l*. National Library
of Canada du Canada

Bibliothéque nationale

Canadian Theses Service Service des thases canadiennes

Ottawa, Canada
K1A ON4

NOTICE

The quality ot this microform is heavily dependent upon the
quality of the original thesis submitted for microfiiming.
Every effort has been made to ensure the highest quality of
reproduction possible.

If pages are missing, contact the university which granted
the degree.

Some pages may have indistinct print especially if the
original pages were typed with a poor typewriter ribbon or
if the university sent us an inferior photocopy.

Reproduction in full or in part of this microform is governed
by the Canadian Copyright Act, R.S.C. 1970, ¢. C-30, and
subsequent amendments.

NL-339 (r.88/04) ¢

AVIS

La qualité de cette microforme dépend grandement de la
qualité de la thése soumise au microfilmage. Nous avons
tout fait pour assurer une qualité supérieure de repraduc-
tion.

S'il_manque des pages, veuillez communiquer avec
funivers.té qui a conféré le grade.

La qualité d'impression de certaines pages peut laisser a
désirer, surtout si les pages originales ont été dactylogra-
phiées a l'aide d'un ruban usé ou si l'université nous a fait
parvenir une photocopie de qualité inférieure.

La reproduction, méme partielle, de cette microforme est

soumise a la Loi canadienne sur le droit d'auteur, SRC
1970, c. C-30, e! ses amendements subséquents.

Canada

A Voice Interface System for Database Accesses using French

Lyne Lahaye

A Major Technical Report
in
The Department
of

Computer Science

Presented in Partial Fulfillment of the Requirements
for the Degree of Master of Computer Science
Concordia University
Montr€al, Québec, Canada

January 1989

©) Lyne Lahaye, 1989

il

National Library
of Canada

Canadian Theses Service

du Canada

Ottawa, Canada
K1A ON4

The author has granted an irrevocable non-
exclusive licence allowing the National Library
of Canada to reproduce, loan, distribute or sell
copies of his/her thesis by any means and in any
form or format, making this thesis available to in-
terested persons.

The author retains ownership of the copyright
in his/her thesis. Neither the thesis nor substan-
tial extracts from it may be printed or otherwise
reproduced without his/her permission.

Bibliothéque nationale

Service des théses canadiennes

L'auteur a accordé une licence irrévocable et
non exclusive permettant a la Bibliothéque na-
tionale du Canada de reproduire, préter, dis-
tribuer ou vendre des copies de sa thése de
quelque maniére et sous quelque forme que ce
soit pour mettre des exemplaires de cette thése
a la disposition des personnes intéressées.

L'auteur conserve la propriété du droit d'auteur
qui protége sa thése. Ni la thése ni des extraits
substantiels de celle-ci ne doivent étre imprimés
ou autrement reproduits sans son autorisation.

ISBN 0-315-49089-6

Canada

ABSTRACT

A Voice Interface System for Database Accesses using French

Lyne Lahaye

A French natural language interface to a database using
voice input and voice output has been developed. The system
consists of three modules: natural language menu along with
speech recognition for input, SQL query generation, text
generation and voice generation for output. This work
integrates different commercially available software and
hardware units, on personal computers such as Voicescribe
(speech recognizer), Televox (French speech synthesizer),
and Arity SQL (relational database) into the inhouse
developed software. The emphasis of this report is in the
implementation of French text generation. It is based on
entity relationship model and transformational grammar. The
integration of different modules of the system is done using

two PC Ats and the low cost PC Quick Net.

ACKNOWLEDGEMENTS

I express my sincere thanks to my supervisor Dr. T,
Radhakrishnan. His precious advice and guidance were
invaluable. I thank all those people who helped me in this
work, in particular, Mr. Ian Menzies, Mme Christina Pitula,
Mr. Cliff Grossner, and Mme Galina Kolesova. Special thanks
are due to Gordon Wall and my parents for their continued

moral support throughout my studies.

Table of contents

Chapter 1 The overall system

1.0 Introduction
. French Natural Language Menu using voice drive
SQL query generation
Sentence generation and voice output

Chapter 2 Subsystems

Introduction

Speech recognition subsystems
Natural language menu subsystem
Speech synthesizers

Arity/SQL

10
10
16
21
24

Chapter 3 Generation of deep structure from SQL queries

Introduction

Historical review

System's requirements

Design approach

One level query with one relation

One level query with multiple relations
Two level queries

Chapter 4 Surface structure generation

Transformational component

Model of a reader

Model of discourse

Data dictionary

Two complete examples

Problems specific to French Language
Limitations and possible improvements

[C Y
AU WO

Chapter 5 Integration

5.0 Introduction

5.1 Environment

5.2 Communication between modules

5.3 Complete integration of the modules
Chapter 6 Conclusion

References

Appendix 1

87
87
89
92
95
98

100

CHAPTER 1
THE OVERALL SYSTEM
1.0 Introduction

In this age of growing applications of computers, vast
amount of research is done in the field of man-machine
communication. As the use of computers becomes more and
more wide spread, a large amount of information is generated

and kept in computer readable form.

In the not too distant future, we hope, voice
interfaces to computer systems will be popular for accessing
these computer stored information. Although, commercial
systems are available, many problems are yet to be solved in
both speech recognition and synthesis. However, at this
stage, it is possible to use commercially available speech
recognizers and synthesizers and build usable man-machine
interfaces.

In this report, we describe a man-machine interface
system using voice I/0 and French natural language. It was
developed on two PC ATs using software tools such as Arity
Prolog, Arity SQL, Microsoft C, and PC Quick Net. The
Dragon system's speech recognition board and Televox's
speech synthesizer board are also used. There are three
major subsystems in the development of this voice interface:
Natural Language input based on NL-menu using speech
recognition; SQL gquery generation; and thirdly Natural
language generation in French and its output in spoken form.
The integration of these subsystems is done on two machines

1

connected by a network. PC Quick Net is the network tool

used by the two machines.

Most of the programs were written in Arity Prolog. The
programming language C was used for writing the interface

driver for the Dragon system's speech recognition software.

1.1 French Natural Language Menu Using Voice Drive

Basic operation of natural language menu (NL-Menu) with
Voicescribe is done as follows: a menu (see fig. 1) of
words and/or phrases are displayed on a screen when the user
selects a database for querying. As each word is selected by
the user from his menu, a partial query is constructed and
displayed in a specific window. A new list of permissible
words and/or phrases are highlighted after each selection is
made. The user continues in this fashion until his total
query is formulated. In the process of constructing his
query, the user is permitted to go back on his selection of
words and change them at any stage. A menu normally
contains some subdivisions which pop up and they can be
scrolled up and down. If a mistake is made during this
process, a word can be cancelled by a simple voice command.
When the sentence is completed, the user has four options

that he can choose: ‘"procede, fin, continue and recule."

Figure 1. NL_Menu window

COMMANDE NOM SUBORDSONNEES BXPERT
professeurs qui travaillent au département LISTE
Donne-moi) .
cours qu enseignent
. ase < professeurs >
attributs local qui Jirigent
. . < cours >
2tudiants qui sont corequis A
téléphone o qui sont enseignés par < >
b Conjonction . . < départements >
ureau qui sont pris par
capacité et dont le prérequis est < programmes >
heures qui sont les prérequis de
statut ARTICLES qui prennent le cours
directeur le qui sont dans le programme
la od s¢ donne
les de
des
FOMMANDES DE CONTROLE : Recule, Proctde, Continue, Fin, Point

There are many obvious advantages with NL-menu
approach. BAmbiguity in the construction of a query is rare.
The only requirement of the user is the ability to read and
speak. Minimum learning time is required as the user is

3

practically guided through each step and no typevwriting
experience is necessary. Spelling errors do not exist
because of voice command and the fact that all commands are
selected from the display on the screen. Voice input can be
approximately twice as fast as typing. Physically disabled
persons would find this mode of input/output more suitable.
Simultaneously another task can be performed while the user
is talking to the computer. It has also been shown that
fewer errors occur in complex problems when solved by voice

communication compared to other modalities (see fig. 2). [6]

There are also certain disadvantages to this means of
input: the user's vocabulary and queries are controlled by
the natural language menu, thus constraining him. With the
current technology only isolated word recognition is
possible and the system has to be pre-trained for each user.
The size of the vocabulary of words that can be recognized
is limited. Background noise has significant impact on the

recognition accuracy.

The implementation of a French NL-menu created
additional problems when compared to the English menu.
Accents were needed both in the menu and the vocabulary
file. The screen space restricted the use of 1long
descriptive phrases commonly used in French, so more pop up
menus were necessary to alleviate this problem. Detailed
description of these problems and the solutions are

discussed in chapter 2.

Figure 2. Isolated word recognition vs human interaction (5]

m-..
...
0. %
1317 S
\\ .om.
~ L
\.o. o om
. 'osO"' o2 ;
NumBeroF T ° ‘e 0
ERRORS —
913
MINUTES TO \ v
COMPLETE \
ATASK
| | l |
I [} I I
1 2 3 4
TRIAL
ISOLATED WORDS

(with actual recognizer)

m = Manual errors
0 = Manualtimes
v = Voice errors

® = Voice times

1.2 SQL Query Generation

Structured Query Language is one of the most popular
query languages among relational database systems. SQL has
an English like structure. In our case, it is used as an
intermediate language between the man-machine interface and
the DBMS. SQL query has three major clauses: Select clause,
From clause, and Where clause. The Select clause states what

5

A AR T AR P VN TR MLt S amSTeme W e on o

T Geem TN

Ca e e R T

is to be found, and the From clause states which relations
in the database are involved. The Where clause specifies a
set of predicates that must be satisfied in the selection of

tuples for response. Queries can be nested into multiple
levels.

In order to generate an SQL query from the natural
language input, it 1s necessary to structurally analyse and
parse the input natural language according to a grammar.
The complexity of the grammar 1s directly related to the
menu. Imperative commands lead to less complexity in
programming yet furnish equal information when compared to
interrogative questions beginning with who, what, where,
why, when, how and do. This is because the imperative
statement uses the total database while the interrogative
statements are limited to a part of the database. The
attributes of the Select clause are extracted from the
nounphrase (np) grammar rule (see fig. 3) while the
relations for From clause and predicates for Where clause
are derived from the "rel-clause" of the input sentence.
Translations of natural language sentences to SQL queries

are aided by the keywords in the NL_menu.

figure 3. Grammar rules (Partial program "transla.ari")
sentence —-> verb, np, rel_clause.

verb —--> [$Donne-moi $].

np --> determiner, noun,(np;no) .

np ——> conj, determiner,noun,(np ; no).
conj —=> [$ et §].

no(S,S).

determiner --> [S$le §].
determiner --> [$la $].
determiner --> [$les $].
noun —--> [$telephone $],
{ recordz(select,$telephones$,_)}.
noun ——> [$bureau $],
{recordz(select,$bureaus,_)1}.
noun -—> [$capacite $],
{ recordz(select,$capacite$,_)1}.
noun --> [$heures $},
{ recordz(select,$dheure, fheure$,_)}.
noun --> [$directeur $],
{recordz(select,$president$,_)}.
noun --> [$statut $],
{ recordz(select,$statuts$,_)1}.
noun -=-> [$local $§],
{ recordz(select,$nolocal$,_)}.
noun —--> [$professeurs $J],
{recorda(select,$profnoms$,_)1}.
noun -—-> [$cours §],
{recorda(select, $nocours$,_)}.
noun --» [$Setudiants $],
{recorda(select,$etudnom$,_)1}.

rel_clause -=> [$de $, Term,_], establish the from and
where clause

rel_clause —-> [$des $,Noun], from clause, subordonnee.

rel _clause --> subordonnee.

subordonnee --> (([$qui $],verbl) ; ([$dont $],nphrase);
([$ou $],verb2)),(pt ; conj_rel).

pt --> [s$.$].

conj_rel —--> [$ et $],subordonnee.

verbl --> [S$travaillent $,$au $,$departement $,Noun],from
and where

verbl --> [$dirigent $,Etudiant], from and where

verbl --> [$enseignent $,Cours],from and where

verbl -—> [$sont $,$enseignes $,$par $,Prof],from and where

verbl --> [$sont $,$pris $, $par $,Etud],from and where

verbl --> [$sont $,$les $, $prerequis $, $de $,Crs],from and

where

verbl ——> [$prennent $,$le $,$cours $,Cours],from and where

verbl --> [Ssont $,S$dans $, S$le $,$programme $,Prog),from
and where

verbl ——> [$sont $,$corequis $,$a $,Noun],from and where
verb2 --> [$se 3%,$donne $,Cours],from and where
nphrase —--> determiner, nounph.

nounph —-=-> [$prerequis $,$est §$,Cours], from and where

Example: "Donne-moi les professeurs qui travaillent au

departement sciences de l'informatique." (Desired by the
user)
COMMANDSE NOM wnoimomun BXPERT
qui_travailient an_déparicment
. lﬂﬂklﬂ., e |
llm:.:.nq i ensei 01 _ aciences de Plaformatique
cours qui easeignent 02 sénie civil §
i dirk 03 génic mécanique
Attribut Jocal qui dirigent 04 Senic éloctr
dtudiants qui soat coreq
téléphone i sont ensej
Conjonction “ —
bureau qui sont pris paJ
capacité et dont le prérequ|
beures qui sont les prérequis de
statut ARTICLES qui preanent le cours
directeur le qui sont dans le programme
I ol sc donne
lﬂ,. de
des
COMMANDES DE CONTROLE : Recule, Proctde, Continue, Fin, _Point .

