I W l National Library

of Canada

Acquisitions and

Wt e Wt

Bibliotheque nationale
Ju Canada

Diection des acausitions of

Bibliographic Services Branch des services bibkographigue
335 Wetington Street

Ottawa Ontano Ot (Ontaro)

RTA ON4 RIAUNT

The quality of this microform is
heavily dependent upon the
quality of the original thesis
submitted for microfilming.
Every effort has been made to
ensure the highest quality of
reproduction possible.

If pages are missing, contact the
university which granted the
degree.

Some pages may have indistinct
print especially if the original
pages were typed with a poor
typewriter ribbon or if the
university sent us an inferior
photocopy.

Reproduction in full or in part of
this microform is governed by
the Canadian Copyright Act,
R.S.C. 1970, c¢. C-30, and
subsequent amendments.

i+l

Canada

AVIS

La qualité de cette microforme
dépend grandement de la qualite
de la these soumise au
microfilmage. Nous avons tout
fait pour assurer une qualité
supérieure de reproduction.

S’il manque des pages, veuillez
communiquer avec l'université
qui a conféré le grade.

La qualité dimpression de
certaines pages peut laisser a
désirer, surtout si les pages
originales ont eté
dactylographiées a l'aide d'un
ruban usé ou si l'université nous
a fait parvenir une photocopie de
qualité inférieure.

La reproduction, méme partielie,
de cette microforme est soumise
a la Loi canadienne sur le droit
d’auteur, SRC 1970, ¢. C-30, et
ses amendements subsequents.

A Unified Model for Protocol Test Suite Design

Priyadarshi Tripathy

A Thesis
in
The Department
of

Electrical and Computer Engineering

Presented in Partial Fulfillment of the Requirement
for the Degree of Doctor of Philosophy at
Concordia University
Montreal, Quebec, Canada

November, 1992

© Priyadarshi Tripathy, 1992

A

National Library
of Canada

Acquisitions and
Bibliographic Services Branch

295 Wellington Street
Ottawa, Ontar.o
K1A ON4

BibLotheque nationale
du Canada

Direction des acquisibons el
des services biblloagraphigues

5 e Wellmagton
Ottawa (Ontano)
KI1AONS

The author has granted an
irrevocable non-exclusive licence
allowing the National Library of
Canada to reproduce, loan,
distribute or sell copies of
his/her thesis by any means and
in any form or format, making
this thesis available to interested
persons.

The author retains ownership of
the copyright in his/her thesis.
Neither the thesis nor substantial
extracts from it may be printed or
otherwise reproduced without
his/her permission.

L’auteur a accordé une licence
irrevocable et non exclusive
permettant a ia Bibliotheque
nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de sa these
de quelque maniere et sous
quelque forme que ce soit pour
mettre des exemplaires de cette
these a la disposition des
personnes intéresseées.

L’auteur conserve la propriété du
droit d’auteur qui protege sa
these. Ni la these ni des extraits
substantiels de celle-ci ne
doivent étre imprimés ou
autrement reproduits sans son
autorisation.

ISBN 0-315-84672-0

Canada

ABSTRACT
A Unified Model for Protocol Test Suite Design

Priyadarshi Tripathy Ph. D.,

Concordia University, 1992.

This thesis is concerned with developing new algorithms for solving some basic problems
of conformance testing. In particular, the following problems of conformance testing
are considered: i) generation of test cases from Language Of Temporal Ordering
Specification (LOTOS) and Specification and Description Language (SDL), i) selection
of test cases which meet certain data flow coverage criteria, and 1ii) representation of
test cases for Local Single-layer (LS) and Remote Single-layer (RS) architectures. The
algorithms presented in this thesis can be used to solve in an efficient manner these
fundamental problems of conformance testing. These algorithms rely heavily on two
concepts: the Extended Finite State Machine (EFSM) chart and the Input/Output (1/0)
diagram. In this thesis, we introduce a unified model (using the EFSM chart and the 1/0
diagram) for existing protocol specification languages. Based on the new unified model,
a conceptually simple, easy to implement and computationally efficient methodology is

proposed in this thesis for studying conformance testing.

In this thesis, the protocol specification is mapped into an EFSM chart. The structure
of input/output data is modeled by hierarchical diagrams called 1/O diagrams. ‘Test cases
are generated from the EFSM chart. Furthermore, a data flow graph is constructed from
the chart, and used to identify the protocol functions for testing the data flow aspects of
an Iruplementation Under Test (IUT). The zero-one integer programming technique is
used to select test cases to meet the data flow coverage requircment. The selected test
cases are modeled as a dependency graph and then evaluated by taking predicate slices
from the test case dependency graph. Predicate slices are used to identify infeasible test
cases that must be eliminated. Redundant assignments and predicates in all the feasible
test cases are removed by reducing the test cases. Reduction is achieved by using the test

case dependency graph as well as the data flow graph. The reduced test case dependency

ii

graph is adapted for LS and RS architectures. The tester’s behaviour in each test case
is obtained by a series of transformations called representation and selection. Test case
representation refers to the steps of inverting the direction of events and the generation
of base and dynamic constraints cn the events. These constraints are gensrated in the
form of an 1/O diagram. Test case selection refers to the steps of assigning a test purpose
according to the hierarchy of test cases in a test suite and then completing the tester’s

behaviour by assigning verdict and parameter value information.

iv

TO MY PARENTS
PROFESSOR KUNJABEHARI AND SUREKHA

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to Professor B. Sarikaya, for his continued
guidance, suggestions, encouragement and his careful reading of the manuscript and
providing criticism on writing. Without his supervision, this work would not have been

possible. I owe my knowledge of protocol testing to him.

I would like to thank Professor G.v.Bochmann of University of Montreal for 4nancial
assistance. | would also like to thank Professor J. W. Atwood for going through the thesis

and improving the technical quality of the manuscript.

It is with great pleasure that I acknowledge the support and motivation provided by
all my colleagues of Room No. H847, and in particular Sagar, Raghu, Costas, Apama
and Hamid. 1 also wish to acknowledge Ashima for her careful reading and improving

the English of this thesis.

Last but not the least, it is with pride that I acknowledge the support and inspiration of
my parents Professor Kunjabehari and Surekha, my brothers Bipeen and Banabehari, my
sisters Kannan, Nalini, Gitanjali, Krishna and Yasodhara and my brothers-in-law Benoy,

Pratap, Debendra, Rajendra and Biju —back home.

vi

TABLE OF CONTENTS

.. X
LIST OF FIGURES AND TABLEScoooioteeeeeriictere sttt e, X1t
CHAPTER I: INTRODUCTION ...oooeioieieeeeecereee ettt e 1

1.1 Formal SpecifiCationccccccuvvuririirereenenecreieteren e e e 4
1.2 Conformance TEeSHNE ...ccovevieviererreirreesere e sttt s 6
1.2.1 Test Method OVEIVIEW ...ccveevveeiiriiiieieieecieeiie e e 6
1.2.2 Types Of TESUHNEccormiiiiirtrcesenr e sttt 8
1.2.3 Test SUite STUCIUTEc.coieeriiiierirtere et iereree e r et 8

1.3 Test Suite DESIEN oivviiiiiriieitci ettt e st 9
1.3.1 FSM Based Test DESIENc.ccveeeeiisecreienes et 9
1.3.2 Estelle Based Test Design ..ooceevniinveniiineceniiencecreeeeeiee 11
1.3.3 LOTOS Based Test DeSign ..ccovveroueerrineeiiiecieniinieercse i 12
1.3.4 SDL Based Test DeSignccoccovveevenienineenienieniete e eveee v 13
1.4 Objective and MOtIVALIONcccooviiivirieiiniiiiiece e e 13
1.5 Original ContribUtiONScccceiieiiieneneniirnrnieneees e e 14
1.6 Outline of the TRESIS wcviririii it 14
CHAPTER II: UNIFIED MODELc.coiviiiiiiiiieeeeeeee e 17
2.1 Abstract Syntax NOtAton 1cooiiiiieiiriiieenieee e e 17
2.2 SDL Specification Languageccccoveivireeiiiiiirnnnniiceeieiiies v 19
2.3 LOTOS Specification Languagec.ccuueveeecinirvicneiiinieneceneeesi e 21
2.4 1/O DIQBIAM ocuiiviiiiirnieecrescert e st eeseebesresse e e e e sesrese e e erasesees e enbeenaniane 23
2.4.1 1/O Diagram for ASN.L .t 24
2.4.2 1/0 Diagram for ADTcccoeeirimneniiene e 28
2.4.3 ASP/PDU Hierarchy from Specificationccovveciiiiiicnnee 30

2.5 Transition System and EFSM Chartc..coccoovviiiiivcinncciininniiiiicins. 32
CHAPTER 1I: EFSM CHART OF SPECIFICATIONScccceoiiniiiiiicnininnnn 35
3.1 From LOTOS to EFSM Chattcccoeiiviriii e as
3.1.1 Transformation of a LOTOS Specificationccccvvviniiiiinnns 35
3.1.2 The Chart Construction AIgorithmccccoevvivimeeniiiinninnneennreene, 38

3.2 From SDL to EFSM Chartcccooviviieiiminiieniiieccineiee e 50)
3.2.1 Transformation of SDL Specificationc.ccceeeevinnircreieine e 50
3.2.2 The Chart Construction AIZOrithmcccoeoiinrirnininnencnne e 58

3.3 Size of the EFSM Chartc.coveivvciiivenciciiieneinsinieccsisse et 62
CHAPTER IV: GENERATION AND ANALYSIS OF TEST CASES 64
4.1 Test Case Generation AlZOTIthImccccecvevieviiiiniiiiieniiecccee 64
4.2 Data FIOw GIaph oot et s 68

vii

4.2.1 Decomposition of Data Flow Graph ..o 72

4.3 Test Selection from Protocol FURCHON ..c..covienvieeireciiiic e 73

4.4 Test Case Dependency Graph ... 77
4.4.1 Predicate SHCES .oocvviieeiiicinniie ettt e 80

4.4.2 Infeasible Paths in Test Casesccccvvvvinrenrnnreininiininiineeecesiens 83

4.5 Reduction Of Test CASES ..ccvvvivviiiiniinisiinniiiniirri s nrerine e esssns 84
4.5.1 Reduction of Test Cases Using TCDGccoeveniieievininnnneeciiinnn, 84

4.5.2 Reduction of Test Cases Using DFGccccoivnnviniinnennnnninnne, 86
CHAPTER V: TEST SUITE SELECTION AND REPRESENTATION 89
5.1 Constraint REPresentationoc.coeereneiiiiiieneses s 90
5.1.1 Instantiated 1/O Diagramccccccemviimivccssmemmmmniesnnsmininsnnenen 90

5.1.2 Base CONSTANLS ..ccvviceeeeeriiinieesneerrensrisiessseesssenisssssnssmsssssssssssvnssnss 90

5.1.3 Dynamic CONSITAINLS ...cooviivminiiirieaniiiriiiissinanesssesiessseesssneanes 98

5.2 Control Flow Behaviour Representationoccvveeeiiennieninininnnnennen, 102

5.3 Test Case HIETArChY ..c.ovviiiiieiiicrniricei ettt snr e 103
SATESE PUIPOSES eevureiiietriiirireiie e eeniissesssetenaesssesssesisses ssenssinssssonsrsssssssssssnsans 104

5.5 Valid Behaviour Test Selectionc.cceevveieneninnienieninnienenenninriece i, 104
5.5.1 Behaviour Enhancement and Verdicts Assignmentcooeveenennen. 104

5.5.2 Test Purpose and Parameter VAIUesccccvvvvveeeiiiinneecinirines sevverennnnas 107

5.6 Adaptation of Generated Test Cases for RS Architecturecoeeneeee. 107

5.7 Comparison Between Test Selection Strategieseevivienvnieviviniierneniininn 110
CHAPTER VI: APPLICATIONS ...ttt enrcnsns e e 111
6.1 ACSE Specification in LOTOS . et svecsninnceeereeeseenens 111

6.2 The LOTEST SYSIEIM ..occcciiiii et sne e st sssseesissssins sesusnnns 113
0.2.1 COMPIIET ittt st sa e crre s 114

6.2.2 Chart GENETALOT ..cceiiiieeiererrenirerssiinsesisessessiaesssracasssnsesrssesssssessesnoses 114

6.2.3 Interactive TOOIScivererevmnieiniiinennic s e s 115

6.3 Test Suite Design From ACSE Protocolccocvevcinenvininnnnninierieerann 116
6.3.1 Generation and Selection of Test Casescoveevvscremrirvnncccscevecsunians 116

6.3.2 Analysis and Reduction of Generated Test Casesccovverenenenens 119

6.3.3 Dynamic Constraint Representationoceeeinenemeersnsneeseenenien 122

6.3.4 Test Case Selection and Representationccceeeveverveneieecscnennns 124

6.4 Test Suite Design for LAPB Protocolcceceiveeemeirenienssennnnenoeneecenans 127
6.4.1 Analysis and reduction of Generated Test Casesccceeeennnnn. 128

6.4.2 Test Case Selection and Representationccceeeeeeenerenserarnnenens 132
CHAPTER VII: CONCLUSION AND FUTURE WORKccccccecinvenvnvnrennenns 134
7.1 CONCIUSION c.eiiirieeieicesteniiee e e steriereessssstsestsessraeerasseseassesassssresssesseeanansonns 134
T2 FULUTE WOTK ..oeviiiiieiiiiiiriiire e sseercien e estssst e s cetaaesae s ees ssreseresesees sennsaness 136
REFERENCES ..ot eneciieitsestrisst st e sase st st e e ssassasssssesesasesesns 138

APPENDIX A: EFSM CHART OF ASCE PROTOCOL ... RN
APPENDIX B: TEST GENERATED FROM ACSE PROTOCOL 168
APPENDIX C: EFSM CHART OF HDLC PROTOCOLccoooiviiiiiinne, 170
APPENDIX D: CONSTRAINTS GENERATED FOR THE TEST CASE Ty 186
APPENDIX E: CONSTRAINTS GENERATED FOR THE TEST CASET,7 191

X

LIST OF ABBREVIATIONS

ACSE Associatdon Control Service Elements

ACT Asynchronous Communication Tree

ADT Abstract Data Type

ASN.1 Abstract Syntax Notation One

ASP Abstract Service Primitive

CCITT International Consultative Committee for Telephones and Telegraphs
CCS Calculus of Communicating Systems

CFBR Control Flow Behaviour Representation

CS Coordinated Single-layer

CSE Coordinated Single-layer Embedded

CM Coordinated Multi-layer

DFG Data Flow Graph

DS Distributed Single-layer

DM Distributed Multi-layer

EFSM Extended Finite State Machine

FDT Formal Description Technique

FSM Finite State Machine

HDLC High-level Data Link Control

1/0 Input/Output

ISO International Organization for Standardization
iuT Implementation Under Test

LAPB Link Access Procedure

LM Local Multi-layer

LOTOS Language Of Temporal Ordering Specification
LS Local Single-layer

LSE Local Single-layer Embedded

PCO Point of Control and Observation

PDU
PIXIT
REBC

RS

RSE
RTCDG
SAP
SDL
SEBC

TN
TTCN

Protocol Data Unit

Proiocol Implementation eXtra Information for Testing
Receive Event Base Constraint

Remote Multi-layer

Remote Single-layer

Remote Single-layer Embedded
Reduced Test Case Dependency Graph
Service Access Point

Specification and Description Language
Send Event Base Constraint

Test Management Protocol

Transition Number

Tree Tatle Combined Notation

xi

Figure 1.1
Figure 1.2
Figure 1.3
Figure 1.4
Figure 2.1
Figure 2.2

Figure 2.3

Figure 3.1

Figure 3.2

Figure 3.3

Figure 3.4

Figure 3.5

Figure 3.6

Figure 3.7

Figure 4.1

LIST OF FIGURES AND TABLES

Protocol 18YErsicccemniiiiiiinieniiiniinis s ce et esnee s 1
Abstraction of an cntity in a multi-entity modelcccoeeiiiiiins 2
Domain of protocol engineeringcoveveevimiienieneeciiieennniennns 3
Abstract test Methodsc.cevvvieereivniininiiennii e esesene e 7
The components of an I/O diagramcccvneneinniiniicnnnne. 25

(a) Sequence. A consists of B, followed by C,
followed by D ..eoeiiiiiitiiniiiiitin e e 25
(b) Iteration: A consists of zero or more repetitions of B 25

(c) Unordered sequence: A consists of B, C, and D

ANY OTUAET oevriiiicinir e e e s s e ae e 25
(d) Alternation: A consists of B or C not bothcccocviiinniinnn. 25
(a) Optional_leaf_nodeccoeveeiuninmneiriiisee e 25
(b) Nonoptional_leaf_nodeccccvivminiinininniiininieneei, 25
(c) Default_leaf_nodeccocoreceiinecnnnnicniinieeen e 25
() Extension_leaf_nodec..ocevirvnieiniccinininiieiens 25

Data transfer process HDLC and the procedure
TErANSMIt-fTAMES. .o tviiiiiecece et s st 51

After elimination of procedure call

TETANSIMIL-fTAMES iiiiviieiieirieiiceeterrteeeeesivarrnnessressesseasassescsrarasnseene 52
Definition of INRES_entityccccccevveeriineenviinecreieniincciinnncenes 53
Coder_INi PIOCESS wocuvievievrvererreierrsrreirsessnnesisisisesosassanessessnsssssnes 53
Modified Coder_Ini processc.cuvvvuerviniinineresssncsveeinnnnnnennns 55

Part of the Initiator process of Inres protocol

With SaVe CONSIIUCT ...ooviiriiiirietiercsrnir ettt 56
Behaviour that may be replaced for Save

conStruct IDATTEQ coccvvivieiiiiiiieiirniie e s cece et sran e e 57

Transport service specification Chartccccevvevvenviecnrnnenneeenns 66

xii

Figure 4.2

Figure 4.3
Figure 4.4
Figure 4.5
Figure 4.6
Figure 5.1
Figure 5.2
Figure 5.3
Figure 6.1
Figure 6.2

Figure 6.3
Figure 6.4
Figure 6.5
Figure 6.6
Figure 6.7
Figure 6.8

Figure 6.9

Figure 6.10
Figure 6.11
Figure 6.12
Figure 6.13
Figure 6.14

(a) m¢y, condensed chart M@Rs ...eeveviviiiieieeecc e 67
(b) m¢a. condensed chart Mep@C| ooeeeveeeeceieieee e ee s 67
(¢) m¢3, condensed chart Moa@Nn7 ...ooeviviiviies covvvceirreeeeeeeee e 67
(d) A test case of transport service specificationccccvuvene. 67
SEATCH B ..evvveeeeeiieierieieieeeeree ettt e 75
test case dependency graph of the test case (. .viveeicvienennn, 80
Predicate slices of the test case dependency graph ty 83
Reduced test case dependency graph of the test case ty 8O
The LS test architectureocveveeeieinvivinreece e e 89
Suitable structure for a single-layer test suite ...cooeeveecvenninnnne. 108
The RS test architeCtureovveeeeeeeiniiicereniece e cee e 108
Global structure of LOTEST ..cccviivniiiicieereieie e 114
A part of the ACSE data flow graph displayed
DY LOTEST ettt e 18
Test case dependency graph for 27 .covvvvvveeeniiiiinicnee e 120
Predicate slices of the dependency graph t27 .cocooveivviviineiincn 120
Reduced test case dependency graph of test case 12y .oovveeeeenennne 121
ACSE test SUite SITUCIUTEooviveieeereirieierecreneneeenersreeseecseeseenees 124
Test purpose of the test subgroup A-ABORT request 125
Control flow behaviour representation of the RTCDG
OF 20 1 ieriiiiiiirreeeeeeerrtrieees et erstessee st esbaessbeeseearrtortebe b e ratabereseeaeenbes 126
Enhanced CFBR of the selected teSt €ase 129 .oovovvivivrrreeeeeiinereanns 126
A part of the HDLC data flow graphccccociviivvniieenenencces 129
Test case dependency graph for t17 .vveecenininnn e, 130
Predicate slices of the dependency graph 117covvvvevnvinicniinns 131
Reduced test case dependency graph of test case)7 «.ccceveeencnes 131
Control flow behaviour representation of the RTCDG
o) 18 C T N TOP PO 132

Figure 6.15
Table 2.1
Table 2.2

Enhanced CFBR of the selected test Case t17 .occcvvvrevnevcriceenecnnenns
The ASN.1 PHIMItIVE tYPES .ovvrviniireiiiienenrcreesenreeseeneemreresienesesae

The principal ASN.] CONSITUCIOLScovvoceirvrerimierinmrisisiisessns

xiv

CHAPTER 1

INTRODUCTION

A computer communication protocol, or simply protocol, is a set of rules that govern
the communication and interaction between various components in a distributed system.
In order to organize the complexity of these rules, they are usually partitioned into a
hierarchical structure of protocol layer entities (Figure 1.1), each built upon its predecessor

layer.

Layer
71 Applicaion e ——» Apphication
I Interface t
6| Presentation |« » Presentation
Interface I
5 Session ad * Session
4| Transport |« : * Transport
3 Network fae o Network * - 1 Network Lo ’l Network
n J
2 Data link » Datalink » Datalink e~ » Data luk
L - t
1 Physical —»! Physical Physical Physical

Figure 1.1 Protocol layers.

Although the number of layers may differ from network to net vork, the purpose of
an entity at layer N is to provide certain services, called (N)-services, to its upper layer
entity using the services provided by the (N-1) layer while isolating the implementation

details of the lower entities from the upper layers. Pecr (N)-entities communicate with

each other through the (N-1)-service provider by using the (N)-protocol (Figure 1.2).
An (N)-protocol defines the rules and conventions for the communication between two

(N)-entitics.

(N+1)-entity (N+1)-entity
) [
(N)-ASPs (N)-ASPs
4
. (N)-protocol
(N)_cnt]ty P N b (N)‘cntity
I(N-])-ASPS (N-l)-ASPsI

(N-1)-service provider

Figure 1.2 Abstraction of an entity in a multi-entity model.

Protocol design is not a new problem. The informal techniques traditionally used
for desigming and implementing many practical protocols have been largely successful,
but also yield a disturbing number of errors or unexpected and undesirable behaviours in
most protocols. The protocols being developed today are larger and more complicated
than even befoie, and the automation of the whole design process is highly desirable. The
fundamental and challenging problem that a protocol designer now faces is how to design
a large set of communication and interaction rules for information exchange in such a way

that the rules arc minimum, logically consistent, complete and efficiently implemented.

Recently, formal methods and software engineering methodologies have been exten-

sively applied to protocol design. As a result, a new field called protocol engineering [39]

has emerged. The domain of protocol engineering includes protocol and service spec-
ification, protocol validation and verification, protocol synthesis, protocol conversion,
performance analysis, automatic implementation and conformance testing (see Figure
1.3). Protocol specification plays a key role in all these activities, and the use of formal

specification allows the partial automation of some of these activities.

Protocol designer
Service Validation/
specification Verification
Synthesis Conversion/
/ Interworking
Protocol Performance
specification | <-———*| analysis
Automatic Conformance
Implementation testing
o o oeees - e
DRl S Protocol implementation
P .
e

Figure 1.3 Domain of prowcol engincering.

1.1 FORMAL SPECIFICATION

Many different formal specification languages have been developed for various pur-
poses, and many of them have been applied to the description of distributed systems
and communication protocols. The most important approaches are finite state machines
(FSM), formal grammars, Petri nets, algebraic calculi, abstract data types, programming
languages, logic programming and temporal logic. Various extensions of the above ap-
proaches have been defined by combining them with programming language or abstract
data type approaches for the description of parameter values. In addition to the above
formal methods, CCITT and ISO have developed so-called Formal Description Tech-
niques (FDTs) for the description of protocol and services, namely Estelle [7], LOTOS
[4] [26], and SDL {2}, [9].

In Estelle, the specification module is modeled by an extended finite state machine.
The interaction parameters and state variables are covered by type definitions, expres-
sions and statements of the Pascal programming language. In addition, certain Estelle
statements cover aspects related to the creation of the overall system structure consisting,
in general, of a hierarchy of module instances. Communication between modules takes
place through the interaction points of the module, which have been interconnected by
the parent module. Communication is asynchronous, that is, an output message is stored
in an input queue of the receiving module before it is processed.

LOTOS, a process algebraic language, is a combination of the Calculus of Com-
municating Systems (CCS) [41] formalism for behaviour description and Abstract Data
Types (ADTs) called ACT ONE [13] for data description. A set of composition rules are
used to derive larger specifications from the primitive notions of event and processes. A
set of processes communicate among themselves through synchronization. Rather than
simple value passing as in Estelle, LOTOS processes can agree on a common value

when rendezvous is achieved.

SDL has the longest history. A subset of the present language was already recom-

mended by CCITT in 1980. It is based on an EFSM model. For interaction parameters

and state variables, it uses the concepts of abstract data types with the addition of a nota-
tion of program variables and data structures, similar to what is included in Estelle. The
communication is asynchronous and the destination process of an output message can be
identified by various means, including process identifier or channel names. In contrast to
other FDTs, SDL was developed, right from the beginning, with an orientation towards a
graphical representation. The language includes graphical elements for the FSM aspects

of a process and the overall structure of a specification.

In addition to FDTs described above, CCITT and ISO developed semiformal tech-
niques Abstract Syntax Notation 1 (ASN.1) [28] for interaction parameters and Tree

Tabular Combined Notation (TTCN) [30-31] for specifying test suites.

The Abstract Syntax Notation One was originally developed in conjunction with
CCITT recommendations of 1984 on message handling systems. [t is a notation for
describing data structures, similar to data type definitions available in programming
language such as Pascal or ADA. 1t is applied to the description of OS] application
layer protocols, where it is used for the definition of the protocol data units (PDUS).
Protocol data units are messages exchanged between different protocol entities. The same
notation can also be used to define service primitives and PDUs of other layers. The
notation includes a number of predefined data types, such as integers, reals, booleans, bit
strings, octet strings and various kinds of character strings. It also allows the definition of
composed data types, such as a group of elements (called SEQUENCE, corresponding to
“record” in Pascal), a list of identical types (called SEQUENCE OF), a type of alternatives
(called CHOICE, corresponding to Pascal’s variant records), a tag defining a code to

distinguish between different alternatives, and others.

The TTCN is relatively recent, and has been developed for the description of test cases
for ISO conformance test suites {SS5]. The language includes several different notations.
The overall organization of the language is in terms of a collection of tables defining
different aspects of a test case, such as service primitives, PDUs and their parameters,

order of interactions and constraints on parameter values. The intcraction ordering is

defined in terms of a conceptual tree, where each branch represents a possible execution
order. In addition to the tabular notation, a linear form of TTCN is being developed for
the exchange of test cases in machine—readable form. The ASN.1 notation can also be

used for certain aspects of test descriptions.

1.2 CONFORMANCE TESTING

OSI protocols are presently being implemented by a large number of computer
manufacturers and communication companies. In order to achieve global interworking
among heterogeneous systems, the most practical means is testing. There exist three
types of testing: performance, interoperability and conformance testing. The aim
of conformance testing is to check the conformance of the implementations to the
protocol standard. Protocol implementations can be tested by considering a single-layer,
multi-layer, or embedded entity as a whole and stimulating the entity from the layers
above and below and observing the reactions of the Implementation Under Test IUT).
Stimulation/observation is done by sending/receiving (N)-service primitives, also called
(N)-Abstract Service Primitives (ASPs) and (N~1)-ASPs (the latter including (N)-PDUs)
by an entity called the tester. Service Access Points (SAP) used by the tester for this

purpose are called Points of Control and Observation (PCO).

1.2.1 Test Method Overview

Various abstract methods [46] (Figure 1.4) are defined by ISO and CCITT based on
the control and observation (i.e., availability of the ASPs) in an Implementation Under
Test (IUT). The two main classes of test methods are local and external. In local test
mcthaods points of control and observation are defined at the lower and upper entities of
the TUT. In other words, (N)-PDUs, (N)- and (N-1)-ASPs are assumed to be available
such that upper and lower testers can control and observe them. External test methods,
on the other hand, are characterized by the observation and control of PDUs taking place,

on the other side of the underlying service provider from the IUT.

There are three types of external test methods: distributed, coordinated, and remote.
Each comes in three variant forms: single-layer, multi-layer, and embedded. Single-layer
methods are designed for testing a single-layer without reference to the layer above it.
Multi-layer methods are designed for testing a multi-layer IUT as a whole. Embedded
methods are designed for testing a single-layer within a multi-layer IUT, using knowledge
of what protocols are implemented in the layers above the layer being tested. The external
test methods vary according to their ability to define a test management protocol (TMP) to
carry out the test coordination procedures or to express the test coordination procedures

only in terms of requirements.

single - layer (LS)

— local — multi - layer (LM)
embedded (LSE)
mths(t)ds — single - layer (DS)
distributed ~———+—— multi - layer (DM)
L—— embedded (DSE)
——— single - layer (CS)
external coordinated —————— multi - layer (CM)
embedded (CSE)
single - layer (RS)
L. rcmote — multi - layer (RM)

embedded (RSE)

Figure 1.4 Abstract test mcthods.

1.2.2 Types of Testing

The objective of the conformance testing is to establish whether the implementation
being tested conforms to the specifications in the relevant standard. Practical limitations
make it impossible to be exhaustive, and economic consideration may further restrict
testing. Therefore, four types of conformance testing are recommended by 1SO, according
to the extent to which they provide an indication of conformance.

i) Basic Interconnection Test: This provides a limited testing to check that the IUT can
establish a basic interconnection before thorough testing is performed.

it) Capability Tests: This is used to check that the IUT can provide the observable
capabilities based on the static conformance requirements, which are the requirements
describing the options, ranges of values for parameters and timers, etc.

iti) Behaviour Tests: They test the dynamic conformance requirements of an IUT which
are the requirements (and options) defining the observable behaviour of a protocol. A
large part of behaviour tests, which constitute the major portion of conformance tests,
can be generated from the formal specification.

iv) Conformance Resolution Tests: These tests are used to provide definite diagnostic
answers to specific requirements, such as previously identified situations that may cause
incorrect behaviour of an IUT. For example, they provide a yes/no type of answer for
whether a particular feature, such as reset, is implemented in an IUT.

In addition to conformance testing, the following types can be performed on an
IUT depending on the application: interoperability tests, to check whether two or
more implementations that pass the conformance tests can operate together, performance
tests, to measure the maximum throughput that can be obtained, and robustness tests to

determine how well an IUT recovers from various error conditions.

1.2.3 Test Suite Structure

The test events, atomic interactions between the IUT and the upper or lower tester

used in conformance testing, are described in an abstract conformance test suite. The

tests are represented in a hierarchical structure. The key level is called the rest case which
has a narrowly defined purpose. Test groups consist of several test cases according to a
logical ordering of execution. A test case is divided into test steps each of which consists
of several test events. Once the test cases are designed, they can be written in a test

notation such as TTCN,

1.3 TEST SUITE DESIGN

Designing test cases (suites) can be considered to be the most active research area
of protocol testing. Research in this area is inspired from the rich results obtained
previously in hardware/software testing. Nevertheless, it is evolving towards its own
set of techniques, tools and disciplines, possibly due to the distinct characteristics of
protocols and their architectures. We will discuss the existing protocol test case design

based on FSM, Estelle, LOTOS and SDL.

