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. S h ‘ ABSTRACT - . ' S - ¢
A VARIABLE STORAGE METHOD
FOR CONIC FUNCTIONS " S _ .

\ ' ‘ ' :
Dimitrios Tegos

- Most of the currlent o;;timizatiqn algorithms 'updat; quadratic approx-~ :
" imations to their objectivelfunétions. A new class of algorithms has il
" recently been developed uéing.céonic approximations. These algorithms ' ¥ o
require both function and gradient evaluations at each step to construcy
'
tfne approximating function, vhile the algorithms based on quadratics . ‘\
3

+use only gradient values. "Hence the fiew algotithms are likely to give . v

- - - beftcr estimates than the ones based on quadr tIcs “The c concept\of T S

these algorithms was originated by Davidon in 1980. Gener‘al. features
s ’ . Co
of the algorithms based ‘on coztics will be presented and discussed in
~Y . .

this thesis. Conic algorithms due.to Gourgeon and Nocedal: and to’

Davidon will be described and investigated. ‘It is shown here that. Ehese

L
‘. y . ’ Ghr &
/ methods are identical on conics, which is stated without proof by . é«/

(\-“” RN 'S

. Gourgeon-and- Nocedal and by.Davidon. Also, a new method based on corics

¢

- is introduced which is a cé'tgbination of two glgorithms introduced by ' .
Davidon. This mnew algorithm can use%whatever storage is available and
{ts derivation is based on-the VSCG algorithm for quadratics which was’ -

h 4

introduced by Buckley and LeNir. E ) e
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. CHAPTER I ‘ \

, ‘ INTRODUCTION ¥

1.1 Background

¢ ’
A typical msthematical prdblem, which is often a model of physical

-reality, is to ninimize or‘ maximize 'a given diff;rentiable function

f(x) 'of n real variables x = (xl,. . .,xn)T . . The objective of this
.thesis’ is to af:udy the unconstrained case of this problen-x, since fitstiy
wmany of the met'hods used for the unconstrained case can be modified to
solve many .constrained problems, an;l secondly because constrained op-
tiﬁxizat}on proﬂlemm usually involve solving unconstrained subproblems,
Thus we are interested in the following t.:yp; of problem: ‘
‘ minimize f£(x), x€ R® . / (1.1)/
Her? f(x) 1s assumed to be twice continuously differentiable. It is
also assumed that the function and the first deriv.ative values canp be
evaluateé at any point x. Our interest will be in methods n;.ferred
to as "gradient methods" for which there is no requirement of evaluating
the Hessian . Also, there is no loss of generality in taking a minimiz-
ing p.roblem only, since maximizing f is ﬁhe_same as minimizing -~ £ .
Many of thg minimization methods which have been developed in the

last twenty years are derived in such a way as to minimize a qua\ratic

function in a finite number of steps, a property whi'ch is8 known As

\ -

finite (or occasionally quadratic) termination. Then, using tHe face

that a twice continuously differentiable function can be approximated

v

by a quadratic near the minimum, these methods can be applied to min-

imize general functions. Our interest in this thesis will be in other,

Jon—quadratic, models, namely comics. ‘
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. The two basic types of gradient methods faaed on quadratic modelt;
are the ;1uasi—Newton (QN) ~ also known as ''variable metric' or "secant" -
methods and the conjugate gradient (CG) method. Both .of these require
just the evaluation of the gradient at each step.: The quasi—Newtp:e
method was introduced by Davidon in 1659 [ 51, L;Since that time, several
variations of the QN methods have been devéloped by mz'my authors. The
most i'mpo*rtant among these is the Brbydon 8-clags introduced by Broyden
in 1967 [ 2], andu particularh: the BFGS algorithm, which is a member
of this tlass. AThe copjpgate gradient method was introduced by Fletcher
and .Reeves in 1964 [10\], but we will be interested in the modification
Iof the CG method generally referred to as the preconditioned conjugate
gradient method (PCG). _ :

Ea;:h o'f these two basic methods has advantages and disadvantaées.
In particuiar, quasi-Newton methods require coﬁputation with and storage
of an nxn matrix, since they calculate an approximation to the Hessian
matrix at each step. Therefore computer sto;age of O(nz) locations
i8 required. On the other hand, the conjugate gradient methods require
much less storage, typically 3n to 7n locatioms, depending on the
methpd used. However, it has been proved that in general the QN methods
converge more rapidly an;i require fewer function evaluations than the
CG methods., Therefore the CG methods find application ;Jhen storage
limitations occur, since they require much less storage than a QN
method ; but they are slower. So, recently, me'thods have been developed
'a's a combination of these two in or.der tc3 obtain an algorithm with good

covergence properties and low storage requirements. In particular, we

will be interested in the algorithm introduced by Buckley and LeNir [ 4 ]
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in 1982 and known as the VSCG algorithm, A main objective of the VSCG
method is to all;:w the use of whatever storage is available since the .
l;se of more storage will ‘:merove the speed of convergenée. The VSCG
algorithm will be described in more detail in Chapter III.

In 1980, Davidon proposed a new class of algorithms for the un-
constrain—ed minimization problem (1.1). The idea is, instead of using

a quadratic approximating function, to use a certain rational function

called a conic. This new class of algorfchms based on conics requires
function al;.d gradient evaluations at each step, while the met.hods 'based
on quadratics require only gradient evaluations for building the method.
Hence the methods based on comics make use of 'more information for
generél functions and therefore we hope to have better performance'‘than
the current ones based on quadratics.

Davidon introduced two basic conjugate direction algorithms based
on conics. The first is a generalization of the conjugate gradient
method and uses 0(n) operations per iteration; for that reason
Davidon rgfers to it as "the 0(:;) algorithm'. For brevity, we will
refer just to "the O(n) " . The second one can be considered as a
generalization of the QN method and particularly of the BFGS algorithm.

It of course uses O(nz) operations per iteration and so Davidon called

“ 4t "the o(nz) algorithm'; we will write "the O(nz) ",

An algorithm similar to 0(n) , but independently developed from
a different point of view, was given by Gourgeon and Nocedal in 1982[-11].
We will call this the GN algorithm. A primary purpose of this tﬁesis
is to clarify the relation between the GN method and Davidon's methods.
For this reason we shall give detailed derivations of Davidon's methods,

since his description in [ 6 } 1is very brief. We will show that the

O - e - . B T e
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O(n) , O(nz) and GN methods are identical. In so doing, a careful
description of the role of the “"reference point" is required since it -

is a key feature of conic functions and 1s‘handled differently by
' . : L od

_Gourgeon and, Nocedal and by Davidon.

The final purpose of this thesis is to introduce an algorithm

based on cofiic models and similar to VSCG. The new algorithm, like

~ .

. VS5CG, will be considered as a combination of the conjugate direction

and variable metric methods, but based on coni¢s, so that we will

obtain good convergence properties and low storage reqhirements.

\ Tal

e em e e e e b e -




1.2 Preliminaries

¥

Some of the common symbols to be used in this thesis are the
following. Capital letters denote n x n matrices or transformations.
Lower case letters denote column vectors or scslgrs; Greek letters
denote certain common scalars also. A superscript T will indicate
transposition, and all r;::w vectors will be written with a transpose.

All methods which will be discussed are itera’tiye. i.e. given an

initial starting point X, s & sequence of points Xy Xg s onn is

* -
produced until a local minimum x of a function f(x) 18 reached

4

(at least approximately). The construction of x, will be by .
x, = + ' .
S e . 1(1.2)

where d is a direction of search determined according to the par-

k-1
. ) + \l *
ticular method being ysed. Then X, is the kth approximation to x . *

We let q(x) be a quadratic function given by

q(x)=-21-xTQx+sz'f"r ~

i

where "Q is an n x n positive definite matrix, 2z is an arbitrary

vector in R® and 1 is an arbitrary constant. We define g to

be the gradient vector of f(x) at x, 1i.e. g

g, = 8(x) = VEMX) .

|

i

[ R [
s R

|

)

I

|

vE, so

/

. / .
1f, we refer to the general' quadratic function q(x) , then define
N !
h, = hix) = Vq(xk) .

N

We are :Lnterestedlonly in descent methods; therefore d;igk <0

k

i o

must hold for each k . The value t_ > 0 is chosen to minimizé the

one dimensional function

v
¢
e s s B U .. o
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5,
v

-6 = ‘ . BN
O(t) - f(xk’l + cdk'l) . . f © \. : '.
r .
. The process of finding the minimum point on & given line is calied the .

line search. If t ig an exact local minimum of ¢(t) then

de ()| . T
'}{')'L =ey) a5 70,
-k
(‘ .
and the line search will be referred to as an exact line search (ELS).
In this thesis we are interested in exact line searches since we have
restricted the function class to conics. We will discuss this point -

in 'Chapter 1I1. d

-
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- CHAPTER II .
. 'Y _
INTRODUCTION TO CONICS

]

» -

- 2.1 Basic Forms ‘ A

’ ' . Y
This section introduces the basic terms, concepts and relations for

+
- ' il p-4

* conics which will be used later for the derivation of ‘the algorithms

‘based on them. We also take thia’oppo‘rtuni'ty to il(t\roduce much of our

notation. .o

/s

We now define the tonic function, first proposed by Davidan

[7]

in 1980. R | , .

Definition 1: "A'smooth function f: X - R where XCZRn is said to

be conic iff it is a ratio of .a quadfatic to the square of a linear’
&4 3] -
/ ) , .

. function.

This representation is not ‘;niqueb aé, the conic may be expanded around .
¢

different,poifnwts, as wg" wilfl see. An equivalent algebraic,_&fifﬂ\tion

~ for a conic function is the following.( Given a point X, called the’ o

is conic 1ff there'is an aOE R

~

referenc'é point, a fuqctioxi f: X+ R

2]

and Ao’ an nxn matrix, ﬁith/ag(x.—xo) <1 and

STS
f(x) = £ + (2.2)

0 1 ‘ 8 . ' |
o T E ﬁ/\ where s = X=X . .
R -a_s (1- a 5 ° .

The vector a_ = will Sj ferred to as/the horizon vector of f relative

-

We assume that the matrix A

e .t

to the reference point X, . is a positive

-

definite matrix, and A is cgllgd the conjugacy matrix for f at x, -

Also we define’the affine function y(x) =1~ a_s. We call Y(X) the

guagé of f at x relative to the reference. point X, - For abbrevi-

-

atioh, we write Y

N = T :
,y(xk) 1_-apsk a8 the gauge of f at X =X +s

o

I SRS, JEN Y S

kN . . I
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yhere Bk T X X . The Horizon vector a s the‘ conjugacy matrix Ao

aﬁd ‘the gauge y(x) are all Zlrelative to the reference point X -
» . ' 7

L 4

However the reference ‘point is not unique, so we will -next show

] .

how the horizbm vector, the conjugacy matrix and the gauge change as

. . K *
the conic is gxpandgd around different points. This will be a key point
in the understanding of the ‘conic algorithms. According to-th& above

»

discussion we can define a conic as:

N g ~ ’ )
N T .1 T :
q thet+s:s8"Qs IS o
- ) = Q(x)z _o_o 2’1‘ 20 . @l
[y(x)] (1-as) .

Since for s=0 we have Y(xo) = i, by using (2.3) we get ~f° =q .,

~

\ *By putting (2.2) over a common denominator and then comparing with

4 -

2.3), vyg\oﬁvtain the follcwing relations:

]

= + - . .
g, =h +t2f a e (2.4)
' T, T D
=Q + + - : \ 3)
v Ao Qo Boa,ta B 2f°a°a° . (2.5)
Now we will change the reference point ‘f’rom X, to X, . " First ﬁote .
- 8
that =, . “ ‘
) ‘Y(x)=l-aTs = 1-a](x-x)
i " T ¥ o )
Co T, _ _ . ' i
Nao(x xk+xk xo)
" -
s = l_ao(lk-xo>-ao(x-xk '
- T
= y(x ) c-a\T(x— )= y(x) 1-—?9— (x-x)1. (2.6)
*x o *x " Y(xk). % \
", By using (2.6) we observe and define the following: )
s o a - . . .
= —= ' (.7
% = Yéx, - - P
Y, (x) é'l-aT(x'~ ) (2.8) °
k PR :

B r~xa,-lw~((.l‘hwm-«)-‘-wvr - L R

/
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where a, and Yk(x) denote ;He horizon vector and the gauge relative -
to the new reference point X According to (2.6); we .have the follow-

ﬂ .
ing relation between yk(x) and y(x) ,
»

| = _xx) :
(x) Y(xk) v . (2.9)

‘Note that only- y(xk) will be abbreviated to Yy To avoid ﬁ nlg‘i;sion,

"(k(x) is alwéys written in full. - Also, we can*write f relative to x

v -

as ra 1- -
h.k +'§'s 8 -
f(x) = 3 , Where s = X=X . (2.10)
- k(x) '

Obvio‘usly, the corresponding relations to (2.4) and (2.5) for* gk and.