Note 1,2,.... is the order in which the user has selected

the options.

The genérated SQL query is:
select pnom |

from travailler

where dnom = 'sciences de 1 informatique'

1.3 Sentence Generation and Voice Output

Sentence generation is achieved in two steps: deep
structure generation and surface structure generation based
on transformational rules. For the generation of deep
structure, we make use of the data dictionary of the stored
database and the database's semantic-knowledge represented
in the form of entity-relationships graphs. Several
algorithms are devised for generating the deep structure of
the desired sentence. Transformational rules are applied to
this deep structure and a natural language sentence (surface
structure) is generated. These steps are described in

chapters three and four.

After sentence generation, Voice output is achieved
through the use of a commercial speech synthesizer called
Televox. Chapter two includes the specifications and

operational details of this speech synthesizer.

e

CHAPTER 11

SUBSYSTEMS

2.0 Introduction

A good communication between man and machines requires
a complex system. There are several problems encountered in
building such a system. These days several off-the-shelf
subsystems are available to build good man-machine
interfaces. 1In this chapter we review four such subsystems

that are relevant to our present work.

2.1 Speech Recognition Subsystems

Commercially available speech recognizers are becoming
more and more popular for the following reasons: they create
a more familiar environment to the casual user using wvoice.
No typewriting is necessary. The productivity increases due
to faster access to information and because another task can
be performed simultaneously. This section gives a brief
overview of the different types of speech recognizers and
their problems. The Voicescribe speech recognizer is

particularly emphacized as it was chosen for this prototype.

There are four types of speech recognizers : isolated
word, word spotting, continuous speech and speech
understanding. Isolated word recognizer is the least
complex and commercially the most succesful form of
recognition. It requires the spoken words to be separated by
pauses, thus simplifying the recognition of the start and
end points of each word. The unit of recognition is the

10

word. Speaking words in isolation may be less natural but
words are pronounced more carefully than words in continuous

speech.

The second type is known as word spotting. Each word to
be recognized is represented by a model or template. The
recognizer attempts to match these models with the incoming
speech stream. No distinct pauses are required. This type is
more complex due to the difficult recognition of start and

end points of each word.

Continuous speech is another type of recognition. It
breaks the speech stream into smaller units. These units of
recognition could be words, phonemes, etc that together make
up words. Continuous speech recognizers should be alle to
recognize word boundaries. The word-based continuous speech
recognizer can be used for word spotting, but this approach
is not practical when dealing with large vocabularies.
Phonemes-based continuous speech recognizer recognizes
individual phonemes and identifies words as sequences of
phonemes. This requires a careful study of phonetic rules,

vocabulary and syntax rules of the spoken language.

The speech understanding 1s the most complex and
ambitious type. Its goal is not only to recognize the speech
units but also to understand speech as humans do. This
system emphasizes the meaning of speech rather than the mere
recognition of individual words. In order to understand the

speech , one needs lexical, semantical and world knowledge.

There are many common problems encountered by all types

11

of speech recognition systems. No two persons talk in the
same fashion, resulting in a speaker dependency. Another
problem is the wvoice patterné of individuals could vary from
one day to the next which increases the error rate in
recognition. Similar or rhyming words create a problem of
phonetic ambiguity. Background noise such as people talking,
closing doors interferes with the speech input signal which

reduces the recognition accuracy.

Voicescribe is an isolated word recognizer marketted by
Dragon Lab Inc in Massachusettes, USA. It requires user-
training of the vocabulary to be recognized. Its components
are Voicescribe 1000 speech board, Dragon Lab software,
Dragon Key utility, a library of low level functions, and
VOCL compiler. The Voicescribe 1000 speech board is a single
circuit board which can be inserted into one of the PC's
expansion slots. The Dragon Lab utility is a training
program that helps the user to train the system on the
vocabulary program. It also gives feedback to the user
pertaining to the confidence levels and other variables

related to the recognition process.

Dragon Key is a development utility that runs in
background while another application is running. It provides
pop—-up menus allowing the user to train and recognize words
from within another application, or to see the next list of
words to be recognized at any given state in the
application. It provides ready-to-use language description

files for use with DOS, Dbase and Lotus packages.

12

Voicescribe also offers low level voice board functions
which allow easier modifications and they are not as limited
as the Dragon Lab or Dragon Key is. The "speech driver" is
managed directly by the programmer. He can manipulate
recognition process, build specialized training routines,
and modify the system's parameters. The speech driver
functions are written in C and they are together called

Speech Driver Interface (SDI) functions.

Voicescribe also contains a language compiler called
VOCL. The VOCL compiles a given language Description File
(LDF) into a useful intermediate form. The input
specifications are transformed by VOCL into a network of
states and production rules. Phonetic ambiguity is then
minimized because the network moves from one state to the
next limiting the choice of subsequent words. This can be
seen with the highlighting on the screen. An example LDF is

shown in the appendix.

We have built a training routine using SDI functions,
and added it to Voicescribe. It builds speech patterns of
words through repetitions and stores them in the user's
vocabulary file. Words selected from the LDF are spoken
repetitively and the speech parameters obtained from the
various repetitions of a word are averaged, and this average
is employed to recognize the words at a later stage. If a
background noise or bad pronunciation occurs, the user may
be asked to repeat the word a number of times. It is
absolutely necessary that all words in the LDF go through
this training process.

13

The system coordinator is a module written in Prolog
which synchronizes the state-to-state transition of the word
recognition process with the highlighting of the NL-menu.
(see fig. 4) It monitors the speech board's recognition
process, aaccepting words that surpass a minimum confidence
level and displays them on the screen. If a wo.rd is

rejected, an appropriate message is displayed in a separate

window.

14

Fig 4: Conceptual diagram of NL._menu with voice drive

System

Coordinator

Speech
board

SDI
fcts

ILDF

User’s
Vocab.

15

NL_Menu

Look

2.2 Natural Language Menu

Research in natural language interfaces to database
systems became intensified in the mid 1970's. The input
query in natural language is parsed, interpreted and
executed and then a response to that query is also produced
in the natural language such as English or French. In order
to understand how we arrive at a compromise with the NL_menu
approach, it is necessary to do a review of some problems in

natural language understanding and generation.

One of the problems in natural language processing is
encountered at parsing. Many people can say the same thing
in different ways. In other words, one meaning maps many
syntactic structures of sentences. It is difficult to cover
all the utterances. However, most natural language systems
do not require a complete coverage of the entire scope of
the natural language. A limited subset of natural language

could be adequate for most applications.

Another problem is related to the semantics. The
meaning of a word can vary in different contexts, resulting
in a possible misinterpretation of the query. To alleviate
+his problem both limited scope and context dependent
interpretation are used. The Natural language understanding
systems thus deal with a limited subset of natural language
covering the domain of information contained in the
database. However, limiting to a subset of natural language
does not solve the problems of ambiguity entirely, but
usually these ambiguities can be handled by some application

16

specific approaches. This is especially true in the case of
a small limited subset of natural language. The first
systems developed used an approach called domain-specific
knowledge. This knowledge is directly derived from the
database structure. It consists of words and phrases
referring to the information and data contained in the
database. Names and fields of the database are incorporated
in the grammar used for parsing, resulting in a customized
language for the application. This approach helps solve
misconceptions that would occur when certain words can be
used in more than one context. It also creates some
inconveniences such as making it necessary for the user to
know the database contents to formulate a query. It limits
the portability of the domain knowledge to another database
world due to the dependency of its grammar. It still does

not solve all types of syntactic and semantic ambiguities.

Domain-specific knowledge alone is not enough to handle
the ambiguities. We need the world knowledge. This knowledge
is based on how people make use of "well known concepts and
meanings" while communicating with others. World knowledge
is independent of aplications domain but representing it is

hard.

NL_menu is a completely different approach to Natural
language understanding. It is a middle ground between two
extremes. In this case, there is no need to train the user
to the database contents for the formulation of queries.

There is no mispelling errors and no unclear queries .

17

In NL_menu, a menu of words or phrases is displayed on
the screen. These words or phrases refer directly to the
information contained in the database. At every stage of
guery formulation, the user.may select any word or phrase
highlighted on the screen, using a pointing device. As words
are selected, the partial query is built and displayed, and
the next possible list of words or phrases are highlighted
on the screen. This process goes on until a complete query
is formulated. Pop-up menus are used to let the user select
values for database variables where enumeration is eitherxr
difficult or impossible. Usually Pop-up menu occupies a

portion of the screen structured as a window.

We explain a NL_menu with an example database that is
related to an university environment. It consists of six

entities and nine relationships. Figure 5 shows the database

schema.

18

Enseigner

Travailler

Cours

\V/

\

/

Prereq Coreq

Entite

Relationship \
va

Figure 5. Database schema

Departements

l Etreinscrit

Etudiants

Pr2ndre

Offrecrs

Horaire

Locaux

19

The design of the screen display for NIL_menu is based
on the database schema and the database itself. The first
step is to determine which questions can be derived from the
database schema and the wvalues and attributes names in the
database itself. For instance, by looking at the entities
"prof" and "departements", and the wvalues of the attribute

"deptnom", the following query can be formulated:
"Donne-moi les professeurs qui travaillent au
departement. sciences de l'informatique."

By analyzing such queries we select a list of words and

phrases that can be used.

prof qui travaillent departement 7
N

nom deptnom

telepnone .

The next step is to place these phrases in appropriate
boxes on the screen. Effective use of screen space is
important at this stage. The prototype's screen menu in our
case is composed of eight different boxes : " commande, nom,
attribut, subordonnees, expert, article, conjonction et
commandes de controle." All queries end with the word
"point™. For instance, the partial query is "Donne-moi les
professeurs qui travaillent au d partement sciences de 1'°
informatique". The user at his discretion may finish his
query by selecting the word "point" or continue his query by

20

selecting the word "et" in the conjonction box.

The use of French language poses some unique problems:
one problem is the article 1' placed in the article box,
because the apostrophe is not actually pronunced but only
understood, the user would have had to pronounce 1l' as the
letter 1 followed by a pause and the noun. Since this is not
considered natural French language, the plural form is used.
The second problem pertains to the character space in the
attribut box and the screen space management. Some attribute
names occupied more space than was available, making it
necessary to have pop-up windows, resulting in a more

complex menu structure.
2.3 Speech Synthesizers

There is a lot of progress in integrated circuit
technology (VLSI) and in the methodology of speech
synthesis. As a result, there are commercial speech
synthesizers that can generate intelliéible speech. This
section introduces two applications of speech synthesis and
their advantages and disadvantages. Although several board
level products for speech synthesis in English, based on SC-
02 chip, are readily available, speech synthesizers in
French are not that common. The latter is also about ten
times mnre expensive. The product Televox used in our

prototype is described below:

Voice r :nponse systems and text-to-speech systems are two

21

of the applications of speech synthesis. Voice response

systems handle text of limited vocabulary while text-to-
speech systems handle unlimited vocabularies. Voice response
systems are basically speech coders or vocoders that store
bits stream in memory and playback through a decoder when
output speech is needed. Speaking toys, warning systems and
automatic telephone directory use voice response. While
voice response systems do not use extensive linguistic
processing, text-to-speech synthesizers convert an input
text to appropriate speech units (figure 6) using extensive

linguistic processing.[11)

Figure 6. Generation of voice

Lexical
access [—(Sequence of Concatenation | Yolce outpit
“IE;!I" routines speech unit codes routines

A good speech synthesizer maximizes speech quality, while

minimizing memory space, computation speed, and algorithm

complexity.

Memory size is a clear limitation to those methods which
are based on the concatenation of words as speech units. The
intonation and the contextual time dependency on words, need
to be stored with all the words or phrases of a language,

22

requiring a lot of memory. However, this approach would lead

to higher quality of speech.

Current speech synthesizers based on VLSI chips use
smaller speech units in order to minimize the memory
requirements. The most common speech units are phonemes
since most languages have only thirty to forty phonemes.
There are other possible speech units such as syllable,
demisyllable, and diphones (used in Televox). Diphones are
obtained by dividing a speech waveform into phoneme sized
units, and then by cutting in the middle of each phoneme. In
order to reproduce a sounding speech, the spectral features
of the coarticulated speech units must be smoothed at their
boundaries. Researchers find advantageous to use diphones
over phonemes due to equal size of unit. Because of this
equality, the smoothing algorithm at the boundaries is much
simpler. Phonemes having variable 1length, require complex
smoothing rules. Also a pronunciation of a phoneme in a word
or phrase is dependent not only on the neighbouring
phonemes; but on the intonation and speaking rate (called
phonetic context). The phonetic context influences greatly
the complexity of the algorithms. Not enough is understood
about the effect of the context on the articulation of a
phoneme. The diphone systems found a way around this problem
by storing the parameter transitions from one phoneme to the
next, since the effects of coarticulation influence only the

adjacent phonemes.

The memory size 1is dependent on the synthesizer

23

algorithms. The algorithms require memory for storing the
dictionary of speech parameters and the rules for
concatenation of speech units. By reducing the size of the
speech units intended for concatenation, the memory

requirement is minimized.

Using LPC (Linear Predictive Coding) has its own
advantages. It is an effective form of compressed speech
digital data, that helps to increase the naturalness of

synthetic speech.