1.3.1 FSM Based Test Design

Protocols are typically modeled as an extended finite-state machine [3] where the
control portion is the finite state machine and the data portion consists of the program
segment. The control portion of a protocol (henceforth referred to as the protocol for
simplicity) can be specified as a deterministic finite state machine (FSM) [35]. The
state of a protocol is defined as a stable condition in which the protocol rests until a
stimulus, called an input is applied. The protocol generates a response to the stimulus,
called output, (which may be null) when an input is applied, and moves into a new state
(which may be the same as the previous state) where it stays until the next input. This
exercise is complicated by the limitations on the controllability and the observability
of the protocol implementation. In most cases, because of the limited controllability,
the implementation cannot be directly put into a desired state, usually requiring several
additional state transitions. Unless efficient solutions are found, this limitation may

resuft in test sequences with infeasibly large numbers of state transitions. Limited

observability prevent the external tester from directly observing the state of the protocol

implementation, which is critical for a test to detect errors.

Typically, the formal conformance testing techniques generate a set of input sequences
that will force the FSM implementation to undergo all specified transitions. These
techniques can be classified [11] as the transition tour method [44], [51], [63], the
distinguishing sequence method [43], [17-18], [21], [35], the characterizing sequence
method [18], [21], [10], [35], and the unique input/output sequence method [48—49], [1].
All of these techniques assume the so-called black box approach where only the outputs
generated by the implementation (upon receipt of inputs) are observable to the external

tester.

The transition tour method generates a state tour that exercises every state transition
of the implementation [44], [51] and does not address the observability problem described
above. Fer certain protocols, which have a special message to determine the state of the
protocol (i.e., the observability problem is solved by the specification), the length of the
tour can be minimized by the technique given in [63], which is based on a graph theoretic

concept called the Chinese Postman Problem 136].

The remaining three methods emphasize the observability problem. In the distinguish-
ing sequence method, an input sequence is found for a protocol such that the outputs
generated by the implementation will identify its state. The requirement for this method
is a fully specified protocol, which may be too strong for most actual protocols. The
characterizing method defines a ser of input sequences for a subset of states such that the
resulting set of output sequences ultimately distinguishes each state from the others. In
both of these methods, the current state of the implementation is assumed to be unknown
and the sequences generated by them are powerful enough to find the current state. In
other words, both the distinguishing and characterizing sequences answer the question of
“what is the current state of the implementation?". However, in the unique input/output
sequence method, this question is relaxed to "is the implementation currently in state x

7", which results in much shorter sequences than the other two methods. A minimization

10

of the resulting sequences generated by the unique input/output method is given in {1},
which is based on a more general form of the Chinese Postman problem called the Rural
Chinese Postman problem. Experience with this methad indicates that the test sequences

generated are about one-third the size of those generated by ad hoc methods [1).

All of the above methods are based on the deterministic finite state machine. Sys-
tematic test design methods from the nundeterministic finite state machine are not yet

well developed. This topic will be discussed in chapter V of the thesis.

1.3.2 Estelle Based Test Design

Since deterministic FSMs model only the control component of the protocolfservices,
there is a need to extend the FSM-based techniques to cover the data component, i.c.,
interaction primitive processing and data transfer mechanisms. Recently, two methods
have been proposed to design test cases for testing the data flow aspects of an IUT.
Both methods assume that protocol specifications are given in Estelle as a single module
specification called a normal form specification. The first method [61-62] is based on
data flow analysis techniques [45] and focuses on tracing the flow of data through the
associations between assignments of values to variables and references of these variabics
in either assigning values to other variables or determining the outcome of conditional
branching. The second method [52], [15], applies the principles of tunctional testing {25].
In the functional testing method two different graphs are obtained from the normalized
specification: a control graph for major state changes and a data flow graph to show
the flow of data from input service primitive/protocol) data unit parameters to the context
variables and from the context variables to output service primitive/protocol data unit
parameters.

The Control graph is an FSM, thus the techniques described in section 1.3.1 are
applicable. The data flow graph shows global flow of data over context variables. The
data flow graph is partitioned into blocks, where each block corresponds to functions of

the protocol. Test suite design with this methodology is based on obtaining the control

1

sequence for a test case and enumerating the parameters of the interaction primitives.
Each block is tested with one or more test cases until all the arcs in the partitioned data
flow graphs are covered. The resulting tests are used as behaviour tests for establishing

the dynamic conformance of IUTs.

The ahove method is used in designing test suites from a more general :10del called
an EFSM chart in this thesis. We use the zero-one integer programming technique for
selecting the test cases, which will adequately exercise the protocol functions identified
from the data flow graph. The zero-one integer programming technique is used in the

path selection problem in software testing [65].

1.3.3 LOTOS Based Test Design

There has been much research on test suite generation from LOTOS specifications.
The first related work can be found in [6] and [66], where the derivation of conformance
testers T(S) for any specification S has been investigated. In [6] a failure model is used
to identify processes that are testing equivalent, whereas in [66], a syntactical approach is
explored, based on the work reported in [56]. The method is named the CO-OP method
after its main components, the sets named COmpulsory and OPtional behaviours. At
present thc CO-OP method can produce canonical testers for basic LOTOS behaviour
expressions that do not contain process abstraction. A conformance tester is not intended
for practical testing, because of data, which is a significant aspect of protocol testing, not
considered in the derivation of T(S) from the specification S, although some efforts to

extend the approach have been reported [59].

In another related work [19], where manually an FSM model is derived by using
LOTOS interpreter [40], classical methods are then applied to generate test cases. The
authors have not yet considered the data flow aspect with the interpretation approach.
Recently, a group of researchers at Neher laboratories [8] proposed an interactive

methodology to generate test cases from a LOTOS specification. A symbolic evaluation

12

is used to derive test cases in the form of TTCN. However, the methodology is not

algorithmic in nature. It is similar to the method proposed in [1Y].

1.3.4 SDL Based Test Design

Generation of test suite from SDL has been studied by Hogrefe[23]. In this model
SDL processes are transformed into an intermediate form called the asynchronous com-
munication tree (ACT). The ACT is a tree, where the root is the initial system state, the
nodes are all other system states and the arcs represent the valid transitions. The tree is
constructed by considering in turn every possible distinct event that may occur at cach
node. The arc is labeled with the event and the node is identified by the resulting process
states and queue contents. The depth of the trec is restricted by comparing the current
state with the states generated previously; if an identical state is found, that branch 1s
terminated. Finally, this ACT is traversed to generate test cases. Nondeterminism has not
been taken into consideration in the generation of test cases. The test generation algo-
rithm proposed in this thesis, which deals with nondeterminism, can be used to gencrate

a test suite from an ACT.

1.4 OBJECTIVE AND MOTIVATION

Among the problems of protocol engineering, conformance testing is the most
important one. An efficient solution of this problem will demonstrate networks in which
components made by different manufacturers can interwork properly and effectively,
which in turn is necessary to fulfill the requirements of the OSI standard. Therefore, the
main objective of this thesis is the development of algorithms for frequently encountered

problems in test suite design.

In the last decade, a large number of algorithms have been proposed to design test
suites from formal specifications. The emphasis in most of these algorithms is placed on
fault detection capability and optimization of the generated test suites. However, the test

architectures have not been taken into consideration in the design of test suites. Moreover,

13

o

the test generation procedure is restricted to the deterministic model. In this thesis, the

emphasis is placed on the development of new algorithms, which are general in nature,
through a more efficient formulation of the formal model. Thus, our intention is to give
a unified formal model for generation and representation of test cases. The methodology
has to be conceptually simple, easy to implement, computationally efficient, and general

in nature.

1.5 ORIGINAL CONTRIBUTIONS

In the following, we outline a set of individual contributions which, when combined

together, give rise to a test suite design methodology.

We introduce the unified model using the EFSM chart and the 1/O diagram. The
EFSM chart model is used to describe the behaviour of the protocol, and the I/O diagram
model is used to describe the structure of ASPs/PDUs. Algorithms are presented to

translate protocols specified in LOTOS or SDL into EFSM charts.

We present a new test generation algorithm, which takes nondeterminism into con-
sideration. Furthermore, we propose an algorithm for the construction of the data flow

graph that is used to identify the protocol functions.

We model a test case by a dependency graph and evaluate it by taking predicate slices.
We propose two new algorithms to eliminate redundant assignments and predicates from
the test case. The first one is based on the test case dependency graph and the second

one is based on the data flow graph.

We propose algorithms to generate base and dynamic constraints. We obtain control
flow behaviour algorithmically by inverting the direction of the actions and eliminating
all the predicates from the test case dependency graph. Finally, we design test suites

for RS and LS architectures.

We develop LOTEST, a computer aided software tool that partially implements our

test suite design methodology for a LOTOS specification.

14

1.6 OUTLINE OF THE THESIS

This thesis presents a new methodology for the analysis and formulation of new
algorithms for solving basic problems of confrrmance testing. The layout of the thesis
is as follows. In Chapter 11, the concepts of the EFSM chart and the /O diagram are
introduced. Chapter III is concerned with chart construction algorithms. New algorithms
for generation and evaluation of test cases are proposed in chapter 1V, while chapter V
deals with test case representation. In particular, the main contents of each chapter are

as follows:
Chapter II: Unified Model.

This chapter introduces ASN.1, SDL, LOTOS, the Extended Finite State Machine(EFSM)
chart and the Input/Output diagram to be used throughout the thesis. The structure of
ASPs/PDUs is briefly discussed. Also this chapter presents the relationship between 1/O

diagrams and abstract data types.
Chapter III: EFSM Chart of Specifications.

Algorithms to translate protocol specifications into Extended Finite State Machine Charnt
are developed in this chapter. The algorithm proposed by Karjoth [34] to translate a

subset of LOTOS into EFSM chart is extended to full LOTOS and to SDL.
Chapter IV: Generation and Analysis of Test Cases.

Based on the EFSM chart, a new test suite generation algorithm is proposed, which takes
nondeterminism into consideration. Furthermore, a new algorithm for the construction
of data flow graph from the chart is developed, which is used to identify the protocol
functions for testing the data flow aspect of an IUT. The zero-one integer programming
technique is used to select test cases that are optimal in nature to meet certain test coverage
requirements or to exercise certain protocol functions adequately. The generated test cases
are modeled as a test case dependency graph and then evaluated by taking predicate slices
from it. After a brief review of program slicing [64), we introduce the concept of predicate

slices that are used to identify infeasible test cases that must be eliminated. Redundant

15

assignments and predicates in all the feasible test cases are removed by using the test
case dependency graph as well as using the data flow graph.

Chapter V: Test Suite Selection and Representation.

Test cases generated from specifications define the behaviour of an IUT. The behaviour of
LT and UT considered together comprise the tester’s behaviour. The tester’s behaviour
is the dual of IUT’s behaviour. Therefore the tester’s behaviour can be obtained by
behaviour inversion. Behaviour inversion is based on viewing each test case as an
extended finite-state machine. Complete behaviour generation of the test case EFSMs
is a complex process consisting of several steps. In the previous chapters we discussed
the steps of specification transformation, test case generation and test case reduction. In
this chupter we discuss how the control flow representation can be obtained followed by
input/output data flow representation. The control flow representation refers to the steps
of inverting the interaction whereas input/output data flow representation refers to the
generation of base and dynamic constraints on the events, which are in the form of an
1/0 diagram. New algorithms are developed to generate base and dynamic constraints for
receive and send events. Specification of tester’s behaviour in a test case is completed
by test selection. Assuming a test case hierarchy with test purposes as leaf nodes, the
selection process associates a purpose to each test case and using this information, a
verdict is associated with some of the events. Finally the test cases are adapted for the
RS architecture.

Chapter VI: Applications.

We applied the test design methodology to two protocols: Association Control Service
Element(ACSE) protocol written in LOTOS specification language and LAPB protocol
written in SDL specification language.

Chapter VII: Conclusions and Future Work.
Basic contributions of the research described in this thesis are summarized. Also,

possible extensions of the results to specific, or perhaps, new problems are discussed.

16

CHAPTER I1

UNIFIED MODEL

In this chapter we give an overview of ASN.1, SDL, LOTOS and some other concepts.
We provide an abstract syntax of algebraic data types in order to describe the data world
on which the unified EFSM chart model is defined. Furthermore, we propose a unificd
model to describe the structure of ASP/PDUs: Input/Output(l/O) diagram, a graphical
notation based on Jackson Structured Programming [33]. Representation of ASN.1 in
terms of /O diagrams is discussed first. The signature part of the abstract data type
definition of ASP/PDUs can also be represented in the form of 1/O diagram, which is

discussed next. The I/O diagram will be used in test case representation.

2.1 ABSTRACT SYNTAX NOTATION 1

The key to the whole problem of representing, encoding, transmitting and decoding
data structures is to have a way of describing the data structures that is flexible enough to
be useful in a wide variety of applications, yet standard enough that everyone can agree
on what it means. As part of the OSI development work, ISO has devised just such a

notation. It is called abstract syntax notation 1 or ASN.1 for short.

The ASN.1 primitive types are listed in Table 2.1. These types are built into the
language and form the building blocks for more complex types. The names of these
types are reserved words, and, like all ASN.1 reserved words, are always written in

upper case letters.

Primitive type Meaning

INTEGER Arbitrary length integer

BOOLEAN TRUE or FALSE

BIT STRING List of O or more bits

OCTET STRING List of 0 or more bits

ANY Union of all types

NULL No type at all

OBJECT IDENTIFIER | Object name (e.g., a library)
Table 2.1 The ASN.1 primitive types.

The primitive types can be combined to build more complex types. Table 2.2 shows

the five principal constructors used in ASN.1 for this purpose.

Constructor Meaning

SEQUENCE Ordered list of various types
SEQUENCE OF Ordered list of a single type, like an array
SET Unordered collection of various types
SET OF Unordered collection of a single type
CHOICE Any one type taken from a given list

Table 2.2 The principal ASN.1 constructors.

In addition to the primitive types and the constructed types, the ASN 1 standard also
discusses some predefined types that are useful in many applications. Eight different string
types are defined. Each one is a different subset of OCTET STRING. The NumericString

only includes the ten digits O through 9 and the space. The PrintableString includes the

18

upper and lower case letters, the ten digits, space, and the 11 characters in quotes: ™ ()
+-.,/:=7"7. Other string types are provided for the teletex character set, the videotex

character set, various international version of ASCII, and some graphics character sets.

Another useful type is GeneralizedTime. Using this format avoids endless discussion
about whether 5/12 is the Sth of December or the 12th of May. An example value of
GeneralizedTime is 19910704210538.3, which represents 5 minutes, 38.3 seconds aftet

9 P.M. on the Fourth of July, 1991.

In practice, it is common to define complex data types many of whose fields are
optional. For example, CONNECT REQUEST PDUs frequently have a large number
of optional parameters. If these parameters are not used for a particular connection
establishment, they need not be transmitted. To handle this situation, ASN.1 allows fickds
to be declared OPTIONAL. Alternatively, they can be declared DEFAULT, followed by
the value to be used by the receiver if the field is not transmitted. The existence of
OPTIONAL and DEFAULT types potentially causes problems with identifying the data
when they are received. Suppose that a SEQUENCE has ten fields, all of them are of type
INTEGER and all OPTIONAL. Now suppose that only three of them are transmitted.

How does the receiver know which three they are ?

This problem is solved by the concept of tagging. Four types of tags are allowed:
UNIVERSAL, APPLICATION, PRIVATE, and CONTEXT SPECIFIC. Each tag consists
of an integer, preceded by one of the reserved words UNIVERSAL, APPLICATION,
PRIVATE, or no reserved words, in which the tag is CONTEXT SPECIFIC. Tags are

written in square brackets.

2.2 SDL SPECIFICATION LANGUAGE

SDL, the specification and description language adopted by CCITT, is a standard for
specifications of telecommunication systems. The language is built around the following

concepts:

19

i. structure, which is described hierarchally by elements called systems, blocks, chan-
nels, processes, signal-routes and signals;

ii. behaviour, which is described using an extension of the finite state machine concept;

ili. data, which is defined as abstract data types with the type algebra ACT ONE [13];

iv. communication, which is asynchronous via channels and infinite queues.

A SDL specification (a system) consists of a number of blocks interconnected via
channels. The channels are the media through which blocks communicate with each
other or with the environment. A channel can be unidirectional or bidirectional. A
bidircctional channel can be considered as two independent unidirectional channels. The
channels are typed, i.e., they can only contain messages of certain types. In SDL the
messages are called signals.

A block can contain either a substructure of blocks, or one or several processes inter-
connected by signal-routes. The signal-routes are the media through which processes can
communicate with each other inside a block, and with the environment (i.e., everything

outside the block). Signal-routes are, like the channels, typed unbounded FIFO queues.

In SDL, behaviour is defined by a set of processes that execute in parallel. To each
process is associated exactly one input queue, into which all input signals from different
input signal-routes are merged. A SDL process is described by an extended finite state
machine, which consists of states and transitions. For each state there is a set of input
symbols, each with an associated transition, and a set of save symbols. Signals can only
be received from the input queue when the process is in a state, and the reception of a
signal is the only event that can cause a transition to a new state to occur. The signals
to be received are specified in the input symbols. To each input symbol, an enabling
condition can be associated. The signal specified in the input symbol can only be received
if the enabling condition evaluates to true. There is also a possibility to specify that some
input signals should be bypassed when in a specific state. Such signals are specified in

save symbols and are saved in the input queue as explained below.

All signals sent to an SDL process are buffered in the input queue in the order of

20

arrival, until the process is in a state in which it can accept input. Then there are four

possibilities:

i. The signal at the front of the queue is specified as the beginning of a transition, in
which case the signal is consumed by the process; it is removed from the queuve and
the process executes the associated transition.

ii. The signal at the front of the queue is specified in a save construct, in which case
that signal remains in the queue and the signal behind the saved signal is examined.

iii. The signal at the front of the queue is neither specified as an input nor as a save,
in which case the signal is removed from the queue and the next signal in the inpmt
queue is examined.

iv. The input queue is empty, in which case the process is suspended until a signal

arrives to the input queue.

A transition performs a sequence of actions when the process changes state. The
actions can be outputs, tasks and decisions. An output transmits a signal to another
process. A task is a manipulation of internal data. A decision is a generalized case

statement.

2.3 LOTOS SPECIFICATION LANGUAGE

LOTOS is a general-purpose language for specifying sequential, concurrent, or
distributed systems based on CCS and ACT ONE concerning the concurrency and data

type parts respectively.

LOTOS specifies a process by a behaviour expression that defines an ordering of
events. LOTOS provides a set of temporal ordering operators that allow combining and
structuring behaviour expression in different ways and so can be used to express important
architectural concepts, such as orthogonality, sequential relationship, or non-deterministic
operation. The operators inaction, choice, action-prefix, parallel composition, hiding and

guarding act as a behaviour data type where the semantics of the corresponding LOTOS

21

behaviour expressions is given in term of action. Here, we explain briefly the process

constructs, The formal definition can be found in [26].

internal action(i,;B): A behaviour can nondeterministically choose to be an unobservable
internal action, denoted by i. It is called unobservable because it is not an interaction,
yet it can cause a change in other behaviour.

action prefix(gd; .. dnfc], where d, =! ¢ or ? v; : 5;): The components of an action
are either !4, denoting the offering of a certain value, or ?v; : s;, offering the range of
all values belonging to type si. The selected predicate ¢ restricts the set of event values
to those satisfying the predicate.

successful termination(exit(ty, .. , tn)): The exit construct denotes successful termination
of a behaviour. The values contained in it are passed on to the subsequent process. The
value can also be any s. Exiting event is composed of an internal action followed by
inaction stop.

inaction(stop). The process stop can not perform any action, and therefore does not
have a successor behaviour. It is impossible to derive any transition from it.

local definition(let v;: s; =1t; , .., V' S, =1, in B): An identifier can be given the
value of an expression.

summation(choice v;: sy, .., vi: 7 [1 B): This construct denotes the, possibly infinite,
choice composition of copies of the behaviour B, where the variable v receives every
pussible value of the type s.

sequential composition(B1 >> accept v;: §;, .., vy 51 in B2) : In this construct the
right hand behaviour is enabled by the successful termination of the left hand behaviour.
Besides this, the resulting values of the left hand behaviour are assigned to the identifiers
Vi o\ Vn

disabling(B1 [> B2): B1 [> B2 behaves like B1, until an event of B2 is performed,
after which only events of B2 can occur. Once B1 has terminated successfully, events
in B2 are no longer possible.

parallel composition(B1i[g, , .. , 8,]IB2): The expression B1I[g; , .. , g,]'B2 allows

22

both behaviours to proceed independently, except for events on any of the gates gy, .. ,
gn- On those gates both processes must synchronize on the same event, which is then
one of the events offered by the construct.

choice(Bl |] B2): A choice of behaviours offers all the events that any of the behaviour
offer. In synchronization with the environment a choice is made, after which the
corresponding behaviour results.

guarding([t] — B). A behaviour prefixed by a guard is only possible if the guard
evaluates to true, and is equivalent to stop otherwise.

hiding(hide g;, .. , g» in B) : Parallel composition is the mechanism to add processes
to a synchronization on an event. Hiding is the mechanism that converts those events
into internal events, so that other processes can no longer influence the events.

process instantiation(pl 1. .. , 8] (... .ty)): The behaviour of a process instantiation
is the behaviour of its corresponding definition with the value expression substituted for

the value parameter, and the formal gates replaced by actual pates.

The use of abstract data types (ADTs) complements the process part of LOTOS in
achieving implementation independence. It is based on the equational specification of
ADTs with an initial algebra semantics. An ADT definition identifies a mathematical
object, namely an algebra, formed by sets of data values, called data carriers, and a set of
associated operators. The name of data carriers are referred to as sorts. The declaration
of every operation includes its domain, which consists of a list of zero or more sorts
and range, which consists of exactly one sort. The sorts and operations of a data type
are referred to as the signature of that data type. The most basic form of data type

specification in LOTOS consists of a signature and possibly a list of equations.

2.4 I/O DIAGRAM

According to the OS] Reference Model, input/output messages of protocol entitics are
called Abstract Service Primitives (ASPs). Some of the ASPs contain as substructures

the Protocol Data Units (PDUs) that are exchanged between two communicating peer

23

entities. ASPs and PDUs are in general complex data structures containing several
substructures. This is specifically true for layer 7, ie., the application layer. Having
recognized this fact, standardization organizations have defined a data definition language
called Abstract Syntax Notation One (ASN.1) to precisely specify PDUs [29]. On the
other hand specification languages use different techniques to define data, e.g., abstract

data types for LOTOS and SDL and Pascal types for Estelle.

The most widely used technique for specifying the important properties of data is the
Jackson design method [33]. The Jackson technique is useful to model two fundamental
relationships between the elements of data: composition and alternation. Composition
occurs when the data in one class is formed by composing data items from a number
of different less abstract classes of data items. Alternation occurs when the data in one
class consists of data from a number of possible other classes that contain less abstract
data entities. In this section, we extend this idea to model ASP/PDU structure, which

we call 1/O diagram.

2.4.1 VO Diagram for ASN.1

An l/O diagram is a tree as shown in Figure 2.1, whose root node is labeled with the
name of the ASP/PDU and whose interior nodes are labeled with the name of composite
types. The successors of a node are defined in terms of sequence, unordered sequence,

alternation and iteration primitives as shown in Figure 2.2.

Two types of leaf nodes are defined, primitive type and nonprimitive type. We distin-
guish three kinds of primitive type leaf nodes: optional_leaf node, nonoptional_leaf node
and default_leaf node. A primitive type may have a value/range, which appears below
the bar dividing the node. There is only one type of nonprimitive type leaf node: exten-
sion_leaf_node. The first field of the extension_leaf node is labeled with a component
type name and the second field is empty. Different kinds of leaf nodes are shown in
Figure 2.3. Next, we describe representation of each composite type of ASN.1 using

/O diagram.

24

name of

ASP/PDUT™{

/

root nide

name of
composite type

interntor nodes

I leat nodes

Figure 2.1 The components of an 1/0 diagram.

A A
B c D R °
@ (h)

© (dy

Figure 2.2 (a) Sequence: A consists of B, followed by C, followed by D. (b) licration: A
consists of zero or more repetitions of B. (¢) Unordered sequence: A consists of B,
C and D in any order. (d) Alternation: A consists of B or C not both.

. name of the name of the " pame of the
primutive type primitive type composie type

- -- value

(a) (b) {c) (d)

Figure 2.3 (a) Optional_leaf_node. (b) Nonoptioiial_leai_node. (c) Default_leaf_node.
(d) Extension_leaf_node.

25

CHOICE: A CHOICE is represented using the alternation primitive. For example, the
ASN.1 definition

Assoc-src-diag ::= CHOICE

{ s-user INTEGER { null (0), ... , called-AE-invalid-not-recognized(10) },
s-provider INTEGER { null (0), no-reason-given (1), no-common-acse-

version (2)}

is represented as

Assoc-src-diag

T

0 0

S-user

-

INTEGER "

0

N

s-provider

INTEGER °

INTEGER °

N

10

0

INTEGER

0

INTEGER

0

SEQUENCE/OPTIONAL/DEFAULT: An ordered SEQUENCE is represented using
the sequence primitive. Optional fields are incorporated by the addition of a null leaf
node. Default values are represented by an additional optional leaf node carrying the

default value.

As an example, let us consider the following ASN.1 definition

AARE-apdu ::= SEQUENCE { protocol-version BIT STRING
{ version1(0) }
DEFAULT versionl
result—source—diagnostic Assnc—src—diag

responding-AP-title AP-title OPTIONAL

The 1/O diagram of “AARE-apdu™ is:

AARE-apdu
protocol-version result-source- responding-AP-
diagnostic utle
BITSTRING °[| BIT STRING ©| | Assoc-src-diag AP-utle © - 0

- version1(0) . -

SEQUENCE OF: This ASN.1 construct is directly represented in terms of the iterative

primitive. For example, the ASN.1 definition
user ::= SEQUENCE OF users

is represented as:

user !

users

SET OF: This ASN.1 construct is represented by a combination of the unordered
sequence and iteration primitives. For example, the ASN.] definition
user ::= SET OF users

is represented as:

27

F user

*
users 5

24.2 YO Diagram for ADT

The 1/O diagram describes the syntax of the ADT definition. Thus we need to
be concerned with the operations part. We assume that in the operations there is an
operation, that constructs the data type from its substructures. This operation is used to
construct the 1/O diagram. /O diagrams for substructures are similarly constructed from
the type definitions defining the substructures. Any constant values defined are mapped
to primitive leaf nodes with values assigned. All the fields are assumed compulsory.
For optional fields it is assumed that EFSM-chart contains send events in which omitted
ficlds are assigned to Not_present(field).

To illustrate the correspondence between an I/O diagram and the structure of an

ADT, we consider the following ADT definition

type IPDUType is ISDUType, Sequencenumber
sorts 1PDU
opns
DT : Sequencenumber, ISDU — IPDU
AK : Sequencenumber — IPDU
data: IPDU — ISDU
num : IPDU — Sequencenumber
eqn
for all f: Sequencenumber, d: ISDU, ipdu: IPDU
ofsort ISDU

28

data(DT(f.d)) = d;
ofsort Sequencenumber
num(DT(f,d)) = f;
num(AK(f)) =f
endtype

type Sequencenumber is Boolean
sorts Sequencenumber
opns
0 : — Sequencenumber
1 : — Sequencenumber
succ : Sequencenumber — Sequencenumber
eqns
ofsort Sequencenumber
succ(0) = 1;
succ(l) =0

endtype

type ISDUType is
sorts ISDU
opns
datal, data2, data3, data4, data5: — ISDU
endtype

The I/O diagram corresponding to the above abstract data type of DT pdu is shown below:

29

DT

/\

num data
[¢] [4] [+ 0
Sequencenumber Sequencenumber ISDU ISDU
o , prram R e

Similarly, the 1/O diagram for the AK pdu is as follows:

AK
num
))
Sequencenumber Sequencenumber
0 1

2.4.3 ASP/PDU Hierarchy from Specification

All the ASPs and PDUs defined in a specification can be mapped to /O diagram
hierarchies. There are three sets of I/O diagrams: one for ASPs, one for PDUs and

another for all the substructures that ASPs/PDUs need.

For example the set of ASP diagram:

30

P_PABind

|

P_CONreq

Calling_pres_addr

P_address

a set of PDU diagram:

AARQ 1

I

A_ASCry

user_data

PDU

1

AABRT

RLRE \

and finally another set for all the substructures:

P_address

selector

Presentation_

Session_selector

A\

Transport_selector

T

l

Network_Scervice_
Access. Point

I

31

I

2.5 TRANSITION SYSTEM AND EFSM CHART

Our starting point is a well-accepted formal notion known as transition system to

represent operational semantics of concurrent systems.
Definition 2.1 A transition system is a quadruple T =< @, =, —,init >, where
e () is a set, the states of T,

e = is a set, the events of T,

¢ —C Q x = x Q@ is a relation, the transitions of T,

init € () is the initial state of T.

The chart introduced in [42] is a particular kind of transition system. In a chart,
a state is labeled by zero or more identifiers; an identifier indicates states at which the
behaviour of a transition system may be extended by substitution of another transition
system for that identifier. Before giving the formal definition of the chart, we provide
an abstract syntax of algebraic data types in order to describe the data part on which the

chart system is to be defined.

Definition 2.2 Let § be a set whose elements we call sorts which are names for
various data domains. A signature over § is an S* x S -indexed family of sets
0 =< Qs >wes ses ; the elements of a set {ly s in the family (1 are called operators.
A family of variables over § is an S-indexed family of sets V=< V; >_ ¢ ; the elements

of a set Vj, in the family V are called variables.

Given a signature over a set of sort § and a family of variables V over S, term over
2 and V are constructed in the usual way and they also form an S-index family of sets
To(V) : Ty denote the subfamily of constant terms - i.e., terms not containing variables
within Ty, (V); Let t;, t2, . . , t, be metavariables over terms; the expression E{ 1], t;, .
.o Inl vy, V2, .., vy) denote the result of a substitution, where each variable v; of the
expression E is replaced by the term ;. The variable v € V is free in E, and the sort of
the term is the same as the sort of the substituted variable. Let D = Dy, x Dy, x...x D

Un

be the joint domain of the variables, with D,, C Tq for each i.

32

Let G be the set of gates and channels; elements of G are denoted by g let Gjg be
the set of signals. S is a list of gate names. The distinguished symbols i, i;, i, shall not
be member of G. The set of actions is the set

A={i,15,ir,9d1..ds|g € G,d, =1, 0or !sig or 7sig or T, : s,

t, €To(V),sig € Gy € Vs, € S}
For each action a the function nciize(a) is defined as follows:

(g if a= gd,..dy,

1 ifa=1
name (a) = [’ ’
iy tfa=1,

L 1 otherwisce

The direction of data flow associated with an action is defined by
! if dy =t, or 'Siy
of fery(a) =< ? if dy =%, 1 s, or 7Siy

undefined otherwise

Let I be the set of process identifiers. Each process identifier X' € [has a fixed
arity n(X),n(X) > 0, the number of its arguments. The total function f, : T — V*
yields for each identifier X its formal parameter list. Fixed point operator j is used for
the process declaration pX (vy,..,v,).B(ty,..,t,) as an alternative notation for process
declaration used in LOTOS. This allows us to deal with a specification as being one

expression. We are now in a position to define the EFSM chart formally.

Definition 2.3 An EFSM chart is a 8-tuple m =< J,N,E,V,R,j,, Z, h, >, where

e J is a finite set, the control states of m;

e N is a finite set, the transitions of m;

e FE C J x1Iis a finite set, the extension of m;
o Vs a finite set, the variables over S of m;

e R is a finite set, the rules of m (see below);

e j, € J is the initial control state of m;

33

e Z C Jis a finite set, the terminal control states of m;

o h, € {v t|t € Tp,} is the initial assignment to the variables of m.

The possible transitions of a chart are defined by a set of rules whereby each rule

defines a class of transitions.

