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- A Theoretical and Experimental Study-of the
Stability of Converging Cylindrical Shock Waves

y

Zubair. Ahmad ' \
’ .
\
The stability of converging cy]?ndrica] shock waves is
studied both theoretically and éxperimenta]]y by placing cylindrﬁfal

rods in their path and observing the behaviour of the shocks as they

progress. . d

¢
The theoretical analysis is'based on Whitham's Ray-Shock

theory and the well known Chester-Chisnell-Whitham's A-M relationship.
Wave diagrams are constructed for various rod diameters to determine
the growth or decay of perturbations, the shape of the shock as.it

. progresses, the trajectories of the inner and oufer triple points Snd
thg final shape of the shock before it collapses. Experimentally, the

| cylindrical shocks are produced in a 152 mm diameter shock tube using
a'three-element area contraction for turning the ahnular plane shock
inéo a cyTindrica] one. For flow visualization, a double headed spark
shadowgraph system is employed. For each cxlindrical rod used, a series
of photographs are taken of the converging shock to determine its shape

=

and stability as it progresses.

Theoretically, the collapsing mechanism of converging

. cylindrical shocks i; found to depend largely on the incoming shock
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rMach number, and on tﬁe siz@of the rqd'used. The' results obtained "
for strong shocks were coﬁp]ete]y different from that of weak shocks;
In the former case, the perturbed shock coilapses.towards the rod side,
whereas ;‘weak shock collapses beyond the geometric centre. Smoothen-
ing of the shock fronf curvature is noted only at the outer triple
points and in the case of strong shocks. An equation to determine the
rate of growth of perturbation is deveioped as a funcéion/of the rod
diameter and its distance from the centre. In the limit where the rod
diameter is very small, tﬁe.perturbation parameter is found to agree

“yith the Butler's small perturbation analysis. Whereas, for large
diameters, a good agreement is obtained betweén theoretica]\and
experimental results. P
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NOMENCLATURE v

duct cross-sectional area

velocity of characteristics ( gg ) )

positive characteristics

negative characteristics

contact discontinuitx

speed of sound

speed of sound ahead of the shock
diameter of the gonverging shock \
diameter of cylindrical rod
arbitgary functions s
body forces per unit mass

Chester function (equation 2.32)

Mach number

incident shock Mach number

shock Mach number at a radius of 25 mm
Mach stem

Mach reflection

. characteristic angle

5.073 [ gy ]

fluid pressure

driven chamber pressure
driver chamber pressure
shock ra&ius

P V-

distance between centre of rod and geometric centre
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AR radial distance of perturbed shock from its
' ' unperturbed shock front . ; \3
RR reflected shock _ N
r ! radius of cylindrical rod
s : specific entropy
T © 'temperature S
™ l triple point i
t ’ time
< . .
u iy x-component of fluid velocity
v y-component of fluid velocity
X ) axial coordinate
y transverse coordinate

Greek Symbols ;

a ray-shock coordinate
B . ray-shock coordinate
Y ratio of specific heats .
6' flow deflection angle
n a characteristic coordinate
« flow direction |
ew wedge angle 1 ‘ ?
A8 change in ray inclination
¢ incidence angle of sﬁock
P < change in mass through walls per unit length
u defined by equation (2.25)'
£ perturbation parameter
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, . CHAPTER 1

o INTRODUCTION

A great variety of physical and cheimical processes can be

studied in gases at high temperature. These processes are of interest o

£ )
Jn :the study of their energy effects as well as, high velocity particle-
/’ .

collision which offers the possibility of attaining-plasma [1].
The'production of such high temperatures_in gases by means of
symmetrical co]]ap§e of convergingnshock waves has beén under investi-
gation for over three decades. Gudgr?ey [2] proved theoretically
that the strength’of the shock approaches infiﬁity, as the radius of
the converging shock tends to zero syhmetrica11y.- Sincé then, it has
’beeﬁ'the'interest of many investigators to practically achieve such
conditions. Since stable converging shocks co11%pse symmetrically af'
the cenfér, it is of prime impo;tance to analyse the stability of
convergin§ shocks under Qarious magﬁitudes of perturbations. The
opinions of the various investigators on the stability of convgrg%ng
shocks are contradictory. Lee and knystaut:s [3] contend that
converging shocks are stable, while Neemeh [4]‘and Butler: [5] claim
the opposite. Therefore, a clear and aegisiﬁe,answer to this problem

is yet to be: found.
-4

"This thesis presents a detailed ana]ysig‘of the stability
of converging shocks, perturbed extErna]]y Ey p1§cingkcy1indrica1

rods in their path. Whitham's ray-shock theory is used in the present

Q
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investigation since it has been emp1oyed successfully by many

investigators [6,7,8] to study the shock diffraction process and

its behaviour in a variable-area duct. Finally, theoretical results

are also verified by performing experiments.

The detailed description of the problem is presented later,
following a brief review of the previous work done on the product%on,
diffraction and stability of converging shocks.

L

1.1. Production of Converging Shock Waves

1
Cylindrical shocks were first studied theoretically by

Guderley [2], who analysed their behaviour in a still ideal gas. He
found that the shock strenggh grows infinitely as they approach the
axis of the cylinder, and for y = 1.4, the shock velocity increases
inversely proportional as the 0%396 power of the shock radius. Thus,
unbounded increase in shock strength; as the shock approaches to the
point ,of convergence, is predicteq,by‘his idealized treatment. In a

~ parallel investigation, a converging detonation wave was studied 6&
Stanyukovich [9], where he derived fhe asymptotic law for the increase

4 for cylindrical waves.

19

in pressure as (r)-o'
3
The simplest method to producg/ onverging shocks was found
experimentally by the defonation‘of/gégeous mixture [10]. \But the
technical difficulties invo]ygd”ié producing safe and reproducible
Qghaviour of shocks in the ]aboratoky render this method impractica].A
These difficu]tifj/yé?g overcome by 7h apparatus called 'shock tube'.
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Perry and Kantrowitz [11,12] produced experimentally a converging
cylindrical shock by deforming the plane shock produced in the shock
tube, into a cylindrical one. They used 'Tear Drop' type prototype
. which was p]éced downstream of the axially symmetric shock tube as
shawn in Fig. (1.1). However, in theip/analysiSronly a 'Tear Prop'
shape was considered. This work wég/extended by Laporte [13] and
’ Chisnell [14], who studie& the shock prbpagation in area conéractions
'for two cases, namely the gradual and abrupt changes. But, Bird [15]
showed in his work that not only area reduction but also the profile
shape of the area contraction has an important effect on the shock
stréhgth near the point of convergence.

Milton [16) studied the effect of an area contraction on the
stréngth of a convergigg shock and showed that the profile of the area
contract%on is a very important factor to achieve symmetrical cylindri-
cal shocks. Neemeh [17] extended his work and studied in detail the
shock wave propagation in various area contractions. A significant
effect on the strength of a shock wave was observed by selecting a
suitable area contraction. He designed 'three incremental area ‘
contraction' and employed it at the downstream-end of the shock tube k

to produce highly symmetrical converging cylindrical shocks.

In view of the results obtained by Neemeh using the 'three
incremental area contraction', the experiments for the present work are

carried out by the same area contraction. -

L e e —— e e e i ———— % e e e | S s e



1.2. Diffraction of Shock Wave

PR - -Du‘ring the last forty years, considerable efforts have been
(directed towards tr;e understandi’ng of the shock diffraction prob‘lem./
: In the early phase of the investigation, Taub and Bleakney [18] have

exhaustively discussed the solutions of regular and Mach reflections
for an ideal gas. These solutions however, are only limited to the
vicinity of triple points. Bargman [19] found the solution for the
‘entire flow field but his analysis is restricted to weak shocks.
Lighthill [20] developed a theory for the motion of a shock wave at

an expansion or compression corner. But his theory is valid for smal)
deflections of the shock wave. This limitation led to search for
alternate methods of solution to shock diffraction problems. Ludloff
and Friedman [21] developed the numerical schemes and obtained equations
of motion in a hyperbolic form which could easily be solved by the
method of characteristics. Thesé studies however, could not explain
the Fransition from regular to Mach reflection. So Smith [22] per-
formed experiments and concluded that regular reﬂec.:tion undergoe: a
transition to Mach reflection in a continuous manner and does not
start immediately when the theoretical 1imit of regular reflection

is exceeded.

Whitham [23] studied the shock wave motion problems by
employing his own ray-shock theory. He found one equation relating -
the shock Mach number and ray tube area. The second relation between
them is taken from Chester - Chisnell - Whitham (CCW) theory [24] for

the motion of a shock wave down a tube of varying cross section. The

-~




solution to the resulting hyperbolic equation is conveniently
expressed by the method of characteristics. Later on, this theory

was extended to three dimensions [25], and diffraction of shock by a
cone was examined. The ray-shock theory has been employed successfully
—g& Bryson and Gross [26] to predict the trajectories of triple points

for the diffraction of plane shock by cylinder, cone and sphere at

shock Mach number of the order of 3. ‘

Skews [6] and Heiling [27] studied the shock diffraction
experimentally and found that the ray shock theory agrees well with
experiments for only strong shocks. Therefﬁre, Itoh and Itaya [28]
and Glass [29] modified the ray shock theory to study the transition
from regular to Mach ref]ectioﬂ in case of weak shocks. They found
that if the wedge angle is kept consfant, the shock-shock angle
continues to increase as the Mach number approaches unity. However,

at high Mach numbers this angle remains constant.

In the present investigation, the diffraction caused by the
cylindrical rod takes place in weak and strong shocks. The locus of
the trible points predicted by the ray shock theory does not agree \
well with the experimental values in the case of weak shocks as
verified by Skews [6] and Henderson [7]. Therefore, the results

plotted by Glass and Shirouzu [29] are used to find locus of triple

points in case of weak shock.

.



1.3. Stability of Shock Wdes

Generally, the stability of a system implies that small

" changes in the ipput, initial conditions or system parameters do not
cause large intolerable chandes in the system output [38]. This
definition was employed by Kantrowitz [12] to define the stability

of a plane cylindrical: shock wave as the ability to approach perfect
plane or cylindrical shape during its propagation, due to a gradual
equalization of curvature between the neighbouring po;tigns. T?erefore,
the ability of shock waves propagating into a stationary fluid to
retain their shapes when subjected to small disturbances is defined

as the stability. This is schematically represented for a shock

reflected from a wavy wall in Fig. (1.2).

Most of the work done so far is on the stability of plane
shocks. It has been shown by Freeman [31] that ; perturbation of the
plane shock wave, produced by moving a corrugated piston impulsively
from rest to a constant speed in the stationary fluid, decays with time.
However, this case does not have a close resemblance to actual experi-
mental conditions in shock tube, therefore, Freeman [32] investigated
the perturbations caused by non-uniformity of walls or by placing small
obstacles on otherwise plane walls. He derived a mathematical ‘
_expression showing that the perturbations die out in an oscillatory
manner. Briscoe and Kovit{ {33] performed some experiments and found
that plane shock waves reflected normally from perturbed flat walls are
stable. Later on, -Neemeh [34] experimentally studied the stability of
planar incident shocks reflected from a concave wedge-shaped end wall

in a shock tube. He concluded that the reflected shock front is stable.

2



Whitham [23] and Butler [59] studied the behaviour of
slightly distorted, but very strong converging cylindrical and
§pherica1 shock waves, and found that the amplitude of the disturb-
énces increases as the shock converges. The analysis is approximate
and is based on internally developed weak disturbances in very strong |
shocks. Therefore, these results cannot be employed for externally
perturbed weak shock ?nalysis. Perry and Kantrowitz [12] performed
' experiments to producg symmetrical converging §rok waves and showed
that for initially weak cylindrical shocks, the wave perturbations
are damped out and the symmetry is regained as the wave collapses.
Nevertheless for higher Mach number, there is little succes§ in produc-
ing symmetrical converging shocks. Knystautas and Lee [3] showed §hat
converging shocks are stable whereaé Neemeh et al [8] investigated
the stability of converging shocks by the interference of the
imploding shock with a small circular aperture in the shock tube.

They showed that the relative size of perturbation tends to decrease
at a large radius of shocks and increases as the shock collapses.
However, there is sufficient experimental evidence [3,12] to conclude
that stable implosions c%n be aqpieved.

The pre§ént work also deals with the stability of converging
cylindrical spogks, since this is an important factor which Sontro]s
the amp]ificafion of shocks and the final state of gas: In the present
investigation, the shock is perturbed by cylindrical-rods of different.
- diameters placed in the path of the convérging shocks. uThe perturbed
shock is then examined at different instants during cﬁnvergencé to:

determine a stability criteria.

L
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1.4. Objective of thé Present Work
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As can be seen, extensive wor%fhas been done on the produg-
tion of converging cy11ndr1cal shock waves. The symmetrical converglng\
shock is a relatively 1nexpens1ve way of increasing gas eapthalpies.

Such high enthalpy gases could be used to produce diamonds from graphite
[36]. Further, these can be used to codpress a so]1d to a state which

~

canno? be aﬁta1ned by plane shock comgregglon-[37] and to study the
response of material under random pfessu;e ;nd high temperature (38].
Therefore, it is worthwhile to stud; the stability of converging
cylindrical shocks before exploring the écon?mica1‘methodsbof

producing them.

1

\
|
It has been observed from the acouskic analysis [39], .which
is true only for strong spotks with infinitesimal perturbations, and
Neemeh s [35] results that convergIng shocks are unstable. But, the
final shape of the shock, distance of collapse from the geometric center
and trajectories of triple points are not concluded. ee's [3] results’
based on his obse%vations show that converging shockgjtre stable and
‘the mechanism for stability depends on the sweeping of.tripl; points.
But the presence of vortices during explosion phase is not justified.
Therefore, it is imbértant not only to study the stability, but also
the shape of collapsing shocks for various magnitude of disturbances
before drawing any conc\?sibns. Further, it was noticed by Perry and
Kantrowitz [12] tha€ the pertyrbed shock did not collapse at the geog

metry centre. 'It is, however, not known so far what happens to the

shape of collapsing shock ahd how does it shift from'geometric‘centre.
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The present w,p}rk tfierefore, iﬁvestigates the s:tabﬂity of
converging cy1indriéa1 shocks and their collapsing mechanism by
perturbétions of different magnitude. The magnitude and rate of

- 6,
change of perturbation, the exact shape of converging shock, and

- M -

the trajectories of triple points are investigated from the wave

diagrams constructed.based on the ray shock theory and the Chester-

. Chi{hﬂzhitham's area-Mach- number relationship. The final shape

of the lapsing shock, its strength, and the distgnce of the

11 ’psi%g region from the g"eomvetriq centre are studied for weak
shock as \weH. ’The theoretical results obtained from the wave
diagr;gms are then cbmpared .withfthose obtained experimentally to
check' the validity of the ray-shock theory in the present investi-

gation: The detailed description of the theory and its application

to the present problem is presented in the next chapter.
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CHAPTER 2
THEORETICAL DEVELOPMENT )

In this chapter, Whithams' ray shock theory and its
application to the present.proéfem js phesented. Using the ray
shock theory along with the Chester-Chisnell-Whitham's Area - Mach
number relationship, the methodology of constructing the wave diagrams
for the converging cyliﬁdrica] shocks is also given. The;: wave
diagrams are of importance when the analysis of shock propagation is
carried out. Such an analysis forms the basis for the investigation
of the stability of converging shocks perturbed externally by means
of cylindrical rods placed in their path.