A, relative to xk are the following:

=_+r. " ! ' | N !
%‘ kaak, . . /(211)

A'k qQ +gka +a -kaakai . . (2.12)

By éompam,ng‘(z,B) with (2.10), and using (2.9), we obtain

Ny

1 B ) Qo a
sQ = , : o (2.13)
- Yo (x) . : -
- by y ' .
hk =3 : (2.14)
Y (%)
where hk Vq(xk) h +Q 8 - < . RO (2.1;)

These relations (2.2) to_.(2.15)' can now be used to get g  and A
directly in terms of -3 and Ao . This is important becausé it is in
the form (2.2) that we will wish to study £. The following simple

relation will be used:

aTs 1=y : ‘ -
ok . L R S (2.16)
) “w e e . :

e e e

e R T T L ST
N
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First we state the desired'relations. -
o . R v ‘ T \ -
. -~ A8 .
' T.~-T 0 ‘
. g = + | -
1 AR . @
vhere  J(x) .= J, = 2 1+i-°-n . . (2.18)
. k Yk Yk , *

Here J 1s ap arbitrary invertible nxn "matrix. The reason for this

0 :. t
choice of the matrix Jk will geéome clear later in this section.

- T _T "1 . a
-’2. Ak JkJ AOJ J_’k . ‘ (2.19)

g

We now prové thege relations. To get (2.17), we first substitute (2.14), |

(2.15) and (2.7) into (2.11). Indeed

=§{ + . o '
gk hk kaak . .. | \&K
= .11k_+2f _a_o_ ' '. ‘ | | )
Yz kY, o ' T
k S ™
Lt =_1_I’ho+.Q°(xk'-xo) ‘2% a - o
Yk Yk . k o .

By substituting (2.4), (2.5) and (2.2) for == x .

-

into the last

- .

relation we obtain
v .

L)
' 101 - T T, T
=2 | - TA = - + .
& Yy [Yk (go_z_foaoﬂ‘h‘.o 80804080 quao&olsk)
T Ty ’ >~
g 8 -] 8 '
+ e + 20k (1 Tkoky
° Y 2 2 o
. Y

T. T : T
- + - e +
1 go 2foao Ac)sk go(aosk) (gosk)ao 2f°ao(a°sk)

Yk. .Yk A
s - ]
T. T : .
2(g s, )a a 8 A 8 '
+ 2f g + ok’ o, okok \ .
oo Yl‘ Y2
k




e

e g R e e

. - J.T -1 Aosk
‘o B kJ 8o *
» Yk

- N AT % Wbl b b .

A ¥
) |
t ’ & )
-'11 =~ )
. and by using (2.16)xwe haye - \‘—\
2f a'

lgo 0

1 0
== |=-g (=-D tof a (-«—-1)
% Wik ° Yk . ik-\ Yk

T . *
A s (gosk)ao +(a 8 ) As

+2f a +—2K 4 ok ,
° Tk Yk e
. .
T T
JLfy 42% 1, 2% Aosk> ..
B A L ,

asT \AS
1 ’ k ok ( . )
k AN k .

-\
i

To prove (2.19), first note according to (2.13), that YéQk =Q, .

Then, by substituting'(Z.’S) and (2.12) into the last equality, we'obtain

2 T T T T-
i By~ 88 k ka“k"k) Ay BoBs " 858, t 2t aoao
Therefore ‘
T T
§ka+a -2faa+—[A*ga-ag+2faa]

k kk ’ .
Yk . .
and by sgain 'anbstituting (2.2) for x = X s (2.7), and (2.17) into the

last equality and by using also (2.18) we get

-

» gaT aaT . sTAs
'Ak=_]_._ °°+°°sTg+—l—AsaT+k°kaa
) N Yk Yy 2_ k”o 20k o - 3 0o
L Yk :Yk. .Yk
I g .aT sTAs ' ‘
. L+ L o,/aoosTg+LasTA+kokaaT
Te | % 2- k%o 20k o 3 oo .
LK 'Yk 'Yk Yk
2 sTAs "
S22 B T Kok T
2 oo 3 0o 4 oo '
‘ Tk Yk Tk 2
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e,

ST ’ -12 - .

] o o

- L[, T T ;
+ = - -
. Y2 [ Ao 80504 #o8a + Zfoaoaﬁr .

A
, ‘ .
| » g s, .
T Dk T 1 T T
. -— ——— +
K 2 (g 2o +a oo ) +2 3 858 + B(Aoskao aoskAo)
' ‘Yk : Yk Yk
’ g s sTA 8.
. + 2——"———-k °4k a aT -2 °3k aoag .20k z aoa:
Yk Yy YN
4 . N
v 1 1 T, T
R - + '
' 2 Ao 2(goao aogo)
Yk . 'Yk “ ‘
. r T T T T .
' e Aoslcao + aoskAo'+ aOBkAoslr.ao + A
. 2. Y Y -2 o
SO o B k "
- a sT s aT
o = J% I-F-%JE:] A [1-+1{}2 ] . :
. . Y L. “ , : . 0] . k - .
. N e
_ I.-T, -1 '
JkJ AOJ Jk . 4 . " a

o ’
. \ _ -/
We now wish to discusf the concept of a collinear- calir}g/. This

.

is the second key to understanding conic algorithms. A conic function.

\ - ] LS
is clopely related to a quadratic one for ‘consider transforming the

variables under a general transformation

(2.20)

This will make f(w) quadratic as we will see.
any invertible'\ nxn matrix; it defines the transformation T . .This

transformation T 1s known as a collinear scaling/of the variables,

motivatéon for this terminology., The Jacobian/of T at x has the
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following form: . ’
- J [ sao ] Y -
J@) = =< | I +75 |, : 2.21
) Y (%) v(x) § %, / (2.21)
and the inverse of J(x) is ® .
J-%x) = y(x) [1I - 98:] J‘l . - ' o (2.22) . -

a

.With a simple change to the formula (2.2) and by using (2.29) we see

that ' "'
gTJ_ljs(. sTJTJ-TA J-le
= [} 1 [0}
f(x) = fo + (x) 2 S 2
¥ Yy (%)
- T T , 1T, -T, -1 T
= + + = .
£+ (0g)w 2,"’ (J AT ) w &
:qW) , ' ! " (2.23)

which is quadratic in w with Hessian J'-TAOJ‘-1 . As a consequence a

conic function has a unique minimizer in almost the same cases as a

quadratic does, as discussed in Davidon [ 7 ]. In this case, when AO
is positive definite and azﬂigo ? 1, the conic function will be called
normal. In the remainder of this thesis, we assume f is normal, just

as in the quadratic case, one assumes that the Hessian is positive definite.

4

To conclude this section on basics, we will now show how to com-

pute values of the gauge without having to know the horizon vector ao .

First of all, Davidon defined the quantity . .

Ji(4,n Y

for which there- are alternate expressions, which Davidon also derived

*

in[ 71 . Theése are the following: .




B e datninet o se e n TF R A T .

ﬁ,l
A s
r . ' - 14 - ’
- 1 fl'T si ii ) "' ‘J‘ .
L e _1 . |
o7 Tyt fj+ TR
_ Yi T ' ‘ A
TR TRy sy T - , 228
2 _ 2 T T '
Pyy " (fj-fi) -gi(xj-xi) 8 (xj-xi) . . (2.27)

A
Y

«
\

W

The above equivalent expressions for p 1 establish the following theorem,

which ig due to Davidon [ 1980 ]:

Theorem 1: Let f be a normal conic function and let’ x, and x, be

i b
twc points in X . such that - fi < fJ . Then i ‘
T -~
- ‘Yi _gi(xi-xj) et
. ;—= T -1 +P . - (\2.28)
" ] b S & - .
[ ’ ) (“
\ Note that the ratio yi/yj wiil be denoted by Ty z /yj

Therefore by applying Theorem 1 we can compute the ratio of gauges. .
I\n'parti'culaur, for 1=k and j = 0 we can find the value of the

gauge at any point x  in tg;t'ms of the function and gradient values

EN

#

at \'\xo and’ X since y(x’;) =1, Indeed

Also, since vy 1s an affine functic;n-, knowledge of Yo and Yk‘ allow

us to find the value of vy ag any poini on the line jﬂoining X and xk .
Davidon also established, by the following Lemma, that by evaluating

tk;e gradieﬂ\t at three collinear points, where one of these is the' refer- .

& ,
ence point, \Ve can determine the horizon vector 8 -

\

. .
N 4
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Then the horizon vector 2 is given by

Lemma l: Let x . =x +td , x, = x, +t

2

it \p)
-q (Ylsl -8) - ‘_z (7282 - so)
a = .
o 2 2+ T
. , (Ylsl-Y?_zz) d

Proof: See Gourgéon and Nocedal [11] .

te

[

d be two points in x .’

e ——




- 16 - -

2.2 Exact Line Search for Conics ey

The algorithms \Sised on conics, to be presented in Chapters IV-and
V, will require a one-dimensional minimization at every step. So here
we will determine which value of t gives the exact minimum on the line
aloné) d pasainé through X1 at the kth step. First of all we con-

sider the restriction of f to the line

x(t) = % *+ (x-x )t ,

(1-tx , *x . ' . (2.31)

Here x=x , +td .

(2.32)

is a point along that line chosen for consistency with notation to appear
‘ ' i

later. We also define

s(t) = (1- t)s,_ *ts " (2.33)

. o}

_where 8= x-x : (2.34)

and X is the reference point. Also, since Y 1s an affine function,

N -
v (x(t)) (1-t)Y(xk_l) + ty(x)

1 V-1 + ty : \ (2.35)

wvhere t. = 1-t . By using the algebraic representation (2.2) for a

(SIS S

1

conic, on the line x(t) we get

s(t)TAos(t)
Y2 x(t))

We will write y for y(t) and by substitutiﬁg (2.33) into this ex-

ggs(t)
y(x(t))

- 1
f(x(t)) = fo + + >

[

pression, we have

v
-
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(t gTs +th§) (t:2sT A s + tZETA s)
_ 1%0 k-1 (o} 1 lk-1l0o k 1
f(x(t)) = £ + F =
o Y 2 Y2
T -
t.ts A s -
+-1 k-l o k‘zl 0 (2.36)

Y

There are several relations which will be‘ used to reduce the form (2.36).

These are
y
. - 1 __y__ T k-1 -
= — + — -
1MMe-1"P12.7 2 518 | 5T T Bke1 o Bl BTAGE | - £ytey_) A
. Yi-1 . Y
t, ty i .
A - t) X _ t . (2.38)
-1 k-1 ‘
oty ' .
—-1—-;—k——1=t-z—-t. , S (3.39)
Y Y :
2T 2-T . -
1(1k-1Ao k-1 tSAvs)+’:t(k1AS) .
2 2 1l - 2
Y Y
' YT ; t =1, =\ f1™e-1"P12  (2.40)
T 2\Y, sk—lesk-1+ -8 Aos - 2 o
' k-1 Yy - Y
I3
s -1T 8 N
_where P, = %- k-1 % Ao L=l % ,» from (2.25). The first
k-1 ¥ k-1 ¥ ‘ /
s relation (2.37) follows by multiplying both sides of (2.25) by tltyk 1Y

The next two relations' (2.38) and (2 39) follow directly by using (2.35).
To prove the last relation (2.40) we substitute (2.38) and (2.39) into

(2.37). 1Indeed

-~

[t ty t.ty :
- 1 1 T 1l 'k-1 -T -~ -
. = o | ee—— + s = -
1112 T 2| 7 Bke1ho%e = ° Aos] b Eloy_y AP
[~
=1 —t-l—Y—sT' As —tzaT As  +E 3T 5o g |
2|y k-1"0 k-1 1l k-1 0k-1 = (4] | <] |
L1 7
\
-t 1:(13k 1A 8) ,

o

o b o N s 47 PN b g 2 R L it AR LS A AL Ve P,

bk e S SAMPWE R MMEESRL TN LRI e S P 22wl . — .