Definition 2.4 A rule of a chart is a 8-tuple r =< q,j, 7', n,p, ¢, f,h >, where

e a ¢ A is an action, the when clause of r;

J € Jis a control state, the from clause of r;

e ;' € Jis a control state, the to clause of r;

e n € N is a transition number, the transition clause of r;

o p € Tqu., (V)is a predicate, the guard clause of r;

e ce Ty,,, (V)is a predicate, the condition clause of r;

o fe {ve—t|teTq, (V)} is a function, the action clause of r;

o h€ {vetite T, (V)} is a function, the assignment clause of r.

The transition n occurs, when the chartis in control state j and the predicate p is true
for the current assignment of the variables, then it may participate in an event that matches

the when clause «, if the condition c is satisfied. This leads to the new control state j'.
We shall frequently write
R(j)={<aji,n,pc f,h|<a,j,jnpyc,flh>€ R} the rules of j
E(j)={r|<jx >€ F} the extension of j

We shall use subscripts to identify rules, so that when, refers to the when clause of rule r.

34

CHAPTER 1III

EFSM CHART OF SPECIFICATIONS

In this chapter, we develop algorithms to transform a protocol specification into
an Extended Finite State Machine (EFSM) chart. An algorithm is proposed in [34] to
translate a subset of LOTOS into an EFSM chart. We extend the algorithm to full LOTOS
and SDL for our requirements. In section 3.1 we present the LOTOS to chart generation
algorithm. In section 3.2, we present the SDL to chart generation algorithm. Finally, the

size of the generated chart with respect to states and rules is discussed.
3.1 FROM LOTOS TO EFSM CHART

LOTOS specifications can be transformed into EFSM charts in two phases. In the
first phase the specification is transformed into a semantically equivalent form. In the
second phase it is converted into an EFSM chart by bottom-up synthesis. The translation
algorithm is confined to the dynamic behaviour of the LOTQOS specification, because no
adequate theory exists for the automatic translation of algebraically specified abstract data

types into statements of an imperative language.
3.1.1 Transformation of a LOTOS Specification

In order to facilitate the chart construction algorithm, it is convenient first to apply
some transformations to the LOTOS specification. The transformation rules are explained

below:
e Transformation of full synchronize composition to general composition

A full synchronize operaior between B; and B; (B4liB;) can be transformed to a gen-
eralized parallel operator by inserting all synchronized gates inside the parallel operator
at which By and B; synchronize (B, |[synchronized gates]IB;). This transformation will

reduce the number of rules in the chart construction algorithm.

e Transformation of sequential composition to general composition

In LOTOS internal actions occur in execution sequences either explicitly (an i in the
specification) or because they result from the dynamic behaviour of the system (an enable
operator in the specification). Here, we deal with internal events, those due to an enable

operator.

Let us first explain how nondeterminism appears, due to the enable operator [20].

For instance, consider the following process:

process Pla,b):=
(exit
[] a; exit) >> b; stop

endproc
This behaviour is equivalent to

process Pla,b]):=
(i:b; stop
(Ja;i;b; stop)endproc

Unfortunately, this transformation does not work if there is value passing in the enabling.

For example

process Qfa,b,cl:=
(exit(true)
{] a; exit(false)
) >> accept ok:bool in
[ok] — b ; stop
[] [not(ok)] — c ; stop

endproc

This type of situation can be handled by first introducing an internal action just before
the exit construct of the enabling process, then transforming the sequential composition
to parallel compasition by introducing an auxiliary gate at which the enabling process

synchronizes its last action with an action implicitly prefixed to the enabled process.

36

Also, we should regard this synchronization as private to the enabling and the enabled
process. As an example the process Pla,b] above can be transformed to:
proress Pla,b]:=
hide é; in
(i;61;stop;
Dasiié . stop)
I[é61]
61 ; b ; stop

endproc

Sequential composition with value passing can be similarly replaced by parallel com-
position. To achieve this, we have to do two things. First, replace the list of sorts
of value offered at successful termination of the enabling process by value declarations
attributed with the auxiliary gate. Second, replace the accept construct of the cnabled
process by variable declaration attributed with the auxiliary gate. For example, consider

the previously defined process Q[a,b,c] which can be transformed to:

process Qla,bcl:=
hide 6, in
(i; 8! true ;stop;
(Ja;i;6! false; stop ;)
1[é61]1
61 7 ok: bool ;
[ok] — b ; stop
[] [not(ok)] — c ; stop

endproc

In those cases where the enabling process itself is a composition of parallel processes,
the last action of these processes synchronizes within themselves at the auxiliary gate,
which in turn synchronizes with the first action of the enabled process. If the parallel

composition is a pure interleaving, then it has to be transformed to generalized parallel

37

composition with the auxiliary gate as a synchronization gate.
o Conversion of generalized choice to choice expression

The structure of the generalized choice is: choice g in [aj, a3, . . , an] [] X[g], where
gate identifiers are used for indexing. It can be mapped into the construct X[a;] [], . .
, [} X]an). In this case, choice of n instances of X is created; for each one of them a

formal gate g is actualized with a different element of the gatelist a), az, . . , a,.
o Process instantiation

To identify recursion in an EFSM chart, it is necessary to expand the process before the
construction of the EFSM chart. It can be achieved, by repeated process instantiation,
until actual gate parameters are found to be identical to formal ones. This transformation

ensures that all gates are constants, i.e., it is free from gate relabeling.
o Removal of guarded internal events

If an internal event is not the first action in a choice expression, it may be removed. For
example, the expressiona ; A [Ji ;b ; B cannot be simplified toa ; A [] b ; B. However,

the expression a ; i ; B may be reduced to a ; B.
o Renaming of variables

Variables in LOTOS processes have local significance. A variable can be used in more
than one process for different purposes. To avoid global conflicts, variables are renamed

uniquely.

3.1.2 The EFSM Chart Construction Algorithm

In this section we shall present the algorithm to translate the transformed LOTOS
specification into an EFSM chart. Roughly speaking, for any transformed LOTOS
behaviour expression, we can construct an EFSM chart. But for several reasons we

have to impose restrictions on the form of the behaviour expressions.

38

Definition 3.1 A guard is an event @ such that name(a) = ¢ A guard is said to be
an exit guard if it precedes an exit. A guard is said to be free guard if it precedes a
free identifier X.

Example 3.1 X is a free identifier in the left operand of the parallel composition in « ;
(XV[S]1 Y. (b;Y)), where p is a fixed point operator used for process declaration.
The event a is an exit guard in a; exit but not in a;biexir. Similarly the event g is a
free guard in a;X but not in @;b;X. However, the event b is a free guard in a;h;X as well
as exit guard in a:b;exit.

Definition 3.2 A free occurrence of X in B is guarded in B if it occurs within some

subexpression a;B’ of B, otherwise unguarded in B.
Example 3.2 X is guarded in ;X but neither in X nor in a;X[1X.

Definition 3.3 Operands of the general parallel operator are said to be synchronous if

the free guard and exit guard synchronize.
Example 3.3 In X:= a;b;exit I[b]) b:X, the operands are synchronous since they synchro-
nize at b, which is a free guard in b;X and exit guard in a;hexit.

In the chart construction algorithm, we will only treat behaviour expressions satisfying

the following requirements:

1. if pX. B is a subexpression of the process, then X is guarded in B (y is a fixed point
operator used for process declaration)
2. Operands of the general parallel operator are either closed or synchronous.

3. Operands of the pure interleaving operator are closed.

Algorithm: Chart Construction Algorithm.

In the following, we assume that for B' there is a chartm' = <J', N', E', V', R',),,
Z’,h:, >. Similarly for B". Let j, be a control state not in J' or J''. If f: Dy = Dy and
g : D, — Dj then their composition gof = g(f(z)). Lete: V — D be an arbitrary
but fixed function. The chart construction algorithm translates a LOTOS behaviour

expression into a corresponding chart by bottom-up synthesis. The chart corresponding to

39

a behaviour B' is recursively built from the sub-chart corresponding to the sub-behaviour
contained in B’. In the following, we explain how the LOTOS constructs are translated

into the EFSM chart.

Base Cases:

e stop and exit

Choose m =< {j,, &, ¢, &, ¢, J0,{Jo} €}

The chart corresponding to stop and exir has only one state, j, and no transition. We
treat an exit process the same as a stop process in the generation of the chart. It may
need further explanation. For the exit process the associated axiom is: exit — 6 —
stop. The action & (special action) plays a key role in the sequential composition
of processes. However, we have already transformed the sequential composition to
parallel composition. Hence its occurrence is just a successful termination after which it
transforms into a dead process stop. Therefore, we treat an exit process same way as a

stop process in the formation of the chart.
o X (t..t,)
Choose m =< {ji1},0, < jo. X >, fp(X) . R, n. {j1}.€ > with

fp(X) =< vy rspyva 80,0y 18y > and

R =< i1, 01, 10 np truc, truec, e, < v) « L1, 09 & t9,.., 0y — 1, >

A new rule is created from state j; to state j,. The process name is tagged with the

state o

Inductive Steps:

o gdi..dy[c]:B

40

Choose m=< J'U{jo}. N U{n,}.E'.V.R.jo.Z.¢ > where

V=10 {v:s0dy =20 18} and
R=RU {< gdi..du.jo, JpNo.truc, c. e, h(,}
A new chart is obtained by creating a new state j, and generating a new rule from), to

-’ .. . LY .
Jo» Whose v ien and condition clauses are gd,...d,, and [c] respectively. The assignment

h:, of the chart B' is stored in the assignment clause of the new rule.
° BI []B"

Choose
m=< (7'~ {J;}) u (- {J}) U{Jo} . NUN" E, V"UV",

. " ‘I
R, jo. Z'0UZ", h,oh, >. where

p={<iox >1xe (& () ve' (i)} (£ - {£ (i)}

and
R= {< a,jo,J.-mypec, frh>| <ajonpoe foh >e R (j”) uR" (_[”)}

o (R =R () v (7 = R in))

. . 4 . .
A new state j, is created and all the rules emanating from , and j:: are modified to

. 3 3 . ’ 1" . .
emanate from j, and all the rules terminating in), or ;, are made to terminate i j,.

. [t] — B

Choose m =< J' U {j,}, N U{n.},E ,V',R, o, 2", e > wher
R=RU {< i,]o,j;,na,t,truc,e,h:, >}

A new transition is created with an internal event and guard .
o Letv; :s) =ty Vn : 8p =ty tne B

Choose m =< J',N',E"\V.R',3,,2' hy > where

41

V=V U{v:s),.,o:sy} and

!
hy =< vy — 1,0, — 1ty >0h,

The chart m' is updated by addition of the assignment vy « t;,..,v, « t, in the initial
P y g

assignment h, of the chart B'.

e Choice 1y : Sy, : 8p (| B’
Choose m =< J',N',E'\V,R",jo, Z',ho > where

V=V U{r:s1,.,04:8,} and

I3
h, =< v) — anyy ,..,vy — any, >oh,

Here, the initial assignment is updated by the random assignments v; « anyj ,...Vy —

anyy, i,e., set v, € Vy to an arbitrary value any, € TQS', where 1 < : < n.

o D
Choose i =< J' U {jo},N' U{no},E V', R,jo,Z',e > where
R =R U {< zs,jo,j:,,no.truc,tru(,e,h:, >}

We use i in the chart (silent transition) to distinguish the internal event in the specification

from the internal event i due to hide and guard.
o DB'|[S]|B"

By restriction, we can get B’ and B", with E' = E' = ¢ or E' # ¢,E" = ¢ or
E' = ¢,E" # ¢. Let ¢ be the fresh variables unique to all other variables used in the
translation. Let 1': stand for v, if d: =7y, : s, and accordingly let t: stand for ¢, if d: =t,.
LetY = {ql| < a,ql,q.n,p,c.f,h >€ R Aneme(a) € S}
Choose
m=<J xJ" (N xNYUN x N EV'UV",R.< 3,55 > Z h,oh, >,

where

E

{
Bl

¢

R (< 5" >) =

{< a,<td,j" > n' . pe,f.h> | < a.td,n',p,c,f,h >e R (j') Aname(a) ¢ S}

U

<(jlxJ"),.\'>|<]'.X>€E’} f E' 4o
< (Ixi").X> <)X e Bl ifE 4o

otherwise

{<a,<j'td" >, 0" pc,fLh>| < a,td" ", p.c,fLh > R’ A evyuZ

U

{T' — rl % TNIT', € RI (Jl) A "

Z — {JI % jllljll € ZII}

Aname(a) ¢ S)

€ R" (]'”) Aname (when,) € S}

r=<a,< td,td" > n,pec, fLh> and nane(a) =g

with a = gdl,..,cfl d,

gd'l vond,

[R

d,

11 Un

gc{]a"a Cn 0y d’n

where (=70, : s,

if of fer,(d') =
if offer,(d") =Y,

otherwise

and V = {v. S:IC: =70, : 5}

and n=<n',r" >
AP AL =t
andp={p P o

pl A pll

and c=c N’

f

flofo < v, «—t.
=< floffo< v

flof'o < v, « 1y, v,
and h="h oh"

1
— 1,

- e w e

"

if offer,(a') = of fer, (d") =,

otherwise

if offeri(d')#of fery(a")hof fer,(d') -
if offerg(d')y#of fer(a"yhof fer (a") 2!

— U, > otherwise

43

Here we deviate from [34] where a Cartesian product of the state machine of the sub-
processes are taken. The above rule is composed in such a way that cne will obtain a
single sequence of events. As an illustration let us consider two state machines P1 and

P2 shown below:

Our method will generate only the states and transitions that are bold. The rules are

designed in such a way that priority is given to the state machine P1.

44

Two cases may need further explanation. When both the charts offer an output
value(!), it can be decided only at run time whether the values will be equal. Therefore,
this condition has to be made explicit in the guard clause. On the other side, when both
the charts ‘ccept input, the actual value to be received is unknown. An auxiliary variable
is introduced to store the value to be received. The execution of the action assigns this

value to the variables of the when clause of both of the charts.
PY BI[> BII
Let
H = {jl<4j\2\p. ¢, f .1, >e R (j)

A< a,j;,n,p, c, fih >€ R (j') A name (a) = ¢}
Hy = {j'| <4,5',n", 0., f', 1/, >e R'(j)

A< a,j;,n,p, ¢, f,hh >€ R (3') A namne (a) = 6}
Hy = {j| <ir,j',n'\p',d, f), >e R (j)}
Choose m =< J'UJ" — {j"}, N'UN" V'UV" R,j.. 2' UZ" h,oh, > where
E=E"- {E" (])} UE'UE;
R=RU (R" — R (J)) UR;

Ey = {<j,X >|<j X >e E"/\R’(j);éqSAj¢(H,UH2UH;;)}
Rl = {< a,j,j",n,p, c’f’h > | < aaj“anapacaf’ h >€ Rn(jo)

AR (j)# ¢ Nj & (HUH,UHy))

The EFSM charts m' and m'' are combined by making all the rules of m" emanating

Ky .
from j, to emanate from every state in m'.

o (uX (v1,.e,v0).B)(t1,.,t0))

Choose m =< J',N', E,V',R,j..Z' hy > wherc

45

EG) - { (E'G)uE (])) X if <jX>EE
E'(3) otherwise

RG) {<a,j;,n,p,c,f,h> if <a,j,i'\n,pc,fh>e RA<j,X > E'
] =

R'(7) otherwise

1
and hy =< v «— t),.., 05—ty > 0h,

The recursion uX B' is formed by replacing each extension X in m' by the rules and
extension of j; in m'. Further, the actual values ¢;,..,t, have to be assigned to the

variables vy,..,vy,.

As an illustration, let us consider the following Readytosend process which is

actualized in some other process as Readytosend[ISAP,IPdu,d3} (numbers)

process Readytosend[ISAP,IPdu,d3] (number7:Sequencenumber):exit :=
(1SAP?sp7:SP;
([isIDATreq(sp7)]
—> IPdu!DT(number7,Data(sp7)); d3!s(0)!number7!Data(sp7);exit
[] [not(isIDATreq(sp7))] ——> Readytosend[ISAP,IPdu,d3] (number7))
[1 IPdu?ipdu7:IPDU[not(isDR(ipdu7))];
Readytosend[ISAP,IPdu,d3] (number7))

endproc

The recursive rule produces the following chart:

ml=<{1,2,..,6}, {nl,n2,.. .7}, & {sp7, number5, number7, ipdu7 },
R, 1, {5}, number7 «—number5 >, where R=
{ <ISAP2sp7:SP, 1, 2, nl, true, true, ¢, € >,

< IPdu?ipdu7:IPDU, 1, 3, n2, true, [not(isDR(@ipdu7))], €, € >,

46

<ir, 3, 1, n3. true, true, ¢, { number7 «— number7) >,

< I, 2, 4, n4, [isIDATreq(sp7)], true, e, € >,

< IPdu!DT(number7, Data(sp7)), 4, 5. nd, true, true, ¢, € >.
< d3!s(0)!number7!Data(sp7), 5, 6, n6, true, true, e, € >,
<i, 2,7, n7, [not(isIDATreq(sp7))], true, €, € >,

<ir, 7,1, n7, true, true, ¢, { number7 «— number7} >}
e hide S in B

Choose m =< J',N’,E',V’,R,jo,Z',h:, > with
R={r|r € R A name(when,} ¢ S}U {r(¥)|r € R' Aname(when,) € 8}

where V¥ =i/when,, f/action, with

{action o (v, — any) if when, = gd;..d, Nd, =70, : s,

action, otherwise

The chart corresponding to hide S in B' is obtained by madifying the rules of the chart
corresponding to the behaviour B'. If there exists a rule with a when clause of the form
gd;...d,, where g €8S, then the when clause is transformed to i, and for each d, of the
form 7v; : s,, the assignment clause of the rule is updated by the random assignment
v, «—any.
As an illustration, let us consider the following behaviour
hide d3 in

Readytosend[ISAP,IPdu,d3] (number5)

I[d3]l d3?7z6:DecNumb’number6:Sequencenumber?olddata6:1ISDU; exit

We have already constructed chart m] for the process Readytosend in the example
discussed to explain process instantiation and recursion. The chart for the behaviour
d37z6:DecNumb?number6:Sequencenumber?olddata6:1SDU ; exit

is as follows

m2=< {7,8 }, {n8 }, ¢, {z6, number6, olddata6 }, R, 7, {§}, ¢ >, where R=

47

|

{ < d3726:DecNumb?number6:Sequencenumber?olddata6:ISDU, 7, 8, n8, true,
true, ,e, € >}
The composition of ml] I[d3])] m2 yields the following chart, where the states and

transitions are renumbered.

m=<{9,.., 15}, {n9, .. , n16 }, ¢, {sp7, number5, number7, ipdu7,z6,

number6, olddata6}, R, 9, {13}, number7 «—number5 >, where R=

{ <ISAP?sp7:SP, 9, 10, n9, true, true, ¢, € >,

< IPdu?ipdu7:IPDU, 9, 11, n10, true, [not(isDR(ipdu7))], ¢, € >,

<i, 11,9, nll, true, true, ¢, { number7 — number7} >,

< i, 10, 12, n12, [isIDATreq(sp7)], true, ¢, € >,

< 1Pdu!DT(number7, Data(sp7)), 12, 13, n13, true, true, ¢, € >,

< d3!s(0)!number7!Data(sp7), 13, 14, nl4, true, true, { z6s(0),
number6 —number7, olddata6«data(sp) }, € >,

<, 10, 15, n1135, [not(isIDATreq(sp7))], true, ¢, € >,

<ir, 15,9, nl6, true, true, ¢, { number7 «— number7} >}

Now hide d3 in m produces the following chart:

m=<{9,.., 15}, {n9, .. , n16 }, ¢, {sp7, number5, number7, ipdu7,z6,
number6, olddata6}, R, 9, {13}, number? «number5 >, where R=
{ <ISAP?sp7:SP, 9, 10, n9, true, true, ¢, € >,
< IPdu?ipdu7:IPDU, 9, 11, nl0, true, [not(isDR(ipdu7))], ¢, € >,
<ip 11,9, nll, *rue, true, ¢, { number7 «— number7} >,
< i, 10, 12, n12, [isIDATreq(sp7)], true, ¢, € >,
< IPdu!DT(number7, Data(sp7)), 12, 13, nl3, true, true, ¢, € >,
< i, 13, 14, nl4, true, true, { 26s(0),
number6 «number7, olddata6—data(sp) }, € >,

< i, 10, 15, n115, [not(isIDATreq(sp7))], true, ¢, € >,

48

<i, 15,9, n16, true, true, ¢, { number7 — number7} >}

In the EFSM chart derived from LOTOS, the action clause of rule r represents the
variables that are updated by the function f due to value passing in the interprocess
communication, whereas the assignment clause of rule r represents value passing due to

process instantiation and the let construct.

Example 3.4 We consider another example, which we will use in the next chapter. It is
the first half of the connection phase (i.e., up to and including Connection Indication or
Disconnection Primitives) of a single connection of a Transport Service |S].
P= ConReq-A;
(Conind-B; exit
[] DisReq-A
(i;exit
{] ConInd-B ; exit)
[1i; DisInd-A;
(i;exit
[] ConInd-B ; exit)
)
The address at which a primitive occurs is indicated by extending the name of the
primitive with —A(calling user) and -B(called user). The chart construction algcrithm
produces the following EFSM chart:
m =< {1,.,10},{nl,..,n9},¢,¢,R,1,{4,7,8,9,10} ;e > where R =

{ < ConReg-A, 1, 2, nl, true, true, ¢, € >,
<lis, 2, 3,n2, true, true, ¢, € >,

< Conlnd-B, 2, 4, n3, true, true, ¢, € >,

< DisReg-A, 2, 5, nd, true, true, ¢, € >,

< DisInd-A, 3, 6, n5, true, true, €, € >,

< Conlnd-B, 6, 7, n6, true, true, ¢, € >,

< is, 6, 8, n7, true, true, ¢, € >,

49

< Conlnd-1". 5, 9, n§, true, true, ¢, € >,

< i, 5, 10, n9, true, true, €, € > }

3.2 FROM SDL TO EFSM CHART

SDL specifications can also be transformed into EFSM charts in two phases. In the first
phase the specification is transformed into a semantically equivalent form. In the second

phase it is converted into an EFSM chart by bottom-up synthesis.

3.2.1 Transformation of SDL Specification

In order to facilitate the chart construction algorithm, it is convenient first to apply some

transformations to the SDL specification. The transformation rules are explained below:

o Llimination of macro and procedure call

The macro/procedure call can be replaced by an additional task construct and the
corresponding description of that macro/procedure. The task construct can be used
to assign the actual parameters to the formal ones. Local variables defined in the
macro/procedure body are converted to global variables with unique identifiers. As an
example, let us consider the data transfer process of HDLC protocol as shown in Figure
3.1 and the procedure retransmit_frames. The data transfer process is transformed to
another one without any procedure call retransmit_frames as shown in Figure 3.2 but

with the additional task construct to take account of the assignments.

50

PROCEDURE retransmut_frames FPAR 1 nat_7,

data
transfer
‘ rth th_type,
T Q l , vrnat_7,
t_running < >

.= False data := ntb(1)
- AN S

ta:=ta+l I_frame(s,vr,data))

@ False pi=rae
True
retransmut_frames
0

(vos, rtb, vr)

ta =

lSET(N()W+T1 T I

DDISind data :
transfer t_runming: = True
—
&

Figure 3.1 Data transfer process of HDLC and the procedure retransmit_frames.

51

data
transfer

t_running
:= False
I
ta:=ta+1
False 1:=vos;
2=N2 rth = rth; vr = vr
True T ()
ta:=0 data := rntb(i)
1 -
| I_frame(i,vr,data) >
DDISind 1
i:=i++1l
@ False 0
True

SET(NOW+T1,T)

I

t_running := True|

Figure 3.2 After the climination of procedure call retransmit_frames.

o Incorporation of channellsignal-routes name in input/output construct

In SDL the channel/signal-route descriptions are specified only in the system diagram. It
is not specified in the input/output construct. In order to achieve a compatible structure of
the action clause in the rules of our unified chart model, we incorporate the channel/signal-
route information in the input/output construct. This means, the channel/signal-route from
which the signal is to be received and into which the signal is to be transmitted is specified
in the input/output construct. As an illustration let us consider INRES-entity and process
Coder_Ini [24] as shown Figure 3.3 and 3.4 respectively. In the input/output construct
the channel name is not specified. For example, the input signal ICONreq is contained in
the channel ISDU_in. However, it is not shown in the input/output construct explicitly.
Coder_Ini process after the incorporation of channel name in input/output structure is

shown in Figure 3.5.

52

INRES-entity (L1

1ISDU_out ISDU_mn
{L.2]

SIGNAL / \

ICONreq, IDATreq(ISDUType),

ICONconf, ICONind, ICONres,
IDISreq, IDISind,IDTind(ISDUType)

Initiator
SIGNALLIST L1 = ICONCconf, ICONind,
IDISind, IDATind(ISDUType)

SIGNALLIST L2 = ICONreq. \ .
IDATreq(ISDUType), ICONresp, 1IDISreq

(L4]
SIGNALLISTL3=CR, .
DT(Sequencenumber, ISDUTypce) Ch

(L3

SIGNALLIST L4 = DR, CC, B
AK(Sequencenumber) f \

SIGNAL LISTLS = MDATind(MSDUType)

SIGNALLIST L6 = MDATreq(MSDUTypc)

Coder_Int

- ,/

(LS}

MSAP_in MSAP_out

1L6]

Figure 3.3 Definition of INRES_entity.

53

PROCESS Coder_Im

DCL

num Sequencenumber

d ISDUType
sdu MSDUType

Stant
: _/

e

1dlc_)

sdu.ad :=CR

CR < MDATind(sdu) < D™ (number,id)
(DR) (CC) sduad :=DT
(AK) sdu.num = num
MDATreq(sdu) >
AK(sdu.num) sdu.data :=d
(1dle)
DR CC

Figure 3.4 Coder_Ini process.

54

DCL

num Sequencenumber
d ISDUType
sdu MSDUType

PROCESS Coder_lni

(wdle }
7

I

Ch(CR) Z

sduad -=CR

—@

MSAP_out
(MDATreq(sdu))

G

MSAP_in
(MDATind(sdu))

(DR)

— sdud

(CC)

R

o
(DT(nmumberad))

|

¢

(AK)

Ch(AK(sdu num))

Ch(DR)

sduad =DT

sdu num = num

——

sdu data =d

—

ChtCC)

Figure 3.5 Modified Coder_Ini process.

o Transformation of save con-truct to states and input construct

The save construct can be eliminated by rewriting the SDL using other constructs. An
algorithm propesed in [47] can be used for that purpose. The basic idea is to replace the

save construct by additional states and input constructs. As an example consider a part

55

o

of the Initiator process of the Inres protocol shown in Figure 3.6, where the IDATreq

is saved in the state Sending.

(connected)

IDATreq
(@

¢

DT
| (humber,id)

counter ;=1
]
SET(Now+p,T)

{ Sending)
T AK(num) S IDATreq

RESET(T)

Flase True
®

cnunm__ number
r=succ(number)

<4
False True
cor~ected
i DT < >

DIind > (numhcr.id)>

countcr ;=

@ counter +1
SET(Now+p,T)

sending)

Figure 3.6 Part of the Initiator process of Inres protocol with Save construct.

56

IDATreq
(dsave)

< savestate)

T < AK(num) <

— /Lﬁ
RESET(T)
True
counter True mmz};ﬁfnb)
3 =succ er
False <4
- DT
IDISind > (number,id)> DT
coun{er = (numbcr.dsuvc)>
counter +1 [

. I counter =1 l
disconnected SET(Now+p,T) ‘

SET(Now+p,T) \
(savesending) l -
{ Sending)

I

AK(num) < T
False ‘ True
. DT
IDISind > (number,id)
I
counter ;=]
SET(Now+p,T) ‘I

TN
savescnding)

Figure 3.7 Bchaviour that may be replaced for Save construct IDATreq.

New states are introduced to transform the save construct, which is shown in Figure 3.7.

57

3.2.2 The Chart Construction Algorithm

In this section we shall present the algorithm to translate SDL to a chart. In the translation

algorithm given below, the output statement chan(sig(t;, . . , t,)) of SDL transformed
into chan!sig(t;, . . , ts) in the chart. Similarly, the input statement chan(sig(v;, . . ,
vn)) can be transformed into chan?sig(v;, . . , vp).

Algorithm: Chart Construction Algorithm:

In the second phase the EFSM chart is constructed again by bottom up synthesis. This
phase is straight forward and similar to that of the LOTOS chart construction algorithm.
Here, we give details of SDL-GR constructs and the processing involved. We start with
an cmpty chart. A complete chart is constructed bottom up following the graphical
structure specified in SDL-GR. Steps of processing that correspond to different SDL
constructs are given below. In the following, we assume that for the behaviour graph
B' there is a chart ' =< J'.N',E' V',R',j., 2" ho > . Similarly for B". Let j, be
a control state not inJ' and J". If f:D;-D; and g:D;—D3, then their composition
gof:D;—Dj is defined by gof=g(f(x)). Let e:V—D be an arbitrary but a fixed function.
The action clause f of the rules generated from the SDL specification is empty, because
of the single process assumption. However, cue to compatibility with the rules generated
from LOTOS specification, we keep the action clause in the rule. The EFSM chart

construction is terminated when the start construct is encountered.

Next state and goto constructs

Choose m =< {jo.0.< jo, X >,8,8,jo.¢.€}.

58

Input construct

chan(sig(vl,...,vn)) <

B’

Choose m =< J'U {j,} ,N' U {n,},E",V,R,j,, 2", e >, where
V =V'u{vl,v2,..,on} and

R=RU {chan?sig (vl,..,vn): signal,ja,j;,no,trur,trzu R h:,}

Output construct

chan(sig(tl, ..., m))>

B’

Choose m =< J'U {jo},N' U {n,},E"\V,R, 35, 2", ¢ >, where

R=nRuU {chan!sig (t1,..,tn): signal,j,,,j:,, No, true,true,c, h;}

Decision construct

counter
<v else

B’ Bu

Choose m =< J'UJ", {jo}, N'U{ny,ny}, E'UE" VUV" R, j,,2'UZ" ¢ >, where

. . -, !
R=RUR"U {< 1,J0,Jos 1, cOunter < v, true, €, kb, >}

L. "
U {< tyJoy Jo» M2, cOUNter 2 v, true, €, ha}

59

Task construct

Choose tn =< J',N',E'\V,R',j.,Z' ho > where V = V'U {1} and hy =<

’
m o~ t >o0h,

Set construct

SET(NOW+TIL,T)

Choose m =< J',N', E", V', R',j/o,Z'.ho >, where V =V'U{v;}and hy =< T

NOW +T1 > 0 hlo.

Reset construct

RESET(T)

Chaose m =< J' . N' E'V,R'.j..Z' hy > where V= V' U {1} and hy =<
T «— 0 >0 h:,.

60

Choice construct

Choose
m =< (J' - {J}) U (J" - {J}) U{jo) . N'UN" E,
VIUV" R, j,.2' 02" h,oh, >

where E={<jo X >|Xe (B () uE" (7))o (2 - {E ()}
o (2= {2 ()})
R= {< a,jo,jon,pyc, fLh>| <ajn,pec, f,h> R (_],I,) uR" (J::)}

U (R - R (i) u(B"-1" (1))

The sum of two processes is formed by adding a new control state j, which has the rules

and extensions of both m' and m''.

Spontaneous and timeout transitions

o 7
LN

AN

Choose m =< J' U {jo},N' U {no},E ,V',R,j,, 2", ¢ >, wherc
. . R !
R=RU {< T3y Jos Jos Moy tTuE, truc, €, b, >};
is is used to represent the internal/timeout event. We deal with timeout transitions in the

same way as spontaneous transitions.