~

2.1. Chester-Chisnell-Whitham's Area-Mach Relationship

’

The relation between the va;ying cross-sectional area of the
duct and the averaged Mach number of the shock over ‘that local cross-
sectioqa] area was first derived by Chester [39]." He used the theory
of small perturbation in the flow behind the shock and solved the
linearized equation by aiiuming th§t the cross-sectional area of the
duct remains close to some mean value. Short}y afterwards, the same
relationship was obtained By Chisnell [14] through one dimensional
steady state analysis. ‘The detailed discussion and comparison of his ‘
results wit? the Guderley's solution [2] for cylindrical and spherical

imploding shock waves are given by Payne [40]. Finally, Whitham [24]
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So the equations (2.1) to (2.3) can be written as.

8p' , , %', o P1%haa _ '
at * ul X * P1 ax * A1 X 0 (2.4)
L] ] ]
g‘%‘*”lg‘}*.algg‘zu (2.5)
1
a_ ! .a_. ':A ’ ¢
(3p*tu3x)s' =0 . (2.8)

p=kele ' (2.7
Rewriting the equation (2.7) as
P ..o, s ) g
Py k 1 & (28
And gubstituting s' from equation (2.8) in (2.6), leads to
i

Fa:n 3a,yp' . 9 3, p' - ‘

( at T ax) Py ¥( 3t * Y ax) Py (2.9)

Combining equations (2.9) and (2.4), the following equation

is obtained. ( .
| ) 3 2 au' c12"1“1 3’
(ot *viax )P Ty P * TR ax O (2.10)

where c is Qeiocity of sound

Performing certain tranéfotmations, equations (2.§) and

(2.10) dead to

2
. p u.Cc 1
_a_ v 3 1 ¢ 2_ y a } 1 1 1 aA -
Laprura) g’ 2o+ (Ut gyut + == 5-=0
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Equations (2.9) and (2.11) can be written in the total differential

form as,
p,U,C 2

dl dl ]

T ‘lii'l' e along &8 = u) + ¢ (2.12)

dp' _ . du’ p1“1°12 dA! dx

g " Pi1f1ae T AT ax along g =up - ¢y (2.13)

do' | _1gp' _ ' dx .

ar - 5 gt 0 along Y (%.14)

1
P
where c 2.1
1 P

Integrating equations (2.12) to (2.14), the characteristics

form of equations of motion are obtained as

2
p' + p,C u' = - pl 11 A' + f (2.15)
11 t oAy
! ' 2
I, b ' SRR f, (2.16)
1% ‘(—"__;7—

p' = — + f3 (2.17)

1 cl u

where fl' f2’ f3 are arbitrary functions depending which P, Q chara-

cteristics and particie path is used. These eqguations describe the
flow field behind a propagating shock. According to Whitham, the
positive characteristics will follow a trajectory that is close to that
of the shock itself as shown in Fig. (2.1). Therefore, equation (2.15)
which jis valid along c* characteristics can be applied to the shock ‘
itself. The Qisturbances carried by c* characteristics are negligible

and so on f1 = 0 thus equétion (2.15) reduces to



: (up +¢q)
o = Ie o] ———- (2.18)
P11

The Rankine Hugoniot equations can be rewritten as

p '. » t
- 0 2 _ -
Py = ;‘:‘iIZYM (y - 1] . 0(2-19)
= (y + 1)M2 (2.20)
P1 ] _ 2 )
) 2+ (y-1M .
2c K
g =_ 0 .1
\ u s TRt (2.21)

Differentiating equations (2.19) to (2.21), following equations are

obtained,
2 p o " N .

P! = g Ty(m’) (2.22)
4(y + 1)MM' ‘ :

p' = P, (y -) 5 (2.23)

[2 + (y - 1)M7]
2¢ :
ut = 0 (1 . (2.28)
M

Substituting the values of p' and u' from equations (2.22) and (2.24)

2

in equation (2.18), leads to
2

' M+ 1 b 1 1
%— = - [2c02poM * P1646,( 7)1 YZT 1" 7 .
¢ M PyY1¢4
u
1 2M 2™’ (e E%)
= - [1+—=+ ] . (2.25)
~ T
Po %o o
©9 % Y :
The values of E—,‘——,'E—, = can be determined from equations

[ Po- 1 %
(2.19) - (2.21). Thus,
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c 2 _ SRR
1 [ [2yM (Y- D]f2+ (y - 1M ]]
M - (y - 1) u . (2.26)
(y+1) M .
L : p 2 ] ' . z ' N
¢ _1 = 2 (Y2+ 1) M , * ¢ . -~ (2-27)
o p[2yM” - (y - D} -
u 2 '
1 2. M -1
- = * (2.28)
. ¢, Y*1 M
2.1 ' ' - r
u C -
El =0 zgm ) . % . (2.29)
1 "1 2yM° - (y - 1) .
- c
. 0
where N
. ' i 5 L . | ‘
p2 = 2+ (y- 1M ] - o ‘ |

Trogm? - (y - 1)

‘ 1 P1 YWY . _—
Substituting the values of —, —= into equation (2.25) gives,

. o po’ co{ “
A' MM’ w1 o 21 1
. 5 . [1+_2+2FI][1+ 7 'a]
: ME -1 M oM - (Y- 1)
o 1 2 oM - (y - 1)e- 2 - My - 1)
=- = [1+ =5+ ][l +.—= == 5 ]
M- M Y [2y° - (y - DI .,
L 2 .1 .
=.m = (1% — + 2u][1 + (-l ) - -(2.30)
LR YT -
This can be written in simplified form as .
AL a1 : /
. A o2 -1 K C
or @, M -0 . @i

M2 = 1)K(M)

>
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’

where -1

[+ 3+ 200 55 ——J“—n «
M5 . (2.32)

[

CKM) =

which is caMed 'Chesten Function' and the variation of this function

is shown in Fig. (2.2). "It is clear from the figure that K(M) is a
s]éw]y varying fqnction of shock Mach number. Equation (2.31) is .
ca]]ed Chester-Chisnell-Whitham relation or simply the 'CCW' relation.
This states that for a given finite area change the change in shock\v
. Mach number depends ondy on M and A. For y = 1.4, the va]ue of K(M)
varies from 0.5 (M = 1) to 0;394 when M » w.  Therefore, the Mach 1
nu%ber, in cais of converging cylindrical and spherical shocks' can be

3

approximated by considering KkM)vas conéﬁﬁﬁt. Since,

'

3 dr
g.:d
A

> -
<
n

1 for cylindrical shocks

o
v |n
[

1}

\’

2 for spherical shocks

where Rs ¥s radius of shock wave.

‘By integrating equation (2.31) for strong shocks (M >> 1)

the following proport1ona11ty relations are *obtained

M~ RS0 394 For spherical shocks

- &

-0.197

M~ RS For cylindrical shocks

The'results from exact self similar solution for y = 1.4 are

M~ R;0'3943 For spherical shocks

-0.1973

M~ RS

For cylindrical shocks

Further comparison, for various values of y is given by [40]. The

E) .

equation (2.31) works well for‘converging shocks because theyC+

characteristic follows the shock yery closely. Therefore, applying
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the shock conditions to this characteristic involves negligible error.
Hence, this relation can be applied to shock wave dynamics problems

where only area variation is considered. The theory is valid for
\ [

weak shocks as well since, in this case, the shock trajectory is
very close to the positive characteristic. They are same as Mach

number approaches to unity.

[

This CCW A-M relationship can therefore, be applied to a -
wide varjety of shock wave dynamics problems where the shock Mach

number variation with area\change s required, as i the case of the
ray shock theory presented in the following section.

3 ‘

M

2.2. Ray Shock Theory

[

The Ray shock theory due to Whitha$ [23] describes a new
approach to solve the propagation of two or three dimensional shock
wave problems, which could be extremely difficult to solve analytically.
His method is an extension of the ideas of linear geometrical acoustics.
He ghose a curvilinear co-ordinate (o,B) system where a represents the
instantaneous shock shape and B represents the orthogonal trajectories
to the successive position of a curved shock wave, called 'rays' as

shown in Fig. (2.3).

The shock front at time t is denoted by o = cot, where <, is
the speed of sound in the uniform gas ahead of the shock. The distance
between two successive shock positiqps o and o + da, is det, where Rs
is the speed of the shock and dt is the time taken by the shock from’

position o to o + do.
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o

o

det = Rs =M do

"l

where M is the Mach number of the shock.'
Similarly B may be so chosen that the distance between neighbouring

rays B and B + dp is A(x,B)dB as shown in Fig. (2.4). Where A(a,B)

%3 ‘

is a function proportional to cross sectional area of the ray tube.
The relationship between A and M can be established by considering a
curvilinear quadrilateral L, M, N and 0 with vertices (a,B); '

(o + 6a, B); (o + Sa, B + 6B) and (a, B + 6B) respectively:

If 8, ='Ang1e between the ray and fixed direction of x axis
at L ‘
/-
62 = Angle between the successive ray and x axis At
¢1 = Angle between shock and vertical axis at L -

¢2 = Angle between the successive shock and vertical ax{s

at M
Then - :
: 66 = 6, - 8, = change in the ray inclination from L to 0.
_MN- Lo
7 TR
3A ’
) (A + 55 80)8p - RSB
Méa
Thus » ~
B-4.2 | 4 (2.33)
op 4
Simi]ér]y,‘3 n (M + M, 5B)Se - Msa
-86 = 9B

ASE
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and so

~

Since rays and shocks are orthogonal, that is ¢ = 6

(2.3%)

Differentiating equation (2.33) w.r.t. o and equation (2.34) w.r.t. B

and by equating the resulting equations,

1 9A

) 1 _ '

QJlQJ
==

is obtained.

In order.to complete the formulation of the theory, second
relationship between A and M is taken from the CCW theory. Therefore
the ray shock theory assumed that the propgéation of eachye1ement of
the shock through a ray tube is similar to the motion of a shock
through a variable area duct with solid walls. Thus, it treats the
rays a§ $01id boundaries and ignores any change in mass, momentum or
energy flux across them. Furthermore, the CCW relation is the result
of an essentially one-dimensional theory, whereas equation (2.35) is

.derived on two-dimensional basis. This ]{mitation is alleviated

somewhat by the fact that the ray tubes can be made very small.

Equation (2.33) can be written as
= T o = - (2.36)

Multiplying equation (2.34) by § and equation (2.36) by n and adding the

resulting equations, gives

©

S ERE SURNCEEOIERECE R

9
3p

J]M=0 ’ (2.37)
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This can be writtgn as total differentiation if

-§°K%r=g=:c

where

}

-~ est
From equations (2.34) and. (2.36), it can be shown that

a8 _

o +C (2.38)

Thus equation (2.37) can be written as

9 9 1 ) 2 -
(%ic%)ﬁim(ﬁ'!(:ﬁ)”—
-2 3_
If D= 5o +C 58
and S T
o oB
then : e
ot 1 -+
: DG+KEDM 0 ‘
-1 - (2.39)
Do -2 0 M=0

where 0" and D are derivative operator representing differentiation
along two families of curves ¢’ and . Integration of equations

(2.39) leads to.

6+ %% = constant along gg =c
(2.40)
M BL
6 - f AC - constant along de C

where ¢' is characteristic in the direction of increasing B with speed -

C and C* in the direction of decreasing p with spéed C.
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Therefore, we have non-linear wavesdpropagating with veloci-
ties £ C in-the o - B plane in complete analogy to non linear waves in
' the x, t plane propagating with velocities (u £ c) as in gas dynamics
and equation (2.40) corresponding to Riemann invariants [41], can be

written as

' 6 t w = constant along C
where M . (2.41)
w= [ = '
AC
When the family of characteristics are straight 1ine§ in the
a, B plane, it is very convenient to work with wave diagrams. But in
most of the cases, it is easier to work in the cartesian coordinates

" rather than o,B coordinates. Therefore, transformation of coordinates

can be done from the goemetry given in Fig. (2.5).

dx = Mda cos 8 - Adf sin @

4 dy = Mda sin 6 + AdB cos 6
Mso, - X = X(@,p) and y = Y(a,p)
*Therefore dx = gﬁ - do + g% dg
dy =L - da+ 5E ap

Combari;g the coefficient of do and dp,

g§ =M cos 6 r g% = ~A sin @

gﬁ =Msine , g% = Acos 8 (2.42).
the dy _ sin 6 t ag - cos @

dx cos 6 % ag sin @

=tap (8 t'm) | '1“ (2.43)
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where ' ' ‘ )
- AC .
tan m = M
and 3 (2.44)
c= 8o My
- da AA

'm' is the angle between characteristic and the ray direction. Hence,

6 + w = constant along %¥ = tan (6 = m) (2.45)

The value of 'w' can be evaluated from the fol]owinb equa-
tion, which is obtained by combining the equations (2.31), (2.41) and’
(2.44).

w= § W= g [ ——2—)} am (2.46)

1 M2 - 1)K(M)

The values of w are p]otéed in Fig. (2.6) whereas tabulated
values are given in Table é.l, which can be used conveniently during
the construction of wave diagrams, as wii1 be discussed later. How-
ever, the.value of 'w' can be estimated for wéak and strong shocks

from the following equations,

Mol w= 22 - i - M, - 1}
“M +> @ w(e) = né log ( a—)
(o]
where n= -4 = 50743
(=)

The characteristic angle 'm' can also be determined by using

CCW relation and equation (2.43) as

2 :
tan m = [ gM_;.%Mﬂlli (2_47)
M

The values of 'm' calculated for weak shocks do not agree with the

experimental values [6]. Therefore this difference in values is a
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reason for expecting Whitham's theory to be inaccurate for Mo < 3. In

order to overcome this discrepangy, Skews has suggested the following

. 0 &
equation

' 2 2 .
tan (m) = (M~ - D[2 + (} - 1)M7] (2.48)
(y + 1M

The variation-of m with M as given by equations (2.47) and
(2.48) are shown in Fig. (2.7) and numerical values are shown in
Table 2.2 Skews demonstrated that considerable error results if
equation (2.46) i; used for Mach number less than 3. These results
indicate that the ray shock theory will not accurately predict the
characteristic angle 'm' at any location on the diffracted shock.
This fact is particularly important when wave d%agram for weak shock

wave is constructed in the present work.