Televox is a text-to-speech French synthesizer as
mentioned earlier. It is based on diphones. Regarding the
quality of the speech generated by Televox, it is
understandable but lacks naturalness. This may be
compensated partially by using the control parameters for
intonation and rhythm that are available on the Televox
synthesizer. These control parameters can be modified by the
user and included in the sentence sent to the speech
driver. Other advantages of Televox are the ease of its
installation and the software available with it. However,
there is a restriction, Televox can only read one sentence

and not a paragraph, due to its internal memory limitations.

2.4 Arity/SQL

Arity/SQL is a software package that is used in our case
to build a relational database and to process SQL queries.
Arity/SQL is not designed to be a stand-alone relational
database management system. It translates SQL statements

24

into an intermediate form that is executed by the SQL
compiler. A powerful library facility is available with
Arity/SQL. Arity/SQL is fully compatible and is embedded
into Arity Prolog. It is a single user system and supports

these data types :

- 16 bit signed integer type
- 64-bit float type
- a char(n) type where n is the length of the string,

greater than 0 and less than 16K bytes.

An attractive feature of Arity/SQL package is in its
permitting a relational database to be divided into units

called "worlds". This division may be done for two reasons:

1. If the relational database is larger than 4Mb of data,
another "world" is absolutely necessary. A total of 256
worlds with a limit of 4Mb in each allows an application of

up to one gigabyte of addressable space.

2. Time and space could be saved by placing the
relational database away from the Prolog's database in a
different world. This allows more room for the application's
database and the relational database can be retrieved very

quickly by a command.

Another feature of Arity/SQL is its capability for saving
all responses to SQL gqueries in the Arity/Prolog database.
Arity/SQL has an example mode which allows the user to test
queries directly from the relational database for testing

purposes.

25

T 3 VTR e W T

A disadvantage with Arity/SQL is that it is not fully
debugged and not completely documented. We discovered that
Arity/SQL would not accept a second predicate in the inner
level of the nested two level queries. In the following
example, because two predicates (progrnom and statut) were

used, it was not accepted.

(i.e.,) Select etudnom, telephone
from etudiants
where progrnom,statut in (
select progrnom,statut
from etudiants

where etudnom = 'Lyne Lahaye');

Although many packages can be obtained in the market that
are more professional than Arity/SQL, we chose this because
of its availability, low cost, low memory requirements, and
it being fully embedded in Prolog. Also it saves
programmer's time by not requiring the creation of
extensively large programs for database search and

management.

26

CHAPTER III

GENERATION OF DEEP STRUCTURES FROM SQL QUERIES

3.0 Introduction

Researchers are currently placing a great deal of
emphasis on text generation systems. When applied to
database systems, the reason for this emphasis is apparent:
Interpreting a complete sentence is much easier and more
natural than understanding the structured output from a
ccmputer, particularly for a novice. It is also well suited
for the handicapped and the illiterates. There are two
possible approaches for producing natural language text. The
first consists of storing canned text, and the second
translates a limited set of semantic structures into
sentences. Each method has certain advantages as well as
disadvantages. A text generation system employing either of
these approaches requires four basic components: a knowledge
representation method, a linguistically justified grammar, a
model of the reader, and a model of discourse. My project is
based on the second approach. The process employed to
generate text is first described using examples. Our
implementation handles certain problems specific to the
French language. Some of the limitations and possible
improvements to the proposed text generation system are also

discussed.

27

3.1 Historical Review

In the early days of text generation systems, the

technique employed consisted of planning the necessary text

in advance and storing it as text strings for future

display. This technique has several major disadvantages.

Designers must anticipate all answers to all possible
questions. This method cannot be employed in the case of
large databases due to memory constraints. Another potential
problem is the possible inconsistencies between the
information actually accessed by the program, and the
sentences generated. In other words, the matching of text
strings to certain knowledge structures employed by the
system could produce incorrect or unacceptable answers.
Finally, the program has no conceptual model of what it is
saying, and therefore no way of distinguishing between any
of the text strings. However, there are certain advantages:
this technique guarantees that the text can be complex as
well as elegantly written, which is not necessarily

guaranteed with the second approach.

The second technique produces text by directly
translating knowledge structures. As all possible answers
need not be anticipated, this method can handle large
databases. Inconsistency is no longer a problem; the
relation between the knowledge structures being transformed
and the structures used in the program’'s algorithms ensure
that the sentences produced are consistent with the
information being extracted. The closure problem due to the
nonexistence of a conceptual model, is overcome by

28

transformations that handle large classes of knowledge
structures. However, this technique does not guarantee the
production of complex text. The quality of the text is
largely dependent on how the knowledge is structured and
how the algorithms make use of them. A lot of research must
still be done before elegant and complex text can be
generated. In spite of these short comings, this technique

is the most popular.
3.2 Systen's Requirements

The goal of any text generation system is to produce
natural language text. The generated text must be
understandable to the reader, well written, and correspond

to the reader's intentions.

Text generation systems require some method to represent
the knowledge they employ to generate text. Two sources of
knowledge are necessary in this process : domain specific
knowledge, and world knowledge. The domain knowledgzs in the
case of database applications, consists of both factual and
semantic knowledge about the data. World knowledge includes
information about the natural language. These two sources
of knowledge are the basic constituents of the reasoning
process, which consults them to create its semantic
structures. Consultation involves an existing formalism of
these knowledges. Many methods have been proposed to
represent this knowledge: predicate 1logic, propositional
logic, semantic networks, scripts, frames, entity
relationship model, etc.

29

All these formalisms attempt to represent the entire
world, but rarely succeed in representing more than some
aspects of it. The main problem that arises resides in
abstractions such as time, space, cause, obligation,
negation, possibility, and quantification, among others.
Formalisms are generally evaluated according to how well
they represent the reasoning process, how easily they can be
examined and updated, and their relevancy to solving
particular problems. The quality of the generated text is
limited by the chosen knowledge representation method and

the algorithms which make use of them.

Employing an appropriate knowledge representation method
does not guarantee grammatically correct answers. Other
components are necessary to generate correct responses. The
goal of text generators is to express ideas in the form of
sentences constructed from a set of words. A comprehensive,
linguistically justified grammar is a necessary component
that determines the ways in which these words are combined
into sentences. It produces sentences by applying rules of
arrangements of the set of words. The three principle
grammars proposed in the literature for this purpose are
Transformational Grammars, Augmented Transformational
Networks (ATN), and Case Grammars. Although a good grammar
and knowledge representation method are employed in a text
generation system, the generated output may not completely
satisfy the reader’s expectations. Therefore, a model of the

reader is necessary to clarify the context.

Most text generation systems do not employ a model of the

30

reader. This component is still in its infancy, although it
is essential to the text generation process. Its purpose is
to avoid misleading and to provide useful answers by taking
into consideration the reader's knowledge. Developing a

model of the reader requires four types of knowledge [7]:

- what is obvious
- what has been told so far and what is obvious from that
- what the other party believes

- what is currently in the reader's attention

The quality of generated text is improved by recognizing
the reader's knowledge and customizing the responses to it.
The quality of the text can be further improved by employing

a model of discourse.

Text generation systems may express ideas in more than
one sentence. Therefore, discourse rules are required to
organize the sequence of sentences into paragraphs and to
order the paragraphs to express complex ideas. If multiple
sentences are involved, this component is essential to
produce well structured text. The generated sentences follow

an order established by the discourse model.

There are four components which are considered essential
in determining the quality of the text produced. The first
component, knowledge representation, helps construct
meaningful sentences whose syntax 1is controlled by the
grammar. The model of the reader helps to build an
understandable and meaningful answer. The model of

31

discourse organizes the group of sentences into paragraphs

to express complex ideas.

3.3 Design approach

The goal of any text generation system is to generate a
precise, well structured, and understandable piece of prose.
Our design achieves this goal by employing the following
approach. It generates French text by translating a limited
set of representational structures. The generation process
is the following: an SQL query and the factual knowledge are
mapped into entity and relationship network graphs to
construct the semantic structures. We chose the entity
relationship model as the knowledge reprecsentation method
for various reasons that will be discussed later. The
grammar component controls the syntax of these semantic
structures, and builds the natural language text. An
adaptation of the Transfornational grammar is used for this
purpose. The design employs a model of the reader, and of
discourse to produce good quality text. A data dictionary
that contains linguistic information and information about
the contents of the database is consulted during the
generation process. These components of the text generation

system are explained through several examples.

Knowledge Representation

A designer's first consideration is the selection of an

appropriate knowledge representation method. We chose the

32

entity relationship model developed by P. Chen. The
evaluaticn criteria on which this choice is based, and a

description of its implementation follow.

Criteria such as how easily the stored knowledge can be
accessed, examined and updated have been mentioned in this
literature. Another important consideration specific to our
application is how well the chosen method represents
relational database. The entity model satisfies all these
requirements. 1Its representation is close to that of a
relational database. Its entity relationship network graphs
embody the semantics of the database and are easily
examined. The information contained in these graphs gives a
complete conceptual view of the database that can be easily

accessed and mecdified.

The entity relationship model can be used to both help
build the database, and to represent knowledge about it. The
semantics of our data are represented by means of entities;,
and relationships between entities. The entities represent
objects, whereas relationships represent the relationship
between two entities. 2ll entities and relationships have
their own attributes and sets of values that are stored in
the database. The objects are the tables in our database,
and consist of etudiants, prof, cours, departements,
offrecrs, locaux. The relationships are: diriger,
etreinscrit, travailler, offrir, enseigner, prendre,
horaire, prereq, coreq. A conceptual view of the database

is represented in the database schema in figure 5.

33

The entity relationship model employs entity and

relationship network graphs. These graphs provide the
semantic structures that will be employed to construct
French sentences. The entity network graph is composed of
the entity and its attributes. The entity has labelled arcs
going towards the attributes. The labels correspond to
transitive verbs. For instance, the entity network graph

for "prof" is:

Prof ID —profnom

travaille avoir

deptid bureau, telephone, sexe

The direction of the arcs has a syntactic meaning. The
attributes are the deep structure "object", whereas the
attribute "ID" is the deep structure "subject". Also the
label "ID" is used to denote the primary key of the
relation. This knowledge will help us produce the deep
structure from the SQL query: For 'select profnom, bureau

from prof':
Subject of the sentence will be profnom
Object of the sentence will be [avoir , bureau]

The relationship network graphs are similar to entity

graphs. They represent the relationship between entities.

Example: The "prendre" relationships network graph between

the entities "etudiant" and "offrecrs".

34

avoir prendre

note offreid

Etudid is the primary key of the entity etudiants, and
offreid is the primary key of the entity offrecrs.

The entity relationship model is a knowledge
representation method that is easy to implement and
appropriate to our application. Its closeness to the
relational database, and the ease with which it can be
examined and modified, makes it the most suitable choice.
Our next consideration is the choice of grammar that will

control the syntax of these semantic structures.
Grammar

A good grammar is an important component in the design of
a text generation system. It helps to generate syntactically
correct sentences. As mentioned earlier, there is a wide
range of grammars to choose from, such as Transformational
Grammars, ATNs, and Case Grammars. We haQe chosen a
Transfomational grammar for the following reasons, and made
certain adaptations to it in our implementation. Our

requirements:

1- that the grammar be capable of generating sentences for
iny type of SQL query. 2- that it clearly express the
constituents of the santences (subject, verb, object, etc).
This requirement is necessary due to the chosen knowledge

35

PEIIA ot P JC eI EETRT R AR

representation method.

A transformational grammar satisfies these two
requirements. The transformational grammar is primary
designed for natural language generation, and has those
characteristics defined by the second requirement. The
second requirement cannot be satisfied by either an ATN or a
case grammar. The case grammar combines the factual and
semantic knowledge resulting in a conflict with our
knowledge representation method. The transformational

grammar is the most suitable choice for this reason.

The transformational grammar was first developed by
Chomsky. It consists of two components : a basic component,
and a transformational component. The basic component,
which is a context free grammar, generates a deep structure.
The deep structure conveys the semantics of the sentence.
The transformational component, which is a set of
transformational rules that operate on deep structures,
generates a grammatically correct sentence which is called
the surface structure. We use Chomsky's transformational

grammar, and a modified set of transformational rules.

Basic Component

This module relates the semantic structures (entities and
relationships network graphs) to the SQL query and the
answer (factual knowledge) by using algorithms, and then
generates the deep structures. These algorithms are

developed for each class of query. Some clarifications are

36

required at this point about the basic form of a deep
structure and the classes of queries before describing the

algorithms.
The basic form of a deep structure is the following.

Sentence -> {Relation_name, Type, Subject, Pp, Object}
Subject -> Relation_name, Type| attribute name, value]
‘certains’',attribute name

Pp -> verb, Predicates, {Conj, Pp} | empty

Predicates -> operator, attribute name, value {Conj,
Predicates}

Conj -> and | or

Object -> verb, Attr_list, {Object} | empty

Type -> entite| relation|rr

Attr_list -> {attribute name, value}
BNF notation : | = optional {} = 0 or more times

A deep structure can be composed of many sentence
structures having a relation name, type, subject, pp and
object. The possible types are entity, relationship or RR.
RR is a special case that corresponds to travailler,
etreinscrit, enseigner, offrir. These relationships do not
have new attributes when the entities are joined. Therefcre
a view of these relationships is used. 1If an SQL query has
the relation travailler, then we process two entities rather
than one relationship for reasons of efficiency. The
subject is usually an attribute name having "ID" label when
mapped to the appropriate network graph. The Pp component of
a sentence considers only the elements in the where clause,

37

whereas the Object component considers the elements in the
select clause. The reason for this separation is to avoid
repeating the same conditions for each sentence, when they

are identical.