State and label constructs

61

Chouse m =< J',N',E,V',R,j.. Z' 'h, >, where

(E'j)UE'(j,))— X if <j,X>€FE

E@)=

E'(3) otherwise

< a,j o pe, fih> if <ajj,npefh>RA<; X >€ E'
R@)= {

R'()) otherwise

3.3 SIZE OF THE EFSM CHART

The size of the EFSM chart generated from SDL and LOTOS depends on the size of the
specification as well as how it is structured. The upper limit to the number of control
states generated from the LOTOS construct is given by the following formulae. The

norm || and ||, means, the number of rules and states respectively.

|stopl, = |exit], =1

|\, =2

|la; B|, =1 + |Bl,

|B1(]B2|, = |B|,+ |B|, +1

|B1[> B2|, = |B1|, + |B2|,

|B1{S]| B2|, = |B1], x|B2|,

The upper limit to the number of rules generated from the LOTOS construct is given by

the following formulae.

62

Istopl, = lexit], =0

X, =1

la: B|, = |B|, + 1

\B1(] B2, = |B1|, + B2,

IB1[> B2, = |B1], + |B2], +|B1],
IB1jSI) B2, = |B1l, x |B2],

The number of control states and rules generated from the SDL construct is given by the

following formulae.

Inextstate|, =1 |next state], = 0
lgoto|, =1 lgotol, =0
linput|, = 1 linput|, =1
loutput|, = 1 loutput|, =1
|decision|, = 1 |decision|, = n
|reset], = 0 lreset| =0
ltask|, =0 ltask|, =0
lset|, =0 lset], =0
[timeout|, = 0 [timeout|, =1
lstate|, = 0 |state| =0
[labell, = 0 Habel|, =0

63

CHAPTER 1V

GENERATION AND ANALYSIS OF TEST CASES

We develop a new test generation algorithm, which takes nondeterminism into
consideration, in section 4.1. In section 4.2, we propose an algorithm for the construction
of the data flow graph, which is used to identify the protocol functions. Section 4.3 deals
with the use of the zero-one integer programming technique to select test cases that are
optimal in nature to meet certain test coverage requirements or to exercise certain protocol
functions adequately. In section 4.4, we model the test case by a dependency graph and
evaluate it by taking predicate slices. The dependency graph is similar to a program
dependency graph [14]. Finally in section 4.5, redundant assignments and predicates in

all the feasible test cases are removed by reducing the test cases.

4.1 TEST CASE GENERATION ALGORITHM

The action _lays an important role in the generation of test cases. The presence
of iy in the EFSM chart makes it highly nondeterministic. A test case generated from
a deterministic finite state machine consists of a sequence of events, i.e., it is linear,
whereas a test case in the context of an EFSM chart, which is nondeterministic in nature
takes the form of a rule of the chart. We shall eventually see how to generate test cases

from the EFSM chart. Before that we need some definitions.

We use symbols ry,72,... to represent the rules of a chart. For any arbitrary rule
1, from,, and toy, refer to the from and to clauses of rule r;. A directed path in
a chart m =< J,N,E,V, R, j,,Z, h, > is finite sequence of rules ri,..,r; such that
to,, = from,,, toy, = from,, .., tor,_, = from,,. A directed path ry,..,r; is a
cycle if from,, = to,, A directed path is a subtour if from, =to, = j,. The conirol
state ; is called an unstable state, iff there exists a rule r € R (7) such that when, =i,

otherwise it is called stable.

Next we define two unary operators: Contraction and Expansion. By contraction of
a rule r we refer to the operation of removing r and identifying its control state from,
and to,. If m =< J N,E.V\R,j,.Z.h, > is a chart, then relative to any subset R,
of R, we define the chart m, = mQ@QR, =< J',{J.}.¢,¢,R — R..Je,e,€ > to be a
condensed chart of m, which is obtained by contracting the rules belonging to R.. The
control stateJ, = {from,, to.|r € R.} is called a pseudo-control state. By expansion
of a pseudo-control state we refer to the operation of identifying its pseudo-control state,
and forming an EFSM chart corresponding to the rules that have been contracted to form
the pseudo-control state. Formally, if m, =< J'U{J.},¢,¢,é¢, R~ R, Jc, €, ¢ > where
J. is the pseudo-control state, then m, = Exp(m,) =< J., b, ¢, ¢, Re, Jo, €, ¢ > is called

an expanded EFSM chart, which is obtained by expanding the pseudo-control state J, .

Algorithm: Test Case Generation
Input: Chart m =< J,N,E,V,R,jo, Z, h, >

Output: A list of test cases

GEN.
Procedure TESTGEN(m)
begin

1. let ST be the set of all subtours of the chart m

2. for each R, € ST do

begin
3. k:=1;
4. let me be the condensed chart m@Ry;
S. while the pseudo-control state J., of m. is unstable do
begin
6. find a cycle Cy = {ry,.., r;} in the chart my such that when,, =1,

and fromrl, tOr, e JCk:

7. form a condensed chart mn 4 = m@Cy;

65

. k:=k+1;

end;
9. let Exp(mer) =< Je, b, b, ¢, Re, Jo, €, € >
11). Print R,:
1. Print “end of one test case”;
end;

end.

Example 4.1 The chart obtained from the Transport Service Specification of Example
3.4 is given in Figure 4.1. The set of control states, J is given as { 1,2,3, 5,6 }. The
initial control state j, is 1. Here we assume that after exit the control is going back to
the initial state. The set of rules is given as { nl, n2, n3, n4, n5, n6, n7, n8, n9 }. The

rules are identified by their corresponding transition numbers.

0 Conlnd-B
ng
nReg-A

Co
ni
DisReq-A °
nd

Conlnd-B

Figure 4.1 Transport service specification chart.

Let us consider the subtour R; = {nl, n3 }. The condensed chart m.; =m@R; is shown
in Figure 4.2a and has the pseudo-control state J.; = {1, 2}, whick is unstable. Now
consider the cycle Cj={n2, n5, n6} of the condensed chart m.;. The chart, mcy=m.;@C]j,
obtained by contracting the rules of the cycle Cj, is shown in Figure 4.2b. The new
pseudo-control state Jea={ 1, 2, 3, 6 } is still unstable. Proceeding one more step, we

obtain the chart me3=m@n7 shown in Figure 4.2c with the pseudo-control state J3 =

66

{ 1,2, 3,6}, whichis stable. A test case is obtained by expanding the pseudo-control

state J.3 and it is shown in Figure 4.2d.

Conlnd-B

ni

Conlnd-B

(c) (d)

Figure 4.2 (a) m.;, condensed chart m@R;. (b) m., condensed chant mo@Cy. (¢)
m¢3,condensed chart me@n7. (d) A test case of transport service specification.

The time complexity of the test case generation algorithm is of order O(JIZINIZ +
INIg(U + INI)), where J, N, and N;CN, are the control states, the transitions, and the
spontaneous transitions respectively in the chart m. The first component, i.c., 112 INIZ i,
due to the partial test case generation and the second component is added to updawe the

partial test cases to complete test cases.

The basic idea behind the algorithm is as follows. First a transition tour of the
EFSM chart is generated. The tour is divided into sequences that start from the initial

state and end either in the initial or one of the final states. This sequence is called

67

a subtour or & partial test case. The subtour may contain spontaneous transitions (is
transitions). Next, the existence of a spontaneous transition that is not present in the
subtour, but is an alternative to any one of the transitions 1n the subtour is checked.
Then the subtour is updated by adding a sequence of transitions such that he sequence
starts with the spontaneous transition and ends either in a final state or in a state belonging
to the subtour. The procedure is repeated until no spontaneous transitions exist that are
alternative to the updated subtour. The subtour is then a complete test case.

Transition tour generation is based on converting the EFSM chart into an Euler graph
and then traversing this graph, each time including a distinct edge into the tour [11]. An
edge is virtally added to tne EFSM chart from each final state to go to thc initial state.

The total number of test cases is determined as follows: d,,(initial state)+d',(initial
stae), where d,, (initial state) 1s the indegree of the initial state and d’,(initial state)
1s the number of edges incoming to the initial state added during the conversion of the

EFFSM chart to an Euler graph.

4.2 DATA FLOW GRAPH

The flow of data reflects how input primitive parameters determine the values of the
context variables and they in turn determine the parameter values of the output primitives.
Input/output primitives in the case of protocols are the Abstract Service Primitives (ASPs)
and Protocol Data Units (PDUs).

A Data Flow Graph (DFG) maodels the flow of data in the chart. Four types of nodes
are used in a DFG:

e i—nodes represent input primitives

e d-nodes represent variables and data

J-nodes represent ADT operators

e o-nodes represent output primitives

Edges are used to represent the flow of information. Each edge of the data flow graph

is labeled with the Transiion Number (TN) to which it belongs. A DFG is designed to

68

visualize the flow of data. Guards and selection predicates are not taken into consideration
in the DFG to avoid cluttering of the graph.

Formally, a data flow graph is a digraph G = (1", E), whose edges are assigned with
a label I: E — 278 where
V = {m | mis an i-node, d-node, f-node, or o-node)
L = {eleis an id-edge, if-edge, io—edge, df-edge, do-edge, fo-edge, dd-cdge, ff-edype)
TN = {n|<a,), ' n,p,e,fLh>e R} Ug

It is nece sary to identify operations associated with different kinds of the PDUs and
ASPs. This can be achieved by looking at the PDU and ASP definition in the abstiact
data types. To draw the data flow graph we have to scan the when, action, and assignment
clause of each rule of the chart. An algorithm for the construction of the data flow graph

is given below:

Algorithm: Data flow graph construction.
Input: Chart m, Data type definitions.
Output: Data Flow Graph.

Method: We assume that appropriate data structures are available to create different
types of nodes and arcs. Also available in the structure is a place for label for each node
and a facility to create a linked list of attached transition numbers for each edge. In
additron to these components, for simplicity we assume that the assignment statement
is either 1)z « op(z,y), 2) = ~ op(y) or 3) 2 « y. We define a procedure

DATAFLOW_GRAPH

Procedure DATAFLOW_GRAPI|
S1. For each assignment h, € {z « c|c & T, } in m do

i. create two d—-nodes: node(x) and node(c) with label x and ¢;
ii. construct an edge from noede(c) to node(x) with label ¢;

For each rule r € R in the chart m do the following steps.

69

S2. If of fer (when,) # undefined do

iil.

iv.

if when, = g?r : s; create an i-node node(x), with label x.

if when, = ¢?S1g, where Sig is of the form Signal(y, z), Signal(y), or Signal

{ we refer to case a), case b), and case ¢) }

If d-nodes for y and z are undefined, create those nodes with label y and z. Let
those d-nodes be node(y) and node(z)

case a): Create two i-nodes: node(Signal.y) and node(Signal.z) with label
Signal.y and Signal.z respectively; construct edges from node(Signal.y) and
node(Signal.z) to node(y) and node(z), respectively, with label transition,.

case b): Create an i-node: node(Signal.y) with label Signal.y; construct an edge
from node(Signal.y) to node(y) with transition,.

case ¢): Create an i-node node(Signal) with label Signal.

if when, = ¢g!'E, where E is of the form op(y, z), op(y), or y

{ we refer to case a), case b), and case ¢) }

If d-nodes for y and z are undefined, create those nodes with label y and :z.

Let those d-nodes be node(y), and node(z).

case a): Determine, if op is a constructor(ASP) operator; if yes, then determine
operators opl and op2 (from ADT definition) through which one can access y and
z. Create two o-nodes: node(op.opl) and node(op.op2), with label op.op1 and
op.op2 respectively; construct edges from node(y) and node(z) to node(op.op1)
and node(op.op2), respectively, with label transition,.

Otherwise, create an o—node node(op) with label op; construct two edges from
node(y) and node(z) to node(op) with label transition,.

case b): Create an o-node node(op) with label op. Construct an edge from
nade(¥) to node(op) with label transition,.

case ¢): Create an o-node node(y) with label y. Construct an edge from f-node:
node(y) to o-node node(v) with label transition,.

if when, = ¢!Sig, where Sig is of the form Signal(y, z), Signal(y), or Signal

70

S3. for

1i.

iil.

we refer to case a), case b), and case c) }
If d—nodes for y and : are undefined, create those nodes with label v and z. Let
those d-nodes be node(y) and node(:)
case a): Create two o-nodes: node(Signal.y) and node(Signal.z) with label
Signalyy and Signal.z respectively; construct edges from node(y) and node(?)
to node(Signai.y) and node(Signal.z) respectively, with label transition,.
case b): Create an o—node: node(Signal.y) with label Signal.y; construct an edge
from node(y) to node(Signal.y) with label transition,.

case c): Create an o-node node(Signal) with label Signal.
each assignment statemeni of action, and assignment, do

let the assignment statement be either 1)r «— op(y.z), 2) & « op(y) or 3)
r « y. If d-nodes x, y, and z are undefined, create those nodes with label x, y,
and z. lLet those nodes be node(x), node(y), and node(z). -

if the assignment statement is of the form r « op(y, z), then determine if op is a
constructor operator(PDU). If yes, then determine operator opl, op2 (from ADT
operator) througﬁ which one can access y and z. Create two o--nodes node(op.opl)
and node(op.op2) with label op.opl and op.op2, respectively. Construct edges
from node(y) and node(z) to node(op.opl) and node(op.op2), respectively, with
label transition,;

Otherwise, determine if there is a f~node node(op) which is adjacent to node(y)
and node(z) {this is to catch common subexpressions}. If not, create such an
f—node; construct two edges from node(y) and node(z) to node(op) and one edge
from node(op) to node(x) with labels transition, ; otherwise attach transition, to
each edge incident on it, i.e., on node(op).

if the assignment statement is of the form z « op(y), then determine if there
is an f~node:node(op), which is adjacent to node(y). If not, create such an
f—-node:node(op): construct an edge from node(y) to node(op) and one edge from

node(op) to node(x) with label transition, to the edge incident on it.

71

iv. if the assignment statement is of the form z « y, then construct an edge from

node(y) to node(x) with label transition,.

4.2.1 Decomposition of Data Flow Graph

Here, we present a method that involves identification of protocol functions from
the data flow graph similar to the one defined for Estelle specifications [52]. We are
interested in o btaining slices of data flow according to user defined criteria. We call the
final slices obtamed data flow functions. Slicing is done in two steps: the first step is
called blocking and second step is called merging, where the criteria must be provided

by the user based on knowledge of the specification.
(1) Blocking: The data flow graph is divided into blocks B, Bo,.., Bas as follows:

o All variable d—nodes in the data flow graph are processed by creating a block for
the d—node, or including it in one of the blocks already created if it feeds other
d-nodes. In the block included are all f~nodes that feed d-nodes, all i-nodes that
feed that d-node directly or indirectly. Constant d-nodes that feed the d-node
are also included in the block. We also include all f~nodes, o-nodes that are fed
by the d-node directly or indirectly in the block. We call the blocks created in
this step type-1 blocks.

e In some cases where there is a direct data flow from i-nodes to o-nodes, a
different block is created. If the flow is through one or more f~nodes these nodes

are included in the block. We call blocks created in this step type-2 blocks.

The blocks that have incoming arc(s) from other blocks are called data dependent

blocks. All other blocks are independent.

(2) Merging:

Stepl. After a protocol function is selected. the first thing to do with the data flow
graph is to determine related d-nodes. We can then merge all the type-1 blocks
associated with these d-nodes.

Step2. Any type-2 blocks that belong to the function are merged with blocks created

in step 1.

4.3 TEST SELECTION FROM PROTOCOL FUNCTION

The problem of selecting a minimal set of test cases, which meets certain coverage
criteria, is referred as the test case selection problem. The criteria may be node testing,
branch testing or some function of the protocol identified from the data flow graph. Once
the criteria are identified by the test designer, a coverage frequency matrix [q,,] can be
generated for those criteria. The general structure of the coverage frequency matrix [a,,]

may be represented as:

I PR Ty
ty | an ap .. ayp
to | an ag ... asp

l

|
ty | e ag ... ag

where

(1) t, stands for the ith test case generated from the chart.
(i) n, stands for jth test element, which is considered to be covered.

(iii) [a,,] stands for coverage frequency of test case t, over the tested element n).

The complete test case and the set of tested elements of the coverage matrix can be
identified as T = {t1,t2,..,t5} and N = {n;,nz,..,n,} respectively. Now the test case

selection problem can be expressed as follows: Find a minimal set 7* © T, such that

73

cach element of the N, is covered at least once. This is a decision problem. It can be

formulated in terms of a zero-one integer programming model as:

q g
minimize z = Z z, subject to(s.t) Za,J:r, >1, for 7=1,2,..,p a1
] .

1= 1=1
where z, = lor 0, fori=1,2,..,q.

q
where a,, represents the coverage frequency matrix. Note that z =) z, stands for
=1

9
the actual number of selected test cases and) a,,x, represent the actual total test case
1=1

coverage over n,. In fact it is required that for each n, this coverage frequency matrix

is to be no less than one. The equation 4.1 can be rewritten in the following form:

1=1

q q
nminimize z = Zc.:r, subject to (s.t) Zb,]r, <d;, for 3=1,2,.,p
1=]

where wy=1or 0, fori=1,2,.,4.

[by] = —an,]. 42

d,=-1, forj=1,2.,p

=1, for 1=1,2...,¢
Finding the solution to this problem is straightforward. Many algorithms are available
[57]. Among them, the Balas’ zero-one additive algorithm utilizing the branch and bound

approach is considered to be the fastest one. This is discussed next.

Enumeration

To solve this problem. search algorithms are used which enumerate all 29 possible
zero-one vectors X = (r,,xry,..,4). In such procedures the vast majority of solutions
are enumerated. The enumerative procedure can be illustrated by a search tree composed
of nodes and branches. A node corresponds to a ze1o-one candidate solution x. Two
nodes connected by a branch differ in the state of one variable. Each variable can be in
one of three states: fixed at 1, fixed at 0, or free. A new node is defined by fixing a
vartable to 1 (forward step), and a node is revisited by fixing a variable to 0 (backtrack

step). Figure 4.3 illustrates a search tree.

74

Forwirds}

........

Figure 4.3 Scarch tree.

Let us assume that the current partial solution under consideration is given by the

vector uT = (uy,uz,..,us,0,0,0,..0) with enties interpreted as follows:
i if x,, =1 anditscomplement hasnot yet heen considered
Up = { —1g if &y, = lor0 andits complement has been considered
0 if k>s

We assume that we have an incumbent solution X, which is the best feasibie solution
so far. Finally, for the purpose of our discussion, let us assume that r,, = 1, uy - 144,
1.e., the value of z,, = 0 has not been yet considered, and that at the node x the partial

solution xT

= (Z4;,Tspy ey Ty, 0,..,0) is infeasible. Suppose now that we use a test
that indicates that by adding another variable =z, ,,, we can reduce the infeasibility and
improve the objective function value. We move forward and add u,y; = 1,4 to the
vector u(i.e., set z;,, = 1). At the new node x’ we find that x’ is feasible and it
produces the objective function value better than the incumbent solution. We replace
the incumbent solution by x' and update the accordingly. All completions in this partial
solution with z,, , = 1 have been enumerated since no feasible solution can be better by
fixing any new free variable at 1. We say that partial solution has been fathomed, that

is all completions of the partial solution have been implicitly enumerated. Thus we can

consider all completions of % with «,,, = 0. We backtrack to the node x . Suppose

75

that there is no attractive completion for this node; that is, no completion of this partial
solution can produce an optimal solution. At this point, we have enumerated all possible
completions of x with z,,,, = 1 and z,,,, = 0. We are ready to backtrack again and
consider z,, = 0. The element u,, of the vector u is now set to —:, (we assumed
previously that z,, = 0 had not been considered). If, on the other hand, u; = —i, and
x,, = 0 (ie., z,, = 1 was considered previously), we find the rightmost positive element
of u, change its sign to negative, and examine the new partial completions. In this case
we backtrack more than one branch of the search tree. To accomplish successfully the
tree traversal we may have to move backward (backtrack) several branches of the tree.
Resolving the current subproblems in the remaining free variables means enumerating

explicitly each of the completions of the particular partial solution.

Implicit enumeration criteria

1. Objective function and constraint improvement

The purpose of this test is to find out if it is possible to improve the objective function

value and reduce constraint infeasibilities. We can create the set T of variables such that
T={i:r,isfre, z- ¢+ 2,
", < 0 for such j suchthat
el
where ! is the set of the current partial solution indices, z = ¥ ¢,, and Z be the best

€]
function value found so far. If T is empty, then backtrack step is justified.

2. Infeasibility test

If T # 0 we may be able to identify an index jsuch that y; < Oand y,— 3" min(0,b,,) <
el
0. Thus even if all variables in T are 1, the jth constraint will remain infeasible. In such

a case, backtracking is also justified, since there is no feasible continuation.

76

3. The Balas branching test

The selection of the free variable to fix at 1 may significantly influence the algorithm
efficiency. This is particularly true at the beginning, where a poor selection of a free
variable could result in a needless enumeration of a large number of points that are not
near a solution. A good rule designed to direct the search toward a solution has been

given by Balas.

For each free variable x; we create a set M;,
M;={y:y,~ b, <0}

and calculate

N = Z (y; - bt))

JEM;

or set v, = 0, if M; is empty. We determine which free variable, if set to 1, would
reduce the total infeasibility the most. By total infeasibility we mean the sum of the
absolute values of the amount by which all constraints are violated. Thus we select the
variable x; such that it maximizes ;. If all the sets M; are empty, a backtrack step is
taken. An algorithm based on these criteria has been designed by Balas and is called the

Balas’ zero-one additive algorithm [57).

4.4 TEST CASE DEPENDENCY GRAPH

In this section, we define the test case dependency graph (TCDG) in terms of the
control flow graph of a test case. The control low graph CG=(V, E, en) of a test case
is a directed graph having a urique entry node en. V is a set of nodes corresponding
to assignments (s-node), actions (a-node), and predicates (p-node). Graphically, a-nade,
p-node, and s-node are represented by a circle, triangle, and a rectangle respectively. E is
a set of control edges, which represents a possible transfer of control from one instruction

to another. The control edge from node v, to node v, is denoted by v,—v,.

77

The test case dependency graph of a test case is the control graph of the test case
with the addition of data dependency edges. A data dependency edge from node v, to
node v, implies that the computation performed at node v, directly depends on the value
computed at node v,. More precisely, it means that the computation performed at node
v, uses a variable, var that is defined at node v; and there is an execuuon path from v,
to v, along which the variable, var is not (re-)defined. The data dependency edge from
node v, to node v, is denoted by v,—yv,. Graphically, control edges and data dependency

edges are represented by bold and dashed lines.

Formally, a test case dependency graph for a test case t is a digraph G¢=(Vi,Ei,en)
with Vi=V,UV,UV,, E=E4UE., and a unique entry node en € V;, where
Va={ vIvisan a-node };
V, ={ vIvisan s-node };
Vp ={ v 1visap-node };
Eg={ (wv)lu—gv}

Ec={ (uv)lu —¢ v}

The events i, and i, are suppressed in the test case dependency graph, because their
presence is insignificant in the analysis. However, a spontaneous transition (is transition)
is represented by an a-node. which plays an important role in the representation of a test
case. Also, the initial assignment h, of the chart should be taken into consideration in

the construction of the test case dependency graph.

As an illustration, let us consider the following test case t; generated from the Inres

protocol:

< ISAP?sp3:SP, 1, 2, 1, true, true, ¢, € >,

<1, 2, 3, 2, [isICONreq(sp3)]. true, ipdu9 « CR, € >,
<i, 3, 4, 3, true, true, ipdu9 « CR, ¢ >,

< MSAP'MDATreq(ipdu9), 4, §, 4, true, true, ¢, € >,

<1i,5, 6,5, true, true, { 22 « s(0)}, {z4 «— 22} >,

78

< MSAP?sp9:MSP, 6, 7, 6, true, true, €, € >,

<1i, 7,8, 7, true, [not(isDR(ipdu4))], {ipdud — data(sp9 1}, € >,
<1i, 89, 8, [isCC(ipdud)], true, €, € >,

< ISAP!ICONconf, 9, 10, 9, true, true, ¢, >,

<i, 10, 11, 10, true, true, ¢, {number5 « succ(0). number? «— numberS) >,
< ISAP?sp7:SP, 11, 12, 11, true, true, ¢, € >,

<1, 12, 13, 12, [isSIDATreq(sp7)], true, €, € >,

<1i, 13, 14, nl13, true, true, ipdu9 « DT(number7, Data(sp7)), € >,
< MSAP!MDATreq(ipdu9), 14, 15, 14, true, true, ¢, € >,

<i, 15, 16, 15, true, true, ipdu9 «— DR, € >,

< MSAP!MDATreq(ipdu9), 16, 17, 16, true, true, ¢, € >,

< ISAP!IDISind, 17, 1, 17, true, true, ¢, € >,

<is, 6, 18, 18, true, true, ¢, € >,

<i, 18, 19, 19, [z4<4], true, ¢, € >,

<1i, 19, 20, 10, true, true, ipdu9 « CR, € >,

< MSAP!MDATreq(ipdu9), 20, 21, 21, true, true, ¢, € >,

<ip 21, 6, 22, true, true, €, z4 «— s(z4) >

Figure 4.4 shows the test case dependency graph of the test case t;. The nodes
are numbered as follows: first the transition number is placed followed by a period and
the tuple number. For a-nodes the tuple number is 1, for p-nodes S or 6 depending on
whether it is in the guard or condition clause of the transition. Similarly, for s-nodes
the tuple number is 7 or 8 depending on whether it is in the action or assignment clausc
of the transition. For each assignment in the action or assignment clause, s-nodes arc

numbered with lower case letters starting with “a” following the number 7 or §.

79

Figure 4.4 Test case dependency graph of the test case t;.

4.4.1 Predicate Slices

The notion of program slice, originally introduced by Mark Weiser [64], is useful
in program debugging, automatic parallelization, and program integration. Slicing is an
abstraction of the set of statements that influence the value of a variable at a particular
location, In this section, we use the concept of slicing with respect to a predicate in a test
case to analyze the predicates in order to detect infeasible test cases. The predicate slice
of a test case with respect to a predicate, pred at a p-node, consists of all nodes whose
execution could possibly affect the boolean value of pred at the p-node. The predicate
slice of a p-node can be easily constructed by traversing the data dependency edges of
the test case dependency graph beginning at p-node. The nodes visited during traversal
constitute the desired slice. We will provide an algorithm to get all the predicate slices
from the test case dependency graph. Before that we need some definitions.

Given a node v€ V, we define the set De[v], Di[v], C¢[v], C[v], N¢[v], and N [v]

as follows:

80

Divl = { () I (uwv) € Eg J;
Dilv] = { (vvw) I (v.w)€e Ey }:
Glvl={ @v) 1 (uv) € E.)
Cilvi = { (vw) 1 (vw)e E¢)
Nivl = {ul @v) € E:)i
Nelv] = { w1 (v,w)e E; }.

For a p-node p of a test case dependency graph G, , the predicate slice of Gy with
respect to p, denoted by Gy, , is a graph containing all nodes on which p has a data
dependency (i.e., all nodes that can reach from p via data dependency edge):V(Gy,) =
{wlweViandp —" 4w }. We extend the definition to the set of all p-nodes V,
=U, p; as follows: V(G,/ Vp) = V(G /U, py) = U, VUG / p). The edges in the
graph G, / V, are essentially those in the subgraph of G; induced by V(G; / V), with
the restriction that only data dependency edges are included. We define E(G/ V,) =

{vow) I (v =»*gw) € Egand v, we V(G / V)l

Algorithm: PREDICATE_SLICES

Input: Test case dependency graph G, = (V, E;)

Output: Two sets V' = V(G /v) and E' = E 7 G, / vy) which represent predicate
slices for each p-node v, € V; .

The recursive procedure SLICE(v) adds edge (v,w) to E" if node w s hrst reached during
the search by a data dependency edge from v. For each p-node, * 1i the nodes are marked

"new" and procedure SLICE is invoked.

1. Let Vp be the set of p-nodes in Vy;
V=V
E' = ¢:

2

3

4. for each v, on Vp do
5 for all v in V; do mark v "new";
6

SLICE(vp);

81

procedure SLICE(v):

1. add {v} 0o V;
2. mark v "old"™;

3. for each edge (v,w) on Dy[v] do

begin
4. if w is marked "new" then
begin
5. add (v,w) to E":
5. SLICE(w);
end;
end;

The time complexity of the algorithm given above n the worst case 1s O0 V1 (1 V,
l -+ 1 E, 1)). Line 1 and 5 of PREDICATE_SLICES take time O(1 Vi). The hnes
5-6 are called exactly | V,, | times. The time spent in SLICE is exclusive of recursive
calls to itself, proportional to | Dy [v] I. Since 5 |Df [:]‘ = O(|Fy

1'6"(
executing lines 3-5 of SLICE isO(| E; 1). The procedure SLICE is called exactly once

}, the total cost of

for each vertex v € V,, since v is marked "old" the first time SLICE is called. Thus the
total time spent in PREDICATE_SLICES is O (|V,](|Vi| + |Edl))

Figure 4.5 shows the graph that results from taking slices of the test case dependency
graph from Figure 4.4 with respect to each of the p-nodes of the dependency graph. The

same node numbering is used.

82

5.7

22.8

Fipure 4.5 Predicate slices of the test case dependency graph tg.

4.4.2 Infeasible Paths in Test Cases

Predicates play an important role in the evaluation of test cases generated from the
protocol specification. Some of the generated test cases may not be feasible. In other
words, the predicates can never be satisfied on a path due to the existence of an assignment
on that path, that will cause the predicate to be set to false. Infeasible paths in a test

case can be detected by evaluating the predicate slices.

To correct infeasibilities we have to exchange the transition containing the unsat-
istiable predicate with a new transition, which means that the path following the old
transition must be eliminated and a new path has to be selected following the new tran-
sition. The result of this is two-fold: the new path is the same as one of the test cases

already generated, where no new test case is added; otherwise the new path becomes one

of the test cases. In both « ases the infeasible test case is eliminated.

83

4.5 REDUCTION OF TEST CASES

A test case can be reduced by eliminating extrancous statements that cannot aftect
the parameters of the input/output event or affect the control flow of the test case. One
way of reducing the test case is by using test case dependency graph and the another

way is by using data flow graph and the textual representation of the test case.

4.5.1 Reduction of Test Cases Using TCDG

Once the test case is modeled by a dependency graph, it can be reduced. The s-
nodes in TCDG with no incoming data dependency edges can be eliminated, since these
nodes neither affect the paramcters of the output events nor affect the control flow of the
test case. Since any infeasibilities are already removed before this step, we can reduce
further the TCDG by eliminating all p-nodes from which a-nodes are not reachable
through the data dependency edges. Clearly, these p-nodes have no influence on the
input/output domain of the test case. In other words we keep all the predicates in the
test case dependency graph that depend on the parameter values of the input primitives.
Intuitively, redundant assignments and predicates are those that may be exccuted, but its
elimination would not change the function of the test case computed over its domain. The
resulting test case dependency graph obtained after elimination of redundant assignments

and predicates is called the reduced test case dependency graph.
Algoritaim: Reduced test case dependency graph (RTCDG).
Input: Test case dependency graph G = (V, E).

Output: Reduced test case dependency graph G' = (V', E').

The recursive procedure SEARCH eliminates an s-node that has no data dependency edge
incident on it. The main algorithm eliminates all the p-nodes from which a-nodes are

not reachable through the data dependency edges.