The area of the ray shock tube is calculated by the following

expression
2M

f 5 - dM
1 (M° - 1)k(M)

(2.49)

This equation reduces to the following one, in case of strong shocksy

M
A _ 0 N
= (g) (2.50)
"0
_ 2
where n= K(—;-)_

The variation of A with M from equation (2.49) is given in
Fig. (2.8) and tabulated values are given in Table 1.1. This is
important to find out the Mach number at various radius af shock when

it converges towards the centre. The equations developed so far are
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used to find out various parameters. of shock wave as they are required
to'construct the wave diagrams for the present work. It is important
to understand the process which occurs when shock wave interact with
any disturbénce prior to discuss the application of the ray shock

theory to present problem.

2.3. Reflection and Djffraction of Shoék

When a planar shock is incident on a straight wall it

"reflects from a point of intersection in such a way that the flow

after it regains its direction [27], as shéwn in Fig. 2.9(a). This

type of reflection is called a 'Regular’ and is only pgssib1e if the

flow behind incident shock is supersonic. For a given Mach number of .

incident shock, there is a maximum angle of incidence ¢maxufor which

_regular reflection may occur. In other words there is a minimum value

of Mach number for a given value of turnind angle below which regular
reflection is impossible. In such cases, the reflection which takes
place is called Mach Reflection as shown in Fig. 2.9(b&d). The range

of Mach numbers and wedge angles within which regular reflection pccﬁr

o
u

is given in Fig. (2.10). It is clear from Fig. (2.9) that in the case -

of Mach reflection the point "0 detaches'from the wedge surface and
another shock, called the Mach stem, is issqed from the reflection
point. This point is called triple point and is somé distance away
from the wall. The Mach stem, which extends from the trip]e’point to
the wall, is usually taken to be straight although expgfiments {27,28]
have shéwn that this is not necessarily the case, particularly in the

region surrounding the tfip]e point. Since part of the gas ahead of

v
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{ the deancing~shock wave system is prqcessedoby two shocks (incident
\’and reflected), and part by only one sﬁock (the Mach stem)fa slip line
forms Ain the flow field behind the Mach conf1gurat1on It is therefore,
essent1a1 that a contact discontinuity should pass through ‘the triple

. :point The ang]e between the surface and the ]1near,;ra3ectory path
traced out by tr1p1e points is denoted by 'x'. Hence, twb shocks
1ntersec§ at reflection points on the wedge surfacé in the regular
“reflection, while three in the Mach ref]ect%on. The two shock theory °
aﬁdlfhe three,shockltheory are established by Neumann [42] and Bﬁeakney

[18] to study the transition from regular to Mach reflection.

I'\l

%he three shock theory may be used to ﬁocate the triple
“point if the stem is assumed to be straight and normal to the wall.
This assumption is inhéfent in thé ray shock theory, which uges the
average strength of the Mach stem to determine its area and hence .
its triple point position. Both theories ,deviate from experimental
resy]ts. However, the ray shock theory is more convenient to use
espécia]]y for reflection’in converging areas of finite angle change

or with curved walls.

2.4. Application of the Ray Shock Theory to Plane Corners

The 'shock diffraction problems can be easily solved in the
case of regular reflection, as discussed in the previohs section.
However, if the norma1 shock encounters a change in curvature such that
Mach reflection occurs, then the triple point angle, in addition to
other parameters, is required to analyse the problem. These parameters

can be obtained by the application of the ray shock theory.

e e e e e et o e o —_
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. 2.4,1. Concave Corners °

1

L]

A wedge of finite angle which causes the Mach reflection of

‘e‘lnc1dent shock as shown in Fig. (2.11), represents a concave corner.

Llet o and o + Ax be two successive positions of the shock wave of Mach

number Mo and R, S be the corresponding triple points. The ratio of, .

ray tube area at successive positions of the shock can be given as:

g- = sin{x - @ , (2.51)

N o smxu

’The velocity of triple point 'C' in a, B plane can be obtained as

(k)2 = Mo+ (aap?=m asa?+ A ap?
or ‘ .
( 2 .2
M - L
(©F = (82 - Naw (2.52)
. o )

where M0 and M represent the incident shock and Mach stem respecti@elyﬂ

From Figure (2.11)

, L 4
tan (x - 6) Moo ~ M
2 v
-A(MZGM° 1é (2.53)
M2 2 u 4 -93)
o a
AO M ' .
tan (yx) = R tan (y - 6) ) ‘ (2.58) .
. 0 .

The corresponding jump in e can be obtalned by noting that

cot(8) = tan (TRS + SRO) V BN
AC _9 1
| No+A C
cot(9) = M
, 1-A .0
Ag. o AO M

.0
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a2 2 }
L - [ E YA T - AT)] ~ :
tan(e) = A:G* N u (2.55)
oo

since Mach stem and .incident shock remain contiguoué dgring movement
ofctrible point locus thérefore, velocity of both sections must be

identicag‘and this yields the following equation:

€0S -0

R0y (2.56)"

Mo
M

0
© Now ‘the solytion of-Mach number of the wall, shock-shock angfe and
Area can be obtained by solving the equations(2.31), (2.51), (2.55)
and (2.56). ”

v

2.4.2. Convex Cornpers

The situation of shock diffraction around a plane convex
cdrher is shown in Fig. (2.12), where the wall jumps from 6 = 0 to 9w

and remains at this value thereafter. . If Mo and Mw are the Mach number

{

- at plane wall (& = 0) and at convex wall (8 = ew) respectively, then by

using equation (2.41) at two successive positions of shock, the

‘following eguation can be written

ew - w(Mw')' = 'w(Mo)

Since at 6 = 0, M = Mo and at 8 = ew,,M = Mw

B
A B

Mw can be determined from the equation (2.41). Since 6 and M _are knowng

in a, B plane, the shock position (x,y) can be determined by inteQrating

AN

along the shock or along a characteristic. , \\

” : A
. i‘, =7
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. o remains constant along the shock and equation (2.42) gives

B
J dx = - f Asin(e) dp
X B

-0

ﬂ ~
J dy = J A cos(e) dp
Yo Bo .

L yo, 50 are evaluated ‘at the boundary along which shock propagapes.

A

aMw cos ew » Yo uMw sin ew

X, =
Therefore
— B :
X = aMa cos ew - 5 S Asin 6 .dp
0 (2.57)
B : ‘
y = uMw sin ew + [ Acos 6 dp

B

But in most of the cases the shock position is determined by integrating

o]

()

along the characteristics as follows,

x\+ fBA"-(lS'—(—u—ldB

x
1}

W B sin m
W ' ‘ (2.58)
y=y + jB . ind tm)
\ W B sin m
y .

It is convenient to use above~integration because M, 6 and m are
constant along one fémi]y of characteristic thus integration becomes
simple. X, and Yy refer to the initial coordinates of the

characteristics.

2.5. Application to Present froblem

The equations presented in the preceding section are used to

determine the shape of a shock wave and various parameters necessary to
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analyse the propagation of shocg waves as they -encounter a curved wall. w
Since the analysis of cylindrical imploding shocks is tﬁe matter of
interest in this investigation, a brief description of“fheir production
is given. This follows with the anal&sis of the stability and

collapsing mechanism.

. v
¥

The fmp1oding shocks are produced in ; shock tube by means of
special device known as !Three,incremental area contraction'.. This
device is selected in preference to the othe; dé&ices because .of the
following reasons [17], 9

i) It provides uniform shocks‘in the exit passage.

ii) It gives satisfactory shock'émp]ification with a minimum

\

attenuation in the pressure.
., 1ii1) It provides smaller stabilization distance in the exit
; passage. °

iv) It provides highest Mach number.

Y

Thg shape of a shock front in the three incremental area
contraction is determined by employing the ray shock theory. The
initially plane shock propagates'down a thrgé incremental érea
contraction and a Mach reflection océur; when it encounters the first

corner (A8 = 33.5) as shown in Fig. (2.13). This results in the

trs

formation of triple point which moves with the shock and causes a

F

discontipuity. This discontinuity islprevented for moving along the

o

shock front by selecting the second corner in such a way that triple

. . . A Y
point resulting from first reflection is eliminated before second
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» starts. The incident shock is theref%re, comp]efe]y;fep]aéed,by the

Mach stem before enteringinto second coﬁtraét{oﬁ.lﬁThis Mach stem is
amplified and‘is perpendicular to the wall aécéraﬁpg’to the ray shock
theory. When this is reflected by a second def]eétioﬁ (Ael=.37f5°),
itncaugés ;Qain a Mach reflectiPn of incident Mach s@eﬁ and results

in further amp]ification: The second discontinuity resulting from the
formation of secondetriple‘points, is again eliminated before it hits

the third corner. The second Mach stem behaves as a stronger incident

shock for the third contraction. After travelling dver the third -

" _increment (48 = 19), ttie shock is completely replaced by the gmp]ifiéq

Mach stem in a passage which is pérpendiéylar to the shock tube‘qxis,
thus producing a strong cylindrical shock.

» . Ladl
‘ 4

~ The Macﬁﬁpgmber of the final Mégh stem can be determined by
theiray shock theor;@;s shown in Fig. (2.133.1‘The initial Macg number
ifoi the wall increment 'Ael', are known. fherefore, the shock-shock
angle 'xl' and‘MaEH ﬁumber"Ml' can Be calculated from the equations
(2.31), (2.51), (2.56). Similarly knowing'tﬁé second wa]l.in&rement
'Aez' and Mach number 'Ml'. The second shock-shock angle 'xz“and
Mach number 'sz can be caTculated from the same ehuafions.q Repe;tinb
thisrproquu;e for third increment 'A6,', the final stem Mach number
can be determiped. The last incre%ent is smaller ;han the others to
ensure that the discontinuities so formed on the shock front are A

weakest near the exit passage. The second Mach stem is now comp]ete1y‘

veplaced by the cylindrical shock.

¢ »
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Once th? cylindrical imploding shock is achieved, the

stab{lity of‘such shock -can be determined by the pertu%bation of the

| shock wave before‘it converges. These perturbations are produced by
‘p1aciné cylindrical rods of various diameters, one at a time, in the
path of the converging shock. The rate of change of perturbation with
respect to rate of converging of cylindrical shocks determines the
stabi]ity: This can be obtained from the wave diagram constructed for
the particular case.’ This wave diagram not only provides the inform-
ation to study the stability beh;viour Quf also information about the
exact shape of the shock durfng its conveféence and the trajectory of
the locus of triple points. Since the final state of gas depends upon
the amplification of shock and its point of convergence, it is important
to study the final shape‘of the col]épsing shock as well. But, before
ctonstructing the wave diagram it is necessary to understand the phenom-

ena of interactiﬁn of shock wave with thé externally placed cylipdrical

,,&‘:5
rod. .

When a shock wave strikes the solid boundary of a cylindrical
rod, it reflects in one of the two configurations regular 'RR', or
Mach reflection 'MR' as discussed in section (2.3). The step by step
process of.intergction of the shock with the rod and the type of reflect-
ion in the present problem is shown in Fig. (2.14) where the’succéssive
stages of shock wave interaction with cylindrical rod is illustrated
schematically. In Figure 2.14(a) the cylindrical ;hock is approéching
the rod and when it strikes with it, a regular r;flection takés place

due to a large wedge angle. This causes a reflected shock ‘RR' as

shown in Fig.. 2.14(b). As the shock wave propagates along the ‘surface
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the rod, the angle of incidence of shock wave varies. Therefore, the -
transition from regular reflection to Mach reflection takes place as
discussed in section (2.;). Fig. 2.14fc) shows the incident shock andil
reflected shock joined to the rod surface through a Mach stem 'MS'.
A contact discontinuity 'CD' which divides two flows of different
density but having’the same pre;sure is also shown by dotted lines.
Initially, the feet of the Mach stems are separated from each other as
shown in Fig. 2.14(c). As the incident shock moves inward taey come
close together symmetrically at the rear stagnation point of the rod,
as sho¢n in Fig. 2.14(d). As these Mach stems 'MS' collide, another
Mach type reflection takes place with secona reflected shocks_(RSz).
Mach stem (MSZ) and contact discontinuity (CDZ)' The process is shown
in Figs. 2.14(e) and (f)u

The point, where regular ref]ection.is converted into Mach
reflection, is not exactly known since the transition takes place over
a certain regibn [27,28]. The locatsion of such a point on thg surface
‘of cylindrical rod is required to start the construction of wave dia-
gram. Such a point, however, can be determ?ﬁ!h=approximate]y by ray
shock theory. If the length of Mach stem from the surface of cylin-
drical rod is denoted by A and the radius of cylinder by 'r' then the
undisturbed wave contained in a stream tube of area A0‘= (r+ A) sin ¢
passes through the area A1 = A as shown in Fig. (2.15;.

A

S Tr * A)sin ) (2.59)

J>|>

0

since the incident shock and Mach stem are parts of the same surface «

E



o

=ct=c X=X

a= cot <o ﬁ "

. s 0 :
- L -i(r+ ANcos ¢ 9?'60)'
, Mo ‘ . .
According to Whitham's theory .
M= 3 5
Va

'* 'since Mach stem is assumed normal to the cylindrical surface,

118 -
TM < r a3 ‘ o
. subst1tut1ng the value of a¢ from equatuon (2 60) the fol]ow1ng .
equation is obtained ‘ N *h~‘ C .
- Mr
: Q_A.'. = ) - .,—0— 2ol .
o . .. 9% (r +A) tan ¢“n M cos ¢ (2.61)
Forwstrong‘shﬁbks M >> 1, equations (2.50) and (2.59) yield‘ 0
’ ‘ ' o ! L u
- ‘ ‘ A © ' A - ( E )nu
o (r + A)sin ¢ ‘ M .
where n = 5 074 for y = 1.4: “ v o |
So,_eqbation (2.61) reduces to
“ 1
aA - _r . ________A________ n
50 = (r + A) tan ¢ o5 ¢ [ r+ A ¢ ] (2.62?

. since regular reflection occurs for small values of ¢, therefore for

small A, it ‘can be sa1d that g@ << 1 and equation (2.62) reduces to

A = r(sin o)™ (2.63)

It is obvious from above equation that length of Mach stem

is)neglféible for 'smal) values of ¢. The limiting value of A can be

e e i, T
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taken as 25% of the radius of cylindrical rod which gives the value of
incidence éng]e ¢ about 49°, However, experimental results [26]
indicate that Mach reflection starts when the angle of incidence of '
shock wave is between 45° to 50°. Therefore the initial value of ¢,
when Mach reflection sta}ts at the su;face of rod, is taken 48° to 50°
start with the constriction of wave diagrams. The values of Mach
number and shock-shock angle for flow inclination are computed from
the equations (2.31), (2.53), (2.55) and plotted in Figures (2.16)

and (2.17).