PR i P g -y B - W b e . o
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and by dividing both sides by yz' we get (2.40). Next by using the
relations (2.35) to (2.40) and (2.2) for ik_l and: X we can simplify ’

(2.36) to get an explicit conié in t :

T T- -‘
(t.g s +tg 8) t
-150°k-1 "~ "8 il 1T v, t =T, = |
f(x(t)) =£ + += s, A8 +—s"As |
o Y 2 VoY k 1 o k-1_ Ty (]
- e S SALY.
2 ' 3
Y =N,
¢ .
T, -,1 f1 T 1t-T -
+ — +=t
foy+tlg k=1 tg s+3.7k-1 8y lA k-1 2__8 As .
= L] \ ',/ Y
‘/
V)
.2
Y
ft +;:' t::°+t: Te .+t T§+i—il— T A: +Lt 'T
) ' 0°1"k-1" "o T F1Bofk-17 8" T2y F-1%"k-1. 2-
= - :
ChEN1 P
Y Lo '
8'1' T ) BT; ;TA. 5 R
0 5k-1 , 1 Bkl AgBi-1 1% %°%) -
e g
1*k-1<f i1 T2 2 ) <f 2 =2
) Yeo1 Y Y
Y
' A DALY Lo
2 - ! )
Y ' it
- . + — - » -
) (1 t)Yk-lfk-l tyf _(I t)tyk_lyplz
T (2.41) .
Y . Y2

where f = £(x) and vy = y(t) . Differentiating (2.41) and using (2.35),
and eliminating P1yp with (2.26) where we replace Xy by \xk_‘ and

by X and by recalling that T = y/yk 1 Ve obtain

% = k-1
/ h
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3 =3 =.T .
af(x(r)) _ LG - O gt el | N 2
.- re = AR (s-sk_l) . . (2.4
1=t rk_lt) .
From (2.42) we can see that the derivative vanishes at ¢
T ,=- o
. -8 .(s-s ) 1
v k= k-l | k-l (2.43)
& g-g (-8 ) , .
k=18 7 Bkl k-1 .
or, by using‘(2.32) and (2.34) at S ' -
»
"8y ' ‘
t* = . . . (2.44)
£ g-g >4 x . ,
k-1% 7 Bp-1 , .
“ 1
Therefore by using (2.31) the atep length tk from Xy q to the exact
mintmm x  will be ,
= T ¢k l ‘
) tk tt | ‘
i - By ' ’ ) ]
= . (2.45) r/ ‘
(2 _z-g 4 . ‘ ‘ .
k=15 7 Bg-1 v !
" |
The last formpla (2.45) will be used in Chapters IV and V where we | ‘

RS
-
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CHAPTER III :
¢ .
_ MULTIPLE UPDATES: THE VSCG ALGORITHM o ‘
v ) /‘—L

3

3.1 conjugate Gradient Methods

The purp{;e_of this chapter is to summarize the conjugate direc-

tion algorithms based on quadratics for reference in the remaining

[N

chapters. In this section we will describe the conjugate gradient (CG)
{ N
method based on quadratic models which was first introduced by Fletcher

and Reeves.[lO] in 1964, We will describe the modification of the CG .
algorithm known as the preconditioned conjugate gradient method (PCG),
in which we are in fact more interested.

First of all, in order to avoid confusion,zdth notation, we have
to make some 6bse;vatiohs. A standard notation encountered in many
publications fox the algorithms bgsed;on quadratic models is that x
denotqg a point, d 1is the search direction, s 1is the step/between
two consecutive points, g(x) i1s the gradient value\at b4 a;d y
délotes the difference of the gradients at two consecutive points. .
But, since we use ;imilar but conflicting notation to discuss the al-
gorithmg based on conics in order to be consistent with the notation
of Gourgeon and Nocedal [ see section 4.4], we will here replace d

by v,x by w and by h . Note that y i1s unchanged, because

Lg

-

1f we reduce a conic functio%.to a quadratic, then ail yY's become

equal to one. 'YAlso the step s 1s unchanged in-our notation % we
)

think that will not cause confusion in the notation. Tﬁps, for example,

—

- , .
the following formula for the search direction of the QG\algorithm,
\ ~—n

- »

H: Nﬁ‘r | A | ! ’

\

TR R be RN S A R " i .




~ Y
s » ‘. - ,b
. . } e
/-\./ ~ - ¥
1 < ; 2‘1 - -
N ’ T ¢ "
&k
de T 8t 3 de1
, . e
\ .
.
’ : is replaced according -to the above disclission by
T ' y - .
. = ..}-H‘ + —_— hk k k 1 a o
4 N o ‘

We will now.in ; oduce’ the CG algorithm. First we will give an
& :

»

important definition. v
~ Definition 3.1 Given a symmetric positive definite matrix Q, theb
. ~ finite set of nom-zeto vectors vl s v2 s reey vk is said to be conjugate
. i '
3
v':ij =0 .forall 1%y . |

. T ¢

The importance of conjugate vectotrs is given by the following theorem, -

known as the E'xpanding-Sulispace Theorem (EST):

I\

Theorem 3)1 (E5T) 1Llet v i=1,2,...,n be a set of conaﬁgate

i ’ L]
vectors in Rn} and let zk‘ be thie subspace of r? spanned by

. ' n ' .
VisVyseeesV, o« Then for any wo'EB the sequence {wk} generalted .

according to ‘ ‘

! : . YT Ve TR 0

.

has the property that v

minimizes the quadratic function® q on the
- . * linear variety v, + Zk., provided all line searches are‘exact.

[ 4

- Proof See Luenbeger [13i . s ,

he r

A consequence of the EST is that, since wn minimizes the quad-

ratgic function q over LA +‘Zn, the global ‘minimum w of q i1l

1,

be found in at most n steps; a property which is l_dxown as finite ter—

i
e bl

P

- . . ‘1 - o
. . . - 1

imen
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. - i
mination. The CG algorithm is .based on a successive construction of .
conjugate search directions by using the Gram-Schmidt process (see

Luenberger [13]). Thus the CG algoritim has the following form:- Given

LA define v =--ho and‘for k=1,2,... iterate with

A - + N .

Yk ¥k-1 7 Mkl 0 (3.1a)
5 h:y

c - k . < ) :
LA | | (3.1b)

k-17k .

. . . O]

= + .
\ h'k Bkvk*-l . . ‘ (3.1c)

The formula (3.1b) is known as the Hestenes and' Stiefel [12]] form of Bk .

The CG algorithm has the following orthogonality properties:

T, .. .
vihi =0 | 0<i<3 ; (3.2)
T, - _ .
'(w:l - wo)\ hj = 0 . 0<i<3 3 (}.3)
) T _ . L ,
hyhy =0 0<i<3 . (3.4)

The first relation (3.2) follows by applying the EST In fact, we note
that after Jj 1line searches along conjugate directions, we will find

the minimum of q in the hyperplatie spanned by vl y V v

2 pad 0 g ]
’ . o ]
Therefore hj must be orthogonal to the hyperplane, .i.e. equation
(3.2) holds. The second equatign is obviously true since
i .
- = E . . ’ = -
vy ,wo 521 Pjvj-l Also,.since the directions v i O,l,.,..,'j 1

i ’
were constructed as a linear combination of hi , 1="0,1,2,...,,5-1 ,
. 4‘ - '
then by uhsing (3.2) the relation (3.4) is true. Note also that the CG
algorithm (3.1) generates-downhill directions even when it is applied

to a general function, provided that ELS are used, since

T T T 2
= o -+ = -
vkhk P'khk Bls:vk—lb'k lhk‘ <0.
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Finally, we will describe the PCG algorithm. It was first intro-

duced by Axelsson [ 1 ] In 1974 and was derived by transforming the
) .

variables of the CG method, such that w = H*4 where H . is .a symmetric

positive definite matrix. Then by first applying the CG algoritkﬁn in

v the new w-coordinates and then transforming. the resulting steps back
into the original w-coordinates we obtain the PCG algorithm. In
' particular, the standard CG algoritﬁm (3.1) in the w - coordinates is:
| Given ¥ , define V_ =-h " and for k= 1,2;..., iterate with
- _ = - , '
e O k-1 Mkl P (3.32)
= K:;'k o N
w Bk vT - » i ) ! (3'5b)
. k-17k
1 - = o T + - - R . .
Vit T T Ay (3.5¢)
o ' . where h = h(w), " h'-h , . Now, in order to transform each
' ' step (3.5) into the w - coordinates, the relation between the gradients
h and h is require&. This can be edsily derived and is given by
.‘\ h(w) = Hih(w) and y= Hiy . . (3.6)
According to this and since k;k = H-ivk , the inner product ;Eﬁk
becomes

. _T—

Vi

ahpTah)

v .
P i = T v ."
ka 5H hk ; vkhk, . (3.7

The roelation (3.7) implies that the ELS are the same, in both coordinate

systems, i.e. 1f both use ELS then the same point is reached in either
-8
set of coordinates. Substituting now (3.6) and (3.7) into (3.5b) and

‘ ‘ . (3.5¢) we ge/t '
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4 Q’ T .
_ e
, kT ’ :
l C k-17k B n
- e _ = _ + R . ,
Vp T -Hh YRV - , y

Finally the PCG algorithm can be summarized. . Given v, and a positivé
definite matrix H, let \ra = E—H’no and for k = 1,2,.... 1iterate with

= + .
b S B N S ,

- _ B, -

V-1 ‘

N = o + R .7 .

~ . Vi Hhk : Bkvk-l . . (‘3 8c)
Note that with H = I, we obtain the regular CG algorithm (3.1).

Since the,PCG algorithm is just the regulér CG algorithm.in the w-

coordinates, it also has the \finite termination property. We can also

\
easily derive orthogonali/t/y prqierties which are similar to those of

-

’

the CG algoritpmt™ —

N

Finally, the PCG algorithm (3.8) also generates downhill directions if

"

ELS are used since E is poéi°t:ive definite, for

khkz_h:Hhk+B Viee1Me T thh

(3.8a)

PR T . - ‘
hl B :k . | T (3.8b)

\A 4 o , . 0<i<3 (3.9)

W, -v)h, =0 , 1<i<d ; ' (3.10)
\ 1 ° j ‘ - = "‘ 14 :
A hiﬂhj =0 , ‘ 0<i<i . “ (3.1D)

3

7]



[

3.2 Quagi-Newton Methods

The QN methods were first described by Davidon [ 5 ] ‘in 1959 when

’ \
‘he introdiced the basic ideas of the DFP algorithm; these were later

bl (]

developéd into the DFP algorithm by Feltcher and Powell [ 9 ] in 1963. -
Later again, Broyden [ 2 ] in 1967 ‘generalized the DFP algorithm to a
family of algorithms-uhich is usually referred to as the Broyden 8-

class. This sect%yn‘uses the same notation which was introduced in

) i

Section 3.1.

The basic idea of the QN methods is to update and use an approxy

imation H_ to the inverse Hessian et x_ in place of the true inverse

k
that is fequired in Newton's method [ see Fletcher [ 8 ]], which is often

impractical to compute. The form of the approximation varies depending

on the patticular algorithm. However the so-called '"quasi-Newton

equation" (or “"secant equation') \

2 a L}

Hkyk = 8y . ' (3.12)

ﬂ }

must always hold; we recall that s = Note that equation

k k" k-1
(3.12) is exactly satisfied if we replace H

-

K by the inverse Hessian

of a quadratic funcgion q .

We will restrict our attention to the Broyden family of algorithms,
aqd in particular to the most important member of this class which was
suggeséed by Broyden (1970), Fletcher (1970),IGoldfgrb (1970) and Shanno

(1970), and is known as the BFGS algorithm.  The BFGS update formula

has the following form: Given H , define

T T T T ]
p(,1) = B- BETZevB .,y 4 XAV ) 28 (3.13a)
8Yy 8y 8y ’ i
h 3 7 \
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In the'quadratic case, by using the.secant equation Qs =y , we get’
. . y

T T T T ' .
D(a,1) zu-Hes — e Oy (1 + gaq:;) T . 7 (3.13b)
' s Qs 8 Qs 8 Qs

a form necessary for Section 5.1. We can also derive an update formula

for the inerse matrix H . TIf H-l is denoted by B, then it can be

!

verified that the inverse of the update D is given by

e
Y

Bs;TB + Qs;?Qk ,
8 Bs s Qs I

. D(B,1) = B -

(3.14)

by easily establishing that D(H,1)D(H,1) =1 . . -
We now give a single iteration of the BFGS algorithm. Given is
vy and a positive definite matrix Ho {(an initial approximation to

the inverse Hessian). For k = 0,1,2,..., iterate with
’ P . L]

Vi 5-—Hkhk ) ‘ . . (3.15a)
Vit o wk+uk+1yk . . . (3~UZb)
L Hop™ D(Hk’kﬂ,) . o + (3.15¢)

P .
The BFGS algorithm has some important prﬁpegties (which are also

satisfied by the other members of 'the Broyden Q-—class). First, if

we apply the BFGS algorithm to a quadratic functioq .q and ELS are

used, then it terminates in at most ‘nq\iterhtions, with Hn = Q-1

(unless termination is permature) [see Fletcher [ 8:]]1. Under'the

same assumptions, ‘the BFGS method (3.15) generates conjugate directions,

and orthogonal gradients if Ho = I . Finally, if si “
. ¢

k , then the BFGS formula. (3.15c) generateaipos%;ive matrices H

Yk > 0 for all

k b
if Ho 1s positive definite.

We must prove this property since we will refer to the proaf in

A}
-

>
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Section 4.4. Obviously, it is sufficient to show that the update

1f B =HY s
o

5(B,i) generates positive definite matrices B o

k
positive definite. The proef is inductive and shows directly that

~zTBkz > 0 for all z ¥ 0 such that z€ r™ . The result is true for
. .

Bo by choice. Assume it is true for some . k-1 > 0 . Then for any

z€R" , by using (3.14) we obtain
” p ,'J .