1. V=V,
2. E":=E;

(%)

Let I, = { v €V | v&'y w, where weV, |}

4. for each vel p do

begin
5. Vi=V'-v;
6. Let Epew = { (u,w) I w € Ny[vl and u € N; [v]};
7. E':={ E'- {Ds [v] U Cs [v] UC; [v] }} U Epews
end

8. SEARCH(V' E';
procedure SEARCH(V', E');

. Let VD={ vID/[v]=¢and ve Vg C V' };

2. If VD <> ¢ then

begin
3. Let v be any element in VD;
4. V=V -
5. Let Enew = { (u,w) 1 we& N¢ [v] and u € N¢ [v]};
6. E':={E -{DflvlUCs[vIUCGCIv]}} UEnew
7. SEARCH(V' , E');

end;

The time complexity of the algorithm given above in the worst case is O('V | | Vg |).
The cost of executing line 3 of RTCDG can be O(1 V11 Vg 1). The loop on the lines 5-7
of RTCDG is executed | V, | times. The total cost of executing SEARCH, exclusive of
recursive call to itself is O(1 V I), since the total cost of executing the line 1 of SEARCH
can be O(l V I). The procedure SEARCH is invoked | V | times, as each time one vertex
v € Vi is deleted. Thus the total time spent in SEARCH is O(l V| | V¢ |). Hence the
time complexity of the RTCDG algorithm is O(V I 1 Vg 1).

The reduced test case dependency graph of the Inres test case ty is shown in Figure

4.6. The algorithms discussed in this chapter are also applied to real life protocol such

8S

as ACSE and HDLC protocol written in LOTOS and SDL respectively. The results we

discussed in detail in chapter 6.

Figure 4.6 Reduced test case dependency graph of the test case 1.

4.5.2 Reduction of Test Cases Using DFG

Data flow graph can be used to reduce the test cases. The way we have constructed
the DFG is to show the dependency between the variables, i.e., where it is defimed and
where it is used. We use this dependency property to reduce the test cases. We need to
define some quantities that will be useful in developing the algorithm.

Let G = (V,E) be the data flow graph, whose edges are assigned with a label
l: E — 2™ where TN = {n|< a,j,j',n,p,c,ffh >€ R} U¢. Let Ejng C E
with label Irns : Erng — 2TN5, where TNS C TN and lyns C 1. Assume that
G1ns = (Vins, Erns), be an edge induced subgraph of G, induced by the edges
Erxs. An edge from node v, to v, in G = (V,E) is denoted by v, — v;. A node

vy is said to be reachable from a node v, if there exist nodes vy, vy, ...v_y such that

86

v — vy — vy — ... — vy_; — v, denoted by v; —* v;. If a node v, cannot be
rcachable from node v), then we write v; /4" v;. For each node v € 1/, we define
a function label_name(v), which returns the name of the label(viz. name of a variable
for a d-node).

Algorithm: Reduction of test case using DFG.

Input: DFG G = (V, E) and the Test Case m =< J.,¢,¢,¢, Re, Je, €, ho >.

Output: Reduced Test Case.

Method: We define a procedure RED JCTION.

Procedure REDUCTION

S1. Compute the set TNS = {n| < a,j,j',n,p,c,f,h >€ R. } U ¢ Construct an
induced subgraph Grns = (Vrns, E1ns) of G = (V, E). Compute the sets:
Dy = {d — nodes|i — node /* d — node, forall i — node € Vrys}
D= { d = nodes | d - node /0 — node, forall d - node € D

and o — node € VTNS}
For each rule r € R, do the following steps.
S2. For cach assignment statement Ass of action, and assignment, do the following:
If for each variable Var in Ass, there exists some d € D such that label_name(d) =
Var, then delete that assignment Ass from that rule r.
S3. For each predicate Pred in the guard, and condition, do the following:
If for each variable Var in the predicate Pred, there exists some variable d € D such

that label_name(d) = Var, then delete that predicate Pred.

In the first step of the above algorithm, we consider a subgraph of the data flow
graph whose edges are labeled with the transition numbers of the rules of the test case
under consideration. Also, in this step, we collect all the d-nodes (variables) denoted by
the set D, which can neither be reached from any i-nodes nor reached to any o-nodes.
This means that we are considering only those variables, which have no influence on the
input/output domain of the test case. In step 2 of the algorithm, we eliminate a statement

from the test case, if each and every variable appearing in that statement is in the set

87

D. This means that the statement is independent of the input/output domuain, hence ity
eliminated. In the third step, the predicates that have no influence on the input/output

domain are also eliminated.

As an example, let us consider the test case ty generated from Inres protocol given in
section 4.4. For this test case the set D = {z4, 2,0} is obtained from data flow graph.
The algorithm eliminates the statements {:2 « s(0),z4 « 22,24 « s(z1)} and the
predicate [z4 < 4] from the test case t;. The result is the same as that obtained by
reducing the test case dependency graph.

The major advantage of reducing the test cases using DFG over TCDG is that it
is not necessary to model the test cases. Also, DFG is useful in the selection of test
cases as discussed in section 4.3. A software tool [53] to display the DFG graph is
available, hence it could be used to reduce the test cases. However, DFG is not useful
in representation and analysis of test case, whereas TCDG is useful in the represeniation

of test cases. This is discussed in the following chapters of the thesis.

BB

CHAPTER V

TEST SUITE SELECTION AND REPRESENTATION

According to the Local Single-layer (LS) test architecture of ISO, any implementation
under test (IUT) can be tested by a lower tester (LT) and an upper tester (UT) located at

the bottom and top interfaces, respectively (see Figure 5.1) [30].

Upper Tester

Lower Tester

Figure 5.1 The LS test architecture

Test cases generated from the specification define the behaviour of the IUT. The behaviour
of the LT and the UT considered together comprise the tester’s behaviour. The tester’s
behaviour is the dual of the IUT’s behaviour. Therefore the tester’s behaviour can be
obtained by behaviour inversion. Behaviour inversion is based on viewing each test
case as an extended finite-state machine. Complete behaviour generation of the test case
EFSMs is a complex process consisting of several steps. We have already discussed the
steps of specification transformation, test case generation and test case reduction. In this
chapter we discuss test suite representation and selection. First we discuss input/output
data flow representation followed by test representation and selection. Finally the test

cases are adapted for the RS architecture.

5.1 CONSTRAINT REPRESENTATION

Any constraints on the initial values of ASPs, PDUs and other substructures are
defined as base constraints. Each test case imposes other constraints; these constraints

are called dynamic constraints. We represent constraints with an /O diagram.

5.1.1 Instantiated /O Diagram

Primitive leaf nodes in the /O diagram will contain the constraint information. The
constraint information can be a constant or parametric value, a range value, e.g., > 5, a
wild card such as “?” for any single value, “-” for omitting an optional fieid, or “*” 1o

“oy

mean either “?” or “-”. For more complicated constraints, Boolean expressions relating

the field value to the variables are used.

Example 5.1 Recalling the ASN.1 definition of Assoc-sre-diag given in section 2.4.1 of
chapter II, a constraint on the optional field s-user, i.e. s-user must be “null”, can be

represented as an instantiated 1/0O diagram Assoc-src-diag shown below:

Assoc-src-dhag

s-user

INTEGER

5.1.2 Base Constraints

For each ASP and PDU two base constraints are defined as instantiated 1/0 diagrams,

one for input events and another for output events.

90

In this section, we shall present two algorithms to generate base constraints for
input/output events. The algorithms take the I/O diagram hierarchy defined in section
2.4.3 of chapter I, as input and produce an instantiated I/O diagram as output. We assume
the height of the 1/O diagram is two. An /O diagram of any height can be transformed to

one or more 1/O diagrams of height two. As an illustration, let us consider the follcwing

I/0 diagram, whose height is one.

Release_response_reason

\

—
INTEGER INTEGER 0 INTEGER 0
normal(0) not_finished(1) user_defined(30)

It can be transformed into a /O diagram whose height is two by introducing an

interior node of composite type of name reason, which is shown below:

Release_response_reason

reason
INTEGER INTEGER 0 INTEGER 0
normal(0} not_finished(1) user_defined(30)

Similarly, an 1/O diagram of height more than two can be transformed into two or

more 1/O diagrams of height two by inserting a nonprimitive type leaf_node, i.e., an

extension_leaf _node.

91

10.

11.

12.
13.

The algorithms we discuss in this chapter use the following operations:

LEFTMOST_CHILD(n. T) returns the leftmost child of node n in tree T, and it
returns "null” if n is a leaf.

RIGHT_SIBLING(n, T) returns the right sibling of node n in tree T, defined to be
that node m with the same parent p as n such that m lies immediately to the right
of n in the ordering nf the children of p.

DELETE_SIBLING(n, T) deletes all the siblings (including their subtrees) of the
node n in tree T.

LABEL(n, T) returns the label of the interior node n in tree T,

LEAF_FIELDI(n, T) returns the valuc of the first field (upper part) of the leaf
node n in tree T.

LEAF_FIELD2(n, T) returns thec value of the second field (lower part) of the leaf
node n in tree T.

DEFAULT(n, T) returns the first default_leaf child of node n found in tree T and
it returns “null” if there are no default_leaf child nodes of n in trec T.
OPTIONAL(n, T) returns the optional_leaf child of node n in tree T or “null™ if
there is no optional_leaf child of node n in tree T.

EXTENSION(n, T) returns the extension_leaf child of node n in tree T or *null”
if there is no extension_leaf child of node n in tree T.

ALTERNATION(n, T) returns “true” if node n is alternative to all of its siblings
and returns *‘false” otherwise.

ASSIGN(FIELD2(n), V, T) assigns the value “V” to the second ficld of the node
n in tree T.

CREATE_LEAF(1, v) returns a new leaf node n with label 1 and value v.
CREATEm(1, Ty, Ty, . . , Tm) returns a new node n with label I and gives it m

children, which are the roots of the trees Ty, Ta, . . , T in order from the left.

Algorithm: Receive Event Base Constraint.

Input: The I/O diagram hierarchy.

92

Output: Base constraints /O diagram for each ASP, PDU and substructures.

The procedure RECEIVE_CONSTRAINT is called for each I/O diagram T of ASP, PDU

and subs.ucture.

procedure RECEIVE_CONSTRAINT(T);

SL Letr be the root of /O diagram. Set q := LEFTMOST_CHILD(, T) and i := 1;

§2. If g <> null then go to S3 else CREATEI{(LABEL(r,T)_base_R, Ty,,, Tnssy -y ~na,)
and STOP.

S3. If ALTERNATION(q,T) = “true” then DELETE_SIBLING (q,T).

S4. 5. If p := DEFAULT (g, T) <> “null” then do

(a) n, :=CREATE_LEAF(LEAF_FIELDI1 (p, T), LEAF_FIELD2 (p, T));
(b) ny, := CREATEI(LABEL (q, T),T%,)%
(¢) 1 :=1+1, go to S§

ii. If p := OPTIONAL (q,T) <> “null” then do
(a) n, :=CREATE_LEAF(FIELD_LEAF]1 (p,T), '*°);
(b) n3, ;= CREATEI(LABEL (q, T), Ty,);
(¢) i:=i+1, go to S5.

iii. If p := EXTENSION (g, T) <>“null” then do
(a) n, :=CREATE_LEAF(FIELD_LEAF1 (p,T), FIELD_LEAF2 (p, T));
(b) ny, := CREATEI(LABEL (q. T), T,);
(¢) i :=t +1, go to S5.

iv. Otherwise sct p := LEFTMOST_CHILD(q,T) and de
(a) n, := CREATE_LEAF(LEAF_FIELDI(p,T), ’'?");
(b) ny, := CREATE(LABEL(q, T), T3,,);
() 1:=1 +1, go to S5.

S5. Set q := RIGHT_SIBLING (g, T); go to S2

Example 5.2 As an illustration, we apply the algorithm to the I/O diagram of AARE-apdu

shown below. For convenience, we numbered all the nodes uniquely.

93

AARE-apdu

T L
protocol-version result-source- l respondsng- Al }
diagnostic | title
5 / \ 6 7 8 /7__\’
BITSTRING °[| BITSTRING °| | Assoc-src-diag APautle ¢ : o
- versionl(0) - T T -l

The root node of the /O diagram i. AARE-apdu, i.c.. node 1. 1In step 1 ot the
algorithm q is set equal to node 2 and i is initialized to 1. Now the intenor node 2 s
examined, which is of course not nu/l. Step 3 is skipped because node 2 is not alternative
to all of its siblings. In step 4, DEFAULT(2,T) returns node 6, which is a default leaf

child of node 2. Then a leaf node n; is created in substep (a), which is shown below:

BITSTRING

versionl(Q))

In substep (b) a tree with the root node ny; of label protocol-version is created,

which is as follows:

protocol-version

BITSTRING

version1(0)

In substep (c) i is incremented by 1 and the conwol is transferred to step 5. In this step

q is set to RIGHT_SIBLING(2,T), which is node 3 and the control is transferred to step 2.

94

In the next iteration a tree with the root node ny; is created as is shown below:

result-source-

diagnostic

T
|

Assoc-src-diag

In the third iteration a tree with root node ny3 with label responding-AP-title is

created as shown below:

responding-AP-title

Finally. in step 2 CREATE3(AARE-apdu_base_R, T, Tn,,, Tn,,) is formed, which

is nothing but the following 1/0 diagram:

AARE-apdu_
base_R
/ \
protocaol-version result-source- respoqdmg-AP-
diagnostic tile
! RIT STRING | Assoc-src-diag —
i versionl(0y - T *

95

For the substructure Ass-src-diag. the constraint generated by applying the algorithm

is given in example 5.1.

Example 5.3 Our second example is from DT pdu of Inres protocol. The 1/O diagram

for DT pdu, which is defined in section 2.4.2, is shown below:

DT

(28]
>

num data

/4 5 [§)

0 o, T -
Sequencenumber Sequencenumber | ’ ISDU ”l

0 1 l ‘ datal l ’ datas

i

Once again, for convenience, we numbered all the nodes uniquely. The root node of
the I/O diagram is DT, ie., node 1. In step 1 of the algorithm q is set equal to node 2
and { is initialized to 1. Now, the interior node 2 is examined, which is of course not
null. Step 3 is skipped because node 2 is not alternative to all of its siblings. In step
4, DEFAULT(2,T) returns node 4, which is a default _leaf child of node 2. Then a leaf

node n; is created in substep (a) as shown below:

Sequencenumber

0

In substep (b) a tree with the root node njy; with label num is created, which is as

follows:

96

num

Sequencenumber

0

In substep (c) i is incremented by 1 and the control is transferred to step 5. In this
step g is set RIGHT_SIBLING(2,T), which is node 3. In the next iteration a tree with

the root node nj; is created as shown below:

data

ISDU

datal

In the final iteration, CREATE2(DT_base_R, Tna1, Tn22) is formed, as shown below:

3
DT_base_R
4 \ 5
num data
6 7
Sequencenumber ISDU
0 datal

Algorithm: Send Event Base Constraint,
Input: The 1/O diagram hierarchy of the specification

QOutput: Base constraints 1/O diagram for each ASP, PDU and substructures.

97

The procedure SEND_CONSTRAINT is called for each 1/O diagram T of ASP, PDUI,

substructures.
Procedure SEND_CONSTRAINT(T);

The same as RECEIVE _CONSTRAINT except for the optional_leaf _node the wild card
-’(OMIT) is generated instead of "*’(ANY_OR_OMIT) since stricter constraints must

be imposed on the parameter values of send events.

5.1.3 Dynamic Constraints

In the following we outline procedures to gencrate the instantiated 1/0 diagram
representing dynamic constraints on the parameter values of each SEND/RECEIVE event

of each test case.

Algorithm: Receive Event Dynamic Constraints.

Input: RTCDG and Receive Event Base Constraints (REBC)
Output: Receive event dynamic constraints.

The base constraints 1/O diagrams are modified by changing the value of the leaf
nodes based on the send event structure in the RTCDG. We assume the structures of
the send event are of the form: ASP(field_l, field_2, ... , field_n), where ASP is the

name of the send event, and field_i stands for the term assigned to the corresponding

field identifier d, of the ASP.

For each send a-node in RTCDG do

S1. Let T be the receive base constraint for the ASP associated with a send a-node and
Struc be the send event structure.

S2. RECEIVE_CONSTR_DYNAMIC(Struc, T, REBC);
procedure RECEIVE_CONSTR_DYNAMIC(SP, T, REBC),
S1. Let r be the root of the I/O diagram. Set q:= LEFTMOST_CHILD(r, T).

98

S2. for each field_i of SP do

i. If field_i is of PDU or substructure type then do
(a) Let Ty, be the 1/O diagram of the PDU or substructure receive base constraint.
(b) RECEIVE_CONSTR_DYNAMIC(field_i, T,, REBC)
ii. If field_i is of the form op(Not_present) then set q:= RIGHT_SIBLING(q, T).
iit. Otherwise do
(a) ASSIGN(FIELD2(LEFTMOST_CHILD(q,T)), field_i, T)
(b) Set q:= RIGHT_SIBLING(q,T).

As an illustration, let us consider RTCDG(Figure 4.6) of test case t; generated from
Inres protocol. Let the SEND event a-node be 14.1, i.e., the event
MSAP!MDATreq(ipdu9)
The event structure “Struc” can be rewritten in the form of
MDATreq(DT(number7, data(sp7))
because the variable ipdu9 is assigned the value DT(number7,data(sp7)) in the s-node
13.7.

The base constraint of MDATreq in the form of an I/O diagram is shown below:

14.1
MDATreq_base_R
2
data
3
IPDU

The REBC is the set of all Receive Event Base Constraints obtained for this protocol.

Again, for convenience, we numbered the root node of VO diagram as a-node number

99

and all other nodes of the I/O diagram with a unique positive integer. Note that the node
3 is an extension_leaf node.

The step 1 of the procedure RECEIVE_CONSTR_DYNAMIC q is set equal to 2. In
step 2 the field_1 of MDATreq which is DT(number7, data(sp7)) is checked for PDU
type. The field_1 is of course DT pdu, for which the receive event base constraint is

given below, in form of /O diagram Ty:

3
DT_base_R
B l__
4 5
num data 1

6 7
Sequencenumber ISDU
0 datal

Note that, we numbered the root node of the I/O diagram as the saume number as that of
extension_leaf node and all other nodes of the 1/O diagram with a unique positive integer.
In substep (b) of step 2, the recursive procedure RECEIVE_CONSTR_DYNAMIC is
called again with “Struc” = DT(number7, Data(sp7)), and T = T},. The receive dynamic

constraint generated by the procedure for DT pdu is given below:

3
DT_base_R
4 IS
num data I
6 7
Sequencenumber ISDU
number? Data(sp7)

100

Algorithm: Send Event Dynamic Constraints.

Input: RTCDG, Send Event Base Constraints (SEBC)

Output: Send event dynamic constraints.

In generation of send event dynamic constraint, SEBC are used. The base constraint 1/0
diagrams are modified by changing the value of the leaf nodes based on the predicates
in p-nodes of RTCDG. We assume that if the predicate p, involves field_identifier d, of
the ASP/PDU, then it is either of the form of d, op E, or it can be transformed to that

form, where op is an operator of the form <, >,<, >, #,=, and E, is a term.

For each receive a-node in RTCDG do

S1. Let 7 be the set of all 1/O diagrams cormresponding to the send base constraint
for the ASP (including the base constraints used by the ASP through the exten-
ston_leaf _node).

S2. Let Pred be the set of all predicates in conjunctive normal form p; and p3 ... and p;
of the p-nodes that are data dependent on the receive a-node.

S3. For each p, € Pred do
for each Te 7 do SEND_CONSTR_DYNAMIC(T, pi)

procedure SEND_CONSTR_DYNAMIC(T, p,);

S1. Let r be the root of the 1/O diagram. Set q:= LEFTMOST_CHILD(r, T).
S2. If ¢ #™null” go to S3; else STOP.
§3. If p, involves LABEL(q, T) then go to S4; else go to S5.
§4. (i) Transform the predicate pi into the form of LABEL(q, T) op E.

(i1) ASSIGN(FIELD2(LEFTMOST_CHILD(q, T)), “op E”, T); go to S5.
S5. SET q:= RIGHT_SIBLING(q, T); go to S2.

As an illustration, let us consider the RTCDG(Figure 4.6) of test case t; of Inres
protocol. Let the receive event a-node be 11.1, ie., the event
ISAP ? sp7:SP

The p-node 12.5 has the dependency on this a-node and it reads as

101

[isIDATreq(sp7)]
This dependency does not impose any constraint on the data field of the service primitive

IDATreq, so the algorithm returns the base constraint as the dynamic send event constraint

for IDATreq:

1.1
IDATreq_base_R_D

2
data
3
I1ISDU
datal

More illustrative examples on generation of dynamic constraints for realistic protocol

such as ACSE and HDLC are given in application chapter 6.

5.2 CONTROL FLOW BEHAVIOUR REPRESENTATION

Events and assignments in a test case comprise the dynamic behaviour of the test case,
The flow of control is sequential except when there is a spontaneous transition. Graphical
representation of the control flow can be directly obtained from RTCDG by simply
dropping the p-nodes and the associated s-nodes with no incoming data dependency edge.
Except for is a-nodes, all other a-nodes are inverted, which means that interactions are
inverted. For example the event PIABRT_apdu can be inverted to P?ABRT _apdu.
Algorithm: Control Flow Behaviour Representation.

Input: Reduced Test Case Dependency Graph RTCDG = (V, E).

Output: Control Flow Behaviour Representation CFBR = (V', E').

102

The main algorithm eliminates all the p-nodes. The interactions are inverted. The

procedure SEARCH is the same as was defined in the reduced test case dependency

graph algorithm. We assume that the action v is in the form of gd, where d = !r or ?v:s.
1. V=V,

2. E':=E;
3. foreach veV , cV do

begin
4. Vi=Vi-y;
5. Let Epew ;= { (u,w) Il w € Ngy[v] and u € N; [v]};

6. E' :== { E'= {Df [VIU C; [v] U Ci [V] }} U Epews
end

SEARCH(V' ,E');

~

8. Foreach action v € Val c V' do

begin
9. If v is in the form of g!r then change it to g?v.s ;
10. else if v is in the form of g?v:s then change it to g't;
end

5.3 TEST CASE HIERARCHY

The international standard for conformance testing methodology [30-31] gives a
framework for testing protocol implementations for conformance to the standards. The
methodology requires the development of a standardized collection of tests called a test
suite.

The test suites are hierarchically structured. The first level of the hierarchy consists
of four major test groups: Basic Interconnection tests, Capability tests, Behaviour tests
and Conformance Resolution tests. Behaviour testing is the main part of a test suite

and has three subdivisions: valid behaviour testing, which aims to establish that valid

103

behaviour of the protocol can be exercised correctly; invalid behaviour testing, which
confirms that invalid behaviour is handled properly as specified in the protocol standard;
inopportune behaviour testing, which checks how unexpected or inopportune behaviou
is handled. Each of these groups are further divided into a smaller number of lower level
test groups. Figure 5.2 [46] is an example of a suitable structure for a single-layer test
suite. The first level in test suite hierarchy is protocol independent but subsequent levels
are protocol dependent. Also it is not known which hierarchy will be the best test suite for
a given protocol. The test selection step assumes that the test suite hicrarchy is externally

decided. Test suite hierarchy also decides the test purposes, which are discussed next.

5.4 TEST PURPOSES

Once the test suite hierarchy is constructed, a naming strategy is developed to name
the nodes of the tree. A node in the tree can be identified by the name of the path from
the root to the node. At any node, the subtree rooted at that node can be considered as a
test subgroup. Also, associated with every node there is a test subgroup objective, which
conveys what the test subtree rooted at that node is designed to achieve. The leaves are

the test purposes. Objectives and test purposes are presently informally specificd [46].

5.5 VALID BEHAVIOUR TEST SELECTION

Once the test suite structure and test purposes are determined for each test purpuose,
one or more test cases must be selected from the represented test cases. If the specification
defines only valid behaviour, then all the test cases belong to valid behaviour test

hierarchy.

5.5.1 Behaviour Enhancements and Verdict Assignment

Control flow behaviour representation (CFBR) of the sclected test cases is analyzed
and several enhancements are carried out. In the following, we outline an algorithm to

enhance CFBR of the selected valid behaviour test case.

104

A. Capability tests

A.1 Mandatory features
A2 Optional features
B. Behaviour tests: response to valid behaviour by peer

B.1 Conncction establishment phase (if relevant)

B.1.1 Focus on what is sent to the IUT

.1.1 Test event variation in each state
1.2 Timing/timer variation

1.3 Encoding variation

.1.4 Individual parameter value variation
.1.5 Combination of parameter values

B.1
B.1
B.1
B.1
B.1

B.1.2 Focus on what is received from IUT
—— substructured as B.1.1
B.1.3 Focus on interactions
— substructured as B 1 1
B.2 Data transfer phase
—substructured as B 1
B.3 Conncction release phase (if relevant)
—substructured as B.1
C. Bchaviour tests: response to syntactically invalid behaviour by peer

C.1 Connection cstablishment phase ¢ if relevant)

C.1.1 Focus on what is sent to the JUT

C.1.1.1 Test event variation in each state

C.1.1.2 Encoding variation of the invalid event
C.1.1.3 Individual invalid parameter value variation
C.1.1.4 Invahd parameter value combination variation
C.1.2 Focus on what the IUT is requested to send

C.1.2.1 Individual invalid parameter values
C.1.1.2 Invalid combinations of parameter value

C.2 Data transfer phase
— substructured as C.1

C.3 Connection release phase (if relevant)
— substructured as C.!

D. Behaviour tests: response to inopportune events by peer
D.1 Connection establishment phase (if relevant)

D.1.1 Focus on what is sent to the IUT

D.1.1.1 Test event variation in cach state

D.1.1.2 Timing/timer variation

D.1.1.3 Special encoding variations

D.1.1.4 Major individual parameter value variation

D.1.1.5 Varation in major combination of parameter values

D.1.2 Focus on what is requested to send by the TUT
~—substructured as D.1.1

D.2 Data transfer phase
— substructured as D.1

D.3 Conncection release phase (if relevant)
— substructwed as D.1

Figure 5.2 Suitable structure for a single-layer test suite.

105

Algorithm: Behaviour Enhancement.

Input: Control Flow Behaviour Representation(CFBR).
Output: Enhanced CFBR.

All the is a-nodes that are alternative (0 a send a-node are removed due to controllability
of the tester. A new type of receive a-node (?OTHERWISE) is created as an alternative to
all receive a-nodes to specify tester’s behaviour against invalid IUT behaviour. Verdicts

are assigned to the receive and OTHERWISE a-nodes.

S1. For each is a-node A1l do
Find the first a-node A2 in the alternative path;
If A2 is a send a-node then delete the edge incident on Al.
S2. Repeat (i) until there is no node (except the initial node) without an edge incident
on it.
(i) delete the node and all the outgoing edges.
§3. For each receive a-node do
add an alternative path which contains an arc and a receive a-node of type
OTHERWISE. No other arcs are added to this path, i.e.,
OTHERWISE a-nodes can only be at the final states.
S4. For each OTHERWISE a-node O1 do
verdict(O1) := fail;
For each receive a-node R1 do
if R1 is the last event in the path and the path leads to the initial state do
verdict(R1) := pass;
SS. For each is a-node A1 do
for each receive a-node R2 following Al do
if R2 is the final node or predecessor of the final node then

verdict(R2) := inconclusive

The time complexity of the algorithm given above in the worst case is O(IV12), where

IV is the number of nodes in the control flow behaviour representation graph.

106

5.5.2 Test Purposes and Parameter Values

Sometimes it is necessary to modify the enhanced CFBR to satisfy the test purpose.

In the following we outline a heuristic to modify the enhanced CFBR.

Procedure:
Input: Enhanced CFBR.

Output: Modified Enhanced CFBR.

S1. Directed circuits in the enhanced CFBR are modified to reflect the test purpose. If
the loop is needed only once then delete the aic that crcates the circuit.

S2. If the loop nzeds to be executed more than once then it is expanded. In this case
parameter values of send and receive a-nodes in the expanded CFBR must be varied
to try sending the same events with different parameter values and verifying the

responses from the receive event parameters.

2]
(S

. If the test purpose is achieved with a receive a-node for which no verdict is assigned,

assign a pass verdict to this a-node.

5.6 ADAPTATION OF GENERATED TEST CASE FOR RS ARCHITECTURE

So far we have discussed the generation of test case for Local Single-layer(LS)
architecture. In this section, we shall develop an algorithm to transform the generated
test case to a form which is suitable for Remote Single-layer(RS) architecture. The
significant features of RS model are that no interface at the top of the IUT is assumed

and no explicit test coordination procedures are assumed, as shown in Figure 5.3.

107

uT

LT

T

Service Provider

Figure 53 The RS test architecture

It may seem strange to test an initiator [UT by use of the remote test method and
thus omitting service interface checks since no upper point of observation is used (contiol
of the IUT is achieved by use of implicit send). However, in the case of embedded
testing this is acceptable since the service interface is tested implicitly by the supported
application. The implicit sends (to control the TUT) can be specified at any level and it
is up to the TUT provider to specify in the Protocol Implementation Extra Information
for Testing (PIXIT) how those events can be triggered.

Our starting point is the RTCDG obtained from the generated test case. The RTCDG
is transformed to a form which is suitable for RS architecture. The basic ideas behind
the transformation are to suppress the service provided by the TUT and to specify the
implicit events. The suppression of the service provided by the IUT can be achieved by
the elimination of send a-nodes that are occurring at the upper interface. The implicit
event can be specified by replacing the interface name to “IUT” of the receive a-node
that are occurring at the upper interface. In the above process, we may have to climinate
some s-nodes that cannot affect the parameters of the send a-nodes.

Algorithm: Remote Single-layer(RS) Reduced Test Case Dependency Graph.

Input: Reduced Test Case Dependency Graph RTCDG =(V, E).

108

Output: RS Reduced Test Case Dependency Graph RTCDGgs = (V', E').

The recursive procedure SEARCH eliminates s-nodes that have no incident data de-
pendency edge. We assume that the operation CHANGE(name(a), “IUT”) is available.

CHANGE(name(a), “IUT”) replaces the gate associated with the action “a” with “IUT".

1. VI =V;

[

E' = E;
3. Letl, ={ v € VIname(v) = upper_gate }
4. Foreachv €1, do

begin

5. If offer{v) =1 then

begin
6. V' =V -y
7. Let Epew := { (uuw) I w € Nefv] A u € Ny[v] }
8. E' :={ E' - { Dflv] U Cilv] U Ci[v] }} U Eqew

end
9. else CHANGE(name(a), “IUT”);

end

10. SEARCHI(V', E'):
procedure SEARCH(V', E');

. LetVD={vIDfv]=dandv e V,C V' }
2. If VD <> & then

begin
R} Let v be any element 1n VD;
4. V=V -,
5. Let Enew := { (uuw) I w € N¢[v] and u € Ny[v] };
6. E':= { E' — { Dev] U Cflv] U Ci[v] }} U Epew :
7. SEARCH(V' .E');

end;

109

The RS RTCDG can be used as a basis to represent the test case. The control flow
can be directly obtained from the RS RTCDG by dropping the p-nodes and the associated
s-nodes with no incoming data dependency edge. Similarly the dynamic constraints can
be generated as explained in section 5.1.3. Also verdicts can be assigned as explained

in section 5.5.1.

5.7 COMPARISON BETWEEN TEST SELECTION STRATEGIES

Two types of test selection strategies are discussed in this thesis:

1. Selection of test cases generated from the specification to meet certain coverage
criteria.
2. Selection of test cases that satisfy the test purpose according to the hierarchy proposed

by 1SO[46].

In the first type of test selection method, the test designer fixes the criterion. This
criterion may be branch testing, node testing or a particular function of the protocol.
Once the criterion is fixed, i.e., a particular function of the protocol is identified from
the data flow graph, we select a subset of the generated test cases by using zero-one
integer programming method, which adequately exercises the protocol function. In the
second type, the selected test case is categorized according to the test case hicrarchy. In
other words, the selected test cases (for a particular function) are divided into different
subgroups that satisfy the subgroup objective in the test suite hierarchy. Also, the test case
of the subgroup that satisfies a particular test purpose within that subgroup is identificd.