The experimental results show tha} the ray shock theory pre-s .
dicts the shock shocﬁ apg]e for strong shock and does not agree well
with the experimental results in case of weak shocks [82]. This
disagreement makes the ray shock theory incapable of predicti}g the
characteristic angle 'm' and locus of triple points correctly. dhus,
in order to construct the wave diagram for a weak shock, critical
angle of incidence [6], shock shock angle yx [29] and characteristic
angle 'm' are used from the Figures (2.19) and (2.18) and (2.7)
respectively. Whereas, the ray shock theory is used alone for the
construction, of wave diagrams of strong cylindrical shocks as discussed

in the following section.

2.6. Wave Diagrams ‘and Their Characteristics

Wave diagram is a graphical representation of the propagafion
~ of waves in a two coordinate system. A great variety of nonsteady flow

problems can be solved by means of wave diagrams which are constructed

\ -
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by the method of charaéteristics, a mathematical term that is taken
from the theory of pariia] differential -equations. Physically, charac-
teristics are two families of lines along which disturbances propa-
gates. The construction of such diagram is important in the present
work because it is not only a conQeniéht way to analyse the propaga-
tion &F éopverging shocks but also provides the information about
stabilty, collapsing mechanism of converging shocks and Mach number

at different locations as well. Therefore, the wave diagrams are
constructed to have full information about the final shape of the
shock, distance of its coliapsingAfrom the geometric.centre and final

state of the gas.

2.6.1. Construction of Wave Diagrams

The Ednverging cylindrical shocks are perturbed by a cylin-
drical rod to study its stability and collapsing mechanism. Therefore,
regular reflection starts initially when imploding shock interacts with
the rod and Mach reflection takes place when incident shock angle
reaches its critical value, as discussed in section 2.3. The traj-
ectory of triple point is called shock-shock and its role in the wave
diagram is exactly analogous to ihat of a shock wave in more familiar
case of ynsteady-one{ﬁimensiona] gas flow. In other words it can be
said that the shock-shock represents the discontinuity not only to
physical flow field but also to the characteristics. The procedure to
construct the complete wave diagram }nVOlve the following interactions.

1. Crossing of ¢* and € characteristics.

2. The characteristics and the plane of symmetry.

3. The characteristics and the shock-shock.
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The procedure to first and second kind of interactions are easy and

shown in Fig. (2.20). Generally, the initial conditions of gas at 1

‘and 2 are known as shown in Fig. 2.20(a) and the point of their inter-

section is located. The Q-wave through point 1 and P-wave tﬁrough
point 2 are knoﬁh which intersect at a new point 3. The character-
istics are denoted by dotted lines but for the purpose of a step-by-
step procedure, these can be approximated by a sequence of short'

straight sections. The procedure to locate point 3 is as follows

C =86 +uw = constant
¢ =8 - w = Constant
S Loty o
or 63 = 2(C2 + Cl.

Lot _ oo

Since 93 and wy are known, the Mach number and characteristic
angle at intersecting point '3' can be obtained from equations (2.46)
and (2.47). The s]oﬁe o? the\characteristics is taken as an average
of the values at each point. For instance, the correct siope of the
Q-wave through points 1 and 3 are given by (61 + ml) and (83 + m3)
respectively, but the siope of the corresponding straight line may be

approximated by the arithmatic mean as given below
(6 +m)y 5 =108 +my+ (6 +myl/,

The ‘solution of second type of interaction is also simple because 8 is

known in this case. Since




T =37

From Fig. 2.20(b) c,=-C,=-Cs

Therefore point 3 can easily be located by interacting Q-wave through

point 4 and P wave through point 2, as discussed above.

The procedure of constructing the wave diagram becomes compli-
cated when the shock shock forms because the characteristic invariants
Ps and Q@ changes discontinuously across the shock-shock. Thus the
characteristic slope downstream of the shock-shock is unknown since @
and w are not known there and the value of Mach number jumps across it.
In order to find out quantities downstream of shock-shock an iteration

technique is used which is explained below.
/’

The sketch illustrating the interaction of the imploding
shock with cylindrical rod is shown in Fig.. (2.21) wherein initial
conditions till point 8 are known and points 9/10, 11/12 are to be loc-

ated on the shock-shock. Initially a point x Yq is selected at any

9)
1Y
radius‘R9 from the geometric centre. Then the ray angle 69 = tan 1 ;2
A . 9
and the area ratio 52 are determined since area is proportional to
0

radius and initial radius RO is known. The Mach number at point 9 is
ca]cu]aied from the equation (2.31). Once Mach number and ray angle
at point 9 are known, the Mach number, shock-shock angle and character-
istic angle at point 10 can be calculated from the following equations

A10 sin(x10 - 58)

_10 _ : (2.64)
A9 SN Xy9 )

Mg cos{xyg - 28)

M,  cos (2.65)
9 X10 '

Ao _ FMyg)

10 _ . (2.66)
g  f(My)




AB =06, - 6 (2.67)

9 10
Since C* characteristic line passes through points 3 and 10 theref?re

|

610 " ¥10 T 83t w3 | a
10 -
: : L dM
or . ‘ . 910 93 = 3f K(—: (2.68)

!

The above five equations are solved for the five unknowns at
point 10 that is MlO’ AlO’ A8, 610 X10° The characteristic angle ™o
can be calculated from equation (2.47). Since the shock-shock ang{e at
2 and 10 and the slope of the characteristic through 3 and 10 are kntwn

therefore, the equations of straight line can be written as follows

Yg 7 ¥p = (xg = Xg) tanlxp)y, (2.69)
Yg = ¥3 = (X3 7 xg) tan(8 +m),, (2.70)

where xh) is the average shock shock angle at point 10 and 2 with

av
respect to fixed horizontal axis and (6 + m)av is thd‘“average of slope
of the characteristic lines through points 3 and 10. Therefore, from
the equations (2.69) and (2.70), the location of point 9/10 can be

determined. If these calculated values of x are the same as

g Yy
selected initally then the values calculated downstream of shock-shock
are correct otherwise point 9 is reselected. However, equations (2.64)

to (2.70) can also be solved simultaneously to find out 7 unknowns.

The inner shock-shock is also located by the procedure
_discussed before except the initial point 11 is determined by the
interaction of two Ct characteristics. Since C' characteristic passes
.through points 5 and 11 therefore |

(6 + 'u’)ll = (6 + w)s



Similarly C” characteristic passes through points 4 and 11. Therefore

(6 - w)yy = (6 - w),
Fron; the above equations we can find 611 and wq
(2.41) and (2.44) Mach number and characteristic angle at point 11 can

and then from equations

be calculated. Therefore, in order to locate point 11, X1 and Y1y are

determined from the followihg two equations

Yg = ypp = tan(® - m),, - (xy  xpp)

Y3 © ¥y = tan(@ v m), - (X3 7 xgy)

once all quantities at upstream of shock shock are obtained the quanti-

-~

\
ties downstream of the shock-shock are determined from the equations

(2.64) to (2.68).

The downstream of the shock-shock is the Mach stem, whicﬁ is
assumed to be locally straight, will have a diffe;ent orientation on
£he characteristics. Thus the effect of the characteristic intersect-o
ion with the shock-shock'is to bring about a curvature of Mach stem.

Since, the characteristics mesh is finite, the curved Mach stem is

represented by a series of straight-iine segments connected together.

It should be pointed out that the ray shock theory does not
p;edict accurately the shock-shock angle and the characteristic angle in
case of weak incident shock waves. Therefore, the values of 'y' and 'm'
are not calculated from the ray shock theory. The, results of Shirouzu
and Glass [29] and equation (2.48) are used to detefmine the shock-

shock angle and the characteristic angle.
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2.6.2. Practical Suggestions

As the first step in the preparation of a wave diagram, the
given data should be expressed in non-dimensional form. The number of
characteristics that are entered in a wave diagram are arbitrary. " The
more lines drawn, the more accurate the diagram becomes in principle.
In practice, howe;er, the inaccuraéy that may occur can be minimized by
drawing the characteristic lines and shock-shock trajectory at average

angle between the two points.

It is very convenient to use the graphs instead of solving
quations simultaneously for numerical computation of the quantities
downstream the shock-shock. For such a purpose, graphs to find out
ratio of stem to incident Mach number and the shock shock angle versus
cﬁange in:deflection are plotted from the ray shock theory and are
given 1in F%gs. (2.16) and (2:17) respectively. Milton's experimental
results, considering the curvature of Mach stem are also given on the
same graphs which indicate that the ray shock theory slightly deviates
(2 - 3%) from the experimental results. Therefore, the Milton's results
[43] could be used for strong shocks. In such cases, iteration proce-
dure starts by assuming the value of A8 and then from the Figs. (2.16)
and (2.17), the Mach number downstream the shock-shock and shock-shock
angle can be found. Once 'M' and 'x' are known, the w, m and 8 down-
stream the shock-shock can be found out from the graphs or Tables 2.1
and 2.2. Sipce ¢’ characteristic passes through points 3 and 10 as
;hown in Fig. (2.21) therefore, (6 + w)lo calculated must be the same

_as (8 + w), whose value is interpolated by assuming linear relation
3
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bethen the neighbouring characteristics. The average calculated slope
between the points 3 and 10 must be such that the ¢t characteristic
passes through both points. Similarly. the trajgctory of the shock-
shock drawn at average angle from point 2 must pass through the

ca]cg]ated point 10. If not, new values of A® should be assumed.

In order to get accurate results it is a good practice to
construct the wave diagram initially on enlarged scale and then can be
reduced to convenient scale. But it should again be enlarged before
reaching the centre. For the sake of simplicity and convenience, it
is possible to carry out all the computing steps without writing down -
ényth{ng except the results for each point of the wave diagram. The
values of the P and Q waves, shock-shock angle, slope and other requir-
ed quantities may be noted for each point in the wave diagram. 1In
general, it is better to number the points and obtain all the numerical
values, including intermediate steps, in tabular form. Further, the

interpretation of wave diagrams are facilitated by drawing the lines

of different meanings in a distinct manner.

The accuracy of wave diagram should simultaneously be carried
out by checking the procedure and accuracy of iterations. The slope of
the characteristics changes slightly from step to step. Any sudden
change of direction should, therefore, be suspected as a possible error
up]ess it is associated with the crossing of a discontinuity. If a
check does not reveal any error, the number of waves drawn is too small
for this particular region of the wave diagram. Thereforé, additional

waves by interpolation may be used at mean slope.
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CHAPTER 3

ks 5

EXPERIMENTAL SET UP AND PROCEDURE

This chap}er presents a description of the expefimental set

up and the procedure of recordjng the results. A1l experiments are

conducted in an air-to-air shock tube with the annular end of the test

section bent radially inward so as to have a cy]indrica1‘implosion

chamber. A three incremental area contraction is used to achieve

ninty degree bend of annular| plane shock wave. The shock waves in

‘indrica] implosion chambgr are perturbed by rubber rods placed one

at a time and photographs are taken at various stages during their way

-

of convergence to study their behaviour.

The experimental set up for producing converging cylindrical

shock waves consists of the following main components

S a)
b)

v c)
A 0

e)

The Axisymmetric Shock Tube

The Test Section "
The spark Shadowgraph System -

The Time Delay System

Secondary Units

The schematic diagram of experimental set up is shown in Figure (3.1)

and the main units are described in the following sections.

] -
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3.1. The Axisymmetric iﬁock Tube "

The shock tube is constructed from seamless structural steel
tubing with 0.7 cm Qa11 thickness. The inner diameter of the cylind-
rjcal tube is 15.4 cm\and the t&tal‘length is 4.57 meters. The shock
t;be consists of a driver section 76.2 cm long and a basic driven
section 3.81 meter long. The driven section ié‘further divided into
two pérts, one 2.74 meter long followed by other 1.07 meter-test
section as shown in Fié. (3.1). These sections of shock tube are
assembled by standa;d flanges of same dimensions bolted by eight M18
bolts. These f]anqes are made of forged steel and are welded at the
end of seemless pipe before final machining so that the deformation

caused by the stresses developed during the wering process may be

eliminated in the final machining process. 'The flanges are centered

¥

with the seamless tubes and the end of the sections are faced to the
final dimensions in- the same setting. The O-ring groove was cut in
the raised face of the flanges connecting the driver and driven tn, 7
sections. The shock tube is not interna]]yzmachined fully because
boring machine or deep hole bori%g machine operations were expensive.
Therefore, only 15 cm frpm each end of each section are honed to
minimize the asymmetry. This procedure is found to give satisfacto;y
results with a considerable reduction in the machining cost. The
shoék tube is supported by four adjustable height\réllers, two in
driver section and two in driven section. These rollers are mounted
on a steel co]uﬁa whose hight is adjustable and this unit is welded to

a flat steel plate.