The classes of queries that can be handled by our system
are :
One level query or base class (they are applied in the
algorithm of other classes)
class 1 : one entity relation
class 2: one relationship relation

class 3: one relation without where clause

One level query multiple relations

class 4 : two entities relations

class 5: one entity and one relationship relations
class 6: two relationships relations

class 7: one entity and one rr relations

class 8: one relationship and one rr relations

Two level queries

Outer Query Inner query
class 9: one relation same relation
class 10: one relation one relation
class 11: one relation two relations

Having identified these classes, it is possible for us to
build algorithms for them that will interpret the SQL query,
and generate the deep structures.

38

The sources of knowledge needed by the algorithms are the
data dictionary and the entity and relationships network
graphs. Some lexical entries are controlled by the grammar,
such as "meme", "anaphoric", but contrary to Marakakis, no
article is inserted. The articles are handled by the
transformational component. Algorithms are based upon the
type of query such as one or two level; the number of
relations at each level; and the type of relations. The
basic algorithms that are used by other algorithms are the
one for one level query with one relation, and one for one
level query without any where clauses. Another specification
is the algorithms consider the following elements in order

to generate proper responses.

the type of attributes in the query (primary keys or not)

the place in the query (select or where clause)

the type of boolean operators in where clause (and,or)

the network graph corresponding to the query.

The attributes, relations, and conditions are extracted
from SQL query before the algorithms are applied. Each

attribute has the value produced by the database search.

The algorithms pertaining to the various query classes
specify how the subject, object, and pp clauses of the
target sentences are selected. 3.4 One level query with one

relation

Class 1 One entity relation

39

Subiject selection:

1) If there is an attribute name in the select clause having
"id" as label in the entity network graph, then it is the
subject.
2) If there is an attribute name in the where clause which
has "id" as its label and it is not followed by or, then it
is the subject.
3) If there is no "id" in both clauses, then the relation is
the subject.

The end user knows the values in the "where" clause, and
he is interested in the attributes specified in the "select"
clause.

Object selection:

The remainder of the attributes in the select clause

accompanied with their verbs (labels) are chosen as objects.

Pp selection:

Pp is the remainder of the attributes in the where clause
accompanied with their verbs (labels) that are not referred

in the select clause.

Example:
select bureau,telephone

from prof

where profnom = 'Shinghal';

Entity network graph of prof is :
schema (prof,id, [profnom]).

schema (prof,avoir, [bureau, telephone]).

Data dictiocnary required:
40

relations(entite,prof).

The deep structure of the entity prof is :
[prof,entite, [profnom, ["Shinghal'l]l, [],[[avoir, [[bureau,
[H961-9])], [telephone, [8483000]]]]1]

Subject = [profnom,['Shinghal']]
Pp = []
Object = [[avoir, [[bureau, [H961~-9]], [telephone, [8483000]]]]]

The surface structure is:

Le professeur Shinghal a le bureau H961-9 et a le telephone

8483000.

Class 2 One relationship relation

Subject selection:

1) same as in class 1 except we refer to the relationship
network graph instead of the entity network graph.

2) same as in class 1

3) if there is no id in both clauses, the subject is the

attribute name in the graph having "id"

Object selection:

same as in class 1

Pp selection:

same as in class 1.

Example:

select note

from prendre

where offreid = 'COMP771287AA';
41

Entity network graph of prendre is
schema (prendre,id, [etudid]).
schema(prendre, prendre, [offreid]).

schema(prendre,avoir, [note]).

Data dictionary is

relations(relation,prendre).

Deep structure of prendre is :

Subject = [certains,etudid]

Pp = [pp,{[prendre,[[offreid, [COMP771287AA]1]]]]] Object =
[[avoir, [[note, [A,B,B]]1]]

The surface structure is

Certains etudiants prennent le cours COMP771287AA et ont la

note A. Certains etudiants prennent le cours COMP771287AA

et ont la note B.

Class 3 One relation without where clause
A) Relation is an entity

1) If there is one attribute in the select clause , then
the subject is the entity, and the object is the attribute
name.

2) If there are many altributes in the "select" clause and
one attribute has the label id then it becomes the subject.
The other uattributes are the parts of Object grouped with
their verbs.

3) If there is no id in both clauses, then the subject is
the entity and the object is all the attributes.

42

B) The relation is a relationship

1) If there is only one attribute in the select clause and
it has a label "id" in the relationship network graph, then
it is the subject. The object is taken from the graph. It
corresponds to the attribute entity being involved in this
relationship.
2) same as in class 3 A
3) If there is no id, the subject is the attribute entity
having a label "id" in the graph, and the object is the

attribute in the select clause.

Example:

select etudid, note

from prendre:

Relationship networik graph of orendre is :
schema (prendre,id, [etudid]).
schema (prendre, prendre, [offreid]).

schema(prendre,avoir, [note]).

Data dictionary required

relations(relation,prendre).

The deep structure is
[prendre,relation, [etudid, ['Regis Cardin','Lyne Lahaye'l],
[lJ, [[prendre, [[offreid,[novalue]]]], [avoir, [[note,

(A,B]1111]

Subject = [etudid, ['Regis Cardin', 'Lyne Lahaye']]

Pp = []

Object = [[prendre, [[offreid, [novalue]]]}], [avoir, [[note,
43

(A,B]1]]]

The surface structure is :

Regis Cardin prend un cours et a la note A. Lyne Lahaye

prend un cours et a la note B,

3.5 One level query with multiple relations

This group of algorithms handles each relation in the
following way. We apply the base class algorithms 1,2 or 3
to each relation in order to form deep structures which are
then modified. The modifications for each class are

described below.
Class 4 Two entities relations

A join operation is performed on the key common to the
two entities. A relationship network graph of the two
entities creates a new deep structure (Subject, empty,
Object). The subject and object are determined by the
relationship network graph of these two entities. The head
of the labelled arc between these entities is the object,
whereas the tail of the arc is the subject, resulting in a
new deep structure. This new structure will have as
relation name the relationship name, and its type will be
RR. This new deep structure will be placed between the two
entities of the structures in a sequence that is established
by the model of discourse. If two structures have the same
subject. then the second structure's subject will have the

word "anaphoric" added to it. If the object in the new deep

44

structure is the subject or object of the following
structure, then this entity structure's subject or object
will be modified by adding anaphoric. The common key in the
entity structure will be deleted if it is not a primary key.
This avoids repetition. An example follows.

The SQL query is :
Select pnomn, bur, pres
from travailler

where did = 'INFO';

The entities network graphs are:
schema(prof,id, [profnom]).
schema(prof,avoir, [bureau, telephone]).
schema(departements,id, [deptnom,deptid]).

schema(departements,avoir, [pt_etud,tp_etud,president]).

Data dictionary required:
relations(entite, prof).

relations(entite, departements).

The relationship "travailler" is translated to two
entities such as "prof" and "departements". The algorithm

then applies the step 1. Two structures are constructed.

Relacion name : prof

Type: entite

Subject : [profnom, [Radhakrishnan,Suen]]

Pp: [pp, [[travailler, [[=,deptid,INFO]]]]]
Object: [[avoir, [[bureau, [H961-9,H961-16]]]1]1]

45

AR

Relation name : departements

Type: entite

Subject: [deptid, INFO]

Pp : []

Object: [[avoir,[[president, ['Bui','Bui']ll]l]]

We find the common key "deptid". The algorithm deletes
"deptid" associated to the verb "travailler" in the prof's
deep structure. The subject of departements's deep structure
is modified to [anaphoric,[deptid,INFO]], and a new deep
structure is added between prof's structure and

departements's structure.

Relation name : travailler

type : RR

Subject: [anaphoric, [profnom, [Radhakrishnan,Suen]]
Pp: []

Object: [[travailler,[[deptid,INFO0}]]]

The surface structure is

Le professeur Radhakrishnan a le bureau H961-9. Il travaille

au departement INFO. Ce departement a comme president Bui.

Le_professeur Suen_a_le bureau H961-16. Il travaille au

departement INFO. Ce departement a comme president Bui.

Class 5 One entity and one relationship relation

The two network graphs are joined in order to establish
the common key. We then find the label of this common key
in the relationship network graph. If the label is "id",

meaning it is the subject of this structure, "anaphoric" is

46

added to the subject. If the label is not "id", the common
key can be placed in Pp or Object. After finding the place
of the key, it adds anaphoric to the common key. Anaphoric
specifies that the attribute has been previously referred
to, so a pronoun or "“adjectif demonstratif" will be added.
The sequence of the structures is fixed according to the
following rule. The entity's structure will always precede
the relationship's structure, as the relationship always

refers to the entity structure.

Example:

select offreid, note
from etudiants, prendre
where etudnom = 'Lyne Lahaye' and etudiants.etudid =

prendre.etudid ;

The network graphs are:
schema(etudiants,id, [etudid, etudnom]).
schema (prendre, id, [etudid]).

schema (prendre, prendre, [offreid]).

schema (prendre,avoir,note).

Data Dictionary
relations(entite,etudiants).

relations(relation,prendre).

Each relation (etudiants and prendre) passes through the
algorithms of one level query with single relation. The

result is :

[etudiants,entite, [etudnom, [Lyne Lahayell],

47

(pp.f[avoir, [[etudid, [no_value]]]l]]l, []]

[prendre,relation, [etudid, [no_value]], (1,
((prendre, [[offreid, [COMP772485AA,COMP7712872A]1111, [avoir,
[[note, [B,[]1]]1]]1]]

After the joining of the two structures, the result is :
[[etudiants,entite, [etudnom, [Lyne Lahaye]l, (pp,[[avoir,
[etudid, [no_valuel]l]l]l,[]], [prendre,relation, [anaphoric,
[etudid, [no_valuelll, {{prendre, [[offreid,
[COMP772485AA,COMP771287AA]11]1, [avoir, [[note,[B,[]1]11111]

The surface structure is :

Lyne Lahaye a un code. Il prend le cours COMP772485AA et a

la _note B. Lyne_ Lahaye a_un_code. Il prend le cours

COMP771287AA et a la note en progres.

Class 6 Two relationships relations

The two relationships network graphs are joined in order
to establish the intersection key. The position of the
intersection key will establish the precedence of the

relationships.

a) If the common key is the primary key (subject) in
one structure, whereas the key is not the primary key in the
other structure, then the precedence goes to the structure
having that key as non-primary key. The sequence will be
Subject 1 Verbl Objecl. Objectl as subject2 Verb2 Object2.
This form of the sentence is chosen arbitrarily, and the
reverse sequence will also do. However a good quality

48

response can be generated by considering, on which subject
should the focus lie for the opening sentence.
by Both relationships network graphs have the common
key as primary key. Therefore, any relationship can precede.
c) In both cases a and b, the second structure is
modified. The word "anaphoric" is added to the common key of
the second structure as this key has been referred to in the

first structure.

Example:
select etudid

from prendre,horaire

where prendre.offreid = horaire.offreid and nolocal = H-843

Network graphs required are:
schema(prendre,id, [etudid]).
schema(prendre,prendre, [offreid]).
schema(horaire, id, [offreid]).

schema(horaire,etre, [nolocal, jour]).

Data dictionnary:
relations(relation,prendre).

relations(relation,horaire).

The deep structures before the joining are:
[prendre,relation, [[etudid, [1310151,2222222]],

[pp, [[prendre, [[=,offreid,no_value]]]l],[]]

[horaire,relation, [offreid, [no_value]], [pp, [[etre, [[=,

nolocal, H-84311111,1]]

49

T TRy AN TR e

The inter key is offreid, and offreid is the id of

horaire. Therefore the precedence of structures is prendre
followed by horaire. Horaire has one modification to the

inter key: adding "anaphoric". The joined deep structures:

[[prendre, relation, [[etudid, [1310151,2222222]], [pp,
[[prendre, [[=,offreid,no_valuellll],[]],[horaire, relation,

[anaphoric, [offreid, [no_value]l]l, [pp/[[etre, [[=, nolocal,

H-843]111],1(11]

The surface structure is

L'etudiant avec code 1310151 prend un cours., Ce cours est

au_lo-al H-843. L'etudiant avec_code 2222222 prend un

cours. Ce cours est au local H—843.

Classes 7 and 8

The class 7 and class 8 are special cases of class 4 and
class 5 respectively. They are special in the sense that

one of the E type is replaced by an RR type.

Class 7 One entity relation and rr relation

This algorithm generates a deep structure of type RR.

Select the entity of RR, here after denoted as Err, that
is involved with the entity (E) relation by mapping the
relations network graphs, and at the same time find the

intersection key (inter key).

Remove the inter key from E or RR's deep structures which

50

has a label different from "id" in order to eliminate the

repetition.

A new deep structure having type RR and a relation name
corresponding to the relationship between Err and E
relations is created. The new structure's subject is the
attribute name of the entity (E or Err) that is the tail of
the arc represented in the relationship network graph. The
attribute name can be positioned as Subject, Object or Pp in
its deep structure, resulting in a search for its wvalue.
The new structure's object is the head of the arc. Its value
is picked up through a search in the following positions :
Subject, Object or Pp. There is an easy way to search for
the attribute name and its value in a position. The subject
uvecnzlly has "id" as a label, so we find the label of the
attribute name. If it is different to "id", we search
through Object and Pp. The verb for this new deep structure

is picked up from the relationship network graph.