In summary, the first type of selection method is to select a subset of the generated
test cases that satisfies certain data flow functions, whereas the second type is to divide
those selected test cases that satisfy certain coverage criteria, into different subgroups

according to the test suite hierarchy designed externally.

110

CHAPTER VI

APPLICATIONS

In this chapter we apply the test suite design methodology to the ACSE and
LAPB protocols specified in LOTOS and SDL language respectively. We also describe
LOTEST, a computer-aided software tool that implements our test suite design method-

ology for a LOTQOS specification.

6.1 ACSE SPECIFICATION IN LOTOS

An Application Entity (AE) may be modeled as a set of building blocks, each
providing a well defined functionality. These building blocks are called Application
Service Elements (ASEs). Each ASE co-operates with its peer by using a specific
protocol. The AE chooses the ASEs needed to provide the type of communication
required by the application protocol user. The Association Control Service Element
(ACSE) is a special kind of AE that is used by other ASEs to open and release Presentation

Layer connections between associated AEs.

The formal specification of the ACSE protocol [27] is written in the LOTOS
specification language. The specification consists of two major parts. The first part
describes abstract data types and structures used by ACSE (i.e., parameter types, PDUs
and service primitives). The behaviour of ACSE is defined in the second part. The

behaviour of the ACSE protocol in LOTOS is based on the following three procedures:
e association establishment:

The association establishment procedure is used to establish an association between
two AEs. It supports the A-ASSOCIATE service. The association establishment
procedure uses the A-ASSOCIATION-REQUEST(AARQ) and the A_ASSOCIATION-
RESPONSE(AARE) APDUs.

o normal release of an association establishment:

The normal release procedure is used for the release of an association by an AE
without loss of information in transit. It supports the A-RELEASE service. The
normal release procedure uses the A-RELEASE-REQUEST(RLRQ) APDU and the A-
RELEASE-RESPONSE(RLRE) APDU.

e abnormal release of an association:

The abnormal release procedure can be used at any time to force the abrupt releasce
of the association by a requester in either AE, or by the presentation service provider.
The abnormal release procedure supports the A-ABORT and A-P-ABORT services. The
abnormal release procedure uses the A-ABORT(ABRT) APDU. Note that no PDUs are
defined for the A-P-ABORT service since it is directly mapped from the P-PABORT
service.
As an illustration, we take a very simple LOTOS process of the ACSE protocol to
specify abnormal release of an association:
process abort[A,P]: noexit:=
A?x:primitive[IsAABRreq(x)];
P!ABRT_apdu (acse_service_provider, type023 (Not_present));
unassociated|[A, P}
[]
P?%X:ACSE_apdu{IsABRT(x)];
AlAABRind{acse_service_provider,
type_generel20 (Not_present));
unassociated[A, P)

endproc (*abort*)

The LOTOS specification of the ACSE protocol is a mixture of resource and state oriented
styles. It includes all the options specified in the standard for a total of some 2297 lines

of LOTOS code, out of which 88% is about abstract data types.

112

6.2 THE LLOTEST SYSTEM

LOTEST [53] is a tool for designing test cases from LOTOS specifications. The
backbone of the LOTEST environment is a formal notation called chart which has:
mathematically precise semantics, a formal algebraic product for the composition of two
charts and simple representation of data flow. LOTEST has been developed on a SUN
workstation using standard UNIX tools (LEX, YACC and the C compiler) and Prolog.
The attractiveness of LOTEST lies in the user’s ability to design tests interactively, with
access to several helpful tools that implement the methods of compilation, generation
of test cases, and identification of protocol functions. In this respect, two features of
LOTEST uare significant. First, the chart constructed from the LOTOS specification
facilitates the generation of test cases as well as the construction of data flow graphs.
Second, the menu selection facility relieves a test designer from having to remember all
the commands and reduces the number the key strokes he or she has to enter for interaction

with LOTEST. When the LOTEST is invoked, it displays the following menu:

TEST SEQUENCE GENERATION FROM LOTOS

ENTER 1 or I TO LIST LOTOS SPECIFICATION

ENTER 2 or ¢ TO COMPILE A LOTOS SPECIFICATION ".1"

ENTER 3 or p TO LIST COMPILED LOTOS SPECIFICATION ".pI"

ENTER 4 or n TO GENERATE CHART FROM LOTOS SPEC. "p!"

ENTER 5 or z TO LIST CONTROL GRAPH ".CTRL"

ENTER 6 or d TO GENERATE INPUT FOR CONTROL FLOW GRAPH ".ECTRL"
ENTER 7 or g TO LIST CONTROL GRAPHS FROM SPECIFICATION "ECTRL"
ENTER 8 or {f TO GENERATE INPUT FOR DATA FLOW GRAPH ".dfg"

ENTER 10 or d TO GENERATE DEADLOCK STATE FROM CTRL GRAPH ".lock"
ENTER 11 or t TO GENEARE TEST CASES FROM CTRL GRAPH ".test”

ENTER 12 or s TO GENERATE CHART FOR EDITTEST ".LIST"

ENTER pwd TO SHOW CURRENT DIRECTORY

ENTER m TO SHOW THIS MENU

ENTER ¢ or exit TO QUIT FROM THIS MENU

CHOOSE ONE COMMAND

==>

113

Figure 6.1 shows the global structure of the tool. This section gives an overview

of the three components.

Tests

LOTOS — Complier

4) Chart generator |——| Interactive tools
specification

Figure 6.1 Global structure of LOTEST.

6.2.1 Compiler

The first step applied to the LOTOS specification is compilation. Here we adopt the
compiler developed at the University of Ottawa as a part of LOTOS interpreter isla [40].
The compiler does lexical, syntactic and semantic analysis. If the specification is found
to be correct, it is translated into an internal format, which represents the specification

in the form of a Prolog list in a flattened name space.

6.2.2 Chart generator

After compilation the chart generator is activated, which translates the intermediate
form of the specification in Prolog form into a chart by bottom-up synthesis. In the first
stage, expansion of the LOTOS processes and renaming of variables are done, and then
the chart is constructed. In the second stage, it prepares input for the interactive tools to
display the data and control flow graphs. Finally, it generates test cases.

The chart, input for data flow graph, test cases, etc., can be generated interactively.
In the generation of the chart, the process recursion can be resolved as soon as it
encounters the process identifier or it can be resolved after all the LOTOS constructs
in the specification are translated into the chart. The test designer can choose which
recursion can be resolved right away by answering ’yes’ or 'no’ to the query when
the recursion is encountered in the formation of the chart. The recursions that are not
resolved at the time of construction of the chart are automatically resolved at the end

of the chart construction.

114

The chart generator tool provides some facilities for locating specification errors. For
example, detection of deadlock in the specification. Deadlocks can occur in a specification
if different gates are used in a given interaction. We present in the following a simple
example to demonstrate the deadlocks. Let us consider the following two processes:

Process S1[a,b]: noexit :=

a !succ(0); a; stop

endproc

Process S2[a,b]: noexit :=
a !succ(0); b; stop

endproc

When the two processes S1 and S2 (S1)|S2) are composed, a deadlock occurs. In this
example, it is intuitively clear that there is a deadlock in the specification. However, in

more complicated situations it is not easy to locate these kinds of errors.

The chart generator is written in Prolog, and the current version is made up of

approximately 4000 Prolog clauses.

6.2.3 Interaciive tools

There are four interactive tools: ctool, dfgtool, edittest and testgen. The chart is
displayed in the form of a finite state machine by ctool using Sun workstation graphics.
After displaying the chart, ctool becomes a menu-driven interactive tool. The test designer
can move the screen left, right, up and down as well as move the states anywhere on the
screen by means of the mouse. The graph can be saved/loaded any time by a save/load

command in the menu.

The dfgtool displays the data flow graph with automatic blocking and offers several
facilities for block merging. The dfgtool, like ctool, has a menu-driven interactive user
interface. Edittest displays the test case in one of the windows, the rules that occur in
the test case in a text window, and the chart in another window. Edittest is designed to

help the test designer to interactively go through the test cases and identify infeasible test

115

cases. The testgen tool gets the test cases from the edittest output and uses the transition
numbers of each function from the data flow graph to generate full coverage of each of

the data flow functions. All these interactive tools are derived from CONTEST_ESTL

[54] by software reusability.

6.3 TEST SUITE DESIGN FROM ACSE PROTOCOL

The first step of test suite design is the construction of the EFSM chart. An EFSM
chart was automatically constructed from the LOTOS specification of ACSE protocol
using the LOTEST([53] tool. The resulting EFSM chart has 113 states and 16Y transitions,

and is given in appendix A.

6.3.1 GENERATION AND SELECTION OF TEST CASES

The next step is to generate test cases and to draw the data flow graph. As
mentioned earlier, the total number of test cases is determined by the formula d,,(initial
state)+d’,,(initial state), where d,,(initial state) is the indegree of the initial state and
d'in(initial state) is the number of edges incoming to the initial state added during the
conversion of EFSM chart to Euler graph. Applying the above formula to the ACSE
EFSM chart, d,, is 10 and d'y, is 34, therefore yielding 44 test cases. The test cases
generated from ACSE protocol are given in appendix B. One complete test case, 7 is

listed below:

Test case ty7

<A7x29, 256, 121, 1, true, [ISAASCreq(x29)], ¢, € >,

< P!ACSE_apdu(ACSE_apdu_genere_0(AARQ_apdu(BIT(1),
app_context_name(get_AASCreq(x29)), called_ap_title(get_AASCreq(x29)),

called_ae_qualifier(get_AASCreq(x29)), called_ap_invocation_id(get_ AASCreq(x29)),
called_ae_invocation_id(get_AASCreq(x29)), calling_ap_title(get_AASCreq(x29)), call-
ing_ae_qualifier(get_AASCreq(x29)), calling_ap_invocation_id(get_AASCreq(x29)),

116

calling_ae_invocation_id(get_AASCreq(x29)), type_genere010(Not_Present),
user_info(get_AASCreq(x29))))):ACSE_apdu, 121, 120, 4, true, true, €, €>,

< P’x14:ACSE_apdu, 120, 109, 9, true, [ISAARE(x14)], ¢, € >,

< i, 109, 103, 14, [eq(result(get_AARE(x14)),accepted)],true, ¢, € >,

< Alprimitive(AASCcenf(application_context_name(get. AARE(x14)), respond-
ing_AP_title(get_AARE(x14)), responding_AE_qualifier(get_AARE(x14)), re-
sponding_AP_invocation_id(get_AARE(x14)), responding_AE_invocation_id
(get_AARE(x14)), user_information(get_AARE(x14)), result(get_AARE(x14)),
acse_service_user, optional(result_source_diagnostic(get_AARE(x14))),
empty_presentation_parms_set)): primitive, 103, 102, 22, true, true, ¢, c12 « calling>,
< A?x12:primitive, 102, 90, 30, true, [ISARLSreq(x12)], ¢, € >,
<P!ACSE_apdu(ACSE_apdu_genere_2(RLRQ_apdu(reason(get_ARLSreq(x12)),
user_info(get_ARLSreq(x12))))):ACSE_apdu), 90, 89, 40, true, true, ¢, c10 « cl12 >,
< P?x10:ACSE_apdu, 89, 77, 53, true, [ISRLRQ(x10)], ¢, € >,

< Alprimitive(ARLSind(ARLSind(reason(get_RLRQ(x10)), user_information
(get_RLRQ(x10)))) :primitive, 77, 76, 66, true, true, €, € >,

<1, 76, 58, 83, [eq(cl0,called)], true, €, >,

< AxS:primitive, 58, 51, 97, true, [IsAABRreq(x5)], ¢, € >,

< P!ABRT _apdu(acse_service_user, type_genere(023(Not_Present)):ABRT _apdu, 51, 50,
113, true, true, ¢, € >

< iy, 50, 256, 129, true, true, ¢, € >

Part of the ACSE data flow graph produced by dfgtool of LOTEST is shown in
Figure 6.2. A data flow graph is designed to visualize the flow of data. However, guard
and selection predicates are not taken into consideration in the DFG to avoid cluttering
of the graph. Generation of data flow graph is only possible when PDUs and ASPs are
explicitly identified. The structures of the PDU and the ASP must be provided by the

117

user. Data flow dependencies between graphs of the ACSE protocol function are said to
occur when the function has incoming arc(s) from another function. Another interesting
property of the data flow graph is that block merging eliminates data flow dependencies
among the data flow functions. It seems that in application layer protocols, context
variables are seldom utilized. In other words, once appropriate parameter values are
chosen for an input interaction, the expected parameter values of the output interaction

can easily be determined.

(Left) (Right} (Mergeeinfo] (Merge] (Move-block) (Kard-copy) {Curve) (Redisplay] (Hame-block) [Mnrk_]ump]“

{(Write Data file) (Save Merges & Nanmes] (Graph Description) (Quit)

Select with left mouse bhutton. .

o) o
\ calling_ae_invocation_1d
\

Ltitle (AARQ_8pdu.callin _AE_lnvocaﬁon_w)(AASCreq.calling_ae_invocatton_id ; (_Qi_k_l]:liﬂdu.r_u_l_i

P_title) (AASCH nd.ca‘l'ling_ae_invocation_id) (AARQ_apdu.call lng_AE_mvocauon_id‘) (AASCtnd.calling

—

Figure 6.2 A part of the ACSE data flow graph displayed by LOTEST

Data flow graphs serve to represent protocol functions such as protocol_version,
user_information, etc. These functions are obtained by the block merging procedure.
This process yields twenty four functions for the ACSE protocol. These are given below

with the transition numbers associated with each.

118

Functions

source_information

user_information

protocol_version
application_context_name
called_ap_title
called_ae_qualifier
called_ap_invocation_id
called_ae_invocation_id
calling_ap_title
calling_ae_qualifier
calling_ap_invocation_id
calling_ae_invocation_id
implementation_information
abort_source

result
result_source_diagnostic
responding_ap_title
responding_ae_qualifier
responding_ap_invocation_id
responding_ae_invocation_id
get_pres_parms_set
source_result

flow_control

reason

Transition numbers

2 17 29 42 60 64 68 90 94 114 117
136 139 143 160

2 17 29 42 60 64 68 90 94 114 117
136 139 143 160 4 7 16 28 41 59 63
67 89 93 113 116 135 138 142 159 11
12 22 23 35 36 39 57 66 92 40 58 65
91 112 13 4 78 79 103 104 131 150
153 15 4 164 165

4 11 35 36

4 12 11 22 23 35 36

4 12

4 12

4 12

4 12

4 12

4 12

4 12

4 12

4 11 35 36

7 16 28 41 59 63 67 89 9 3 113 116
135 138 142 15 9

11 22 23 35 36 65 91 112 134
11 35 36 12 22 23

11 22 23 35 36
11 22 23 35 36
11 22 23 35 36
11 22 23 35 36

12 22 23

22 23

22 40 39 35 58 57 96 119
112 163 134 169 144 161

39 57 66 92 40 58 65 91 112 134 78
79 103 104 131 150 153 154 164 165

6.3.2 ANALYSIS AND REDUCTION OF GENERATED TEST CASES

Let us consider the test case ty7. Figure 6.3 shows its test case dependency graph.

The nodes are numbered as follows: first the transition number is placed followed by

a period and the tuple number. For a-nodes the tuple number is 1, for p-nodes it is

5 or 6 depending on whether it is in the guard or condition clause of the transition.

Similarly, for s-nodes the tuple number is 7 or 8 depending on whether it is in the action

or assignment clause of the transition.

119

Figure 6.4 shows the graph that results from taking slices of the test case dependency
graph from Figure 6.3 with respect to each of the p-nodes of the test case dependency

graph. The same node numbering is used.

Figure 6.3 Test case dependency graph for (7.

\\\ ‘\ . .
« P < 7
@ 9.6 14.5 306 536 97.6 \
22.8
4
40.8 |...-»"

Figure 6.4 Predicate slices of the test case dependency graph tyy

120

In the predicate slice of Figure 6.4, the predicate node 83.5 is dependent on assign-
ment node 40.8, which in turn is dependent on the assignment node 22.8. The predicate
node evaluates to false. The reason is that at s-node 22.8, c12 is assigned to “calling”,
and then at s-node 40.8 is assigned to cl0, i.e., now cl10 has the value of “calling”.
However, the predicate at p-node 83.5 will be true only when c10 is “called”. The test
case tpy which is the same as tp7 except for the last four transitions which are listed:

<, 76, 74, 84, [eq(c10,calling)], true, €, € >,

< Ax7:primitive, 74, 67, 101, [IsAABRreq(x7)], ¢, € >,

< P!'ABRT_apdu(acse_service_user, type_genere(023(Not_Present)):ABRT_apdu,

67, 66, 116, true, true, ¢, € >,

<i, 60, 256, 132, true, true, €, € >

We reduce the dependency graph by eliminating all p-nodes from which a-nodes are
not reachable through the data dependency edges. For example, in the predicate slice of
Figure 6.4 no a-nodes can be reachable starting from the p-node 83.5. The reduced test

case dependency graph of test case tyg is shown in Figure 6.5.

Figure 6.5 Reduced test case dependency graph of test case ta.

We obtained the same results when we use DFG and Edittest tool to reduce the test
cases. The set D obtained from the DFG for the test case f29 is {calling, 12, c10}.

The algorithm eliminate the statements {c12 « calling, c10 « ¢12} and the predicate

121

[eq (c10. calling)] from the test case f20. These are the only statements and predicates

eliminated from the TCDG.

6.3.3 DYNAMIC CONSTRAINT REPRESENTATION

As an illustration let us consider the RTCDG of test case tag. Let the SEND event
a-node be 116.1, i.e., the event
P!ABRT _apdu(acse_service_user, type_genere()23 (Not_Present)): ABRT_apdu
which consists of two fields:
field_1 = “acse_service_user”
field_2 = “type_genere023 (Not_Present)”.

The base constraint of ABRT-apdu is shown below:

ABRT-apdu_base_R

/ .
~
\

abort-zource user-information

INTEGER

acse_service_provider

The receive dynamic constraint generated by the algorithm is shown below:

122

116.1
ABRT-apdu_base_

T~

user-information

abort-source

INTEGER -

dCsSe_service_user

For send event dynamic constraints let us consider the receive event a-node to be
9.1, i.c., the event
P? x14: ACSE _apdu
The p-node 14.5 has a dependency on this a-node and it reads as
[eg(result(get_AARE(x14),accepted]
which can be transformed to [result = “accepted”]. The dynamic constraints gen-

erated by the algorithm for the event AARE_apdu by enhancing the base constraint

AARE _apdu_base in the form of an 1/O diagram are as follows:

9.1
AARE-apdu_S_D

S
S

2 4
protocol-version result user-information
12 14 21
RITSTRING INTEGER .
verstonl accepted -

All other constraints are given in appendix D.

6.3.4 TEST CASE SELECTION AND REPRESENTATION

For the ACSE protocol, the valid behaviour group can be subdivided into five sub-

groups according to five functions: Association establishment, Normal release, Abnormal

release, Parameter variations and Rules for extensibility. A complete structure of ACSE

test suite hierarchy with elaborated Vahd Behaviour group is shown in Figure 6.0 [32].

It is observed that for the ACSE protocol no inopportune tests can be identified since

each ACSE PDU can only be mapped to a specific presentation ASP.

ACSE
test suite
(ACSE)

Valid Behaviour ____|

Basic

Interconnection

tests (IT)

Capability tests(CA)

tests (BV)

Inopportunc
Behaviour tests(BO)

Invalid
Behaviour tests (Bl)

Association

——— Normal Release(NR) —-—

Abnormal
Release (AR)

Parameter
Variation { PV)

Rules for

extensibilty (RE)

Figure 6.6 ACSE fest suite structure,

124

T Establishment (AE) —

Inttiator (1)

L —— Responder (R)

Requestor (RQ)

-— - Acceptor (AC)

A-ABORT
request (AA)

_ . P-U-ABORT
request (PUA)

_ P-P-ABORI
request (PPA)

——— Initaator ¢ I)

L—— Responder(R)

The “A-ABORT request” node can be identified by the path ACSE/BV/AR/AA in
Figure 6.6. At any node, the subtree rooted at that node can be considered as a test

subgroup. The objective of this node is [32]:

IUT service user invokes the abort with an A-ABORT request primitive,

check the 1UT sends an ABORT with abort-source= “acse_service_user”

Seven test purposes are defined under the test subgroup A-ABORT request:

A-ABORT
request(AA)
Awaiting Awaiting Awaiting Awaiting Associated Collision Collision
AARE A-ASCrsp RLRE A-RLSrsp state (association- (associjation-
state statc state statc initiator) state responder) state

Figure 6.7 Test purposes of the test subgroup A-ABORT request.

Test case tyg clearly satisfies the ACSE/BV/AR/AA test group objective given in
Figure 6.6. Now we have to identify, out of the seven test purposes in Figure 6.7, which
test purpose is satisfied by this test case. The A-ABORT service primitive is invoked
by the user at a collision state (a-node 101.1 of Figure 6.5), where IUT originates the
association. Hence the test purpose six from the right of Figure 6.7 can possibly be
satistied by the test case tag. Next comes the checking of base and dynamic constraints.
Since the main events are A-ABORT request ASP and ABRT_apdu PDU, constraint
validation is concentrated on these events. The send event A-ABORT request must
satisfy the base constraints only, since there is no dynamic counstraint associated with
the event. However, the receive event ABRT_apdu (a-node 116.1 in Figure 6.5) must
satisfy the dynamic constraint ABRT_apdu_D1, i.e., abort-source field of the received

PDU must be equal to *‘acse_service_user”.

The graphical control flow behaviour 1epresentation (CFBR) of the test case fy9 is

given in Figure 6.8. The “*” in the a-nodes represents the inversion.

125

o
¢
:

%6

Figure 6.8 Control flow behaviour representation of the RTCDG of 139

Applying the behaviour enhancement algorithm of Section 5.5.1 a pass verdict is
associated with the a-node 116.1° and OTHERWISE a-nodes are added to become
alternatives to the a-nodes 4.1°, 22.1%, 40.1%, 66.1%, and 116.1". Step 3 assigns fail
verdicts to all these OTHERWISE a-nodes. In this case, the procedure in section 5.5.2
does not modify the test case. The enhanced CFBR of the resulting test case is shown
in Figure 6.9. The test starts at node 1.1% and ends successfully at a-node 116.1% or

unsuccessfully at any OTHERWISE a-nodes.

D6

pass

@D @-G3) ()
fail

fall fal]

Figure 6.9 Enhanced CFBR of the selected test case tyy.

126

6.4 TEST SUITE DESIGN FOR LAPB PROTOCOL

A formal specification of the LAPB protocol in SDL is taken as the last example [22].
The specification contains four processes out of which we consider only the main “HDLC”
process. An EFSM chart is manually generated from this specification, containing 68
states and 107 transitions. It is given in appendix C.

The next step is to generate test cases and to draw the data flow graph. As
mentioned earlier, the total number of test cases is determined by the formula d,, (initial
state)+d',,(initial state), where dj,(initial state) is the indegree of the initial state and
d',n(initial state) is the number of edges incoming to the initial state added during the
conversion of the EFSM chart to an Culer graph. Applying the above formula to the
ACSE EFSM chart, d,, is 2 and d',, is 33, therefore yielding 35 test cases. One complete
test case, tyq, is listed below:

Test case tyy

< DSAP_in?DCONTreq:signal, 1, 2, 1, true, true, ¢, € >,

< in2!SABM, 2, 8, 10, true, true, [T— NOW4TI, ta « tat1] >,

<i,, 8,9, 11, true, true, €, € >,

<1i,9, 2, 12, [not(ta=N2)], true, ¢, € >,

< in1?UA:signal, 8, 10,14, true, true, €, [T— 0, RE]_sent «False, t_running « False,
vs « 0, vr « 0, vos <0, tb « gnew, nos «+— 0] >,

< DSAP_out!DCONCconf, 10, 12, 15, true, true, ¢, € >,

< DSAP_in?DDTreq(data):signal, 12, 13, 73, true, true, ¢, [tb «— enqueue(data,tb),
ack « False] >,

< i, 13, 14, 20, [not(empty(tb) OR (vs = vos ++ k))], true, ¢, [data — dequeue(tb),
tb «rest(tb) | >,

< in2!l_frame(vs, vr, data), 14, 15, 21, true, true, ¢, [rtb(vs) « data, v§ « vs+1] >,
< i, 15, 13, 23, [not(t_running)], true, ¢, [T— NOW<+TI, t_running « true] >,

< i, 13, 39, 18, [empty(tb) OR (vs = vos ++ k)], true, ¢, € >,

< i, 39, 12, 78, [not(ack)], true, ¢, € >,

127

< inl1?DISC:signal, 12, 31, 75, true, true, €, [ta 0] >,
< in2!UA, 31, 32, 76, true, true, ¢, € >,
< DSAP_out!DDISind, 32, 1, 77, true, true, €, € >

To draw the data flow graph we have to scan the when. action and assignment clause
of each rule of the chart. Part of the data flow graph of the HDLC protocol is shown
in Figure 6.10. Data flow graphs serve to represent protocol functions such as counter,
rej_frame etc. These function are obtained by applying the block merging procedure.
Block merging process yields nine functions for HDLC protocol, which are listed below

with a brief description of each function:

Function Description of the function

V(R) In this test group the correct setting of the
value of V(R) state variable is tested

V(S) In this test group the correct setting of the
value of V(S) state variable is tested

I_frame In this test group transmission of numbered

information{(I) frames is tested

User_to_peer In this test group user_to_peer data transfer
is tested

Peer_to_user In this test group peer_to_user data transfe:
is tested

Rej_frame In this test group IUT is expected to reject
frames with bad sequence

Counter In this test group retransmission counter is
tested

Timer In this test group timer of IUT is tested

Acknowledge In this group the acknowledgement is tested

6.4.1 ANALYSIS AND REDUCTION OF GENERATED TEST CASES

Let us consider the test case t;7. Figure 6.11 shows its test case dependency graph. The
same node numbering scheme is used except that s-nodes created for each assignment in

the assignment clause are numbered with lower case letters starting with “a”.

Figure 6.12 shows the graph that results from taking slices of the test case dependency
graph from Figure 6.11 with respect to each of the p-nodes of the dependency graph.

The same node numbering is used.

128

This test case, ty7, is feasible.

However, a total six test cases are found to be

infeasible.The reduced test case dependency graph of test case tj7 is shown in Figure

6.13 . Here also we obtain the same results when we use data flow graph to reduce

the test case.

(Tet1) (Right) (Merge+sinta) (Merge) (Move-block) (Hard-copy) (Curve) (Resisplay} (Wame-biock) (Blockiump)

{write Data f118) (Save Marges & Mames) (Graph Description) (Quit)

Select with left mouse button.

M

(I_frame.data)

<

Acknowledge

nr User_to_peer Counter
(ooTreq.data) }]
[qneu] FaveE A
6
, 2 [Tru] ta)
20 46
(1] 46 3 0
/ 3 16 69
21
47 m
GLIER Y %/
& 3 LTM
42
73 43 0
73 \ 4
ack]

Figure 6.10 A part of the HDLC data flow graph.

129

1.1 10.1 10.8a > 10.8b 14.8a 14.8b 1 148¢
»
,_—’II, /// / l
”/ /’ 14 8d
1.1) . q
7.1 12.5) 4 1
’ / /
/
) py // 21 1ase
/7 ’
/ ’)
76.1 S : i 1
< A i VY
. / A ¢
........... / / I/’ /” &
758 |4~ / e 14.8g

Figure 6.11 Test case dependency graph for t7

130

£ [
y ' 7 14.8f 14.8¢c
N 4 ‘
”l’% 73.8a ,‘

@ 14.8d ™ 14.8e | 14.8f > 14.8g

Figure 6.13 Reduced test case dependency graph of test case t;7.

131

6.4.2 TEST CASE SELECTION AND REPRESENTATION

The graphical control flow behaviour representation(CFBR) of the test case ;7 is

given in Figure 6.14. The “*" in the a-nodes represents the inversion.

@ @ @ 14.8d [—w{ 14.8¢ 14.8g

Figure 6.14 Control flow behaviour representation of the RTCDG of 1,5

Test case t;7 can be used to verify that IUT can send two I frames in the information
transfer phase. This test belongs to the test group X.25-DL2/BV/IT which contains all
the valid behaviour tests about the Information Transfer phase [29].

Step 1 and 2 of the algorithm in section 5.5.1 eliminates the loop from the i a-node
11.1° as shown in the Figure 6.14 . In Step 2 OTHERWISE a-nodes are added to
become alternatives to the a-nodes 10.1%, 15.1°, 21.1°, 76.1* and 77.1°. Step 3 assigns
fail verdicts to all these OTHERWISE a-nodes and associates a pass verdict to the a-node
77.1%.

In step 1 the procedure in section 5.5.2 eliminates the edges from 15.1° to 75.1° and
21.1% t073.1%. Instep 2, the loop between nodes 21.1" and 20.8a" is expanded so that the
loop in which an I-frame is transmitted is made to execute twice due to the test purpose.
In step 3, a pass verdict is assigned to the second a-node 21.1°, since the test purpose is
achieved with the reception of this event (Figure 6.15). In step 2, dynamic constraints
are modified to achieve the test purpose. Assuming a frame size «f 256 bytes the send
constraint on a-node 73.1° (Upper tester sending a DDTreq) is modified so that deta

field of DDTreq is assigned to a string of x bytes with 256< x <512, Then the receive

132

constraint on the first a-node 21.1° is changed to receive the first 256 bytes of this string
and the second a-node 21.17 to receive the remaining bytes. The modified enhanced
CFBR of the resulting test case is shown in Figure 6.15. The test starts at the a-node
1.1° and ends successfully at the a-node 77.1° or unsuccessfully at any OTHERWISE

a-nodes. The constraints are given in appendix E.

14.8d —»14.8¢ |—» 14.8g

fail

20.8a 73.8a

Figure 6.15 Enhanced CFBR of the selected test case ty7.

b

133

CHAPTER VII
CONCLUSION AND FUTURE WORK

7.1 CONCLUSION

This thesis does not represent the start of a new field or the culmination of an existing
one. It is a contribution to the significant effort that has been made and is being made
by a number of researchers to make communication protocols an everyday reality. Our
goal in this thesis has been to develop easy-to-use and general in nature algorithms for
solving some basic problems of conformance testing. In particular, we have considered

the following problems of conformance testing:

i. the generation of test cases from the formal specification languages LOTOS and
SDL;
ii. the selection of test cases which meet certain data flow coverage criteria;

iii. the representation of test cases for LS and RS architectures.

These problems are chosen from practical considerations. As we have discussed in this
thesis, their solution in an efficient manner is a prerequisite to the demonstration of
networks in which components made by different manufacturers can interwork properly
and effectively, which in turn is necessary to fulfill the requirements of the OSI standards.
The main drawback in solving these problems with many of the existing methods in the
test suite design literature is that they are based on deterministic finite state machines
without any consideration of test architectures. The main feature of the algorithms
presented in this thesis is that they are general in nature and therefore can be applied to

almost all existing formal models.

The objective of this thesis as discussed is two fold: first, to introduce a unified model
(EFSM chart and 1/O diagram) for the existing protocol specification languages and to
use this model as an interim step for the generation of tests from protocol specifications,

and second, to develop a theory to specify LS and RS tester’s behaviour from the

gencrated test cases. In order to achieve these two goals, we have developed several
new algorithms and applied the algorithms to the design of test suites for the HDLC and
ACSE protocols. The results presented in the thesis and related issues that may benefit

from further investigation are summarized below.

In chapter I, the problem of protocol testing is introduced. The work in several
related areas is sarveyed including an introduction to the test architectures, test suite
structure and various types of testing proposed by ISO for the testing of protocol

implementations for conformance to the standard specification.

In chapter 11, we introduced the unified model called EFSM chart and 1/O diagram.