Combressed air is, used throughbhg the experiments since
\' it is the oﬁ1y ecdnqmical gas avai]ablevto produce a moderate Mach
number. The pressure in the driver section” q' Increased relative to
the pressure in the driven section. Therefore, the driven section is
connected to vaccum system and the driver section is connected toa °*
compressed air storage tank. This compressed air is supplied by
reciprocati?g compressor. These connections are made by f Fm copper :
; tub1ng through the .control panel. Vaccum is provided by an Edwards'
. vaccum pump and is connected to driven section by a 7.5 cm steel pipe

followed .by 1 cm copper tubing. The vaccum pressure in the driven -

section is measured by an MFG testing guage (0 - 760 mm Hg) and the

— pressure in the driver section is measured by other gauge range 0 - 40
) R - ' )
bar. These pressube gauges are installed on the control panel. 0
y Leakage of air ié‘fept to-a-minimum possible value by reducing the <

number of instrumentation access holes in the driven section. Neoprene

0-ring seals are used on both the flanges tonnecting the drfver to the
- ;aijven section. This assures‘; good grip on both sides of the dia-
phragm and redutes any leakage. Gaskets and high\vaccum grea;e are
used in other connecting flanges. The pressure ratio between the

driver and driven sections is maintained in such a way that the Mach

-2, number of incident plane shock is 1.79. The same shock is ampiified
. . ~

after passing through the series of three cylindrical inclined steps,

—~—

. / in the test section: These stepsl which are finite incrementé of
.t conical bemds, allow Mach ref]ectwon and this produces a Mach stem
, ' which is redirected 1n 1ts propagation and becomes the incident shock
forteach of theligcceed1ng steps. Finally %he Mach stem is pePpend1c-l

u1ar to the incident plane shock and a Mach number of 3 is achieved.
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*3.2. The Test Section

-

The test section is- located downgtreay of‘the shock tube and
is supported by an adjustable height column with U-g}gmps. A's;hematic
diagram of the test section is given in Fig. (3.2). Two aluminum pipes
of outer diameter 10 cm are placed concentric with the driven section
of the shock tube. The length of the aluminum pipe inside the driven
gection is 76 cm and that inside the test ﬁection is 107 cm. Ihe |
upstream end of the aluminum pipe is chamferred to 5° in order to min-
imize the flow disturbaﬂpes at the inlet condition. Thed;%o aluminum
pipe§ are'supported at the middle by an aluminum flange of thickness 4
cm. The construction of this flange is shown in Fig. (3.3), where part
‘A indicates the outer part of the flange with an internal bore equal to
the inner diameter of the seamless pipe.” The part B consjsts of a\ring
(outer diaméter 10 cm and inner diameter 7.6 cm) with four webs, 1.3 cm
thick and A cm wide. These webs are made to fit the inside surface of
part A and machined separately to provide good, sﬁarp and precise
corners. On both sides of the web, wedges of 10 degrees included angle
are placed to minimize the effect of theuwebs on the shock front shape.
;Zggse wedges are made to fit accurately the inside surface of shock -
tube aé shown in Fig. (3.2). The two a]umiﬁum pipes and the aluminum

f]angelaré assembled as shown in Fig. (3.4). The downstream end of the

aluminum pipe is fitted with a 6.5 cm diameter and 0.6 cm thick plane

~mirror. The significance of this mirror will be expiained at a later

stage. The complete assembly is placed inside the shock tube as shown

in Fig. (3.2).
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The 'three incremental area' is placed at the extreme end of
the shock tube by means of another aluminum flange made from 2.0 cm

thick plate. The pitch circle digmeter and outer diameter of this

flange is made exactly according t e flanges attached with the shock

tube. The inner bore of this flange i1s™made according to the diameter
of mirror, fitted at the end of aluminum pipe that is 6.5 cm and a rest
of thickness 1 cm with diameier 12 cm is made in ;he middie of the
flange to accomodate tpe fine quality commercial glass of thickness
0.95 cm. This glass is placed in between the conical contraction and
the aluminum flange and sealed by a rubber gasket of 0.5 mm thickness.
The assembly of the end flange and the area contraction is shown in
Fig. (3.5). The'g]éss and plane mirror are so placed that a photograph
of the cylindrical shock with a maximum view of 6.5 cm diameter is
obtained. The gap between the glass window and the mirrpr was adjusted

by placing thin paper gaskets between the steel flange of\test section

and end atuminum flange.

r

The initially plane shock strikes the upstream end of the alum}num
pipe (0D 10 cm). Part of this shock travels in an annulus area and the
other pagt travels inside the aliminum pipe. The shock travelling in
the annulus area then strikes ghe upstream wedges énd as a result of
this interactiop, the shock is slightly distorted. When the shock
moves along the webs and wedges placed at the downstream section, it
régains its planar shape in a short distance of travel. This planar
shock\moving inside the test section then encounters the three incre-
mental area contraction placed at the éxtreme downstream end of the

shock tube. The shock converts into the Mach stem until it becomes
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A

\
cylindrical and perpendicular to the initial plane shock. This cylind-

rical shock converges as it moves in the gap between the end mirror
placed in the aluminum pipe and the glass placed in the end aluminum
flange. The converging cylindrical shock is then perturbed by the
cylindrical rod located in its path. The cylindrical rod, made of
rubber, is glued on the inside of the glass at 2.5 cm from the geo-
metric center of the apparatus. The interaction of the converging
shock with lhe cylindrical rod éa05es the perturbation on the shock
front. In order to study the stability and shape of the collapsing
;hock, a photographic history is required. A des&ription of the
photographic apparatus usedlis presented in the following section.

A}

3.3 Shadow Photography System

*

A11 optical methods are based on the fact that the speed
of 1ﬁgﬂt depends upon the refractive index of the medium through which
it passes. The value of the refractive index in turn varies with the
density. In a shock wave the density increases rapidly to a peak and
approaches a constant value. Therefore, the selection of an optimal
method depends upon the rate of the change in density. In phenomena
where the refractive index varies relatively slowly, the schlieren
method is used. On the other hand if the refractive index changes veryr
rapidly, the shadowgraph method is used. Generally, as a rough approxi-

mation the schlieren method measures the first derivative whereas shadow

method measures the second derivative of the refractive index [44].
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The converging cylindrical shock gets stronger as it
approaches the center. This results in a very large change in the
dengity. Therefore 5 shadowgraph .method is selected for the present
work. This method is not only simpler than the schlieren method Sﬁt

P

also brings out clearly the rapid changes in the refractive index.

-Also, the shock-front position may be estimated to better than 0.1 mm.

A schematic arrangement of the shadowgraph photography system
is shown in Fig. (3.65. It consists of a 5 KV spark source supplied by
a power amplifier. A continuous light source is used for the a]ignmeﬁ&
and adjustment of the system. This 100 watts constructed arc lamp is
connected to a power supply unit and is cooled by a small fan (12 volt).
The spark light source supplies a light pulse of 5 to 10 microseconds .
for instantaneous photography. This spark is triggered by a transducer
placed between two condensers of focal length 17.5 cm. These serve to
focus the light on a point. The size and shape of the light source is
controlled by the adjustable knife edge. The knife-edge component for
1ight interception consists of razor blades held in position by four
screws and framed on a stand with sliding adjustment. This effective
source has to Qe at the focal point, that is 123.19 cm, of the spheri-
cal mirror. This spherical mirror 15 adjusted such that parallel beams
of 1ight pass through the test section. The light from the test

section is reflected by another plane mirror which in turn reflects

the light rays onto the photographic plate.

The amplification factor is the ratio of the size of the

image on photographic plate to that of "the object 1n the test section.
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.It depends upon the distances of the image and the object frqm,the

mirror and its focal length. The amplification factor can bé
ca]culated‘}rom the standard formula but a sikple method to obtain

this factor is adopted here. A vernier with a specified opening is
located at the test section. The amplification factor is then simply
the ratio of the image opening on the photography plate to the actuél
opening of the vernier. A1l sets of photographs are taken by a polaroid
_ Camera (MP-3) on the 3000 ASA polaroid film. The room was completely
dark before firing the shock tube since a shutter-less camera is used
to take photographs of converging cylindrical shocks. The camera is
placed on a stand whose height is adjustable. It was very difficult

to photograph the converging cy]i;drica{‘shock'right at the center of
éollapse since the time delay unit used in the system has accuracy of
+5 microseconds. However, after many trials, the shock collapsing.at
center is photographed and with reference to this time (t = 0) other
photographs of converging shock waves are taken by changing the delay
setting. This is the method of obtaining one photograph for each firing

of the shock tube.

3.4, The Time-Delay Spark System

*The optical method, spark shadowgraph requires a high
intensity, short duratioﬁ Jight source because photographs in sequence
are necessary to study the behaviour of converging cylindrical shock
waves. Thus, some provision for high frequency multiple flashes is
desirable. Alternately, if the events have a high degree of repeat-

ability, the phenomenon can be reproduced and photographed for its
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successive state relative to the preceeding one to yield a time
history. This process is made possible by employing the Time-Dé]ay

spark unit.

The primary components of this system are the trigger unit,

the spark lamp and time delay generator. These are coupled with each
other by various secondary units. The trigger unit consists of a

. ‘piezoelectric pressure trénsducer, a pulse amplifiér aﬂd a pulse
generator as shown in Fig. (3.7). The pulse generator; sends a signa{
to the trigger of an oscilloscope which is used for timing purpose and
anothe} signal of sufficient amplitude to the delay generator. In
addition, the use of a manual firing switch on the pulse generator
allows testing the rest of the system without the necessity of firing
the shock tube, this feature is particularly adVantageous for checking

the alignment of the optical system.

The delayed generator output is amplified and is used to
trigger another pulse generator which generates high voltage to trigget
the spark unit. The spark unit produces a light for about 5 micro- )
seconds for the shadowgraph optical system. The spark is controlled by
the hydrogen thyration tube. A positive pulse causes a thyration to
induce a spark across a high voltage gap. Further detail of this unit

is discussed by Wu et al [45].

—
'

3.5. Secondary Units

Several secondary units are necessary to support the primary

facilities. A vacuum pump (type DU05, ultimate pressure of 0.01 mm Hg.)

»
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is used to produce vacuum in the driven chamber of the shock tube. This
vacuum pump is connected to the control panel by 1.90 cm inner diameter
copper tubing and by flexible tubing to driven section. The vacuum
pressure in the driven section is measured b& an MFG testing gauge range
0 - 760 mm Hg vacuum. Another gauge pressure is used to measure the
pressure in driver section. Mylar plastic sheets of various thickness
are used as diaphragm and a thickness of 0.5 mm sheet has been selected

experimentally according to the shock Mach number required.

3.6. Experimental Procedure

The shock tube is checked carefully and all unnecessary holes
are closed to avoid leakage. The connections of the driver and driven
chamber to thé control panel are made and then the height of shock tube
is adjusted by water level. The test section is cleaned and adjusted
separately and placed inside the shock tube axisymmetrically, as shown
in Figs. (3.2 to 3.5). The distance of the inner aluminum tube from the
inner surface of shock tube is kept equal from all sides. The end
flange equipped with the area contraction and glass is bolted with the
extreme downstqfﬁh flange of the shokk tube as shown in Figs. (3.1) and

3
(4

ygraph system is set with the help of continuous source

(}.5). . The sha

of light and the'camera is adjusted by producing spark manually in

complete dérknesih

|

I
M. .
The 1ia&t beam for the shadowgraph is obtained from an
electric spark ;d;(ce which could be triggered by the signal from a

time-dela} unit. %&he output of the pressure transducer instalied in

i
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the shock tube is used to trigger thé delay unit. The instantaneous
photograph at a desired instance is obtained, using such a system, by
adjusting the’de1ay time.

The Mylar sheet of 0.5 mm thickness is used to separate the
driver and driven chambers. The driven chamber is evacuated by the
vacuum pump to 590 mm Hg. and the driver section is filled with
compressed air supplied from a storage tank. The pressure just before
the rupture of the diaphragm is recorded from the pressure gauges

mounted on the control panel. The Mach number of the shock produced by

bursting the diaphragm can be calculated from the following equation

. [41]
. ) Ya !
T S P e S P - B S e NI I
S MS al Y4‘1 Y1+1‘ P4
(3.1)
where Yp T Y T 1.4 for air.
a, =3

Since the strength of the shock does not remain the same as it travels

downstream. Therefore, the’Mach number of the shock at downstream end
i

M

is determined experimentally. For this purpose, -three transducers can
be mounted at the end of the shock tube. The first pressure transducer
is used to trigger the oscilloscope (Tektronix). The other two gauges
are connected tq the input terminals of the oscilloscope. Knowing the
distance between two transducers and the oscilloscope time scale, shock
velocities can be compbted. The Mach number is simply calculated by
dividing the shock velocity with the velocity of sound at room tempera-

ture. The pressure across the shock wave can also be calculated by
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using the same set of pressure transducers. Then by kﬁowing the trans-
ducer constant %% (42.5 mv/Psi), the oscilloscope voltage scale, the
pressure behind the shock can be easily computed from the oscilloscope
pressure traces. A Mach number of 1.79 is obtained with the driver
pressure 70 psig and a -driven pressure-of 590 mm Hg (vacuum). The

Mach number '3' of cylindrical shock at radius 25 mm from geometric -

center is obtained by using transducers.

The experiments are perform;a\by keeping the same vacuum
pressure in driven section and the same thickness of mylar sheet.
Initially, a sequence of shadowgraphs are obtained withoui generating
external perturbations. The experiments are repeated by placing a
cylindrical rod of diameter 5 mm and then 1.75 mm at 25 mm from
geometric center. A detailed discussion on these experimentally

obtained photographs is given in the following chapter.
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CHAPTER 4

RESULTS AND DISCUSSION

This chapter discusses the resultws of the experiments and
effects of external perturbations of various magnitudes on the general
behaviour of converging cylindrical shock waves. The interaction of
converging shocks with cylindrical rods and their influence on the
stability anq coilapsing mechanism are discussed in detail. A method-
ology to solve such problems theoretically through wave diagrams is
analysed and the theoretically obtained values of perturbation, the
inner and outer trajectories of the shock-shock and the shape of the
shocks are compared with the corresponding experimental results. A
mathematical model to predict the rate of growth of perturbation at any
instance is presented for.various sizes of cylindrical rods. Finally,
the mechanism of externally perturbed collapsing shocks is presented.

a

4.1. Behaviour of Converging Shocks Without External Perturbation

A sequence of spark shadowgraphs illustrating the converging
cylindrical shock waves is presented in Fig. (4.1). These converging
cylindrical shocks are produced by passing the plane shocks of Mach
number 1.79 over the three incremental area contraction, placed at
the downstream end of the shock tube with a gap width of 2.5 mm.
Shadowgraph (a) is the case of no flow whereas shadowgraphs (b) to (e)

show the converging process. It can be seen from the photographs that
. A




the shock front is cylindrical at large radii, but accurate measure-
ments show that a small asymmetry exists at small radii. This small
Dasymmetry is'probab1y due to a small eccentricity of inner aluminum

tube and surface roughness of the inner side of the shock tube. The
surface finish can be improved by internal grinding or boring¥pnggg§§g§;4
These processes are, however, exéensive and complicated, therefore not
carried out in the present work. The asymmetry of the shock front at

small radii causes its break down, and a Mach type reflection takes

place before the shock reaches the collapsing point. This behaviour is

expected because the shock is relatively strong and the collasping is

not very sharp as is obvious from the shadowgraph (e) of Fig. (4;1): A
few concentric circles are seen behind the collapsing shock, these
result from the multiple reflections of relatively weak reflected

waves, in the three area contraction.

The expanding shocks are formed immediately after collapse of
converging shocks as indicated in shadowgraphs (f, g). These clearly
show the presence of concentric waves trailing behind the éxpanding

shock. These waves result from the interaction between the expanding

" shock and the weak concentric waves which are initially trailing behind

the converging shock. A pair of vortices are also observed during the
expanding phase of the shock. As the expanding shock propagates out-
ward, the vortices grow bigger as seen in shadowgraph (g) of Fig. (4.1). .

The mechanism of formation of these vortices and the effect of the

. external perturbation on the converging cylindrical shock is discussed

in the following section.
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4.2. An Experimental Study of Converging Shock-Rod Interaction

The behaviﬁur of capverging cylindrical shocks perturbed
externally is studied‘by placing a cylindrical rod in itévpath df
Eonvergence. The shock interacts with the cylindrical rod and changes
it; configuration. Two sets of experiments ?E; performed, one by plac-
ing a rod. of diameter 5 mm and another by a&nod of 1.75 mm. The sbark
shadowgraph of this process of interaction of cylindrical converging
shocks with the ;ylihdrica] rod are taken to s:udy the actual phenomenon
taking place. These cases are shown in Figs. (4.2) and (4.3). The

schematic diagram of the .shock-rod interaction is given in Fig. (2.14).