Modifications may be made to the new RR's deep structure,
depending upon whether the Subject or Object have been
previously referred. Before doing the modifications, tests
are made to check the position, and possible elimination of
existing structures, such as the E or old RR structures.
Potential elimination of . structure is performed if a
structure has no PP or Object. This case of no Object or PP
is possible after deletion of the inter key in that
structure. The position of {he existing structures, such as
E and new RR, are determined by the model of discourse. The
position of these structures depends on their relation to

51

the o0ld RR's structure.

Example:

select pnom,dnom
from travailler,offrecrs
where travailler.pnom = offrecrs.profnom and offreid =

COMP771287AA;

Travailler consists of two entities, prof and
departements. After the process of prof and departements, we

have this structure with type RR.

[travailler,rr, [profnom,['Shinghal'}l], (1.,

[[travailler, [[deptnom, ['sciences de 1 informatique']l]]]]]

This structure is then joined with offrecrs's structure
which is:

[offrecrs,entite, [offreid, [COMP771287AA)]), (pp,[1], [[etre
enseigner, [[profnom, [Shinghall]]ll]]

The offrecrs network graph is :
schema(offrecrs,id, [offreid]).

schema(offrecrs,etre enseigner, [profnom]).

The entity prof of travailler is involved with the entity
offrecrs, and the inter key is profnom. We remove the
profnom from offrecrs for the following reason: Profnom is

not an id. A new deep structure is the following:

[enseigner,rr, [anaphoric, [profnom, [Shinghall]], [},
[[enseigner, [[offreid, [COMP771287AA]]111]
52

And we delete the offrecrs structure which doesn't
correspond to a complete sentence. [offrecrs, entite,

[[offreid, [COMP771287AA]11,[]1, [11.

The surface structure is:

Le professeur Shinghal travaille au departement sciences de

l'informatique. Il enseiqne le cours COMP771287AA.

Class 8 One relationship relation and one RR relation

Select the entity of the RR relation involved in the
relationship relation (R) by mapping the appropriate network
graphs, and find the intersection key (inter key). The inter
key in the relationship's structure is modified by adding
the label "anaphoric" to it. This modification is necessary
as the RR's structure is placed in front of the

relationship's structure, to introduce it.

Example:

select etid
from etreinscrit,diriger
where etreinscrit.etid = diriger.etudid and profnom =

'Radhakrishnan' and dnom = 'sciences de 1 informatique';

The 'etreinscrit' relation is divided into two entities :
etudiants and departements; and those two entities are
processed through the class 4 algorithm giving this deep

structure:

[etreinscrit,rr, [etudid, [1310151]]), [], I[l[etreinscrit,

[[deptnom, ['sciences de 1 informatiquelllll].

53

This deep structure is then joined with the relationship

diriger structure. Diriger's structure is the following.

[diriger,relation, [profnom, [Radhakrishnan]], I[pp,{}], I[I
diriger, [[etudid, [13101511]1]111]

The entity in the RR involved with diriger is etudiants.
The inter key is etudid. The sequence of the structures is
etreinscrit followed by diriger. The etudid word is
modified in the diriger's struciure; we add anaphoric. The

result is :

[[etreinscrit,rr, [etudid, [1310151]], [], [l[etreinscrit,
[[deptnonm, ['sciences de 1l informatiquel]ll]ll],
[diriger,relation, [profnom, [Radhakrishnan]}], (pp,[1]1, I[I
diriger, [([anaphoric,[etudid,[1310151]131111]

The surface structure is :

L'etudiant_avec code 1310151 est inscrit au departement

sciences de 1l'informatique. Le professeur Radhakrishnan

dirige cet etudiant.

Network graphs required are:
schema(diriger,id, [profnom]).
schema(diriger,diriger, [etudid]).
schema(etudiants,id, {etudid, etudnom]).
schema(etudid,etreinscrit, [deptid]).
schema(departements,id, [deptnom, deptid]).

54

3.6 Two level queries

There are several possible types of two level queries.
We consider in our work only those two level queries which
contain one relation in the outer query and one or more
relations in the inner query. This leads to three classes,
referred to as class 9, class 10, and class 11 below. These
queries can be recognized by having a predicate called

link_attribute in the outer query's "where" clause

corresponding to the attribute of the inner query's "select"
clause. Arity/SQL allows a limitation of predicates in the
"where" clause connected to the attributes in the inner
query's select clause. There is a common part to the classes
(9, 10, 11): The outer query is processed normally using one
of the algorithms of one level queries, producing deep
structures. The inner query with their appropriate
attributes and conditions are processed using the base
algorithms for one level queries with a single relation.
The deep structures produced are related to the outer
qguery's deep structures through the link_attribute situated

in the outer relation's deep structure.
Class 9 Outer query: relation Inner query: same relation

In this class, the relation can only be an entity or
relationship, but the link_attribute cannot be a primary
key.

1) Find the label relating the link_attribute to the

relation in the network graph.

2) If the link_attribute is in the outer query's select
55

clause, it is selected as Object and the word "meme" is
added to the link_attribute in the outer relation's deep
structure. Otherwise it is selected as Pp and the word
"meme" is added to the link_attribute at that position in
the outer relation's deep structure.

3) The inner query's deep structure precedes the outer
query's deep structure. The outer query's deep structure

has the word meme in front of its link_attribute.

Example:

select etudnom,etudid
from etudiants
where progrnom
in(select progrnom
from etudiants

where etudnom = 'Lyne Lahaye');

Etudiants network graph is
schema(etudiants, id, [etudid,etudnom]).

schema(etudiants,etre, [sexe,progrnom]).

The outer's deep structure is

[etudiants,entite, [etudnom, [Lyne Luhaye,Jasmine Blanchet]],

(pp, [[etre, [[=,progrnom,no_value]]l]]l], [[id,[[etudid,
(1310151, 2222222]]1]1]1]

The inner query's structure is
[etudiants, entite, [etudnom, [Lyne Lahayel)], I[pp., [l[etre,

[[progrnom, [no_valuel]]]l]l]

The verb accompaning 'progrnom' is etre. The place of

56

progrnom in the outer query is Pp. The word "mene" is added
to progrnom in the outer query's structure. The sequence of
structures is inner query followed by outer query. The final

result is :

[[etudiants, entite, [etudnom, [Lyne Lahayell, [pp. [l[etre,
[{[progrnom, [no_valuellllll, [etudiants,entite,
[etudnom, [Lyne Lahaye,Jasmine Blanchet]], [pp., [[etre,
[[meme, [=,progrnom,no_valuelllll}]l,[id,[[etudid, [1310151,
2222222]1111111.

The generated output is

L'etudiant Lvne Lahaye est dans un programme. L'etudiant

Lyne Lahaye est dans le meme programme. Jasmine Blanchet

est dans le meme programme.

Class 10 Outer query: relation Inner query: relation

This class does not constrain the relation in the inner
query to be the same as in the outer query. The possible
choices of relations are entity to entity, relationship to
relationship, and one entity to relationship. Th=2
link_attribute joining two levels must be a primary key for
at least one relation. Knowing the structure of the two
relations, we apply the algorithms defined for one level
queries with multiple relations with certain modifications.
The modifications to the one level algorithm are as follows:
first, when the 1link_attribute is the primary key in the
relation and an anaphoric is added to it, a test is

performed on the link_attribute to determine if the word

57

T ST

SRR Sana

P

anaphoric has already been attached to it in order to avoid
repetition. Secondly, if there is a second level, and the
link_attribute is also in the outer query's select clause,
then we replace the values of the link_attribute of the
inner relation's structure by the wvalues of the
link_attribute of the outer relation's structure. The word
anaphoric may also be added to the 1link_attribute. However,
the information about the wvalues of the link_attributes will
help determine whether the anaphoric reference is plural or

singular.

Example:
select offreid, etudid
from prendre
where offreid in (
select offreid
from horaire

where jour = 'MAR');

Network graphs needed are
schema(prendre,id, [etudid]).
schema(prendre,prendre, [offreid]).
schema(horaire,id, [offreid]).

schema(horaire,etre. [nolocal, jour]).

The class 2 algorithm is applied to each relationship
giving:

[prenire,relation, [etudid, [1310151, 233445411, 1],
[[prendre, [[offreid, [COMP771287AA, COMP771287aA]1]]111]

58

[horaire, relation, [offreid, [no_value]], [pp,[[etre, [[=,

jour, MAR]]II1., (1].

We apply the class 6 algorithm to perform the joining of
the two structures with two modifications as follows: add
anaphoric to the 1link_attribute that has not already been
marked anaphoric, and change the "no_value" of the
link_attribute in the inner query by the values of the same

link_attribute in the outer query. The result is :

[[prendre,relation, [etudid,[1310151, 233445411, [1.
[[prendre, [[offreid, [COMP771287a2, COMP771287223111111.,
[horaire, relation, [anaphoric, [offreid, [CUMP771287AA,
COMP7712872A7)]1]1, [pp,[letre, [[=, jour, MAR]]}1], [11].

Anaphoric is the modification done by class 6. Class 10
algorithm changes the "no_value" to COMP771287AA and
COMP771287AA.

The surface structure is

L'etudiant avec code 1310151 prend le cours COMP771287AA.

Ce cours est le Mardi. L'etudiant avec code 2334454 prend

le cours COMP771287AA. Ce cours est le Mardi.

Class 11 Outer gquery: one relation

Inner query: multiple relations

In this class, the relation in the outer query can be an
entity, a relationship, or a RR relation. The inner query
can have a mixture of entity to entity, entity to

59

relationship, or relationship to relationship relations. An
RR relation cannot occur at the second level, as the two
entity relations would have to be processed before doing the

join of the two levels.

1) Find the relation in the second level which has a
relationship with the relation of the outer query. This
selected relation in the second level, and the relation in
the outer level are processed using the algorithm for one
level dqueries with multiple relations, with the
modifications mentionned for class 10. 2) The other
relations in the second level with their deep structures,
are processed sequentially with their related, second level
relations. In other words, a second level relation is
selected depending on its relationship to the previously
selected second level relation. This process is repeated

until there are no more unprocessed relations left in the

second level query.

Example:

select etudnom, telephone
from etudiants
where etudid in ¢
select etudid
from prendre,horaire
where prendre.offreid = horeire.offreid and offreid =

COMP771287AA and jour = MAR);

Network graphs required are:
schema(etudiants,id, [etudnom,etudid]).
60

schema(etudiants,avoir, [telephone, bureaul).
schema (prendre, id, [etudid]).
schema(prendre, prendre, [offreid]).
schema(horaire, id, [offreid]).

schema(horaire,etre, [nolocal, jour]).

The class 1 to 3 algorithms are applied to each relation in
the SQL query.

[etudiants, entite, [etudnom,[Lyne Lahaye, Regis Cardinl]},
[pp, [[id, [[=,etudid, no_value]lll], [[avoir, [[telephone,
[3425816, 6775664111111

iprendre,relation, [etudid, [no_value])], [pp, [[prendre,

[[=, offreid, COMP771287AA]1]111, [1]

[horaire, relation, [offreid, [COMP771287aA]1]1, [pp, [[etre,
{{=, jour, MAR]1]1], []]

1) Prendre has a common key "etudid" with etudiants. The
class 10 algorithm is applied to join these two structures

giving:

[[etudiants, entite, [etudnom,[Lyne Lahaye, Regis Cardin]],
[pp, [[id, [[=,etudid, no_value]l]]l], [([avoir, [[telephone,
[3425816, 6775664]111]]], [prendre,relation, [anaphoric,
[etudid, [Lyne Lahaye, Regis Cardin]l], [pp, [[prendre, [[=,
offreid, COMP771287aA]1]11]1, [1]1].

A matching of horaire's structure is still to be done. It

has a common key which is "offreid" with prendre. We join

61

-

the new structure of prendre with horaire's structure by

applying the class 10 algorithm. The result is:

[[etudiants, entite, [etudnom, [Lyne Lahaye, Regis Cardin]],
[pp, [[id, [[=,etudid, no_value]ll]l]., [[avoir, [[telephone,
[3425816, 67756641]11])])), I[prendre,relation, [anaphoric,
[etudid, [Lyne Lahaye, Regis Cardin]l], ([pp, [[prendre, [([=,
offreid, COMP7712872a]1]111, [1], [horaire, relation,
[anaphoric, [offreid, [COMP771287AAl], I[pp, [[etre, [[=,
jour, MAR]}I11, [11]

The generated surface structure is

L'etudiant Lyne Lahaye a un code et a le telephone 3425816.

Il prend le cours COMP771287AA. Ce cours_est le Mardi.

L'etudiant Regis Crdin a un code et a le telephone €6775664.

I1 prend le cours COMP771287AA.

This basic component described above produces the Jdeep
structures for each relation in the SQL query. The
following component, called the transformational component,
will take care cf the syntax, insert the required
prepositions and articles, and conjugate the vérbs, nouns,
and articles, etc, by successively applying transformational

rules.

62

CHAPTER IV

Surface structure generatior

4.0 Tranformational component

The transformational component applies rules to the deep
structure in order to create the surface structure. The
transformational rules have two conponents: the structural
d=scription (SD) and the structural change (SC). The
structural description lists the elements in the deep
structure that will be transformed according to the
transformational rules. The structural change represents the
changes made to the structural description by the rules.
These rules control the sentence's syntax, the insertion of
prepositions and articles, and the conjugation of verbs,

articles, nouns, etc.