T T T T 2%

) ’ zTBkz - zTBz - (z Bs%(s Bz) , (z Qs)(s Qz)
8 Bs 87 Qs . .
_ (z"B2) ("88) - (2"B8)? | (270s)? :
- » °

sTBs : sTQs ) . .

where B = Bk-l and s =5 . . From this we can see that £t is suffi-
\ cient to show V )

(z7Bz)(s"Bs) - ('B&)2 > 0, : (3.16a)
or 208 #0 , o (3.16b)
2 . T . l : . .

since 8 Bs > 0 by assumption. To prove (3.16a) we use Cauchy's
inequality, ) ' .
‘ a? - wH?s o | (3.17)

.

3 u is . Equality holds only when

for 'any ﬁ,l-lel{n, with u= Bz, u= B

& 1is a multiple of s . Then (3.16b) holds. This completes the induc-

H

tion and consequently our proof.

3

- -~

Finally we observe according to the last property that any value °

: T
of My chosen so that skyk

. / -
in the next update, and hence a downhill direction v

> 0 will guarantee positive definiteness

" given by (3.15a)

9

if ELS are used.

B

JRRRTIY = L N WL S g, T - o w N ERCTR Py
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33 Combined CG and QN Methods . ' -

The purpose of this section is to, demonst:rat:e the relationship that
exists between the PCGC elgirothm and’ the BFGS method, in order to derive,

in the next wection, the VSCG algorithm. In particular, we will show

“

how the PCG algorithm can be written in the éame manner as the BF@S

method. .

Y

To derive such a relation we assume as usual that the above methods

A

are"applied to a quadratic function q and ELS are used, i.e.

sa'ihi = 0 for all i= 1,2,... .- First we recall the BFGS update for—

mula (3.15¢),

BT Bea”

where again the missing subscripts are k . By substituting this

T T
+
H 1"s Y By | 1 A LAY
T ]
. sy

BY Y

formula into (3.15a), and taking into consideration that . ELS are used,

we obtain

k,,13'(15 hk) sy H _ lhk) yTHk_lY s(sThk)
'Hk-lhk+ . Lt T
Ty 8’y 8"y
S W o

= o + —————————— . ’ @
LY [ T 8
. s y ]
T q .
. Y HaPy
= -+ —— '
Hk-lhk [ VT Vil ® (3.18)
k-1 .
since 8 = 8 = ukvk-l . By comparing (3.18) and the search direction

(3.8¢) for the PCG algorithm, we can see that both formulas are the

B, i.e. if iii= D(4,1) for each

e

i

same if we cho'ose Hk-l



/\0

PO,

|

)
W,
\
) Ed
{
A

Y,

di= 1,2...

-

.

.

\

5

Hence, we ,obse/r/v; that under the assumption that ELS are used he *

e

PCG method - can be interpreted as a BFGS method, in which a fixed pre-

conditioning matrix H 1is updated at each step.

~

&

1
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3.4 The VSCG_Algorithm .

To complete this chapter, we will give a brief description of the \
variable storage conjugate gradient algorithm (VSCG) which was intro-
duced by Buckley and LeNir [4 ] in 1982, since a main purpose in this
thesis is to derive a/;imilar algorithm but based on conics. The VSCG
algorithm has been derived in such a way as to combine the CG and QN '
algorithms and to obtain one with better performance.

Suppose that we choose a starting point v and a positive defiq—
ite matrix HO . Then the VSCG algor.’;éhm’ ig given by two parts as
follows.

+

QN-part: For i =1,...,m iterate with

H, = D(H, _,,1) R (3.19a)
Vi =-Hihi ’ . + (3olgb) h

\/-) N
w, T W + .

1 Y17 MV

CG-part: From the point Vot reached by the QN-part, ‘and using t'.he

fixed matrix H‘m 88 preconditioner, iterate for 1 = wtl ,m+2, .., :
, B, =D ,1) -, _ (3.20a)
| vy =By , ' o (3.200)
Vi T TR
" .

By way of comment on the VSCG algorithm, we can observe that the

two parts are different only in the definition of Hi . In the QN-part

(for the first m steps), we update H, from the previous matrix

i

Hi—l . Then in the CG-part, by using the fixed matrix jm , we always

update H, from Hm . Therefore the CG-part can be vieyed as the

i
PCG algorithm in the form described 1-1‘1 Section 3.3; here the precon-

7
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There are some important proper?:'ies of the VSCG algorithm. First,
according to the observations which we made in Section 3.2, -the update
formulas (3.19a) and (3.20) always produce positive definite matrices,

T
-for in practice one can ensure that w >0 . Then it is clear

s 7
from (3.19b) and - (3.20b) that all the directions vy

directions. Also, when f 1s quadratic and ELS are used, according to

are descent

Theorem 3 of Buckley in[ 3 ], finite termination is obtained in at

'

.most n steps, counting from the very beginning. Finally, we note

that the matrices H, are not themselves needed, but only products

i

Hiu for u€R" are required. Therefore according to the derivation

of Buckley. and LeNir in [ &4 ], we don't have to store each matrix Hi

T

‘but only some vectors, so that the total storage needed for Hl,...,Hm
is m(2n+2) locations, which is explained in the context of conics
in Section 5.2. Provided m << n, this stotage is just a multiple of
~
n.
In conclusion, the VSCG algorithm does not require one to store a
matrix, but only certaln vectors, and it can use &' variable amount of

storage. In terms of both performance and structure we can classify it

between the CG and QN methods.

P TS N moe e - - el e

—




- N CHAPTER IV

CONIC APPROXIMATIONS

4.1 Basic Relations
In this section we state and prove some basic relations which are
!
required to describe and to investigate the 0(n) gnd 0(n2) conjugate

direction algorithms. We will also introduce more of our notation.
¢
First we define the n xn matrix G(x) given by

; 1 +sa§ S
6 2| T | o (4.12)

where s = X=X and 8, is the horizon vector corresponding to the

reference point X - fFor brevity, when i\= Xy it will be written
Y {

G, = G(x) =L[1 +s—ki‘?-]'. 4 (4.1b) !
Tk v
Since it is always assumed that Y F= 0 G;(l exists and is given by
-1 _ T '
G~ = yk[ 1 skaol . (4.2)

ar

v L]

The reason for this choice of the matrix G will become clear in section

o ‘“‘———/
(4.3), where we will describe the (GN) algoritim. We also define
T .
' d a : . n
N N U s o D S UG & @.3)
ko, Yy T, Ckk-1lk
Y(Xk) Y ’
k
where r,:iy, (x)= = . (4.4)
NN YOy ) Mg
' .
Next, we will first state and then prove some relations between /
the matrices G(x) , the conjugacy matrix A, the displacements s, /-
and the gradients g(x), for we will need to refer\to these relations {
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later. , - o
G = Cpotly (4.5)
8 (1-v,)s ’
. Gg =14+ — 1 kK C4.6)
kj Yy 2
Yy '
-1 _ 2
Gk 8y VB ‘. (4.7)
’ r 8 8
+ k k-l - ' *
G I e . . , (4.8)
k—ldk 1 x | Me Y-l
8 8 -
1 k k-1 : . )
Ga ==tk . : (4.9) : \
kdk( 1 tTy [Yk Vo1 ] | ( RS
2 * : ; -
24001 7 G- - o (410 )
. i . i
[4 ' " A 8 . . * ‘
T({ ° o k
By k < (¢} Yy ) - ‘ 4
©y =1y +Ecfag .4 (4.12)
Be " kBl T, kok-1%-1 - - o
8 8 A
k _k-1 ~T ~T . -
o(yk Yk_1> kBT T B
4S8 T T .(G:r &~ Cym1 By / @ |
o RN - ] w|
8, = 15, ei.(Gidi) qfot suitable 6, . (4.15) 3
- 4 [

The proofs of the above relationg require primarily direct manipulation
\

and the basic'relations: !

i

a

Ts
o-1

i-1

-

=1-v, , v . (4.16a)

=td . - (4.16D)

PRI S . A
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which are true for any 1= 1,2,... . 'The first equation, (4.5) relates

the matrix Gk with the previous Gk-l and the proof follows by using

(4.16). 1In particular

T a T
. 8 .& d a
o b = | 1+l I I S A
V-1 Tk-1 | T+ T .
T Yyl S 1"T (8y -8, 1)“'I
SR S Sl S B R S’ WA I+ -1l © .
Yo_q Y Y, R
- k-1 k k-1 Tk U
! {a .
] ) aT 8 ;T s a?' 8 -aT(aTs ) s aT(aTa ) i
=2 |y4Klo, ko k-lo, k-lo ok _k-lo O k-1
‘ Wl M. e Mk k-1 Tl '
- {r T T T Lo 7
B T B ™ o e N W i s o Sl
Yk k-1 Yk Yk Mk-1"% Ti-1Yk ’
' / - — N y' - ‘—
“ +
' [ 8 aT 8 aT B a'lf‘ 8 aT s ‘aT 8 T
~ ) oL 2k1% B Pie1®s Pk-1%0  Pk-1%o  Pidfo
5 Yk -1 Yk %% Mk Ykl Ye-1k
T
+ 8k-lao
T
8 aT :
~_ - L I+ k o
e Tk .
=G .
The second relation is also _yﬂegif_ied_br—t?mg'(l;.yma):
* T ‘ a
. e T
G g = --1- I + k o 8 v
k. Yy Y . 3
4 . "
/ N ° W
N . -

——— s = - VUV FO U I e st e e O

[N Y

LR ST WO

) S



s k| Ye-1

T o by @bining (4.8) and (4.9). It has been shown in Chapter II that

ey - s - — e ® W o w wema e = - . -

-
[ X8
w
W
4

-

Yk .

°

¢ By using t4.6) fo‘r i =k we get (4.7) . To prove (%.8) first we use
- L . ) . ‘ 5" . .
L ) (4 "l6b) fOI' i = k ’ Indeed » : f/

B - s . 1 »
= k k‘l N . .
b : Gk-ldk-l Gk-l ( t ) :

k

- "o lge.

.’, Bl WL
-' ! k r (
Then by using (4.6) twice for appropriate j we-obtain o

-4

Cpm® ) -

<«
'
\ ’ -

. : ’ 1| 8
c Sadea Y T

-

K o 1Ty 1
a8

T 1 T 2

k-1
L

k _ k-1
Y, 2

B e R = | : o
. T R\ k1) . .

4 v

’ ij . - The proof for (4.9) is similar. The relation (4.10) follows directfy

$

: S a sl As S
. : L 3k='L I+°k L*8+ok>‘ )
' /'v ¢ ’ Yk ka ° Yk : '
" . . .

Yg-1 Yi-1 . . -

L l 3

e b e et vt e o PR et e R st s
. A

e

A v
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. . < - [ /
= - T o8k :
. = o+ r i
) )/—-\ : gk Gk 80 Tk o et -

which 18 exactly the'relation (!'4.11) . To prove (4.12), first note accord-

ing to (4. i\l) ,

. As )
T Aofr-1
. o= + ————— N
By = Cper (3‘0 ) : S

"Y1
Therefore, B ) . -
Al . A s
e p-T _ o0k-1
8 " Cpe1 81 Yy \

Then,- by substituting the last equality into (4.l11),-we have

A 8 A s
b " i[ciflsk-l St “}
. k-1 k
. . .
T ~T k k-1
=G |G +A (=== 1.
k | k-1 Ek-1 n o(yk | 'yk_l>]
N " Finally by using (4.8) we obtain e
. \\
" \ ty R
N T| .~-T k k-1 '
[ N N .
\ &= G l:ck-l Bl Ty, Aon-ldk-l] o
\ S " |
N t ‘ |
\ T K T
= + —
Lide1 T 7, G Ao%k-1%-1
L . since G'lr< G:fl"= Li follows aq,coi‘ding to (4.5). The next relation (4.13)

is similar to the "secand equation" for a quadratic function and the

proof follows by using (4.11) twice. Indeed,

. As As '
~T ~T o k o k-1
- = -+ - - ———— ;
Gk & Gk-lg_k-l & Yy & Yi-1 .
P S . . , |
= Ao _E - .__k-l \ . v/, . -
- | e o Yk-1 , e

-

e — N . 4 A bermre e e s

Lo ‘ oY et
N B D s h wme sl Sl e o b s e bes w_ o« . e e o — O
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true, ! ) .
’ If sTg = 0 for jl< 1, GzTg = y.8. (4.17a) !
%1 - o "B ' I
. " . T '
and , . Gj i ngi - (4.17%)
-(:/ T - T - L A
If . dk-lgk o, Lk By T, gk . . (4.18)
v o | M
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i

Relation (4.14) i similar and it is easy to verify it by combining
] L o

(#.9), (4.10) and (4.13). The last relation (4.15) follows from (4.8)

by solving it in terms of, 8y first, i.e.
"k
= + —
%7 e G e T Y e
., Next by,using' the same formula again for 8p_1 _and substituting in this
€quality we have, T - . o
, S \ :
Y ) Y
. k -1
= TR +
% B i1 St e VY | el Ye2 G2 k2 Yeop k-2
Y, Y ey .
_k k-2 . k
= + —_— .
" 5T G der Yoot 1282 Ypg k-2
If we repeat by always substituting for 8, for 1= k-1,k-2,...,1,
3
finally we obtain f
= e +
R R LR L L AR ) E’ﬁco‘lo

k-l ’
i*O 1(G di) '

~

for suitable constants B8 4 -+ This doncludes the proofs of the above

basic relations. - ) l

L ]

However we will now give some ore relations which hold only under

the assumption that ELS are used. Then the following relations are

Relation (4.17a) can be easily verified by direct expansion, Indeed,

f
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. - £ ..