The converging cylindrical shock wave impinging on a cylindrical
wall yields a regular ref]eétion and then Mach reflection. The Mach
stem, MS, and the correspopding slip streams (contact discontinuities),
CDI appear pefore the Mach stem meets at the rear end of the rod as
shown in Fig. 2.14(c). The interaction of Mach stems as they collide
behind the-cylinder may be considered as a reflection off a solid
surface instead of the symmetry axis. Here again thé reflection is at
first regular and then Mach type reflection appears. This is shown in
Fig. 2.14(d) and in the experimental shadowgraph Fig. 4.3(b). Two

secondary reflected shocks, RS,, and their accompanied slipstreams, CD

2!

are formed. This process is depicted by the shadowgraphs given in

2)

Fig. (4.2) and (4.3). The first triple point, intersection of reflected
ihock, contact discontinuity and Mach stem is called the outer triple

point which travels on the shock as cylindrical shock converges. The

trajectories of these triple points can be calculated from the series of
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shadowgraphs. The inner triple points are formed after the second Mach

. t

reflection, as can be seen from the shadowgraph 'b' of Fig. (4.2). The

trajéctqries of inner‘trip]ehpoints sweeb around the shock and try to

- come closer to the outer trajectories of the triple points. The slip

streams:formed by Mach reflection trail behind the converging shock
front and tend to travel toward each other until they meet. This

phenomenon is clear from the shadowgraphs g}ven in Fig. (4.2).
R . ’ S "

It is clear from the photographs that the shock front
shape is affected by the change in'thé magﬁ%tude of perturbations.
The distortion of the shock front increases with the increase in the

rod diameter as clear from these figures. As a result of the distrub-

@ ¢ -

ances” introduced in the flow, the shock is seen to lag behind in the

¢

direction corfespohdingoto the location of the‘cylindfical rod. Photo-

graphs $how the breakdown in the shock frqﬁi curvature at comparatively

"

higher radii. The shadowgraph (h) of Fig. (4.2) gives the expanding

"shdck’during the explosion phase. ‘The expanding shock is seen to

interact with the reflected waves resulting from the Mach reflection
taking place ‘during shock'cpﬁvergeﬁce. This interaction fofms another
discontinuity extend%ng_ﬁbwards the convergencé center. These discon-
tinuities inteérsect and‘form the pair of vortices. The formation of"
these vortices are clear from the shadowgraphs taken during the

exp]osfonaphase. These shadowgraphs will be discussed in detail to

investigate the stability and collapsing mechanism of the converging -

: . . . 1
“shocks in the subsequent sections. S$ince the Mach number of the

° R

cylindrical shock-is an important factor to analjse the present

-
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problem, it is determined expérimentally as explained in ‘the following

section, .

¢

4.3. Flow Field Measurement \
: . ¥

[

[
e

The Mach number of a shock gegerated in a shock tube can

be determined by obtaining }he pressure ratio between the driver and

driven sections at which the diaphragm bursts, 'Since the Mach number

. 4
of a shock wave may change during its propagation in the shock tube

therefore,.the Tocal Mach number is determined in the present investi-

°

gation. The pressure transducers are.mounted in the-annular and
cylindrical section of the shock tube to find out the velocity of the

shock and the pressure across it as explained in the.following sub-.
L o . *
sections. .

d- 14

» v

<

4.3.1. Mach Number, of the Shock in the Annular Part of Tesf Section

7

. ¢ .
. \ .

» " The Mach number of the shock wave in the annular section of
' @ ‘ - ' ’
shock tube.is determined by placing two transducers upstream of the

area contraction. The first transducer triggers the oscilloscope and
_the second records the voltage jump. This\jump shows the arrival of
Mthe'shock yave at the second transducer. ' The pressure trage obtained

from the sing]e‘ﬁransduceﬂg placed at 30.48 cm ¥}om the end flqnge of

fhe éhock.pube is shown iq'Fﬁg.:4.4(§). 'Thé ordinate in this figure

réprésents.the voltage ‘increment (0.5 ;}cm). The' pressure acrosé the
- shotk wave can be{calcu1ated from the transdueer gain.(42.5 mv/psia). -
. Sincé the pressuie aPead of‘bhe shock is knéwn (590 hm Hg), Ehe

pressure ratio across.the shock can be obtained. The local value bf .

-
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the sbock‘Mach‘numbér is then determined either by using the normal

shbck table or by employing the following basic equatidn of normal

. . shock waves éxpressed in terms of shock Mach number and the static y

pressure ratio [46] : 4 ' o )

3

i ' Ap < N !
17%1.3 .
M, = + + _ - 41
Tl Ce e S (4-1)
’ <

.
N * : , .

. < ® sp, is the pressure difference alross the shock in the annular

/ ' : Lo W, ¢
: section . L . N i P
P; is the absolute value: of the (vacuum) pressuﬁeAahead of

+

e the shock.

. -
"

* -

"It can be seen from the-pressure trace that the pressure
behind the shock front is steédy. ‘This shows that rio_expar€ion waves *

&~ .
are trailing behind the shock front. The Mach number calculated in

’ . gﬁnuYar section is found éb be 1.79.‘ASince th"ﬁéch nﬁhber is gﬂ“

’ (\ES function of the square root ‘of the pressure differe%ce, the results
obtained’by this mekhod are fairly accurate. Since the shock égréngtq
var{es wheﬁ‘i£ passe; through- the variab]e~aﬁéq duct, the value of the
Mdch number in thé cylindrical chamber also chaﬁges as 1t propagates

- £0ward5 thg'centre. Thefefo}e, it is<neces§ary.tq find out the local Y

v value of Mach number in'tﬁe cy]indrical:;hamber when the shokk wave.

e

, hits the ¢ylindrical rod. N

- . ’
. ,

4.3.2. Mach Number of Shock in the Cylindrical Chamber ; ’ .

c w

a

i‘ ' N -

~ [ . N 1 a . . . A}
Ao R The 1qcag shock Mach number in the cylindrical implosion
v <. . . : ’ b .
o chamber is determined by placingx pressure transduger at radius of . °
’ : ' ) . . ( ' Co
' ¢ S p
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25 mm from the geometric center., This tranducer is connected to an

"oscilloscope from which a pressure trace is obtained. A typical

. pressure trace for incident shock Mach number of 1.79 and cylind-

rical chamber gap of 2.5 mm, is given in Fié. 4.4(b). The pressure
difference across the converging shock at the radius of 25 mm is thus
obtained by measuring the ordinate of the pressure tracesand dividing

it by the gain 6f transducer (32.5 mv/psia). The normal shock equation.
(4:1) is used to calculate the Mach number. However, if the Mach number
and preésure across the qgnular plane shock is known then the Mach
number in the cylindricé] chamber can be 6btained by using the

¢

following equation
) \

Apé

» 2 %
M, = [1+4— (M," - 1)] oo - (4.2)
/ 2 bpy 1 ;
where Abz . is the p}essuré difference ‘across cylindrical shock

*

: Ml‘ Ap1 are the guantities determined in section 4.3.1.

The Mach number of the cylindrica) conQerging shock can also be

,ca]cuﬁated conveniently from the following equation,

" Av » .
_ 2y 2,4
. Lo M=l Y &)

where Av1 and mvz are the voltage rise in the cylindrical and annular

«(4.3)

sectipns respectively, determined-directly from the Fig. (4.4). The

Mach number of fﬁ:?;ylindrica1 shock at 25 mm from geometric center .is

found fb-ge 3. Once the Mach number is determined, the cylindrical rods -

-~
are placed to study the behaviour of cylindrical convergifig shécks under

¢

external perturbations. . . -

N
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4.4, Theoretical Analysis of the Converging Cylindrical Shocks

Subjected to External Perturbation

The theoretical éng]ysis of cylindrical shocks is based on
the?whitham's Ray-shock theory and the ;ell known Chester-Chisnell-
whitham's A-M relation. Wavé diagrams are constructed to analyse the
behaviour of initially strong cylindrical shocks and weak shock. The
. external perturbatiéns are generated by pfacing a cylindrical rods of
va;ious diameters at 25 mm from the geometric center. The interaction
of a cylindrical rba and converging shock wave, and the procedurésof
constructing the wave .diagram is given in Chapter 2. However, before
studying the stability of converging shocks, the influence of external
perturbations on initially strané and weak shocks is discussed in the

following sections.

4.4.1. The Behaviour of Initially Strong Shocks

o

The initial upper half of the wave diagram for shock Mach
number of 3“at radius 25 mm, perturbed by a cylindrical rod of diameter
5 mm is given in Fig. (4.5).' Interaction of the shock and the cﬁarp-
cteristic waves are marked by numbers and the corresponding values of
flow parameters at each point are given in the Tagle (4.1). This wave
diagram is comPleted by means of a step-by-step procedure and is given
in Fig. (4.6). Under the'game initial conditions, the size 'of exter-
nally produced perturbations were reduced by decreasfing the diametér of
the cylindrical rod to 1.75 mm, 0.8 mm and 0.25 mm. These rods are

p?aced, one at a time and the wave diagrams are constructed for each

case and are given in Fig. (4.7), (4.8) and (4.9), ré%pectively.
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From these diagrams, it is clear that Mach reflection starts
when the incident angle of the converging shock becomes 48° and the
.triple point travels on the shock. The trajectories.of triple points
are shown in dotted lines in the wave diagrams. 'Thé path of these
triple points moves away in case of bigger cylindrical rod, in other
words, the region affected by the disturbances increases with the
_diameter of the rod. These trajectories are shown in Fig. (4.10). The
outer trajectories of the triple points from the wave diagram given in
Fig. (4.7) are also plotted separately on the same figure and their
paths are compared with the Whitham's area rule. It is observed that
the'tendency of these trajectories with the decrease in magnitude of

o

externaﬁ{perturbation is toward the path obtained by Whitham's area
rule. Surprisingly, the smoothening of the shock front curvature was
observed in all cases of strong shocks and at the outer frip]e points
only. The distance where the outer shock-shock dies out depends upon
the diameter of the cylindrical rod, this %ndicates that the disturb-
ances weaken on the outer part of the cylindrical shock. The experi-
mental values of outer triple points arelobtained from the shadpw@raphs
given in Figs. (4.2) and (4.3) and are shown on the corresponding
theoretically obtained curves 1n'Fig. (4.10). A good agreement between
the theoretically and expérimentally obtéined outer trajectories of
frip]e péints is clear from the figure. =
.

When the Mach stems that ride on the surface of the rod

collide with each other behing the rod, £heir interaction may be

considered as a reflection of a solid surface instead of the axis of

symmetry. Here again Mach reflection takes place at a distance of

S
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0.6 ~ 0.7 times the diameter of rod as observed frem the wave diagram
(4.6) to (4.9). The trajectories of inner triple pointslare also shown
in dotted lines on the wave diagrams  The angle of the path of triple
points from the horizontal depends upon the magnitude of perturbations.
The shock-shock angle increases with the decrease in size of the rod.
This behayiour of the trajectories of inner triple points is shown in
Fig. (4.11) for the periurbations produced by rods of various diameters.
Thus, the shock amplifjcation is larger in the case of weak disturb-
ances since the amplification of the Mach stem is proportional to the
shock-shock angle. The shock front perturbed by smaller rod diameters
travels faster than those per}urbed by biggeh rod diamgters, as demon-
strated in Fig. (4.11). The increasing spread between the trajectories
of inner triple pgints also indicates the attenuation:of the disturb-

ances.

The change in the flow deflection angle across fhe inner Mach
stem decreases with decreasing.raAius of the shock for all cases shown
in Figs. (4.6) to (4.9). At a certain radius it starts to increase
again, the points of inflection depending upon the size of the perturb-
ations asishown in Fig. (4.12). It is evident from this figure that
in caseAJ¥ weak disturbances (d = 0.25 mm) the flow deflection angle
reduces to a'minimum value at higher shock radius and4it stays alimost
constant till the shock reaches closé to the centre. But with the
increase of cylindrical rod diameter,.the minimum flow deflection
angle increases and the point of inflection occurs at comparatively

large shock radius. In case of a cylindrical rod of diameter 5 mm, the

value of flow deflection angle stays higher and starts increasing at



comparatively high shock radiis as shown in Fig. (4.12). This shows
that the shock front breaks down earlier or in other words at bigger

shock radius for higher values of magnitude of perturbation.

The trajectories of inner triple points are also obtained
from the shadowgraph, given in Figs. (4.2) and (4.3). The experiment-
ally obtained values of these trajectories are close enough to the
theoretically obtained trajectories as obvious frod Fig. (4.11). The
above mentioned behaviour is for initially strong cylindrical shacks
(M=3); the behaviour of initially weak cylindrical shock is discussed

in the following section.

4.4.2. The Behaviour of Initially Weak Shock e

A cylindrical shock of Mach number 1.5 at radius 25 mm from
geometric centre is taken as initially weak sﬁock. The external
perturbations are generated on the shock front by placing a small rod
of diameter 0.25'mm at a distance of 25 mm from geometric centre  The
behaviour of such externally perturbed shock is analysed through the
wave diagram, constructed by using ﬁhe same technique as described in
Chapter 2 Two pairs of Mach reflections are generated during the
interaction with the cylindrical rod, as explained in case of strong

shocks. The duter trajectories of the triple points in this case do not

.die out until the shock front reaches close to the centre, as obvious

from the wave diagram given in fig (4.13). The inner trajectories
of triple points widen because of weak disturbances and meet with the
outer trajectories of triple points close to the geometric centre as

[

clear from the Fig. (4.14).

- -



The innér trajectories of triple points sweep along the
i
distrubed part of }he shock front causing bigger shock-shock angle

as compared to the%corrgsponding strong shock case. Therefore the
disturbed part of ﬂhe shock front travels faster than the yndisturbed
part. The change in flow deflection in this case is also higher ;;
compared to the corﬁesponding strong shock case, indicating that break
down of the shock frént takes place even at higher radius of cylind-
rical shock. This agalysis indicates that weak shocks alre more

. sensitive to external disturbances as céﬁpared to the st;ong shocks
for the same magnitude of perturbation. Thus the final values of
temperature and Mach number will be less in the case of weak
cylindrical shocks as compared to the strong shocks subjected to

same magnitude of perturbation. The other factors affecting on the

final state of the.,gas are discussed in the followihb sections.