Furthermore, we discussed the relationship between I/O diagrams and ASN.1.

In chapter IIl, we developed algorithms to transfcrm a protocol specification written
in the LOTOS or SDL specification languages into an Extended Finite State Machine
chart. The specitications (LOTOS or SDL) are transformed into the coresponding EFSM
chart in two phases. In the first phase the specification is transformed into a semantically
equivalent form. In the second phase it is converted into the EFSM chart. In the SDL
to EFSM chart construction algorithm, we deal with timeout transitions the same way

as spontancous transitions.

Based on the EFSM chart, chapter IV presented several algorithms to generate and
analyze test cases. The test case generation algorithm developed takes nondeterminism
into consideration. Furthermore, a new algorithm is proposed to construct a data flow
graph from the chart, which is used to identify the protocol functions needed to test the
data flow aspect of an IUT. The zero-one integer programming technique is used to select
test cases to meet the data flow coverage requirement. Finally, the generated test cases
are modeled as a test case dependency graph and then evaluated by taking predicate slices
from it. Redundant assignments and predicates in all the feasible test cases are removed
by reducing the test cases. This is achieved by using the test case dependency graph as

well as the data flow graph.

In chapter V, we discussed input/output flow representation followed by control

135

flow representation. The input/output representation is in the form of an /O diagram.
It provides constraints on the events. Two types of input/output representations are
considered: base and dynamic. New algorithms are developed to generate base and
dynamic constraints. Finally, the control flow behaviour is represented by inverting the
direction of the actions and eliminating all the predicates from the reduced test case
dependency graph. Assuming a test case hierarchy with test purposes as leaf nodes, the
selection process associates a purpose to each represented test case. Test cases are then
adapted for the RS architecture.

Chapter VI applies the test design methodology to the ACSE and HDLC protocols
written in the LOTOS and SDL specification languages respectively. We also discussed

LOTEST, a software tool that partly implements the methodology discussed in this thesis.

7.2 FUTURE WORK

The nature of research is such that the solution of one problem ofien gives rise to
many new questions or problems. In the case of the research that is presented in this
thesis, the following questions surface naturally.

i) ParalleliDistributed algorithm: The test generation algorithm proposed in section 4.1
is sequential. It would be interesting to investigate the possibility of developing a
parallel/distributed algorithm.

ii) Adaptation to other test architectures: In this thesis test suites are designed for LS and
RS architectures. Abstract test suite design for other architectures used in practice such
as distributed, coordinated architectures is a topic for future research.

iii) Software tools: The LOTEST [53] software tool developed partially implements the
design methodology discussed in this thesis. In particular, the algorithms presented in
chapters V, VI and VII have not been implemented. It would be interesting to implement
these algorithms.

iv) Test case representation in TTCN: The representation of CFBR graph and 1/0 dynamic

constraints in the form of TTCN is one of the most important lines of future developments.

136

Once the test cases are represented in TTCN, they can be executed to perform the real

testing of the implementation.

137

REFERENCES

{11 A . V. Aho, A. T. Dahbura, D. Lee, and M. U. Uyar, "An Optimization Technique
for Protocol Conformance Test Generation based on UlO Sequences and Chinese
Postman Tours", IEEE Transaction on Communication, Vol.39(11), pp.1604-1615,
Nov. 1991.

(2] F. Belina and D. Hogrefe, "The CCITT-Specification and Description Language
SDL", Computer Networks and ISDN Systems, Vol.16, pp.311-341, 198Y.

[3] G. V. Bochman and C.A. Sunshine, "A Survey of Formal Methods™, Computer
Networks and Protocols. P.E. Green ed., pp., 561-578, New York: Plenum Press,
1983.

[4] T. Bolognesi and E. Brinksma, "Introduction to the ISO Specification Language
LOTOS", Computer Networks and ISDN System, Vol.14, pp.25-59, 19¥7.

[5] E. Brinksma, and G. Karjoth, "A Specification of the OSI Transport Service in
LOTOS", Proc 5th IFIP Symposium on Protocols, June 1985.

[6] E. Brinksma, "A Theory for the Derivation of Tests", Proc 8th IFIP Symposium on
Protocols, Atlantic City, June 1988.

[71 S. Budkowski and P. Dembinski, "An Introduction to Estelle: A Specification
Language for Distributed Systems", Computer Networks and ISDN Systems, Vol. 14,
pp.3-23, 1987.

[8] S. P. Van de Burgt, J. Kroon, and A. M. Peeters, "Interactive Test Generation from
LOTOS Specification”, Technical report T1-PU-92-XXX, PTT-Research, Neher
Labs, January, 1992.

[9] CCITT, "Specification and Description Language SDL", Recommendation Z.100),
1988.

[10] T. S. Chow, "Testing Software Designs Modeled by Finite-state Machines”, 1EEE
Trans. on Software Engineering, Vol.SE-4, no.3, May 1975,

138

[11] A. T. Dahbura, K. K. Sabnani, and M. U. Uyar, "Formal Methods for Generating
Protocol Conformance Test Sequences”, Proceeding of the IEEE, Vol.78, pp. 1317-
1326, 1990

[12] J. Edmonds and E. L. Johnson, "Matching, Euler Tours and the Chinese Postman,”
Mathematical Programming, Vol.5, pp.88-124, 1973.

[13] H. Ehrig and B. Mahr, Fundamentals of Algebraic Specification, Springer-Verlag,
Berlin, 1985.

[14] J. Ferrante, K. J. Ottenstein and J. D. Warren, "The Program Dependence Graph
and its Uses in Optimization", ACM Transactions on Programming Languages and
Systems, Vol.9(3), pp.319-349, July 1987.

[15] B. Forghani and B. Sarikaya, "Semi-Automatic Test Suite Generation from Estelle",
IEE Software Engineering Journal, to appear in 1992.

[16) A. Gibbons, Algorithm Graph Theory, Cambridge Univ. Press, 1985.

117] A. Gill, "State-identification Experiments in Finite Automata,” Information and Con-
trol, Vol4, pp.132-154, 1961.

[18] A. Gill, Introduction to the Theory of Finite-State Machines. New York: McGraw-
Hill, 1962.

[19] D. Gueraichi, and L. Logrippo, "Derivation of Test Cases for LAP-B from LOTOS
Specification”, FORTE ’§9.

120] R. Guillemot and L. Logrippo, "Derivation of Useful Execution Trees From LOTOS
Specification by Using an Interpreter”, FORTE °88.

[21] F. C. Hennie, "Fault-detecting Experiments for Sequential Circuits," Proc. Sth Ann.
Symp. on Switching Circuit Theory and Logical Design, pp. 95-110, November
1964.

[22] D. Hogrefe, "Protocol and Service Specification with SDL: The X.25 Case Study",
FBI-HH-B-134/88, Fachbereich Informatik.

[23] D. Hogrefe, "Automatic generation test case from SDL Specification”, SDL Newslet-

ter, No.12, June 1988.

139

[24] D. Hogrefe, "OSI Formal Specification Case Study: The Inres Protocol and Service”,
Technical Report, University of Bern. May 1991,

[25] W. E. Howden, Functional Program Testing and Analysis, McGraw Hill, 1987,

[26] [ISO 1S8807] "LOTOS, a Formal Description Technique based on the Temporal
Ordering of Observational Behavior”, ISO/TC97/SC21/WG1-FDT/SC-C. June 1988.

[27] [ISO DI1S8650] "Protocol Specification for the Association Control Service Elements”,
January 1988.

[28] [ISO 8824] "Profile of Abstract Syntax Notation-one", IS 8824, 1987.

[29] [1SO 8882-2] ISO/ IEC JTCI1/ SC6, "X.25-DTE Conformance Testing: Data Link
Layer Test Suite", 1990.

[30] [ISO/IEC 9646] "Information Technology - Open Systems Interconnection - Confor-
mance Testing Methodology and Frame work", 1991.

[31] [ISO/IEC 9646-3] "The Tree and Tabular Combined Notation", Part 3 of ISO/IEC
9646, September, 1991.

[32] [ISO DIS10169] "Information Technology — Open Systems Interconnection- Confor-
mance test suite for ACSE Protocol, Partl: Test suite structure and Purpose™, 1990,

[33] M. Jackson, System Development, Prentice Hall, 1983,

[34] G. Karjoth, " Implementing Process Algebra Specifications by State Machines”, Proc
8th IFIP Symposium on Protocols, Atlantic City, June 1988.

[35] Z. Kohavi, Switching and Finite Automata Theory. New York : McGrawllill, 197§.

[36] M. K. Kuan, Graphic programming using odd or even points, Chinese Math, Vol.1,
pp- 273-277, 1962.

[37] J. K. Lenstra and A. H. G. Rinnooy Kan, "On General Routing Problems,” Networks,
Vol.6, pp. 273-280, 1976.

[38] R. J. Linn, "Conformance Evaluation Mehodology and Protocol Testing", IEEE “Frans-
action of Selected Area in Communications, Vol.7(7), pp. 1141-1158, September
1989.

[39] M. Liu, Special Issue on Protocol Engineering, IEEE Transaction On Computers,

140

Vol.40(4), 1991.

[40] L. Logrippo, A. Obaid, J. P. Braind and M. C. Fehri, "An Interpreter for LOTOS, A
specification Language for Distributed Systems”, Software-Practice and Experience,
Vol.18(4), pp.365-385, April 1988.

[41] R. Milner, A Calculus of Communicating Systems, Lecture Notes in Computer Sci-
ence, Vol.92, Springer-Verlag, 1980.

[42] R. Milner, "A Complete Inference System for a Class of Regular Behaviors", Journal
of Computer and System Sciences, Vol.28, pp. 439-466, 1984.

[43] E. F. Moore, "Gedanken-experiments on Sequential Machines"”, Automata Studies,
Annals of Mathematical Studies, no. 34 Princeton Univ. Press. NJ., pp. 129-153,
1956.

[44] S. Naito and M. Tsunoyama, "Fault Detection for Sequential Machines by Transition
Tours," Proc. 11th IEEE Fault Tolerant Comput. Symp., IEEE Computer Soc. Press,
pp. 238-243, 1981.

[45] S. Rapps and E. J. Weyuker, "Selecting Software Test Data Using Data Flow
Information", IEEE Transaction on Software Engineering, Vol.11, pp. 367-375,
1985.

[46] D. Rayner, "OSI Conformance Testing", Computer Networks and ISDN Systems,
Vol.14(1), pp.79-98, 1987.

[47] A. Bourguet-Rouger and P. Combes, "Exhaustive Validation and Test Generation in
Elvis", SDL-89:The language at work, North Holland, 1989.

[48] K. K. Sabnani and A. T. Dahbura, "A new technique for generating protocol tests,"
Proc. 9th Data Communication Symp., IEEE Computer Soc. Press, pp. 36-43,
September 1985.

[49] K. K. Sabnani and A. T. Dahbura, " A Protocol Testing Procedure,” Computer
Networks and ISDN Systems, Vol.15(4), pp. 285-297, 1988.

[S0] B. Sarikaya, * Conformance Testing: Architectures and Test Sequences”, Computer

Network and ISDN Systems 17, pp.111-126, 1989.

141

[51] B. Sarikaya and G. v. Bochman, "Some Experience with Test Sequence Generation,”
Proc. of Second Int’1 Workshop on Protocol Specification, Testing, and Verification,
North Holland, ed C. Sunshine, 1982.

[52] B. Sarikaya, G. v. Bochman and E. Cerny, "A Test Design Methodology for Protocol
Testing ", IEEE Transactions on Software Engineering, VoL.SE-13, May 1987.

[53] B. Sarikaya, P. Tripathy and S. Biedlingmaier, "LOTEST: A LOTOS Test Casc
Generation Tool", Tech. Rep., 1991.

[54] B. Sarikaya, B. Forghani, and S. Eswara, "An Estelle Based Test Generation Tool",
Computer Communications, Nov. pp. 534- 544, 1991.

[55] B. Sarikaya and A. Wiles, "Standard Conformance Test Specification Language
TTCN", Computer Standards & Interfaces, April 1992.

{56] C. Steenbergen, Conformance Testing of OSI Systems, MSc Thesis, University of
Twente, 1986.

[57] M. M. Syslo, N. Deo, and J. S. Kowalik, "Zero-one Integer Programming”, in Discrete
Optimization Algorithms, Prentice-Hall, 1983.

[58] R. E. Tarjan, Data Structures and Network Algorithms. Philadelphia, PA: Society for
Industrial and Applied Mathematics, 1983.

[59] J. Tretmans, "Test Case Derivation from LOTOS Specification”, FORTE '89.

[60] P. Tripathy and B. Sarikaya, "Test Case Generation from LOTOS Specification” IEEE
Trans. on Computers, Vol.40(4), pp.543-552, 1991.

[61] H. Ural, "Test Sequence Selection Based on Static Data Flow Analysis”, Computer
Communications, Vol.10(5), October, 1987.

[62] H. Ural and B. Yang, "A Test Sequence Selection Method for Protocol Testing”,
IEEE Transaction on Communications, Vol.39(4), pp.514-523, 1991.

[63] M. U. Uyar and A. T. Dahbura, "Optimal test sequence generation for protocol: the
Chinese postman algorithm applied to Q.931," Proc IEEE Global telecocommunica-
tion Conference, 1986.

[64] M. Weiser, "Program Slicing", IEEE Transactions on Software Engineering, Vol.

142

10(4), pp. 352-357, 1984.

[65] H. S. Wang, S. R. Hsuy, and J. C. Lin, "A Generalized Optimal Path-selection Model
for the Structure Program Testing”, The Journal of Systems and Software, Vol.10,
pp. 55-62, 1989.

[66] C. Wezeman, "The CO-OP Method for Compositional Derivation of Conformance

Testers", Proc. 9th IFIP Symposium on Protocols, June 1989.

143

APPENDIX A

EFSM CHART OF ACSE PROTOCOL

when:A?x(29) :primitive

from:256 to:121 transition:1
guard: selection_predicate: [IsAASCreq{x(29))]
actions: assignments:

when:A!AABRind(acse_service_provider,
type_genere020 (Not_Present)) :AABRind

from:256 to:254 transition:2
guard: selection_predicate:
actions: assignments:

when:P?x(29) : ACSE_apdu

from:256 tc:249 transition:3
guard: selection_predicate: [ISAARQ(x(29))]
actions: assignments:

when:P!ACSE_apdu (ACSE_apdu_genere_0 (AARQ apdu(Bit (1),
app_context_name (get_AASCreq(x(29))),
called_ap_title(get_AASCreq(x(29))),
called_ae_qualifier(get_AASCreq(x(29))),
called_ap_invocation_id(get_AASCreqg(x(29))),
called_ae_invocation_id(get_AASCreq(x(29))),
calling_ap_title(get_AASCreq(x(29}))),

calling ae_qualifier(get_AASCreq(x(29))),
calling_ap_invocation_id (get_AASCreq(x(29))),
calling ae_invocation_id(get_AASCreq(x(29))),
type_genere01l0 (Not_Present),

user_info(get_AASCreq(x(29)))))) :ACSE_apdu
from:121 to:120 transition:4

guard: selection_predicate:

actions: assignments:

when:1i

from:249 to:125 transition:5

guard: [not (common_prot_version{(get_AARQ(x(29))))]

selection_predicate:
actions: assignments:

when:i

from:249 to:247 transition:6

guard: [common_prot_version(get_AARQ(x(29))}]
selection_predicate:

actions: assignments:

when: P! ABRT_apdu (acse_service_provider,
type_genere023 (Not_Present)) :ABRT_apdu

from:254 to:253 transition:7
guard: selection_predicate:
actions: assignments:

when:A?x(13) :primitive

from:120 to:113 transition:8
guard: selection_predicate: [IsAABRreqg(x(13))]
actions: assignments:

when:P?x(14) : ACSE_apdu

from:120 to:109 transition:9
guard: selection_predicate: [ISAARE(x(14))]
actions: assignments:

when:P?x(13) :ACSE_apdu

from:120 to:117 transition:10
guard: selection_predicate: [ISABRT (x(13))]
actions: assigiments:

when:P!ACSE_apdu (ACSE_apdu_genere_1 (AARE_apdu (Bit (1),
application_context_name(get_AARQ(x(29))),

rejected_permanent,

Associate_source_diagnostic (Associate_source_diagnostic_genere_1
{no_common_acse_version)),

type_genere(0l13 (Not_Present),

type_genere(0l14 (Not_Present),

type_generell5 (Not_Present),

type_generel(l6 (Not_Present),

type_genere0l7 (Not_Present),

type_genere018 (Not_Preset)))) :ACSE_apdu
from:125 to:124 transition:11
guard: selection_predicate:
actions: assignments:

when:A!primitive (AASCind(optional (normal),

145

application_context_name(get_AARQ(x(29))),
calling_AP_title(get_AARQ(x(29))),

calling AE_qualifier (get_AARQ(x(29))),
calling_ AP_invocation_id{get_AZRQ(x(29}))),
calling_AE_invocation_id(get_AARQ(x(29))),
called_AP_title(get_AARQ(x(29))),
called_AE_qualifier(get_AARQ(x(29))),
called_AP_invocation_id(get_AARQ(x(29)})),
called_AE_invocation_id(get_AARQ(x(29))),
user_information(get_AARQ(x(29))),
empty_presentation_parms_set)) :primitive

from:247 to:246 transition:12

guard: selection_predicate:

actions: assignments:

when:ir

from:253 to:256 transition:13

guard: selection_predicate:

actions: assignments:

when:i

from:109 to:103 transition:14

guard: [eq(result (get_AARE(x(14))),accepted)]
selection_predicate:

actions: assignments:

when:1i

from:109 to:107 transition:15

guard: [eq(result (get_AARE(x(14))),rejected_permanent)]
selection_predicate:

actions: assignments:

when:P!ABRT_apdu(acse_service_provider,
type_genere023 (Not_Present)) : ABRT_apdu

from:113 to:112 transition:16
guard: selection_predicate:
actions: assignments:

when:A!AABRind(acse_service_provider,
type_genere020 (Not_Present)) : AABRind

from:117 to:116 transition:17
guard: selection_predicate:
actions: assignments:

146

when:ir

from:124 to:256 transition:18
guard: selection predicate:
actions: assignments:

when:A?x(28) :primitive

from: 246 to:235 transition:19
guard: selection_predicate: [IsAASCrsp(x(28))]
actions: assignments:

when:A?x(27) :primitive

from:246 to:239 transition:20
guard: selection_predicate: [IsAABRreq(x(27))]
actions: assignments:

when:P?x(27) :ACSE_apdu

from:246 to:243 transition:21
guard: selection_predicate: [ISABRT (x(27))]
actions: assignments:

when:A!primitive (AASCcnf (application_context_name
(get_AARE (x(14))),
responding_AP_title(get_AARE(x(14))),
responding_AE_qualifier (get_AARE(x(14))),
responding_AP_invocation_id(get_AARE(x(14))
responding_AE_invocation_id(get_AARE(x(14))
user_information(get_AARE(x(14))),

result (get_AARE(x(14))),

acse_service_tser,

optional (result_source_diagnostic{(get_AARE(x(14)))),
empty_presentation_parms_set)) :primitive

)
)

[

from:103 to:102 transition:22
guard: selection_predicate:
actions: assignments:c(12):= calling

when:A!primitive (AASCcnf (application_context_name
(get_AARE (x(14))),
responding_AP_title(get_AARE(x(14))),
responding_AE_qualifier (get_AARE(x(14))),
responding_AP_invocation_id(get_AARE(x(14))),
responding_AE_invocation_id(get_AARE(x(14))),
user_information(get_AARE(x(14))),

result (get _AARE (x(14))),

acse_service_user,

147

opticnal (result _source_diagnostic(get_AARE(x(14)))),
empty_presentation_parms_set)):primitive

from:107 to:106 transition:23
guard: selection_predicate:
actions: assignments:

when:ir

from:112 to:256 transition:24
guard: selection_predicate:
actions: assignments:

when:ir

from:116 to:256 transition:25
guard: selection_predicate:
actions: assignments:

when:1

from:235 to:229 transition:26

guard: [eg(result (get _AASCrsp(x(28))),accepted)]
selection_predicate:

actions: assignments:

when: i

from:235 to:233 transition:27

guard: [not (eq{result (get_AASCrsp(x(28))),accepted))]
selection_predicate:

actions: assignments:

when:P!ABRT_apdu (acse_service_provider,
type_genere023 (Not_Present)) : ABRT_apdu

from:239 to:238 transition:28
guard: selection_predicate:
actions: assignments:

when:A!AABRind (acse_service_provider,
type_genere020 (Not_Present)) : AABRind

from:243 to:242 transition:29
guard: selection_predicate:
actions: assignments:

when:A?x(12) :primitive
from:102 to:90 transition:30
guard: selection_predicate: [IsARLSreq(x(12))]

148

actions: assignments:

when:A?x(11) :primitive

from:102 to:95 transition:31
guard: selection_predicate: [IsAABRreqg(x(11))]
actions: assignments:

when:P?x(12) :ACSE_apdu

from:102 to:21 transition:32
guard: selection_predicate: [ISRLRQ(x(12))]
actions: assignments:

when:P?x(11) :ACSE_apdu

from:102 to:99 transition:33

guard: selection_predicate: [ISABRT (x(11))]
actions: assignments:

when:ir

from:106 to:256 transition:34

guard: selection_predicate:

actions: assignments:

when: P!ACSE_apdu (ACSE_apdu_genere_1 (AARE_apdu (Bit (1),
app_context_name (get_AASCrsp(x(28)})),

result (get_AASCrsp(x(28))),
Associate_source_diagnostic(Associate_source_diagnostic_genere_0
(no_reason_given))

, responding_ap_title(get_AASCrsp(x(28))),
responding_ae_qualifier(get_AASCrsp(x(28))),
responding_ap_invocation_id(get_AASCrsp(x(28))),
responding_ae_invocation_id(get_AASCrsp(x(28))},

type_genere0l17 (Not_Present),

user_info(get_AASCrsp(x(28)))))) :ACSE_apdu
from:229 to:228 transition:35
guard: selection_predicate:

actions: assignments:c(26):= called

when:P!ACSE_apdu (ACSE_apdu_genere_1 (AARE_apdu (Bit (1),
app_context_name (get_AASCrsp(x(28))),

result (get_AASCrsp(x(28))),
Associate_source_diagnostic(Associate_source_diagnostic_genere_0
(no_reason_given)),

responding_ap_title(get_AASCrsp({x(28))),

responding_ae_qualifier (get_AASCrsp(x(28))),

149

responding_ap_invcation_id(get_AASCrsp(x(28)))
responding_ae_invocation_id (get_AASCrsp(x(28))
type_generell7 (Not_Present) ,

),

ser_info(get_AASCrsp(x(28)))))) :ACSE_apdu
from:233 to:232 transition:36
guard: selection_predicate:
actions: assignments:

when:ir

from:238 to:256 transition:37
guard: selection_predicate:
actions: assignments:

when:ir

from:242 to:256 transition:38
guard: selection_predicate:
actions: assignments:

when:A!primitive (ARLSind(reason(get_RLRQ(x(12))),

user_information(get_RLRQ(x(12))))):primitive
from:21 to:20 transition:39

guard:

selection_predicate:

actions:

assignments:c(2):=c(12)

when:P!ACSE_apdu (ACSE_apdu_genere_2 (RLRQ_apdu
(reason(get_ARLSreqg(x(12}))),
user_info(get_ARLSreqg(x(12)))))):

ACSE_apdu

from:90 to:89 transition:40
guard: selection_predicate:
actions: assignments:c(10):=c(12)

when:P!ABRT_apdu (acse_service_provider,
type_genere(23 (Not_Present)) :ABRT_apdu

from:95 to:94 transition:41
guard: selection_predicate:
actions: assignments:

when:A!AABRind (acse_service_provider,
type_genere(020 (Not_Present)) :AABRind
from:99 to:98 transition:42
guard: selection_predicate:

150

act 1ouns: assignments:

when:h?2(26) :primitive

from:228 toc:216 transition:43
gquard: celection_predicate: [IsARLSreqg(x{(26))]
actions: assiguments:

when:A?x(25) :primitive

from-228 to:221 transition: 44
guard: selection_predicate: [IsAABRreg(x(25))]
actions: assignments:

when:P?x(26) : ACSE_apdu

from:220 to:147 transition: 45
guard: selection_predicate: [ISRLRQ(x(26))]
actions: assignments:

when:P?x{(z5) : ACSE_apdu

from:228 to:225 transition: 46

guard: selection_predicate: [ISABRT (x(25))]
actions: assignments:

when:ir

from:232 to:256 transition: 47

guard: selection_predicate:

actiongs: assignments:

when:A?x () :pramitive

from:20 to:9 transition:48
guard: selection_predicate: [ISARLSrspi{x(2))]
actions: assaigrments:

when:A?x (1) :primitive

from:20 to:13 transition:49
guard: selection_predicate: [IsAABRreqg(x(1))]
actions: assignments:

wnen:P?x (1) :ACSE_apdu

from:20 to:17 transition:50

guard: selection_predicate: [ISABRT (x(1))]
actiens: assignments:

151

when:A?x(9) :primitive

from:89 to:82 transition:51
guard: selection_predicate: [IsAABRreqg(x(9))]
actions: assignments:

when:P?x(10) :ACSE_apdu

from:89 to:25 transition:52
guard: selection_predicate: [ISRLRE(x(10))]
actions: assignments:

when:P?x(10) : ACSE_apdu

from:89 to:77 transition:53
guard: selection_predicate: [ITsRLRQ(x{10))]
actions: assignments:

when:P?x(9) :ACSE_apdu

“rom: 89 to:86 transition:54
guard: selection_predicate: [IsABRT (x(9))]
actions: assignments:

when:ir

from:94 to:256 transition:55
guard: selection_predicate:
actions:

assignents:

when:ir

from:98 to:256 transition: 56
guard: selection_predicate:
actions: assignments:

when:Al!primitive(ARLSind(reason(get RLRQ(x(26))),

user_information(get_RLRQ(x(26))))) :primitive
from:147 to: 146 transition:57

guard: selection_predicate:

actions: assignments:c(16):=c(26)

when:P!ACSE_apdu (ACSE_apdu_genere_2 (RLRQ_apdu
(reason(get_ARLSreq(x(26))),

user_iufo(get_ARLSreq(x{(26)))))) :ACSE_apdu
from:216 to:215 transition:58
guard: selection_predicate:

actions: assignments:c(24):=c(26)

152

when: P'ARFT_apdu (acse_service_provider,
type_generel23 (Not_Present)) : ABRT_apdu

from:221 to:220 transition:59
guard: selection_predicate:
actions: assignments:

when:A!AABRind(acse_service_provider,
type_genere(20(Not_Present)) : AABRind

from:225 to:224 transition: 60

guard: selection_predicate:

actions: assignments:

when:i

from:9 to:3 transition: 61

aq:ard: [eg(result (get_ARLSrsp(x(2))),accepted)]
selection_predicate:

artions: assignments:

when:1i

from:9 to:7 transition: 62

guard: [eq(result (get_ARLSrsp(x(2))),rejected)]
selection_predicate:

actions: assignments:

when: P!ABRT_apdu (acse_service_provider,
type_genere(23 (Not_Present)) :ABRT_apdu

from:13 to:12 transition: 63
guard: selection_predicate:
actions: assignments:

when:A!AABRind(acse_service_provider,
type_qgenerel20(Not_Present)) : AABRind

from:17 to:16 transition: 64
guard: selection_predicate:
actions: assignments:

when:Al!primitive (ARLScnf (reason(get_RLRE(x{10))),

user_information(get_RLRE(x(10))),accept .)):
primitive

from:25 to:24 transition: 65

guard: selection_predicate:

actions: assignments:

153

when:A!primitive(ARLSind (reason (get_RLRQ(x (10))),

user_information{get_RLRQ(x(10))))):primitive
from:77 to:76 transition:66

guard: selection_predicate:

actions: assignments:

when: P! ABRT_apdu({acse_service_provider,
type_genere023 (Not_Present)) :ABRT_apdu

from:82 to:81 transition:67
guard: selection_predicate:
actions: assignments:

when:A!AABRind (acse_service_provider,
type_genere(20 (Not_Present)) :AABRind

from:86 to:85 transition:68
guard: selection_predicate:
actions: assignments:

when:A?x(16) :primitive

from:146 to:135 transition: 69
guard: selection_predicate: [ISARLSrsp(x(16))]
actions: assignments:

when:A?x(15) :primitive

from:146 to:139 transition:70
guard: selection_predicate: [IsAABRreq(x(15))]
actions: assignments:

when:P?x(15) : ACSE_apdu

from:146 to:143 transition:71
guard: selection_predicate: [ISABRT (x(15))]
actions: assignments:

when:A?x (23} :primitive

from:215 to:208 transition:72
guard: selection_predicate: [IsAABRreq (#(23))]
actions: assignments:

when:A?x(24) : ACSE__apdu

from:215 to:151 transition:73
guard: selection_predicate: [ISRLRE(x(24))]
actions: assignments:

when:P?x(24) : ACSE_apdu

154

from:215 to:203 transition:74
guard: selection_predicate: [ISRLRQ(x(24))]
actions: assignments:

when:P?> (23):ACSE_apdu

from:215 to:212 transition:75
guard: selection_predicate: [IsABRT (x(23))]
actions: assignments:

when:ir

from:220 to:256 transition:76
guard: selection_predicate:
actions: assignments:

when:ir

from:224 to:256 transition:77
guard: selection_predicate:
actions: assignments:

when:P!ACSE_apdu (ACSE_apdu_genere_3 (RLRE_apdu
(reason (get_ARLSrspL(x(2))),

user_info (get_ARLSrsp (x(2)))))) :ACSE_apdu
from:3 to:2 transition:78
guard: selection_predicate:

actions: assignments:

when:P!ACSE_apdu (ACSE_apdu_genere_3 (RLRE_apdu
{reason(get_ARLSrsp{x(2))),

user_info(get_ARLSrsp (x(2)))))):ACSE_apdu
from:7 to: 6 transition:79
guard: selection_predicate:
actions: assignmencs:

when:ir

from:12 to:256 transition:80
guard: selection_predicate:
actions: assignments:

when:ir

from:16 to:256 transition:81
guard: selection_predicate:
actions: assignments:

when:ir

from:24 to:256 transition:82

guard: selection_predicate:
actions: assignments:

when:i

from:76 to:58 transition:83

guard: [eq(c(10),called)] selection_predicate:
actions: assignments:

when:i

from:76 to:74 transition:84

guard: [eq(c(10),calling)])selection_predicate:
actions: assignments:

when:ir

from:81 £0:256 transition:85

guard: selection_predicate:

actions: assignments:

when:ir

from:85 to:256 transition:86

guard: selection_predicate:

actions: assignments:

when:i

from:135 to:129 transition:87

guard: [eg(result (get_ARLSrsp(x(16))),accepted)]
selection_predicate:

actions: assignments:

when:i

from:135 to:133 transition:88

guard: [eg(result (get_ARLSrsp(x(16))),rejected)]
selection_predicate:

actions: assignments:

when:P!ABRT_apdu(acse_service_provider,
type_genere023 (Not_Present)) :ABRT_apdu

156

from:139 to:138 transition:89
guard: selection_predicate:
actions: assignments:

when:A'AABRind (acse_service_provider,
type_genere020 (Not_Present)) :AABRind

from:1432 to:142 transition:90
guard: selection_predicate:
actions: assignments:

when:A!primitive (ARLScnf (reason(get_RLRE(x(24))),

user_information(get_RLRE(x(24))),accepted)) :primitive
from:151 to.150 transition:91

guard: selection_predicate:

actions: assignments:

when:Alprimitive (ARLSind (reason(get_RLRQ(x{(24))),

user_information(get RLRQ(x(24})))):primitive
from:203 to:202 transition:92

guard: selection_predicate:

actions: assignments:

when: PUABRT_apdu (acse_service_provider,
type_genere023 (N« t_Present)) :ABRT_apdu

from:208 to:207 transition:93
guard: selection_predicate:
actions: assignments:

when:A!'AABRind (acse_service_provider,
type_genere020 (Not_Present)) :AABRind

from:212 to:211 transition:94
guard: selection_predicate:
actions: assignments:

when:ir

from:2 to:256 transition:95
guard: selection_predicate:

actions: assignments:

when:ir
from:6 to:102 transition:96
guard: selection_predicate:

actions: assignments:c(12):=c(2)

