:"900'

2 .
As goo = (1 + c—?) oo obtains the form

; 199
too = F g
Substituting (5.17) in (5.16) yields
d’z* 9%
dt2 Bzt
As
_%% _
ozt
(5.18) becomes
d?zt
=g

dt?
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(5.17)

(5.18)

showing that a free body in a region in which the speed of light is anisotropic

(or in traditional terms in a gravitational field) moves with an acceleration g

(determined by the expression (2.13)) in the direction of larger speed of light.

Thus, we have obtained this classical result without any assumptions.

Now if we substitute (5.1) in the most general expression for the Ricci

tensor

chﬁ = gpoRaapﬁ=gmgapRﬁpﬁ
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= 9" 90u (Tap, — Thops + [Tl — T4,T %)

it reduces to

1 .. 1 1 1
Roo = —=9%g005 = =000.5i = =P 5 = — V2.
29 Joo, 2900, poRd = \VAd

Here we have obtained the same result (5.13) as in the previous section but
without making any assumption. Assuming Tpg = pc® which leads to

1 o pct
Too ~ omTs = 5

the alternative form of Einstein’s equation (5.9) reduces to the Poison equation:
V20 = 47Gp.

In such a way the GTMG which uses only the fact of anisotropic speed of
electromagnetic interaction in the vicinity of (massive) objects (and the idea
of electromagnetic mass) to explain the nature of gravitational interaction is
consistent with general relativity. This, however, is only a necessary condition
for the GTMG hypothesis to be correct; a sufficient condition would mean

that general relativity can be fully constructed on the basis of the GTMG

hypothesis. This is the subject of future work.



Chapter 6

Conclusions and Contributions

6.1 Conclusions

It has been shown that both inertial mass and gravitational mass may result
from the self-force with which each non-inertial elementary charged particle
acts upon itself through its own electric field. This hypothesis leads to the
conclusion that both inertial and gravitational masses have the same origin
and are of entirely electromagnetic nature.

Regarding the mass of each elementary charged particles as electromag-
netic in origin provides a consistent and common explanation of inertia and
gravitation. Inertia is the electromagnetic resistance a charged particle of-
fers to being accelerated originating in the interaction of the particle’s charge
with its own electric field (which means that the particle’s inertial mass is
electromagnetic). Gravitation also turns out to be of electromagnetic nature.
The anisotropy in the propagation of light (and electromagnetic interaction
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in general) in the Earth’s vicinity is caused by its charges. As the speed of
light downwards (towards the Earth’s centre) is larger than the speed upwards
the electric field of an electron for instance is distorted which gives rise to an
electric self-force trying to force the electron to move downwards. We call this
force gravitational but it is electric (meaning that the passive gravitational
mass is also electromagnetic); even if the GTMG hypothesis (regarding the
entire mass as electromagnetic) turns out to be wrong, this force is again of
partly electric nature since it is now accepted that part of the mass of each
elementary charged particle is electromagnetic in origin (but it has not been
realized before). The anisotropy is compensated if the electron is falling with
an acceleration g - in this case its electric field is the Coulomb field and the
electrons motion is geodesic (non-resistant). In such a way the GTMG hypoth-
esis offers answers to the open questions of general relativity as formulated in

the introduction of the thesis:

1. Why is no force acting on a body falling towards the Earth’s surface?
Answer: the body is falling since each of its charged particles "tries” to
compensate the anisotropy in the propagation of electromagnetic inter-
action in order to keep its electric field symmetric (the Coulomb field);
if the body is preventing from falling the electric fields of each charged

particle distorts due to the anisotropic speed of electromagnetic interac-
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tion and an electric self-force appears which forces each particle of the

body to move downwards.

. Why is a body on the Earth’s surface subjected to a force? Answer: as
explained above a body on the Earth’s surface is prevented from falling
(which means that the body can no longer compensate the anisotropy
of light speed and cannot keep its charged particles’ Coulomb fields not
distorted); as a result each charged particle’s electric field is distorted

which gives rise to an electric self-force acting on the particle.

. What is the nature of that force? Answer: it is an electric force; more
precisely, an electric self-force arising from the interaction of a particle’s

charge with its own electric field whenever the field is distorted.

- Why does the formalism of general relativity refuse to produce a tensor
of the energy and momentum of gravitational field? Answer: it seems
there is no such thing as a gravitational field (which is different from and
is causing the anisotropy in the speed of light) and the formalism of an
adequate physical theory naturally refuses to represent something which

is not out there.

. What is the nature of gravitational field and is there a gravitational

energy? Answer: (i) according to the GTMG hypothesis what we call
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a gravitational field is the anisotropy in the speed of propagation of
electromagnetic interaction in the vicinity of an object which is caused by
the object’s charges; (ii) what traditionally is called gravitational energy
is in fact electromagnetic energy - the tidal electric power stations for
instance are converting not gravitational energy into electric energy but

electric energy into electric energy.