- T . )
j81"7311—&1&!;‘]8i ) .

- = - 8 BT .
’ .ngi o gi
= : ' T !

ngi ’

. 3
(4.18) 1is similar. '

Also (4.17b) follows since G is invertible. The proof for relation

0
¢

Finally, some observations will now be discussed which we will use
to cla,rify'Davidon's strategy and notation for the O0{(n) and Q(nz)_
algorithms,

Davison's basic 1dea for both the 0(n) gnd 'O(nz) algorithgs

1s to use the gradients at three collinear pointe to determime the hor=-

_izon vector a and hence the subsequent search direction. Therefore '
. ¢

it will require the evaluation of the gradient at three collinear points

.

. on all iterations, since the intention is to conmstruct a conic model at*

each sﬁep when we apply these algorithms to a general ol;je‘ctive function.
Davidon [ 6] introduced and proved several ;asic formulas in this case
where the three collinear points are given and one 'of these is selected
as thg reference point. We will state these forullul'as since we want to

clarify our notatior. We now consider the three collin‘ear points to be

X, , X and x where xo is taken as the reference point. First we
J /

will define the following: * may be ~ or ~, ° \ )
. 1.~ g = g(x) -
= N
2. g, = 8(x) ‘ \
© 3. I (} Co ,
C YE-g [ )
4. 4 =

o)
£ (726 - 725)

- - . B . PES P
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5. s=d% . / L

where x ='xo +td . Then the basic formulas given by Davidon are:
[ N . hd

! ~o

8 =T-T (4.19)
A d=yy(you - yéu). ¢ ‘ (4.20)
a'a d = X 3% - V). - L S (4.21)
t-t . : )

. [
¢
We choose this notation so as not'to conflict with other notation for

the kthstep.

: /
Both algorithms, O(n) and ,O(n?) , begin their kth iteration with

fk—l and gk_l at X1 and they use these along wigh f and ‘g
at a tria} point x to locate the minimizer x, on the line through
and X, l.e. |

x=x +td

. o /
where t is the trial step length, 8

x, =X, + tkd' y

where tk is the length which gives the exact minimum on the line d .

" Then he uses the three gradients 81 * By and g at the collinear

I3

points xk—l ,xk and x to determine the new horizom vector ak where

xk is taken as the reference point. 1In order to do that we have to I

get the équivalent formulas of (4.17), (4.18) and (4.19) by ﬁaking the

~

-

following appropriate replacement:

.Xo-rxk . . ' Loy

4

L B

TR TR (e

+;=zk.+(E-r_'k)d"~ .. ' [ | | |

K
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[

where " + " means- "is replaced by". Also we can see that t=- t
‘ -~ £ ’ Sl e ° ' ‘

: and t=t - tk . But‘ since, x, *+ X y(x) + Yk(x) . Therefore o
Y+ =y (k)

.4 -

v(x, ;)

-k
. ' | R | .o
. Yk ' o

"t

R . (4.22)
 Similarly : ' ‘o

| “ - , v 3y = LX)
1 ‘ Y -+ Yk(x) Yk(g)
¢
=L : 3 . (4.23)
Yk ! R . . .
Also go«‘-* gk , and so we have
6=d'g +d'g o, (4.26)

G=d + d%g =5 (4.25)
- ! ~m . ‘r'l—(-:l ‘g - - gi . " ! )
e-8 ' S B TTeE E )

, 2% - 7%) [y:_l -2 ] Yl (=) (o _y = F,_,D) P

[~

- e 3 N -
O8N T7 %177
=L Tk

|
2]
<+
{
™Y
\
\
N
~~ .
L
.
N
o
~

In a similar we can find

&8 LTkl Ve

g u = - h2a _2. - - -
g tiy'o-y0) (t-g)lo, ,=-7* ,0) 3
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- b ¥
‘ - . k1B T T
« + - -
a NI CRPE )
zru . : ‘ (4.27)

%

Finally by substituting the above Teplacements (4.22) - (4.27) ‘into

N
L o

(4.17); (4.18) and (4.19) we obtain,

Y -
= _k-1 Y . =
a-* = r - r,u
k Yk +uﬁ—;7[ Yk +
‘ =u -0 _ "(4.28)
. -
! Akd=Yk-1-iYk_lo (e.5) - =X 5l )
Y Y| Y K104 Yy Tkl
Y, Y
- k-1 - - -
2 (ck_lu rk-louk-l) (4.29)
\ |
Yk-l N j_ 2
Y Y Y c2 .
drA_kd= k k k-z-lo __y_z_o
-t —(E-t) | ¥2 K1 oy
K e/ K K
Yy, Y
o Tkl -2- 2
- T (vo T 1°k~1)’ (4.30)
Y

As we mentioned at the beginning of this section, thé relations and the

notations which we have established in this section will be used in the

. next sections to derive the 0(n) and O(nz) algorithms.

o

B it et o ¢ me v es e ey 4 o .- P o —————
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4,2 Davidon's O(n) Algorithm

The algorithm which will now be described can be considered as a
generalization of'the PCG algorithm (3.1), using a conic approximation
to the objective function. It is known as "the O(n) 'algbrithm" and
first appeared in Davidon's paper [ 6 ] in 1981.

As we mentioned in the previous section (4.1), the basic idea of
the O(n) algorithm is to construct a conic model at each step usi;g
the current éoint as the reference point at each iteration, We will
now describe a single iteration of this algorithm; and a discussion will
follow. P

At the beginning of the‘kth iteration, we assume that the point

X1 the direction d the gradient -1 = g(xk_l), the function

k~1"
value fk-l = f(xk—l) , the gauge value Yyo1 = §(xk_1) and a symmetric,
positive definite nxn matrix HD are given. We also assume that

the first search direction Ho = —Hogo where g, is the.gradient at
the point xo , the starting point. For sgimplicity of our notation we
i.e. d=d

denote by d the direction dk— Initially k = 1.

1’ kj1°

The algorithm O(n):

_ T
STEP 1. Evaluate Ol = d 8,1

STEP 2. Choose t (one possible choice is t = 1), set

X = X1 + td and evaluate f = f(§f} g = g(x) and
5=d%.

STEP 3. Compute first - R .
-1 (F 2 -=2 . %
p=l(f- fk—l) - 0,10t ]

and then



T b

'

- 43 = o
- e Y
Note that by Tl we denote the ratio y(x)/y(xk_l).
. STEP 4. Set
. - -t Oy -
L
. k-1 * k-1
. and _ - -
Ty (e 9 9y
t+ - _3 o 'Y
Tk-19 7 %1 -

After that evaluate 'ik‘= x,_,+td, g and f

/

STEP 5. Compute -

v

Bp-1 ~ T4y

uk_l = y )

. "4 01 " T ©)
Tp-18 = T48y

(-t ;=7 9)

u= .

STEP 6. Compute

b " P TRl W L

STEP 7. Compute .

b © k1’ T Tge1%%-1

STEP 8. Set
Y T Ye-1T+
STEP 9, Compute
=‘12(H3 -YsaTH )
b Sl P L i P N

o ' -
k°x d '
T

b d

and, dk =--ck +

and then return td step 1.

—

(4.31)

(4.32b)

’

1
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Note that Cx also reduces to the form

= -1 )
€ yka Hogk . (4.325)
We will now comment on this algorithm. In general the derivation

of the 0(n) algorithm is based on the observations which we made in

CTk-1
is computed according to.Theorem 2.1. In the next step, the length tk

section (4.1). The ratio of the gauges at step 3, denoted by

gives the exact minimum on the line d, that is dTgk =0 . The for-

mula for ﬁk is derived according to the discussion in section (2.2).

Relation (4.31), by comparing.with (4.29), shows that
2
Yk

bk = — Akdk-l , (4.338)

and hence,

2
T, _ Yk °F¥
b dy qAd . (4.33b)

Ye-1",

But by the very choice of dk’ it a}so follows that
3
T, A
bkdk 0; . : (4.34)

therefore according to /(4 .33b)

T, & _
dkAkdk—l 0 . (4.35)

The O0(n) conjugate direction algorithm presented here has the

P

following properties in common with previous quadratically based ones

(see section (3.1)). First, the kth step X, -X _; = tkd is a linear

"combination of previdus steps and Hogk—l' Second, the line through

<

x, and X1 is conjugate [in a sense that it will be discussed later]

to éne line through x_ and x for all j < k. Finally the point

h g j-1
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x, is the minimilzer of the restriction of f to the line through x.

. and qu-l ahd; more generally, is the minimizer of the restriction of

f to the minifold’spanned by all previous directions. We will estab-

lish thgse properties in the next theorem. But first some simple ob-

and ‘which initiate the induction used in applying the theorem.

. I - ' g

01: 4 dogl 0o . .

02: gzﬂogl =0 . -
. T . '

03: slgl o . - . ,

04: (G0 dc}TAo(Glgf = 0, where Ao is the conjugacy matrix correspo;diug
to the starting point X ‘

05: s1A @d)= 0 .

The first equation (01) 1s true since it is assumed that ELS are used.
By using d_="H g and (01) we get (02). The proof of (03) 1is simi-~ l
lar since s, = t: d . To»prove (04) first note according to (4.10) }

1 1l
for k=!1,

1,6 ldo Godo .

Then we have

T _ T
(Godo) Ao(Gldl)— r +(Gldo) AO(Gldl)
' IR P
r+d° (Gl Ao Gl)dl
=r dTA d ‘ '
+0"1 1" \
T - . 4T =
9ince Gle Gl Al acdrding to (2.19) . But do Al dl 0 by choice
of d1 , as noted in (4.35). Therefore (04) is true. The last equation
‘ (05) follows by combining (4.15) and (04). Now we can state our main
'* { W T . b o U AS Sp k rhy S e - P . Mn-—-:-n--—e‘-*v Sp—————
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Theoren.

* *
Theorem 4.2: Suppose k.» 1 and xi#x for 1 <k, where x is

the global minimum of f. Assume
T

Al: (838 =0 , 1<3<ic<k;

A2: atg. =0 0<j<ick

:’i » ]

A3: g H g =0 0<j<dic<k;

: o1 - ’
.

Ab.(%dj)Ao(Gidi) o, 0<j<i<k;

T _ ~
AS: sA(Gid)=0 , 1<j<i<k,

and that we have just réached X, by an ELS along d Then either

k-1~
* .

8, =0 (so xk= x ) or Al to A5 hold with k replaced by k+1.

Proof: First ‘of all we can see, according to bur assumption, that it

is sufficient to show that Al to A5 hold with i = k. 1In particular

51: sg‘gk =0 , J <k
, T

§2: dyg =0 , j <k
. T -

S3- gJHng= 0 ] , « j‘ <'k ]

S4: (doJ)TAO(dek) =0, 3<k;

$5: 5§A0(dek) =0, J<k.

First, we will state and prove some relations which hold only under the
theorem's assumptions. The reason is that we will need to refer to
these in the course of our proof. Note that the relations R7 to R10

»>

serves as an intermediary in R3 and

are the most important. Hereﬁ“'ck

R4 to get the desired results. -

/J



o g we st e g o rmemam e ewren e \ <. s e s v . e e —

&
- 47 -
- T -
- Rl dk—lfk o . , \
T T .
RZ 85 T B g1 ‘\ |
Tl T : .
/“J v &S Sk T VOk-18k ¢ P :
' Tl _ 2% . . ‘ |
Ré. Bl Sk T VB - \ .
, ' SN
k k-1
RS5. g2C =0 .
% k(Yk k-1 )
: [l
Rﬁo ngk sk 1 0 M)
-~ ‘ T p—
... R7. 8 5 = 0
R8. 8ksk-l =0 . | \\
) - |
R9n g:’cklsj = 0‘, j < k-l ’ . ‘\‘
Rlo."“(cklkl).s (Gd)"O . ‘ ’ .

i .
The first equation is obvious since ELS are used. By cowbining (4.16b)

for 1= k and (Rl) we get (R2). The relation (R3) follows by using- "o 1

the definition of c;1 , (4.16a) for i=k-1 and (R2): 4

T 1 T[I—s aT]s )
8 Ch Bk-1 = YiBy k%0 Bk-1

RN UG ,
TN

e gt T

= By Sy S

[skk xks (1- Y- 1)]

{

= YkYk—lgksk : o N

-

By using (4.7) we get (R4). The relation (R5) follows by using (R3) and

(R4). To prove (R6) we substitute £irst in terms of - ag:cording to

(4.12), and then use (4.5) and (4.17a):

-
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T -1 -T .T
5k g k-1~ Gy B B , .
tk -T T o‘P/ﬁ‘
J (Gk Lkgk 1 H G CpBo G- Sy -
t , ' —

-T K T
Y |
Gy 81t 7, AoCko1%%-1) Bi-1 \ L

+

oo t

. K T
= + — ,

é’k-lgk-l T A Gdy) s

TR R X
k=181 %k-1" T T, Vk-1%%-1

=0.