157

when:A?x(5) :primitive

from:58 to:51 transition:97
guard: selectic_predicate: [IsAABRreq(x(5))]
actions: assignments:

when:P?x(6) : ACSE_apdu

from:58 to:47 transition:98
guard: selection_predicate: [ISRLRE(x(6))]
actions: assignments:

when: P?x(5) : ACSE_apdu

from:58 to:55 transition:99
guard: selection_predicate: [IsABRT (x(5))]
actions: assignments:

when:A?x(8) :primitive

from:74 to:63 transition:100
guard: selection_predicate: [IsARLSrsp (x(8))]
actions: assignments:

when:A?x(7) :primitive

from:74 to:67 transition:101
guard: selection_predicate: [IsAABRreq(x(7))]
actions: assignments:

when: P?x(7) : ACSE_apdu

from:74 to:71 transition:102
guard: selection_predicate: [ISABRT (x(7))]
actions: assignments:

when: P!ACSE_apdu (ACSE_apdu_genere_3 (RLRE_apdu
(reason(get_ARLSrsp(x/16)}),
user_info(get_ARLSrsp(x(16)))))):ACSE_apdu

from:129 to:128 transition:103
guard: selection_predicate:
actions: assignments:

when: P! ACSE_apdu (ACSE_apdu_genere_3 (RLRE_apdu
(reason(get_ARLSrsp(x(16))),
user_info(get_ARLSrsp(x(16)))))):ACSE_apdu

from:133 to:132 transition: 104
guard: selection_predicate:
actions: assignments:

158

when:ir

from:138 to:256 transition:105
guard: selection_predicate:
actions: assignments:

when:ir

from:142 to:256 transition:106
guard: selection_predicate:
actions: assignments:

when:ir

from:150 to:256 transition:107
guard: selection_predicate:
actions: assignments:

when:1

from:202 to:184 transition:108
guard: [eq(c(24),called)] selection_predicate:
actions: assignments:

when:1

from:202 to:200 transition:109
guard: [eq(c(24),calling)]selection_predicate:
actions: assignments:

when:ir

from:207 to:256 transition:110
guard: selection_predicate:
actions: assignments:

when:ir

from:211 to:256 transition:111
guard: selection_predicate:
actions: assignments:

when:A!primitive (ARLScnf (reason(get_RLRE(x(6))),

user_information (get_RLRE(:(6))),accepted)) :primitive
from:47 to:46 transition:112

guard: selection_predicate:

actions: assignments:c(4) := called

when:FP!ABRT_apdu (acse_service_provider,
type_generel23 (Not_Present)) :ABRT_apdu

from:51

to:50

transition:113

159

guard: selection_predicate:
actions: assignments:

when:A!AABRind (acse_service_provider,
type_genere020 (Not_Present)) :AABRind

from:55 to:54 transition:114

guard: selection_predicate:

actions: assignments:

when:i

from:63 to:62 transition:115

guard: [eg(result (get _ARLSrsp(x(8))),accepted)]
selection_predicate:

actions: assignments:

when:P!ABRT_apdu (acse_service_provider,
type_genere023 (Not_Present)) :ABRT_apdu

from:67 to:66 transition:116
guard: selection_predicate:
actions: assignments:

when:A!AABRind(acse_service_provider,
type_genere(20 (Not__Present)) :AARRind

from:71 to:70 transition:117
guard: selection_predicate:
actions: assignments:

when:ir

from:128 to:256 transition:118
guard: selection_predicate:
actions: assignments:

when:ir

from:132 to:228 transition:119
guard: selection_predicate:
actions: assignments:c(26):=c(16)

when:A?x(19) :primitive

from:184 to:177 transition:120
guard: selection_predicate: [IsAABRreq(=(19))]
actions: assignments:

when:P?x(20) : ACSE_apdu
from:184 to:173 transition:121

160

guard: selection_predicate: [ISRLEE(x(20))]
actions: assignments:

when:P?x(19) : ACSE_apdu

from:18&4 to:181 transition:122
guard: selection_predicate: [ISABRT(x(19))]
actions: assignments:

when:A?x(22) :primitive

from:200 to:189 transition:123
guard: selection_predicate: [ISARLSrsp(x(22))]
actions: assignments:

when:A?x(21) :primitive

from:200 to:193 transition:124
guard: selection_predicate: [IsAABRreg(x(21))]
actions: assignments:

when:P?x(21) : ACSE_apdu

from:200 to:197 transition:125
guard: selection_predicate: [ISABRT(x(21))]
actions: assignments:

when:A?x(4) :primitive

from:46 to:35 transition:126
guard: selection_predicate: [ISARLSrsp(x(4))]
actions: assignments:

when:A?x(3) :primitive

from:46 to:39 transition:127
guard: selection_predicate: [IsAABRreq(x(3))]
actions: assignments:

when:P?x(3) : ACSE_apdu

from:46 to:43 transition:128
guard: selection_predicate: [ISABRT (x(3))]
actions: assignments:

when:ir

from:50 to:256 transition:129
guard: selection_predicate:

actions: assignments:

when:ir

161

from:54 to:256 transition:130
guard: selection_predicate:
actions: assignments:

when:P!ACSE_apdu (ACSE_apdu_genere_3 (RLRE_apdu
(reason (get_ARLSrsp (x(8))),

user_info(get_ARLSrsp(x(8)))))) :ACSE_apdu
from:62 to:61 transition:131
guard: selection_predicate:
actions: assignments:

when:ir

from:66 to:256 transition:132
guard: selection_predicate:
actions: assignments:

when:ir

from:70 to:256 transition:133
guard: selection_predicate:
actions: assignments:

when:Al!primitive (ARLScnf (reason (get _RLRE(x(20))),

user_information(get_RLRE(x(20))),accepted}) :primitive
from:173 to:172 transition:134

guard: selection_predicate:

actions: assignments:c(18):= called

when:P!ABRT_apdu(acse_service_provider,
type_genere(23 (Not_Present)) :ABRT_apdu

from:177 to:176 transition:135
guard: selection_predicate:
actions: assignments:

when:A!AABRind (acse_service_provider,
type_genere020 (Not_Present)) :AABRind

from:181 to:180 transition:136
guard: selection_predicate:
actions: assignments:

when:i

from:189 to:188 transition:137

guard: [eg(result (get_ARLSrsp(x{22))),accepted)]
selection_predicate:
actions: assignments:

162

when: P!ABRT_apdu(acse_service_provider,
type_genere(23 (Not_Present)) : ABRT_apdu

from:193 to:192 transition:138
guard: selection_predicate:
actions: assignments:

when:A!AABRRind (acse_service_provider, type_genere020
(Not_Present)) : AABRind

from:197 to:196 transition:139
guard: selection_predicate:
actions: assignments:

when:1i

from:35 to:29 transition:140

guard: [eq(result (get _ARLSrsp(x(4))),accepted)]
selection_predicate:

actions: assignments:
when: i
from:35 to:33 transition:141

guard: [eqg(result (get _ARLSrsp(x(4))),rejected)]
selection_predicate:
actions: assignments:

when:P!ABRT_apdu{acse_service_provider,
type_generel23 (Not_Present)) : ABRT_apdu

from:39 to:38 transition:142
guard: selection_predicate:
actions: assignments:

when:A!AABRRind (acse_service_provider,
type_genere020 (Not_Present)) : AABRind

from:43 to:42 transicion:143
guard: selection_predicate:
actions: assignments:

when:ir

from:61 to:89 transition:144
guard: selection_predicate:
actions: assignments:c(10):= calling

when:A?x(18):primitive
from:172 to:161 transition:145

163

guard: selection_predicate: [ISARLSrsp(x{18))]
actions: assignments:

when:A?x(17) :primitive

from:172 to:165 transition: 146
guard: selection_predicate: [IsAABRreq(x(17))]
actions: assignments:

when:P?x(17) :ACSE_apdu

from:172 to:169 transition:147
guard: selection_predicate: [ISABRT(x (17))]
actions: assignments:

when:ir

from:176 to:256 transition:148
guard: selection_predicate:
actions: assignments:

when:ir

from:180 to:256 transition:149
guard: selection_predicate:
actions: assignments:

when: P!ACSE_apdu (ACSE_apdu_genere_3 (RLRE_apdu
(reason{get_ARLSrsp(x(22))},
user_info(get_ARLSrsp(x(22)))))) :ACSE_apdu

from:188 to:187 transition:150
guard: selection_predicate:
actions: assignments:

when:ir

from:192 to:256 transition:151
guard: selection_predicate:
actions: assignments:

when:ir

from:196 to:256 transition: 152
guard: selection_predicate:
actions: assignments:

when: P!ACSE_apdu (ACSE_apdu_genere_3 (RLRE_apdu
(reason(get_ARLSrsp(x(4))),
user_info(get_ARLSrsp(x(4)))))):ACSE_apdu
from:29 to:28 transition:153

164

eglection_predicate:

artionn: a5s1gnments :

guard: :

&

when: PIACOE_apdu (ACSE_apdu_genere_3 (RLRE_apdu
(reason{get _ARLSrsp(x(4))),
uscer_info(get ARLSrsp(x(4)))))) :ACSE_apdu

from:33 to:32 transition:154
guard: selection_predicate:
actions: aossignments:

when:ir

from:38 to:256 transition:155
guard: sclection_predicate:
actions: assignments:

when:irx

from:42 to:256 transition:156
guard: selection_predicate:
actions: assignments:

whoen: i

from:161 to:155 transition:157

guard: [eq{result (get_ARLSrsp(x{18))),accepted)]
selection_predicate:

actions: acssignments:
when:1
from:161 to:159 transition:158

guard: [eq(result (get _ARLSrsp(x(18))),rejected)]
sclect ton_predicate:
actions: assignments:

when: PABRT_apdu (acse_service_provider,
type_genere(023 (Not_Present)) : ABRT_apdu

from: 165 to:164 transition:159
guard: selection_predicate:
actions: assignments:

when:AlAABRind (acse_service_provider,
type_genere020 (Not_Present)) : AABRind

Lom: 169 to:168 transition:160
guard: selection_predicate:
actions: assignments:

when:ir

from:187 to:215 transition: 161
guard: selection_predicate:
actions: assignments:c(24):= calling
when:ir

from:28 t0:256 transition:162
guard: selection_predicate:
actions: assignments:

when:ir

from:32 to:3102 transition:163
guard: selection_predicate:
actions: assignments:c(1?):=c(4)

when:P!ACSE_apdu (ACSE_apdu_genere_3 (RLRE_apdu
(reason{get_ARLSrsp (x(18})),
user_info{get_ARLSrsp(x(18)))))) :ACSE_apdu

from: 155 to:154 transition:164
guard: selection_predicate:
actions: assignments:

when: P!ACSE_apdu {ACSE_apdu_genere_3 (RLRE_apdu
(reason(get_ARLSrsp (x{(18))),
user_info(get_ARLSrsp(x(18)))))) :ACSE_apdu

from:159 to:158 transition:165
guard: selection_predicate:
actions: assignments:

when:ir

from:164 to:256 transition:166
guard: selection_predicate:
actions: assignments:

when:ir

frem: 168 to:256 transition:167
guard: selection_predicate:
actions: assignments:

when:ir

from:154 to:256 transition:168
guard: selection_predicate:
actions: assignments:

166

when:ir
from:158
guard:
actions:

to:228 transition:169
selecltion_predicate:
assignments:c(26):=c(18)

167

APPENDIX B
TEST CASES GENERATED FROM ACSE PROTOCOL

(TRANSITIONS ONLY)

1 =2713
n=351118
13=1481624
ty=14 101725
ts=1491523 34
t6=36 1220 28 37
t7=36 122129 38
ts =36 121927 3647
t9=14 91422314155
to=149 1422 3342 56
t11 =36 12 19 26 35 44 59 76

11 =3 6 12 19 26 35 46 60 77

t13 =149 1422 3239 49 63 80

t1a =149 14223239 50 64 81

t1s =149 1422 3040 52 65 82

t1s =149 1422 3040 51 67 85

17 =149 1422 30 40 54 68 86
491422 3239 48 61 78 95

4914 22 32 39 48 62 79 96 31 41 55

6 12 19 26 35 45 57 70 89 105

6 12 19 26 35 45 57 71 90 106

6 12 19 26 35 43 58 73 91 107

6 12 19 26 35 43 58 72 93 110

6 12 19 26 35 43 58 75 94 111

6 12 19 26 35 45 57 69 87 103 118

6 12 19 26 35 45 57 69 88 104 119 44 59 76
491422 30 40 53 66 83 97 113 129
491422 3040 53 66 83 99 114 130
49 1422 30 40 53 66 84 101 116 132

49 14 22 30 40 53 66 84 102 117 133

49 14 22 30 40 53 66 84 100 115 131 144 52 65 82
6

6

6

6

9]
l
1)
1)
1
t

12 19 26 35 43 58 74 92 108 120 135 148
12 26 35 43 58 74 92 108 122 136 148

12 19 26 35 43 58 74 92 109 124 138 151
12 19 26 35 43 58 74 92 109 125 139 152
136 =1 4 914 22 3040 53 66 83 98 112 127 142 155
t37 =149 1422 3040 53 66 83 98 112 128 143 156

[R T R I R I R S T S IR FU IR FU R PV IR FU R UN B e I VS e

T | | | O [O | T || [[(T (£ Y (O 1 (Y { O { | B O

7
8
9
0
1
2
23
14
125
126
L7
18
129
130
131
132
133
134
I35

133 =3 61219 26 35 43 58 74 92 109 123 137 150 161 73 91 107

t30 =149 14 22 30 40 53 66 83 98 112 126 140 153 162

tso0 =149 14 22 30 40 53 66 83 98 112 126 141 154 163 3141 55

ts; =3 61219 26 3543 58 74 92 108 121 134 146 159 166

ts2=3612 1926 3543 58 74 92 108 121 134 147 160 167

ts3 =3 6121926 3543 58 74 92 108 121 134 145 157 164 168

tsg =3 6 12 19 26 35 43 58 74 92 108 121 134 145 158 165 16944 59 76

169

APPENDIX C

EFSM CHART OF HDLC PROTOCOL

when :DSAP_in?DCONreq:signal
from:1 to:2 transition:1
guard: selection_predicate:
actions: assignments:

when:1inl?SABM:signal

from:1 to: 3 transition:2
guard: selection_predicate:
actions: assignments:

when :DSAP_out ! DCONind

from:3 to: 4 transition:3
guard: selection_predicate:
actions: assignments:

when:inl?SABM:signal

from:4 to: 3 transition:4
guard: selection_predicate:
actions: assignments:

when :DSAP_in?DCONresp:signal

from:4 to: 5 transition:5
guard: selection_predicate:
actions:
assignments: REJ_sent := False;
t_running := False;
vs 1= 0,
vr:= 0;
vos := 0;
tb := gnew;
nos := 0;

when:in2'!UA

from:5 to: 12 transition:6
guard: selection_predicate:
actions: assignments:

when :DSAP_in?DCONreq:signal

from:4 to: 6 transition:7
guard: selection_predicate:
actions:

5

assignments: REJ_sent := False;
t_running := False;
vs := 0;
vr:= 0;
vos := 0;
tb := gnew;
nos := 0;

when:DSAP_out ! DCONconft

{rom:6 to: 7 transition:8
qguard: selection_predicate:
actions: assignments:

when:1in2 ' UA

trom: 7 to: 12 transition:9
guard: selection_predicate:
actiongs: assignments:

when:in2 ! SABM

from: 2 to: 8 transition:10
guard: selection_predicate:
actions:

assignments: ta := ta+l;

T := NOW + T1;

when:1is

from: 8 to:9 transition:11

guard: selection_predicate:

actions: assignments:

when:1i

from: 9 to: 2 transition:12

guard: [not(ta=N2}] selection_predicate:
actions: assignments:

when:DSAP_out !DDIsind

from: 9 to: 1 transition:13
guard: [ta=N2) selection_predicate:
actions: assignments:

when:1inl?UA:signal

171

from: 8 to: 10 transition:14

guard: selection_predicate:
actions:
assignments: T := 0;

REJ_sent := False;

t_running := False;

Vs = 0;

vr:= 0;

vos := 0;

tb := gnew;

nos := 0;

when :DSAP_out !DCONconf

from: 10 to: 12 transition:15
guard: selection_predicate:
actions: assignments:

when:inl?SABM:signal

from: 8 to: 11 transition:16
guard: selection_predicate:
actions:
assignments: T := 0;

REJ_sent := False;

t_running := False;

vs := 0;

vVI:= 0,

vos := 0;

tb - = gnew;

nos := 0;

when:in2 !'UA

from: 11 to: 36 transition:74
guard: selection_predicate:
actions: assignments:

when:DSAP_out ! DCONconft

from: 36 to: 12 transition:17
guard: selection_predicate:
actions: assignments:

when:DSAP_in?DDTreqg(data) :signal

from: 12 to: 13 transition:73
guard: selection_predicate:
actions:

172

acsignments: tb := enqueuel(data,tb);
ack := False;

when: 1

from: 13 to: 39 transition:18
guard: [empty(tb) OR (vs=vos++k)]
selection_predicate:

actions: assignments:

when:i

from: 39 to: 12 transition:78

guard: [not (ack)] selection_predicate:
actions: assignments:

when: i

from: 13 to:40 transition:19

guard: [empty(tbh) OR (vs=vos ++ k]
selection_predicate:

actions: assignments:
when: i

from: 40 to: 66 transition: 105
guard: [ack] selection_predicate:
actions: assignments:

when:1in2!RR{(vr)

from: 66 to: 12 transition:79
guard: selection_pren.cate:
actions: assianmer
when: 1

from: 13 to: 14 transition:20

guard: [not (empty(tb) OR (vs = vos ++k))]
selection_predicate:

actions:

assignments: data := dequeue(tb);

when:in2!'I1_frame(vs, vr, data)
from: 14 to: 15 transition: 21
guard: selection_predicate:
actions:
assignments: rtb(vs):= data;

VS 1= VS++1;

173

when: 1

from: 15 to: 13 transition;:22

guard: {t_running] selection_predicate:
actions: assignments:

when: 1

from: 15 to: 13 transition:23

guard: [not(t_running)] selection_predicate:
actions:
assignments: T NOW + T1;

t_running:= True;

when:inl?RR(nr) :signal

from: 12 to: 16 transition:24

guard: selection_predicate:
actions: assignments:

when:i

from: 16 to: 41 transition:25

guard: [not(inside_r{vs,nr,vos))]
selection_predicate:

actions: assignments:

when:i

from: 41 to: 12 transition: 890

guard: [vos=vs] selection_predicate:
actions: assignments:

when: i

from: 16 to: 42 transition: 26

guard: [not(inside_r(vs,nr,vos)]
selection_predicate:

actions: assignments:

when: i

from: 42 to: 43 transition:81

guard: [not(vos=vs)] selection_predicate:
actions: assignments:

when:i

from: 43 to: 12 transition: 82

guard: [t_running] selection_predicate:

174

actions: assignments:

when: 1

from: 16 to: 44 transition:27
guard: [not{inside_r (ns,nr,vos)]
selection_predicate:

actions:

when:1

from: 44 to: 45 transition:83

guard: [not (vos=vs)] selection_predicate:
actions:

assignments:

when: 1

from: 45 to: 12 transition: 84

guard: [not (t_running)] selection_predicate:
actions:
assignments: T := NOW + T1;

t_running:= True

when:i

from: 16 to: 17 transition:28
guard: [inside_r (vw,nr,vos)]
selection_predicate:

actions:
assignments: ta:= 0;

T := 0;

t_runnirg:= False;

VoS := nr;
when:1i
from: 17 to: 12 transition:29
guard: [vos=vs] selection_predicate:
actions: assignments:
when:1
from: 17 to: 46 transition:30

guard: [not{vos=vs)]
selection_predicate:

actions: assignments:
when:i
from: 46 to: 12 transition: 85

175

guard: [t_running]
selection_predicate:

actions: assignments:

when:1

from: 17 to: 47 transition:31

guard: [not(vos=vs)] selection_predicate:
actions: assignments:

when:1i

from: 47 to: 12 transition:86

guard: [not (t_running] selection_predicate:
actions:
assignments: T := NOW + T1;

t_running := True;

when:inl?I_frame(ns,nr,data):signal

from: 12 to: 18 transition:32

guard: selection_predicate:
actions: assignments:

when:1i

from: 18 to: 48 transition:33

guard: [not(ns=vr)]
selection_predicate:

actions: assignments:

when:1i

from: 48 to: 20 transition:87

guard: [RJ_sent] selection_predicate:
actions: assignments:

when:i

from: 18 to: 49 transition:34

guard: [not(ns=vr)] selection_predicate:
actions: assignments:

when:i

from: 49 to: 67 transition:88

guard: [not(RJ_sent)] selection_predicate:
actions: assignments:

when:in2!REJ (nos++1)
from: 67 to: 20 transition:106

176

gquard: selection_predicate:
actions:

assignments: nos := ns;
REJ_sent := True;
when:1i
from: 18 to: 19 transition:35
yuard: [ns=vr] selection_predicate:
actions:
assignments: nos:= ns;
REJ_sent := False

when:DSAP_out !DDTind(data)

from: 19 to: 20 transition:36

guard: selection_predicate:
actions: assignments: vr := vr++l;
when:1i

from: 20 to: 50 transition:37

guard: [not{inside_r(vs,nr,vos})]
selection_predicate:

actions: assignments:
when: i
from: 50 to: 22 transition: 89

guard: {vos=z=vs]
selection_predicate:

actions: assignments: ack := True;
when: i
from: 20 to: 51 transition:38

guard: [not({inside_r{vs,vr,vos))]
selection_predicate:

actions: assignments:

when:1

from: 51 to: 52 transition:90

guard: [not(vos=vs)] selection_predicate:
actions: assignments:

when:1i

177

from: 52 to: 22 transition:91

guard: {t_running) selection_predicate:
actions: assignments: ack := True
when:i

from: 20 to: 53 transition:39

guard: [not{inside_r(vs,vr,vos))]
selection_predicate:

actions: assignments:

whan:1i

from: 53 to: 54 transition:92

guard: [not(vos=vs}] selection_predicate:
actions: assignments:

when:i

from: 54 to: 22 transition:93

guard: [not (t_running)] selection_predicate:
actions:

assignments: ack := True;

T := NOW + T1;

t_running := True;
when:1i
from: 20 to: 21 transition:¢

guard: [inside(vs,nr,vos)]selection_predicate:
actions:

assignments: ta := 0;

T := 0;

t_running := False;

vOs := nr;
when:1i
from: 21 to: 22 transition:41
guard: [vos=vs]) selection_predicate:
actions: assignments: ack := True;
when:i
from: 21 to: 55 transition:42
guard: [not(vos=vs)] selection_predicate:
actions: assignments:

178

when:1
from: 5 to: 22
[

guard: [t_running]
actions:

when:1i

from: 21 to: 56

guard: [not(vos=zvs)]
actions:

when:1i

from: 56 to: 22

guard: [not(t_running)]

actions:
assignments: T :=
t_rurn..ing

ack := True;
when:1
from: 22 to: 57
guard: [(empty (tb) OR vs=

selection_predicate:
actions:

when:1

from: 57 to: 12
guard: [not(ack)]
actions:

when:i

from: 22 to: 58
guard: [[empty(tb) OR
selection_predicate:
actions:

when:1i

from: 58 to: 68
guard: [ack])
actions:

when:in2 !RR(vr)
from: 68 to: 12
guard:

(vs

transition:94
selection_predicate:

assignments: ack := True;

transition:43
selection_predicate:
assignments:

transition: 95
selection_predicate:

NOW + T1;

True;

transition:44
vVOosS++k)]

assignments:
transition:96

selection_predicate:
assignments:

transition:45
= vOos++k]

assignments:
transition:97

selection_predicate:
assignments:

transition:107
selection_predicate:

179

actions: assignments:

when: 1
from: 22 to: 23 transition:46
guard: [not (empty(tb) OR (vs=vos++k)]
selection_predicate:
actions:
assignments: data := degueue(tb);

tb := rest(tb);

when:1n2!I_frame(vs,vr,data)

from: 23 to: 24 transition:47
guard: selection_predicate:
actions:
assignments: rtb(vs) := data;

Vs := Vs ++1;
when: i
from: 24 to: 22 transition:48
guard: [t_running]) selection_predicate:
actions: assignments:
when:1
from: 24 to: 22 transition:49
guard: [not (t_running))] selection_predicate:
actions:
assignments: T := NOW + T1;

t _running:= True;

when:inl?REJ(nr) :signal

from: 12 to: 25 transition:50

guard: selection_predicate:
actions: assignments:

when: 1

from: 25 to: 12 transition:51

guard: [not{ge(nr,vs)] selection_predicate:
actions: assignments:

when:1in2 !REJ_rec

from: 25 to: 26 transition:52
guard: (ge(nr,vs)] selection_predicate:
actions: assignments:

180

when:1

from: 26 to: 59 transiticn:53
guard: [not{inside_r(vs,nr,vos))
selection_predicate:

actions: assignments:
when:i
from: 59 to: 28 transition:98
guard: [vos=vs] selection_predicate:
actions:
assignments: T := 0;

t_running:= False;

i := nr;

Vr:= Vr;

rtb := rtb;
when:1i
from: 26 to: 60 transition:54

guard: [not(inside_r(vs,nr,vos)]
selection_predicate:

actions: assignments:

when:1i

from: 60 to: 61 transition:99

guard: [not(vos=vs}] selection_predicate:
actions: assignments:

when:1i

from: 61 to: 28 transition:100
guard: [t_running] selection_predicate:
actions:

assignments: T := 0;
t_running:= False;

1l = nr;
Vr:= Vvr;
rtb := rtb;
when:i
from: 26 to: 62 transition:55

guard: [not(inside_r{(vs,nr,vos)]
selection_predicate:

181

actions: assignments:

when:1
from: 6Z to: 63 transition:101
guard: [not{vos=vs)] selection_predicate:
actions: assignments:
when:1
from: 63 to: 28 transition:102
guard: [not(t_running)] selection_predicate:
actions:
assignments: T := NOW + T1;

t_running:= True;

T := 0;

t_running:= False;

i := nr;

Vr:= Vr;

rth := rtb;
when: i
from: 26 to: 27 transition:56

guard: [inside_r(vs,vr,vos)]
selection_predicate:

actions:
assignments: ta := 0;
T := 0;
t_running := False;
VOS := nr;
when: i
from: 27 to: 28 transition:57
guard: [vos=vs] selection_predicate:
actions:
assignments: T :=0;
t_running := False;
i := nr;
Vr := Vr;
rtb : rtb;
when:i
from: 27 to: 64 transition:58

guard: [not (vos=vs)]
selection_predicate:
actions:
assignments:

182

when:1i

from: 64 to: 28 transition:103
guard: {t _running] selection_predicate:
actions:
assignments: T := 0;
t_running := False;
i := nr;
VI := Vr;
rtb : rtb;
when:1i
from: 27 to: 65 transition:59
guard: [not(vos=vs)] selection_predicate:
actions: assignments:
when:i
from: 65 to: 28 transition:104

guard: [not(t_running)] selection_predicate:
actions:

assignments: T := NOW + T1;
t_running := True;
T:= 0;
t_running := False;
i := nr;
VI = VI;
rtb := rtb;
when:i
from: 28 to: 29 transition:60
guard: selection_predicate:
actions: assignments: data := rtb(i);

when:in2!I_frame(i,vr,data):signal

from: 29 to: 30 transition:61

guard: selection_predicate:
actions: assignments: i := 1+1;
when: i

from: 30 to:28 transition:62

guard: [noct(i=vs)] selection_predicate:
actions: assignments:

when:i

183

from: 30 to: 12 transition:63
guard: [1=vs] selection_predicate:
actions:
assignments: T := NOW + T1;

t_running := True;
when:is
from: 12 to: 37 transition:64
guard: selection_predicate:
actions:
assignments: t_running := False;

ta := ta+l;
when:i
from: 37 to: 38 transition:65
guard: [ta=N2] selection_predicate:
actions: assignments: ta := 0;
when:DSAP_out ! DDISind
from: 38 to: 1 transition:66
guard: selection_predicate:
actions: assignments:
when:1
from: 37 to: 33 transition:66
guard: [not({ta=N2)] selection_predicate:
actions:
assignments: 1 := VOS;

rtb := rtb;

VI := VIr;
when:i
from: 33 to: 34 transition:67
guard: selection_predicate:
actions: assignments: data := rtb(i);
when:in2!I_frame(i,vr,data)
from: 34 to: 35 transition:68
guard: selection_predicate:
actions: assignments: i:= 1i++1;
when:i
from: 35 to:33 transition:69

184

guard: [not(i=vs)]
actions:

when: i

from: 35 to: 12
guard: [i=vs]
actions:

selection_predicate:
assignments:

transition:70
selection_predicate:

assignments: T := NOW + T1;

t_running

when:inl?SABM:signal
from: 12 to: 3
guard:

actions:

when:inl?DISC:signal
from: 12 to: 31
guard:

actions:

when:1in2!UA
from: 31 to: 32
guard:

actions:

when: DSAP_out!DDISind
from: 32 to: 1

guard:

actions:

True;

transition:71
selection_predicate:
assignments:

transition:75
selection_predicate:

assignments: ta:= 0;

transition:76
selection_predicate:
assignments:

transition:77
selection_predicate:
assignments:

185

APPENDIX D

CONSTRAINTS GENERATED FOR THE TEST CASE Ty

AASCreq_base_S_D

1.1

N T

12
Mode User-info
13 24
Normal-mode -
9 -

AARQ-apdu_base_R_D

4.1

_—/

N TT—

Protocol-version

Implementation-information

user-info

11

19

20

BITSTRING

BIT(1)

userinfo(get _AASCreq(x29))

AARE-apdu_base_S_D

9.1

A N

Protocol-version

11

BITSTRING

versionl

user-information

N

app-context-name

1t

OBJECT IDENTIFIER

application_context_name
(get_AARE(x14))

|

f L

TT— 10

get-pres-parms-sel

result
13
INTEGER
accepted
22.1
AASCcenf_base_R_D
result-source
18

20)

INTEGER

acse_service_user

cmply_presentation _
parms_sct

187

ARLSeq_base_S_D

reason

T~

30.

1

RLRQ-apdu, _base_R_D

reason

reason(get_ARLSreq(x12))

\

\ 2
user-info
4
40.1
2
user-information
4

-~

(x12)

user_info(get_ARLSreq

188

RLRQ-apdu_base_S_D

reason

\

(]

user-information

ARLSind_basc_R_D

reason

reason(get_RLRQ(x10)

4
66.1
2
user-nfo
4

WM_T_WH

user_information
(get_RLRQ(x10)

189

ABRT-apdu_base_R_D

user-info

abort-source

(e]

INTEGER

acse_service_user

97.1

ABRT-apdu_base_R_D

190

113.1

user-information

APPENDIX E

CONSTRAINTS GENERATED FOR THE TEST CASE Ty,

73.1
DDTreq _base_S_D
2
data
bytestnng-type 3
<512
- 21.1

i-frame_base_R_D

VS VR DATA
5 6 J
nat_7 nat_7 bytestring-type

Vs vr data