Even if one insists that not the whole mass of an electron but only a part
of it is of electromagnetic nature, the proposed approach is worth developing
because its conclusions still hold partly and it stimulates further advancement
in the following areas: studying the properties of the vacuum, boosting further
research in the foundations of quantum mechanics (in order to obtain a model
of the quantum object), understanding the meaning of the relativistic increase
of the mass, the mass defect, the energy-mass relation, and the effective mass
of the electron in solid state physics. The GTMG hypothesis reveals that
even if only part of the electron mass is considered to be electromagnet.ic
(as presently believed), it follows that part of its active gravitational mass
1s also electromagnetic which demonstrates that a body’s gravity is partly of
electromagnetic origin too. Stated another way, the possibility for at least
partly controlling inertia and gravitation has always been present since the

beginning of this century but has not been recognized..
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The consequence of the GTMG hypothesis that the space-time curvature
means anisotropy in the propagation of electromagnetic interaction arising
from an object’s charges (and their fields) is directly testable. Such a test
can determine whether the whole mass of an elementary charged particle is
electromagnetic in origin or not. This hypothesis opens up the possibility of
(at least partly) controlling inertia and gravitation and can be experimentally
tested by a version of the Aharonov-Bohm effect setup employing laser beams

instead of electron beams.

6.2 Contributions

Bellow are listed what I regard as contributions in the thesis:

1. Demonstrating that the inertial and gravitational properties of a body
can find a common and consistent explanation if its entire mass is con-
sidered to be electromagnetic in origin. This approach opens up the
possibility of controlling inertia and gravitation: if inertia and gravita-
tion are of electromagnetic nature and if we can control and manipulate
(at least in principle) any electromagnetic phenomena, it follows that

both inertia and gravitation can in principle be controlled as well.
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2. The approach followed in the thesis reveals that the possibility for partly
controlling inertia and gravitation has always been present since the
beginning of this century when the electromagnetic mass theory was
proposed but has not been recognized. Since then it has been accepted
(in fact, it is an almost forgotten fact) that part of the mass of every
elementary charged particle is electromagnetic in origin, but it has not
been realized that if so inertia and gravitation are partly controllable.
Concerning gravitation it becomes even more evident: as the mass of
an elementary charged particle is of partly electromagnetic nature it
immediately follows that its active gravitational mass is also of partly
electromagnetic nature which means that the particle’s gravity is partly

caused by its charge.

3. Deriving direction-dependent expressions for the speed of light in a non-
inertial frame (accelerated or supported in a gravitational field). It is
impossible to calculate the electric potential and the electric field of an
electron in a non-inertial reference frame without an expression for the

average direction-dependent velocity of light.

4. Showing that for both an inertial observer I and a non-inertial observer

N a Coulomb field is associated with an inertial charge (represented by
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a geodesic worldline) and both I and N detect a distorted field of a non-
inertial charge (whose worldline is not geodesic). This result resolves the
dispute whether or not a falling charge in a gravitational field radiates: as
a falling charge is described by a geodesic worldline its motion is inertial

and there is no radiation (the charge’s field is the Coulomb field).

. Determining the electron’s electric potential in an accelerated reference
frame and in a frame supported in a gravitational field (and correcting
Fermi’s error of 1/2 in the gravitational case). This makes possible to
calculate the electric field of an electron in a non-inertial frame where
the calculations are essentially facilitated since only the scalar potential

is used and no retarded times are involved.

. This is a contribution which I consider to be of essential importance for
the thesis. To correct Fermi's error it was necessary to realize an ef-

fect of an apparent enlargement of the volume element dV due to the

a .
anisotropic speed of light: dV¢ = (1 + ?:) dV. This is in an accel-
erated frame; in a gravitational field the sign is minus. This effect is
analogous to the apparent enlargement of the volume element of a mov-

ing charge as calculated in an inertial frame; when the correct volume

element is used in the expressions for the electric potentials (of a charge
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moving with respect to an inertial frame) we get the retarded (Liénard-
Wiechert) potentials. When the correct volume element dV® is used in
the electric potential of an electron at rest in an accelerating frame we
= (1 + i‘%)
TE, c

Without the realization of this effect it is not possible to calculate the

get the expression for its distorted potential ® (r,t) = 1

electric potential, the electric field and the self-force of a charge in a
non-inertial reference frame; this in turn reveals that one of the reasons
why the ideas developed here have not been put forward earlier is the

failure to recognize that effect.

. Using the volume element dV* in the calculation of the self-force in
a non-inertial frame naturally removes the famous factor of 4/3 in the
expression for the electromagnetic mass without resorting to the Poincaré

stresses. This has not been done before either.
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Appendix
Calculation of the self-force F-:,,

As we have seen the anisotropic volume element is
dV® = {1 dVv, .
( + 202 ) (6-1)

where dV is the actual volume element (i.e. the volume element determined
when the electron is at rest in an inertial reference frame). The anisotropic
volume element dVV* affects the magnitude cf the charge element de® contained

in dVV® as determined in N¢:

de® = pdV® = p (1 + 32—;) v (6.2)

where p is the density of the electron charge.