A, The following rules refer to the repetition of a
sentence.
1) sD: [R, Type, [Attr_name, Values], PP, [[V,0bjl]]]
X1 X2 X3 (1,2,..N) X X5 X6

SC: O 0 X3(plural) 1l,2..et N X4 et X5

The names X1, X2 etc. denote objects of that type and 0
denotes deletion under the structural change. group of
elements in the deep structure. This opcration groups all
the values of the subject together to f-rm a single
sentence. The attr_name is put into its plural form. Objl
represents a single attribute with one wvalue. R and Type
are deleted.

63

[travailler, rr, [profnom, [Shinghal,Radh]), ({1},
X1 X2 X3 X41 X42 X5

[[{travailler, é[deptid,[lNFO]]]]]]
X

Les professeurs Shinghal et Radh travaillent au departement

X3 X41 X42 X6

INFO.

2) SD: [R, Type, Subjectl, Pp, [[V,[[Attr_name,Values]]]]]
X1 X2 X3 X4 X5 X6 (1,2,..N) N>1
sC: O 0 X3 X4 et X5 X6(plural) 1,2,.. et N
This rule generates a sentence having one subject and

multiple value objects that are enumerated.

Example:
[prendre, relation, [etudid, [1310151]]), [3,101
prendre, [[offreid, [COMP1l, COMP2]]11]11]]

L'etudiant avec code 1310151 prend les cours COMP1l et COMP2.

3) SD: [R, Type, Subject, Pp, Objl]

X1l X2 X3i to N X4 X5i to N where N >= 1

SC: O 0 X31 X4 X51
0 0 X32 X4 X52
0 0 X3N X4 X5N

This rule specifies that this sentence is repeated for
each different value until all values in the list have been

processed.

64

Example:
(prendre, relation, [etudid, (1,2,3]], [1,({[avoir, [[note,

{(A,B,C]]1]), [prendre, [[COMP1l, COMP2, COMP3]]]]]

L'etudiant avec code_ 1 a note A et prnd le cours COMP1.

——

L'etudiant avec code2 a note B et prend le cours COMP2.
L!

etudiant avec code 3 a note B et prend le cours COMP3.

—

B. The following group of transformational rules refers to
substitution and conjugation of words that are the subject
of the sentence.
1) SD: [[certains, attr_name], Pp, Obj]
X1 X2 X3 x4
SC: X1(G,plur) X2(G,plur) X3 X4
The word "certains" is in the plural form with the same

gender as attr_name. Attr_name is also plural.

Example:

[prendre, relation, [certains, etudid], [], [[prendre,

{{offreid, [COMP1, COMP2]1]1]]

Certains etudiants avec code_ prennent le cours COMP1l.

Certains etudiants prennent le cours COMP2.

2) SD: [[R, Typel, Pp, Obj]
X1 X2 X3 X4
SC:Art indef. (G,singular) id of X1(G,singular) X3 X4
This rule substitutes [R,Type] with an indefinit: article
and the noun which expresses the id of the relation R. The
noun has a gender and must be singular. The indefinite

65

article must be singular and agree with the gender of the

noun.

Example:
[prof, entite, [prof, entite], Pp, Obj]

Un professeur ...

3) SD: [..[attr_name,Values], Pp, Objl]
X1 X2i X3 X4 where i = 1 to N
SC: Art def.(G,sing) X1(G,sing,A_V,subject) X2i X3 X4
or
SC: Art def.(G,sing) X1(G,sing,V_A,subject) X2i X3 X4
This rule inserts the definite article that agrees with
the gender of X1. The attribute name is inserted in front of
the value because of its specification A_V, and has a
specific noun as subject. The i'th value is inserted for

each i'th occurrence of the sentence.

Example: Case of A_V(Attribute followed by Value)
[.. [etudnom, [Lyne Lahaye]], Pp, Obj]

L'etudiant Lyne Lahaye

4) SD: [..[anaphoric,Subject], Pp, Obj]

X1 X2 X3 X4
SC: 0 Ce(G,P) X2(inanimate,G,P) X3 X4
or
SC: 0 Pronoun(masculin,P) 0 X3 X4

This rule adds "ce" or "ces" if the subject is inanimate,
or a pronoun if the subject is animate. The gender of the
pronoun is always masculin even if it should be feminine. It

would be necessary to perform another database access to

66

extract that person's sex, or maintain a dictionary of first
names for females to determine the correct gender. As this
would result in inefficient processing time, it is not

implemented. This problem does not exist with inanimate

nouns.

Example:

[.. [anaphoric, [offreid, [COMP]]] ...]

Ce cours ...

c. The following transformational rules refer to the Pp

component of the deep structure.
1y sD: [pp,[[Verb, [=,At_name, Vall, or,[=,At_name,Val]l]l]
X1 X2 X3 X4 X5 X6 X7 X8 X9
SC: 0 X2(Pl) Of{Prep(V,Att,P),[art(Prep,Type)}}
X4(G,P,object,A_V)
X5 ou O 0 X9
or
SC: 0 X2(Pl) O artdef(G,P) X4(G,P,objet,A_V)
X5 ou X9
This rule conjugates the verb to the plural of the
subject. A preposition and article are inserted in front of
the attribute name if so required by the verb. The verb and
the attribute name determine the article's type. The
preposition has the same plural form of the objet. The
position of the attribute name is determined by A_V or V_A.
The "{" and "}" brackets indicate the possibility that
certain elements in the sentence depend on the satisfaction
of certain conditions in the where clause of the query.

67

Example:
{pp, [lavoir, [=, note, []], or, [=,note, B]]11]]
If Pl is singular, then:

a la note en progres ou B

2) SD: .. [Verb, [[Oper, Att, Value]] ..
X1 X2 X3 X4
SC: X1(P) X2 X3(G,Pl,objet,A_V) X4
or
SC: X1(P) X2 X4 X3(G,Pl,Objet,v_a)

This rule is applied in the general case when the
operator in the condition is not an equal sign: "=", It
also handles quantity. No preposition is inserted between
the verb and attribute name, as our vocabulary does not

require it.

Example:

[avoir, [[>=, inscrit,25]]...

a plus de 25 etudiants inscrits

3) SD: .. [Oper, capacite, Value]..
X1 X2 X3
SC: art indef(G,P) X2(G,P) de X1(G,P) X3 X1 different of =
or
SC: art indef(G,P) X2(G,P) de X3 Xl = "="

This rule is an exception due to our vncabulary
requirements. The word '"capacite" requires an indefinite

article along with the word "de".

68

Example:
[>, capacite, 25]..

une capacite de plus de 25

4) SD: ..[=, Att_name, no_value]..
X1 X2 X3
SC: 0 {Prep(V,Att)}artidef(G,Punique) X2(G,Punique)0

This rule inserts an indefinite article before the
object. The number (singular or plural), is determined by
the relation between the attribute name and the relation
name. For instance, a professor works in only one
department. The relation name is travailler. In +this case
the attribute "department" requires a singular form. A
preposition may be necessary between the verb and the

attribute name.

Example:

[= deptid, no_value]

un departement ..

5) SD: .. [[meme, [Oper, Att_name, Valuel]..
X1l X2 X3 X4
SC:artdef(G,P) X1(P)0 X3(G,P,objet) O

The word "meme" agrees with the plural of the attribute.

Example:

[[meme, [=, progrnom, Bacc]]]

le meme programme ..

69

6) SD: .. [[anaphoric, [Oper, Att_name, Valuel]ll..
X1 X2 X3 X4
SC: 0 ce(P) O X3(P,A_V,objet) 0
This rule asserts "ce" or '"ces", because the attribute

name and its value have been referred previously.

Example:
[anaphoric, [=, offreid, COMP1]]

.. Ce cours

7) spD: .. [pp, [V, Cond,..]}..]..
X1l X2 X3
SC: 0 X2(P) {Prep(Vv,att of Cond) art(Prep,Type)}
X3
This rule analyses the verb and condition in order to
insert a preposition and article between the verb and

condition. The condition can be analyzed further.

Example:
[pp, [etreinscrit, [=,deptid, INFO]]

est inscrit au departement INFO

Rules related to generating other components of the
sentence such as the object component are not mentioned
here. The object component is analyzed the same way as the

Pp component except no operators are involved.

French sentences are then generated by applying
successive rules to the deep structure. The rules perform
lexical insertions of prepositions, articles,and words,

70

control the syntax of the sentences, and delete certain
components. The transformational component also controls
the sequence in which sentences are produced, i.e., a set of
sentences is repeated for each tuple of values when
necessayy. Marakakis [7] and Chomsky accomplish lexical
entires as part of the basic component, but we find it to be
easier to insert lexical entries with the transformational

component .

4.1 Model of a reader

In an interactive session wherein a sequence of queries
are pcsed by the user, it is possible to develop a model of
the user. It can be constructed from the knowledge of what
is being asked, what has been told, what the other believes,
and what the reader's attention is currently on. However in

our present work this model is not employed in full detail.

What is being asked is contained in the attributes of the
select clause of the input SQL query. A study shows that
80% of queries to a database correspond to the structure of
thz database. The NL-menu approach implicitly displays the
database's structure. As this information ~bout the
structure is evident from the menus, the reader can easily
understand it. Knowledge about what has been told is
therefore not considered. Knowledge about the beliefs of
others is not useful in this application. The questions do
not refer to abstract concepts such as philosopay or
politics, among others. They refer to records of students,
professors, departments, etc. Therefore, the possible

71

questions are straightforward. Other knowledge about what
is in the reader's attention in our case corresponds to the
reader's structures. This knowledge is useful when the
reader misunderstands some parts of the database. However,
to recognize the misunderstanding, we need some information
of what has been told. As we do not store information
pertaining to a previously asked query, it is not possible

to determine what the user does not understand.

4.2 Model of discourse

This model is useful whenever multiple sentences are
generated. It could help to organize the sequence of
sentences into a consistent and well readable text. At
present, in my implementation, transformational rules at the

level of deep structures determine how sentences are placed

in a sequence.

The following rules are applied to the group of sentences
each of which has the following basic form: Subject, Verb,
Object. Object can be a series of objects (1,2,3). The
sentences can be compound sentences having the following

form : Subject, Verbl, Objects, and Verb2, Objects.

Rule 1

Input

S1 = Subjectl V1 01,..
S2

Subjectl V2 02

The sentences S1 and S2 have the same subject. The order
is immaterial but the subject in the second sentence is

72

transformed into an appropriate pronoun.

Rule 2
Input:

Sl = Subjectl V1 01, Obj

s2 = 01 V2 Objs

S3 = SUbjectl V3 Objets

The object of sentence Sl is the subject of the sentence
S2. Therefore, S2 follows S1. S3 is not positioned
immediatly after S1 as it would cut the flow of ideas. In
the following sequence: S$1,83,82, S2 is not related to S3.
S2 would appear out of context if placed immediately after

S3.

Rule 3
Input:
S1 = Subjectl V1 O0bjl
S2 = Subject2 V1 meme Objl

The sentence S1 precedes S2 due to the reference made in

S2 to the common object "Objl".

These rules of sentence ordering, generally improve the
readability of a multiple sentence response. But further
improvements can be achieved by changing the structure of
some of the sentences.For example, additional clauses can be

introduced in lieu of a preceeding or a following sentence.

73

M e

4.3 Data Dictionary

The designer must provide a data dictionary that will be
consulted by the generation process for different purposes.
The data dictionary in this application contains information
about entities, relaticnships, attributes names, values of
the attributes, and some linguistic information which is
independent of the database domain. A brief description of
what the data dictionary contains is given below with

examples.

1. Each relation has its type : entity or relationship.
schema: relations(type, rel_name)

example:relations(entite,etudiants)

2. Each relation is associated with its 1list of attribute
names.

schema: "rel_name"(list of attributes)

example: prendre([etudid,offreid, note])
3. Abbreviated values have their corresponding complete
textual values. .

schema: value_attr(attr_name,value,compl_val)

example:value_attr(note,[],en cours)

4, Information about conjugated attribute.
schema: "attr_name"(conj_att,place,gender,glural)
example: titre(cours,sujet,masculin, singulier)
titre(titre,objet,masculin,singulier).

An attribute may occupy the subject or object position in
74

a sentence. Some attribute names require a different noun
for different positions. For example, the attribute name
"titre" has different nouns in the following different

positions:

1) Le cours COMP671 a titre intro. aux syst mes experts.
"titre" occupies the position objet.
2) Le cours intro. aux syst mes experts vaut 3 cr dits.

"titre" occupies the position subject, and is omitted.

5. Information about the position of the value associated
with the attribute.

schema: v_a(attr_name, v_a)

example:v_a(pt_etud,v_a).

v_a = value followed by the attribute

a_v = attribute followed by the value

6. Information about each conjugated verb.
schema: verbco(verb,tense,3rd,plural,conj_verb)

example:verbco(avoir,indicatifpresent,3rd,singulier,a)

In certain sentences, the passive voice is used. When
using the passive voice the French language requires that
the gender and number of the subject correspond to the
gender and number of the verb. One problem in our
application is that if the sentence refers to a person , sex
is not available. Therefore, we assume the gender is

masculine, and conjugate accordingly.

7. Translation of an operator in natural language.

schema: ope(operator, value).

75

T T e Tt

AART TR AW T, W

'
i
i
3
3
.
:
[
]
»
§
l

example:ope(>, plus de)

8. Few operators require conjugation.
schema: conj_ope(gender,plural,oper,conj_oper)
example:conj_ope(feminin,singulier,<=, inferieure ou

egale a)

9. Information about prepositions and articles required
after a verb.
schema: preposition(verb, attr_name,preposition,article)

example:preposition(avoir,pr sident,comme,no)

10. Information about the mapping.

schema: unique(rel name,att_name,plur_subj, plur_obj)

example:unique(prendre,offreid, singulier,pluriel)

unique(travailler,deptid,pluriel,singulier)

This predicate refers to one to one mapping or one to
many mapping. The one to one mapping is explained this way:
professors can only work in one department. The one to many
mapping refers to a student taking many courses. The
predicate "unique" is used by the grammar in the case of an

indefinite object.