.

+

Aosk-l

The last equality is true by the assu:?pcions (Al) and (A5). The rela'tion .
(R7) follows directly by combining (R3i)\§nd (R6). Similarly (R8) follows
direétly by combining (R2) and (R7). The proof for (R9) is'exactly,s;mb
ilar to the proof for (R6). The last relation (R10) follows by com;oining
(4&10), (2.19) and (4.35). 1In particx.;'lar,

CL k-l) A, (G dp)

/ T B
/ =r, (6d ) A (6Gd) , "
/ + Tk k-1" "o kdk & Ty
N T ‘
{ Ty 1(G Ay G4y
o _ T ' R
\‘\\’\" . k lA.kd , ' ’
’ T ——. N ' '
Baving verified the relations (R1) to (R10), we can now use these to com-
plete our proof. . \
S To prove (S1) we observe, according to:(R7) and (R8), that it is

<
enough to show it for j <k - 1. 1In, this case, by combining (4.17a)
and (R9) we obtain

1 T -1 ' _ b
Ykngk sj 0’. b

Relation (S2) follows by using (4.16b), for (S1)

BBy =

. f
.. . l ‘
. s, ‘ '
. [ P r . - . ee e vt i e e RN
‘\ﬂ - [

¢ Rewill
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: C ) T, _'_1 T 1,7 T
e . . gd, = ——g (8,;,-8,) = — (g 8,,,-858,) =0 .
LT _ ST B L B U S RS
(c R . To provec(S3), first we recall the formula for the direction dj’
. d, =-y.67! H 8 .
. T . J +3 j ﬁ J-l
' - ’ -
where Bj /bjdj Then by multiplying both sides’by & wé
' obtain (l \ :
: TR T T T - \7
’ . d = - HG + g.d
. ' 15T 748 By & Bydi1 B
? and by using (4.17a) we get . i
T s 2T { ¢ S v .
,w d H, d S
v ” Then by so?l.ving in terms of agj HD gk we have‘
Tw n} dT ~Ldle =0 - )f
By Eo 8 = 77 Y418y jgk ’ -
Y ~
4 B @ j j "
. T = _ * - -
since dk-lgk djgk 0 gfcording to (82). \Faw to verify (S84), accord
> . . - d4ng to (R10), it is again enough ‘to prove it for § < k-1 . Indeed by
%' 2 first using the definition °f‘3§k’ (4.10) -and the’asaumption (A4) we
' obtain ) ' ! "
\ 3 . ’ '
T ) - .
. (Gy4y) g (dek) 4101446, (1,6, By, + B4, )
| | oIt
— ) + .
f (93834 = 71.:H By Bk k-1
) %
j Ce e o7 Yk(djcj" B8 + (j PN (Gk 1%-1? \
) o ‘ -yk(de A B sk) 5 v
. Rut by using (4.10), (é.;b), (4.17a) and (S3) the right hand side of the

% . [ . ’ ' ,"
last relation is. zero, i.e.

4 : k3

L newg N P D e
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. ‘ ) -
. LTI _ 2T .1 ’
dyC AR = T 8y Gpuy A g
o2 T ’ '
; r, (Abcj'*'ldj) Hogk
T T T )
Ty g1 8941 = 48y Hogy
{ ‘ :
~ . -
Ty _ T
Ty (Yj+1gj+1\$gl? HoBx :
"y
| _ 5 T T
= -t-j—[vjﬂ(sjﬂﬂoak) - vy (e gl =0

Therefore (S4) is trte. The last relation (S5) follows by combining (4.15)

for k=3 and (S4). In fact

3-1 -1
¥ T T L)
= I = I =
4 A G T s, 05(64) A(GE) = 42 00= 0.
. :

This concludes the proofs of the relations (S1) to (S8S) &and thus tt}e

proof of the theorem,

4 ;

gom an inductive application of this theorem, we can conclude that

the relations (Al) o (A5) hold for amy k = 1,2,... if ELS are used,

® . .
at least until o ¢tx . . Although the conjugacy relations are different

. [according to (3.1) And (A4)], the same orthogonality relations are ob-
. 4

tained between the ditections d § and the subseq%nt gradients Bk"

We now wish to derive a revised formula for the directions dk by

.

- using the fact that ELS are used and that the subsequent relation (Al) to

(A5) hold. This formula will be derived by computingfthe quantities
bTo and brd = de . In order to do that we have to state apdsprove
+K Kk k k k=1 ; ‘

to the following relations:
. 3

'

.

.
RS s o 4 re e
,
-




o,

ey

Bl:

B2:

B3:

B4:

B6:

B7:

B8:

where Tt 1is defined tobe 1t 20

A o e e N

. ) ) _ ‘
i '
. T '] i

uk-lﬂosk " tkt ; ,

'S I

-2 - : -

kol " Tag® (4.36)

Again d = dk-l . The proofa:_of the above relations require pt:imatily
. .

ditfect manipulation, the basic relations (4.22) to (4.28) ,’ (4.31) and

the

3

rem;lts of Theorem 2. The first relation ghl) follows directly b:}

&

solving (4.28) in terms of u . Relations (B2) follows by substituting

(Bl1) into (4.31). To prove (B3) we use (4.26), (4.3) and (A3). In

5

particular
]
T .
L Bl T TR

k-l 0 =2 = '
4 O 1” T1®) e

T t ——?Eg—n-g:‘—k- B Y *
-t.k'r ‘ . . .




.r TH i
G - \
tkT .

The derivation of (B4) is similar. The relation (B3) follows directly

by using (4.26) and (4.32c). For the nexf relation (B6) we again use

(4.32¢c) and the basic relation (2 7). Indeed

v
-

Tc_
8%k

"

The relation (B7)

last relation can

kak (B8, - Yk‘ a; oo &)

2 T T T

Yk’[ <ak Hogk)_ Ykakak (ao Hogk) ]
Ve 0 By (L= v 8)

ZT gk(l as)

Yk ak Hogk '

follows directly by combining (4.26) and (A2). The

i

be proved by using the basic relations (2.7), (4.16a)

and (4.16b). We can now obtain expresion's for bick and b:d . .Indeed
e |
T .|_z _ k=1 & .
bkck —\[ = -1 - ‘k]‘ ck <k -
] k"'l k‘l '
e T k-1 T
“1% T 2 8%k
k-1 k-1 Py
-[v2 fr.stug ~
T k{ +%k o°k T k-l 3T
= - T ( £ - e ak~1akﬂosk> - Yk‘k“o“k
er ‘13 y3 o
S - k k 1l T k k=1 T
) . : 8kHoBk A akno ; Akﬁogk
LN Ty-1 k-1
L
2
TeF4 T ,
= - gknogk . (4.37)
k-1
and ’ *
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bd ={=——u -

: O%-1

& Tk-1

T
+
(1 tkakd)

0. 1Y :
o= ookl ' , (4.38)
ST x-1"k /

F;,nglly then by using (4.37), (4.38) and (4.32c), the formula for,-di .

becomes

- k !
= - yka Bogk e . . (4.39) !
¥ ’ )

The reason for which wé have derived the last formula (4.39) will become
clear in the next section (4.3) where we will establish that the O(n) :
. . [
and GN algorithms are identical if they are applied to normal conic i
. ' . !

functiods and ELS are used. Also (4.39) is much closer in form to tﬁhe

regular CG equation (gsee (3.19). \
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4.3 The Gourgeon-Nocedal Algorithm . .‘

In this section we will introduce another algorithm that will min-
imize a normal conic function in a finite numher of steps. It can also
.be considered as a generalization of the PCG Zlgorithm [ see section
(3.4)], and has similar orthogonality properties. The derivati\on of the
algorithm by Gourgeon and N&cedal in [l;] and ours are quite similar,
but we generqlize the algorithm somewhat and clarify the description,
The GN glgorithm occurs asla special case,

The method is based on the following idea. By initially transform-
ing the variables x of the conic fum.:tic;t'l ’f under a collinear scaling
Qs"I' as defined in (2.20), we get the quadratic function q(w) (2.23). '
‘Next, instead of minimizing the normal conic function £, we apply the
PCG algorithm with a preconditioning matrix Ho [se; section (3.1)]to
the quadratic q(w). Then by transforming the iterates back, we obtatn

Y

a minimization algorithm for tl#e conic f . .

First of all, in order to expla:.Ln and derive the above strategy,
)

we need to introduce some notation. For the quadratic problem with/& ’

we will denote the search directioms by',vo y V the displace-

1’---9Vk ’

ments are given by ulvo,uivl,. "'“k+1‘7i and the points obtained are
denoted by W W s e W * For the conic f we will use the earlier
notation. Note that by w, we may also denote the total displacement,

since v, =0, 1i.e. '

i °
= '
v, j=1"jvj—1 \ (4.40) ‘
The relation between 8y and v is given, according to (2.20), 13‘)\7:
" Jsi
w o=, i=0,1;2,.... . (4.41) -
Yy -
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Our purpose is to derive a formula for the search direction dk

for the conic problem.- In order to do this, we need the following rela-

tions. With h = Vi(ﬁl) , we have

_ T
hk Jk By » ‘ (4.42)
...T - - _ .
J AL l(ukvk-—l) B = Bgap e , (4.43)
Y H -
YTkt -
Yk'
T Rl e , © TN(4.45)
LE et O™
S -1
+
e 4 = Mt (T Hyad ) e 'k (6.46)
1%k 1 :

T. -1 T.-
+ +
(1 qukaoJ vk) 1 YkaoJ vk

The first equation (4.42), relates the gradients of the quadratic and .
gonic, and the proof follows directly by applying the chain rule to £ .
Relation (4.43) 1is verified by using (5.12) for the quadrat‘ic q(w) .
This statement is just the secant equation for the quadr'atic a s"inc.;a
the Bessian of £ is J TAJ L. Equation (4.44), which relates d
and Vi follows by usitox-g (4.41), (4.8) and the basic relation thalt

Jk = JGk . In particular

A} - W

Mk T YRl T %k

fkt1 % |
Tl e

=J

N t
\ =.._ki._1.JGd ):] I
r, k'k

ik gL
Y kdk ’ .
e+l .

s y————— Sk P b e s c—

|

4 I
i
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and by solving the last equation for d we obtain (8.44). It is the

k
key in obtaining the desired direction d . To prove (4.45) we use

4

(4.‘41) and the basic eq'gation (4.16a)., Here

T -1
1+ mad gy

T -1
= + -
LHmagd "y -w)
B T.-1 Y%+ %
= l4yad| ——=-—=% | N
° Tkerr Yk .
a'rs . a 8 -
0 ktl ok .
Y+ Tk
‘ =14yk —— 1] -1+,
Yk+l ha A ‘ .
- Tk
»
Y+l

v .

from which we may solve the last equation for Nt The last relation

(4.46) follows by substituting the equation (4.45) into (4.44) and

multiplying énd dividing by the same quantity (1 + Yka'gJ-lvk) .

Following Gourgeon and Nocedal, we split the ‘relation' (4.46) as

"‘ -1

W T Vi |

e dk = Ty , - (4.47)
‘\\i‘}) Yk o k

' ‘ T -1
o ¢ = M3+ mad vy (4.48)
Eﬁ k+l T -1 ’ : :

+
a quk'i'lao'] vk)

P2

! 80 that Mgy 1 corresponds to 1 ™ 1. Therefore from the direc~-

tion 'vk ‘we can get the direction clk .