Now, taking into account the expression for r¢

1 __1 1+a r)
re 2c?

and (6.2), we can write the electric potential of a charge element de® of an

electron at rest in N°(keeping only the terms proportional to ¢™2):

di® (r,t) = ~ ( +2 ) (6.3)

47’607“" 4"1'607‘
The electric field produced by de® in N° can be directly calculated from
(6.3):

dE® = —Vdp® =

1 n a-n 1
4me, 2 o2 n- 22—1:21) pav,
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where n = r/r. The electric field of the electron then is

e_ L [(n,an 1
E® = / ( + n Czra) pdV. (6.4)

4me, r2  c?r

The self-force which the field of the electron exerts upon an element pdVy?

of the electron charge is

1 n a-n 1 2
—+ 2 0, = Vdve.
47e, / (1-2 + 2 c2ra) pravav;

The resultant self-force acting on the electron as a whole is:

1 n a-n 1 2 e
Foey = 47.'60//(r_2+ 2 c2_ra)p dvavy,

which after taking into account (6.1) becomes

Pl = — / / (7‘2 L ——a) (1+ ) pdVav,.  (6.5)

Keeping only the terms proportional to ¢=2 (6.5) becomes

Fo,, = <r2 da-m ia) PdVav;. (6.6)

2 ¢ c?r

We have reached this result assuming that the charge element de® acts
upon the charge element de§. In this case the vector r begins at de® and ends
at def, i.e. n points from de® to def. If we assumed that de? acts upon de® the
result should be the same. As interchanging the two charge elements reverses

the direction of n the self-force in this case will be
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/ / 3a-n —ra) P2dVdVi. (6.7)

sety = 4ive,

Adding equations (6.7) and (6.6) and dividing the result by 2 we get

3a- n_ 1 2
Foey = 4760/ / (2 cr T e ) avav:. (68)

In order to do the integral (6.8) let us consider the integral [34]

=[5

We can put n = n;+n,, where n; is parallel to a and n, is perpendicular to

n) dVdvi. (6.9)

a. Then
(a-m)n = a(n;+n.) (ni+n.)
= (a-ny+a-n.) (ng+n.)
_ (a , n“) ny + (a : nﬁ) n, +(a-n.)n;+(a-n,)n,
= (a-ny)ny+(a-ny)n,
since (a-n,) = 0. Substituting this result in (6.9) yields

(o ] (S v

To facilitate the calculations further let us assume that r is rotated 180° about

nl) dvdvi.  (6.10)

an axis parallel to a running through the centre of the spherical charge dis-
tribution of the electron. Then the vector n = nj+n, becomes nj—n,. This

means that in the second integral in (6.10) for every elementary contribution
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(a 'r“" n_,_) dvdv;

there is also an equal and opposite contribution

- (a 1y nL) dvdVv;

r

which shows that the second integral in (6.10) is zero and we can write

1=// (a 'r“”n“) dVdv;. (6.11)

The integral I is now a function only of ny. In order to return to the general

case of n (and not restrict ourselves to using n;) we will express the integral
in (6.11) in terms of n and a unit vector u in the direction of a. Since n is

parallel to a, we have a - n; = an;. Then we can write

(am)my = a(m) = a[12 (nn)z] =
= a (lnn)2 =a (un“)2 = a (uncos §)?

= a(u-n)?

where 6 is the angle the vector n forms with the vector of the acceleration a.

Now we can write the integral (6.11) in the form

I=a//(u'n)2dVdV1. (6.12)

r
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Following Abraham [12] and Lorentz{13] we have assumed a spherically
symmetric distribution of the electron charge. This shows that as all directions
in space are indistinguishable the integral in (6.12) should be independent of
the direction of the unit vector u. In such a way the average of this integral

over all possible directions of u should be equal to the integral itself:

T T

1 dvdV; ’
= & /[=—[@nra

where df2 is an element of the solid angle within which a given unit vector u

//(u'n)dedVl = i/dﬂ//(u-n)dedVl (6.13)

lies. To do this integral we choose a polar coordinate system with the polar

axis along n. Then u-n =cos@ and dQ) = sin 8dfdy and

1 2 1 2, 2
4—/(u-n) dQ} = ———/Wcos 051n9d0/0 dy
T 0

47
1 o

= —fcos @ sin 60d6
2 /o

= % (— cos> 8 Ig)

- ey

W=

Substituting this result in (6.13) yields

] e - ] 22




Thus for the integral (6.12) we have

—a//( (0 v = -//dVdV‘. (6.14)

By substituting (6.14) in (6.8) we obtain

a _ o _an 5
Foy = 4/|60//(2362T c%*)pdVdV1

= " 8re c2/ / pravdv;

and finally the expression for the self-force becomes

o u .
Fiar = a2 (6.15)

where

2
__t / / P~ avdw;
8we, T

is the electron’s electrostatic energy. As U/c? is the mass "attached” to the
field of an electron, i.e. its electromagnetic mass, we can write (6.15) in the

form:

F,, = —m°a, (6.16)

where m® is identified with the electron’s inertial mass.
The self-force Fg,,, to which an electron is subjected due to its own field
is directed opposite to a and resists its acceleration, i.e. the deformation of

its world path. The famous factor of 4/3 in the electromagnetic mass of the
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electron does not appear in (6.16). The reason is that in (6.5) we have used

the correct volume element dV* = (1 + a2_c;') dvi.
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