The following linguistic information is provided.
11. Conjugated prepositions.
schema: prep(preposition,plural,conj_prep)
example:prep(au, pluriel, aux)
12. Conjugated pronouns
schema: pronoun(gender,plural,pronoun)
example: pronoun(masculin, singulier,il)

76

13. Conjugated definite articles.

schema: artdefini(article,gender,plural)

example:artdefini(le, masculin,singulier)

14, Conjugated indefinite articles.
schema: artindefini(article,gender,plural)

example:artindefini(une, feminin,singulier)

15. conjugated operators.

schema: conj_ope(gender,plural,operator,conj_ope)

example:conj_ope(feminin,singulier,<=,inferieure ou egale

a)

The data dictionary employed by th.s application is

4.4 Two complete examples

Complete Example 1

different from the usual data dictionaries.
dicticnaries in general are used to support database design,
whereas we use it to contain meta data that helps in the
sentence generation process. A complete view of the

generaticn precess is shown belcw through two examples.

The folloving example demonstrates how the design
components geuerate French sentences. First, a database
r ch in response to the SQL query finds data values.
is stored in a record. Then the system parses the input
query and extracts the attributes from the "select" clause,

the relation names from the "from" clause, and the

conditions from the "wherc' clause. The attributes,

77

and conditions are grouped with their respective relations

by consulting the data dictionary. At this point, if a
composite relation such as "travailler", '"offrir",
"enseigner", or "etreinscrit" is recognized, the system
replaces it by its two component entities. Based on this
structure of the query, its class (Classl through class 11
described earlie-) i1s determined. Then appropriate
algorithms of that class are applied in order to generate

the deep structure.

Example: SQL query: select offreid, jour
from horaire
where offreid in
(select offreid
from prendre

where etudid = '2222222')

The example is a two level query consisting of one outer
query and one inner query, each with one relation.
Therefore, the class 10 algorithm is employed. The
generator also applies the class 2 algorithm which handles
the relationships between "horaire and prendrc- relations.
The following duep structures are produced by the class 2

algorithm.

[horaire, relation, [offreid, [COMP771287AA, COMP772287AA,
COMP244285T]), {1, [[etre, [{jour, [MAR, MER, VEN]]]]1]]

[prendre, relation, [etudid,['2222222']], ipP.[]]/
[[prendre, [[offreid,[no_value]]ll]]
78

The first relation horaire has "offreid" as subject, and
"jour" as object. Offreid is the chosen subject as it is
the primary key in the horaire relationship network graph.
The object of the geunerated sentence is derived from the
remainding attributes in the select clause. The object's
verb corresponds to the labelled arc between "jour and
horaire". The condition offreid is deleted from the horaire
structure. The second relatinnship works in the same way by
mapping the relationship network graph to the relation, and
forming the subject, Object and pp components of the deep

structure.

The next step is the join of the two relationships
network graphs to find the link_attribute, which in th.s
case is offreid. Knowing that the primary key of horaire is
offreid and that this is not the primary key for prendre,
the sentence sequence produced is prendre followed by
horaire. After establishing this seq.-nce, the position of
the link_attribute in prendre is found in the position
object component, and the actual values of the no_value
attribute, COMP771287AA, COMP772287AA, COMP244285T, are
substituted. Finally, the word "anaphoric" is added to the
link_attribute in the h»oraire structure. The deep

structures look 1like this:

[[prendre, relation, [etudid, ['2222222'])]), I[pop.I[]1].,
[[prendre, [[offreid, [COMP771287RAA, COMP772287AA,
COMP244285T])])J]), [horaire, relation, [anaphoric,
[ocffreid, [COMP771287AA, COMP772287AA, COMP244285AAl1), (1.
[[etre, [[jour, [MAR, MER, VEN]]1111]

79

W”’,z‘?’m“’*"’?‘

The next step is to apply the transformational rules that

produce French sentences.

L' etudiant_ avec_ code 2222222 prend_le_cours

COMP771287AA. Ce cours est le Mardi. 11 prend le cours

COMP772287AA. Ce cours est le Mercredi. Il prend le cours

COMP244285T. Ce cours est le Vendredi.

There are some undesired repetitions in this sequence of
sentences. However, ._he sentences convey the information

unambiguously.

Complete Example 2

Example: SQL query: select nolocal, capacite, offreid
from locaux, horaire

where horaire.nolocal = locaux.mnolocal

This query involves multiple relations consisting of one
entity and one relationship. The class 5 algorithm handles
this type of query. The deep structures for each relation

is:
[locaux, entite, [nolocal, [H-843, H-539-2, H-843]], I[pp,

[J1, [[avoir, [[capacite, [25, 20, 25]]11]11]1]]

[horaire, relation, [offreid, [COMP771287AA, COMP772287AA,
coMP67128~ 1), ({], I[l[etre,[[nolocal, [H-B43, H-539-2, H-

843]11111)

80

The next step is to find the common key to both
relations which is "nolocal". After finding the common key,
the word "anaphoric" is added to the relation horaire that
follows the local's deep structure. The result is the

following.

[[locaux, entite, ([nolocal, [H-843, H-539-2, H-843]], (pp.
[11, [[avoir, [[capacite, [25,20,25]1]]]], [horaire,
relation, [offreid, [coMP771287AA, COMP772287AA,
coMp€71287aA)], [1, [l[etre, [[anaphoric, [nolocal, [H-843,
H-539-2, H-84311111111]

These deep structures are transformed into surface
structures by the transformational rules. The generated

sentences are:

COMP771287AA est_a_ce local. Le local H-539-2 a_une

capacite de 20. Le cours COMP772287AA est a ce local. Le

local H-843 a une capacite de 25. Le cours COMP671287AA est

a ce local.

Ti.ese two examples give a brief overview of how a group

of sentences is generated.

4.5 Problems specific to French language

The French language i1s different from the English
language in several ways. In French, the gender and number
of the noun should agree with the conjugation of the verb,

81

preposition, definite and indefinite articles, or
adjectives. This prototype handles these cases. The gender
can be determined from the data dictionary or from the data
value in the database. If there is a series of nouns with

different genders, the masculine gender is automatically

assumed.

There is no neuter nouns in French. The English has
three genders: masculine gender describing a man, feminine
gender describing a woman, and a neuter gender for all other
cases. The article has a gender in French such as feminine
and masculine. The gender of the article should agree with
the gender of the noun being qualified. There are three
types of article in French : definite article (le, la, les),
indefinite article(un, une), and partitive article (du, de
la , des). The definite article 1' is a special case for
French. If the noun starts with a vowel, then 1' is wused
instead of le or la. However, the English language has two
types of articles: definite article (the), and indefinite
article (a, an). The rules for incorporating articles in

English differ from French.

Another difference is that the adjective in French has to

agree with the noun that it qualifies.

The French and English pronoun have gender, number and
person. There is an exception witn the relative pronoun in
English, such as that, that, whose, who, whom. These
relative pronouns appear in textual form as they are in

English whereas the French relative pronouns need to be

82

conjugated (lagquelle, lesquelles). French regular
verbs are generally grouped in four classes ending in er,
ir, oir, and re. Compound tenses ("passe compose, plus—-que-
parfait, passe anterieur, futur anterieur, conditionel
passe, subjonctif passe, subjonctif plus-que-parfait") are
conjugated with the auxiliary avoir and the past participle,

except reflexive verbs and the most usual intransitive verbs

(like "aller, arriver", etc.) which are conjugated with
etre. The example of a compound tense is "J'ai recu un
cheque.". "ai" is the auxiliary avoir, and the past

participle is recu. The tense of the verb "recevoir" is
passe compose (compound tense). The French past participle
always agree witih the noun to which it is either an

attribute or an adjective.

Example:

The boy was punished, "Le garcon fut puni".

The French past participle agrees with the object of a

verb conjugated with avoir, only when the object comes

before it.
The English regular verbs have only three endings: "s"
for the third person singular of simple present, "ed" for

the simple past and past participle (always invariable),
"ing" fcr the present participle. Its tenses are much easier
to implement than the French tenses where we have to find

which group of verbs the verb belongs to.

83

4.6 Limitations and possible improvements

This text generation system handles only certain types of
two level queries. Each level can have more than one
relation. The "where" clause has a maximum of one "or"
connective. This limitation is more due to program design

than the system design.

The tense of the verbs are assumed to be simple present
(present). The past tense is necessary if a student has
taken a course and has a grade. The implementation considers
only simple present for all cases. However, modifying the
program to integrate the past tense for this case, is

possible.

The data dictionary contains the singular and plural for
each noun. The memory space taken by the dictionary can be
reduced by storing the singular noun and yes or no for
regular noun. An algortihm will add "s" to the singular noun
for regular noun. Irregular nouns can be checked for their
plural in the dictionary. Our data dictionary does not have
a lot of nouns. Therefore, we can keep the plural and
singular for each noun. This method is very useful with a

large data dictionary.

The generated output consists of simple sentences or
compound sentences. No relative clauses are used. A
possible improvement can be to apply new tranformational
rules to the deep structures building relative clauses. The

relative clause transformational rule can be employed if one

84

sentence has an object which is the subject of the following
sentence. The relative clause consists of "qui" followed by
the verbs of the following sentence and the objects.
Another improvement to simple sentences is to group some
types of sentences, such as having the same subject in one
sentence or the following type. Lyne Lahaye a une
identification, Il prend le cours COMF771287AA. Regis
Cardin a wune identification, Il prend 1le cours
COMP771287AA. The result would be Lyne Lahaye et Regis
Cardin ont une identification et prennent le cours
COMP771287AA. The course COMP771287AA is the common object
for each value of the subject. Therefore, by post
processing of the sentences, we can group the sentences in

this fashion to improve the quality of the text.

There is monotony when same typve of sentences is
displayed to the user. Our implementation uses only active
voice. Using passive voice, other structures of sentences,
or synonyms avoid monotony of the answvers. New
transformational rules and a dictionary of synonyms can be

developed to solve that problem.

Another limitation is the repetitive use of the same
verb. To improve the gquality of the sentence, a
transformational rule can check the repeated use of a verb

and modify appropriately.

For a given query, when the database search fails, the
four following cases are possible.
l) Generate a stereo type answer. For instance, "The

85

zezEat
dl

database does not contain information about your question."
2) Generate the deep structure if possible and an
appropriate surface structure for it, explaining the
database search failure.

3) Confirm partial information stated in the query. For
instance, the user asks about which courses is Lyne Lahaye
taking. There could be no Lyne Lahaye or nc courses taken by
her. The appropriate answers for these two cases is: Lyne
Lahaye is not a student at Concordia, or Lyne Lahaye does
not take any courses at Concordia but is registered.

4) Direct the user to some other source of information

possible.

A future implementation of this project is to develop a
bilingual system (French, English). Some changes are
necessary to achieve this goal. The possible changes are the
modifications of transformational rules. There will be no
conjugation of articles, prepositions, past participles, and
adjectives. Some new structures of sentences can be added.
The position of the value for each attribute can be
different for English language. The semantic structures
remain the same. Therefore, no modification is done to the
basic component of the grammar, only at the transformational
component. A conversicn of the meaning of data contents of
the database to English words is to be performed. The
entity model remains the same. These modifications will

allow us to have a bilingual text generation system.

86

CHAPTER V

INTEGRATION

5.0 Introduction

The different modules of the software system for voice
interface to access database are integrated using two
personal computers and the PC Quick Net interconnecting
them. The interaction between the two PCs and which software
goes on which machine are described in this chapter. Natural
Language input based on Natural Language menu and speech
recognition, SQL query generation, Natural Language
generation in French, and its output in spoken form are
handled by the two PCs together. The full implementation of

the network and the modules are described.

5.1 Environment

The 640K active memory of one AT was not enough to run
the complete software system. Using two ATs and the PC Quick
Net network, we were able to meet the resource needs of the
various modules. PC Quick Net is a combination of hardware
and software that allows communication between the two PCs.
It allows a group of PC users to share data, programs and
peripherals. It joins up to six computers via their RS232
serial ports. It consists of modular RS232-RJ11 (Telephone
cable) connectors and standard flat telephone cable. The

network controller hardware is contained inside the RS232-

87

RJ11 connectors. PC Quick Net does not require any special
communications board. It runs in background and uses MSDOS

commands. The software consists of the following files.

devnet.sys (device driver)

setnet.com (network configuration program)
netacc.comn (access tool)

readme.doc (information about Quick Net)
lantest.com (test utility for the network system)
install.exe (install program)

install.lst (list of incompatiobilities)

inmac.exe (creates the install banner)
filelock.doc (information on multiuser applications)

This software is easy to install by simply using the
command install. Following the command install, one must
activate the network on the PC through the setnet command
which assigns znd reassigns virtual drives and printers.
This command is also used for initialization. To access
remote prcgrams, we use the drive letter assigned to the
drive of the remote FPC. PC Quick Net maintains data
integrity by allowing many computers to read a disk, but
only one computer to write on i1he disk. This product is

simple to install, cheap, but it is slow.