We will now derive the algorithm. First we apply the conjugate

‘gradient algorithm to the quadratic function q(w) with preconditioner

e}

'Ho and we assume that ELS sre used. Therefore, according to our
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discussion in section (3.1), the following properties hold:

»
t

h}ai o, 0<i<i; (4.49)
T il |
hjvi= 0o , 0<1i<j; ) (4.50)
W H h =0 , 0<i<i. (4.51)
J o1 - ,
By: using the relation between the search directioms dk and .vk , and

the transformation T , we can find that, with the given initial point

X [xo is taken as the reference point], the first search direction

o
1 -T )
HOJ g,

h,

t
' We will now give a description of the gemeral k * step where we

assume we have just reached the point X1 First we choose a trial
. )
step len_gth t and we evaluate the function and the gradient at

x = +td . By using the function and gradient values at the points
-1 Pk

x,_, and X , we can -determine the minimizer x, along the direction

k-1

d [see section (2.2)]. We also evaluate the function and the gradient"
at X, - With this information we will be able to determine the next

search direction dk . Note that, at the first iteration only, with the

above information we can also determine the horizom vector 8, by using

Lemma l:

h

At the kt step, to find the formula for the search direction d

k

we have to transform everything from the quadratic-space to the conic-

4

space by using T . .But in quadratic~-space the conjugate gradient search

direction v is given by:

k
vy = - Hohk + Bkvk—I.' i . ~ (4.52)
T
H_ (h - )
where Bk = hkT o ™ M1 ‘ (4.53)
A V-1 Py y)
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[see seefion (3.1)]. By substituting (4.42), (4.43) and (4.53) into

{4.52) we get

Y T -1 ~
_ B (3 AJ )v_
v =-HJTgk+skk 0 k-1  (4.5h)
k ok T (J AJ‘l)v
Vi1 k-1

In order to do as much simplification as possible in getting the search

direction d, , 'we will prove the following orthogonality relations: ,/

k
R Is =0 1<1i<j ; i' |
Eji ? —— — ’ ‘
. .
R2 gdy =0 0<1<] ; r \ )
1
'MgiJ—]}lJT1=0, 0<1ic<j . "

[4

These follow frcm‘(4.49) -~ (4.51). 'The first equation R1 follows by using

y
\

(4.41) , (4.42) and particularly (4.49). Indeed \
T =
gjs1 - thjJ wi
\ T
5,8
= ih J [1 -'L—O-JJ_lw
J Y i
3 ~
= b [w, -l (a1
1 Y3
= yihT [wi - wj (agJ_lwi)]
= (hjwi) (j j)(a 3t :L)
=0 .

Relation (R2) follows directly from (R1). - For the last equation (R3),

first, by using (Rl) and (4.17a), we have

T _ -T

Jk 8, ykJ By ) (4.55)
and by substituting the last equation into (4.42) we obtain

\ hk = YkJ-Tgk . ' ' (4'56) '
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Then the proof for (R3) follows by using (4.51) and (4.56) twice_for

4
k=1 and k= j. We let Yk = Ykgk-Yk—lgk—l . As a consequence of

the above orthogonality properties (R1l), (R2) and (R3),

-T, -1 - T
ITAI T (v, D= Iy, (4.57)
T .-T 1
Jeyd V. TTT— Y s (4.58)
k=17 "k v, 'k
T - T .
e’k = k1 Y1 8B (4.59)
T-1. -T _ _ T-l_. _-T
ng lHoJ Ve T ykng HOJ B . (4.60)

which will be used tq simplify the formula (4.54) for the direction™ v

The first relation follows directly by combining (4.43) and (4.56). The
proof for (4.58) follows by using (4.17b) for j=k-1 and 1=k -and

(4.55) for k-1. In particular

: x| a
0 LR PR L LY

R S g T
k-17 Bk T Me-17k-1” 8-l

]

_ T Yeel T T

k1B T Y Tl Bl ;
IS = W

Tl & Yy EL
= -—-]-'—. y

Yg-1 K

Relations (4.59) and (4.60) follow directly by using (R2) and (R3).
We c:ax_l~ now reduce the formuia' (4°54). First by using (4.55), (4.57),
(4,58) and (4.44) for k-1 we get '

T -1 T
I S
B -
Vi T By I J-T k-1
k-1" Yy .

£
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: = T + ng lﬂoJ Yk J

, BT 8y [ T S ! .
N dk-l k-1". Yk
T -1_ T
=T v,8.d H Iy

=-y,HI g + & Fo” Yk - .
ko k Jk-ldk-l = (4.6

T
de1Yi Vi1
and by using the obviogs

Next we multiply both sides of (4.61) by J;
, Wwe obtain

2 _ ,
alternate formula of (4.10), r+Jkdk-1 = Jk-ldk-l
, v &ed H 3Ty '
-1, _ . 1...-T Y k
e e T Mk oY gt T a7 Jk Je-1%1
~ . k-1"k’ Tk-1
& -
T.-1
Y,8J H J y
“1.-1_ .-T k8 Bt Yk 2
B owm W +
YO I BT g T " +Jk k%k-1
k=17’ Yk-1
3T -1 ‘ :
Yo g J H I
- -1,.-1_ T Tl / . .
o "G 0BT g T T lk\"m . :
> 'Y y ’
-1%%-17%
Then, by using (4.47) we have the formula for dk . In fact
3T -1, T
‘ S D B, S . il W
: . dp = o l=%G G "B J gy I d!
Tk-1%-1"%
¢

wvhere the constant nk , according to (4.46), is
1 .
-1 (4:62)

o E T
1+ YI;:aoJ zk

Some more simplifications, by using the orthogonality praqperties (R2)

and (R3) give the final form for dk
. ' 4T -1 -1 -
’ v,gJ HJ '
. -1,.~1_ .-T e S
4 = nl-n6 0 TBRI Dt 4l g
Te-1 %-18k-1 L

, L R T e s

it ot g e ey % s bmties A ] it g oy T
1

b e

T i WUV eR R Y
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‘ 4T -1 T

- . Y,8J “H J
-1, ~1_ -7 KB o &

= - <+ )
. n‘J 'Yka (J HOJ )gk 5 - - d] (4.63)

: Yie=1%k-1

S | -
where we recall Uk-—l dk-lgk—l and d dk-l .

So finally, by deriving the formula (4.63) for the direction dk ’
we haveAcompleted the description of the algorithm. We first note that
the horizon vector is computed only once, at the beginning of the first
iteration in contrast to Davidon's 0(n) algorithm where it is computed
at each iteration. As ‘;'re mentioned at the begir.x’nirig of this sevagtion,

the GN algorithm is a special case of this algorithm. In particular

we can get it by just choosing J =1 . Then the search direction dk
is reduced to the following form
4 T
V.8 H g
s . - -1 KBk “oBk -
.d =nq]- + = o0 .
© G TG g P — (4-60)
'S 8 'S . S
where 3, = —2 . ) (4.65)
"k 1+ aTz '
T Mo

a\ ;
I
-

Having derived the directions for thé 0(n) and GN algorithms
we can now observe that they generate the same sequence of points xk

when they are applied to a normal conic function and ELS are used.

o

Since it is assumed that both use ELS it is enough to show that the
~ N

directions are the same, i.e. that di =d, or d1 = {id for

i

i= 0,1,2,..., and for some scalar 51 . By d1 we mean the search

directions of the GN algorithm. The proof is by induction. First, for

i= o it is true since do = EO = -Hogo. By awsmning~ now t:hgzt,r

dk-l = ak-;l we can see by comparing (4.39) and (4.64) that dk =.:}—

. which completes the induction and our proof.

P T N pp—, - .. B puve———— B . s e -
B

I

dk.

\




v

»

w

o,

-62 - . 4

. To conclude this section, we will make some important observations
which give a Theorem which 4s a generalization of the Expanding Subspace
Theorem (EST) isee (3.1)] . First we observe, by using (4.56), that;

hk =0 :Lméilies gy = 0 also. Therefore .according to the pl‘revious dis-
cussign, the GN algorithm and hence the O(n) algorithm are terminated

in at gost n steps when they are applied to normal conic function and

ELS are ed. We will require a definition in order to state our

o
v

theorem. - '
Definition: Two linés in the domain of the n(m:; conic f;m'c:tion f
are conjugate if and only if they are images of orthogonal ones in the
domain of the 'quadrat:ic E uncier a collinear sc;aling T. The pr;vious
disc)xssion now establishes the following Theorem.

gg/eo’rem 4.3: Let di , 1= 1,2,...,n be a set of conjugate lines in
]?’:n and let Bk be the subspace of r" spanned by dl’dZ""’dk'
Then for xOE o the sequence { xk} generated, according to

AT B T

has the property that x infnimizgs the normal conic function f on

3

the ‘linear 'variety xo+Bk R ‘provided all line searches are exact.

H

N .
Y - e et ) g Y o e et | e

2

4
i
|
!
:
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4.4 Davidon's O(nz) Algorithm

Davidon [ 6 ] also propc;seg another algorithm based on conics.
@

This one can be considered as a generalization of the QN method and

particularly of the BFGS algor:fthn [section (3.2)]. It uses O(nz)

operations per iteration to update approximations B, to the conjugacy

matrix Ak; for that reason Davidon called it "the O(n ) algorithm",

k

The derivation of the O(n ) algorithm is based on the same idea

A

as the O(n) algorithm ‘(4.2). The only distinction between them is

€

at step 9, where in D(nz) the search direction dk is computed in

order to sa

in the O(p
Step 9. Se
and

tisfy the equation B, d ‘-gk at each iteration. In fact

kK
) algorithm, we have the new
t ’ .
- _ _T K -
B =i B L . (4.66)
_ N T T '
s B dd'B \ bby L, -
R W T : ) (4.67)
4'B. d
e k ’
d =-p} | ' ' (4.68
kT &t (4.68)

‘Note that by d we again mean d‘k-‘l . For each 1, we assume

|
B, 2B .

In- the

same manner as Section 3 2 for the BFGS algorithm we

camprove that the fomula (4.67) preserves positive d”efiniteness in

4 the matripes Bk » providegl the quantity P 1s positive and the matrix

_Bo is posi

is always p

.» definite. -

matrices ﬁk

*y

uve definite. As ve mentioned previously, the quantity p

ositive and the matrix B will be chosen to be positive

[

Therefore the fomla (4.67) generntu positive definite

for any k .

un also observe that the O(n )
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algorithm shares all of :he orthogonality properties with the 0(n) ‘ N
algorithm' which are given through the Theorem 4.2.‘ The proofs for
these relatiops are executed in the same 'ianner, pf@g&@ed ’th;t the
.formula fO‘R the direction. (%k is ‘taken into consideration, since this
is the only diff.erence betw;aen thg 0(n) . and 0(n2) algo?t_hms. For
example, to prove the relation RI0 [Section‘l;*Z] , we also use (1;.10)
and (2.19) to get l

(G

k-1%-1 )T A, (G )

r,(Gpdy

K
Tydy G A G
T

. b “\ =rdeafhde - . / .

T ) -
)" 4, (G ) =

Then, by multiplying both sides of (4.67) by’ d,_ and d, _, and using
* 4 ~

k
(4.68) and (4.33a) we obtain . ’ “

T T, -2
'dk.r\lgk = (Bl by /20
T, ; - -
" (bl ) G A T 2y, T

Since ELS are ueed ‘we get d'{_lAkdk' = 0. Therefore R10 holds for thé

2

v

.

O(n ) algorithm as well. f

As we mentioned at the ’be‘ginning of this thes‘is, we will finally
prove in ‘thia section that both, O(n) and O(nz) algorithms determine »
t:l}e same sequence of points, when they are applied to normal conic
funtions and ELS are used. But fir-t, we must qnnime some relations
satisfied by tbe natticu B . Note that by Hk ve denote the lecond

update term, i.e. ‘

'k‘k-ldk-l At B :
: (4.69)
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[ .
Then the following hold: . .
b ,
Bd = - ' - 4.70
k-1 "'ELkgk-l" (4.70)
r .
+ ~
T
L . .
- kgk-lgk-l k| %.71)
-1 41 8- 8
‘o kdk-l 2
Bkdk-l % (4.72)
) Me =0 . (4.73) -
&
The first equation (4.70) follows by using (4.66), (4. 10), (4.5) and .
the basic relation Bid -8 for i=k-~1. In particular
‘" 1 1 »

s L .T S TR
Bd 1™ LBaldeer T LB

LA T ol _LT L
N 27 et Bt T 2 PP tenn” T2 BB
T+ Ty Ty

. i
To prove relation (4.71) we use basically (4.70), (4.9%) and (4.10):

11. E‘k 1‘: 1Mk r 1.
5 - = = L‘s“‘;'l":'l?‘
e, i
2 k"
* v :zk—lgk-ll'k . L:gk—lgk-lt‘k , ‘
‘ 11 k-l‘k-l l‘ T 4\

Relatiou (4.72) follows directly by msl‘iplying both sides of (4.67)

by dk 1 . By using the orthogomlity Tesults of the Theorem 4. 2 yith
py
(4.71), (4 32¢), (4.5), (4. lh) we obuhn (4. 73) In particular

. = Yk"kf;—l‘k 11“;" - | _—
bk by

- ' . i
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- Next, we wish to present our main theorem,, But before that some
. ) s:h;zple observations will be given to initiate the induction psed in
agplying the Theorem. Temporarily, we denote by 5 1 the D(nz) search
directions and by d1 thdge for the 0(n) algoritlm. Then
01: 30 = do H
; // . 02: BOG;]'HOV = ¢v for al‘l Hv _l_ 8, ,l
\ for som;. scalar 1 . Relation Ol 1s true aince‘for both algoriltma ve
have ‘made the same initial chpice -Hogo . The second equation 02
~ follows by using the fact that Bo z H;l and G;]‘ = I . Now we can
\ state our main Theorem.
Theorem 4.4: Suppose k/> 1l and xif‘ x* for 1 < k, where x* is
the globai minimum of £ /. Asgume
K: | d =74 forall §=1,...,%k1;
AZ: nic;]nov =ty for/all Hv |g,, 1=0,1,...,k1,
where T 1 and ;1 are appropriate constants, and that we hhvé :1ust
reached x,. by an ELS along 4, _, (" ). Then either x =x
or Al ;nd A2 hold with k-1 replaced by k. )
Proof: TFirst of all, we can see th‘nt it 1is sufficient to show that
o | 1: CRENN . ‘.
, — 53 nkG;1ﬂ°v= v for all nov_[_gi,' . 1=0,1,...,k .