4.5. The Stability of Externally Perturbed Cylindrical Converging

Shocks 3

The stability of cpnverging shocks 1s one of the main factbrs p
which controls the final state of the gas. There%ore the stability of
converging cylindrical shocks is analyzed theoretically and experi-
mentally in detail. In general, a converging shock wave. is said to be
stable if it appears to be perfectly cylindrical in shape, thus damp-
ing out disturbances as it propagates. These disturbances are produced
in the present investigat%on, by placing a rod of different diameters at
a radius of 25 mm from geometric center. A diffraction of cylindrical

converging shocks by cy]ind}ical rods is analysed in Chapter 2 wherein
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a pair of Mach stems and contact discontinuities are observed. As the
cy]indrﬂi,cal shock converges, the reflected shocks swe'ep along the shock
front. If the tangential speed of the triple points is high as compar-
ed to the radial speed, the perturbed shock front should regain its .
symmetry as it converges. However, if the tangential speed is smaller
than the radial speed, the converging shock will never regain its
symmetry. The rate of change of disturbances on the shock front with
respect to shock radius also check the stability of cylindrical shock.

Therefore, the factors affecting the stability of cylindrical shocks

are studied theoretically and experimentally in the present work.

A set of experiments are performed to analyse the stability
criteria for strong cylindrical shocks perturbed by c}]indrica1 rods.
These photographs depicting the shapes of perturbed shocks are given in
Figs. (4.2) and (4.3). It is clear from these photographs that the two
triple points which appear on either side of the plane of symmetry are
caused by. the diffraction of the cylindrical shock with the front side
of the'rod and from the intergaction of the two Mach shocks as explained
earlier. Fig. (4.2). shows a sequence of spark shadowgraphs illustrat-
ing the interaction of the c_y]i'ndrica1 converging shock with a rod of 5
mm diameter and a shock Mach number of 3 at a rad1:us of 25 mm from the
centre. In these photographs, it is clear that the cylindrical shock
-
front does not regain its symmetry as it converges towards the geo-
metric centre. The disturbed part of the shock front is delayed as

compared to the rest of the shock. The undisturbed part of the shock

front strengthens as it converges towards the centre, so the delayed
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part is not able to catch up with the rest of the shock and is
therefore, lagging further behind. As a result, a breakdown in the
shock front curvature is observed in the shadowgraphs (b) to (f) in
Fig. (4.2). From these shadowgraphs it is clear that externally
perturbed shock wave by a rod of diameter 5 mm does not regain its
symmetry as it propagates. Also, lhe triple points do not travé] with
a speed faster than the radial speed of the converging shock. There-
fore, the cylindrical shock pertu;bed by a rod of diameter 5 mm does
not appear to be stable. But, before analysing this case in‘aetai1
it is worthy to perform another set of experiments to analyse this
phenomenon with small magnitude of external perturbations.

P
"

{

Another sequence of spark shadowgraphs is presenfed in
Fig.(4.3) for' the same inigial conditions as before, but with a
cylindrical ;od of diameter 1.75 mm. Since, ihe smaller cylindrical
rod relative to the undisturbed\shock diameter gives comparatively
faster speed of travel of the inner triple points along the converging
shock front. 1In these shadowgraphs, the inner triple points sweeps
along the converging shock front at faster speed than that observed in
the previous case as clear from the Fig. (4.11). However, asymmetry of
the shock front is clear at a comparatively smaller radius. The forma-
tion bf vortices in both series of shadowgraph is observed during the
expansion phase. The expanding shock front interdct with the reflect-
ed waves and leads to the formation of vortices, trailing behind the
expandiﬁg shock. It is appareni from the photographs that vortex

formation occurs only during the expansion phase of the shock motion.

The appearance of these vortices indicates the breakdown of the shock
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front during the converging phase of the cylindrical shocks. This
breakdown of the shock front leads to the instability of the converging

shocks.

The stability of cylindrical converging shocks is also
investigated theoretically from the wave diagrams, constructed for
the various cases. The wave diagram, shown in ?ig. (4.6) corresponds
to the case shown by the series of shadowgraphs in Fig. (4.2).o The

successive positions of the shock wave are shown by thick Tines and

‘the values of disp]ahement of perturbed part of shock front from its

mean position are determined to check the stability. The perturbation

factor '£' is defined as, ' .

where AR is the distance by which the perturbed part of shock front is
displaced from its undisturbed position and RS is the instantaneous

radius of the cylindrical shock wave.

The values of the perturbation factor are determined from the
wave diagrams and are ploted in Fig. (4.15). It is clear from this
figure ;hat the amplitude of the disturbance does not reduce to zero.
The perturbation parameter does not increase sighificantly for’bigger
radii of shock front but this pPirameter shoots up for small radii of
shock front. These theoretically obtained values of the perturbatipn
factor are compared with thé experimentally obtained values of the same
parameter. %he experimental values of the perturbation factor are

determined from the shadowgraphs by using the following equation

&

-
b

o~ o
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(4.4)

' where °
Dmax is the maximum diameter of the shock front

Dmin is the minimum diameter of the shock front. ,

The exﬁerimenta]]y obtained values of perturbation parameter
are found-to be in good agreemeht with the»theoyeticaily'obtained (
va]ueén The values of the perturbation factor ére determined simi]ar]&
for the cylinpdrical shocks pertur?ed by cylindrical rods of diameters
1.75 mﬁ, 0.8 mm and 0.25 mm. The sdccessjye positions of shock are
drawn on the wave diagrams as shown jn Figs. .(4.7) to (4.9) and the
Qélues of the perturbation parameter are plotted in the Fig. (4.15).
Thé‘eXperimental values of perturbation factor from the'series of
shadowgraphs given in Fig. (4.3), are also shown on the corresponding
theoretical curve in Fig. (4.15). It'is clear from this figure that
the magnitude of the perturbat%on aepends upon the size of cylindrical
rod placed in the path of cylindrica1‘shock, and fhe perturbation grows
faster in the case of bigger cylindrical rod. It is observed that the
rate of growth of pertgrbation also increases with the increase of the
magnitude of perturbation. The perturbation.factor shoots up close to
the center in case of weak (d = .25 mm) disturbance, indicating that

the shock remains comparatively stable for a longer time. b

The values of the perturbation parameter are also plotted on
the 1og log scale as shown in Fig. (4.16) and the following general

mathematical expression is obtained .
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R SO
E=IFOPIE) ° . @.5)
' 0 0 .

where
d is the diameter of the cy1indrical rod

' Ro is the radius at which the cylindrical rod is placed *

FCE) =0.182 () - 2059 (§97 + 38929 ( 3 - 186 ()?
0 0 _ 0 0 )

6( §) = 0.67 +3.22 (§) - 38.7 ()7 + 120.4.( T)?
. 0 o) 0 ' 0

F( %—) gives the magnitude of the perturbed cylindrical shock 53 a

o , . . s

function of the cylindrital rod and distance at which it is placed from
v : ' . '

the geometric center. The factor G( %—) gives the rate of growth of

) ,
perturbation. This mathematical expression can be used to find the

displacement of the shock front at any time perturbed by any size of
the rod diameter. In case of very weak distrubances, relatively -small
terms can pe neglected since - .

d \2
¢ &)
RO

-

<< (u%“) << 1 oo .
. 0 R N . "

Therefore, in the 1imit where the rod diameter is very small as compared

. to.its distance from geometric centre, the perturbation grows as.fo}1ows,

A
4

. £ & y-0.67 S
“ R
0

/

This resh]t agrees’ fairly well with Butler's theorectical analysis for

small perturbations, wherein he proved that the perturbation grows as

. R _ . A
(,ﬁi ) 0'64. The theoretical and experimental results are given in
0 ) . ) ' .

Fig. (4.16) and these results are'compared with the Butler's small

L B

K

L
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perturbation analys{s.v fhe thééﬁeticé] résu]g;-agree well Qith the
experimenfafly obtaine& resulté'aﬁd with Butler's results as.,clear f;bm
the. figure. Tﬁerefbée, the éééree of stdbi]{ty Lcan be given b& the
magnitude and rate of growth of perturbations. Equation (9.55 is
useful in finding the magnitude of éikturganqes Qt any instance, and
~the rate by which these disturbances grow for various magnitude of
pe%turbatiops. These«resuﬁts indicate that in prdctical sense, all
converging shocks aréiu;stab}e. The'}heoretica] conditions.gf infinite
ﬂréss&re and temperaéure at thé convergence’center will then be Timited
to finité values. Howevér,'the;e Values can be increased by reducing
‘the size of perturbation in the.shock tube and by “improving, the shape
of collapsing shock close to-the penter. The rate of incr;ase in
‘pertursation does not giveqthe é%act shape of the shogk, therefore
it is equally important to;analyse the shape of c611apsing shock and

* its distance from the geometric centre for various magnitude of

" _perturbations.

A A‘i

. ) : s ’ . - . o
4.6. The Collapsing Mechanism of Cylindrical Shock Waves

a ¢
- . S
P

The collapsing meghanism of a convergihg cylindrical shock
e ’ - ) Ls
wave deals with the influence of perturbations of different magnitude

i

on the shapes of collapsing shacks and on the shift of the center of
collapse from the geometric center. In present work, this phenohenon
ds studied by creating disturbances of various magnitudes on strong

. and weak cylindrical shock fronts.
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The theoretical shapes of the st{ock front are obtamed by )

»

using the ‘Whitham's Tay shock theory The wave diagraps for dlfferent

LY \ -
magmtudes of external perturbatmns are constructed explatned befc*e

4

and are given in'Figs. (4. 6) to (4.9) for 1n1t1a1]y ong cy]i"ndrical
shock waves. The shapes of’ the shock’ waves are drawn 49n the wave
diagrams, which (Hustrate that the per“r'bed part of the hhock front -
changes its shape gradua]]y. Whereas, the undisturbed part of -the shock
, front is unaware about the disturbances therefore converges symmeth'-

‘C\Ni.y\-The disturbed part of the .sho'ck front contributes to the f
’
asymﬁﬁiry of collapse by 1agg1ng b;hmd the und1sturbed shock ﬁron‘t

, The rate of amphf\catldn of the d1st,urbed part will of course, be*
'Iess than that of the und1sturbed‘bart of shock front., This makes the

‘delayed part to lag even further berhnd. The shapes of the perturbed

shock front are also. ﬁrawn's_epera_te]y for the cases where cylindrical
. ? w L3 . ' N
shocks'&pre perturbed by cyh’ndm‘ca] rods'of diameters 5 mm and 1.75 mm
) Y .

s »
as shown by\I he sohd lines in F1g %4.17).
D
— (
El * ' ‘ .
The shapes of the expemmenta]]y mr‘a'urbed shock front are
- o

obtained from the shadowgraphs shown 1n,.the F1gs‘ (4.2) an‘d (4.3).
- )

.
A -

These shadowgraphs ere magnified to get accurate results.® The shape
A

(P . s y
of the perturbed shock ,f:om each of the shadowgraphs is plotted by "

dotte<{11nes in the F1g (4 17)“ The correspondmg theoretical shapes ®f
the perturbed cyhndmca] shock wave are obtained from the :?e diagram

, and compaRed with the expemmentaﬂy obtained shapes. A go agreement

) .- 1

s noted ich proves the validity of the theory used ip present work
* to analyse the' behaviour’ of converging shoc{rr

s.%ecause of the diffi-

A}

rl

rculty in e)'(per"imentaﬂy obtaining the ?{Pes of the shock very c{]ose
0 = [ ] s .'” .

<D

y

]
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to the center of col]apge' theoretical shapes are obtained in that * °

- . »

regibnfk‘rhe analysis of the converg\cf shock c]oss to the geometr1c
the

cehter is therefore based only on theoret1ca1 results. These

resu1tsiclose to the center are taken as true swnce the - ‘theory is

"' proved to be valid-over a wide range. .
. ¥ q

. -
v ¢

The wave diagrams are fu%éher enlarged near the center and ' »

( W

the shapes of the co]ﬁ@psing shock are obta1ned for the strong and weak

cylindrical shocks. These d1agrams are shown in F195 (4. 18) to (4.21)
« ro 3
for initially strong shocks with ;y]indrica] rods 5 mm, 1.75 mm, 0.8 mm

and 0.25 mm respectively. .

sho fzgnt reaches the geometr1c centre before

gnd1sturbed portion o
the ‘disturbed part beca se of higher rate of amplification. ‘-The

* .

-

magnwtude By which disturbed part of ghock front Tags behind vgries in

Rl

each case and’ it.ingreases with ;he increase of nwg dihmeter. This

. : difference will cause the co]]apsing of shock before it reaches‘the
v“ * * -

gebmetric center. It\qs worthwhile to note from these figures that Q?
J . the Final state of co]]apse q: the shock %s not a s1ng1e point but
. Irather a reg1on whose size depends upon the magnitude of the perturb-

ations. It is noted from the Fig. (4.18) that the shock col]apsg§ in .

I4
A

an oval shape whose maximum length shifted fromcthe geometric cehter‘,“ |
' is 1 mm. - The shape.mf collapsing reg{ion changes from oval to a1m‘os‘t‘,’
square by decreasing the diameter of cy]%hd}icai rod as shown'in the
Figs. (4.19) to (4.21). The‘maximum»1ength by which the co]]gpsing,
region is shifted from geometric center decreﬁ?es accordingly and it.

is found to be 0.27 mm, 0.055 mm and 0.02 mm for rod ﬂiamete;s 1.?5 mm,’

0.8 mm_aﬁd 0.25 mm respectively. It is observed from the above figures

d Yo
js clear from these figures that the . P

»
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t 2.
hat' the initially strong cylindrical shock collapses towards the

cylindrical rod whosg distance from the geometric center depends

-

v upon the diameter of rod. This result agrees with the'Perry and

.

Kantrowitz's experimental results [12] but contradicts the findings

of Lee and Knystantas [3]. b e

¢

& .

PL ) In the case of wgﬁi/:;]indvica] shock an entirely different

M ¥

N behaviour is observed. The amplification of the shock strength of
. disturbed section is -obsérved to bé higher than the undisturbed section
of the shock front. Mach reflection in this case amplifies the disturb-

7/ ed shock front at a higher rate because of Higher values of shock-shock
o~

angle and of relatively weak amplification of weak shocks. Therefore,

o , ,
the disturbed part 'gf the cylindrical shock front accelerates and

keaches the geometric center before the remaining part does, thus

\\' making th:§shock’t9 collapse on the opposite side of berturbations
as shown in the Fig. (4.22). The shock in this case collapses in an
elliptical fashion and the maxi;um length of its shifting from the
geometric center ‘is found to be 0.76 mm, which is much higher than

u

" the corresponding case of strong shocks. :This indicates that the final
Y values of tem;eratqre and Mach number are;not in%inite in any case.
.. However, the stroﬁg cy]%ndriéa1 shock "may regult in high %émperéiure
but the weak'one‘wj11 not, because of the la;ge shift of the’co1iép§{ng'
,. . shock from geometric center for the same magn%tdﬂe of disturbances,
% “ . a5"i§ obvious from the Figs. (4.21) and .(4.22). The final state of
© collapse of the cy]ing{ipal convérging shock is not a single point but

a region depending upon.the size of the perturbations. - Since small_

0
7

’ ¢ : ke

™
.
'

& . S $



Z75-

. ¢
] '

eccentricities are always.present in any shock tube facility, it is

evident thatfa pe?fect]y sngetrical ggnyerging shock which collapses

to a singte point can never be achieved practically.
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CHAPTER 5

CONCLUSIONS AND RECOMMENDA%IQNS

The stabilyﬁy of converging cylindrical shocks was studied
both theoretically and experimentally. External perturbatioﬁs were

produced by means of cy]inirica] rogs, placed in the path of converg-
. . A&W N «
ing shocks. Based on the vé{ious results obtainéd, the followin

N
v

conclusions are drawn. \\\~“\ ,

-
1. Highly symmetr}cal converging cylindrical shocks, produced

equrimenta]]y, were found to retain their symmetry. down
"to small radii, at which an eventual breakdown in shock

3

front curvature occured.