Each PC AT has an assigned virtual drive which
corresponds to a real drive of the other machine. References
to virtual draive access the remote drive. The two PC ATs
share two files in our application. One machine finishes
writing on one file and then transfers it to the other

88

machine. The receiving machine can start to read the file.
There is a problem of timing if the receiver starts reading
the file while the sender has not finished sending. We
alleviate this problem by locking the file by using the
extension lck while writing. After the writing, the file is
renamed with the extension "ari" which enables reading by
the other machine. The communication is done by sending the
file to the other machine. The voice command "fin" from the
user will close all the files on both machines and terminate

the session.

One of the two machines called Challenger, contains
Dragon system (speech recognition system), Televox system
(Speech synthesizer system), Arity Prolog, Microsoft C, and
Flush software. These hardware and software have been
described earlier, except Flush. Flush is a program that
flushes the contents of the Luffer used by Televox. The
buffer end is marked by "flmk". The other machine called
Columbia, contains Arity Prolog and Arity SQL. All these

software are used by different modules.

5.2 Communication between modules

The communication between these modules is shown in

figure 7. The "NL_menu module" receives as input a voice
command. The user sees a NL_menu screen with highlight-=A4
words which he can select. When a sentence is completed,

the user says "procede" in order to process the query, or
"fin" to terminate the session. This module is written in
Arity Prolog and Microsoft C, and requires Dragon System in

89

background. The second module, SQL query generation
receives the output of the first module, and translates it
to an SQL query. This module is written in Arity Prolog
exclusively. The text generation module takes the SQL
query, accesses the database to receive an answer to that
query. It then translates the "semantic structures" into a
sequence of French sentences. This module requires
Arity/SQL and is written in Prolog. The output, French
sentences, are passed to a program called "parler" that
generates spoken output through Televox, the speech
synthesizer. This data flow is repeated for each SQL query
from the user. However, these modules cannot run on one PC

AT due to lack of memory.

90

Figure 7. Dataflow of the modules

yoicE N saL
INPUT NL_MENU[LANGUAGE GENERATION
" QUERY ™
saL
QUERY

GENERATION ¢ emency |
OUTPUT | "o voicE SENTENCES _ |CENERATION

mmm

in-house developed
by earlier thesis

Designed and developod
by this thesis

Designed and developed
by this thes!s

Off the shelf system

TEXT
n

Softwers Tools

Arity Prolog
Voicescribe (Isolated word speech recognition)
Microsoft C

Arity Prolog
Artty Prolog

Artty Prolog
Televax (French Speech Synthesizer)

91

5.3 Complete integration of the modules

Two PCs AT are interconnected through a network called PC
Quick Net that allows us to manage and meet the needs of the
modules. The integration is achieved through the network
using two batch files which transfers shared files between
the machines. The boot-up procedure on each machine
activates PC Quick Net automatically. The user starts up the
batch file called "voice" on Challenger, and "voice2" on
Columbia. The batch file on Challenger loads Dragon, and
asks the user the name of its vocabulary file. It then
executes the program "Load" which displays the NL-menu
screen and responds to the voice command. When the user
ends his sentence by "procede", the module "SQL generation”
is invoked. It generates the SQL query and stores it in the
file "query". 1In the case of a termination of the session,
the word "fin" is stored in the file "query" in order to
warn the other machine to stop the session. The batch file
"voice" then sends the file "query" with the extension lck
to Columbia. It then renames it with the extension ari, and
deletes it from its own drive. Challenger checks if that
file contains the word "fin" to proceed to the end of this
session. If it is not the end of a session, Challenger
installs the marker in memory by calling "flmk". It loads
the synthesizer Televox with the command "tlvx". Challenger
stays in a waiting loop until the file "parle.ari" is sent
from Columbia. When Challenger receives the file
"parle.ari", it runs the program "parler" which generates
the voice output. When the program "parler" ends, the batch

92

file "voice" deletes the file "parle.ari", flushes Televox
out of the memory, and returns back to the beginning of the
loop waiting to be called again. The loop ends when the
word "fin" is written in the file "query.ari".

The "voice2" batch file starts by executing a waiting
loop. It waits until it receives the file "query.ari" from
the Challenger machine. It checks if the file contains the
word "fin" in order to end the session. If this is not the
case, it then runs the program "newmainc" which reads the
file "query.ari", generates French sentences and stores it
in the file "parle.ari". This program takes a while tc xrun.
The file "query.ari" is deleted, and the file "parle.ari" is
copied on Challenger machine with the extension 1lck. It is
then renamed with the extension ari in order to be processed
by the program "parler". Then the batch file returns control
to the beginning of the loop. It waits until it receives the
file "query.ari". The figure 8 shows the data flow between

the two machines.

This integration works perfectly but has one bug, yet to
be removed. After a session of three consecutive questions,
the memory seems to be messed up. It happens always after
the execution of the file parler. This file requires more
memory to be allocated for the stack. Because Dragon,
Televox and PC Quick net are in background and each of one
is using a lot of memory, it was necessary to reduce the

environment of "parler".

93

Figure 8. Dataflow Charts of batch files

Challenger Columbia
Voice betch file Voice2 batch file
Dragon N
& -
getvoc
—
4 d
Load
V
Send file
queryck & T
rename it
_query.ari
A\ 74
A
Televox
A\ g
~ 7
)\ \ Send 6o
Parle.ari | parelck &
rename it
paric.ari
Yes N
) query.ari
N 4
< Call Flush

94

At

W T R T T e TR T T T TR A

e

CHAPTER VI
CONCLUSION

In this project, we developed an integrated software
system for voice interface in French to access databases.
It is implemented on two personal computers AT. The system
compcses of three modules: French natural language menu
using voice drive, SQL query generation, Sentence generation
and voice output. These modules use off-the-shelf
subsystems. The French NL_menu makes use of Voicescribe
system (isolated word recognizer). The sentence generation
and voice output use Arity/SQL and a speech synthesizer

respectively.

My contribution to this project is to develop a French
text generation module and integrates all the modules into a
system. Text generation system makes use of the entity
relationship model as the vehicule for knowledge

representation.

A given SQL query is put into one of the 11 classes by
means of a simple analysis of its structure. For each of
these 11 classes we have presented an algorithm that will
generate a suitable deep structure of the target sentences.
The transformational component will transform the deep
structure into natural language sentences in French. These

sentences are then presented in the form of voice output.

Another minor contribution of my project is to develop

95

SQL queries from the NL_menu input. The NL_menu input was

done in an earlier thesis.

The integration of all the software modules is achieved
using two personal computers and a network called PC Quick
Net. Two batch files run on these machines that control the
software modules resident on them. One machine (A) having
the NL_menu and SQL query generation modules sends the
output file containing the SQL query to the other machine
(B). The machine B processes the output file and runs the
text generation module which creates a new output file with
a French sentence while the machine A is waiting. The new
output file is then transferred back to machine A. Machine
A generates the voice output while machine B is waiting for

a new SQL query.

This integrated software system demonstrates the
feasability to develop a voice interface system to access a
small database on personal computers. The user can talk to
the machine, and the machine answers him back using a
synthesized voice. The constraints of isolated word
recognizer, The NL_menu language input, the quality of
generated text, and the quality of synthesized speech are
all far from "ideal", but they contribute a step towards
voice communication with computers to access the information
stored in databases. Several improvements are suggested in

chapter 4 to obtain better quality of generated French text,

In order to generate good text, we need to understand the

contexc and what is required by the user. Generation of good

96

text becomes as difficult as Natural Language understanding.
There 1s hope to solve the underlying problems at least

under the database domain.

97

REFERENCES

l. Appelt D.E., Planning English Referring Expressions,

Artificial Intelligence, no. 26, 1985, 1-31.

2. Brathwaite K.S., Analysis, Design & Implementation of

Data Dictionaries, McGraw-Hill Book Co., 1988.

3. Chomsky N., Aspects of the theory of syntax, Cambridge

Mass., MIT Press, 1965.

4. Harris M.D., Introduction to Natural Langquage Processing,

Reston Publishing Co., 1985.

5. Hutchins W., Dusek 1., How wvocabulary is generated

determines speech quality, Computer Design, Feb, 1984, pp.

89-96.
6. Lea W.A., Voice Controlled Office Machines: A Critical

Review, AFIPS Office Automation Conference Digest, 1984, pp.
159-174.

7. Mann W., Text Generation, American Journal of

Computational Linguistics, vol.8, no. 2, April-June 1982.

8. Marakakis E.J., Entity Relationship Approcach to the

generation of sentences for database_ gqueries,

M.Comp.Sci.,Thesis, Concordia University, 1984.

9. McKeown K.R., Discourse_Strategies for Generating

Natural-Lanquage Text, Artificial Intelligence, wvol. 27,

1985, pp. 1-41.
10. Menzies I., Voice Input for querying a database,

M.Comp.Sci., Major Report, Concordia University, 1988.

11l. O'Shaughnessy D., Speech Processing, Prentice Hall,1987.

12. O'Shaughnessy D., Archambault D., Barbeau L., Bernardi
D., Speech Synthesis Using Diphones, MONTECH 88, Nov., 1987,

98

Pp. 191-194.

13. PC Quick Net Reference Manual.

14. Radhakrishnan T., Marakakis E.J., Generation of Natural

Language_ Response_to_Database_Queries, Proc. of IEEE

International Conference on Systems,

pp. 825-829, 1983.

99

Man and Cybernetics,

dP 9P dP dP dP dP dP ¢ d¢ oOF

Appendix 1

This program defines the ATN grammar used by Voicescribe.

It defines all the words that the user can say and the

order in which they should appear in a sentence.

The terminal words are in lower case, and non terminal

words are in upper case. The terminal words are the words

that the user can say. The non terminal words are

variables. A space between words indicates that the user

have to say those words in sequence. A comma between

words.

words

indicates that the user can choose one of the two

#keystroke ai 130; % keystrokes define the french accents

f#keystroke aa 133;
#keystroke es 138;
#keystroke hu 151;

frecule is an active word that the user can use at any time

Qlrecule] = donne_moi (Q1l, Q2, Q3, Q4);

Ql = ATTRIRBUTI;

les NOM;

ATTRIBUT2;

le local (LOCALl, LOCAL2) EX_OFFREID point;

@]
w
LI B |

NOM = (N1, N2, N3);

N1l = professeurs (PROF_SUB,PROF_SUBl);
N2 = cours CRS_SUB point;
N3 = etudiants (ETU_SUB, ETU_SUBl);

PROF_SUB = (S1,S2,S3) point;

PROF_SUB1 = ((S1 et S2),(S2 et S1)) point;
CRS_SUB = (S4, S5, sS6, S7, S8);

ETU_SUB = (S9,S10) point;

ETU_SUBl = ((S9 et S10),(S10 et S9)) point;

S1 = qui travaillent au departement EX_DEP;
S2 = qui enseignent EX_OFFREID;

S3 = qui dirigent EX_ETUD;

S4 = qui sont corequis a EX_CRS;

S5 = qui sont enseignes par EX_PROF;

S6 = qui sont pris par EX_ETUD;

S7 = dont le prerequis est EX_CRS;

S8 = quil sont les prerequis de EX_CRS;

100

S9 = qui prennent le cours EX_OFFREID;
S10 = qui sont dans le programme EX_PROG;

LOCALl = de;
LOCAL2 = ou se donne;

EX_CRS = comp (six, sept) DIGIT DIGIT;

EX_OFFREID = DIGIT DIGIT;

EX_PROF = (2zero, un, deux) DIGIT;

EX_PROG = DIGIT;

EX_DEP = DIGIT;

EX_ETUD = (zero, un, deux) DIGIT;

DIGIT = (un, deux, trois, quatre, cing, six, sept, huit, neuf,

ATTRIBUT1 = (PROF_ATT1,ETUD_ATT,CRS_ATT, DEP_ATT) point;
PROF_ATTL = ((Al (et A2) #), (A2 (et Al)#)) de EX_PROF;
ETUD_ATT = A5 de EX_ETUD;

CRS_ATT = (A3,A4) de EX_OFFREID;

DEP_ATT = A6 de EX_DEP;

Al = le telephone;
A2 = le bureau;
A3 = la capacite;
A4 = les heures;
A5 = le statut;
A6 = le directeur;

ATTRIBUT2 = (PROF_ATT2, ETUD_ATT2);

PROF_ATT2 = ((Al (et A2)#), (A2 (et Al)#)) des N1;
ETUD_ATT2 = A5 des N3;

*SYSTEM = (procede, continue, fin);

donne_moi "Donne-moi ";
professeurs "professeurs ";
cours "cours ";

local "local ";

- bureau "bureau ";
telephone "t'ai'l'ai'phone ";
prerequis "pr'ai'requis ";
dont "dont ";
est "est ";
sont "sont ";
etudiants "'ai'tudiants ";
travaillent "travaillent ";
au "au n',
departement "d'ai'partement ";
qui "qui n'.
enseignent "enseignent ";
dirigent "dirigent ";
enseignes "enseign'ai's ";
par "par ";
pris "pris ";
le "le n’,
les "les ";
la "la u',
de "de u',
prennent "prennent ";
dans "dans ";

101

zero

programme
donne
recule
comp
zZero

un

deux
trois
quatre
cing
six
sept
huit
neuf
procede
continue
fin

et

peint
des

se
corequis
a

ou
heures
statut
capacite
directeur

102

"programme
"donne ";
"recule";

[

"proc'es'de";

"continue";

" fin" .
v
LI] !

"corequis ";

"taalt ",
"o'hul l,l'.

"heures ";
"statut ";

"capacit'ai'

"directeur

L

.
1

",
i