E ay
T - . Cle
. ' '4;."}.
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To prove (S1) it is obviously équfvalent to show that Bkdk = lﬁkgk ,
gince Bkdk =gy - In order to prov; that, first we use (4.32b),

(4.67), (4.72) and (4.73). In fact

T
ok
= . 4 —————
. B TR T Bd
b, d
w Kk
T ¢ T T
O s e I s Sl By
T - T
b.d
L K
" ,
Then by using (4.66), (4,32¢) and (4.5) we obtain
B, d =-YLTB Lelu ' v
Kk K’k k-1"k k ofk

S}
= -y L B
Ml B 1 G BBy o

and finally by using the assumptions of the Theorem and (4.18) we get

i

T
R MR N

A
Next in order to prove (S2) we will state and prove some equations

which hold only under the assumptions of the Theorem:

Rl s -1 = .

Rl: . Mka HDV =0 3 -

‘.. T -1 = . \"

R2: bkck Hov = 0 :

g T -1 - 3
B SORUWLR LA

4
The proof for Rl follows by using (4.71), (4.5), (4.17a) and finally

the agsumptions of the Theorem, as

) ¥
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. = 68'=-

-1 L?@k—ﬁi\“ 6 B,V
ME, Bov=- k o
k o d
k=18K-1

T T -1 T
L S L *
. ' ‘
181 ‘

= Tkl kgk 1(% 1%,V
k-lgk-—l
=0 .
To prove RZ, use (4.33a) and (2.19) to obtain
T, __ T -1,
kak Hov = Tdk-lkkck Hov

k 1 kAkG G, Hov.

S B
Tdk-l GkAk Hov s
where 1 = Yi/Yk—l’?k-l . Then by using (4.14), (4.17a) and t}ae

assumption of the Theorem we get

T~l. . T
b6y Bov = t(AGd ) B v

] -T - -T T
=TGR O 8 ) B Y

’ = ' - ?
T8y~ Yy Byay) B

-

™ ? T - T
T B T (B B Y

'0,

L]

vhere 1' = v/t,r, . The last relation (R3) follows by using the

3 ™
orthogonality results of Theorem 4.2, the uamptions of t:he Theoren

and the basic relation thnt Bidi -gi for k= k=1 . In fact

s o eemed o e -
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i Y '
T -1 k T T
= + -
Ly k-le-lﬂ I, [1+e,a,d 1B, [1-8 ,a 1HV
=I-IS-[B +tadT B, .]J[E v-s8 aTH v]
7, k1 k-1 e VT 1% B

- k 3 .
Be1- k“kgk 1][H Ve s 18, B,V

Yk ! T .
[ w-180" tkak(gk o¥) ~ By 1818 H,V

te k‘k(gk 1%k- 1)" H v]

y
=_!‘.. 3 /s
LT (B 1 BV ™ By ®18 B V]
.
= K
7, e L1 1o B ¥
=1p ¢luv

r, k-1 k-1 "o N .

=TV .

t

In fact
X S | -1 bk(bT 1Ho v
BS, B,v = B H vou e v+ LK £
= -l
Bka Hov
T -1
LBl BoV
=TV,
't

This concludes the proof of the Theorem 4.4.

Now by using (R1), (R2), (R3) and (4.66) we can easily obtain (S2).

T g
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) the O(n) and O(nz) algorithms produce the same search directions
if ELS are used and they are‘hpplied to norma; conic function.:  As a

consequence of this they also produce the same sequence of points x, -
’ , »

’
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CHAPTER V
MULTIPLE UPDATES: THE VSOn ALGORITHM

-

5.1 The Relation between the 0(n) and O(nz) Algoritﬁm

The close relationship that exists between the CG algorithm and
the BFGS form of the QN algorithm has been established in Section 3.3.
It is the purpose of this section to extend this relationship to the
algorithms based on conics and to derive similar results for the 0(n)
‘aud O(nz) algorithms. Specifically, wé will demonstrate how the
0(n) algorithm: under an appropriate choice of the updating matrix B,
can be written in an 0(n2)-like manner.
In order to do that, we will derive an alternate update formula
to (4.67), namely one which directly updates B;l , 8ince we need it
to determine the search direction d, =-—B;13k .
another relation, which we need to reduce the form (4.67) and to make

So first we will note

it similar to (3.14), namely

4
Y
2 k T -
L= rm dad, . (5.0)
B T
where we recall that d = dk-l . This relation follows by first using
the definit;on'(2.24) of p= pij , for xJ = x a?d x, = xk-l :
{
J - Y T
" - k-1 -
2p= | —L-g-—=2g x-x_.)
e -y e
‘[ k:1~k—1}\Ed
, Yk_lY

Bl - mme n e o L P
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. -2-

‘Yk-lY

and then by combining this with (4.30) we obtain (5.1).

| (y'o-

2 oy
Yie-1%-1/

Next, by sub-

stituting (5.1) into (4.67) and by using (4.33a) twice'we get the

following formula:

1

Eddn

Akdd A

d Akd

(5.2)

which is much closer in form to the BFGS update formula (see (3.14)).

Now, by using (3.13H, but with the substitutions of B

Ak for Q and d for s, we get an update formula for B

w1 T . T =-1
o Bomdd! 4 adla B
dTAkd ‘

+( dA.kBk Akd
ar Ad

This can be easily verified by checking that B B

)dA.kd '

-1 _
k k

For our purpose now, we recall the direction d

wish to relate this to the direction of the 0(n)
' - 0

In order to do that we have to compute Bk1 8 by using (5.3).

that, in this computation, there are a number of terms containing the

form dTgk , which disapp;at since ELS are used. In fact

o o]

wrere we recall that B

kkll‘x

Jugate direction (4.32b) for the 0O(n) algoritim, which we recall is

+d“knk % ,
a"a d

M e o e O K B e TR
PO

k“k

algorithm (4.32c).

for B,
-1
4
(5.3)
We

Note

(5.4)

r
By comparing (5.4) and the con-

5 A ¥ ot A M'

© T R
.
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o ch
' -1_-1 kK
- +
4 71 By gy T
kK

d, -

we observe that the direction dk for the O(nz) algorithm will be

r

identical to the direction dk for the O0(n) algorithm if the

following equations hold:

-1.=-1 _-T _ -1_-1
T, =-1 T
d AkBk By bkck o
T = T . - . (5 . 6)
d Akd bkd

The first equation (5.5) gives us what must be the choice of the matrix
L
In fact we must choose

B by solving (5.5) in terms of B

k-1’ k-1 °
) B, = ;11: LB G L. | f (5.
This gives us
El-clgk B chl-cl B g "y s | : (5.8
since ¢, is giv;n by (4.32b) for Ho = B;I '« With this and (4.33a)
relating bk to Akd we can easily obtain (5.6).

Thus by substituting (5.6) and (5.8) into (5.4), the search direc-

k
direction &etermined by the O(n) algorithm. Hence, clearly, we see

tion d, for the ‘O(nz) algorithm becomes identical to the search

that under the appropriate choice (5.7) the O0(n) algorithm can be

interpreted as an O(nz) algorithm, in which a fixed preconditioning

matrix B, is updated at each step.

i
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5.2 The VSOn Algorithm °

As we mentioned at the beginning of this thesis, one main objeétive
is to derive an algorithm which is a combination of the conjugate direc-
tion and variable metric algorithms based on conics. Specifically, by
combining the 0(n) and O(nz) algorithms, we obtain a new algorithm
which we will refer .to as a variable storage O(n) (VSOn) algorithm,
since it can also use, as the VSCG algorithm, a variable amount of
storage. So this algorithm can be viewed as an extension of the VéCG
algorithm to the algorithms based on conics,

We will need some notation in ordér to describe and i;lvestigate j
-t;he VSOn algorithm. First, according to the update formula (5.3), by

replacing B;l by H we may denote the update by U(ﬁi » 1) where

i 3

: HAiddT+ddTAiH - ala AN T |
UE, 1) = H - 7 1+ — . (5.9
d'ad d'ad d"Ad
We have 8, =1tn .17 and dzd Note that the matrix L.+
1 - Py Bge1ty =di1 1
can be easily given in the following form: ’
T
_ Y t.da
L11= -2y, (5.10)
Vi1 Y11

.

By using (4.33a), (4.33b) and (5.10) we can get the following equivalent

update formula to (5.9).

B bidT * dbf“ Yi1Y bfm’i daT
U, 1) z H- = S + . (5.12)
bld 2 bla | brd
i 1 Ty i i

which is again ¢loser in form to the BFGS update (3.13s)
We will now describe a single iteration of the VSOn algorithm.

First the common steps from ome to eight of the O(n) and O(nz)

i

- - B - - g ~ o re—— e S e - - -

Fs ( mm e b e m me A a -
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algorithms are repeated for the VSOn algorithm. The only distinction

will be at step 9, as we will see. Supposg that we begin at X, and
A

a positive definite matrix Ho is given. Then the VSOn algorithm

consists of two parts, as follows.

ognzz ~part: Iterate (together with step 1 - ste;') 8) for 1= 1,2,...,m:

Hi = U(Hi,i) . (5.12a)

! = o
di Higi . ~ (5.12b)

Store some appropriate vectors at each step [we will see later which

exactly ], instead of thw whole matrix H, .
0(n) -Ea'rt: From the poing xl;_’_l reached by the O(nz) - part, and

using the fixed matrix Hm as a preconditioner, iterate for

i=ol,m2, ...,

- -1 T
AT R (5.132)
B, = U@, (5.13b)

As can be seen, the two parts differ only in the definiti,on of Hi .

In the first one we update H, from the previous matrix H until

i i-1°

- some storage limit is reached; subsequently, the 0(n) - part is the

implementation of the O(n) algorithm in the form described in Section

5.1.
We will now show how Hl s eov s Hm can be stored. First, ve"ob-'

serve that the matrices Hi " are not themselves needed, but only products

of the form Hiv for ve R" are required. Therefore consider the

equation derived from (5.12a) or (5.13b):

B T U - - e e — e e e
7

)




b o

f?,j . . v o
-7 - ‘\ ) \

Ebi(drv)‘t d(bfﬂv)

Hv -

Hiv = U(H,1i)v

T, 4
b,d _
Y, 47 b HD T
» PO BT LA e O - W 2P (5.14)
2 oTa | T4 . .
Yy 1 i

| where H 1is gither ﬁi or H according to whether H, 'is defined

. i-1 1
. by (5.12a) or (5.13b); i.e. H is defined either as: - ..
“ -1 -T e
Bzl B L, . (5.15)
a . . .= -l T » ' ! -
or B = YiLici ‘HmLi . (5.16)
Then it is clear, (by using also the definitions of the matrices
' Li ,L;I and Gzl) that for each update we have to store the vectors -
il ’ . - : * B F
. bi and di (2n locations) and the scalars’ bzd s Yy Yo t, and 11*
b?ﬂbi (5 locations) to be able to compute Hiv . Alsc we have to .

compute vectors of the form Hv, 8o «according to (5.15) or- (5.16) we

must first compute LiTv or LTv , and then we apply the same technique
1

i
recursively to get Hi-l

Liv , Wwe need also to store the horizon vector"”ao and the initial

. t .
direction do . Bence if we choose Ho = I, the total storage needed -

or BEv. But in order to compute L;Tv or

for Kl y oo ,Bm is mw(2n + 5) + 2n . Provided m<<n this repre- .
sents a substantial storage saving.

<, o
A

In conclusion, we have described a conic algorithm which allows N

the use of a variable amount of storage. And since more storage should

<, .

\
mean better performance, we hope that it will improve these based on

. . i,
conics. . 4
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% 5.3 Conclusions
! We have described and mvie;tiné‘d a new :clns of algorithms for
. - »the unconstrained minimization problem (1.1). These are based on conics,

. , e w ¢

) anll were first proposed by Davidon. We have described the basic mem-

beu of thiu class, nnely those introduced by,?ﬁvgon and by Gourgeon -

Y and Nocedal and have dmmtr&ted the relation bqtveen them. The role

.  of the "reference point".in these algorithms has :llo baen clarified. °

A Finally we have 1n‘t‘todu:;d .a nev algorithm which _coﬁbinu them, and /

‘ . has ,vatitble stofage ‘rcquirucntu. Its derivation was based on the

. same :I.du as thc derivation of t:he VS8CG dzorithl for qundrgtic. intro-

- duced by Buckley and Ld'lir. The conic algoritims, vhich are the main

) , . ones Mutigatcd in tt;ét thuia. are designed to make use gf -/oro in-

. . formation for gemeral "functionc. and so we hope that these will have
" better performance thin the ones based '(!p‘\q;lldtlt1CB. '
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