. 2. During the shock expansion phase, vortices were observed
’
. due tb the breakdown in the shock front curvature. These
3
vorticeiﬂsre e result of the interaction between the

contact discontinuities and the expanding shock.

3. The perturbed shock does not collapse to a single point,
because the unaffected portion of the front see%s its

e true‘centre of collapse whereas;thé pé}turbed part does
not, either by lagging or acceleration. Further, the

¢ distance by which the' collapsing region is shifted from

~ 1

.
¥ [ i
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f
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the “centre is found to depend upon the initial Mach

number of tHe shock\gsd the magnifude of externaf

perturbation. ‘ i&

For %ditia]]y strong cyljndrical shocks, pertu;bed by a

cy]indricallrod, the final state of collapse is shifted

towards the fod side gecause the perturbed part lags

behind the undisturbed part of the éﬁbck front. Whereas,

for an initially weak cylindrical shoc&, the collapsing

takes ‘place beyond the geometric centre because, the

rate of amplification of the perturbed part is more than ,

that of thg unperturbed part. “

%

A smoogheniﬁg mechanism of the shock front was noted at

the outer triple points for initially- strong shocks o%]y.
Whereas, Such a mechanism was not observed at the inner
triple points.- The angle between the 1nci3ent and Mach
shocks was found to increase monotonica?ly until Mach
reflection was no more possible.

In all cases Eonsidered,\!he perturbationg grow as the shock
progresses Rowards the geometric centre, indicating that*
the symmetry of the éhock fréﬁt cannot be regained before

it collapses and that converging cylindrical shocks are

unstable. o ' o ‘

SO GBS0 OO
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7. A mathematical expression was obtained to predict the
magnitude and rate of growth of perturbations of
initially strong cylindrical shocks. In the limit
where the rod diameter is very small, this expression

v reduces to that of Butler's small perturbation analysis.
’ 12

8. High temperature resulting from converging shocks does
not necessarily imply that such shock§ are stable,
since collapse of the unperturbed part of the shock may

cause high temperature as well.

Thg‘theoretica11y obtained shapes of the shock front, the

trajectories of triple points and the perturbation parameter were

compared with those obtained eiperimenta]]yf',A good agreement is f

observed between them, which establishes the validity of the present
theory in an§1ysing the stability of converging shock waves.
[¢2

Recommendations for Future Work

-
2

H

The present investigation has successfully achieved the
. objectives within the Jtope of the work. However, the following
recomméndations are suggested for future development on the problem

considered in this thesis:

-

L

1. It is observed that the collapse of initially strong
cylindrical shocks and that of weak shocks occur on

v

opposite sides ‘of the geometric centre. TM¥s indicates

h 8
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: A &
that there is a particular value of the Mach number which"
)
will cause the collapse of shock waves exactly at the
geometric centre. Such shock waves, of course, will

result in very high valués of energy at the centre.

L]

~

The shapes of the ;hocks close to the geometric centre’
and the shift of their collapsing regions are obtained
only theoretically. In order to verify them experi-
mentally, clear photographs of the collapsing shocks
near the geometric centre should be obtained by .using
the following
i’- An optical glass of small thickness in.gﬁg window
of the end plate
ii - A concave mirror with large focal.length

3

iii - A time delay unit with accuracy better than

I+

1 ﬁsec | -
iv - A shock tube with minimum roundnes; error and
better inner surface finish.
The behaviour of a converging cylindrical shock can be
analysed by produgingﬁhiéturbances around the shock
front. These disturbénéés could be produced by
placing four o} eight cylindrical rods symmetrically

in the path of the s ock wave.

Qy
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.

Compuier aided analysis can be carried out to find the ‘e
oPtimum value of Mach number and the magnitude of
disturbances‘reguired in order to achieve maximum
possible symmetry in thelco11ision of the converging
cylindrical shocks. The algorithm given:in appendix ‘A’
may be used io generate wave diagrams on a tomputer
graphics terminal, for various Mach numbars of shock
waves perturbed by various magnitude of disturbances.
Thus;, the behaviour of cylindrical shocks may be

i

simulated, before performing the experiments.

k]
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Fig. 2.15. Shock-Shock Locus on the Front of a Cylindrical
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Ray Shock Theory

///’ —— =«  Miltons' Experimental
Results
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Fig. 2.17. Triple-Poinq Locus Angle Versus Deflection
Angle
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Ray shock theory modified by Itoh & Itaya
Two Shock Theory
B Three Shock Theory
2 [ 2 3 T ] n'\ [ 'y

1.0 0.8 0.6 .04 . 0.2

c ) P/pt =

Fig. 2.19. Critical Angle VerSu5°Pre§sure Ratio. Ahead. to .
Rear of the Incident Shock x (
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a) Interaction
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b) Interaﬁtion of Characteristic with Plane of Symmetry

\

Fig. 2.20. . fnteraction of Characteristics
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a. t = -7.6 usec b. -4.8 usec  ¢. -1.5 ysec  °
. . ‘ . .
d. -0.8 usec e. 0.0 f. 10.2 usec :
i ’ ’ ©q. - 19.9 usec
scale: " -
25 mm
a 3
R .

Fig. 4.1. Spark Shadowgraphs'Illustrafing the propagation of
. Cylindrical Shock Wave without ‘External perturbations.
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C. , , -7.3 usec d.

.
.

Fig. 4.2. Spark Shadowgraphs Illustrating the propagation of
_Cylindrical Shock Wave perturbed by a Rod of -

Diameter 5 mm, placed at 25 mm from the Geometric
Centre. ’

5 J

-5.5 usec
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f. -1.2 psec

h. 8 usec

scale:

25 mm

Fig. 4.2. (continued). )
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a. No Flow

C. -10.4 usec

Fig. 4.3. Spark Shadowgraphs Il1lustrating the propagation of
Cylindrical Shock Wave perturbed by a Rod of
Diameter 1.75 mm, placed at 25 mm from the
Geometric Centre. '
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Fig. 4.3.
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scale:

(continued). -
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500 mV/cm -
a. Plane Shock 42.5 'mV/psia

vac. pressure = 3.288 psia

PR SR N TP S N P

) 1 volt/cm
b. Cylindrical Shock 32.5 mV/psia

vac. pressure = 3,288 psia

14

Fig. 4.4. Pressure Traces by a Transducer to determine the
Latal Mach numbers.’
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1.4 | legend: . =
. rod dia. 5 mm, experimental
- A rod dia. 1.75 mm, experimental
‘ present theory s
4.0 — — whitham Area rule (d+0)

Fig. 4.10. Outer trajectories of the Triple Points of
5 Converging Cylindrical Shocks, Perturbed - by
Various sizeslof Rod Diameter.
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Legend:
1.2 Coe .
] rod dia. 1.75 mm, Exp.
A rod dia. 5 mm, Exp.
- e present theory -
0 —— — Whithams' rule (d-0)
1.0
g
0.8
0.6
0.4}
0.2
Fig. 4.11. Inner TPajectories of the Trib]e Points

.of Converging Cylindrical Shocks,
Perturbed by various sizes of Rod

Diameters.
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- o, " . . . y . .
- . Quter Trajectories

Innér Trajectorie

3 /l
Fig. 4.14.. Outer and Inner Trajectories of the Weak _
. Cylindrical Shock Perturbed by a Rod of
. 'Diameter 0.25 mm.
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Y

Legend

rod diameter 5 mm Experimental
° rod diameter 1.75 mm Experimental
0.12 [ ° present theory

0.1

0.02

oN

Fig. 4.15. Rate of Growth of Perturbation of Cylindrical
Shock, Perturbed by various Sizes of Rod -
Diameters. '

i
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Ledénd:
- ] rod -diameter 5 mm, Experiment
A _rod diameter 1.75 mm, Experiment

present theory
1.0

= == =— Butler's theory

0.5

0.1

0.05

13

0.01
. [ NS | Lo g b aagagl
0.01 0.05 0.1 \ . 0.}5 1.0

R
-
0

Fig. 4.16. Perturbation Growth Rate - Comparison with
Butler's Small Perturbation Analysis.
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————— " theoretical shapes
== = =  experimental shapes

a) rod diameter = 5mm

-

Fig. 4.17. Theorefical and Experimental Shapes
Perturbed Cylindrical Shock Waves.

P

of the

0.6
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~————— theoretical shapes
— — — experimental shapes

0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

™™

(b} rod diameter = 1.75 mm

Fig. 4.17.
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Scale £

1 mm

Fig. 4.18. The Collapsing of Initially Strong Cy]indriﬁcﬂ Shock
Perturbed by a Rod of Diameter 5 mm.’
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Fig. 4.19. The Collapsing of Initia‘Hy Strong Cylindrical Shock
Perturbed by a Rod of Diameter 1.75 mm. :
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075 0.5
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Fig. 4.20. The CoHapsma of Initially Strong Shock Perturbed by a
: Cylindrical Rad of Diameter 0.8 mm
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Fig. 4.21.

I

‘The Collapsing of Initially Strong Cylindrical
Shock Perturbed by a Rod of Diameter 0.25 mm.

=
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Fig. 4.22. The coilapsing of Initially Weak'Cylindrica¥ Shock
Wave Perturbed by a Rod of Diameter 0.25 mm.




TABLE 2.1
Ma'ch No. , Ray Arﬁa w
M A x 10 Equation (2.46)

1.60 e 0

101 3.5846 + 2 0.283
1.05 1.3107 +sl 0.633
1.10 2.9462 + 0 0.806
1.15 1.1841 + 0 1.007
1.20 6.0536 - 1 " 1.266
1.25 3.5366 - 1 1.414 .

©1.30 2:2507 - 1 1.547°
1?52{ 1.5206 - 1 1.669
1.40. 1.0740 - 1 1.728
1.45 7.8507 - 2 1.887
1.50 5.8981 - 2 1.984
1.55 4.5319 - 2 2.077  +
1.60 3.5481 - 2 12.165
1.65 2.8225 - 2 2.249
1.70 2.2764 - 2 2.330
1.75 1.8580 - 2 2.406
1.80 1.5326 - 2 2.480

- 1.85 1.2760 - 2 2.551
1.90 . 1.0713 - 2 2.619 . |
1.95 9.0632 - 3 '2.685 °
2.00 7.719 - 3 2.749 '
2.05 . 6.6158 - 3 2.811
2.10 5.7023 - 3 2.871

P

"
. (‘1

" e

-
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M?c'r'\ No. Ray Arpa o w
M ‘ A x 10" n Equation (2.46)
2.15 4.9407 - ‘3’" 2.920
*2.20 4.3015 - 3 2.985
2.5 N 3.7617 - 3’ - 3.010
2.30 4 3.3034 - 3 . 3.094 °
2.40 2.5765 - 3 . © 3203
2.50 2.0370 - 3 3.302
©2.60 1.6300 - 3 3.388
2.70 ' 1.3183 - 3 3.477
2.80 1.0765 - 3 3.563
2.90 . 8.8681 - 4 3.645
3.00 © 7.3630 - 4 3.7244
.20 , 5.1842 - 4 3.875
3.40" 3.7409 - 4 4:015
3;66 ' 2.7570 - % : 4.148
3.80" 2.0696 - 4 4.272°
4.00 1.5789 - 4 4.308
4.50 8.5195 - 5 4.660
5.00 ;.9gso 5 4.900
6.00 * 1.9213 - 5 5.314
7.0 " 8.7059 - 6 5.672
8.00 .  4.3952-6 / 5. 966"
~9.00 . 2.4032-6 6.232
v ‘ ’ )
: ' ‘ T ,
Y- .
g
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) T
Mach No. " Ray Arga : w
M Ax10" . y-  Equation (2.46)
x 107 . ‘
10.00 1.4070 - 6 3 6.470
15.00 1.7863 - 7 ~ 7.385.
20.00 4.1414 - 8 8.033
100. 00 . L1724 - 11 ' 11.670
.o - 0 ) 5 "o
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" TABLE 2.2
Mach No. ' Characteristic | characteristic
M- . Angle 'm' (degrees) Angle 'm' (degrees)
Equation (2.47) 3 ‘Equation (2.48)
1.00 © 0.0 ; " 0.000
1.01 4.002 7.925
1.0 8.544 16.323
1.10 11.474 P ) W1 5
1.15 - . 13.142 . 23.787
1.20 14.843 . 25.512
1.25 . 15.958 26.656
1.30 ‘ 16.859 ‘ 27.429
1.35 ' 17.604 | , 27.952
1.80 © 18.231 . " 28.298
1.45 18.766 . 28.517
1.50 . 19.228 28. 644
1.55 19.630, ’ 28.701
1.60 - 19.983 28.707
1.65 '20.295  28.674
1.70 20.572 " 28.612
17| .820 ~ 28.528
1.80 , T 21.082 . 28.428
"1.85 ‘ 21.242 28.316
1.90 21.423 e 28.195
1.95 21.587 28.068
2.00 SR> 0 "  27.938
2.05 . 21.872 o . 27.805
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"Mach No. Characteristic Characteristic
'M! Angle 'm' (degrees) Angle 'm' (degrees)
Equation (2.47) Equation (2.48)

2.10 21.997 27.672
2.15 22.111 27.538
2.20 22.216 27.406
2.25 22.312 | 27.275
2.30 22.401 27.146
2.40 22.560 26.895
2.50 22.696 . 26.656
2.60 — ! 22.814 -i 26.429

2.70 22.916 126.214 -
2.80 23.006 26.012
2.90 * 23.085 25.822
3.00 23.154 25.643
‘3.20 23.271 25.318
3.40_ 23.364 25.033
3.60 23.439 24.781
3.80 23.501 24,559
4.00 23.552 24.363
4.50 23.647 23.963
5.00 23.710 23.731
65007 - 23.788 23.704
7.00 23.832 .23.702
8.00 23. 23.702
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Mach No.

Characteristic Characteristic
'M' Angle 'm' (degrees) Angle 'm' (degrees)

Equation (2.47) Equation (2.48)

9.00 23.876 23.701
10.00 23.889 23.700
15.00 23.917 23{704
20.00 23.926 23.708
100.00 23,937 23.803
® 23.938 23.900
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